Sample records for human cognitive evolution

  1. New thinking: the evolution of human cognition

    PubMed Central

    Heyes, Cecilia

    2012-01-01

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier ‘Evolutionary Psychology’. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene–culture co-evolution. These have produced domain-general developmental processes with extraordinary power—power that makes human cognition, and human lives, unique. PMID:22734052

  2. New thinking: the evolution of human cognition.

    PubMed

    Heyes, Cecilia

    2012-08-05

    Humans are animals that specialize in thinking and knowing, and our extraordinary cognitive abilities have transformed every aspect of our lives. In contrast to our chimpanzee cousins and Stone Age ancestors, we are complex political, economic, scientific and artistic creatures, living in a vast range of habitats, many of which are our own creation. Research on the evolution of human cognition asks what types of thinking make us such peculiar animals, and how they have been generated by evolutionary processes. New research in this field looks deeper into the evolutionary history of human cognition, and adopts a more multi-disciplinary approach than earlier 'Evolutionary Psychology'. It is informed by comparisons between humans and a range of primate and non-primate species, and integrates findings from anthropology, archaeology, economics, evolutionary biology, neuroscience, philosophy and psychology. Using these methods, recent research reveals profound commonalities, as well striking differences, between human and non-human minds, and suggests that the evolution of human cognition has been much more gradual and incremental than previously assumed. It accords crucial roles to cultural evolution, techno-social co-evolution and gene-culture co-evolution. These have produced domain-general developmental processes with extraordinary power-power that makes human cognition, and human lives, unique.

  3. Unraveling the evolution of uniquely human cognition.

    PubMed

    MacLean, Evan L

    2016-06-07

    A satisfactory account of human cognitive evolution will explain not only the psychological mechanisms that make our species unique, but also how, when, and why these traits evolved. To date, researchers have made substantial progress toward defining uniquely human aspects of cognition, but considerably less effort has been devoted to questions about the evolutionary processes through which these traits have arisen. In this article, I aim to link these complementary aims by synthesizing recent advances in our understanding of what makes human cognition unique, with theory and data regarding the processes of cognitive evolution. I review evidence that uniquely human cognition depends on synergism between both representational and motivational factors and is unlikely to be accounted for by changes to any singular cognitive system. I argue that, whereas no nonhuman animal possesses the full constellation of traits that define the human mind, homologies and analogies of critical aspects of human psychology can be found in diverse nonhuman taxa. I suggest that phylogenetic approaches to the study of animal cognition-which can address questions about the selective pressures and proximate mechanisms driving cognitive change-have the potential to yield important insights regarding the processes through which the human cognitive phenotype evolved.

  4. Enquire within: cultural evolution and cognitive science.

    PubMed

    Heyes, Cecilia

    2018-04-05

    Cultural evolution and cognitive science need each other. Cultural evolution needs cognitive science to find out whether the conditions necessary for Darwinian evolution are met in the cultural domain. Cognitive science needs cultural evolution to explain the origins of distinctively human cognitive processes. Focusing on the first question, I argue that cultural evolutionists can get empirical traction on third-way cultural selection by rooting the distinction between replication and reconstruction, two modes of cultural inheritance, in the distinction between System 1 and System 2 cognitive processes. This move suggests that cultural epidemiologists are right in thinking that replication has higher fidelity than reconstruction, and replication processes are not genetic adaptations for culture, but wrong to assume that replication is rare. If replication is not rare, an important requirement for third-way cultural selection, one-shot fidelity , is likely to be met. However, there are other requirements, overlooked by dual-inheritance theorists when they conflate strong (Darwinian) and weak (choice) senses of 'cultural selection', including dumb choices and recurrent fidelity In a second excursion into cognitive science, I argue that these requirements can be met by metacognitive social learning strategies , and trace the origins of these distinctively human cognitive processes to cultural evolution. Like other forms of cultural learning, they are not cognitive instincts but cognitive gadgets.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  5. Cognitive Empathy and Emotional Empathy in Human Behavior and Evolution

    ERIC Educational Resources Information Center

    Smith, Adam

    2006-01-01

    This article presents 7 simple models of the relationship between cognitive empathy (mental perspective taking) and emotional empathy (the vicarious sharing of emotion). I consider behavioral outcomes of the models, arguing that, during human evolution, natural selection may have acted on variation in the relationship between cognitive empathy and…

  6. Social Cognition and the Evolution of Language: Constructing Cognitive Phylogenies

    PubMed Central

    Fitch, W. Tecumseh; Huber, Ludwig; Bugnyar, Thomas

    2015-01-01

    Human language and social cognition are closely linked: advanced social cognition is necessary for children to acquire language, and language allows forms of social understanding (and, more broadly, culture) that would otherwise be impossible. Both “language” and “social cognition” are complex constructs, involving many independent cognitive mechanisms, and the comparative approach provides a powerful route to understanding the evolution of such mechanisms. We provide a broad comparative review of mechanisms underlying social intelligence in vertebrates, with the goal of determining which human mechanisms are broadly shared, which have evolved in parallel in other clades, and which, potentially, are uniquely developed in our species. We emphasize the importance of convergent evolution for testing hypotheses about neural mechanisms and their evolution. PMID:20346756

  7. Rapid evolution of the cerebellum in humans and other great apes.

    PubMed

    Barton, Robert A; Venditti, Chris

    2014-10-20

    Humans' unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as "the crowning achievement of evolution and the biological substrate of human mental prowess". The human cerebellum, however, contains four times more neurons than the neocortex and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans' advanced technological capacities, which in turn may have been a preadaptation for language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Molecular networks and the evolution of human cognitive specializations.

    PubMed

    Fontenot, Miles; Konopka, Genevieve

    2014-12-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Delegation to automaticity: the driving force for cognitive evolution?

    PubMed

    Shine, J M; Shine, R

    2014-01-01

    The ability to delegate control over repetitive tasks from higher to lower neural centers may be a fundamental innovation in human cognition. Plausibly, the massive neurocomputational challenges associated with the mastery of balance during the evolution of bipedality in proto-humans provided a strong selective advantage to individuals with brains capable of efficiently transferring tasks in this way. Thus, the shift from quadrupedal to bipedal locomotion may have driven the rapid evolution of distinctive features of human neuronal functioning. We review recent studies of functional neuroanatomy that bear upon this hypothesis, and identify ways to test our ideas.

  10. Without it no music: cognition, biology and evolution of musicality.

    PubMed

    Honing, Henkjan; ten Cate, Carel; Peretz, Isabelle; Trehub, Sandra E

    2015-03-19

    Musicality can be defined as a natural, spontaneously developing trait based on and constrained by biology and cognition. Music, by contrast, can be defined as a social and cultural construct based on that very musicality. One critical challenge is to delineate the constituent elements of musicality. What biological and cognitive mechanisms are essential for perceiving, appreciating and making music? Progress in understanding the evolution of music cognition depends upon adequate characterization of the constituent mechanisms of musicality and the extent to which they are present in non-human species. We argue for the importance of identifying these mechanisms and delineating their functions and developmental course, as well as suggesting effective means of studying them in human and non-human animals. It is virtually impossible to underpin the evolutionary role of musicality as a whole, but a multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Without it no music: cognition, biology and evolution of musicality

    PubMed Central

    Honing, Henkjan; ten Cate, Carel; Peretz, Isabelle; Trehub, Sandra E.

    2015-01-01

    Musicality can be defined as a natural, spontaneously developing trait based on and constrained by biology and cognition. Music, by contrast, can be defined as a social and cultural construct based on that very musicality. One critical challenge is to delineate the constituent elements of musicality. What biological and cognitive mechanisms are essential for perceiving, appreciating and making music? Progress in understanding the evolution of music cognition depends upon adequate characterization of the constituent mechanisms of musicality and the extent to which they are present in non-human species. We argue for the importance of identifying these mechanisms and delineating their functions and developmental course, as well as suggesting effective means of studying them in human and non-human animals. It is virtually impossible to underpin the evolutionary role of musicality as a whole, but a multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait. PMID:25646511

  12. Synaptic scaffold evolution generated components of vertebrate cognitive complexity

    PubMed Central

    Nithianantharajah, J.; Komiyama, N.H.; McKechanie, A.; Johnstone, M.; Blackwood, D. H.; St Clair, D.; Emes, R.D.; van de Lagemaat, L. N.; Saksida, L.M.; Bussey, T.J.; Grant, S.G.N.

    2014-01-01

    The origins and evolution of higher cognitive functions including complex forms of learning, attention and executive functions are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 My ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in all four Dlg paralogs show simple associative learning required Dlg4, while Dlg2 and Dlg3 diversified to play opposing roles in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed Dlg2’s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 My. Dlg family mutations underlie psychiatric disorders suggesting genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness. PMID:23201973

  13. Constructive anthropomorphism: a functional evolutionary approach to the study of human-like cognitive mechanisms in animals.

    PubMed

    Arbilly, Michal; Lotem, Arnon

    2017-10-25

    Anthropomorphism, the attribution of human cognitive processes and emotional states to animals, is commonly viewed as non-scientific and potentially misleading. This is mainly because apparent similarity to humans can usually be explained by alternative, simpler mechanisms in animals, and because there is no explanatory power in analogies to human phenomena when these phenomena are not well understood. Yet, because it is also difficult to preclude real similarity and continuity in the evolution of humans' and animals' cognitive abilities, it may not be productive to completely ignore our understanding of human behaviour when thinking about animals. Here we propose that in applying a functional approach to the evolution of cognitive mechanisms, human cognition may be used to broaden our theoretical thinking and to generate testable hypotheses. Our goal is not to 'elevate' animals, but rather to find the minimal set of mechanistic principles that may explain 'advanced' cognitive abilities in humans, and consider under what conditions these mechanisms were likely to enhance fitness and to evolve in animals. We illustrate this approach, from relatively simple emotional states, to more advanced mechanisms, involved in planning and decision-making, episodic memory, metacognition, theory of mind, and consciousness. © 2017 The Author(s).

  14. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition

    PubMed Central

    Stutz, Aaron J.

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment. PMID:25136323

  15. Embodied niche construction in the hominin lineage: semiotic structure and sustained attention in human embodied cognition.

    PubMed

    Stutz, Aaron J

    2014-01-01

    Human evolution unfolded through a rather distinctive, dynamically constructed ecological niche. The human niche is not only generally terrestrial in habitat, while being flexibly and extensively heterotrophic in food-web connections. It is also defined by semiotically structured and structuring embodied cognitive interfaces, connecting the individual organism with the wider environment. The embodied dimensions of niche-population co-evolution have long involved semiotic system construction, which I hypothesize to be an evolutionarily primitive aspect of learning and higher-level cognitive integration and attention in the great apes and humans alike. A clearly pre-linguistic form of semiotic cognitive structuration is suggested to involve recursively learned and constructed object icons. Higher-level cognitive iconic representation of visually, auditorily, or haptically perceived extrasomatic objects would be learned and evoked through indexical connections to proprioceptive and affective somatic states. Thus, private cognitive signs would be defined, not only by their learned and perceived extrasomatic referents, but also by their associations to iconically represented somatic states. This evolutionary modification of animal associative learning is suggested to be adaptive in ecological niches occupied by long-lived, large-bodied ape species, facilitating memory construction and recall in highly varied foraging and social contexts, while sustaining selective attention during goal-directed behavioral sequences. The embodied niche construction (ENC) hypothesis of human evolution posits that in the early hominin lineage, natural selection further modified the ancestral ape semiotic adaptations, favoring the recursive structuration of concise iconic narratives of embodied interaction with the environment.

  16. Morphological and population genomic evidence that human faces have evolved to signal individual identity.

    PubMed

    Sheehan, Michael J; Nachman, Michael W

    2014-09-16

    Facial recognition plays a key role in human interactions, and there has been great interest in understanding the evolution of human abilities for individual recognition and tracking social relationships. Individual recognition requires sufficient cognitive abilities and phenotypic diversity within a population for discrimination to be possible. Despite the importance of facial recognition in humans, the evolution of facial identity has received little attention. Here we demonstrate that faces evolved to signal individual identity under negative frequency-dependent selection. Faces show elevated phenotypic variation and lower between-trait correlations compared with other traits. Regions surrounding face-associated single nucleotide polymorphisms show elevated diversity consistent with frequency-dependent selection. Genetic variation maintained by identity signalling tends to be shared across populations and, for some loci, predates the origin of Homo sapiens. Studies of human social evolution tend to emphasize cognitive adaptations, but we show that social evolution has shaped patterns of human phenotypic and genetic diversity as well.

  17. Linking brains and brawn: exercise and the evolution of human neurobiology.

    PubMed

    Raichlen, David A; Polk, John D

    2013-01-07

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.

  18. Survival of the Friendliest: Homo sapiens Evolved via Selection for Prosociality.

    PubMed

    Hare, Brian

    2017-01-03

    The challenge of studying human cognitive evolution is identifying unique features of our intelligence while explaining the processes by which they arose. Comparisons with nonhuman apes point to our early-emerging cooperative-communicative abilities as crucial to the evolution of all forms of human cultural cognition, including language. The human self-domestication hypothesis proposes that these early-emerging social skills evolved when natural selection favored increased in-group prosociality over aggression in late human evolution. As a by-product of this selection, humans are predicted to show traits of the domestication syndrome observed in other domestic animals. In reviewing comparative, developmental, neurobiological, and paleoanthropological research, compelling evidence emerges for the predicted relationship between unique human mentalizing abilities, tolerance, and the domestication syndrome in humans. This synthesis includes a review of the first a priori test of the self-domestication hypothesis as well as predictions for future tests.

  19. The human socio-cognitive niche and its evolutionary origins.

    PubMed

    Whiten, Andrew; Erdal, David

    2012-08-05

    Hominin evolution took a remarkable pathway, as the foraging strategy extended to large mammalian prey already hunted by a guild of specialist carnivores. How was this possible for a moderately sized ape lacking the formidable anatomical adaptations of these competing 'professional hunters'? The long-standing answer that this was achieved through the elaboration of a new 'cognitive niche' reliant on intelligence and technology is compelling, yet insufficient. Here we present evidence from a diversity of sources supporting the hypothesis that a fuller answer lies in the evolution of a new socio-cognitive niche, the principal components of which include forms of cooperation, egalitarianism, mindreading (also known as 'theory of mind'), language and cultural transmission, that go far beyond the most comparable phenomena in other primates. This cognitive and behavioural complex allows a human hunter-gatherer band to function as a unique and highly competitive predatory organism. Each of these core components of the socio-cognitive niche is distinctive to humans, but primate research has increasingly identified related capacities that permit inferences about significant ancestral cognitive foundations to the five pillars of the human social cognitive niche listed earlier. The principal focus of the present study was to review and integrate this range of recent comparative discoveries.

  20. Functional evolution of new and expanded attention networks in humans

    PubMed Central

    Patel, Gaurav H.; Yang, Danica; Jamerson, Emery C.; Snyder, Lawrence H.; Corbetta, Maurizio; Ferrera, Vincent P.

    2015-01-01

    Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks. PMID:26170314

  1. Functional evolution of new and expanded attention networks in humans.

    PubMed

    Patel, Gaurav H; Yang, Danica; Jamerson, Emery C; Snyder, Lawrence H; Corbetta, Maurizio; Ferrera, Vincent P

    2015-07-28

    Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks.

  2. Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness

    PubMed Central

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

  3. Music cognition and the cognitive sciences.

    PubMed

    Pearce, Marcus; Rohrmeier, Martin

    2012-10-01

    Why should music be of interest to cognitive scientists, and what role does it play in human cognition? We review three factors that make music an important topic for cognitive scientific research. First, music is a universal human trait fulfilling crucial roles in everyday life. Second, music has an important part to play in ontogenetic development and human evolution. Third, appreciating and producing music simultaneously engage many complex perceptual, cognitive, and emotional processes, rendering music an ideal object for studying the mind. We propose an integrated status for music cognition in the Cognitive Sciences and conclude by reviewing challenges and big questions in the field and the way in which these reflect recent developments. Copyright © 2012 Cognitive Science Society, Inc.

  4. Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication.

    PubMed

    Hare, Brian; Plyusnina, Irene; Ignacio, Natalie; Schepina, Olesya; Stepika, Anna; Wrangham, Richard; Trut, Lyudmila

    2005-02-08

    Dogs have an unusual ability for reading human communicative gestures (e.g., pointing) in comparison to either nonhuman primates (including chimpanzees) or wolves . Although this unusual communicative ability seems to have evolved during domestication , it is unclear whether this evolution occurred as a result of direct selection for this ability, as previously hypothesized , or as a correlated by-product of selection against fear and aggression toward humans--as is the case with a number of morphological and physiological changes associated with domestication . We show here that fox kits from an experimental population selectively bred over 45 years to approach humans fearlessly and nonaggressively (i.e., experimentally domesticated) are not only as skillful as dog puppies in using human gestures but are also more skilled than fox kits from a second, control population not bred for tame behavior (critically, neither population of foxes was ever bred or tested for their ability to use human gestures) . These results suggest that sociocognitive evolution has occurred in the experimental foxes, and possibly domestic dogs, as a correlated by-product of selection on systems mediating fear and aggression, and it is likely the observed social cognitive evolution did not require direct selection for improved social cognitive ability.

  5. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions

    PubMed Central

    Iriki, Atsushi; Taoka, Miki

    2012-01-01

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language—the site of such integration seems to be the parietal and extending opercular cortices. PMID:22106423

  6. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions.

    PubMed

    Iriki, Atsushi; Taoka, Miki

    2012-01-12

    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language--the site of such integration seems to be the parietal and extending opercular cortices.

  7. Cave men: stone tools, Victorian science, and the 'primitive mind' of deep time.

    PubMed

    Pettitt, Paul B; White, Mark J

    2011-03-20

    Palaeoanthropology, the study of the evolution of humanity, arose in the nineteenth century. Excavations in Europe uncovered a series of archaeological sediments which provided proof that the antiquity of human life on Earth was far longer than the biblical six thousand years, and by the 1880s authors had constructed a basic paradigm of what 'primitive' human life was like. Here we examine the development of Victorian palaeoanthropology for what it reveals of the development of notions of cognitive evolution. It seems that Victorian specialists rarely addressed cognitive evolution explicitly, although several assumptions were generally made that arose from preconceptions derived from contemporary 'primitive' peoples. We identify three main phases of development of notions of the primitive mind in the period.

  8. The human socio-cognitive niche and its evolutionary origins

    PubMed Central

    Whiten, Andrew; Erdal, David

    2012-01-01

    Hominin evolution took a remarkable pathway, as the foraging strategy extended to large mammalian prey already hunted by a guild of specialist carnivores. How was this possible for a moderately sized ape lacking the formidable anatomical adaptations of these competing ‘professional hunters’? The long-standing answer that this was achieved through the elaboration of a new ‘cognitive niche’ reliant on intelligence and technology is compelling, yet insufficient. Here we present evidence from a diversity of sources supporting the hypothesis that a fuller answer lies in the evolution of a new socio-cognitive niche, the principal components of which include forms of cooperation, egalitarianism, mindreading (also known as ‘theory of mind’), language and cultural transmission, that go far beyond the most comparable phenomena in other primates. This cognitive and behavioural complex allows a human hunter–gatherer band to function as a unique and highly competitive predatory organism. Each of these core components of the socio-cognitive niche is distinctive to humans, but primate research has increasingly identified related capacities that permit inferences about significant ancestral cognitive foundations to the five pillars of the human social cognitive niche listed earlier. The principal focus of the present study was to review and integrate this range of recent comparative discoveries. PMID:22734055

  9. Physical Complexity and Cognitive Evolution

    NASA Astrophysics Data System (ADS)

    Jedlicka, Peter

    Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.

  10. Seeking Synthesis: The Integrative Problem in Understanding Language and Its Evolution.

    PubMed

    Dale, Rick; Kello, Christopher T; Schoenemann, P Thomas

    2016-04-01

    We discuss two problems for a general scientific understanding of language, sequences and synergies: how language is an intricately sequenced behavior and how language is manifested as a multidimensionally structured behavior. Though both are central in our understanding, we observe that the former tends to be studied more than the latter. We consider very general conditions that hold in human brain evolution and its computational implications, and identify multimodal and multiscale organization as two key characteristics of emerging cognitive function in our species. This suggests that human brains, and cognitive function specifically, became more adept at integrating diverse information sources and operating at multiple levels for linguistic performance. We argue that framing language evolution, learning, and use in terms of synergies suggests new research questions, and it may be a fruitful direction for new developments in theory and modeling of language as an integrated system. Copyright © 2016 Cognitive Science Society, Inc.

  11. Language and other artifacts: socio-cultural dynamics of niche construction

    PubMed Central

    Sinha, Chris

    2015-01-01

    Niche construction theory is a relatively new approach in evolutionary biology that seeks to integrate an ecological dimension into the Darwinian theory of evolution by natural selection. It is regarded by many evolutionary biologists as providing a significant revision of the Neo-Darwinian modern synthesis that unified Darwin’s theory of natural and sexual selection with 20th century population genetics. Niche construction theory has been invoked as a processual mediator of social cognitive evolution and of the emergence and evolution of language. I argue that language itself can be considered as a biocultural niche and evolutionary artifact. I provide both a general analysis of the cognitive and semiotic status of artifacts, and a formal analysis of language as a social and semiotic institution, based upon a distinction between the fundamental semiotic relations of “counting as” and “standing for.” I explore the consequences for theories of language and language learning of viewing language as a biocultural niche. I suggest that not only do niches mediate organism-organism interactions, but also that organisms mediate niche-niche interactions in ways that affect evolutionary processes, with the evolution of human infancy and childhood as a key example. I argue that language as a social and semiotic system is not only grounded in embodied engagements with the material and social-interactional world, but also grounds a sub-class of artifacts of particular significance in the cultural history of human cognition. Symbolic cognitive artifacts materially and semiotically mediate human cognition, and are not merely informational repositories, but co-agentively constitutive of culturally and historically emergent cognitive domains. I provide examples of the constitutive cognitive role of symbolic cognitive artifacts drawn from my research with my colleagues on cultural and linguistic conceptualizations of time, and their cultural variability. I conclude by reflecting on the philosophical and social implications of understanding artifacts co-agentively. PMID:26539144

  12. Home range overlap as a driver of intelligence in primates.

    PubMed

    Grueter, Cyril C

    2015-04-01

    Various socioecological factors have been suggested to influence cognitive capacity in primates, including challenges associated with foraging and dealing with the complexities of social life. Alexander [Alexander, 1989]. Evolution of the human psyche. In: Mellars P, Stringer C, editors. The human revolution: Behavioural and biological perspectives on the origins of modern humans. Princeton: Princeton University Press. p 455-513] proposed an integrative model for the evolution of human cognitive abilities and complex sociality that incorporates competition among coalitions of conspecifics (inter-group conflict) as a major selective pressure. However, one of the premises of this model, i.e., that when confronted with inter-group conflict selection should favor enhanced cognition, has remained empirically untested. Using a comparative approach on species data, I aimed to test the prediction that primate species (n = 104) that face greater inter-group conflict have higher cognitive abilities (indexed by endocranial volume). The degree of inter-group conflict/complexity was approximated via the variable home range overlap among groups. I found a significant relationship between home range overlap and endocranial volume, even after controlling for other predictor variables and covariates such as group size and body mass. I conclude that brain size evolution cannot be attributed exclusively to social factors such as group size, but likely reflects a variety of social and ecological determinants including inter-group conflict which poses cognitive demands on monitoring both the wider social milieu as well as spatial attributes of the habitat. © 2014 Wiley Periodicals, Inc.

  13. Selection to outsmart the germs: The evolution of disease recognition and social cognition.

    PubMed

    Kessler, Sharon E; Bonnell, Tyler R; Byrne, Richard W; Chapman, Colin A

    2017-07-01

    The emergence of providing care to diseased conspecifics must have been a turning point during the evolution of hominin sociality. On a population level, care may have minimized the costs of socially transmitted diseases at a time of increasing social complexity, although individual care-givers probably incurred increased transmission risks. We propose that care-giving likely originated within kin networks, where the costs may have been balanced by fitness increases obtained through caring for ill kin. We test a novel hypothesis of hominin cognitive evolution in which disease may have selected for the cognitive ability to recognize when a conspecific is infected. Because diseases may produce symptoms that are likely detectable via the perceptual-cognitive pathways integral to social cognition, we suggest that disease recognition and social cognition may have evolved together. Using agent-based modeling, we test 1) under what conditions disease can select for increasing disease recognition and care-giving among kin, 2) whether providing care produces greater selection for cognition than an avoidance strategy, and 3) whether care-giving alters the progression of the disease through the population. The greatest selection was produced by diseases with lower risks to the care-giver and prevalences low enough not to disrupt the kin networks. When care-giving and avoidance strategies were compared, only care-giving reduced the severity of the disease outbreaks and subsequent population crashes. The greatest selection for increased cognitive abilities occurred early in the model runs when the outbreaks and population crashes were most severe. Therefore, over the course of human evolution, repeated introductions of novel diseases into naïve populations could have produced sustained selection for increased disease recognition and care-giving behavior, leading to the evolution of increased cognition, social complexity, and, eventually, medical care in humans. Finally, we lay out predictions derived from our disease recognition hypothesis that we encourage paleoanthropologists, bioarchaeologists, primatologists, and paleogeneticists to test. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pathways to cognitive design.

    PubMed

    Wertz, Annie E; Moya, Cristina

    2018-05-30

    Despite a shared recognition that the design of the human mind and the design of human culture are tightly linked, researchers in the evolutionary social sciences tend to specialize in understanding one at the expense of the other. The disciplinary boundaries roughly correspond to research traditions that focus more on natural selection and those that focus more on cultural evolution. In this paper, we articulate how two research traditions within the evolutionary social sciences-evolutionary psychology and cultural evolution-approach the study of design. We focus our analysis on the design of cognitive mechanisms that are the result of the interplay of genetic and cultural evolution. We aim to show how the approaches of these two research traditions can complement each other, and provide a framework for developing a wider range of testable hypotheses about cognitive design. To do so, we provide concrete illustrations of how this integrated approach can be used to interrogate cognitive design using examples from our own work on plant and symbolic group boundary cognition. We hope this recognition of different pathways to design will broaden the hypothesis space in the evolutionary social sciences and encourage methodological pluralism in the investigation of the mind. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Old World Monkeys Compare to Apes in the Primate Cognition Test Battery

    PubMed Central

    Schmitt, Vanessa; Pankau, Birte; Fischer, Julia

    2012-01-01

    Understanding the evolution of intelligence rests on comparative analyses of brain sizes as well as the assessment of cognitive skills of different species in relation to potential selective pressures such as environmental conditions and social organization. Because of the strong interest in human cognition, much previous work has focused on the comparison of the cognitive skills of human toddlers to those of our closest living relatives, i.e. apes. Such analyses revealed that apes and children have relatively similar competencies in the physical domain, while human children excel in the socio-cognitive domain; in particular in terms of attention sharing, cooperation, and mental state attribution. To develop a full understanding of the evolutionary dynamics of primate intelligence, however, comparative data for monkeys are needed. We tested 18 Old World monkeys (long-tailed macaques and olive baboons) in the so-called Primate Cognition Test Battery (PCTB) (Herrmann et al. 2007, Science). Surprisingly, our tests revealed largely comparable results between Old World monkeys and the Great apes. Single comparisons showed that chimpanzees performed only better than the macaques in experiments on spatial understanding and tool use, but in none of the socio-cognitive tasks. These results question the clear-cut relationship between cognitive performance and brain size and – prima facie – support the view of an accelerated evolution of social intelligence in humans. One limitation, however, is that the initial experiments were devised to tap into human specific skills in the first place, thus potentially underestimating both true nonhuman primate competencies as well as species differences. PMID:22485130

  16. Archeological insights into hominin cognitive evolution.

    PubMed

    Wynn, Thomas; Coolidge, Frederick L

    2016-07-01

    How did the human mind evolve? How and when did we come to think in the ways we do? The last thirty years have seen an explosion in research related to the brain and cognition. This research has encompassed a range of biological and social sciences, from epigenetics and cognitive neuroscience to social and developmental psychology. Following naturally on this efflorescence has been a heightened interest in the evolution of the brain and cognition. Evolutionary scholars, including paleoanthropologists, have deployed the standard array of evolutionary methods. Ethological and experimental evidence has added significantly to our understanding of nonhuman brains and cognition, especially those of nonhuman primates. Studies of fossil brains through endocasts and sophisticated imaging techniques have revealed evolutionary changes in gross neural anatomy. Psychologists have also gotten into the game through application of reverse engineering to experimentally based descriptions of cognitive functions. For hominin evolution, there is another rich source of evidence of cognition, the archeological record. Using the methods of Paleolithic archeology and the theories and models of cognitive science, evolutionary cognitive archeology documents developments in the hominin mind that would otherwise be inaccessible. © 2016 Wiley Periodicals, Inc.

  17. Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes.

    PubMed

    Sherwood, Chet C; Raghanti, Mary Ann; Stimpson, Cheryl D; Spocter, Muhammad A; Uddin, Monica; Boddy, Amy M; Wildman, Derek E; Bonar, Christopher J; Lewandowski, Albert H; Phillips, Kimberley A; Erwin, Joseph M; Hof, Patrick R

    2010-04-07

    Inhibitory interneurons participate in local processing circuits, playing a central role in executive cognitive functions of the prefrontal cortex. Although humans differ from other primates in a number of cognitive domains, it is not currently known whether the interneuron system has changed in the course of primate evolution leading to our species. In this study, we examined the distribution of different interneuron subtypes in the prefrontal cortex of anthropoid primates as revealed by immunohistochemistry against the calcium-binding proteins calbindin, calretinin and parvalbumin. In addition, we tested whether genes involved in the specification, differentiation and migration of interneurons show evidence of positive selection in the evolution of humans. Our findings demonstrate that cellular distributions of interneuron subtypes in human prefrontal cortex are similar to other anthropoid primates and can be explained by general scaling rules. Furthermore, genes underlying interneuron development are highly conserved at the amino acid level in primate evolution. Taken together, these results suggest that the prefrontal cortex in humans retains a similar inhibitory circuitry to that in closely related primates, even though it performs functional operations that are unique to our species. Thus, it is likely that other significant modifications to the connectivity and molecular biology of the prefrontal cortex were overlaid on this conserved interneuron architecture in the course of human evolution.

  18. Marmosets as model species in neuroscience and evolutionary anthropology.

    PubMed

    Burkart, Judith M; Finkenwirth, Christa

    2015-04-01

    Marmosets are increasingly used as model species by both neuroscientists and evolutionary anthropologists, but with a different rationale for doing so. Whereas neuroscientists stress that marmosets share many cognitive traits with humans due to common descent, anthropologists stress those traits shared with marmosets - and callitrichid monkeys in general - due to convergent evolution, as a consequence of the cooperative breeding system that characterizes both humans and callitrichids. Similarities in socio-cognitive abilities due to convergence, rather than homology, raise the question whether these similarities also extend to the proximate regulatory mechanisms, which is particularly relevant for neuroscientific investigations. In this review, we first provide an overview of the convergent adaptations to cooperative breeding at the psychological and cognitive level in primates, which bear important implications for our understanding of human cognitive evolution. In the second part, we zoom in on two of these convergent adaptations, proactive prosociality and social learning, and compare their proximate regulation in marmosets and humans with regard to oxytocin and cognitive top down regulation. Our analysis suggests considerable similarity in these regulatory mechanisms presumably because the convergent traits emerged due to small motivational changes that define how pre-existing cognitive mechanisms are quantitatively combined. This finding reconciles the prima facie contradictory rationale for using marmosets as high priority model species in neuroscience and anthropology. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Culture shapes the evolution of cognition.

    PubMed

    Thompson, Bill; Kirby, Simon; Smith, Kenny

    2016-04-19

    A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual-if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption.

  20. Multi-level human evolution: ecological patterns in hominin phylogeny.

    PubMed

    Parravicini, Andrea; Pievani, Telmo

    2016-06-20

    Evolution is a process that occurs at many different levels, from genes to ecosystems. Genetic variations and ecological pressures are hence two sides of the same coin; but due both to fragmentary evidence and to the influence of a gene-centered and gradualistic approach to evolutionary phenomena, the field of paleoanthropology has been slow to take the role of macro-evolutionary patterns (i.e. ecological and biogeographical at large scale) seriously. However, several very recent findings in paleoanthropology stress both climate instability and ecological disturbance as key factors affecting the highly branching hominin phylogeny, from the earliest hominins to the appearance of cognitively modern humans. Allopatric speciation due to geographic displacement, turnover-pulses of species, adaptive radiation, mosaic evolution of traits in several coeval species, bursts of behavioral innovation, serial dispersals out of Africa, are just some of the macro-evolutionary patterns emerging from the field. The multilevel approach to evolution proposed by paleontologist Niles Eldredge is adopted here as interpretative tool, and has yielded a larger picture of human evolution that integrates different levels of evolutionary change, from local adaptations in limited ecological niches to dispersal phenotypes able to colonize an unprecedented range of ecosystems. Changes in global climate and Earth's surface most greatly affected human evolution. Precisely because it is cognitively hard for us to appreciate the long-term common destiny we share with the whole biosphere, it is particularly valuable to highlight the accumulating evidence that human evolution has been deeply affected by global ecological changes that transformed our African continent of origin.

  1. Evolution of cooperative behavior in simulation agents

    NASA Astrophysics Data System (ADS)

    Stroud, Phillip D.

    1998-03-01

    A simulated automobile factory paint shop is used as a testbed for exploring the emulation of human decision-making behavior. A discrete-events simulation of the paint shop as a collection of interacting Java actors is described. An evolutionary cognitive architecture is under development for building software actors to emulate humans in simulations of human- dominated complex systems. In this paper, the cognitive architecture is extended by implementing a persistent population of trial behaviors with an incremental fitness valuation update strategy, and by allowing a group of cognitive actors to share information. A proof-of-principle demonstration is presented.

  2. Managing competing goals - a key role for the frontopolar cortex.

    PubMed

    Mansouri, Farshad Alizadeh; Koechlin, Etienne; Rosa, Marcello G P; Buckley, Mark J

    2017-11-01

    Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.

  3. The evolution of face processing in primates

    PubMed Central

    Parr, Lisa A.

    2011-01-01

    The ability to recognize faces is an important socio-cognitive skill that is associated with a number of cognitive specializations in humans. While numerous studies have examined the presence of these specializations in non-human primates, species where face recognition would confer distinct advantages in social situations, results have been mixed. The majority of studies in chimpanzees support homologous face-processing mechanisms with humans, but results from monkey studies appear largely dependent on the type of testing methods used. Studies that employ passive viewing paradigms, like the visual paired comparison task, report evidence of similarities between monkeys and humans, but tasks that use more stringent, operant response tasks, like the matching-to-sample task, often report species differences. Moreover, the data suggest that monkeys may be less sensitive than chimpanzees and humans to the precise spacing of facial features, in addition to the surface-based cues reflected in those features, information that is critical for the representation of individual identity. The aim of this paper is to provide a comprehensive review of the available data from face-processing tasks in non-human primates with the goal of understanding the evolution of this complex cognitive skill. PMID:21536559

  4. Monogamy, strongly bonded groups, and the evolution of human social structure.

    PubMed

    Chapais, Bernard

    2013-01-01

    Human social evolution has most often been treated in a piecemeal fashion, with studies focusing on the evolution of specific components of human society such as pair-bonding, cooperative hunting, male provisioning, grandmothering, cooperative breeding, food sharing, male competition, male violence, sexual coercion, territoriality, and between-group conflicts. Evolutionary models about any one of those components are usually concerned with two categories of questions, one relating to the origins of the component and the other to its impact on the evolution of human cognition and social life. Remarkably few studies have been concerned with the evolution of the entity that integrates all components, the human social system itself. That social system has as its core feature human social structure, which I define here as the common denominator of all human societies in terms of group composition, mating system, residence patterns, and kinship structures. The paucity of information on the evolution of human social structure poses substantial problems because that information is useful, if not essential, to assess both the origins and impact of any particular aspect of human society. Copyright © 2013 Wiley Periodicals, Inc.

  5. Genetic enhancement of cognition in a kindred with cone–rod dystrophy due to RIMS1 mutation

    PubMed Central

    Sisodiya, Sanjay M; Thompson, Pamela J; Need, Anna; Harris, Sarah E; Weale, Michael E; Wilkie, Susan E; Michaelides, Michel; Free, Samantha L; Walley, Nicole; Gumbs, Curtis; Gerrelli, Dianne; Ruddle, Piers; Whalley, Lawrence J; Starr, John M; Hunt, David M; Goldstein, David B; Deary, Ian J; Moore, Anthony T

    2007-01-01

    Background The genetic basis of variation in human cognitive abilities is poorly understood. RIMS1 encodes a synapse active‐zone protein with important roles in the maintenance of normal synaptic function: mice lacking this protein have greatly reduced learning ability and memory function. Objective An established paradigm examining the structural and functional effects of mutations in genes expressed in the eye and the brain was used to study a kindred with an inherited retinal dystrophy due to RIMS1 mutation. Materials and methods Neuropsychological tests and high‐resolution MRI brain scanning were undertaken in the kindred. In a population cohort, neuropsychological scores were associated with common variation in RIMS1. Additionally, RIMS1 was sequenced in top‐scoring individuals. Evolution of RIMS1 was assessed, and its expression in developing human brain was studied. Results Affected individuals showed significantly enhanced cognitive abilities across a range of domains. Analysis suggests that factors other than RIMS1 mutation were unlikely to explain enhanced cognition. No association with common variation and verbal IQ was found in the population cohort, and no other mutations in RIMS1 were detected in the highest scoring individuals from this cohort. RIMS1 protein is expressed in developing human brain, but RIMS1 does not seem to have been subjected to accelerated evolution in man. Conclusions A possible role for RIMS1 in the enhancement of cognitive function at least in this kindred is suggested. Although further work is clearly required to explore these findings before a role for RIMS1 in human cognition can be formally accepted, the findings suggest that genetic mutation may enhance human cognition in some cases. PMID:17237123

  6. Override the controversy: Analytic thinking predicts endorsement of evolution.

    PubMed

    Gervais, Will M

    2015-09-01

    Despite overwhelming scientific consensus, popular opinions regarding evolution are starkly divided. In the USA, for example, nearly one in three adults espouse a literal and recent divine creation account of human origins. Plausibly, resistance to scientific conclusions regarding the origins of species-like much resistance to other scientific conclusions (Bloom & Weisberg, 2007)-gains support from reliably developing intuitions. Intuitions about essentialism, teleology, agency, and order may combine to make creationism potentially more cognitively attractive than evolutionary concepts. However, dual process approaches to cognition recognize that people can often analytically override their intuitions. Two large studies (total N=1324) found consistent evidence that a tendency to engage analytic thinking predicted endorsement of evolution, even controlling for relevant demographic, attitudinal, and religious variables. Meanwhile, exposure to religion predicted reduced endorsement of evolution. Cognitive style is one factor among many affecting opinions on the origin of species. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Cognition and the evolution of music: pitfalls and prospects.

    PubMed

    Honing, Henkjan; Ploeger, Annemie

    2012-10-01

    What was the role of music in the evolutionary history of human beings? We address this question from the point of view that musicality can be defined as a cognitive trait. Although it has been argued that we will never know how cognitive traits evolved (Lewontin, 1998), we argue that we may know the evolution of music by investigating the fundamental cognitive mechanisms of musicality, for example, relative pitch, tonal encoding of pitch, and beat induction. In addition, we show that a nomological network of evidence (Schmitt & Pilcher, 2004) can be built around the hypothesis that musicality is a cognitive adaptation. Within this network, different modes of evidence are gathered to support a specific evolutionary hypothesis. We show that the combination of psychological, medical, physiological, genetic, phylogenetic, hunter-gatherer, and cross-cultural evidence indicates that musicality is a cognitive adaptation. Copyright © 2012 Cognitive Science Society, Inc.

  8. The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity

    PubMed Central

    DeFelipe, Javier

    2011-01-01

    The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of microcircuits with a similar basic structure, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective. PMID:21647212

  9. The power of possibility: causal learning, counterfactual reasoning, and pretend play

    PubMed Central

    Buchsbaum, Daphna; Bridgers, Sophie; Skolnick Weisberg, Deena; Gopnik, Alison

    2012-01-01

    We argue for a theoretical link between the development of an extended period of immaturity in human evolution and the emergence of powerful and wide-ranging causal learning mechanisms, specifically the use of causal models and Bayesian learning. We suggest that exploratory childhood learning, childhood play in particular, and causal cognition are closely connected. We report an empirical study demonstrating one such connection—a link between pretend play and counterfactual causal reasoning. Preschool children given new information about a causal system made very similar inferences both when they considered counterfactuals about the system and when they engaged in pretend play about it. Counterfactual cognition and causally coherent pretence were also significantly correlated even when age, general cognitive development and executive function were controlled for. These findings link a distinctive human form of childhood play and an equally distinctive human form of causal inference. We speculate that, during human evolution, computations that were initially reserved for solving particularly important ecological problems came to be used much more widely and extensively during the long period of protected immaturity. PMID:22734063

  10. The power of possibility: causal learning, counterfactual reasoning, and pretend play.

    PubMed

    Buchsbaum, Daphna; Bridgers, Sophie; Skolnick Weisberg, Deena; Gopnik, Alison

    2012-08-05

    We argue for a theoretical link between the development of an extended period of immaturity in human evolution and the emergence of powerful and wide-ranging causal learning mechanisms, specifically the use of causal models and Bayesian learning. We suggest that exploratory childhood learning, childhood play in particular, and causal cognition are closely connected. We report an empirical study demonstrating one such connection--a link between pretend play and counterfactual causal reasoning. Preschool children given new information about a causal system made very similar inferences both when they considered counterfactuals about the system and when they engaged in pretend play about it. Counterfactual cognition and causally coherent pretence were also significantly correlated even when age, general cognitive development and executive function were controlled for. These findings link a distinctive human form of childhood play and an equally distinctive human form of causal inference. We speculate that, during human evolution, computations that were initially reserved for solving particularly important ecological problems came to be used much more widely and extensively during the long period of protected immaturity.

  11. The evolution of music and human social capability

    PubMed Central

    Schulkin, Jay; Raglan, Greta B.

    2014-01-01

    Music is a core human experience and generative processes reflect cognitive capabilities. Music is often functional because it is something that can promote human well-being by facilitating human contact, human meaning, and human imagination of possibilities, tying it to our social instincts. Cognitive systems also underlie musical performance and sensibilities. Music is one of those things that we do spontaneously, reflecting brain machinery linked to communicative functions, enlarged and diversified across a broad array of human activities. Music cuts across diverse cognitive capabilities and resources, including numeracy, language, and space perception. In the same way, music intersects with cultural boundaries, facilitating our “social self” by linking our shared experiences and intentions. This paper focuses on the intersection between the neuroscience of music, and human social functioning to illustrate the importance of music to human behaviors. PMID:25278827

  12. Culture shapes the evolution of cognition

    PubMed Central

    Thompson, Bill; Kirby, Simon; Smith, Kenny

    2016-01-01

    A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual—if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption. PMID:27044094

  13. The Manipulative Complexity of Lower Paleolithic Stone Toolmaking

    PubMed Central

    Faisal, Aldo; Stout, Dietrich; Apel, Jan; Bradley, Bruce

    2010-01-01

    Background Early stone tools provide direct evidence of human cognitive and behavioral evolution that is otherwise unavailable. Proper interpretation of these data requires a robust interpretive framework linking archaeological evidence to specific behavioral and cognitive actions. Methodology/Principal Findings Here we employ a data glove to record manual joint angles in a modern experimental toolmaker (the 4th author) replicating ancient tool forms in order to characterize and compare the manipulative complexity of two major Lower Paleolithic technologies (Oldowan and Acheulean). To this end we used a principled and general measure of behavioral complexity based on the statistics of joint movements. Conclusions/Significance This allowed us to confirm that previously observed differences in brain activation associated with Oldowan versus Acheulean technologies reflect higher-level behavior organization rather than lower-level differences in manipulative complexity. This conclusion is consistent with a scenario in which the earliest stages of human technological evolution depended on novel perceptual-motor capacities (such as the control of joint stiffness) whereas later developments increasingly relied on enhanced mechanisms for cognitive control. This further suggests possible links between toolmaking and language evolution. PMID:21072164

  14. Sleep intensity and the evolution of human cognition.

    PubMed

    Samson, David R; Nunn, Charles L

    2015-01-01

    Over the past four decades, scientists have made substantial progress in understanding the evolution of sleep patterns across the Tree of Life. Remarkably, the specifics of sleep along the human lineage have been slow to emerge. This is surprising, given our unique mental and behavioral capacity and the importance of sleep for individual cognitive performance. One view is that our species' sleep architecture is in accord with patterns documented in other mammals. We promote an alternative view, that human sleep is highly derived relative to that of other primates. Based on new and existing evidence, we specifically propose that humans are more efficient in their sleep patterns than are other primates, and that human sleep is shorter, deeper, and exhibits a higher proportion of REM than expected. Thus, we propose the sleep intensity hypothesis: Early humans experienced selective pressure to fulfill sleep needs in the shortest time possible. Several factors likely served as selective pressures for more efficient sleep, including increased predation risk in terrestrial environments, threats from intergroup conflict, and benefits arising from increased social interaction. Less sleep would enable longer active periods in which to acquire and transmit new skills and knowledge, while deeper sleep may be critical for the consolidation of those skills, leading to enhanced cognitive abilities in early humans. © 2015 Wiley Periodicals, Inc.

  15. Humans, Intentionality, Experience And Tools For Learning: Some Contributions From Post-cognitive Theories To The Use Of Technology In Physics Education

    NASA Astrophysics Data System (ADS)

    Bernhard, Jonte

    2007-11-01

    Human cognition cannot be properly understood if we do not take the use of tools into account. The English word cognition stems from the Latin "cognoscere," meaning "to become acquainted with" or "to come to know." Following the original Latin meaning we should not only study "what happens in the head" if we want to study cognition. Experientially based perspectives, such as pragmatism, phenomenology, phenomenography, and activity theory, stress that we should study person-world relationships. Technologies actively shape the character of human-world relationships. An emergent understanding in modern cognitive research is the co-evolution of the human brain and human use of tools and the active character of perception. Thus, I argue that we must analyze the role of technologies in physics education in order to realize their full potential as tools for learning, and I will provide selected examples from physics learning environments to support this assertion.

  16. Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals

    PubMed Central

    Barrett, Louise; Henzi, S. Peter; Lusseau, David

    2012-01-01

    Understanding human cognitive evolution, and that of the other primates, means taking sociality very seriously. For humans, this requires the recognition of the sociocultural and historical means by which human minds and selves are constructed, and how this gives rise to the reflexivity and ability to respond to novelty that characterize our species. For other, non-linguistic, primates we can answer some interesting questions by viewing social life as a feedback process, drawing on cybernetics and systems approaches and using social network neo-theory to test these ideas. Specifically, we show how social networks can be formalized as multi-dimensional objects, and use entropy measures to assess how networks respond to perturbation. We use simulations and natural ‘knock-outs’ in a free-ranging baboon troop to demonstrate that changes in interactions after social perturbations lead to a more certain social network, in which the outcomes of interactions are easier for members to predict. This new formalization of social networks provides a framework within which to predict network dynamics and evolution, helps us highlight how human and non-human social networks differ and has implications for theories of cognitive evolution. PMID:22734054

  17. Biology is only part of the story ...

    PubMed

    Read, Dwight; van der Leeuw, Sander

    2008-06-12

    The origins and development of human cognition constitute one of the most interesting questions to which archaeology can contribute today. In this paper, we do so by presenting an overview of the evolution of artefact technology from the maker's point of view, and linking that development to some hypotheses on the evolution of human cognitive capacity. Our main hypothesis is that these data indicate that, in the first part of the trajectory, biological limits to cognitive capacity were a major constraint that limited technology, whereas, in the second part, this biological constraint seems to have been lifted and others have come in its place. But these are modifiable by means of conceptual frameworks that facilitate concept innovation and therefore enable learning, thereby permitting acceleration in the pace of change in technology. In the last part of the paper, we elaborate on some of the consequences of that acceleration.

  18. Testing the hypothesis on cognitive evolution of modern humans' learning ability: current status of past-climatic approaches.

    NASA Astrophysics Data System (ADS)

    Yoneda, Minoru; Abe-Ouchi, Ayako; Kawahata, Hodaka; Yokoyama, Yusuke; Oguchi, Takashi

    2014-05-01

    The impact of climate change on human evolution is important and debating topic for many years. Since 2010, we have involved in a general joint project entitled "Replacement of Neanderthal by Modern Humans: Testing Evolutional Models of Learning", which based on a theoretical prediction that the cognitive ability related to individual and social learning divide fates of ancient humans in very unstable Late Pleistocene climate. This model predicts that the human populations which experienced a series of environmental changes would have higher rate of individual learners, while detailed reconstructions of global climate change have reported fluent and drastic change based on ice cores and stalagmites. However, we want to understand the difference between anatomically modern human which survived and the other archaic extinct humans including European Neanderthals and Asian Denisovans. For this purpose the global synchronized change is not useful for understanding but the regional difference in the amplitude and impact of climate change is the information required. Hence, we invited a geophysicist busing Global Circulation Model to reconstruct the climatic distribution and temporal change in a continental scale. At the same time, some geochemists and geographers construct a database of local climate changes recorded in different proxies. At last, archaeologists and anthropologists tried to interpret the emergence and disappearance of human species in Europe and Asia on the reconstructed past climate maps using some tools, such as Eco-cultural niche model. Our project will show the regional difference in climate change and related archaeological events and its impact on the evolution of learning ability of modern humans.

  19. Prolonged myelination in human neocortical evolution.

    PubMed

    Miller, Daniel J; Duka, Tetyana; Stimpson, Cheryl D; Schapiro, Steven J; Baze, Wallace B; McArthur, Mark J; Fobbs, Archibald J; Sousa, André M M; Sestan, Nenad; Wildman, Derek E; Lipovich, Leonard; Kuzawa, Christopher W; Hof, Patrick R; Sherwood, Chet C

    2012-10-09

    Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily exceptional. In this study, we quantified myelinated axon fiber length density and the expression of myelin-related proteins throughout postnatal life in the somatosensory (areas 3b/3a/1/2), motor (area 4), frontopolar (prefrontal area 10), and visual (areas 17/18) neocortex of chimpanzees (N = 20) and humans (N = 33). Our examination revealed that neocortical myelination is developmentally protracted in humans compared with chimpanzees. In chimpanzees, the density of myelinated axons increased steadily until adult-like levels were achieved at approximately the time of sexual maturity. In contrast, humans displayed slower myelination during childhood, characterized by a delayed period of maturation that extended beyond late adolescence. This comparative research contributes evidence crucial to understanding the evolution of human cognition and behavior, which arises from the unfolding of nervous system development within the context of an enriched cultural environment. Perturbations of normal developmental processes and the decreased expression of myelin-related molecules have been related to psychiatric disorders such as schizophrenia. Thus, these species differences suggest that the human-specific shift in the timing of cortical maturation during adolescence may have implications for vulnerability to certain psychiatric disorders.

  20. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    ERIC Educational Resources Information Center

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  1. Accelerated Evolution of the Pituitary Adenylate Cyclase-Activating Polypeptide Precursor Gene During Human Origin

    PubMed Central

    Wang, Yin-qiu; Qian, Ya-ping; Yang, Su; Shi, Hong; Liao, Cheng-hong; Zheng, Hong-Kun; Wang, Jun; Lin, Alice A.; Cavalli-Sforza, L. Luca; Underhill, Peter A.; Chakraborty, Ranajit; Jin, Li; Su, Bing

    2005-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. PMID:15834139

  2. Cognitive Phenotypes and the Evolution of Animal Decisions.

    PubMed

    Mendelson, Tamra C; Fitzpatrick, Courtney L; Hauber, Mark E; Pence, Charles H; Rodríguez, Rafael L; Safran, Rebecca J; Stern, Caitlin A; Stevens, Jeffrey R

    2016-11-01

    Despite the clear fitness consequences of animal decisions, the science of animal decision making in evolutionary biology is underdeveloped compared with decision science in human psychology. Specifically, the field lacks a conceptual framework that defines and describes the relevant components of a decision, leading to imprecise language and concepts. The 'judgment and decision-making' (JDM) framework in human psychology is a powerful tool for framing and understanding human decisions, and we apply it here to components of animal decisions, which we refer to as 'cognitive phenotypes'. We distinguish multiple cognitive phenotypes in the context of a JDM framework and highlight empirical approaches to characterize them as evolvable traits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Molecular Basis of Human Brain Evolution.

    PubMed

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Blackboxing: social learning strategies and cultural evolution.

    PubMed

    Heyes, Cecilia

    2016-05-05

    Social learning strategies (SLSs) enable humans, non-human animals, and artificial agents to make adaptive decisions aboutwhenthey should copy other agents, andwhothey should copy. Behavioural ecologists and economists have discovered an impressive range of SLSs, and explored their likely impact on behavioural efficiency and reproductive fitness while using the 'phenotypic gambit'; ignoring, or remaining deliberately agnostic about, the nature and origins of the cognitive processes that implement SLSs. Here I argue that this 'blackboxing' of SLSs is no longer a viable scientific strategy. It has contributed, through the 'social learning strategies tournament', to the premature conclusion that social learning is generally better than asocial learning, and to a deep puzzle about the relationship between SLSs and cultural evolution. The puzzle can be solved by recognizing that whereas most SLSs are 'planetary'--they depend on domain-general cognitive processes--some SLSs, found only in humans, are 'cook-like'--they depend on explicit, metacognitive rules, such ascopy digital natives. These metacognitive SLSs contribute to cultural evolution by fostering the development of processes that enhance the exclusivity, specificity, and accuracy of social learning. © 2016 The Author(s).

  5. Shining evolutionary light on human sleep and sleep disorders.

    PubMed

    Nunn, Charles L; Samson, David R; Krystal, Andrew D

    2016-01-01

    Sleep is essential to cognitive function and health in humans, yet the ultimate reasons for sleep-i.e. 'why' sleep evolved-remain mysterious. We integrate findings from human sleep studies, the ethnographic record, and the ecology and evolution of mammalian sleep to better understand sleep along the human lineage and in the modern world. Compared to other primates, sleep in great apes has undergone substantial evolutionary change, with all great apes building a sleeping platform or 'nest'. Further evolutionary change characterizes human sleep, with humans having the shortest sleep duration, yet the highest proportion of rapid eye movement sleep among primates. These changes likely reflect that our ancestors experienced fitness benefits from being active for a greater portion of the 24-h cycle than other primates, potentially related to advantages arising from learning, socializing and defending against predators and hostile conspecifics. Perspectives from evolutionary medicine have implications for understanding sleep disorders; we consider these perspectives in the context of insomnia, narcolepsy, seasonal affective disorder, circadian rhythm disorders and sleep apnea. We also identify how human sleep today differs from sleep through most of human evolution, and the implications of these changes for global health and health disparities. More generally, our review highlights the importance of phylogenetic comparisons in understanding human health, including well-known links between sleep, cognitive performance and health in humans. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  6. How comparative psychology can shed light on human evolution: Response to Beran et al.'s discussion of "Cognitive capacities for cooking in chimpanzees".

    PubMed

    Rosati, Alexandra G; Warneken, Felix

    2016-06-01

    We recently reported a study (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015) examining whether chimpanzees possess several cognitive capacities that are critical to engage in cooking. In a subsequent commentary, Beran, Hopper, de Waal, Sayers, and Brosnan Learning & Behavior (2015) asserted that our paper has several flaws. Their commentary (1) critiques some aspects of our methodology and argues that our work does not constitute evidence that chimpanzees can actually cook; (2) claims that these results are old news, as previous work had already demonstrated that chimpanzees possess most or all of these capacities; and, finally, (3) argues that comparative psychological studies of chimpanzees cannot adequately address questions about human evolution, anyway. However, their critique of the premise of our study simply reiterates several points we made in the original paper. To quote ourselves: "As chimpanzees neither control fire nor cook food in their natural behavior, these experiments therefore focus not on whether chimpanzees can actually cook food, but rather whether they can apply their cognitive skills to novel problems that emulate cooking" (Warneken & Rosati Proceedings of the Royal Society B, 282, 20150229, 2015, p. 2). Furthermore, the methodological issues they raise are standard points about psychological research with animals-many of which were addressed synthetically across our 9 experiments, or else are orthogonal to our claims. Finally, we argue that comparative studies of extant apes (and other nonhuman species) are a powerful and indispensable method for understanding human cognitive evolution.

  7. Phylogenetic approach to the evolution of color term systems

    PubMed Central

    Haynie, Hannah J.

    2016-01-01

    The naming of colors has long been a topic of interest in the study of human culture and cognition. Color term research has asked diverse questions about thought and communication, but no previous research has used an evolutionary framework. We show that there is broad support for the most influential theory of color term development (that most strongly represented by Berlin and Kay [Berlin B, Kay P (1969) (Univ of California Press, Berkeley, CA)]); however, we find extensive evidence for the loss (as well as gain) of color terms. We find alternative trajectories of color term evolution beyond those considered in the standard theories. These results not only refine our knowledge of how humans lexicalize the color space and how the systems change over time; they illustrate the promise of phylogenetic methods within the domain of cognitive science, and they show how language change interacts with human perception. PMID:27849594

  8. Considering the Role of "Need for Cognition" in Students' Acceptance of Climate Change & Evolution

    ERIC Educational Resources Information Center

    Kudrna, Jeremy; Shore, Marta; Wassenberg, Deena

    2015-01-01

    Anthropogenic climate change (ACC) and evolution are examples of issues that are perceived differently by scientists and the general public. Within the scientific community, there are clear consensuses that human activities are increasing global temperatures (ACC) and that evolutionary mechanisms have led to the biodiversity of life on Earth…

  9. Nitric oxide signaling in the development and evolution of language and cognitive circuits.

    PubMed

    Funk, Owen H; Kwan, Kenneth Y

    2014-09-01

    The neocortex underlies not only remarkable motor and sensory capabilities, but also some of our most distinctly human cognitive functions. The emergence of these higher functions during evolution was accompanied by structural changes in the neocortex, including the acquisition of areal specializations such as Broca's speech and language area. The study of these evolutionary mechanisms, which likely involve species-dependent gene expression and function, represents a substantial challenge. These species differences, however, may represent valuable opportunities to understand the molecular underpinnings of neocortical evolution. Here, we discuss nitric oxide signaling as a candidate mechanism in the assembly of neocortical circuits underlying language and higher cognitive functions. This hypothesis was based on the highly specific mid-fetal pattern of nitric oxide synthase 1 (NOS1, previously nNOS) expression in the pyramidal (projection) neurons of two human neocortical areas respectively involved in speech and language, and higher cognition; the frontal operculum (FOp) and the anterior cingulate cortex (ACC). This expression is transiently present during mid-gestation, suggesting that NOS1 may be involved in the development of these areas and the assembly of their neural circuits. As no other gene product is known to exhibit such exquisite spatiotemporal expression, NOS1 represents a remarkable candidate for these functions. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Ratcheting up the ratchet: on the evolution of cumulative culture

    PubMed Central

    Tennie, Claudio; Call, Josep; Tomasello, Michael

    2009-01-01

    Some researchers have claimed that chimpanzee and human culture rest on homologous cognitive and learning mechanisms. While clearly there are some homologous mechanisms, we argue here that there are some different mechanisms at work as well. Chimpanzee cultural traditions represent behavioural biases of different populations, all within the species’ existing cognitive repertoire (what we call the ‘zone of latent solutions’) that are generated by founder effects, individual learning and mostly product-oriented (rather than process-oriented) copying. Human culture, in contrast, has the distinctive characteristic that it accumulates modifications over time (what we call the ‘ratchet effect’). This difference results from the facts that (i) human social learning is more oriented towards process than product and (ii) unique forms of human cooperation lead to active teaching, social motivations for conformity and normative sanctions against non-conformity. Together, these unique processes of social learning and cooperation lead to humans’ unique form of cumulative cultural evolution. PMID:19620111

  11. Modeling evolution of the mind and cultures: emotional Sapir-Whorf hypothesis

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2009-05-01

    Evolution of cultures is ultimately determined by mechanisms of the human mind. The paper discusses the mechanisms of evolution of language from primordial undifferentiated animal cries to contemporary conceptual contents. In parallel with differentiation of conceptual contents, the conceptual contents were differentiated from emotional contents of languages. The paper suggests the neural brain mechanisms involved in these processes. Experimental evidence and theoretical arguments are discussed, including mathematical approaches to cognition and language: modeling fields theory, the knowledge instinct, and the dual model connecting language and cognition. Mathematical results are related to cognitive science, linguistics, and psychology. The paper gives an initial mathematical formulation and mean-field equations for the hierarchical dynamics of both the human mind and culture. In the mind heterarchy operation of the knowledge instinct manifests through mechanisms of differentiation and synthesis. The emotional contents of language are related to language grammar. The conclusion is an emotional version of Sapir-Whorf hypothesis. Cultural advantages of "conceptual" pragmatic cultures, in which emotionality of language is diminished and differentiation overtakes synthesis resulting in fast evolution at the price of self doubts and internal crises are compared to those of traditional cultures where differentiation lags behind synthesis, resulting in cultural stability at the price of stagnation. Multi-language, multi-ethnic society might combine the benefits of stability and fast differentiation. Unsolved problems and future theoretical and experimental directions are discussed.

  12. Possible evolutionary and developmental mechanisms of mental time travel (and implications for autism).

    PubMed

    Allman, Melissa J; Mareschal, Denis

    2016-04-01

    Through an interdisciplinary perspective integrating behavior, neurobiology and evolution, we present a cognitive framework underpinning the development of ' time in mind ' in animals (phylogeny) and humans (ontogeny). We distinguish between conscious processing of events immediately available (in the present) to those that are hypothetical (in the past or future). The former is present in animals and neonates, whereas the latter emerges later in phylogeny and ontogeny (around 4 years of age in humans) and is related to the development of episodic memory (expanded working memory, complex actions, social-cognitive abilities). We suggest that forms of temporal representation that rely upon current bodily sensation across time, space, and action (through embodied interoceptive and motor systems) may be critical causal factors for the evolution of mental time travel.

  13. Intent Specifications: An Approach to Building Human-Centered Specifications

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G.

    1999-01-01

    This paper examines and proposes an approach to writing software specifications, based on research in systems theory, cognitive psychology, and human-machine interaction. The goal is to provide specifications that support human problem solving and the tasks that humans must perform in software development and evolution. A type of specification, called intent specifications, is constructed upon this underlying foundation.

  14. Grist and mills: on the cultural origins of cultural learning

    PubMed Central

    Heyes, Cecilia

    2012-01-01

    Cumulative cultural evolution is what ‘makes us odd’; our capacity to learn facts and techniques from others, and to refine them over generations, plays a major role in making human minds and lives radically different from those of other animals. In this article, I discuss cognitive processes that are known collectively as ‘cultural learning’ because they enable cumulative cultural evolution. These cognitive processes include reading, social learning, imitation, teaching, social motivation and theory of mind. Taking the first of these three types of cultural learning as examples, I ask whether and to what extent these cognitive processes have been adapted genetically or culturally to enable cumulative cultural evolution. I find that recent empirical work in comparative psychology, developmental psychology and cognitive neuroscience provides surprisingly little evidence of genetic adaptation, and ample evidence of cultural adaptation. This raises the possibility that it is not only ‘grist’ but also ‘mills’ that are culturally inherited; through social interaction in the course of development, we not only acquire facts about the world and how to deal with it (grist), we also build the cognitive processes that make ‘fact inheritance’ possible (mills). PMID:22734061

  15. Cognitive ornithology: the evolution of avian intelligence

    PubMed Central

    Emery, Nathan J

    2005-01-01

    Comparative psychologists interested in the evolution of intelligence have focused their attention on social primates, whereas birds tend to be used as models of associative learning. However, corvids and parrots, which have forebrains relatively the same size as apes, live in complex social groups and have a long developmental period before becoming independent, have demonstrated ape-like intelligence. Although, ornithologists have documented thousands of hours observing birds in their natural habitat, they have focused their attention on avian behaviour and ecology, rather than intelligence. This review discusses recent studies of avian cognition contrasting two different approaches; the anthropocentric approach and the adaptive specialization approach. It is argued that the most productive method is to combine the two approaches. This is discussed with respects to recent investigations of two supposedly unique aspects of human cognition; episodic memory and theory of mind. In reviewing the evidence for avian intelligence, corvids and parrots appear to be cognitively superior to other birds and in many cases even apes. This suggests that complex cognition has evolved in species with very different brains through a process of convergent evolution rather than shared ancestry, although the notion that birds and mammals may share common neural connectivity patterns is discussed. PMID:16553307

  16. Cultural Transmission and Evolution of Melodic Structures in Multi-generational Signaling Games.

    PubMed

    Lumaca, Massimo; Baggio, Giosuè

    2017-01-01

    It has been proposed that languages evolve by adapting to the perceptual and cognitive constraints of the human brain, developing, in the course of cultural transmission, structural regularities that maximize or optimize learnability and ease of processing. To what extent would perceptual and cognitive constraints similarly affect the evolution of musical systems? We conducted an experiment on the cultural evolution of artificial melodic systems, using multi-generational signaling games as a laboratory model of cultural transmission. Signaling systems, using five-tone sequences as signals, and basic and compound emotions as meanings, were transmitted from senders to receivers along diffusion chains in which the receiver in each game became the sender in the next game. During transmission, structural regularities accumulated in the signaling systems, following principles of proximity, symmetry, and good continuation. Although the compositionality of signaling systems did not increase significantly across generations, we did observe a significant increase in similarity among signals from the same set. We suggest that our experiment tapped into the cognitive and perceptual constraints operative in the cultural evolution of musical systems, which may differ from the mechanisms at play in language evolution and change.

  17. The Efficacy of Musical Emotions Provoked by Mozart’s Music for the Reconciliation of Cognitive Dissonance

    DTIC Science & Technology

    2012-09-25

    The efficacy of musical emotions provoked by Mozart’s music for the reconciliation of cognitive dissonance Nobuo Masataka1 & Leonid Perlovsky2...scientists argue thatmusic itself plays no adaptive role in human evolution, others suggest that music clearly has an evolutionary role, and point to music’s...universality. A recent hypothesis suggested that a fundamental function of music has been to help mitigating cognitive dissonance, which is a

  18. Evolution, brain, and the nature of language.

    PubMed

    Berwick, Robert C; Friederici, Angela D; Chomsky, Noam; Bolhuis, Johan J

    2013-02-01

    Language serves as a cornerstone for human cognition, yet much about its evolution remains puzzling. Recent research on this question parallels Darwin's attempt to explain both the unity of all species and their diversity. What has emerged from this research is that the unified nature of human language arises from a shared, species-specific computational ability. This ability has identifiable correlates in the brain and has remained fixed since the origin of language approximately 100 thousand years ago. Although songbirds share with humans a vocal imitation learning ability, with a similar underlying neural organization, language is uniquely human. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Mirror neurons and the social nature of language: the neural exploitation hypothesis.

    PubMed

    Gallese, Vittorio

    2008-01-01

    This paper discusses the relevance of the discovery of mirror neurons in monkeys and of the mirror neuron system in humans to a neuroscientific account of primates' social cognition and its evolution. It is proposed that mirror neurons and the functional mechanism they underpin, embodied simulation, can ground within a unitary neurophysiological explanatory framework important aspects of human social cognition. In particular, the main focus is on language, here conceived according to a neurophenomenological perspective, grounding meaning on the social experience of action. A neurophysiological hypothesis--the "neural exploitation hypothesis"--is introduced to explain how key aspects of human social cognition are underpinned by brain mechanisms originally evolved for sensorimotor integration. It is proposed that these mechanisms were later on adapted as new neurofunctional architecture for thought and language, while retaining their original functions as well. By neural exploitation, social cognition and language can be linked to the experiential domain of action.

  20. The cognitive niche: Coevolution of intelligence, sociality, and language

    PubMed Central

    Pinker, Steven

    2010-01-01

    Although Darwin insisted that human intelligence could be fully explained by the theory of evolution, the codiscoverer of natural selection, Alfred Russel Wallace, claimed that abstract intelligence was of no use to ancestral humans and could only be explained by intelligent design. Wallace's apparent paradox can be dissolved with two hypotheses about human cognition. One is that intelligence is an adaptation to a knowledge-using, socially interdependent lifestyle, the “cognitive niche.” This embraces the ability to overcome the evolutionary fixed defenses of plants and animals by applications of reasoning, including weapons, traps, coordinated driving of game, and detoxification of plants. Such reasoning exploits intuitive theories about different aspects of the world, such as objects, forces, paths, places, states, substances, and other people's beliefs and desires. The theory explains many zoologically unusual traits in Homo sapiens, including our complex toolkit, wide range of habitats and diets, extended childhoods and long lives, hypersociality, complex mating, division into cultures, and language (which multiplies the benefit of knowledge because know-how is useful not only for its practical benefits but as a trade good with others, enhancing the evolution of cooperation). The second hypothesis is that humans possess an ability of metaphorical abstraction, which allows them to coopt faculties that originally evolved for physical problem-solving and social coordination, apply them to abstract subject matter, and combine them productively. These abilities can help explain the emergence of abstract cognition without supernatural or exotic evolutionary forces and are in principle testable by analyses of statistical signs of selection in the human genome. PMID:20445094

  1. Colloquium paper: the cognitive niche: coevolution of intelligence, sociality, and language.

    PubMed

    Pinker, Steven

    2010-05-11

    Although Darwin insisted that human intelligence could be fully explained by the theory of evolution, the codiscoverer of natural selection, Alfred Russel Wallace, claimed that abstract intelligence was of no use to ancestral humans and could only be explained by intelligent design. Wallace's apparent paradox can be dissolved with two hypotheses about human cognition. One is that intelligence is an adaptation to a knowledge-using, socially interdependent lifestyle, the "cognitive niche." This embraces the ability to overcome the evolutionary fixed defenses of plants and animals by applications of reasoning, including weapons, traps, coordinated driving of game, and detoxification of plants. Such reasoning exploits intuitive theories about different aspects of the world, such as objects, forces, paths, places, states, substances, and other people's beliefs and desires. The theory explains many zoologically unusual traits in Homo sapiens, including our complex toolkit, wide range of habitats and diets, extended childhoods and long lives, hypersociality, complex mating, division into cultures, and language (which multiplies the benefit of knowledge because know-how is useful not only for its practical benefits but as a trade good with others, enhancing the evolution of cooperation). The second hypothesis is that humans possess an ability of metaphorical abstraction, which allows them to coopt faculties that originally evolved for physical problem-solving and social coordination, apply them to abstract subject matter, and combine them productively. These abilities can help explain the emergence of abstract cognition without supernatural or exotic evolutionary forces and are in principle testable by analyses of statistical signs of selection in the human genome.

  2. Graphical Language Games: Interactional Constraints on Representational Form

    ERIC Educational Resources Information Center

    Healey, Patrick G. T.; Swoboda, Nik; Umata, Ichiro; King, James

    2007-01-01

    The emergence of shared symbol systems is considered to be a pivotal moment in human evolution and human development. These changes are normally explained by reference to changes in people's internal cognitive processes. We present 2 experiments which provide evidence that changes in the external, collaborative processes that people use to…

  3. Darwinian Liberal Education

    ERIC Educational Resources Information Center

    Arnhart, Larry

    2006-01-01

    Be it metaphysics, theology, or some other unifying framework, humans have long sought to determine "first principles" underlying knowledge. Larry Arnhart continues in this vein, positing a Darwinian web of genetic, cultural, and cognitive evolution to explain our social behavior in terms of human nature as governed by biology. He leaves it to us…

  4. A Dominant Social Comparison Heuristic Unites Alternative Mechanisms for the Evolution of Indirect Reciprocity

    PubMed Central

    Whitaker, Roger M.; Colombo, Gualtiero B.; Allen, Stuart M.; Dunbar, Robin I. M.

    2016-01-01

    Cooperation is a fundamental human trait but our understanding of how it functions remains incomplete. Indirect reciprocity is a particular case in point, where one-shot donations are made to unrelated beneficiaries without any guarantee of payback. Existing insights are largely from two independent perspectives: i) individual-level cognitive behaviour in decision making, and ii) identification of conditions that favour evolution of cooperation. We identify a fundamental connection between these two areas by examining social comparison as a means through which indirect reciprocity can evolve. Social comparison is well established as an inherent human disposition through which humans navigate the social world by self-referential evaluation of others. Donating to those that are at least as reputable as oneself emerges as a dominant heuristic, which represents aspirational homophily. This heuristic is found to be implicitly present in the current knowledge of conditions that favour indirect reciprocity. The effective social norms for updating reputation are also observed to support this heuristic. We hypothesise that the cognitive challenge associated with social comparison has contributed to cerebral expansion and the disproportionate human brain size, consistent with the social complexity hypothesis. The findings have relevance for the evolution of autonomous systems that are characterised by one-shot interactions. PMID:27515119

  5. A Dominant Social Comparison Heuristic Unites Alternative Mechanisms for the Evolution of Indirect Reciprocity.

    PubMed

    Whitaker, Roger M; Colombo, Gualtiero B; Allen, Stuart M; Dunbar, Robin I M

    2016-08-12

    Cooperation is a fundamental human trait but our understanding of how it functions remains incomplete. Indirect reciprocity is a particular case in point, where one-shot donations are made to unrelated beneficiaries without any guarantee of payback. Existing insights are largely from two independent perspectives: i) individual-level cognitive behaviour in decision making, and ii) identification of conditions that favour evolution of cooperation. We identify a fundamental connection between these two areas by examining social comparison as a means through which indirect reciprocity can evolve. Social comparison is well established as an inherent human disposition through which humans navigate the social world by self-referential evaluation of others. Donating to those that are at least as reputable as oneself emerges as a dominant heuristic, which represents aspirational homophily. This heuristic is found to be implicitly present in the current knowledge of conditions that favour indirect reciprocity. The effective social norms for updating reputation are also observed to support this heuristic. We hypothesise that the cognitive challenge associated with social comparison has contributed to cerebral expansion and the disproportionate human brain size, consistent with the social complexity hypothesis. The findings have relevance for the evolution of autonomous systems that are characterised by one-shot interactions.

  6. A Dominant Social Comparison Heuristic Unites Alternative Mechanisms for the Evolution of Indirect Reciprocity

    NASA Astrophysics Data System (ADS)

    Whitaker, Roger M.; Colombo, Gualtiero B.; Allen, Stuart M.; Dunbar, Robin I. M.

    2016-08-01

    Cooperation is a fundamental human trait but our understanding of how it functions remains incomplete. Indirect reciprocity is a particular case in point, where one-shot donations are made to unrelated beneficiaries without any guarantee of payback. Existing insights are largely from two independent perspectives: i) individual-level cognitive behaviour in decision making, and ii) identification of conditions that favour evolution of cooperation. We identify a fundamental connection between these two areas by examining social comparison as a means through which indirect reciprocity can evolve. Social comparison is well established as an inherent human disposition through which humans navigate the social world by self-referential evaluation of others. Donating to those that are at least as reputable as oneself emerges as a dominant heuristic, which represents aspirational homophily. This heuristic is found to be implicitly present in the current knowledge of conditions that favour indirect reciprocity. The effective social norms for updating reputation are also observed to support this heuristic. We hypothesise that the cognitive challenge associated with social comparison has contributed to cerebral expansion and the disproportionate human brain size, consistent with the social complexity hypothesis. The findings have relevance for the evolution of autonomous systems that are characterised by one-shot interactions.

  7. Using music to study the evolution of cognitive mechanisms relevant to language.

    PubMed

    Patel, Aniruddh D

    2017-02-01

    This article argues that music can be used in cross-species research to study the evolution of cognitive mechanisms relevant to spoken language. This is because music and language share certain cognitive processing mechanisms and because music offers specific advantages for cross-species research. Music has relatively simple building blocks (tones without semantic properties), yet these building blocks are combined into rich hierarchical structures that engage complex cognitive processing. I illustrate this point with regard to the processing of musical harmonic structure. Because the processing of musical harmonic structure has been shown to interact with linguistic syntactic processing in humans, it is of interest to know if other species can acquire implicit knowledge of harmonic structure through extended exposure to music during development (vs. through explicit training). I suggest that domestic dogs would be a good species to study in addressing this question.

  8. Cognitive capacities for cooking in chimpanzees

    PubMed Central

    Warneken, Felix; Rosati, Alexandra G.

    2015-01-01

    The transition to a cooked diet represents an important shift in human ecology and evolution. Cooking requires a set of sophisticated cognitive abilities, including causal reasoning, self-control and anticipatory planning. Do humans uniquely possess the cognitive capacities needed to cook food? We address whether one of humans' closest relatives, chimpanzees (Pan troglodytes), possess the domain-general cognitive skills needed to cook. Across nine studies, we show that chimpanzees: (i) prefer cooked foods; (ii) comprehend the transformation of raw food that occurs when cooking, and generalize this causal understanding to new contexts; (iii) will pay temporal costs to acquire cooked foods; (iv) are willing to actively give up possession of raw foods in order to transform them; and (v) can transport raw food as well as save their raw food in anticipation of future opportunities to cook. Together, our results indicate that several of the fundamental psychological abilities necessary to engage in cooking may have been shared with the last common ancestor of apes and humans, predating the control of fire. PMID:26041356

  9. Blackboxing: social learning strategies and cultural evolution

    PubMed Central

    Heyes, Cecilia

    2016-01-01

    Social learning strategies (SLSs) enable humans, non-human animals, and artificial agents to make adaptive decisions about when they should copy other agents, and who they should copy. Behavioural ecologists and economists have discovered an impressive range of SLSs, and explored their likely impact on behavioural efficiency and reproductive fitness while using the ‘phenotypic gambit’; ignoring, or remaining deliberately agnostic about, the nature and origins of the cognitive processes that implement SLSs. Here I argue that this ‘blackboxing' of SLSs is no longer a viable scientific strategy. It has contributed, through the ‘social learning strategies tournament', to the premature conclusion that social learning is generally better than asocial learning, and to a deep puzzle about the relationship between SLSs and cultural evolution. The puzzle can be solved by recognizing that whereas most SLSs are ‘planetary'—they depend on domain-general cognitive processes—some SLSs, found only in humans, are ‘cook-like'—they depend on explicit, metacognitive rules, such as copy digital natives. These metacognitive SLSs contribute to cultural evolution by fostering the development of processes that enhance the exclusivity, specificity, and accuracy of social learning. PMID:27069046

  10. Fossil skulls reveal that blood flow rate to the brain increased faster than brain volume during human evolution

    NASA Astrophysics Data System (ADS)

    Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.

    2016-08-01

    The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.

  11. Motor system evolution and the emergence of high cognitive functions.

    PubMed

    Mendoza, Germán; Merchant, Hugo

    2014-11-01

    In human and nonhuman primates, the cortical motor system comprises a collection of brain areas primarily related to motor control. Existing evidence suggests that no other mammalian group has the number, extension, and complexity of motor-related areas observed in the frontal lobe of primates. Such diversity is probably related to the wide behavioral flexibility that primates display. Indeed, recent comparative anatomical, psychophysical, and neurophysiological studies suggest that the evolution of the motor cortical areas closely correlates with the emergence of high cognitive abilities. Advances in understanding the cortical motor system have shown that these areas are also related to functions previously linked to higher-order associative areas. In addition, experimental observations have shown that the classical distinction between perceptual and motor functions is not strictly followed across cortical areas. In this paper, we review evidence suggesting that evolution of the motor system had a role in the shaping of different cognitive functions in primates. We argue that the increase in the complexity of the motor system has contributed to the emergence of new abilities observed in human and nonhuman primates, including the recognition and imitation of the actions of others, speech perception and production, and the execution and appreciation of the rhythmic structure of music. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Brief communication: Reaction to fire by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: Conceptualization of "fire behavior" and the case for a chimpanzee model.

    PubMed

    Pruetz, Jill D; LaDuke, Thomas C

    2010-04-01

    The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.

  13. Can a few non‐coding mutations make a human brain?

    PubMed Central

    Franchini, Lucía F.

    2015-01-01

    The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human‐specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human‐specific genetic and genomic changes are linked to complex human traits. Also watch the Video Abstract. PMID:26350501

  14. Mosaic evolution and the pattern of transitions in the hominin lineage.

    PubMed

    Foley, Robert A

    2016-07-05

    Humans are uniquely unique, in terms of the extreme differences between them and other living organisms, and the impact they are having on the biosphere. The evolution of humans can be seen, as has been proposed, as one of the major transitions in evolution, on a par with the origins of multicellular organisms or the eukaryotic cell (Maynard Smith & Szathmáry 1997 Major transitions in evolution). Major transitions require the evolution of greater complexity and the emergence of new evolutionary levels or processes. Does human evolution meet these conditions? I explore the diversity of evidence on the nature of transitions in human evolution. Four levels of transition are proposed-baseline, novel taxa, novel adaptive zones and major transitions-and the pattern of human evolution considered in the light of these. The primary conclusions are that changes in human evolution occur continuously and cumulatively; that novel taxa and the appearance of new adaptations are not clustered very tightly in particular periods, although there are three broad transitional phases (Pliocene, Plio-Pleistocene and later Quaternary). Each phase is distinctive, with the first based on ranging and energetics, the second on technology and niche expansion, and the third on cognition and cultural processes. I discuss whether this constitutes a 'major transition' in the context of the evolutionary processes more broadly; the role of behaviour in evolution; and the opportunity provided by the rich genetic, phenotypic (fossil morphology) and behavioural (archaeological) record to examine in detail major transitions and the microevolutionary patterns underlying macroevolutionary change. It is suggested that the evolution of the hominin lineage is consistent with a mosaic pattern of change.This article is part of the themed issue 'Major transitions in human evolution'. © 2016 The Author(s).

  15. Cortical Evolution: Judge the Brain by Its Cover

    PubMed Central

    Geschwind, Daniel H.; Rakic, Pasko

    2014-01-01

    To understand the emergence of human higher cognition, we must understand its biological substrate—the cerebral cortex, which considers itself the crowning achievement of evolution. Here, we describe how advances in developmental neurobiology, coupled with those in genetics, including adaptive protein evolution via gene duplications and the emergence of novel regulatory elements, can provide insights into the evolutionary mechanisms culminating in the human cerebrum. Given that the massive expansion of the cortical surface and elaboration of its connections in humans originates from developmental events, understanding the genetic regulation of cell number, neuronal migration to proper layers, columns, and regions, and ultimately their differentiation into specific phenotypes, is critical. The pre- and postnatal environment also interacts with the cellular substrate to yield a basic network that is refined via selection and elimination of synaptic connections, a process that is prolonged in humans. This knowledge provides essential insight into the pathogenesis of human-specific neuropsychiatric disorders. PMID:24183016

  16. Mozart effect, cognitive dissonance, and the pleasure of music.

    PubMed

    Perlovsky, Leonid; Cabanac, Arnaud; Bonniot-Cabanac, Marie-Claude; Cabanac, Michel

    2013-05-01

    We explore a possibility that the 'Mozart effect' points to a fundamental cognitive function of music. Would such an effect of music be due to the hedonicity, a fundamental dimension of mental experience? The present paper explores a recent hypothesis that music helps to tolerate cognitive dissonances and thus enabled accumulation of knowledge and human cultural evolution. We studied whether the influence of music is related to its hedonicity and whether pleasant or unpleasant music would influence scholarly test performance and cognitive dissonance. Specific hypotheses evaluated in this study are that during a test students experience contradictory cognitions that cause cognitive dissonances. If some music helps to tolerate cognitive dissonances, then first, this music should increase the duration during which participants can tolerate stressful conditions while evaluating test choices. Second, this should result in improved performance. These hypotheses are tentatively confirmed in the reported experiments as the agreeable music was correlated with longer duration of tests under stressful conditions and better performance above that under indifferent or unpleasant music. It follows that music likely performs a fundamental cognitive function explaining the origin and evolution of musical ability that have been considered a mystery. Published by Elsevier B.V.

  17. The Evolution of Adolescence and the Adolescence of Evolution: The Coming of Age of Humans and the Theory about the Forces that Made Them

    ERIC Educational Resources Information Center

    Hawley, Patricia H.

    2011-01-01

    Adolescence is a period characterized by well-documented growth and change, including reproductive, social, and cognitive development. Though not unheard of, modern evolutionary approaches to adolescence are still relatively uncommon. Recent treatises in developmental biology, however, have yielded new tools through which to explore human…

  18. The ideomotor recycling theory for tool use, language, and foresight.

    PubMed

    Badets, Arnaud; Osiurak, François

    2017-02-01

    The present theoretical framework highlights a common action-perception mechanism for tool use, spoken language, and foresight capacity. On the one hand, it has been suggested that human language and the capacity to envision the future (i.e. foresight) have, from an evolutionary viewpoint, developed mutually along with the pressure of tool use. This co-evolution has afforded humans an evident survival advantage in the animal kingdom because language can help to refine the representation of future scenarios, which in turn can help to encourage or discourage engagement in appropriate and efficient behaviours. On the other hand, recent assumptions regarding the evolution of the brain have capitalized on the concept of "neuronal recycling". In the domain of cognitive neuroscience, neuronal recycling means that during evolution, some neuronal areas and cognitive functions have been recycled to manage new environmental and social constraints. In the present article, we propose that the co-evolution of tool use, language, and foresight represents a suitable example of such functional recycling throughout a well-defined common action-perception mechanism, i.e. the ideomotor mechanism. This ideomotor account is discussed in light of different future ontogenetic and phylogenetic perspectives.

  19. Precursors to language: Social cognition and pragmatic inference in primates.

    PubMed

    Seyfarth, Robert M; Cheney, Dorothy L

    2017-02-01

    Despite their differences, human language and the vocal communication of nonhuman primates share many features. Both constitute forms of coordinated activity, rely on many shared neural mechanisms, and involve discrete, combinatorial cognition that includes rich pragmatic inference. These common features suggest that during evolution the ancestors of all modern primates faced similar social problems and responded with similar systems of communication and cognition. When language later evolved from this common foundation, many of its distinctive features were already present.

  20. Social modulation of cognition: Lessons from rhesus macaques relevant to education.

    PubMed

    Monfardini, Elisabetta; Reynaud, Amélie J; Prado, Jérôme; Meunier, Martine

    2017-11-01

    Any animal, human or non-human, lives in a world where there are others like itself. Individuals' behaviors are thus inevitably influenced by others, and cognition is no exception. Long acknowledged in psychology, social modulations of cognition have been neglected in cognitive neuroscience. Yet, infusing this classic topic in psychology with brain science methodologies could yield valuable educational insights. In recent studies, we used a non-human primate model, the rhesus macaque, to identify social influences representing ancient biases rooted in evolution, and neuroimaging to shed light on underlying mechanisms. The behavioral and neural data garnered in humans and macaques are summarized, with a focus on two findings relevant to human education. First, peers' mistakes stand out as exceptional professors and seem to have devoted areas and neurons in the primates' brain. Second, peers' mere presence suffices to enhance performance in well-learned tasks, possibly by boosting activity in the brain network involved in the task at hand. These findings could be translated into concrete pedagogical interventions in the classroom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mosaic evolution and the pattern of transitions in the hominin lineage

    PubMed Central

    Foley, Robert A.

    2016-01-01

    Humans are uniquely unique, in terms of the extreme differences between them and other living organisms, and the impact they are having on the biosphere. The evolution of humans can be seen, as has been proposed, as one of the major transitions in evolution, on a par with the origins of multicellular organisms or the eukaryotic cell (Maynard Smith & Szathmáry 1997 Major transitions in evolution). Major transitions require the evolution of greater complexity and the emergence of new evolutionary levels or processes. Does human evolution meet these conditions? I explore the diversity of evidence on the nature of transitions in human evolution. Four levels of transition are proposed—baseline, novel taxa, novel adaptive zones and major transitions—and the pattern of human evolution considered in the light of these. The primary conclusions are that changes in human evolution occur continuously and cumulatively; that novel taxa and the appearance of new adaptations are not clustered very tightly in particular periods, although there are three broad transitional phases (Pliocene, Plio-Pleistocene and later Quaternary). Each phase is distinctive, with the first based on ranging and energetics, the second on technology and niche expansion, and the third on cognition and cultural processes. I discuss whether this constitutes a ‘major transition’ in the context of the evolutionary processes more broadly; the role of behaviour in evolution; and the opportunity provided by the rich genetic, phenotypic (fossil morphology) and behavioural (archaeological) record to examine in detail major transitions and the microevolutionary patterns underlying macroevolutionary change. It is suggested that the evolution of the hominin lineage is consistent with a mosaic pattern of change. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298474

  2. Iconicity and the Emergence of Combinatorial Structure in Language

    ERIC Educational Resources Information Center

    Verhoef, Tessa; Kirby, Simon; de Boer, Bart

    2016-01-01

    In language, recombination of a discrete set of meaningless building blocks forms an unlimited set of possible utterances. How such combinatorial structure emerged in the evolution of human language is increasingly being studied. It has been shown that it can emerge when languages culturally evolve and adapt to human cognitive biases. How the…

  3. Learning and Transition of Symbols: Towards a Dynamical Model of a Symbolic Individual

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takashi; Masumi, Akira

    The remarkable feature of linguistic communications is the use of symbols for transmitting information and mutual understanding. Deacon (1997) pointed out that humans are symbolic species, namely, we show symbolic cognitive activities such as learning, formation, and manipulation of symbols. In research into the origin and the evolution of language, we should elucidate the emerging process of such symbolic cognitive activities.

  4. Accepting, understanding, teaching, and learning (human) evolution: Obstacles and opportunities.

    PubMed

    Pobiner, Briana

    2016-01-01

    Questions about our origin as a species are universal and compelling. Evolution-and in particular human evolution-is a subject that generates intense interest across the world, evidenced by the fact that fossil and DNA discoveries grace the covers of major science journals and magazines as well as other popular print and online media. However, virtually all national polls indicate that the majority of Americans strongly reject biological evolution as a fact-based, well-tested, and robust understanding of the history of life. In the popular mind, no topic in all of science is more contentious or polarizing than evolution and media sources often only serve to magnify this polarization by covering challenges to the teaching of evolution. In the realm of teaching, debates about evolution have shaped textbooks, curricula, standards, and policy. Challenges to accepting and understanding evolution include mistrust and denial of science, cognitive obstacles and misconceptions, language and terminology, and a religious worldview, among others. Teachers, who are on the front lines of these challenges, must be armed with the tools and techniques to teach evolution in formal education settings across grades K-16 in a straightforward, thorough, and sensitive way. Despite the potentially controversial topic of human evolution, growing research is demonstrating that a pedagogical focus on human examples is an effective and engaging way to teach core concepts of evolutionary biology. © 2016 Wiley Periodicals, Inc.

  5. Group competition, reproductive leveling, and the evolution of human altruism.

    PubMed

    Bowles, Samuel

    2006-12-08

    Humans behave altruistically in natural settings and experiments. A possible explanation-that groups with more altruists survive when groups compete-has long been judged untenable on empirical grounds for most species. But there have been no empirical tests of this explanation for humans. My empirical estimates show that genetic differences between early human groups are likely to have been great enough so that lethal intergroup competition could account for the evolution of altruism. Crucial to this process were distinctive human practices such as sharing food beyond the immediate family, monogamy, and other forms of reproductive leveling. These culturally transmitted practices presuppose advanced cognitive and linguistic capacities, possibly accounting for the distinctive forms of altruism found in our species.

  6. State-dependent cognition and its relevance to cultural evolution.

    PubMed

    Nettle, Daniel

    2018-02-05

    Individuals cope with their worlds by using information. In humans in particular, an important potential source of information is cultural tradition. Evolutionary models have examined when it is advantageous to use cultural information, and psychological studies have examined the cognitive biases and priorities that may transform cultural traditions over time. However, these studies have not generally incorporated the idea that individuals vary in state. I argue that variation in state is likely to influence the relative payoffs of using cultural information versus gathering personal information; and also that people in different states will have different cognitive biases and priorities, leading them to transform cultural information in different ways. I explore hunger as one example of state variable likely to have consequences for cultural evolution. Variation in state has the potential to explain why cultural traditions and dynamics are so variable between individuals and populations. It offers evolutionarily-grounded links between the ecology in which individuals live, individual-level cognitive processes, and patterns of culture. However, incorporating heterogeneity of state also makes the modelling of cultural evolution more complex, particularly if the distribution of states is itself influenced by the distribution of cultural beliefs and practices. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cognitive mechanisms for the evolution of religious thought.

    PubMed

    Fondevila, Sabela; Martín-Loeches, Manuel

    2013-09-01

    The reasons behind the cultural persistence of religious beliefs throughout human history and prehistory still generate unanswered questions requiring scientific explanations. Within the framework of the cognitive science of religion, this article reviews experimental evidence supporting human predisposition for religious thinking and focuses on the hypothesis that a reason why religious beliefs are successful is their minimal counterintuitiveness. According to this hypothesis, religious concepts or stories would be characterized by containing only a small number of world-knowledge violations, which attracts attention while improving memorizability. We conclude this review by summarizing recent findings from our group using brain electrical activity and delving further into these questions. Our research suggests parallels between the natural tendency of the human cognitive system to use metaphors and the minimal counterintuitiveness of religious beliefs. © 2013 New York Academy of Sciences.

  8. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    PubMed

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Domain learning naming game for color categorization.

    PubMed

    Li, Doujie; Fan, Zhongyan; Tang, Wallace K S

    2017-01-01

    Naming game simulates the evolution of vocabulary in a population of agents. Through pairwise interactions in the games, agents acquire a set of vocabulary in their memory for object naming. The existing model confines to a one-to-one mapping between a name and an object. Focus is usually put onto name consensus in the population rather than knowledge learning in agents, and hence simple learning model is usually adopted. However, the cognition system of human being is much more complex and knowledge is usually presented in a complicated form. Therefore, in this work, we extend the agent learning model and design a new game to incorporate domain learning, which is essential for more complicated form of knowledge. In particular, we demonstrate the evolution of color categorization and naming in a population of agents. We incorporate the human perceptive model into the agents and introduce two new concepts, namely subjective perception and subliminal stimulation, in domain learning. Simulation results show that, even without any supervision or pre-requisition, a consensus of a color naming system can be reached in a population solely via the interactions. Our work confirms the importance of society interactions in color categorization, which is a long debate topic in human cognition. Moreover, our work also demonstrates the possibility of cognitive system development in autonomous intelligent agents.

  10. Domain learning naming game for color categorization

    PubMed Central

    2017-01-01

    Naming game simulates the evolution of vocabulary in a population of agents. Through pairwise interactions in the games, agents acquire a set of vocabulary in their memory for object naming. The existing model confines to a one-to-one mapping between a name and an object. Focus is usually put onto name consensus in the population rather than knowledge learning in agents, and hence simple learning model is usually adopted. However, the cognition system of human being is much more complex and knowledge is usually presented in a complicated form. Therefore, in this work, we extend the agent learning model and design a new game to incorporate domain learning, which is essential for more complicated form of knowledge. In particular, we demonstrate the evolution of color categorization and naming in a population of agents. We incorporate the human perceptive model into the agents and introduce two new concepts, namely subjective perception and subliminal stimulation, in domain learning. Simulation results show that, even without any supervision or pre-requisition, a consensus of a color naming system can be reached in a population solely via the interactions. Our work confirms the importance of society interactions in color categorization, which is a long debate topic in human cognition. Moreover, our work also demonstrates the possibility of cognitive system development in autonomous intelligent agents. PMID:29136661

  11. Shining evolutionary light on human sleep and sleep disorders

    PubMed Central

    Nunn, Charles L.; Samson, David R.; Krystal, Andrew D.

    2016-01-01

    Sleep is essential to cognitive function and health in humans, yet the ultimate reasons for sleep—i.e. ‘why’ sleep evolved—remain mysterious. We integrate findings from human sleep studies, the ethnographic record, and the ecology and evolution of mammalian sleep to better understand sleep along the human lineage and in the modern world. Compared to other primates, sleep in great apes has undergone substantial evolutionary change, with all great apes building a sleeping platform or ‘nest’. Further evolutionary change characterizes human sleep, with humans having the shortest sleep duration, yet the highest proportion of rapid eye movement sleep among primates. These changes likely reflect that our ancestors experienced fitness benefits from being active for a greater portion of the 24-h cycle than other primates, potentially related to advantages arising from learning, socializing and defending against predators and hostile conspecifics. Perspectives from evolutionary medicine have implications for understanding sleep disorders; we consider these perspectives in the context of insomnia, narcolepsy, seasonal affective disorder, circadian rhythm disorders and sleep apnea. We also identify how human sleep today differs from sleep through most of human evolution, and the implications of these changes for global health and health disparities. More generally, our review highlights the importance of phylogenetic comparisons in understanding human health, including well-known links between sleep, cognitive performance and health in humans. PMID:27470330

  12. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities.

    PubMed

    Fjell, Anders M; Westlye, Lars T; Amlien, Inge; Tamnes, Christian K; Grydeland, Håkon; Engvig, Andreas; Espeseth, Thomas; Reinvang, Ivar; Lundervold, Astri J; Lundervold, Arvid; Walhovd, Kristine B

    2015-01-01

    Cortical surface area has tremendously expanded during human evolution, and similar patterns of cortical expansion have been observed during childhood development. An intriguing hypothesis is that the high-expanding cortical regions also show the strongest correlations with intellectual function in humans. However, we do not know how the regional distribution of correlations between intellectual function and cortical area maps onto expansion in development and evolution. Here, in a sample of 1048 participants, we show that regions in which cortical area correlates with visuospatial reasoning abilities are generally high expanding in both development and evolution. Several regions in the frontal cortex, especially the anterior cingulate, showed high expansion in both development and evolution. The area of these regions was related to intellectual functions in humans. Low-expanding areas were not related to cognitive scores. These findings suggest that cortical regions involved in higher intellectual functions have expanded the most during development and evolution. The radial unit hypothesis provides a common framework for interpretation of the findings in the context of evolution and prenatal development, while additional cellular mechanisms, such as synaptogenesis, gliogenesis, dendritic arborization, and intracortical myelination, likely impact area expansion in later childhood. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Signalling Signalhood and the Emergence of Communication

    ERIC Educational Resources Information Center

    Scott-Phillips, Thomas C.; Kirby, Simon; Ritchie, Graham R. S.

    2009-01-01

    A unique hallmark of human language is that it uses signals that are both learnt and symbolic. The emergence of such signals was therefore a defining event in human cognitive evolution, yet very little is known about how such a process occurs. Previous work provides some insights on how meaning can become attached to form, but a more foundational…

  14. Planet of the apes.

    PubMed

    Maderspacher, Florian

    2005-03-08

    What makes us humans so special? Our language, our genes, our culture, our cognitive skills? At the Max-Planck-Institute for Evolutionary Anthropology in Leipzig, psychologists, linguists and biologists tackle this old question in a truly multidisciplinary way. Their results have implications not just for our understanding of human evolution--they also touch directly on many social and environmental issues. Florian Maderspacher reports.

  15. So, are we the massively lucky species?

    PubMed

    Penn, Derek C; Holyoak, Keith J; Povinelli, Daniel J

    2012-08-01

    We are in vehement agreement with most of Vaesen's key claims. But Vaesen fails to consider or rebut the possibility that there are deep causal dependencies among the various cognitive traits he identifies as uniquely human. We argue that "higher-order relational reasoning" is one such linchpin trait in the evolution of human tool use, social intelligence, language, and culture.

  16. Inference of ecological and social drivers of human brain-size evolution.

    PubMed

    González-Forero, Mauricio; Gardner, Andy

    2018-05-01

    The human brain is unusually large. It has tripled in size from Australopithecines to modern humans 1 and has become almost six times larger than expected for a placental mammal of human size 2 . Brains incur high metabolic costs 3 and accordingly a long-standing question is why the large human brain has evolved 4 . The leading hypotheses propose benefits of improved cognition for overcoming ecological 5-7 , social 8-10 or cultural 11-14 challenges. However, these hypotheses are typically assessed using correlative analyses, and establishing causes for brain-size evolution remains difficult 15,16 . Here we introduce a metabolic approach that enables causal assessment of social hypotheses for brain-size evolution. Our approach yields quantitative predictions for brain and body size from formalized social hypotheses given empirical estimates of the metabolic costs of the brain. Our model predicts the evolution of adult Homo sapiens-sized brains and bodies when individuals face a combination of 60% ecological, 30% cooperative and 10% between-group competitive challenges, and suggests that between-individual competition has been unimportant for driving human brain-size evolution. Moreover, our model indicates that brain expansion in Homo was driven by ecological rather than social challenges, and was perhaps strongly promoted by culture. Our metabolic approach thus enables causal assessments that refine, refute and unify hypotheses of brain-size evolution.

  17. Spontaneous Emergence of Legibility in Writing Systems: The Case of Orientation Anisotropy.

    PubMed

    Morin, Olivier

    2018-03-01

    Cultural forms are constrained by cognitive biases, and writing is thought to have evolved to fit basic visual preferences, but little is known about the history and mechanisms of that evolution. Cognitive constraints have been documented for the topology of script features, but not for their orientation. Orientation anisotropy in human vision, as revealed by the oblique effect, suggests that cardinal (vertical and horizontal) orientations, being easier to process, should be overrepresented in letters. As this study of 116 scripts shows, the orientation of strokes inside written characters massively favors cardinal directions, and it is organized in such a way as to make letter recognition easier: Cardinal and oblique strokes tend not to mix, and mirror symmetry is anisotropic, favoring vertical over horizontal symmetry. Phylogenetic analyses and recently invented scripts show that cultural evolution over the last three millennia cannot be the sole cause of these effects. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  18. Cognitive Demands of Lower Paleolithic Toolmaking

    PubMed Central

    Stout, Dietrich; Hecht, Erin; Khreisheh, Nada; Bradley, Bruce; Chaminade, Thierry

    2015-01-01

    Stone tools provide some of the most abundant, continuous, and high resolution evidence of behavioral change over human evolution, but their implications for cognitive evolution have remained unclear. We investigated the neurophysiological demands of stone toolmaking by training modern subjects in known Paleolithic methods (“Oldowan”, “Acheulean”) and collecting structural and functional brain imaging data as they made technical judgments (outcome prediction, strategic appropriateness) about planned actions on partially completed tools. Results show that this task affected neural activity and functional connectivity in dorsal prefrontal cortex, that effect magnitude correlated with the frequency of correct strategic judgments, and that the frequency of correct strategic judgments was predictive of success in Acheulean, but not Oldowan, toolmaking. This corroborates hypothesized cognitive control demands of Acheulean toolmaking, specifically including information monitoring and manipulation functions attributed to the "central executive" of working memory. More broadly, it develops empirical methods for assessing the differential cognitive demands of Paleolithic technologies, and expands the scope of evolutionary hypotheses that can be tested using the available archaeological record. PMID:25875283

  19. Associative learning alone is insufficient for the evolution and maintenance of the human mirror neuron system.

    PubMed

    Oberman, Lindsay M; Hubbard, Edward M; McCleery, Joseph P

    2014-04-01

    Cook et al. argue that mirror neurons originate from associative learning processes, without evolutionary influence from social-cognitive mechanisms. We disagree with this claim and present arguments based upon cross-species comparisons, EEG findings, and developmental neuroscience that the evolution of mirror neurons is most likely driven simultaneously and interactively by evolutionarily adaptive psychological mechanisms and lower-level biological mechanisms that support them.

  20. The Evolution of a Connectionist Model of Situated Human Language Understanding

    NASA Astrophysics Data System (ADS)

    Mayberry, Marshall R.; Crocker, Matthew W.

    The Adaptive Mechanisms in Human Language Processing (ALPHA) project features both experimental and computational tracks designed to complement each other in the investigation of the cognitive mechanisms that underlie situated human utterance processing. The models developed in the computational track replicate results obtained in the experimental track and, in turn, suggest further experiments by virtue of behavior that arises as a by-product of their operation.

  1. Collective action and the collaborative brain

    PubMed Central

    Gavrilets, Sergey

    2015-01-01

    Humans are unique both in their cognitive abilities and in the extent of cooperation in large groups of unrelated individuals. How our species evolved high intelligence in spite of various costs of having a large brain is perplexing. Equally puzzling is how our ancestors managed to overcome the collective action problem and evolve strong innate preferences for cooperative behaviour. Here, I theoretically study the evolution of social-cognitive competencies as driven by selection emerging from the need to produce public goods in games against nature or in direct competition with other groups. I use collaborative ability in collective actions as a proxy for social-cognitive competencies. My results suggest that collaborative ability is more likely to evolve first by between-group conflicts and then later be utilized and improved in games against nature. If collaborative abilities remain low, the species is predicted to become genetically dimorphic with a small proportion of individuals contributing to public goods and the rest free-riding. Evolution of collaborative ability creates conditions for the subsequent evolution of collaborative communication and cultural learning. PMID:25551149

  2. [Evolution, emotion, language and conscience in the postrationalist psychotherapy].

    PubMed

    De Pascale, Adele

    2011-01-01

    A complex system process oriented approach, in other words a constructivistic postrationalist cognitive one to psychology and to psychopathology, stresses the close interdependency among processes as evolution, emotion, language and conscience. During evolution, emotions, whose biological roots we share with superior primates, should be specialized and refined. Along this process should become necessary a more and more abstract way of scaffolding the enormous quantity of data a brain could manage. Cognitive abilities, rooted in the emotional quality of experience, allow - during the phylogenetic development - more and more complex patterns of reflexivity until to the necessary ability of recognizing other's intention and consequently of lying. Language, abstract ability usefull to give increasing experiential data scaffolding, probably coming from motor skills development, brings at the same time the possibility, for a human knowing system, of self-consciousness: to do this it's owed to detach from itself, that is experience a deep sense of loneliness. Here it is that the progressive cognitive skills development is linked to the possibility of lying and of self-deception as long as the acquiring of advanced levels of selfconsciousness.

  3. Culture, Urbanism and Changing Human Biology.

    PubMed

    Schell, L M

    2014-04-03

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia.

  4. Culture, Urbanism and Changing Human Biology

    PubMed Central

    Schell, L.M.

    2014-01-01

    Anthropologists have long known that human activity driven by culture changes the environment. This is apparent in the archaeological record and through the study of the modern environment. Perhaps the largest change since the paleolithic era is the organization of human populations in cities. New environments can reshape human biology through evolution as shown by the evolution of the hominid lineage. Evolution is not the only process capable of reshaping our biology. Some changes in our human biology are adaptive and evolutionary while others are pathological. What changes in human biology may be wrought by the modern urban environment? One significant new change in the environment is the introduction of pollutants largely through urbanization. Pollutants can affect human biology in myriad ways. Evidence shows that human growth, reproduction, and cognitive functioning can be altered by some pollutants, and altered in different ways depending on the pollutant. Thus, pollutants have significance for human biologists and anthropologists generally. Further, they illustrate the bio-cultural interaction characterizing human change. Humans adapt by changing the environment, a cultural process, and then change biologically to adjust to that new environment. This ongoing, interactive process is a fundamental characteristic of human change over the millennia. PMID:25598655

  5. Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach

    PubMed Central

    Harrison, Peter W.; Montgomery, Stephen H.

    2017-01-01

    What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure. PMID:28683440

  6. New thinking, innateness and inherited representation.

    PubMed

    Shea, Nicholas

    2012-08-05

    The New Thinking contained in this volume rejects an Evolutionary Psychology that is committed to innate domain-specific psychological mechanisms: gene-based adaptations that are unlearnt, developmentally fixed and culturally universal. But the New Thinking does not simply deny the importance of innate psychological traits. The problem runs deeper: the concept of innateness is not suited to distinguishing between the New Thinking and Evolutionary Psychology. That points to a more serious problem with the concept of innateness as it is applied to human psychological phenotypes. This paper argues that the features of recent human evolution highlighted by the New Thinking imply that the concept of inherited representation, set out here, is a better tool for theorizing about human cognitive evolution.

  7. Musical emotions: Functions, origins, evolution

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid

    2010-03-01

    Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in psychological and neuroimaging research are reviewed.

  8. Novel transcriptional networks regulated by CLOCK in human neurons.

    PubMed

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans.

    PubMed

    Caminiti, Roberto; Innocenti, Giorgio M; Battaglia-Mayer, Alexandra

    2015-09-01

    The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?

    PubMed Central

    Stilling, Roman M.; Bordenstein, Seth R.; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a “social triangle” that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective. PMID:25401092

  11. The evolution of human artistic creativity

    PubMed Central

    Morriss-Kay, Gillian M

    2010-01-01

    Creating visual art is one of the defining characteristics of the human species, but the paucity of archaeological evidence means that we have limited information on the origin and evolution of this aspect of human culture. The components of art include colour, pattern and the reproduction of visual likeness. The 2D and 3D art forms that were created by Upper Palaeolithic Europeans at least 30 000 years ago are conceptually equivalent to those created in recent centuries, indicating that human cognition and symbolling activity, as well as anatomy, were fully modern by that time. The origins of art are therefore much more ancient and lie within Africa, before worldwide human dispersal. The earliest known evidence of ‘artistic behaviour’ is of human body decoration, including skin colouring with ochre and the use of beads, although both may have had functional origins. Zig-zag and criss-cross patterns, nested curves and parallel lines are the earliest known patterns to have been created separately from the body; their similarity to entopic phenomena (involuntary products of the visual system) suggests a physiological origin. 3D art may have begun with human likeness recognition in natural objects, which were modified to enhance that likeness; some 2D art has also clearly been influenced by suggestive features of an uneven surface. The creation of images from the imagination, or ‘the mind’s eye’, required a seminal evolutionary change in the neural structures underpinning perception; this change would have had a survival advantage in both tool-making and hunting. Analysis of early tool-making techniques suggests that creating 3D objects (sculptures and reliefs) involves their cognitive deconstruction into a series of surfaces, a principle that could have been applied to early sculpture. The cognitive ability to create art separate from the body must have originated in Africa but the practice may have begun at different times in genetically and culturally distinct groups both within Africa and during global dispersal, leading to the regional variety seen in both ancient and recent art. At all stages in the evolution of artistic creativity, stylistic change must have been due to rare, highly gifted individuals. PMID:19900185

  12. The evolution of human artistic creativity.

    PubMed

    Morriss-Kay, Gillian M

    2010-02-01

    Creating visual art is one of the defining characteristics of the human species, but the paucity of archaeological evidence means that we have limited information on the origin and evolution of this aspect of human culture. The components of art include colour, pattern and the reproduction of visual likeness. The 2D and 3D art forms that were created by Upper Palaeolithic Europeans at least 30,000 years ago are conceptually equivalent to those created in recent centuries, indicating that human cognition and symbolling activity, as well as anatomy, were fully modern by that time. The origins of art are therefore much more ancient and lie within Africa, before worldwide human dispersal. The earliest known evidence of 'artistic behaviour' is of human body decoration, including skin colouring with ochre and the use of beads, although both may have had functional origins. Zig-zag and criss-cross patterns, nested curves and parallel lines are the earliest known patterns to have been created separately from the body; their similarity to entopic phenomena (involuntary products of the visual system) suggests a physiological origin. 3D art may have begun with human likeness recognition in natural objects, which were modified to enhance that likeness; some 2D art has also clearly been influenced by suggestive features of an uneven surface. The creation of images from the imagination, or 'the mind's eye', required a seminal evolutionary change in the neural structures underpinning perception; this change would have had a survival advantage in both tool-making and hunting. Analysis of early tool-making techniques suggests that creating 3D objects (sculptures and reliefs) involves their cognitive deconstruction into a series of surfaces, a principle that could have been applied to early sculpture. The cognitive ability to create art separate from the body must have originated in Africa but the practice may have begun at different times in genetically and culturally distinct groups both within Africa and during global dispersal, leading to the regional variety seen in both ancient and recent art. At all stages in the evolution of artistic creativity, stylistic change must have been due to rare, highly gifted individuals.

  13. Collective Dynamics of Belief Evolution under Cognitive Coherence and Social Conformity.

    PubMed

    Rodriguez, Nathaniel; Bollen, Johan; Ahn, Yong-Yeol

    2016-01-01

    Human history has been marked by social instability and conflict, often driven by the irreconcilability of opposing sets of beliefs, ideologies, and religious dogmas. The dynamics of belief systems has been studied mainly from two distinct perspectives, namely how cognitive biases lead to individual belief rigidity and how social influence leads to social conformity. Here we propose a unifying framework that connects cognitive and social forces together in order to study the dynamics of societal belief evolution. Each individual is endowed with a network of interacting beliefs that evolves through interaction with other individuals in a social network. The adoption of beliefs is affected by both internal coherence and social conformity. Our framework may offer explanations for how social transitions can arise in otherwise homogeneous populations, how small numbers of zealots with highly coherent beliefs can overturn societal consensus, and how belief rigidity protects fringe groups and cults against invasion from mainstream beliefs, allowing them to persist and even thrive in larger societies. Our results suggest that strong consensus may be insufficient to guarantee social stability, that the cognitive coherence of belief-systems is vital in determining their ability to spread, and that coherent belief-systems may pose a serious problem for resolving social polarization, due to their ability to prevent consensus even under high levels of social exposure. We argue that the inclusion of cognitive factors into a social model could provide a more complete picture of collective human dynamics.

  14. Cooperation and the evolution of intelligence

    PubMed Central

    McNally, Luke; Brown, Sam P.; Jackson, Andrew L.

    2012-01-01

    The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa. PMID:22496188

  15. Darwin in Mind: New Opportunities for Evolutionary Psychology

    PubMed Central

    Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.

    2011-01-01

    Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401

  16. Human balance, the evolution of bipedalism and dysequilibrium syndrome.

    PubMed

    Skoyles, John R

    2006-01-01

    A new model of the uniqueness, nature and evolution of human bipedality is presented in the context of the etiology of the balance disorder of dysequilibrium syndrome. Human bipedality is biologically novel in several remarkable respects. Humans are (a) obligate, habitual and diverse in their bipedalism, (b) hold their body carriage spinally erect in a multisegmental "antigravity pole", (c) use their forelimbs exclusively for nonlocomotion, (d) support their body weight exclusively by vertical balance and normally never use prehensile holds. Further, human bipedalism is combined with (e) upper body actions that quickly shift the body's center of mass (e.g. tennis serves, piggy-back carrying of children), (f) use transient unstable erect positions (dance, kicking and fighting), (g) body height that makes falls injurious, (h) stiff gait walking, and (i) endurance running. Underlying these novelties, I conjecture, is a species specific human vertical balance faculty. This faculty synchronizes any action with a skeletomuscular adjustment that corrects its potential destabilizing impact upon the projection of the body's center of mass over its foot support. The balance faculty depends upon internal models of the erect vertical body's geometrical relationship (and its deviations) to its support base. Due to the situation that humans are obligate erect terrestrial animals, two frameworks - the body- and gravity-defined frameworks - are in constant alignment in the vertical z-axis. This alignment allows human balance to adapt egocentric body cognitions to detect body deviations from the gravitational vertical. This link between human balance and the processing of geometrical orientation, I propose, accounts for the close link between balance and spatial cognition found in the cerebral cortex. I argue that cortical areas processing the spatial and other cognitions needed to enable vertical balance was an important reason for brain size expansion of Homo erectus. A novel source of evidence for this conjecture is the rare autosomal recessive condition of dysequilibrium syndrome. In dysequilibrium syndrome, individuals fail to learn to walk bipedally (with this not being due to sensory, vestibular nor motor coordination defects). Dysequilibrium syndrome is associated with severe spatial deficits that I conjecture underlie its balance dysfunction. The associated brain defects and gene mutations of dysequilibrium syndrome provide new opportunities to investigate (i) the neurological processes responsible for the human specific balance faculty, and (ii) through gene dating techniques, its evolution.

  17. Cognition and the evolution of camouflage.

    PubMed

    Skelhorn, John; Rowe, Candy

    2016-02-24

    Camouflage is one of the most widespread forms of anti-predator defence and prevents prey individuals from being detected or correctly recognized by would-be predators. Over the past decade, there has been a resurgence of interest in both the evolution of prey camouflage patterns, and in understanding animal cognition in a more ecological context. However, these fields rarely collide, and the role of cognition in the evolution of camouflage is poorly understood. Here, we review what we currently know about the role of both predator and prey cognition in the evolution of prey camouflage, outline why cognition may be an important selective pressure driving the evolution of camouflage and consider how studying the cognitive processes of animals may prove to be a useful tool to study the evolution of camouflage, and vice versa. In doing so, we highlight that we still have a lot to learn about the role of cognition in the evolution of camouflage and identify a number of avenues for future research. © 2016 The Author(s).

  18. Cognition and the evolution of camouflage

    PubMed Central

    2016-01-01

    Camouflage is one of the most widespread forms of anti-predator defence and prevents prey individuals from being detected or correctly recognized by would-be predators. Over the past decade, there has been a resurgence of interest in both the evolution of prey camouflage patterns, and in understanding animal cognition in a more ecological context. However, these fields rarely collide, and the role of cognition in the evolution of camouflage is poorly understood. Here, we review what we currently know about the role of both predator and prey cognition in the evolution of prey camouflage, outline why cognition may be an important selective pressure driving the evolution of camouflage and consider how studying the cognitive processes of animals may prove to be a useful tool to study the evolution of camouflage, and vice versa. In doing so, we highlight that we still have a lot to learn about the role of cognition in the evolution of camouflage and identify a number of avenues for future research. PMID:26911959

  19. Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals.

    PubMed

    Connor, Richard C

    2007-04-29

    Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.

  20. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates

    PubMed Central

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2017-01-01

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490

  1. Impaired fasting blood glucose is associated to cognitive impairment and cerebral atrophy in middle-aged non-human primates.

    PubMed

    Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne

    2016-12-28

    Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus , spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (r s =0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (r s =0.56) and hippocampus (r s =-0.62) or septum (r s =-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.

  2. Cultural transmission results in convergence towards colour term universals

    PubMed Central

    Xu, Jing; Dowman, Mike; Griffiths, Thomas L.

    2013-01-01

    As in biological evolution, multiple forces are involved in cultural evolution. One force is analogous to selection, and acts on differences in the fitness of aspects of culture by influencing who people choose to learn from. Another force is analogous to mutation, and influences how culture changes over time owing to errors in learning and the effects of cognitive biases. Which of these forces need to be appealed to in explaining any particular aspect of human cultures is an open question. We present a study that explores this question empirically, examining the role that the cognitive biases that influence cultural transmission might play in universals of colour naming. In a large-scale laboratory experiment, participants were shown labelled examples from novel artificial systems of colour terms and were asked to classify other colours on the basis of those examples. The responses of each participant were used to generate the examples seen by subsequent participants. By simulating cultural transmission in the laboratory, we were able to isolate a single evolutionary force—the effects of cognitive biases, analogous to mutation—and examine its consequences. Our results show that this process produces convergence towards systems of colour terms similar to those seen across human languages, providing support for the conclusion that the effects of cognitive biases, brought out through cultural transmission, can account for universals in colour naming. PMID:23486436

  3. Face Patch Resting State Networks Link Face Processing to Social Cognition

    PubMed Central

    Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.

    2015-01-01

    Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613

  4. Karl Pribram, the James Arthur Lectures, and What Makes Us Human

    PubMed Central

    Tattersall, Ian

    2006-01-01

    Background The annual James Arthur lecture series on the Evolution of the Human Brain was inaugurated at the American Museum of Natural History in 1932, through a bequest from a successful manufacturer with a particular interest in mechanisms. Karl Pribram's thirty-ninth lecture of the series, delivered in 1970, was a seminal event that heralded much of the research agenda, since pursued by representatives of diverse disciplines, that touches on the evolution of human uniqueness. Discussion In his James Arthur lecture Pribram raised questions about the coding of information in the brain and about the complex association between language, symbol, and the unique human cognitive system. These questions are as pertinent today as in 1970. The emergence of modern human symbolic cognition is often viewed as a gradual, incremental process, governed by inexorable natural selection and propelled by the apparent advantages of increasing intelligence. However, there are numerous theoretical considerations that render such a scenario implausible, and an examination of the pattern of acquisition of behavioral and anatomical novelties in human evolution indicates that, throughout, major change was both sporadic and rare. What is more, modern bony anatomy and brain size were apparently both achieved well before we have any evidence for symbolic behavior patterns. This suggests that the biological substrate underlying the symbolic thought that is so distinctive of Homo sapiens today was exaptively achieved, long before its potential was actually put to use. In which case we need to look for the agent, perforce a cultural one, that stimulated the adoption of symbolic thought patterns. That stimulus may well have been the spontaneous invention of articulate language. PMID:17134484

  5. New thinking, innateness and inherited representation

    PubMed Central

    Shea, Nicholas

    2012-01-01

    The New Thinking contained in this volume rejects an Evolutionary Psychology that is committed to innate domain-specific psychological mechanisms: gene-based adaptations that are unlearnt, developmentally fixed and culturally universal. But the New Thinking does not simply deny the importance of innate psychological traits. The problem runs deeper: the concept of innateness is not suited to distinguishing between the New Thinking and Evolutionary Psychology. That points to a more serious problem with the concept of innateness as it is applied to human psychological phenotypes. This paper argues that the features of recent human evolution highlighted by the New Thinking imply that the concept of inherited representation, set out here, is a better tool for theorizing about human cognitive evolution. PMID:22734066

  6. White matter and cognition: making the connection

    PubMed Central

    Fields, R. Douglas

    2016-01-01

    Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society. PMID:27512019

  7. The evolution of primate general and cultural intelligence

    PubMed Central

    Reader, Simon M.; Hager, Yfke; Laland, Kevin N.

    2011-01-01

    There are consistent individual differences in human intelligence, attributable to a single ‘general intelligence’ factor, g. The evolutionary basis of g and its links to social learning and culture remain controversial. Conflicting hypotheses regard primate cognition as divided into specialized, independently evolving modules versus a single general process. To assess how processes underlying culture relate to one another and other cognitive capacities, we compiled ecologically relevant cognitive measures from multiple domains, namely reported incidences of behavioural innovation, social learning, tool use, extractive foraging and tactical deception, in 62 primate species. All exhibited strong positive associations in principal component and factor analyses, after statistically controlling for multiple potential confounds. This highly correlated composite of cognitive traits suggests social, technical and ecological abilities have coevolved in primates, indicative of an across-species general intelligence that includes elements of cultural intelligence. Our composite species-level measure of general intelligence, ‘primate gS’, covaried with both brain volume and captive learning performance measures. Our findings question the independence of cognitive traits and do not support ‘massive modularity’ in primate cognition, nor an exclusively social model of primate intelligence. High general intelligence has independently evolved at least four times, with convergent evolution in capuchins, baboons, macaques and great apes. PMID:21357224

  8. Speech as a breakthrough signaling resource in the cognitive evolution of biological complex adaptive systems.

    PubMed

    Mattei, Tobias A

    2014-12-01

    In self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.

  9. The efficacy of musical emotions provoked by Mozart's music for the reconciliation of cognitive dissonance.

    PubMed

    Masataka, Nobuo; Perlovsky, Leonid

    2012-01-01

    Debates on the origin and function of music have a long history. While some scientists argue that music itself plays no adaptive role in human evolution, others suggest that music clearly has an evolutionary role, and point to music's universality. A recent hypothesis suggested that a fundamental function of music has been to help mitigating cognitive dissonance, which is a discomfort caused by holding conflicting cognitions simultaneously. It usually leads to devaluation of conflicting knowledge. Here we provide experimental confirmation of this hypothesis using a classical paradigm known to create cognitive dissonance. Results of our experiment reveal that the exposure to Mozart's music exerted a strongly positive influence upon the performance of young children and served as basis by which they were enabled to reconcile the cognitive dissonance.

  10. Relaxed genetic control of cortical organization in human brains compared with chimpanzees

    PubMed Central

    Gómez-Robles, Aida; Hopkins, William D.; Schapiro, Steven J.; Sherwood, Chet C.

    2015-01-01

    The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234

  11. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    PubMed

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  12. Evolution of the Human Nervous System Function, Structure, and Development.

    PubMed

    Sousa, André M M; Meyer, Kyle A; Santpere, Gabriel; Gulden, Forrest O; Sestan, Nenad

    2017-07-13

    The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The interplay of cognition and cooperation

    PubMed Central

    Brosnan, Sarah F.; Salwiczek, Lucie; Bshary, Redouan

    2010-01-01

    Cooperation often involves behaviours that reduce immediate payoffs for actors. Delayed benefits have often been argued to pose problems for the evolution of cooperation because learning such contingencies may be difficult as partners may cheat in return. Therefore, the ability to achieve stable cooperation has often been linked to a species' cognitive abilities, which is in turn linked to the evolution of increasingly complex central nervous systems. However, in their famous 1981 paper, Axelrod and Hamilton stated that in principle even bacteria could play a tit-for-tat strategy in an iterated Prisoner's Dilemma. While to our knowledge this has not been documented, interspecific mutualisms are present in bacteria, plants and fungi. Moreover, many species which have evolved large brains in complex social environments lack convincing evidence in favour of reciprocity. What conditions must be fulfilled so that organisms with little to no brainpower, including plants and single-celled organisms, can, on average, gain benefits from interactions with partner species? On the other hand, what conditions favour the evolution of large brains and flexible behaviour, which includes the use of misinformation and so on? These questions are critical, as they begin to address why cognitive complexity would emerge when ‘simple’ cooperation is clearly sufficient in some cases. This paper spans the literature from bacteria to humans in our search for the key variables that link cooperation and deception to cognition. PMID:20679113

  14. A high density of human communication-associated genes in chromosome 7q31-q36: differential expression in human and non-human primate cortices.

    PubMed

    Schneider, E; Jensen, L R; Farcas, R; Kondova, I; Bontrop, R E; Navarro, B; Fuchs, E; Kuss, A W; Haaf, T

    2012-01-01

    The human brain is distinguished by its remarkable size, high energy consumption, and cognitive abilities compared to all other mammals and non-human primates. However, little is known about what has accelerated brain evolution in the human lineage. One possible explanation is that the appearance of advanced communication skills and language has been a driving force of human brain development. The phenotypic adaptations in brain structure and function which occurred on the way to modern humans may be associated with specific molecular signatures in today's human genome and/or transcriptome. Genes that have been linked to language, reading, and/or autism spectrum disorders are prime candidates when searching for genes for human-specific communication abilities. The database and genome-wide expression analyses we present here revealed a clustering of such communication-associated genes (COAG) on human chromosomes X and 7, in particular chromosome 7q31-q36. Compared to the rest of the genome, we found a high number of COAG to be differentially expressed in the cortices of humans and non-human primates (chimpanzee, baboon, and/or marmoset). The role of X-linked genes for the development of human-specific cognitive abilities is well known. We now propose that chromosome 7q31-q36 also represents a hot spot for the evolution of human-specific communication abilities. Selective pressure on the T cell receptor beta locus on chromosome 7q34, which plays a pivotal role in the immune system, could have led to rapid dissemination of positive gene variants in hitchhiking COAG. Copyright © 2012 S. Karger AG, Basel.

  15. The missing link: evolution of the primate cerebellum.

    PubMed

    MacLeod, Carol

    2012-01-01

    The cerebellum has too often been seen as the "little brain," subservient to the "big brain," the cerebrum. That is changing, as neuroimaging uncovers the cerebellum as the "missing link" in the neurological underpinnings of many cognitive domains. Connections between the neocortex and the cerebellum are now more precisely defined, with functionally localized areas of cerebellar cortex understood for cognitive tasks in humans. Comparative volumetric studies of the primate cerebellum have isolated some elements of circuitry, and our field is moving toward a better integration with the neurosciences in a systematic comparative framework. The next decade may show great advances, as relatively noninvasive techniques of neuroimaging have the potential to build a comparative model of the evolution of primate neurocircuitry. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Atypical birdsong and artificial languages provide insights into how communication systems are shaped by learning, use, and transmission.

    PubMed

    Fehér, Olga

    2017-02-01

    In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social-cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language.

  17. Technology, expertise and social cognition in human evolution.

    PubMed

    Stout, Dietrich; Passingham, Richard; Frith, Christopher; Apel, Jan; Chaminade, Thierry

    2011-04-01

    Paleolithic stone tools provide concrete evidence of major developments in human behavioural and cognitive evolution. Of particular interest are evolving cognitive mechanisms implied by the cultural transmission of increasingly complex prehistoric technologies, hypothetically including motor resonance, causal reasoning and mentalizing. To test the relevance of these mechanisms to specific Paleolithic technologies, we conducted a functional magnetic resonance imaging study of Naïve, Trained and Expert subjects observing two toolmaking methods of differing complexity and antiquity: the simple 'Oldowan' method documented by the earliest tools 2.5 million years ago; and the more complex 'Acheulean' method used to produce refined tools 0.5 million years ago. Subjects observed 20-s video clips of an expert demonstrator, followed by behavioural tasks designed to maintain attention. Results show that observational understanding of Acheulean toolmaking involves increased demands for the recognition of abstract technological intentions. Across subject groups, Acheulean compared with Oldowan toolmaking was associated with activation of left anterior intraparietal and inferior frontal sulci, indicating the relevance of resonance mechanisms. Between groups, Naïve subjects relied on bottom-up kinematic simulation in the premotor cortex to reconstruct unfamiliar intentions, and Experts employed a combination of familiarity-based sensorimotor matching in the posterior parietal cortex and top-down mentalizing involving the medial prefrontal cortex. While no specific differences between toolmaking technologies were found for Trained subjects, both produced frontal activation relative to Control, suggesting focused engagement with toolmaking stimuli. These findings support motor resonance hypotheses for the evolutionary origins of human social cognition and cumulative culture, directly linking these hypotheses with archaeologically observable behaviours in prehistory. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. Dual Neural Network Model for the Evolution of Speech and Language.

    PubMed

    Hage, Steffen R; Nieder, Andreas

    2016-12-01

    Explaining the evolution of speech and language poses one of the biggest challenges in biology. We propose a dual network model that posits a volitional articulatory motor network (VAMN) originating in the prefrontal cortex (PFC; including Broca's area) that cognitively controls vocal output of a phylogenetically conserved primary vocal motor network (PVMN) situated in subcortical structures. By comparing the connections between these two systems in human and nonhuman primate brains, we identify crucial biological preadaptations in monkeys for the emergence of a language system in humans. This model of language evolution explains the exclusiveness of non-verbal communication sounds (e.g., cries) in infants with an immature PFC, as well as the observed emergence of non-linguistic vocalizations in adults after frontal lobe pathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Key cognitive preconditions for the evolution of language.

    PubMed

    Donald, Merlin

    2017-02-01

    Languages are socially constructed systems of expression, generated interactively in social networks, which can be assimilated by the individual brain as it develops. Languages co-evolved with culture, reflecting the changing complexity of human culture as it acquired the properties of a distributed cognitive system. Two key preconditions set the stage for the evolution of such cultures: a very general ability to rehearse and refine skills (evident early in hominin evolution in toolmaking), and the emergence of material culture as an external (to the brain) memory record that could retain and accumulate knowledge across generations. The ability to practice and rehearse skill provided immediate survival-related benefits in that it expanded the physical powers of early hominins, but the same adaptation also provided the imaginative substrate for a system of "mimetic" expression, such as found in ritual and pantomime, and in proto-words, which performed an expressive function somewhat like the home signs of deaf non-signers. The hominid brain continued to adapt to the increasing importance and complexity of culture as human interactions with material culture became more complex; above all, this entailed a gradual expansion in the integrative systems of the brain, especially those involved in the metacognitive supervision of self-performances. This supported a style of embodied mimetic imagination that improved the coordination of shared activities such as fire tending, but also in rituals and reciprocal mimetic games. The time-depth of this mimetic adaptation, and its role in both the construction and acquisition of languages, explains the importance of mimetic expression in the media, religion, and politics. Spoken language evolved out of voco-mimesis, and emerged long after the more basic abilities needed to refine skill and share intentions, probably coinciding with the common ancestor of sapient humans. Self-monitoring and self-supervised practice were necessary preconditions for lexical invention, and as these abilities evolved further, communicative skills extended to more abstract and complex aspects of the communication environments-that is, the "cognitive ecologies"-being generated by human groups. The hominin brain adapted continuously to the need to assimilate language and its many cognitive byproducts by expanding many of its higher integrative systems, a process that seems to have accelerated and peaked in the past half million years.

  20. Manipulation complexity in primates coevolved with brain size and terrestriality

    PubMed Central

    Heldstab, Sandra A.; Kosonen, Zaida K.; Koski, Sonja E.; Burkart, Judith M.; van Schaik, Carel P.; Isler, Karin

    2016-01-01

    Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits. PMID:27075921

  1. Species-Specific 5 mC and 5 hmC Genomic Landscapes Indicate Epigenetic Contribution to Human Brain Evolution

    PubMed Central

    Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.

    2018-01-01

    Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831

  2. The efficacy of musical emotions provoked by Mozart's music for the reconciliation of cognitive dissonance

    PubMed Central

    Masataka, Nobuo; Perlovsky, Leonid

    2012-01-01

    Debates on the origin and function of music have a long history. While some scientists argue that music itself plays no adaptive role in human evolution, others suggest that music clearly has an evolutionary role, and point to music's universality. A recent hypothesis suggested that a fundamental function of music has been to help mitigating cognitive dissonance, which is a discomfort caused by holding conflicting cognitions simultaneously. It usually leads to devaluation of conflicting knowledge. Here we provide experimental confirmation of this hypothesis using a classical paradigm known to create cognitive dissonance. Results of our experiment reveal that the exposure to Mozart's music exerted a strongly positive influence upon the performance of young children and served as basis by which they were enabled to reconcile the cognitive dissonance. PMID:23012648

  3. Oxytocin, testosterone, and human social cognition.

    PubMed

    Crespi, Bernard J

    2016-05-01

    I describe an integrative social-evolutionary model for the adaptive significance of the human oxytocinergic system. The model is based on a role for this hormone in the generation and maintenance of social familiarity and affiliation across five homologous, functionally similar, and sequentially co-opted contexts: mothers with offspring, female and male mates, kin groups, individuals with reciprocity partners, and individuals within cooperating and competing social groups defined by culture. In each situation, oxytocin motivates, mediates and rewards the cognitive and behavioural processes that underlie the formation and dynamics of a more or less stable social group, and promotes a relationship between two or more individuals. Such relationships may be positive (eliciting neurological reward, reducing anxiety and thus indicating fitness-enhancing effects), or negative (increasing anxiety and distress, and thus motivating attempts to alleviate a problematic, fitness-reducing social situation). I also present evidence that testosterone exhibits opposite effects from oxytocin on diverse aspects of cognition and behaviour, most generally by favouring self-oriented, asocial and antisocial behaviours. I apply this model for effects of oxytocin and testosterone to understanding human psychological disorders centrally involving social behaviour. Reduced oxytocin and higher testosterone levels have been associated with under-developed social cognition, especially in autism. By contrast, some combination of oxytocin increased above normal levels, and lower testosterone, has been reported in a notable number of studies of schizophrenia, bipolar disorder and depression, and, in some cases, higher oxytocin involves maladaptively 'hyper-developed' social cognition in these conditions. This pattern of findings suggests that human social cognition and behaviour are structured, in part, by joint and opposing effects of oxytocin and testosterone, and that extremes of such joint effects partially mediate risks and phenotypes of autism and psychotic-affective conditions. These considerations have direct implications for the development of therapies for alleviating disorders of social cognition, and for understanding how such disorders are associated with the evolution of human cognitive-affective architecture. © 2015 Cambridge Philosophical Society.

  4. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab

    PubMed Central

    Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab’s learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab’s scientific process. Third, the lab’s exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom’s taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects. PMID:27513927

  5. From embodied mind to embodied robotics: humanities and system theoretical aspects.

    PubMed

    Mainzer, Klaus

    2009-01-01

    After an introduction (1) the article analyzes the evolution of the embodied mind (2), the innovation of embodied robotics (3), and finally discusses conclusions of embodied robotics for human responsibility (4). Considering the evolution of the embodied mind (2), we start with an introduction of complex systems and nonlinear dynamics (2.1), apply this approach to neural self-organization (2.2), distinguish degrees of complexity of the brain (2.3), explain the emergence of cognitive states by complex systems dynamics (2.4), and discuss criteria for modeling the brain as complex nonlinear system (2.5). The innovation of embodied robotics (3) is a challenge of future technology. We start with the distinction of symbolic and embodied AI (3.1) and explain embodied robots as dynamical systems (3.2). Self-organization needs self-control of technical systems (3.3). Cellular neural networks (CNN) are an example of self-organizing technical systems offering new avenues for neurobionics (3.4). In general, technical neural networks support different kinds of learning robots (3.5). Finally, embodied robotics aim at the development of cognitive and conscious robots (3.6).

  6. The role of play objects and object play in human cognitive evolution and innovation

    PubMed Central

    Johannsen, Niels N.; Högberg, Anders; Nowell, April; Lombard, Marlize

    2018-01-01

    Abstract In this contribution, we address a major puzzle in the evolution of human material culture: If maturing individuals just learn their parental generation's material culture, then what is the origin of key innovations as documented in the archeological record? We approach this question by coupling a life‐history model of the costs and benefits of experimentation with a niche‐construction perspective. Niche‐construction theory suggests that the behavior of organisms and their modification of the world around them have important evolutionary ramifications by altering developmental settings and selection pressures. Part of Homo sapiens' niche is the active provisioning of children with play objects — sometimes functional miniatures of adult tools — and the encouragement of object play, such as playful knapping with stones. Our model suggests that salient material culture innovation may occur or be primed in a late childhood or adolescence sweet spot when cognitive and physical abilities are sufficiently mature but before the full onset of the concerns and costs associated with reproduction. We evaluate the model against a series of archeological cases and make suggestions for future research. PMID:29446561

  7. Niche construction, social cognition, and language: hypothesizing the human as the production of place.

    PubMed

    Davies, Oliver

    2016-01-01

    New data is emerging from evolutionary anthropology and the neuroscience of social cognition on our species-specific hyper-cooperation (HC). This paper attempts an integration of third-person archaeological and second-person, neuroscientific perspectives on the structure of HC, through a post-Ricoeurian development in hermeneutical phenomenology. We argue for the relatively late evolution of advanced linguistic consciousness (ALC) (Hiscock in Biological Theory 9:27-41, 2014), as a reflexive system based on the 'in-between' or 'cognitive system' as reported by Vogeley et al. (in: Interdisziplinäre anthropologie, Heidelberg, Springer, 2014) of face-to-face social cognition, as well as tool use. The possibility of a positive or negative tension between the more recent ALC and the more ancient, pre-thematic, self-organizing 'in-between' frames an 'internal' niche construction. This indexes the internal structure of HC as 'convergence', where complex, engaged, social reasoning in ALC mirrors the cognitive structure of the pre-thematic 'in-between', extending the bio-energy of our social cognition, through reflexive amplification, in the production of 'social place' as 'humanized space'. If individual word/phrase acquisition, in contextual actuality, is the distinctive feature of human language (Hurford in European Reviews 12:551-565, 2004), then human language is a hyperbolic, species-wide training in particularized co-location, developing consciousness of a shared world. The humanization of space and production of HC, through co-location, requires the 'disarming' of language as a medium of control, and a foregrounding of the materiality of the sign. The production of 'hyper-place' as solidarity beyond the face-to-face, typical of world religions, becomes possible where internal niche construction as convergence with the 'in-between' (world in us) combines with religious cosmologies reflecting an external 'cosmic' niche construction (world outside us).

  8. A Mechanistic Model of Human Recall of Social Network Structure and Relationship Affect.

    PubMed

    Omodei, Elisa; Brashears, Matthew E; Arenas, Alex

    2017-12-07

    The social brain hypothesis argues that the need to deal with social challenges was key to our evolution of high intelligence. Research with non-human primates as well as experimental and fMRI studies in humans produce results consistent with this claim, leading to an estimate that human primary groups should consist of roughly 150 individuals. Gaps between this prediction and empirical observations can be partially accounted for using "compression heuristics", or schemata that simplify the encoding and recall of social information. However, little is known about the specific algorithmic processes used by humans to store and recall social information. We describe a mechanistic model of human network recall and demonstrate its sufficiency for capturing human recall behavior observed in experimental contexts. We find that human recall is predicated on accurate recall of a small number of high degree network nodes and the application of heuristics for both structural and affective information. This provides new insight into human memory, social network evolution, and demonstrates a novel approach to uncovering human cognitive operations.

  9. Social, moral, and temporal qualities: Pre-service teachers' considerations of evolution and creation

    NASA Astrophysics Data System (ADS)

    Hahn, Deirdre

    The introduction of the theories of evolution into public education has created a history of misinterpretation and uncertainty about its application to understanding deep time and human origins. Conceptions about negative social and moral outcomes of evolution itself along with cognitive temporal constraints may be difficult for many individuals to uncouple from the scientific theory, serving to provoke the ongoing debate about the treatment of evolution in science education. This debate about teaching evolution is strongly influenced by groups who strive to add creationism to the science curriculum for a balanced treatment of human origins and to mediate implied negative social and moral outcomes of evolution. Individual conceptualization of evolution and creation may influence the choice of college students to teach science. This study is designed to examine if pre-service teachers' conceptualize an evolutionary and creationist process of human development using certain social, moral or temporal patterns; and if the patterns follow a negative conceptual theme. The pilot study explored 21 pre-service teachers' conceptual representation of an evolutionary process through personal narratives. Participants tended to link evolutionary changes with negative social and moral consequences and seemed to have difficulty envisioning change over time. The pilot study was expanded to include a quantitative examination of attribute patterns of an evolutionary and creationist developmental process. Seventy-three pre-service teachers participated in the second experiment and tended to fall evenly along a continuum of creationist and evolutionist beliefs about life. Using a chi-square and principle components analysis, participants were found to map concepts of evolution and creation onto each other using troubling attributes of development to distinguish negative change over time. A strong negative social and moral pattern of human development was found in the creation condition, though only a vague negative human developmental process was found for the evolution condition. Based on these results, pre-service teachers may not use evolution as a viable explanation of human origins, which may serve to contribute to evolution theory debates and discourage pre-service teachers' choice of being science instructors.

  10. Manual praxis in stone tool manufacture: implications for language evolution.

    PubMed

    Ruck, Lana

    2014-12-01

    Alternative functions of the left-hemisphere dominant Broca's region have induced hypotheses regarding the evolutionary parallels between manual praxis and language in humans. Many recent studies on Broca's area reveal several assumptions about the cognitive mechanisms that underlie both functions, including: (1) an accurate, finely controlled body schema, (2) increasing syntactical abilities, particularly for goal-oriented actions, and (3) bilaterality and fronto-parietal connectivity. Although these characteristics are supported by experimental paradigms, many researchers have failed to acknowledge a major line of evidence for the evolutionary development of these traits: stone tools. The neuroscience of stone tool manufacture is a viable proxy for understanding evolutionary aspects of manual praxis and language, and may provide key information for evaluating competing hypotheses on the co-evolution of these cognitive domains in our species. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    PubMed

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.

  12. The neural representation of social networks.

    PubMed

    Weaverdyck, Miriam E; Parkinson, Carolyn

    2018-05-24

    The computational demands associated with navigating large, complexly bonded social groups are thought to have significantly shaped human brain evolution. Yet, research on social network representation and cognitive neuroscience have progressed largely independently. Thus, little is known about how the human brain encodes the structure of the social networks in which it is embedded. This review highlights recent work seeking to bridge this gap in understanding. While the majority of research linking social network analysis and neuroimaging has focused on relating neuroanatomy to social network size, researchers have begun to define the neural architecture that encodes social network structure, cognitive and behavioral consequences of encoding this information, and individual differences in how people represent the structure of their social world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Art and brain: insights from neuropsychology, biology and evolution.

    PubMed

    Zaidel, Dahlia W

    2010-02-01

    Art is a uniquely human activity associated fundamentally with symbolic and abstract cognition. Its practice in human societies throughout the world, coupled with seeming non-functionality, has led to three major brain theories of art. (1) The localized brain regions and pathways theory links art to multiple neural regions. (2) The display of art and its aesthetics theory is tied to the biological motivation of courtship signals and mate selection strategies in animals. (3) The evolutionary theory links the symbolic nature of art to critical pivotal brain changes in Homo sapiens supporting increased development of language and hierarchical social grouping. Collectively, these theories point to art as a multi-process cognition dependent on diverse brain regions and on redundancy in art-related functional representation.

  14. Art and brain: insights from neuropsychology, biology and evolution

    PubMed Central

    Zaidel, Dahlia W

    2010-01-01

    Art is a uniquely human activity associated fundamentally with symbolic and abstract cognition. Its practice in human societies throughout the world, coupled with seeming non-functionality, has led to three major brain theories of art. (1) The localized brain regions and pathways theory links art to multiple neural regions. (2) The display of art and its aesthetics theory is tied to the biological motivation of courtship signals and mate selection strategies in animals. (3) The evolutionary theory links the symbolic nature of art to critical pivotal brain changes in Homo sapiens supporting increased development of language and hierarchical social grouping. Collectively, these theories point to art as a multi-process cognition dependent on diverse brain regions and on redundancy in art-related functional representation. PMID:19490399

  15. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The social brain hypothesis of schizophrenia.

    PubMed

    Burns, Jonathan

    2006-06-01

    The social brain hypothesis is a useful heuristic for understanding schizophrenia. It focuses attention on the core Bleulerian concept of autistic alienation and is consistent with well-replicated findings of social brain dysfunction in schizophrenia as well as contemporary theories of human cognitive and brain evolution. The contributions of Heidegger, Merleau-Ponty and Wittgenstein allow us to arrive at a new "philosophy of interpersonal relatedness", which better reflects the "embodied mind" and signifies the end of Cartesian dualistic thinking. In this paper I review the evolution, development and neurobiology of the social brain - the anatomical and functional substrate for adaptive social behaviour and cognition. Functional imaging identifies fronto-temporal and fronto-parietal cortical networks as comprising the social brain, while the discovery of "mirror neurons" provides an understanding of social cognition at a cellular level. Patients with schizophrenia display abnormalities in a wide range of social cognition tasks such as emotion recognition, theory of mind and affective responsiveness. Furthermore, recent research indicates that schizophrenia is a disorder of functional and structural connectivity of social brain networks. These findings lend support to the claim that schizophrenia represents a costly by-product of social brain evolution in Homo sapiens. Individuals with this disorder find themselves seriously disadvantaged in the social arena and vulnerable to the stresses of their complex social environments. This state of "disembodiment" and interpersonal alienation is the core phenomenon of schizophrenia and the root cause of intolerable suffering in the lives of those affected.

  17. The social brain hypothesis of schizophrenia

    PubMed Central

    BURNS, JONATHAN

    2006-01-01

    The social brain hypothesis is a useful heuristic for understanding schizophrenia. It focuses attention on the core Bleulerian concept of autistic alienation and is consistent with well-replicated findings of social brain dysfunction in schizophrenia as well as contemporary theories of human cognitive and brain evolution. The contributions of Heidegger, Merleau-Ponty and Wittgenstein allow us to arrive at a new "philosophy of interpersonal relatedness", which better reflects the "embodied mind" and signifies the end of Cartesian dualistic thinking. In this paper I review the evolution, development and neurobiology of the social brain - the anatomical and functional substrate for adaptive social behaviour and cognition. Functional imaging identifies fronto-temporal and fronto-parietal cortical networks as comprising the social brain, while the discovery of "mirror neurons" provides an understanding of social cognition at a cellular level. Patients with schizophrenia display abnormalities in a wide range of social cognition tasks such as emotion recognition, theory of mind and affective responsiveness. Furthermore, recent research indicates that schizophrenia is a disorder of functional and structural connectivity of social brain networks. These findings lend support to the claim that schizophrenia represents a costly by-product of social brain evolution in Homo sapiens. Individuals with this disorder find themselves seriously disadvantaged in the social arena and vulnerable to the stresses of their complex social environments. This state of "disembodiment" and interpersonal alienation is the core phenomenon of schizophrenia and the root cause of intolerable suffering in the lives of those affected. PMID:16946939

  18. Reconsidering the evolution of brain, cognition, and behavior in birds and mammals

    PubMed Central

    Willemet, Romain

    2013-01-01

    Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behavior of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise statistical methods. The role of allometry in determining brain variables should be revised. In particular, bird and mammalian brains appear to have evolved in response to a variety of selective pressures influencing both brain size and composition. “Brain” and “cognition” are indeed meta-variables, made up of the variables that are ecologically relevant and evolutionarily selected. External indicators of species differences in cognition and behavior are limited by the complexity of these differences. Indeed, behavioral differences between species and individuals are caused by cognitive and affective components. Although intra-species variability forms the basis of species evolution, some of the mechanisms underlying individual differences in brain and behavior appear to differ from those between species. While many issues have persisted over the years because of a lack of appropriate data or methods to test them; several fallacies, particularly those related to the human brain, reflect scientists' preconceptions. The theoretical framework on the evolution of brain, cognition, and behavior in birds and mammals should be reconsidered with these biases in mind. PMID:23847570

  19. Further constraints on the Chauvet cave artwork elaboration.

    PubMed

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-05-22

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented (36)Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.

  20. Further constraints on the Chauvet cave artwork elaboration

    NASA Astrophysics Data System (ADS)

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L.; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-05-01

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419-479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908-917]. The presented 36Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution.

  1. Cognitive capitalism: the effect of cognitive ability on wealth, as mediated through scientific achievement and economic freedom.

    PubMed

    Rindermann, Heiner; Thompson, James

    2011-06-01

    Traditional economic theories stress the relevance of political, institutional, geographic, and historical factors for economic growth. In contrast, human-capital theories suggest that peoples' competences, mediated by technological progress, are the deciding factor in a nation's wealth. Using three large-scale assessments, we calculated cognitive-competence sums for the mean and for upper- and lower-level groups for 90 countries and compared the influence of each group's intellectual ability on gross domestic product. In our cross-national analyses, we applied different statistical methods (path analyses, bootstrapping) and measures developed by different research groups to various country samples and historical periods. Our results underscore the decisive relevance of cognitive ability--particularly of an intellectual class with high cognitive ability and accomplishments in science, technology, engineering, and math--for national wealth. Furthermore, this group's cognitive ability predicts the quality of economic and political institutions, which further determines the economic affluence of the nation. Cognitive resources enable the evolution of capitalism and the rise of wealth.

  2. Cognitive algorithms: dynamic logic, working of the mind, evolution of consciousness and cultures

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2007-04-01

    The paper discusses evolution of consciousness driven by the knowledge instinct, a fundamental mechanism of the mind which determines its higher cognitive functions. Dynamic logic mathematically describes the knowledge instinct. It overcomes past mathematical difficulties encountered in modeling intelligence and relates it to mechanisms of concepts, emotions, instincts, consciousness and unconscious. The two main aspects of the knowledge instinct are differentiation and synthesis. Differentiation is driven by dynamic logic and proceeds from vague and unconscious states to more crisp and conscious states, from less knowledge to more knowledge at each hierarchical level of the mind. Synthesis is driven by dynamic logic operating in a hierarchical organization of the mind; it strives to achieve unity and meaning of knowledge: every concept finds its deeper and more general meaning at a higher level. These mechanisms are in complex relationship of symbiosis and opposition, which leads to complex dynamics of evolution of consciousness and cultures. Modeling this dynamics in a population leads to predictions for the evolution of consciousness, and cultures. Cultural predictive models can be compared to experimental data and used for improvement of human conditions. We discuss existing evidence and future research directions.

  3. In search of a unifying theory of complex brain evolution.

    PubMed

    Krubitzer, Leah

    2009-03-01

    The neocortex is the part of the brain that is involved in perception, cognition, and volitional motor control. In mammals it is a highly dynamic structure that has been dramatically altered in different lineages, and these alterations account for the remarkable variations in behavior that species exhibit. When we consider how this structure changes and becomes more complex in some mammals such as humans, we must also consider how the alterations that occur at macro levels of organization, such as the level of the individual and social system, as well as micro levels of organization, such as the level of neurons, synapses and molecules, impact the neocortex. It is also important to consider the constraints imposed on the evolution of the neocortex. Observations of highly conserved features of cortical organization that all mammals share, as well as the convergent evolution of similar features of organization, indicate that the constraints imposed on the neocortex are pervasive and restrict the avenues along which evolution can proceed. Although both genes and the laws of physics place formidable constraints on the evolution of all animals, humans have evolved a number of mechanisms that allow them to loosen these constraints and often alter the course of their own evolution. While this cortical plasticity is a defining feature of mammalian neocortex, it appears to be exaggerated in humans and could be considered a unique derivation of our species.

  4. The re-tooled mind: how culture re-engineers cognition

    PubMed Central

    2010-01-01

    One of the main goals of cognitive science is to discover the underlying principles that characterize human cognition, but this enterprise is complicated by culturally-driven variability. While much fruitful work has focused on how culture influences the contents of cognition, here I argue that culture can in addition exercise a profound effect on the how of cognition—the mechanisms by which cognitive tasks get done. I argue that much of the fundamental processes of daily cognitive activity involve the operation of cognitive tools that are not genetically determined but instead are invented and culturally transmitted. Further, these cognitive inventions become ‘firmware’, consituting a re-engineering of the individual’s cognitive architecture. That is, ontogenetic experience from one’s cultural context serves to re-tool the developing mind into a variety of disparate cognitive phenotypes. Drawing on several mutually isolated literatures, I advance four claims to the effect that cognitive tools (i) are ubitquitous in everyday cognition, (ii) result in reorganization of the neural system, (iii) are founded in embodied representations and (iv) were made possible by the evolution of an unprecedented degree of voluntary control over the body. I conclude by discussing the implications for the agenda of cognitive science. PMID:20068033

  5. The study of evolution and depression of the alpha-rhythm in the human brain EEG by means of wavelet-based methods

    NASA Astrophysics Data System (ADS)

    Runnova, A. E.; Zhuravlev, M. O.; Khramova, M. V.; Pysarchik, A. N.

    2017-04-01

    We study the appearance, development and depression of the alpha-rhythm in human EEG data during a psychophysiological experiment by stimulating cognitive activity with the perception of ambiguous object. The new method based on continuous wavelet transform allows to estimate the energy contribution of various components, including the alpha rhythm, in the general dynamics of the electrical activity of the projections of various areas of the brain. The decision-making process by observe ambiguous images is characterized by specific oscillatory alfa-rhytm patterns in the multi-channel EEG data. We have shown the repeatability of detected principles of the alpha-rhythm evolution in a data of group of 12 healthy male volunteers.

  6. Emergence of system roles in normative neurodevelopment

    PubMed Central

    Gu, Shi; Satterthwaite, Theodore D.; Medaglia, John D.; Yang, Muzhi; Gur, Raquel E.; Gur, Ruben C.; Bassett, Danielle S.

    2015-01-01

    Adult human cognition is supported by systems of brain regions, or modules, that are functionally coherent at rest and collectively activated by distinct task requirements. However, an understanding of how the formation of these modules supports evolving cognitive capabilities has not been delineated. Here, we quantify the formation of network modules in a sample of 780 youth (aged 8–22 y) who were studied as part of the Philadelphia Neurodevelopmental Cohort. We demonstrate that the brain’s functional network organization changes in youth through a process of modular evolution that is governed by the specific cognitive roles of each system, as defined by the balance of within- vs. between-module connectivity. Moreover, individual variability in these roles is correlated with cognitive performance. Collectively, these results suggest that dynamic maturation of network modules in youth may be a critical driver for the development of cognition. PMID:26483477

  7. A model for brain life history evolution.

    PubMed

    González-Forero, Mauricio; Faulwasser, Timm; Lehmann, Laurent

    2017-03-01

    Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain's energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting ("me vs nature"), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model's parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills.

  8. A model for brain life history evolution

    PubMed Central

    Lehmann, Laurent

    2017-01-01

    Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain’s energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting (“me vs nature”), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model’s parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills. PMID:28278153

  9. Food or threat? Wild capuchin monkeys (Sapajus libidinosus) as both predators and prey of snakes.

    PubMed

    Falótico, Tiago; Verderane, Michele P; Mendonça-Furtado, Olívia; Spagnoletti, Noemi; Ottoni, Eduardo B; Visalberghi, Elisabetta; Izar, Patrícia

    2018-01-01

    Snakes present a hazard to primates, both as active predators and by defensive envenomation. This risk might have been a selective pressure on the evolution of primate visual and cognitive systems, leading to several behavioral traits present in human and non-human primates, such as the ability to quickly learn to fear snakes. Primates seldom prey on snakes, and humans are one of the few primate species that do. We report here another case, the wild capuchin monkey (Sapajus libidinosus), which preys on snakes. We hypothesized that capuchin monkeys, due to their behavioral plasticity, and cognitive and visual skills, would be capable of discriminating dangerous and non-dangerous snakes and behave accordingly. We recorded the behavioral patterns exhibited toward snakes in two populations of S. libidinosus living 320 km apart in Piauí, Brazil. As expected, capuchins have a fear reaction to dangerous snakes (usually venomous or constricting snakes), presenting mobbing behavior toward them. In contrast, they hunt and consume non-dangerous snakes without presenting the fear response. Our findings support the tested hypothesis that S. libidinosus are capable of differentiating snakes by level of danger: on the one hand they protect themselves from dangerous snakes, on the other hand they take opportunities to prey on non-dangerous snakes. Since capuchins and humans are both predators and prey of snakes, further studies of this complex relationship may shed light on the evolution of these traits in the human lineage.

  10. New human-specific brain landmark: the depth asymmetry of superior temporal sulcus.

    PubMed

    Leroy, François; Cai, Qing; Bogart, Stephanie L; Dubois, Jessica; Coulon, Olivier; Monzalvo, Karla; Fischer, Clara; Glasel, Hervé; Van der Haegen, Lise; Bénézit, Audrey; Lin, Ching-Po; Kennedy, David N; Ihara, Aya S; Hertz-Pannier, Lucie; Moutard, Marie-Laure; Poupon, Cyril; Brysbaert, Marc; Roberts, Neil; Hopkins, William D; Mangin, Jean-François; Dehaene-Lambertz, Ghislaine

    2015-01-27

    Identifying potentially unique features of the human cerebral cortex is a first step to understanding how evolution has shaped the brain in our species. By analyzing MR images obtained from 177 humans and 73 chimpanzees, we observed a human-specific asymmetry in the superior temporal sulcus at the heart of the communication regions and which we have named the "superior temporal asymmetrical pit" (STAP). This 45-mm-long segment ventral to Heschl's gyrus is deeper in the right hemisphere than in the left in 95% of typical human subjects, from infanthood till adulthood, and is present, irrespective of handedness, language lateralization, and sex although it is greater in males than in females. The STAP also is seen in several groups of atypical subjects including persons with situs inversus, autistic spectrum disorder, Turner syndrome, and corpus callosum agenesis. It is explained in part by the larger number of sulcal interruptions in the left than in the right hemisphere. Its early presence in the infants of this study as well as in fetuses and premature infants suggests a strong genetic influence. Because this asymmetry is barely visible in chimpanzees, we recommend the STAP region during midgestation as an important phenotype to investigate asymmetrical variations of gene expression among the primate lineage. This genetic target may provide important insights regarding the evolution of the crucial cognitive abilities sustained by this sulcus in our species, namely communication and social cognition.

  11. Evidence for expansion of the precuneus in human evolution.

    PubMed

    Bruner, Emiliano; Preuss, Todd M; Chen, Xu; Rilling, James K

    2017-03-01

    The evolution of neurocranial morphology in Homo sapiens is characterized by bulging of the parietal region, a feature unique to our species. In modern humans, expansion of the parietal surface occurs during the first year of life, in a morphogenetic stage which is absent in chimpanzees and Neandertals. A similar variation in brain shape among living adult humans is associated with expansion of the precuneus. Using MRI-derived structural brain templates, we compare medial brain morphology between humans and chimpanzees through shape analysis and geometrical modeling. We find that the main spatial difference is a prominent expansion of the precuneus in our species, providing further evidence of evolutionary changes associated with this area. The precuneus is a major hub of brain organization, a central node of the default-mode network, and plays an essential role in visuospatial integration. Together, the comparative neuroanatomical and paleontological evidence suggest that precuneus expansion is a neurological specialization of H. sapiens that evolved in the last 150,000 years that may be associated with recent human cognitive specializations.

  12. Designing the future: NBIC technologies and human performance enhancement.

    PubMed

    Canton, James

    2004-05-01

    Never before has any civilization had the unique opportunity to enhance human performance on the scale that we will face in the near future. The convergence of nanotechnology, biotechnology, information technology, and cognitive science (NBIC) is creating a set of powerful tools that have the potential to significantly enhance human performance as well as transform society, science, economics, and human evolution. As the NBIC convergence becomes more understood, the possibility that we may be able to enhance human performance in the three domains of therapy, augmentation, and designed evolution will become anticipated and even expected. In addition, NBIC convergence represents entirely new challenges for scientists, policymakers, and business leaders who will have, for the first time, vast new and powerful tools to shape markets, societies, and lifestyles. The emergence of NBIC convergence will challenge us in new ways to balance risk and return, threat and opportunity, and social responsibility and competitive advantage as we step into the 21st century.

  13. Core Knowledge, Language, and Number

    ERIC Educational Resources Information Center

    Spelke, Elizabeth S.

    2017-01-01

    The natural numbers may be our simplest, most useful, and best-studied abstract concepts, but their origins are debated. I consider this debate in the context of the proposal, by Gallistel and Gelman, that natural number system is a product of cognitive evolution and the proposal, by Carey, that it is a product of human cultural history. I offer a…

  14. Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species

    PubMed Central

    Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien

    2017-01-01

    Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities. PMID:29112973

  15. Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species.

    PubMed

    Devaine, Marie; San-Galli, Aurore; Trapanese, Cinzia; Bardino, Giulia; Hano, Christelle; Saint Jalme, Michel; Bouret, Sebastien; Masi, Shelly; Daunizeau, Jean

    2017-11-01

    Theory of Mind (ToM), i.e. the ability to understand others' mental states, endows humans with highly adaptive social skills such as teaching or deceiving. Candidate evolutionary explanations have been proposed for the unique sophistication of human ToM among primates. For example, the Machiavellian intelligence hypothesis states that the increasing complexity of social networks may have induced a demand for sophisticated ToM. This type of scenario ignores neurocognitive constraints that may eventually be crucial limiting factors for ToM evolution. In contradistinction, the cognitive scaffolding hypothesis asserts that a species' opportunity to develop sophisticated ToM is mostly determined by its general cognitive capacity (on which ToM is scaffolded). However, the actual relationships between ToM sophistication and either brain volume (a proxy for general cognitive capacity) or social group size (a proxy for social network complexity) are unclear. Here, we let 39 individuals sampled from seven non-human primate species (lemurs, macaques, mangabeys, orangutans, gorillas and chimpanzees) engage in simple dyadic games against artificial ToM players (via a familiar human caregiver). Using computational analyses of primates' choice sequences, we found that the probability of exhibiting a ToM-compatible learning style is mainly driven by species' brain volume (rather than by social group size). Moreover, primates' social cognitive sophistication culminates in a precursor form of ToM, which still falls short of human fully-developed ToM abilities.

  16. The Importance of the Study of Cognitive Performance Enhancement for U.S. National Security.

    PubMed

    Malish, Richard G

    2017-08-01

    The American military is embarking on the 'Third Offset'-a strategy designed to produce seismic shifts in the future of warfare. Central to the approach is the conjoining of humans, technology, and machines to deliver a decisive advantage on the battlefield. Because technology will spread rapidly and globally, tactical overmatch will occur when American operators possess a competitive edge in cognition. Investigation of cognitive enhancing therapeutics is not widely articulated as an adjunct to the Third Offset, yet failure to study promising agents could represent a strategic vulnerability. Because of its legacy of research into therapeutic agents to enhance human-machine interplay, the aerospace medical community represents a front-running candidate to perform this work. Notably, there are strong signals emanating from gambling, academic, and video-gaming enterprises that already-developed stimulants and other agents provide cognitive benefits. These agents should be studied not only for reasons of national security, but also because cognitive enhancement may be a necessary step in the evolution of humankind. To illustrate these points, this article will assert that: 1) the need to preserve and enhance physical and cognitive health will become more and more important over the next century; 2) aeromedical specialists are in a position to take the lead in the endeavor to enhance cognition; 3) signals of enhancement of the type useful to both military and medical efforts exist aplenty in today's society; and 4) the aeromedical community should approach human enhancement research deliberately but carefully.Malish RG. The importance of the study of cognitive performance enhancement for U.S. national security. Aerosp Med Hum Perform. 2017; 88(8):773-778.

  17. The cinema-cognition dialogue: a match made in brain.

    PubMed

    Dudai, Yadin

    2012-01-01

    That human evolution amalgamates biological and cultural change is taken as a given, and that the interaction of brain, body, and culture is more reciprocal then initially thought becomes apparent as the science of evolution evolves (Jablonka and Lamb, 2005). The contribution of science and technology to this evolutionary process is probably the first to come to mind. The biology of Homo sapiens permits and promotes the development of technologies and artefacts that enable us to sense and reach physical niches previously inaccessible. This extends our biological capabilities, but is also expected to create selective pressures on these capabilities. The jury is yet out on the pace at which critical biological changes take place in evolution. There is no question, however, that the kinetics of technological and cultural change is much faster, rendering the latter particularly important in the biography of the individual and the species alike. The capacity of art to enrich human capabilities is recurrently discussed by philosophers and critics (e.g., Arsitotle/Poetics, Richards, 1925; Smith and Parks, 1951; Gibbs, 1994). Yet less attention is commonly allotted to the role of the arts in the aforementioned ongoing evolutional tango. My position is that the art of cinema is particularly suited to explore the intriguing dialogue between art and the brain. Further, in the following set of brief notes, intended mainly to trigger further thinking on the subject, I posit that cinema provides an unparalleled and highly rewarding experimentation space for the mind of the individual consumer of that art. In parallel, it also provides a useful and promising device for investigating brain and cognition.

  18. The cinema-cognition dialogue: a match made in brain

    PubMed Central

    Dudai, Yadin

    2012-01-01

    That human evolution amalgamates biological and cultural change is taken as a given, and that the interaction of brain, body, and culture is more reciprocal then initially thought becomes apparent as the science of evolution evolves (Jablonka and Lamb, 2005). The contribution of science and technology to this evolutionary process is probably the first to come to mind. The biology of Homo sapiens permits and promotes the development of technologies and artefacts that enable us to sense and reach physical niches previously inaccessible. This extends our biological capabilities, but is also expected to create selective pressures on these capabilities. The jury is yet out on the pace at which critical biological changes take place in evolution. There is no question, however, that the kinetics of technological and cultural change is much faster, rendering the latter particularly important in the biography of the individual and the species alike. The capacity of art to enrich human capabilities is recurrently discussed by philosophers and critics (e.g., Arsitotle/Poetics, Richards, 1925; Smith and Parks, 1951; Gibbs, 1994). Yet less attention is commonly allotted to the role of the arts in the aforementioned ongoing evolutional tango. My position is that the art of cinema is particularly suited to explore the intriguing dialogue between art and the brain. Further, in the following set of brief notes, intended mainly to trigger further thinking on the subject, I posit that cinema provides an unparalleled and highly rewarding experimentation space for the mind of the individual consumer of that art. In parallel, it also provides a useful and promising device for investigating brain and cognition. PMID:22969715

  19. Prototypes, Exemplars, and the Natural History of Categorization

    PubMed Central

    Smith, J. David

    2013-01-01

    The article explores—from a utility/adaptation perspective—the role of prototype and exemplar processes in categorization. The author surveys important category tasks within the categorization literature from the perspective of the optimality of applying prototype and exemplar processes. Formal simulations reveal that organisms will often (not always!) receive more useful signals about category belongingness if they average their exemplar experience into a prototype and use this as the comparative standard for categorization. This survey then provides the theoretical context for considering the evolution of cognitive systems for categorization. In the article’s final sections, the author reviews recent research on the performance of nonhuman primates and humans in the tasks analyzed in the article. Diverse species share operating principles, default commitments, and processing weaknesses in categorization. From these commonalities, it may be possible to infer some properties of the categorization ecology these species generally experienced during cognitive evolution. PMID:24005828

  20. The evolution of religious belief in humans: a brief review with a focus on cognition.

    PubMed

    Singh, Dhairyya; Chatterjee, Garga

    2017-07-01

    Religion has been a widely present feature of human beings. This review explores developments in the evolutionary cognitive psychology of religion and provides critical evaluation of the different theoretical positions. Generally scholars have either believed religion is adaptive, a by-product of adaptive psychological features or maladaptive and varying amounts of empirical evidence supports each position. The adaptive position has generated the costly signalling theory of religious ritual and the group selection theory. The by-product position has identified psychologicalmachinery that has been co-opted by religion. The maladaptive position has generated the meme theory of religion. The review concludes that the by-product camp enjoys the most support in the scientific community and suggests ways forward for an evolutionarily significant study of religion.

  1. The Driving Forces of Cultural Complexity : Neanderthals, Modern Humans, and the Question of Population Size.

    PubMed

    Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi

    2017-03-01

    The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.

  2. Further constraints on the Chauvet cave artwork elaboration

    PubMed Central

    Sadier, Benjamin; Delannoy, Jean-Jacques; Benedetti, Lucilla; Bourlès, Didier L.; Jaillet, Stéphane; Geneste, Jean-Michel; Lebatard, Anne-Elisabeth; Arnold, Maurice

    2012-01-01

    Since its discovery, the Chauvet cave elaborate artwork called into question our understanding of Palaeolithic art evolution and challenged traditional chronological benchmarks [Valladas H et al. (2001) Nature 413:419–479]. Chronological approaches revealing human presences in the cavity during the Aurignacian and the Gravettian are indeed still debated on the basis of stylistic criteria [Pettitt P (2008) J Hum Evol 55:908–917]. The presented 36Cl Cosmic Ray Exposure ages demonstrate that the cliff overhanging the Chauvet cave has collapsed several times since 29 ka until the sealing of the cavity entrance prohibited access to the cave at least 21 ka ago. Remarkably agreeing with the radiocarbon dates of the human and animal occupancy, this study confirms that the Chauvet cave paintings are the oldest and the most elaborate ever discovered, challenging our current knowledge of human cognitive evolution. PMID:22566649

  3. Developmental Plasticity and Language: A Comparative Perspective.

    PubMed

    Griebel, Ulrike; Pepperberg, Irene M; Oller, D Kimbrough

    2016-04-01

    The growing field of evo-devo is increasingly demonstrating the complexity of steps involved in genetic, intracellular regulatory, and extracellular environmental control of the development of phenotypes. A key result of such work is an account for the remarkable plasticity of organismal form in many species based on relatively minor changes in regulation of highly conserved genes and genetic processes. Accounting for behavioral plasticity is of similar potential interest but has received far less attention. Of particular interest is plasticity in communication systems, where human language represents an ultimate target for research. The present paper considers plasticity of language capabilities in a comparative framework, focusing attention on examples of a remarkable fact: Whereas there exist design features of mature human language that have never been observed to occur in non-humans in the wild, many of these features can be developed to notable extents when non-humans are enculturated through human training (especially with intensive social interaction). These examples of enculturated developmental plasticity across extremely diverse taxa suggest, consistent with the evo-devo theme of highly conserved processes in evolution, that human language is founded in part on cognitive capabilities that are indeed ancient and that even modern humans show self-organized emergence of many language capabilities in the context of rich enculturation, built on the special social/ecological history of the hominin line. Human culture can thus be seen as a regulatory system encouraging language development in the context of a cognitive background with many highly conserved features. Copyright © 2016 Cognitive Science Society, Inc.

  4. Evolutionary game dynamics of controlled and automatic decision-making

    NASA Astrophysics Data System (ADS)

    Toupo, Danielle F. P.; Strogatz, Steven H.; Cohen, Jonathan D.; Rand, David G.

    2015-07-01

    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.

  5. Interaction between lexical and grammatical language systems in the brain

    NASA Astrophysics Data System (ADS)

    Ardila, Alfredo

    2012-06-01

    This review concentrates on two different language dimensions: lexical/semantic and grammatical. This distinction between a lexical/semantic system and a grammatical system is well known in linguistics, but in cognitive neurosciences it has been obscured by the assumption that there are several forms of language disturbances associated with focal brain damage and hence language includes a diversity of functions (phoneme discrimination, lexical memory, grammar, repetition, language initiation ability, etc.), each one associated with the activity of a specific brain area. The clinical observation of patients with cerebral pathology shows that there are indeed only two different forms of language disturbances (disturbances in the lexical/semantic system and disturbances in the grammatical system); these two language dimensions are supported by different brain areas (temporal and frontal) in the left hemisphere. Furthermore, these two aspects of the language are developed at different ages during child's language acquisition, and they probably appeared at different historical moments during human evolution. Mechanisms of learning are different for both language systems: whereas the lexical/semantic knowledge is based in a declarative memory, grammatical knowledge corresponds to a procedural type of memory. Recognizing these two language dimensions can be crucial in understanding language evolution and human cognition.

  6. The role of play objects and object play in human cognitive evolution and innovation.

    PubMed

    Riede, Felix; Johannsen, Niels N; Högberg, Anders; Nowell, April; Lombard, Marlize

    2018-01-01

    In this contribution, we address a major puzzle in the evolution of human material culture: If maturing individuals just learn their parental generation's material culture, then what is the origin of key innovations as documented in the archeological record? We approach this question by coupling a life-history model of the costs and benefits of experimentation with a niche-construction perspective. Niche-construction theory suggests that the behavior of organisms and their modification of the world around them have important evolutionary ramifications by altering developmental settings and selection pressures. Part of Homo sapiens' niche is the active provisioning of children with play objects - sometimes functional miniatures of adult tools - and the encouragement of object play, such as playful knapping with stones. Our model suggests that salient material culture innovation may occur or be primed in a late childhood or adolescence sweet spot when cognitive and physical abilities are sufficiently mature but before the full onset of the concerns and costs associated with reproduction. We evaluate the model against a series of archeological cases and make suggestions for future research. © 2018 The Authors Evolutionary Anthropology Published by Wiley Periodicals, Inc.

  7. Evolutionary game dynamics of controlled and automatic decision-making.

    PubMed

    Toupo, Danielle F P; Strogatz, Steven H; Cohen, Jonathan D; Rand, David G

    2015-07-01

    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.

  8. Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights.

    PubMed

    Kolodny, Oren; Feldman, Marcus W; Creanza, Nicole

    2018-04-05

    Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  9. The evolution of stories: from mimesis to language, from fact to fiction.

    PubMed

    Boyd, Brian

    2018-01-01

    Why a species as successful as Homo sapiens should spend so much time in fiction, in telling one another stories that neither side believes, at first seems an evolutionary riddle. Because of the advantages of tracking and recombining true information, capacities for event comprehension, memory, imagination, and communication evolved in a range of animal species-yet even chimpanzees cannot communicate beyond the here and now. By Homo erectus, our forebears had reached an increasing dependence on one another, not least in sharing information in mimetic, prelinguistic ways. As Daniel Dor shows, the pressure to pool ever more information, even beyond currently shared experience, led to the invention of language. Language in turn swiftly unlocked efficient forms of narrative, allowing early humans to learn much more about their kind than they could experience at first hand, so that they could cooperate and compete better through understanding one another more fully. This changed the payoff of sociality for individuals and groups. But true narrative was still limited to what had already happened. Once the strong existing predisposition to play combined with existing capacities for event comprehension, memory, imagination, language, and narrative, we could begin to invent fiction, and to explore the full range of human possibilities in concentrated, engaging, memorable forms. First language, then narrative, then fiction, created niches that altered selection pressures, and made us ever more deeply dependent on knowing more about our kind and our risks and opportunities than we could discover through direct experience. WIREs Cogn Sci 2018, 9:e1444. doi: 10.1002/wcs.1444 This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Linguistics > Evolution of Language Neuroscience > Cognition. © 2017 The Author. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  10. Cultural Evolutionary Perspectives on Creativity and Human Innovation.

    PubMed

    Fogarty, Laurel; Creanza, Nicole; Feldman, Marcus W

    2015-12-01

    Cultural traits originate through creative or innovative processes, which might be crucial to understanding how culture evolves and accumulates. However, because of its complexity and apparent subjectivity, creativity has remained largely unexplored as the dynamic underpinning of cultural evolution. Here, we explore the approach to innovation commonly taken in theoretical studies of cultural evolution and discuss its limitations. Drawing insights from cognitive science, psychology, archeology, and even animal behavior, it is possible to generate a formal description of creativity and to incorporate a dynamic theory of creativity into models of cultural evolution. We discuss the implications of such models for our understanding of the archaeological record and the history of hominid culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication

    PubMed Central

    Fischer, J; Hammerschmidt, K

    2011-01-01

    Comparative analyses used to reconstruct the evolution of traits associated with the human language faculty, including its socio-cognitive underpinnings, highlight the importance of evolutionary constraints limiting vocal learning in non-human primates. After a brief overview of this field of research and the neural basis of primate vocalizations, we review studies that have addressed the genetic basis of usage and structure of ultrasonic communication in mice, with a focus on the gene FOXP2 involved in specific language impairments and neuroligin genes (NL-3 and NL-4) involved in autism spectrum disorders. Knockout of FoxP2 leads to reduced vocal behavior and eventually premature death. Introducing the human variant of FoxP2 protein into mice, in contrast, results in shifts in frequency and modulation of pup ultrasonic vocalizations. Knockout of NL-3 and NL-4 in mice diminishes social behavior and vocalizations. Although such studies may provide insights into the molecular and neural basis of social and communicative behavior, the structure of mouse vocalizations is largely innate, limiting the suitability of the mouse model to study human speech, a learned mode of production. Although knockout or replacement of single genes has perceptible effects on behavior, these genes are part of larger networks whose functions remain poorly understood. In humans, for instance, deficiencies in NL-4 can lead to a broad spectrum of disorders, suggesting that further factors (experiential and/or genetic) contribute to the variation in clinical symptoms. The precise nature as well as the interaction of these factors is yet to be determined. PMID:20579107

  12. Nonlinear dynamics of emotion-cognition interaction: when emotion does not destroy cognition?

    PubMed

    Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K; Rabinovich, Mikhail I

    2011-02-01

    Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.

  13. [Influence of depression on the initial diagnosis and the evolution of cognitive impairment].

    PubMed

    Cenalmor-Aparicio, C; Bravo-Quelle, N; Miranda-Acuna, J; Luque-Buzo, E; Herrera-Tejedor, J; Olazaran-Rodriguez, J

    2017-07-16

    Depression and cognitive impairment maintain a close and complex relationship, which could be modified by pharmacological treatment. To analyze the influence of depression and antidepressive medication on the initial diagnosis and the evolution of cognitive impairment. All the patients derived to a Neurology clinic due to complaints or suspicion of cognitive impairment, during a period of nine years, were studied. The influence of demographic and depression-related variables on initial cognitive diagnosis, cognitive-functional situation and 1-year evolution were analyzed. A total of 582 patients were included (mean age: 77.6 ± 7.0; 64.9% women). Frequency of current and past depression were, respectively, 25.4% and 17.2%. In addition, 20.6% of the patients were taking antidepressant medication and 31.2% were on anxiolytic/hypnotic treatment. One-year follow-up visit was available in 320 (59.8%) of patients. In the adjusted analysis, anxiolytic/hypnotic treatment was associated with a worse cognitive-functional situation in the initial visit, while past depression and presence of dystimia were associated with a favorable evolution (p < 0.05). Past or current depression are not associated with bad prognosis in patients derived to neurologist due to possible cognitive impairment.

  14. Modeling Co-evolution of Speech and Biology.

    PubMed

    de Boer, Bart

    2016-04-01

    Two computer simulations are investigated that model interaction of cultural evolution of language and biological evolution of adaptations to language. Both are agent-based models in which a population of agents imitates each other using realistic vowels. The agents evolve under selective pressure for good imitation. In one model, the evolution of the vocal tract is modeled; in the other, a cognitive mechanism for perceiving speech accurately is modeled. In both cases, biological adaptations to using and learning speech evolve, even though the system of speech sounds itself changes at a more rapid time scale than biological evolution. However, the fact that the available acoustic space is used maximally (a self-organized result of cultural evolution) is constant, and therefore biological evolution does have a stable target. This work shows that when cultural and biological traits are continuous, their co-evolution may lead to cognitive adaptations that are strong enough to detect empirically. Copyright © 2016 Cognitive Science Society, Inc.

  15. Embodied cognitive evolution and the cerebellum.

    PubMed

    Barton, Robert A

    2012-08-05

    Much attention has focused on the dramatic expansion of the forebrain, particularly the neocortex, as the neural substrate of cognitive evolution. However, though relatively small, the cerebellum contains about four times more neurons than the neocortex. I show that commonly used comparative measures such as neocortex ratio underestimate the contribution of the cerebellum to brain evolution. Once differences in the scaling of connectivity in neocortex and cerebellum are accounted for, a marked and general pattern of correlated evolution of the two structures is apparent. One deviation from this general pattern is a relative expansion of the cerebellum in apes and other extractive foragers. The confluence of these comparative patterns, studies of ape foraging skills and social learning, and recent evidence on the cognitive neuroscience of the cerebellum, suggest an important role for the cerebellum in the evolution of the capacity for planning, execution and understanding of complex behavioural sequences--including tool use and language. There is no clear separation between sensory-motor and cognitive specializations underpinning such skills, undermining the notion of executive control as a distinct process. Instead, I argue that cognitive evolution is most effectively understood as the elaboration of specialized systems for embodied adaptive control.

  16. Opt-outs and upgrades. Ethics and law in the United Kingdom.

    PubMed

    Stammers, Trevor; James, Matt

    2014-07-01

    We report on two areas in which UK law and ethics seem out of step with each other. 2013 saw the passing of the Human Transplantation (Wales) Bill, which will introduce an opt-out system of organ donation in Wales from 2015. In the first section, we discuss the convoluted evolution of the Bill and some potential problems that we consider may prevent it from achieving its intended goal of increasing the number of organs transplanted. The prospect of being able to enhance human cognition through cognitive-enhancing drugs ("smart drugs") also presents a nexus of questions associated with future ambitions, hopes, and concerns as a society. How these drugs might affect the future of work and employment is beginning to generate wide public engagement in the UK and forms the focus of the second section.

  17. Evidence of Levy walk foraging patterns in human hunter-gatherers.

    PubMed

    Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman

    2014-01-14

    When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.

  18. Life history, cognition and the evolution of complex foraging niches.

    PubMed

    Schuppli, Caroline; Graber, Sereina M; Isler, Karin; van Schaik, Carel P

    2016-03-01

    Animal species that live in complex foraging niches have, in general, improved access to energy-rich and seasonally stable food sources. Because human food procurement is uniquely complex, we ask here which conditions may have allowed species to evolve into such complex foraging niches, and also how niche complexity is related to relative brain size. To do so, we divided niche complexity into a knowledge-learning and a motor-learning dimension. Using a sample of 78 primate and 65 carnivoran species, we found that two life-history features are consistently correlated with complex niches: slow, conservative development or provisioning of offspring over extended periods of time. Both act to buffer low energy yields during periods of learning, and may thus act as limiting factors for the evolution of complex niches. Our results further showed that the knowledge and motor dimensions of niche complexity were correlated with pace of development in primates only, and with the length of provisioning in only carnivorans. Accordingly, in primates, but not carnivorans, living in a complex foraging niche requires enhanced cognitive abilities, i.e., a large brain. The patterns in these two groups of mammals show that selection favors evolution into complex niches (in either the knowledge or motor dimension) in species that either develop more slowly or provision their young for an extended period of time. These findings help to explain how humans constructed by far the most complex niche: our ancestors managed to combine slow development (as in other primates) with systematic provisioning of immatures and even adults (as in carnivorans). This study also provides strong support for the importance of ecological factors in brain size evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. External Measures of Cognition

    PubMed Central

    Cairό, Osvaldo

    2011-01-01

    The human brain is undoubtedly the most impressive, complex, and intricate organ that has evolved over time. It is also probably the least understood, and for that reason, the one that is currently attracting the most attention. In fact, the number of comparative analyses that focus on the evolution of brain size in Homo sapiens and other species has increased dramatically in recent years. In neuroscience, no other issue has generated so much interest and been the topic of so many heated debates as the difference in brain size between socially defined population groups, both its connotations and implications. For over a century, external measures of cognition have been related to intelligence. However, it is still unclear whether these measures actually correspond to cognitive abilities. In summary, this paper must be reviewed with this premise in mind. PMID:22065955

  20. Chimpanzee Food Preferences, Associative Learning, and the Origins of Cooking

    PubMed Central

    Beran, Michael J.; Hopper, Lydia M.; de Waal, Frans B.M.; Sayers, Ken; Brosnan, Sarah F.

    2015-01-01

    A recent report suggested that chimpanzees demonstrate the cognitive capacities necessary to understand cooking (Warneken & Rosati, 2015). We offer alternate explanations and mechanisms that could account for the behavioral responses of those chimpanzees without invoking the understanding of cooking as a process. We discuss broader issues surrounding the use of chimpanzees in modeling hominid behavior and understanding aspects of human evolution. PMID:26659967

  1. Importance of music for facing the experience of pain. Comment on “Facing the experience of pain: A neuropsychological perspective” by Fabbro and Crescentini

    NASA Astrophysics Data System (ADS)

    Masataka, Nobuo

    2014-09-01

    Attempts to cope with the experience of pain have been numerous and have had a long history. Among others, mindfulness meditation is one of the oldest of them. It first emerged in ancient India and since then has been practiced up to the present, possibly as one of the most prevalent methods. There is a general consensus that the practice of such meditation can lead to a reduction of perceived pain most effectively, as argued by Fabbro and Crescentini [1]. As a first step of the attempt to practice such meditation, one is required not to defend oneself when faced with a painful experience, or to avoid or withdraw from the experience. However, this is not an easy task for anyone because humans, as Homo loquense[3], are born with an almost predispositional tendency to discard or to devalue conflicting knowledge because simultaneously holding conflicting cognitions makes them feel discomfort. Ancient Greeks already knew that, and in Aesop's fable, when a fox sees high-hanging grapes, his desire to eat grapes and inability to reach them are in conflict. The fox then overcomes this conflict by deciding that the grapes are sour and not worth eating. This conflict is the phenomenon referred to as cognitive dissonance in the field of psychology, and is closely connected to the entirety of human evolution. That is, the emergence of language must have led to the proliferation of cognitive dissonances, and if they had not been overcome, language and knowledge would have been discarded and further human evolution would have been stopped in its tracks. Thus, difficulty of facing pain is a "burden" imposed upon humans, who acquired language as a way to construct divergent and highly sophisticated cultures for their living.

  2. Turn-taking in Human Communication--Origins and Implications for Language Processing.

    PubMed

    Levinson, Stephen C

    2016-01-01

    Most language usage is interactive, involving rapid turn-taking. The turn-taking system has a number of striking properties: turns are short and responses are remarkably rapid, but turns are of varying length and often of very complex construction such that the underlying cognitive processing is highly compressed. Although neglected in cognitive science, the system has deep implications for language processing and acquisition that are only now becoming clear. Appearing earlier in ontogeny than linguistic competence, it is also found across all the major primate clades. This suggests a possible phylogenetic continuity, which may provide key insights into language evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A word in the hand: action, gesture and mental representation in humans and non-human primates

    PubMed Central

    Cartmill, Erica A.; Beilock, Sian; Goldin-Meadow, Susan

    2012-01-01

    The movements we make with our hands both reflect our mental processes and help to shape them. Our actions and gestures can affect our mental representations of actions and objects. In this paper, we explore the relationship between action, gesture and thought in both humans and non-human primates and discuss its role in the evolution of language. Human gesture (specifically representational gesture) may provide a unique link between action and mental representation. It is kinaesthetically close to action and is, at the same time, symbolic. Non-human primates use gesture frequently to communicate, and do so flexibly. However, their gestures mainly resemble incomplete actions and lack the representational elements that characterize much of human gesture. Differences in the mirror neuron system provide a potential explanation for non-human primates' lack of representational gestures; the monkey mirror system does not respond to representational gestures, while the human system does. In humans, gesture grounds mental representation in action, but there is no evidence for this link in other primates. We argue that gesture played an important role in the transition to symbolic thought and language in human evolution, following a cognitive leap that allowed gesture to incorporate representational elements. PMID:22106432

  4. Evolution of brain and culture: the neurological and cognitive journey from Australopithecus to Albert Einstein.

    PubMed

    Falk, Dean

    2016-06-20

    Fossil and comparative primatological evidence suggest that alterations in the development of prehistoric hominin infants kindled three consecutive evolutionary-developmental (evo-devo) trends that, ultimately, paved the way for the evolution of the human brain and cognition. In the earliest trend, infants' development of posture and locomotion became delayed because of anatomical changes that accompanied the prolonged evolution of bipedalism. Because modern humans have inherited these changes, our babies are much slower than other primates to reach developmental milestones such as standing, crawling, and walking. The delay in ancestral babies' physical development eventually precipitated an evolutionary reversal in which they became increasing unable to cling independently to their mothers. For the first time in prehistory, babies were, thus, periodically deprived of direct physical contact with their mothers. This prompted the emergence of a second evo-devo trend in which infants sought contact comfort from caregivers using evolved signals, including new ways of crying that are conserved in modern babies. Such signaling stimulated intense reciprocal interactions between prehistoric mothers and infants that seeded the eventual emergence of motherese and, subsequently, protolanguage. The third trend was for an extreme acceleration in brain growth that began prior to the last trimester of gestation and continued through infants' first postnatal year (early "brain spurt"). Conservation of this trend in modern babies explains why human brains reach adult sizes that are over three times those of chimpanzees. The fossil record of hominin cranial capacities together with comparative neuroanatomical data suggest that, around 3 million years ago, early brain spurts began to facilitate an evolutionary trajectory for increasingly large adult brains in association with neurological reorganization. The prehistoric increase in brain size eventually caused parturition to become exceedingly difficult, and this difficulty, known as the "obstetrical dilemma", is likely to constrain the future evolution of brain size and, thus, privilege ongoing evolution in neurological reorganization. In modern babies, the brain spurt is accompanied by formation and tuning (pruning) of neurological connections, and development of dynamic higher-order networks that facilitate acquisition of grammatical language and, later in development, other advanced computational abilities such as musical or mathematical perception and performance. The cumulative evidence suggests that the emergence and refinement of grammatical language was a prime mover of hominin brain evolution.

  5. Comparative approaches to studying strategy: towards an evolutionary account of primate decision making.

    PubMed

    Brosnan, Sarah F; Beran, Michael J; Parrish, Audrey E; Price, Sara A; Wilson, Bart J

    2013-07-18

    How do primates, humans included, deal with novel problems that arise in interactions with other group members? Despite much research regarding how animals and humans solve social problems, few studies have utilized comparable procedures, outcomes, or measures across different species. Thus, it is difficult to piece together the evolution of decision making, including the roots from which human economic decision making emerged. Recently, a comparative body of decision making research has emerged, relying largely on the methodology of experimental economics in order to address these questions in a cross-species fashion. Experimental economics is an ideal method of inquiry for this approach. It is a well-developed method for distilling complex decision making involving multiple conspecifics whose decisions are contingent upon one another into a series of simple decision choices. This allows these decisions to be compared across species and contexts. In particular, our group has used this approach to investigate coordination in New World monkeys, Old World monkeys, and great apes (including humans), using identical methods. We find that in some cases there are remarkable continuities of outcome, as when some pairs in all species solved a coordination game, the Assurance game. On the other hand, we also find that these similarities in outcomes are likely driven by differences in underlying cognitive mechanisms. New World monkeys required exogenous information about their partners' choices in order to solve the task, indicating that they were using a matching strategy. Old World monkeys, on the other hand, solved the task without exogenous cues, leading to investigations into what mechanisms may be underpinning their responses (e.g., reward maximization, strategy formation, etc.). Great apes showed a strong experience effect, with cognitively enriched apes following what appears to be a strategy. Finally, humans were able to solve the task with or without exogenous cues. However, when given the chance to do so, they incorporated an additional mechanism unavailable to the other primates - language - to coordinate outcomes with their partner. We discuss how these results inform not only comparative psychology, but also evolutionary psychology, as they provide an understanding of the evolution of human economic behavior, and the evolution of decision making more broadly.

  6. The Effect of Using Evolution Textbook Based on ICT and Metacognitive on Cognitive Competence of Biology Students at State University of Padang

    NASA Astrophysics Data System (ADS)

    Helendra, H.; Fadilah, M.; Arsih, F.

    2018-04-01

    Implementation of evolution lectures at Biology Department Faculty of Mathematics and Natural Sciences State University of Padang has been considered not optimal. The reasons are the limited availability of textbooks and students' learning attitudes. Because currently the students are very familiar with the internet and even has become a necessity, it has developed textbooks of evolution based on ICT and metacognitive. Selection of ICT based is in order to optimize the utilization of multimedia, and this is very compatible with the development of learning technology. While metacognitive based is in order to train students' learning attitudes to be able to think analysis, creative and evaluative. The aim of this study is to determine the effect of the use of evolution textbooks based on ICT and metacognitive to the cognitive competence of students of Biology Department State University of Padang. The data of this research is students' cognitive competence obtained from the implementation of effectiveness test of evolution textbook in the form of student learning outcomes. The research instrument is a learning result test designed to determine students’ cognitive competence. The subject of the study is a group of students in evolution course consisting of 33 students. Lectures are conducted through face-to-face and online lectures on Edmodo’s platform. The result of data analysis shows that there is an increase of cognitive competence of biology students after learning using ICT and metacognitive based evolution textbook, where average achievement is 77.72 with Percentage of achievement of criteria mastery is 81.25%. Therefore, it can be concluded that the evolution textbook based on ICT and metacognitive is effective in improving cognitive competence of students of Biology Department, Universitas Negeri Padang.

  7. Searching for ancient balanced polymorphisms shared between Neanderthals and Modern Humans

    PubMed Central

    Viscardi, Lucas Henriques; Paixão-Côrtes, Vanessa Rodrigues; Comas, David; Salzano, Francisco Mauro; Rovaris, Diego; Bau, Claiton Dotto; Amorim, Carlos Eduardo G.; Bortolini, Maria Cátira

    2018-01-01

    Abstract Hominin evolution is characterized by adaptive solutions often rooted in behavioral and cognitive changes. If balancing selection had an important and long-lasting impact on the evolution of these traits, it can be hypothesized that genes associated with them should carry an excess of shared polymorphisms (trans- SNPs) across recent Homo species. In this study, we investigate the role of balancing selection in human evolution using available exomes from modern (Homo sapiens) and archaic humans (H. neanderthalensis and Denisovan) for an excess of trans-SNP in two gene sets: one associated with the immune system (IMMS) and another one with behavioral system (BEHS). We identified a significant excess of trans-SNPs in IMMS (N=547), of which six of these located within genes previously associated with schizophrenia. No excess of trans-SNPs was found in BEHS, but five genes in this system harbor potential signals for balancing selection and are associated with psychiatric or neurodevelopmental disorders. Our approach evidenced recent Homo trans-SNPs that have been previously implicated in psychiatric diseases such as schizophrenia, suggesting that a genetic repertoire common to the immune and behavioral systems could have been maintained by balancing selection starting before the split between archaic and modern humans. PMID:29658973

  8. Common Visual Preference for Curved Contours in Humans and Great Apes.

    PubMed

    Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos

    2015-01-01

    Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.

  9. An arms race between producers and scroungers can drive the evolution of social cognition

    PubMed Central

    2014-01-01

    The “social intelligence hypothesis” states that the need to cope with complexities of social life has driven the evolution of advanced cognitive abilities. It is usually invoked in the context of challenges arising from complex intragroup structures, hierarchies, and alliances. However, a fundamental aspect of group living remains largely unexplored as a driving force in cognitive evolution: the competition between individuals searching for resources (producers) and conspecifics that parasitize their findings (scroungers). In populations of social foragers, abilities that enable scroungers to steal by outsmarting producers, and those allowing producers to prevent theft by outsmarting scroungers, are likely to be beneficial and may fuel a cognitive arms race. Using analytical theory and agent-based simulations, we present a general model for such a race that is driven by the producer–scrounger game and show that the race’s plausibility is dramatically affected by the nature of the evolving abilities. If scrounging and scrounging avoidance rely on separate, strategy-specific cognitive abilities, arms races are short-lived and have a limited effect on cognition. However, general cognitive abilities that facilitate both scrounging and scrounging avoidance undergo stable, long-lasting arms races. Thus, ubiquitous foraging interactions may lead to the evolution of general cognitive abilities in social animals, without the requirement of complex intragroup structures. PMID:24822021

  10. General intelligence does not help us understand cognitive evolution.

    PubMed

    Shuker, David M; Barrett, Louise; Dickins, Thomas E; Scott-Phillips, Thom C; Barton, Robert A

    2017-01-01

    Burkart et al. conflate the domain-specificity of cognitive processes with the statistical pattern of variance in behavioural measures that partly reflect those processes. General intelligence is a statistical abstraction, not a cognitive trait, and we argue that the former does not warrant inferences about the nature or evolution of the latter.

  11. Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights

    PubMed Central

    2018-01-01

    Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities—including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species—and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution. This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’. PMID:29440515

  12. Songs to syntax: the linguistics of birdsong.

    PubMed

    Berwick, Robert C; Okanoya, Kazuo; Beckers, Gabriel J L; Bolhuis, Johan J

    2011-03-01

    Unlike our primate cousins, many species of bird share with humans a capacity for vocal learning, a crucial factor in speech acquisition. There are striking behavioural, neural and genetic similarities between auditory-vocal learning in birds and human infants. Recently, the linguistic parallels between birdsong and spoken language have begun to be investigated. Although both birdsong and human language are hierarchically organized according to particular syntactic constraints, birdsong structure is best characterized as 'phonological syntax', resembling aspects of human sound structure. Crucially, birdsong lacks semantics and words. Formal language and linguistic analysis remains essential for the proper characterization of birdsong as a model system for human speech and language, and for the study of the brain and cognition evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A speed limit for evolution.

    PubMed

    Worden, R P

    1995-09-07

    An upper bound on the speed of evolution is derived. The bound concerns the amount of genetic information which is expressed in observable ways in various aspects of the phenotype. The genetic information expressed in some part of the phenotype of a species cannot increase faster than a given rate, determined by the selection pressure on that part. This rate is typically a small fraction of a bit per generation. Total expressed genetic information cannot increase faster than a species-specific rate--typically a few bits per generation. These bounds apply to all aspects of the phenotype, but are particularly relevant to cognition. As brains are highly complex, we expect large amounts of expressed genetic information in the brain--of the order of 100 kilobytes--yet evolutionary changes in brain genetic information are only a fraction of a bit per generation. This has important consequences for cognitive evolution. The limit implies that the human brain differs from the chimpanzee brain by at most 5 kilobytes of genetic design information. This is not enough to define a Language Acquisition Device, unless it depends heavily on pre-existing primate symbolic cognition. Subject to the evolutionary speed limit, in changing environments a simple, modular brain architecture is fitter than more complex ones. This encourages us to look for simplicity in brain design, rather than expecting the brain to be a patchwork of ad hoc adaptations. The limit implies that pure species selection is not an important mechanism of evolutionary change.

  14. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules.

    PubMed

    Balsters, J H; Cussans, E; Diedrichsen, J; Phillips, K A; Preuss, T M; Rilling, J K; Ramnani, N

    2010-02-01

    It has been suggested that interconnected brain areas evolve in tandem because evolutionary pressures act on complete functional systems rather than on individual brain areas. The cerebellar cortex has reciprocal connections with both the prefrontal cortex and motor cortex, forming independent loops with each. Specifically, in capuchin monkeys cerebellar cortical lobules Crus I and Crus II connect with prefrontal cortex, whereas the primary motor cortex connects with cerebellar lobules V, VI, VIIb, and VIIIa. Comparisons of extant primate species suggest that the prefrontal cortex has expanded more than cortical motor areas in human evolution. Given the enlargement of the prefrontal cortex relative to motor cortex in humans, our hypothesis would predict corresponding volumetric increases in the parts of the cerebellum connected to the prefrontal cortex, relative to cerebellar lobules connected to the motor cortex. We tested the hypothesis by comparing the volumes of cerebellar lobules in structural MRI scans in capuchins, chimpanzees and humans. The fractions of cerebellar volume occupied by Crus I and Crus II were significantly larger in humans compared to chimpanzees and capuchins. Our results therefore support the hypothesis that in the cortico-cerebellar system, functionally related structures evolve in concert with each other. The evolutionary expansion of these prefrontal-projecting cerebellar territories might contribute to the evolution of the higher cognitive functions of humans. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  15. Why language really is not a communication system: a cognitive view of language evolution

    PubMed Central

    Reboul, Anne C.

    2015-01-01

    While most evolutionary scenarios for language see it as a communication system with consequences on the language-ready brain, there are major difficulties for such a view. First, language has a core combination of features—semanticity, discrete infinity, and decoupling—that makes it unique among communication systems and that raise deep problems for the view that it evolved for communication. Second, extant models of communication systems—the code model of communication (Millikan, 2005) and the ostensive model of communication (Scott-Phillips, 2015) cannot account for language evolution. I propose an alternative view, according to which language first evolved as a cognitive tool, following Fodor’s (1975, 2008) Language of Thought Hypothesis, and was then exapted (externalized) for communication. On this view, a language-ready brain is a brain profoundly reorganized in terms of connectivity, allowing the human conceptual system to emerge, triggering the emergence of syntax. Language as used in communication inherited its core combination of features from the Language of Thought. PMID:26441802

  16. Cognitive Evolution by MMSE in Poststroke Patients

    ERIC Educational Resources Information Center

    da Costa, Fabricia Azevedo

    2010-01-01

    The aim of this study was to investigate the cognitive and clinical evolution of post-acute stroke patients and the evolution of each Mini-Mental State Examination (MMSE) item. A longitudinal study was conducted with 42 poststroke individuals in rehabilitation. The MMSE and the National Institutes of Health Stroke Scale were used to assess…

  17. Primate empathy: three factors and their combinations for empathy-related phenomena.

    PubMed

    Yamamoto, Shinya

    2017-05-01

    Empathy as a research topic is receiving increasing attention, although there seems some confusion on the definition of empathy across different fields. Frans de Waal (de Waal FBM. Putting the altruism back into altruism: the evolution of empathy. Annu Rev Psychol 2008, 59:279-300. doi:10.1146/annurev.psych.59.103006.093625) used empathy as an umbrella term and proposed a comprehensive model for the evolution of empathy with some of its basic elements in nonhuman animals. In de Waal's model, empathy consists of several layers distinguished by required cognitive levels; the perception-action mechanism plays the core role for connecting ourself and others. Then, human-like empathy such as perspective-taking develops in outer layers according to cognitive sophistication, leading to prosocial acts such as targeted helping. I agree that animals demonstrate many empathy-related phenomena; however, the species differences and the level of cognitive sophistication of the phenomena might be interpreted in another way than this simple linearly developing model. Our recent studies with chimpanzees showed that their perspective-taking ability does not necessarily lead to proactive helping behavior. Herein, as a springboard for further studies, I reorganize the empathy-related phenomena by proposing a combination model instead of the linear development model. This combination model is composed of three organizing factors: matching with others, understanding of others, and prosociality. With these three factors and their combinations, most empathy-related matters can be categorized and mapped to appropriate context; this may be a good first step to discuss the evolution of empathy in relation to the neural connections in human and nonhuman animal brains. I would like to propose further comparative studies, especially from the viewpoint of Homo-Pan (chimpanzee and bonobo) comparison. WIREs Cogn Sci 2017, 8:e1431. doi: 10.1002/wcs.1431 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  18. Animal rights, animal minds, and human mindreading.

    PubMed

    Mameli, M; Bortolotti, L

    2006-02-01

    Do non-human animals have rights? The answer to this question depends on whether animals have morally relevant mental properties. Mindreading is the human activity of ascribing mental states to other organisms. Current knowledge about the evolution and cognitive structure of mindreading indicates that human ascriptions of mental states to non-human animals are very inaccurate. The accuracy of human mindreading can be improved with the help of scientific studies of animal minds. However, the scientific studies do not by themselves solve the problem of how to map psychological similarities (and differences) between humans and animals onto a distinction between morally relevant and morally irrelevant mental properties. The current limitations of human mindreading-whether scientifically aided or not-have practical consequences for the rational justification of claims about which rights (if any) non-human animals should be accorded.

  19. A neuronal morphologic type unique to humans and great apes

    PubMed Central

    Nimchinsky, Esther A.; Gilissen, Emmanuel; Allman, John M.; Perl, Daniel P.; Erwin, Joseph M.; Hof, Patrick R.

    1999-01-01

    We report the existence and distribution of an unusual type of projection neuron, a large, spindle-shaped cell, in layer Vb of the anterior cingulate cortex of pongids and hominids. These spindle cells were not observed in any other primate species or any other mammalian taxa, and their volume was correlated with brain volume residuals, a measure of encephalization in higher primates. These observations are of particular interest when considering primate neocortical evolution, as they reveal possible adaptive changes and functional modifications over the last 15–20 million years in the anterior cingulate cortex, a region that plays a major role in the regulation of many aspects of autonomic function and of certain cognitive processes. That in humans these unique neurons have been shown previously to be severely affected in the degenerative process of Alzheimer’s disease suggests that some of the differential neuronal susceptibility that occurs in the human brain in the course of age-related dementing illnesses may have appeared only recently during primate evolution. PMID:10220455

  20. [Are language disorders in Alzheimer's disease simply aphasia?

    PubMed

    Hazif-Thomas, Cyril; Thomas, Philippe

    Alzheimer's disease is accompanied by gradual aphasia, becoming more severe when the cognitive disorders are more marked. However, the quality of care provided to the patient can modulate the evolution of these language difficulties. Aphasia is linked to a human communication deficiency and can be limited by taking into account the phatic function of language to keep the channels of communication open. Copyright © 2017. Published by Elsevier Masson SAS.

  1. The Way We Think: A Research Symposium on Conceptual Integration and the Nature and Origin of Cognitively Modern Human Beings (Odense, Denmark, August 19-23, 2002). Volumes I [and] II.

    ERIC Educational Resources Information Center

    Hougaard, Anders, Ed.; Lund, Steffen Nordahl, Ed.

    2002-01-01

    These 2 volumes include papers and abstracts of papers presented at the August 2002 "The Way We Think" conference in Denmark. Papers and abstracts of papers in the two volumes include: "Blending and Conceptual Disintegration" (Anders Hougaard); "Levels of Blending, Disintegration, and Language Evolution" (Carl Bache); "Conceptual Integration,…

  2. Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence.

    PubMed

    Melin, Amanda D; Young, Hilary C; Mosdossy, Krisztina N; Fedigan, Linda M

    2014-06-01

    The parallel evolution of increased sensorimotor intelligence in humans and capuchins has been linked to the cognitive and manual demands of seasonal extractive faunivory. This hypothesis is attractive on theoretical grounds, but it has eluded widespread acceptance due to lack of empirical data. For instance, the effects of seasonality on the extractive foraging behaviors of capuchins are largely unknown. Here we report foraging observations on four groups of wild capuchins (Cebus capucinus) inhabiting a seasonally dry tropical forest. We also measured intra-annual variation in temperature, rainfall, and food abundance. We found that the exploitation of embedded or mechanically protected invertebrates was concentrated during periods of fruit scarcity. Such a pattern suggests that embedded insects are best characterized as a fallback food for capuchins. We discuss the implications of seasonal extractive faunivory for the evolution of sensorimotor intelligence (SMI) in capuchins and hominins and suggest that the suite of features associated with SMI, including increased manual dexterity, tool use, and innovative problem solving are cognitive adaptations among frugivores that fall back seasonally on extractable foods. The selective pressures acting on SMI are predicted to be strongest among primates living in the most seasonal environments. This model is proffered to explain the differences in tool use between capuchin lineages, and SMI as an adaptation to extractive foraging is suggested to play an important role in hominin evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Auditory object perception: A neurobiological model and prospective review.

    PubMed

    Brefczynski-Lewis, Julie A; Lewis, James W

    2017-10-01

    Interaction with the world is a multisensory experience, but most of what is known about the neural correlates of perception comes from studying vision. Auditory inputs enter cortex with its own set of unique qualities, and leads to use in oral communication, speech, music, and the understanding of emotional and intentional states of others, all of which are central to the human experience. To better understand how the auditory system develops, recovers after injury, and how it may have transitioned in its functions over the course of hominin evolution, advances are needed in models of how the human brain is organized to process real-world natural sounds and "auditory objects". This review presents a simple fundamental neurobiological model of hearing perception at a category level that incorporates principles of bottom-up signal processing together with top-down constraints of grounded cognition theories of knowledge representation. Though mostly derived from human neuroimaging literature, this theoretical framework highlights rudimentary principles of real-world sound processing that may apply to most if not all mammalian species with hearing and acoustic communication abilities. The model encompasses three basic categories of sound-source: (1) action sounds (non-vocalizations) produced by 'living things', with human (conspecific) and non-human animal sources representing two subcategories; (2) action sounds produced by 'non-living things', including environmental sources and human-made machinery; and (3) vocalizations ('living things'), with human versus non-human animals as two subcategories therein. The model is presented in the context of cognitive architectures relating to multisensory, sensory-motor, and spoken language organizations. The models' predictive values are further discussed in the context of anthropological theories of oral communication evolution and the neurodevelopment of spoken language proto-networks in infants/toddlers. These phylogenetic and ontogenetic frameworks both entail cortical network maturations that are proposed to at least in part be organized around a number of universal acoustic-semantic signal attributes of natural sounds, which are addressed herein. Copyright © 2017. Published by Elsevier Ltd.

  4. The scope of culture in chimpanzees, humans and ancestral apes

    PubMed Central

    Whiten, Andrew

    2011-01-01

    More studies have focused on aspects of chimpanzee behaviour and cognition relevant to the evolution of culture than on any other species except our own. Accordingly, analysis of the features shared by chimpanzees and humans is here used to infer the scope of cultural phenomena in our last common ancestor, at the same time clarifying the nature of the special characteristics that advanced further in the hominin line. To do this, culture is broken down into three major aspects: the large scale, population-level patterning of traditions; social learning mechanisms; and the behavioural and cognitive contents of culture. Each of these is further dissected into subcomponents. Shared features, as well as differences, are identified in as many as a dozen of these, offering a case study for the comparative analysis of culture across animal taxa and a deeper understanding of the roots of our own cultural capacities. PMID:21357222

  5. Social cognitive theory of gender development and differentiation.

    PubMed

    Bussey, K; Bandura, A

    1999-10-01

    Human differentiation on the basis of gender is a fundamental phenomenon that affects virtually every aspect of people's daily lives. This article presents the social cognitive theory of gender role development and functioning. It specifies how gender conceptions are constructed from the complex mix of experiences and how they operate in concert with motivational and self-regulatory mechanisms to guide gender-linked conduct throughout the life course. The theory integrates psychological and sociostructural determinants within a unified conceptual structure. In this theoretical perspective, gender conceptions and roles are the product of a broad network of social influences operating interdependently in a variety of societal subsystems. Human evolution provides bodily structures and biological potentialities that permit a range of possibilities rather than dictate a fixed type of gender differentiation. People contribute to their self-development and bring about social changes that define and structure gender relationships through their agentic actions within the interrelated systems of influence.

  6. How the conceptions of Chinese rhetorical expressions are derived from the corresponding generic sentences

    NASA Astrophysics Data System (ADS)

    Zhao, Wenhui

    2018-04-01

    Generic sentences are simple and intuitive recognition and objective description to the external world in terms of "class". In the long evolutionary process of human being's language, the concepts represented by generic sentences has been internalized to be the defaulted knowledge in people's minds. In Chinese, some rhetorical expressions supported by corresponding generic sentences can be accepted by people. The derivation of these rhetorical expressions from the corresponding generic sentences is an important way for language to evolution, which reflects human's creative cognitive competence. From the perspective of conceptual blend theory and the theory of categorization of the cognitive linguistics, the goal of this paper is to analysis the process of the derivation of the rhetorical expressions from the corresponding generic sentences, which can facilitate the Chinese metaphorical information processing and the corpus construction of Chinese emotion metaphors.

  7. “Theory of Food” as a Neurocognitive Adaptation

    PubMed Central

    Allen, John S.

    2011-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and socio-cultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a “theory of food” (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. PMID:22262561

  8. "Theory of food" as a neurocognitive adaptation.

    PubMed

    Allen, John S

    2012-01-01

    Human adult cognition emerges over the course of development via the interaction of multiple critical neurocognitive networks. These networks evolved in response to various selection pressures, many of which were modified or intensified by the intellectual, technological, and sociocultural environments that arose in connection with the evolution of genus Homo. Networks related to language and theory of mind clearly play an important role in adult cognition. Given the critical importance of food to both basic survival and cultural interaction, a "theory of food" (analogous to theory of mind) may represent another complex network essential for normal cognition. I propose that theory of food evolved as an internal, cognitive representation of our diets in our minds. Like other complex cognitive abilities, it relies on complex and overlapping dedicated neural networks that develop in childhood under familial and cultural influences. Normative diets are analogous to first languages in that they are acquired without overt teaching; they are also difficult to change or modify once a critical period in development is passed. Theory of food suggests that cognitive activities related to food may be cognitive enhancers, which could have implications for maintaining healthy brain function in aging. Copyright © 2012 Wiley Periodicals, Inc.

  9. Imagination in human social cognition, autism, and psychotic-affective conditions.

    PubMed

    Crespi, Bernard; Leach, Emma; Dinsdale, Natalie; Mokkonen, Mikael; Hurd, Peter

    2016-05-01

    Complex human social cognition has evolved in concert with risks for psychiatric disorders. Recently, autism and psychotic-affective conditions (mainly schizophrenia, bipolar disorder, and depression) have been posited as psychological 'opposites' with regard to social-cognitive phenotypes. Imagination, considered as 'forming new ideas, mental images, or concepts', represents a central facet of human social evolution and cognition. Previous studies have documented reduced imagination in autism, and increased imagination in association with psychotic-affective conditions, yet these sets of findings have yet to be considered together, or evaluated in the context of the diametric model. We first review studies of the components, manifestations, and neural correlates of imagination in autism and psychotic-affective conditions. Next, we use data on dimensional autism in healthy populations to test the hypotheses that: (1) imagination represents the facet of autism that best accounts for its strongly male-biased sex ratio, and (2) higher genetic risk of schizophrenia is associated with higher imagination, in accordance with the predictions of the diametric model. The first hypothesis was supported by a systematic review and meta-analysis showing that Imagination exhibits the strongest male bias of all Autism Quotient (AQ) subscales, in non-clinical populations. The second hypothesis was supported, for males, by associations between schizophrenia genetic risk scores, derived from a set of single-nucleotide polymorphisms, and the AQ Imagination subscale. Considered together, these findings indicate that imagination, especially social imagination as embodied in the default mode human brain network, mediates risk and diametric dimensional phenotypes of autism and psychotic-affective conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Intuition, deliberation, and the evolution of cooperation

    PubMed Central

    Bear, Adam; Rand, David G.

    2016-01-01

    Humans often cooperate with strangers, despite the costs involved. A long tradition of theoretical modeling has sought ultimate evolutionary explanations for this seemingly altruistic behavior. More recently, an entirely separate body of experimental work has begun to investigate cooperation’s proximate cognitive underpinnings using a dual-process framework: Is deliberative self-control necessary to reign in selfish impulses, or does self-interested deliberation restrain an intuitive desire to cooperate? Integrating these ultimate and proximate approaches, we introduce dual-process cognition into a formal game-theoretic model of the evolution of cooperation. Agents play prisoner’s dilemma games, some of which are one-shot and others of which involve reciprocity. They can either respond by using a generalized intuition, which is not sensitive to whether the game is one-shot or reciprocal, or pay a (stochastically varying) cost to deliberate and tailor their strategy to the type of game they are facing. We find that, depending on the level of reciprocity and assortment, selection favors one of two strategies: intuitive defectors who never deliberate, or dual-process agents who intuitively cooperate but sometimes use deliberation to defect in one-shot games. Critically, selection never favors agents who use deliberation to override selfish impulses: Deliberation only serves to undermine cooperation with strangers. Thus, by introducing a formal theoretical framework for exploring cooperation through a dual-process lens, we provide a clear answer regarding the role of deliberation in cooperation based on evolutionary modeling, help to organize a growing body of sometimes-conflicting empirical results, and shed light on the nature of human cognition and social decision making. PMID:26755603

  11. Intuition, deliberation, and the evolution of cooperation.

    PubMed

    Bear, Adam; Rand, David G

    2016-01-26

    Humans often cooperate with strangers, despite the costs involved. A long tradition of theoretical modeling has sought ultimate evolutionary explanations for this seemingly altruistic behavior. More recently, an entirely separate body of experimental work has begun to investigate cooperation's proximate cognitive underpinnings using a dual-process framework: Is deliberative self-control necessary to reign in selfish impulses, or does self-interested deliberation restrain an intuitive desire to cooperate? Integrating these ultimate and proximate approaches, we introduce dual-process cognition into a formal game-theoretic model of the evolution of cooperation. Agents play prisoner's dilemma games, some of which are one-shot and others of which involve reciprocity. They can either respond by using a generalized intuition, which is not sensitive to whether the game is one-shot or reciprocal, or pay a (stochastically varying) cost to deliberate and tailor their strategy to the type of game they are facing. We find that, depending on the level of reciprocity and assortment, selection favors one of two strategies: intuitive defectors who never deliberate, or dual-process agents who intuitively cooperate but sometimes use deliberation to defect in one-shot games. Critically, selection never favors agents who use deliberation to override selfish impulses: Deliberation only serves to undermine cooperation with strangers. Thus, by introducing a formal theoretical framework for exploring cooperation through a dual-process lens, we provide a clear answer regarding the role of deliberation in cooperation based on evolutionary modeling, help to organize a growing body of sometimes-conflicting empirical results, and shed light on the nature of human cognition and social decision making.

  12. Can mathematics explain the evolution of human language?

    PubMed

    Witzany, Guenther

    2011-09-01

    Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural laws. Therefore mathematics is viewed not only as an appropriate tool to investigate human language and genetic code structures through computer science-based formal language theory but is itself a depiction of material reality. This confusion between language as a scientific tool to describe observations/experiences within cognitive constructed models and formal language as a direct depiction of material reality occurs not only in current approaches but was the central focus of the philosophy of science debate in the twentieth century, with rather unexpected results. This article recalls these results and their implications for more recent mathematical approaches that also attempt to explain the evolution of human language.

  13. Genetic Markers of Human Evolution Are Enriched in Schizophrenia.

    PubMed

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten; Wang, Yunpeng; Witoelar, Aree; Schork, Andrew J; Thompson, Wesley K; Zuber, Verena; Winsvold, Bendik S; Zwart, John-Anker; Collier, David A; Desikan, Rahul S; Melle, Ingrid; Werge, Thomas; Dale, Anders M; Djurovic, Srdjan; Andreassen, Ole A

    2016-08-15

    Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking, and cognitive abilities. We analyzed recent large genome-wide association studies of schizophrenia and a range of other human phenotypes (anthropometric measures, cardiovascular disease risk factors, immune-mediated diseases) using a statistical framework that draws on polygenic architecture and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone recent positive selection in humans (i.e., with a low NSS score). Variants in brain-related genes with a low NSS score confer significantly higher susceptibility than variants in other brain-related genes. The enrichment is strongest for schizophrenia, but we cannot rule out enrichment for other phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. Our results suggest that there is a polygenic overlap between schizophrenia and NSS score, a marker of human evolution, which is in line with the hypothesis that the persistence of schizophrenia is related to the evolutionary process of becoming human. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Executive decision-making in the domestic sheep.

    PubMed

    Morton, A Jennifer; Avanzo, Laura

    2011-01-31

    Two new large animal models of Huntington's disease (HD) have been developed recently, an old world monkey (macaque) and a sheep. Macaques, with their large brains and complex repertoire of behaviors are the 'gold-standard' laboratory animals for testing cognitive function, but there are many practical and ethical issues that must be resolved before HD macaques can be used for pre-clinical research. By contrast, despite their comparable brain size, sheep do not enjoy a reputation for intelligence, and are not used for pre-clinical cognitive testing. Given that cognitive decline is a major therapeutic target in HD, the feasibility of testing cognitive function in sheep must be explored if they are to be considered seriously as models of HD. Here we tested the ability of sheep to perform tests of executive function (discrimination learning, reversal learning and attentional set-shifting). Significantly, we found that not only could sheep perform discrimination learning and reversals, but they could also perform the intradimensional (ID) and extradimensional (ED) set-shifting tasks that are sensitive tests of cognitive dysfunction in humans. Their performance on the ID/ED shifts mirrored that seen in humans and macaques, with significantly more errors to reach criterion in the ED than the ID shift. Thus, sheep can perform 'executive' cognitive tasks that are an important part of the primate behavioral repertoire, but which have never been shown previously to exist in any other large animal. Sheep have great potential, not only for use as a large animal model of HD, but also for studying cognitive function and the evolution of complex behaviours in normal animals.

  15. Executive Decision-Making in the Domestic Sheep

    PubMed Central

    Morton, A. Jennifer; Avanzo, Laura

    2011-01-01

    Two new large animal models of Huntington's disease (HD) have been developed recently, an old world monkey (macaque) and a sheep. Macaques, with their large brains and complex repertoire of behaviors are the ‘gold-standard’ laboratory animals for testing cognitive function, but there are many practical and ethical issues that must be resolved before HD macaques can be used for pre-clinical research. By contrast, despite their comparable brain size, sheep do not enjoy a reputation for intelligence, and are not used for pre-clinical cognitive testing. Given that cognitive decline is a major therapeutic target in HD, the feasibility of testing cognitive function in sheep must be explored if they are to be considered seriously as models of HD. Here we tested the ability of sheep to perform tests of executive function (discrimination learning, reversal learning and attentional set-shifting). Significantly, we found that not only could sheep perform discrimination learning and reversals, but they could also perform the intradimensional (ID) and extradimensional (ED) set-shifting tasks that are sensitive tests of cognitive dysfunction in humans. Their performance on the ID/ED shifts mirrored that seen in humans and macaques, with significantly more errors to reach criterion in the ED than the ID shift. Thus, sheep can perform ‘executive’ cognitive tasks that are an important part of the primate behavioral repertoire, but which have never been shown previously to exist in any other large animal. Sheep have great potential, not only for use as a large animal model of HD, but also for studying cognitive function and the evolution of complex behaviours in normal animals. PMID:21305061

  16. Human adaptations for the visual assessment of strength and fighting ability from the body and face

    PubMed Central

    Sell, Aaron; Cosmides, Leda; Tooby, John; Sznycer, Daniel; von Rueden, Christopher; Gurven, Michael

    2008-01-01

    Selection in species with aggressive social interactions favours the evolution of cognitive mechanisms for assessing physical formidability (fighting ability or resource-holding potential). The ability to accurately assess formidability in conspecifics has been documented in a number of non-human species, but has not been demonstrated in humans. Here, we report tests supporting the hypothesis that the human cognitive architecture includes mechanisms that assess fighting ability—mechanisms that focus on correlates of upper-body strength. Across diverse samples of targets that included US college students, Bolivian horticulturalists and Andean pastoralists, subjects in the US were able to accurately estimate the physical strength of male targets from photos of their bodies and faces. Hierarchical linear modelling shows that subjects were extracting cues of strength that were largely independent of height, weight and age, and that corresponded most strongly to objective measures of upper-body strength—even when the face was all that was available for inspection. Estimates of women's strength were less accurate, but still significant. These studies are the first empirical demonstration that, for humans, judgements of strength and judgements of fighting ability not only track each other, but accurately track actual upper-body strength. PMID:18945661

  17. Iconicity and the Emergence of Combinatorial Structure in Language.

    PubMed

    Verhoef, Tessa; Kirby, Simon; de Boer, Bart

    2016-11-01

    In language, recombination of a discrete set of meaningless building blocks forms an unlimited set of possible utterances. How such combinatorial structure emerged in the evolution of human language is increasingly being studied. It has been shown that it can emerge when languages culturally evolve and adapt to human cognitive biases. How the emergence of combinatorial structure interacts with the existence of holistic iconic form-meaning mappings in a language is still unknown. The experiment presented in this paper studies the role of iconicity and human cognitive learning biases in the emergence of combinatorial structure in artificial whistled languages. Participants learned and reproduced whistled words for novel objects with the use of a slide whistle. Their reproductions were used as input for the next participant, to create transmission chains and simulate cultural transmission. Two conditions were studied: one in which the persistence of iconic form-meaning mappings was possible and one in which this was experimentally made impossible. In both conditions, cultural transmission caused the whistled languages to become more learnable and more structured, but this process was slightly delayed in the first condition. Our findings help to gain insight into when and how words may lose their iconic origins when they become part of an organized linguistic system. Copyright © 2015 Cognitive Science Society, Inc.

  18. Rethinking foundations of language from a multidisciplinary perspective.

    PubMed

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2018-04-21

    The issue of language foundations has been of great controversy ever since it was first raised in Lenneberg's (1967) monograph Biological Foundations of Language. Based on a survey of recent findings relevant to the study of language acquisition and evolution, we propose that: (i) the biological predispositions for language are largely domain-general, not necessarily language-specific or human-unique; (ii) the socio-cultural environment of language serves as another important foundation of language, which helps shape language components, induce and drive language shift; and (iii) language must have coevolved with the cognitive mechanisms associated with it through intertwined biological and cultural evolution. In addition to theoretical issues, this paper also evaluates the primary approaches recently joining the endeavor of studying language foundations and evolution, including human experiments and computer simulations. Most of the evidence surveyed in this paper comes from a variety of disciplines, and methodology therein complements each other to form a global picture of language foundations. These reflect the complexity of the issue of language foundations and the necessity of taking a multidisciplinary perspective to address it. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Apes in the Anthropocene: flexibility and survival.

    PubMed

    Hockings, Kimberley J; McLennan, Matthew R; Carvalho, Susana; Ancrenaz, Marc; Bobe, René; Byrne, Richard W; Dunbar, Robin I M; Matsuzawa, Tetsuro; McGrew, William C; Williamson, Elizabeth A; Wilson, Michael L; Wood, Bernard; Wrangham, Richard W; Hill, Catherine M

    2015-04-01

    We are in a new epoch, the Anthropocene, and research into our closest living relatives, the great apes, must keep pace with the rate that our species is driving change. While a goal of many studies is to understand how great apes behave in natural contexts, the impact of human activities must increasingly be taken into account. This is both a challenge and an opportunity, which can importantly inform research in three diverse fields: cognition, human evolution, and conservation. No long-term great ape research site is wholly unaffected by human influence, but research at those that are especially affected by human activity is particularly important for ensuring that our great ape kin survive the Anthropocene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach.

    PubMed

    Benítez-Burraco, Antonio; Di Pietro, Lorena; Barba, Marta; Lattanzi, Wanda

    2017-01-01

    Schizophrenia (SZ) is a pervasive neurodevelopmental disorder that entails social and cognitive deficits, including marked language problems. Its complex multifactorial etiopathogenesis, including genetic and environmental factors, is still widely uncertain. SZ incidence has always been high and quite stable in human populations, across time and regardless of cultural implications, for unclear reasons. It has been hypothesized that SZ pathophysiology may involve the biological components that changed during the recent human evolutionary history, and led to our distinctive mode of cognition, which includes language skills. In this paper we explore this hypothesis, focusing on the self-domestication of the human species. This has been claimed to account for many human-specific distinctive traits, including aspects of our behavior and cognition, and to favor the emergence of complex languages through cultural evolution. The "domestication syndrome" in mammals comprises the constellation of traits exhibited by domesticated strains, seemingly resulting from the hypofunction of the neural crest. It is our intention to show that people with SZ exhibit more marked domesticated traits at the morphological, physiological, and behavioral levels. We also show that genes involved in domestication and neural crest development and function comprise nearly 20% of SZ candidates, most of which exhibit altered expression profiles in the brain of SZ patients, specifically in areas involved in language processing. Based on these observations, we conclude that SZ may represent an abnormal ontogenetic itinerary for the human faculty of language, resulting, at least in part, from changes in genes important for the domestication syndrome and primarily involving the neural crest. © 2017 S. Karger AG, Basel.

  1. Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Douglas; Greitzer, Frank L.

    In his 1960 paper Man-Machine Symbiosis, Licklider predicted that human brains and computing machines will be coupled in a tight partnership that will think as no human brain has ever thought and process data in a way not approached by the information-handling machines we know today. Today we are on the threshold of resurrecting the vision of symbiosis. While Licklider’s original vision suggested a co-equal relationship, here we discuss an updated vision, neo-symbiosis, in which the human holds a superordinate position in an intelligent human-computer collaborative environment. This paper was originally published as a journal article and is being publishedmore » as a chapter in an upcoming book series, Advances in Novel Approaches in Cognitive Informatics and Natural Intelligence.« less

  2. The Evolution of Human Uniqueness.

    PubMed

    Boyd, Robert

    2017-01-09

    The human species is an outlier in the natural world. Two million years ago our ancestors were a slightly odd apes. Now we occupy the largest ecological and geographical range of any species, have larger biomass, and process more energy. Usually, this transformation is explained in terms of cognitive ability-people are just smarter than all the rest. In this paper I argue that culture, our ability to learn from each other, and cooperation, our ability to make common cause with large groups of unrelated individuals are the real roots of human uniqueness, and sketch an evolutionary account of how these crucial abilities co-evolved with each other and with other features of our life histories.

  3. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  4. How does a high school biology teacher interact with his 10th grade students?: Examining science talk in evolution and human genetics instruction from a sociolinguistics perspective

    NASA Astrophysics Data System (ADS)

    Avsar Erumit, Banu

    This qualitative study employed a case study design (Creswell, 2014) with a high school biology teacher to examine a) the types of discourse patterns that a high school teacher was using in evolution and human genetics units, b) the purposes and cognitive features of the teacher's questions, their impact on students' subsequent responses, and the types of teacher follow ups occurred in these two units, and c) the factors that I thought might be somehow influencing the teaching and learning of these two topics in this classroom. The findings showed that lecture and recitation were the two most frequently used discourse types in the two units. Guided discussion and guided small group work in which students' ideas and questions were more welcomed than in lecture and recitation, were used only in the evolution unit, which was also unit in which the teacher used hands-on activities. In the human genetics unit, he only used worksheet-based activities, which he called paper and pencil labs. Teacher questions were posed mainly to assess the correctness of students' factual knowledge, remind them of previously covered information, and check with students to clarify the meaning of their utterances or their progress on a task. The two primary types of cognitive processes associated with students' responses were recall information and evaluate teacher's questions, mostly with a short response. The most frequently heard voice in the classroom was teacher's. Whole class interactions did not feature equal participation as some much more engaged students dominated. The results of the teacher questionnaires. teacher interviews, teacher debriefings, and lesson observations showed that Evan had an informed understanding of NOS, a high level of acceptance of evolution, and adequate understanding of evolution. The factors that seemed to negatively influence his teaching and students' engagement in that classroom included but not limited to the teacher's lack of experience in teaching biology, his challenges of teaching in a rural district, students' lack of motivation for learning, and technology distraction in students' lives. Implications for professional developers, teacher educators, researchers, policy makers, and science teachers regarding how to prepare and support teachers in using effective science talk in their classrooms are discussed.

  5. How Can We Study the Evolution of Animal Minds?

    PubMed Central

    Cauchoix, Maxime; Chaine, Alexis S.

    2016-01-01

    During the last 50 years, comparative cognition and neurosciences have improved our understanding of animal minds while evolutionary ecology has revealed how selection acts on traits through evolutionary time. We describe how cognition can be subject to natural selection like any other biological trait and how this evolutionary approach can be used to understand the evolution of animal cognition. We recount how comparative and fitness methods have been used to understand the evolution of cognition and outline how these approaches could extend our understanding of cognition. The fitness approach, in particular, offers unprecedented opportunities to study the evolutionary mechanisms responsible for variation in cognition within species and could allow us to investigate both proximate (i.e., neural and developmental) and ultimate (i.e., ecological and evolutionary) underpinnings of animal cognition together. We highlight recent studies that have successfully shown that cognitive traits can be under selection, in particular by linking individual variation in cognition to fitness. To bridge the gap between cognitive variation and fitness consequences and to better understand why and how selection can occur on cognition, we end this review by proposing a more integrative approach to study contemporary selection on cognitive traits combining socio-ecological data, minimally invasive neuroscience methods and measurement of ecologically relevant behaviors linked to fitness. Our overall goal in this review is to build a bridge between cognitive neuroscientists and evolutionary biologists, illustrate how their research could be complementary, and encourage evolutionary ecologists to include explicit attention to cognitive processes in their studies of behavior. PMID:27014163

  6. Language and emotions: emotional Sapir-Whorf hypothesis.

    PubMed

    Perlovsky, Leonid

    2009-01-01

    An emotional version of Sapir-Whorf hypothesis suggests that differences in language emotionalities influence differences among cultures no less than conceptual differences. Conceptual contents of languages and cultures to significant extent are determined by words and their semantic differences; these could be borrowed among languages and exchanged among cultures. Emotional differences, as suggested in the paper, are related to grammar and mostly cannot be borrowed. The paper considers conceptual and emotional mechanisms of language along with their role in the mind and cultural evolution. Language evolution from primordial undifferentiated animal cries is discussed: while conceptual contents increase, emotional reduced. Neural mechanisms of these processes are suggested as well as their mathematical models: the knowledge instinct, the dual model connecting language and cognition, neural modeling fields. Mathematical results are related to cognitive science, linguistics, and psychology. Experimental evidence and theoretical arguments are discussed. Dynamics of the hierarchy-heterarchy of human minds and cultures is formulated using mean-field approach and approximate equations are obtained. The knowledge instinct operating in the mind heterarchy leads to mechanisms of differentiation and synthesis determining ontological development and cultural evolution. These mathematical models identify three types of cultures: "conceptual" pragmatic cultures in which emotionality of language is reduced and differentiation overtakes synthesis resulting in fast evolution at the price of uncertainty of values, self doubts, and internal crises; "traditional-emotional" cultures where differentiation lags behind synthesis, resulting in cultural stability at the price of stagnation; and "multi-cultural" societies combining fast cultural evolution and stability. Unsolved problems and future theoretical and experimental directions are discussed.

  7. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics.

    PubMed

    Erren, T C; Erren, M

    2004-04-01

    When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.

  8. DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores

    PubMed Central

    Davis, Jonathon M.; Searles, Veronica B.; Anderson, Nathan; Keeney, Jonathon; Raznahan, Armin; Horwood, L. John; Fergusson, David M.; Kennedy, Martin A.; Giedd, Jay

    2014-01-01

    DUF1220 protein domains exhibit the greatest human lineage-specific copy number expansion of any protein-coding sequence in the genome, and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Given these findings, we examined associations between DUF1220 subtypes CON1 and CON2 and cognitive aptitude. We identified a linear association between CON2 copy number and cognitive function in two independent populations of European descent. In North American males, an increase in CON2 copy number corresponded with an increase in WISC IQ (R2 = 0.13, p = 0.02), which may be driven by males aged 6–11 (R2 = 0.42, p = 0.003). We utilized ddPCR in a subset as a confirmatory measurement. This group had 26–33 copies of CON2 with a mean of 29, and each copy increase of CON2 was associated with a 3.3-point increase in WISC IQ (R2 = 0.22, p = 0.045). In individuals from New Zealand, an increase in CON2 copy number was associated with an increase in math aptitude ability (R2 = 0.10 p = 0.018). These were not confounded by brain size. To our knowledge, this is the first study to report a replicated association between copy number of a gene coding sequence and cognitive aptitude. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity and cognitive aptitude, suggesting that such processes may be genetically and mechanistically inter-related. The findings presented here warrant expanded investigations in larger, well-characterized cohorts. PMID:25287832

  9. Mechanism based approaches for rescuing and enhancing cognition

    PubMed Central

    Lynch, Gary; Gall, Christine M.

    2013-01-01

    Progress toward pharmacological means for enhancing memory and cognition has been retarded by the widely discussed failure of behavioral studies in animals to predict human outcomes. As a result, a number of groups have targeted cognition-related neurobiological mechanisms in animal models, with the assumption that these basic processes are highly conserved across mammals. Here we survey one such approach that begins with a form of synaptic plasticity intimately related to memory encoding in animals and likely operative in humans. An initial section will describe a detailed hypothesis concerning the signaling and structural events (a “substrate map”) that convert learning associated patterns of afferent activity into extremely stable increases in fast, excitatory transmission. We next describe results suggesting that all instances of intellectual impairment so far tested in rodent models involve a common endpoint failure in the substrate map. This will be followed by a clinically plausible proposal for obviating the ultimate defect in these models. We then take up the question of whether it is reasonable to expect, from either general principles or a very limited set of experimental results, that enhancing memory will expand the cognitive capabilities of high functioning brains. The final section makes several suggestions about how to improve translation of behavioral results from animals to humans. Collectively, the material covered here points to the following: (1) enhancement, in the sense of rescue, is not an unrealistic possibility for a broad array of neuropsychiatric disorders; (2) serendipity aside, developing means for improving memory in normals will likely require integration of information about mechanisms with new behavioral testing strategies; (3) a shift in emphasis from synapses to networks is a next, logical step in the evolution of the cognition enhancement field. PMID:23966908

  10. Illuminating the dark matter of social neuroscience: Considering the problem of social interaction from philosophical, psychological, and neuroscientific perspectives.

    PubMed

    Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania

    2012-01-01

    Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve.

  11. Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem.

    PubMed

    Fedor, Anna; Zachar, István; Szilágyi, András; Öllinger, Michael; de Vladar, Harold P; Szathmáry, Eörs

    2017-01-01

    In this paper, we show that a neurally implemented a cognitive architecture with evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian Neurodynamics, assumes that the unconscious mechanism of problem solving during insight tasks is a Darwinian process. It is based on the evolution of patterns that represent candidate solutions to a problem, and are stored and reproduced by a population of attractor networks. In our first experiment, we used human data as a benchmark and showed that the model behaves comparably to humans: it shows an improvement in performance if it is pretrained and primed appropriately, just like human participants in Kershaw et al. (2013)'s experiment. In the second experiment, we further investigated the effects of pretraining and priming in a two-by-two design and found a beginner's luck type of effect: solution rate was highest in the condition that was primed, but not pretrained with patterns relevant for the task. In the third experiment, we showed that deficits in computational capacity and learning abilities decreased the performance of the model, as expected. We conclude that Darwinian Neurodynamics is a promising model of human problem solving that deserves further investigation.

  12. Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem

    PubMed Central

    Fedor, Anna; Zachar, István; Szilágyi, András; Öllinger, Michael; de Vladar, Harold P.; Szathmáry, Eörs

    2017-01-01

    In this paper, we show that a neurally implemented a cognitive architecture with evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian Neurodynamics, assumes that the unconscious mechanism of problem solving during insight tasks is a Darwinian process. It is based on the evolution of patterns that represent candidate solutions to a problem, and are stored and reproduced by a population of attractor networks. In our first experiment, we used human data as a benchmark and showed that the model behaves comparably to humans: it shows an improvement in performance if it is pretrained and primed appropriately, just like human participants in Kershaw et al. (2013)'s experiment. In the second experiment, we further investigated the effects of pretraining and priming in a two-by-two design and found a beginner's luck type of effect: solution rate was highest in the condition that was primed, but not pretrained with patterns relevant for the task. In the third experiment, we showed that deficits in computational capacity and learning abilities decreased the performance of the model, as expected. We conclude that Darwinian Neurodynamics is a promising model of human problem solving that deserves further investigation. PMID:28405191

  13. Hunter-Gatherers and the Origins of Religion.

    PubMed

    Peoples, Hervey C; Duda, Pavel; Marlowe, Frank W

    2016-09-01

    Recent studies of the evolution of religion have revealed the cognitive underpinnings of belief in supernatural agents, the role of ritual in promoting cooperation, and the contribution of morally punishing high gods to the growth and stabilization of human society. The universality of religion across human society points to a deep evolutionary past. However, specific traits of nascent religiosity, and the sequence in which they emerged, have remained unknown. Here we reconstruct the evolution of religious beliefs and behaviors in early modern humans using a global sample of hunter-gatherers and seven traits describing hunter-gatherer religiosity: animism, belief in an afterlife, shamanism, ancestor worship, high gods, and worship of ancestors or high gods who are active in human affairs. We reconstruct ancestral character states using a time-calibrated supertree based on published phylogenetic trees and linguistic classification and then test for correlated evolution between the characters and for the direction of cultural change. Results indicate that the oldest trait of religion, present in the most recent common ancestor of present-day hunter-gatherers, was animism, in agreement with long-standing beliefs about the fundamental role of this trait. Belief in an afterlife emerged, followed by shamanism and ancestor worship. Ancestor spirits or high gods who are active in human affairs were absent in early humans, suggesting a deep history for the egalitarian nature of hunter-gatherer societies. There is a significant positive relationship between most characters investigated, but the trait "high gods" stands apart, suggesting that belief in a single creator deity can emerge in a society regardless of other aspects of its religion.

  14. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    PubMed

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  15. Variation in gaze-following between two Asian colobine monkeys.

    PubMed

    Chen, Tao; Gao, Jie; Tan, Jingzhi; Tao, Ruoting; Su, Yanjie

    2017-10-01

    Gaze-following is a basic cognitive ability found in numerous primate and nonprimate species. However, little is known about this ability and its variation in colobine monkeys. We compared gaze-following of two Asian colobines-François' langurs (Trachypithecus francoisi) and golden snub-nosed monkeys (Rhinopithecus roxellana). Although both species live in small polygynous family units, units of the latter form multilevel societies with up to hundreds of individuals. François' langurs (N = 15) were less sensitive to the gaze of a human experimenter than were golden snub-nosed monkeys (N = 12). We then tested the two species using two classic inhibitory control tasks-the cylinder test and the A-not-B test. We found no difference between species in inhibitory control, which called into question the nonsocial explanation for François' langur's weaker sensitivity to human gaze. These findings are consistent with the social intelligence hypothesis, which predicted that golden snub-nosed monkeys would outperform François' langurs in gaze-following because of the greater size and complexity of their social groups. Furthermore, our results underscore the need for more comparative studies of cognition in colobines, which should provide valuable opportunities to test hypotheses of cognitive evolution.

  16. The evolution and devolution of cognitive control: The costs of deliberation in a competitive world

    PubMed Central

    Tomlin, Damon; Rand, David G.; Ludvig, Elliot A.; Cohen, Jonathan D.

    2015-01-01

    Dual-system theories of human cognition, under which fast automatic processes can complement or compete with slower deliberative processes, have not typically been incorporated into larger scale population models used in evolutionary biology, macroeconomics, or sociology. However, doing so may reveal important phenomena at the population level. Here, we introduce a novel model of the evolution of dual-system agents using a resource-consumption paradigm. By simulating agents with the capacity for both automatic and controlled processing, we illustrate how controlled processing may not always be selected over rigid, but rapid, automatic processing. Furthermore, even when controlled processing is advantageous, frequency-dependent effects may exist whereby the spread of control within the population undermines this advantage. As a result, the level of controlled processing in the population can oscillate persistently, or even go extinct in the long run. Our model illustrates how dual-system psychology can be incorporated into population-level evolutionary models, and how such a framework can be used to examine the dynamics of interaction between automatic and controlled processing that transpire over an evolutionary time scale. PMID:26078086

  17. The evolution and devolution of cognitive control: The costs of deliberation in a competitive world.

    PubMed

    Tomlin, Damon; Rand, David G; Ludvig, Elliot A; Cohen, Jonathan D

    2015-06-16

    Dual-system theories of human cognition, under which fast automatic processes can complement or compete with slower deliberative processes, have not typically been incorporated into larger scale population models used in evolutionary biology, macroeconomics, or sociology. However, doing so may reveal important phenomena at the population level. Here, we introduce a novel model of the evolution of dual-system agents using a resource-consumption paradigm. By simulating agents with the capacity for both automatic and controlled processing, we illustrate how controlled processing may not always be selected over rigid, but rapid, automatic processing. Furthermore, even when controlled processing is advantageous, frequency-dependent effects may exist whereby the spread of control within the population undermines this advantage. As a result, the level of controlled processing in the population can oscillate persistently, or even go extinct in the long run. Our model illustrates how dual-system psychology can be incorporated into population-level evolutionary models, and how such a framework can be used to examine the dynamics of interaction between automatic and controlled processing that transpire over an evolutionary time scale.

  18. Evolution of Cognitive Function After Transcatheter Aortic Valve Implantation.

    PubMed

    Schoenenberger, Andreas W; Zuber, Chantal; Moser, André; Zwahlen, Marcel; Wenaweser, Peter; Windecker, Stephan; Carrel, Thierry; Stuck, Andreas E; Stortecky, Stefan

    2016-10-01

    This study aimed to assess the evolution of cognitive function after transcatheter aortic valve implantation (TAVI). Previous smaller studies reported conflicting results on the evolution of cognitive function after TAVI. In this prospective cohort, cognitive function was measured in 229 patients ≥70 years using the Mini Mental State Examination before and 6 months after TAVI. Cognitive deterioration or improvement was defined as change of ≥3 points decrease or increase in the Mini Mental State Examination score between baseline and follow-up. Cognitive deterioration was found in 29 patients (12.7%). Predictive analysis using logistic regression did not identify any statistically significant predictor of cognitive deterioration. A review of individual medical records in 8 patients with a major Mini Mental State Examination score decrease of ≥5 points revealed specific causes in 6 cases (postinterventional delirium in 2; postinterventional stroke, progressive renal failure, progressive heart failure, or combination of preexisting cerebrovascular disease and mild cognitive impairment in 1 each). Among 48 patients with impaired baseline cognition (Mini Mental State Examination score <26 points), 18 patients (37.5%) cognitively improved. The preinterventional aortic valve area was lower in patients who cognitively improved (median aortic valve area 0.60 cm 2 ) as compared with patients who did not improve (median aortic valve area 0.70 cm 2 ; P=0.01). This is the first study providing evidence that TAVI results in cognitive improvement among patients who had impaired preprocedural cognitive function, possibly related to hemodynamic improvement in patients with severe aortic stenosis. Our results confirm that some patients experience cognitive deterioration after TAVI. © 2016 American Heart Association, Inc.

  19. [Numbers, counting and calculating problems in view of cognitive neurology].

    PubMed

    Márkus, Attila

    2010-03-30

    The ability to count and calculate is a human-specific skill comprised of understanding numeric values and categories and performing numerical operations; it is an acoustic-verbal symbolic activity that may be expressed in writing and understood by reading. The neuronal bases and precursors of cognitive systems have been supplied to mankind by the process of evolution. Abilities to create symbols (speech, visual letter and number symbols) must have played a decisive role in the emergence of man from the world of primates. Although counting and calculating problems are classified into numerous types, two main forms of dyscalculia have practical importance: the acquired one (the loss of learned knowledge) and the developmental one (the disturbance of the acquisition of arithmetical knowledge).

  20. Labels, cognomes, and cyclic computation: an ethological perspective.

    PubMed

    Murphy, Elliot

    2015-01-01

    For the past two decades, it has widely been assumed by linguists that there is a single computational operation, Merge, which is unique to language, distinguishing it from other cognitive domains. The intention of this paper is to progress the discussion of language evolution in two ways: (i) survey what the ethological record reveals about the uniqueness of the human computational system, and (ii) explore how syntactic theories account for what ethology may determine to be human-specific. It is shown that the operation Label, not Merge, constitutes the evolutionary novelty which distinguishes human language from non-human computational systems; a proposal lending weight to a Weak Continuity Hypothesis and leading to the formation of what is termed Computational Ethology. Some directions for future ethological research are suggested.

  1. Labels, cognomes, and cyclic computation: an ethological perspective

    PubMed Central

    Murphy, Elliot

    2015-01-01

    For the past two decades, it has widely been assumed by linguists that there is a single computational operation, Merge, which is unique to language, distinguishing it from other cognitive domains. The intention of this paper is to progress the discussion of language evolution in two ways: (i) survey what the ethological record reveals about the uniqueness of the human computational system, and (ii) explore how syntactic theories account for what ethology may determine to be human-specific. It is shown that the operation Label, not Merge, constitutes the evolutionary novelty which distinguishes human language from non-human computational systems; a proposal lending weight to a Weak Continuity Hypothesis and leading to the formation of what is termed Computational Ethology. Some directions for future ethological research are suggested. PMID:26089809

  2. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.

    PubMed

    Wu, Dong-Dong; Ye, Ling-Qun; Li, Yan; Sun, Yan-Bo; Shao, Yi; Chen, Chunyan; Zhu, Zhu; Zhong, Li; Wang, Lu; Irwin, David M; Zhang, Yong E; Zhang, Ya-Ping

    2015-08-01

    Next-generation RNA sequencing has been successfully used for identification of transcript assembly, evaluation of gene expression levels, and detection of post-transcriptional modifications. Despite these large-scale studies, additional comprehensive RNA-seq data from different subregions of the human brain are required to fully evaluate the evolutionary patterns experienced by the human brain transcriptome. Here, we provide a total of 6.5 billion RNA-seq reads from different subregions of the human brain. A significant correlation was observed between the levels of alternative splicing and RNA editing, which might be explained by a competition between the molecular machineries responsible for the splicing and editing of RNA. Young human protein-coding genes demonstrate biased expression to the neocortical and non-neocortical regions during evolution on the lineage leading to humans. We also found that a significantly greater number of young human protein-coding genes are expressed in the putamen, a tissue that was also observed to have the highest level of RNA-editing activity. The putamen, which previously received little attention, plays an important role in cognitive ability, and our data suggest a potential contribution of the putamen to human evolution. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  3. The World as Evolving Information

    NASA Astrophysics Data System (ADS)

    Gershenson, Carlos

    This paper discusses the benefits of describing the world as information, especially in the study of the evolution of life and cognition. Traditional studies encounter problems because it is difficult to describe life and cognition in terms of matter and energy, since their laws are valid only at the physical scale. However, if matter and energy, as well as life and cognition, are described in terms of information, evolution can be described consistently as information becoming more complex.

  4. Acting in Light of the Future: How Do Future-Oriented Cultural Practices Evolve and How Can We Accelerate Their Evolution?

    PubMed Central

    Biglan, Anthony; Barnes-Holmes, Yvonne

    2015-01-01

    Despite extensive knowledge of how to prevent or ameliorate serious diseases, natural disasters, environmental degradation, and a wide range of other problems, we often fail to take action that that would prevent or mitigate these problematic outcomes. In short, although we may have sound scientific knowledge about threats to future wellbeing, we appear to have limited insight into how to benefit from this knowledge. With this paper, we argue that our current scientific understanding of how to act in light of the future is limited, but we offer a theoretical analysis of future-oriented behavior at both individual and organizational levels. Specifically, the paper draws on a functional contextualist account of human language and cognition, Relational Frame Theory (RFT), and its integrated therapeutic approach, Acceptance and Commitment Therapy (ACT), and extends this framework to analyzing the evolution of the practices of groups and organizations. This framework can provide an understanding of how human behavior may be modified in the present to serve improving human wellbeing in the future at individual, organizational, and even national levels. PMID:26693140

  5. The evolutionary roots of creativity: mechanisms and motivations.

    PubMed

    Wiggins, Geraint A; Tyack, Peter; Scharff, Constance; Rohrmeier, Martin

    2015-03-19

    We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered 'creative'? This entails analysis of 'creativity', an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and 'creative' ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called 'creative'. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. The evolutionary roots of creativity: mechanisms and motivations

    PubMed Central

    Wiggins, Geraint A.; Tyack, Peter; Scharff, Constance; Rohrmeier, Martin

    2015-01-01

    We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered ‘creative’? This entails analysis of ‘creativity’, an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and ‘creative’ ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called ‘creative’. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so. PMID:25646522

  7. Endless forms: human behavioural diversity and evolved universals.

    PubMed

    Smith, Eric Alden

    2011-02-12

    Human populations have extraordinary capabilities for generating behavioural diversity without corresponding genetic diversity or change. These capabilities and their consequences can be grouped into three categories: strategic (or cognitive), ecological and cultural-evolutionary. Strategic aspects include: (i) a propensity to employ complex conditional strategies, some certainly genetically evolved but others owing to directed invention or to cultural evolution; (ii) situations in which fitness payoffs (or utilities) are frequency-dependent, so that there is no one best strategy; and (iii) the prevalence of multiple equilibria, with history or minor variations in starting conditions (path dependence) playing a crucial role. Ecological aspects refer to the fact that social behaviour and cultural institutions evolve in diverse niches, producing various adaptive radiations and local adaptations. Although environmental change can drive behavioural change, in humans, it is common for behavioural change (especially technological innovation) to drive environmental change (i.e. niche construction). Evolutionary aspects refer to the fact that human capacities for innovation and cultural transmission lead to diversification and cumulative cultural evolution; critical here is institutional design, in which relatively small shifts in incentive structure can produce very different aggregate outcomes. In effect, institutional design can reshape strategic games, bringing us full circle.

  8. Hunter-Gatherer Inter-Band Interaction Rates: Implications for Cumulative Culture

    PubMed Central

    Hill, Kim R.; Wood, Brian M.; Baggio, Jacopo; Hurtado, A. Magdalena; Boyd, Robert T.

    2014-01-01

    Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%–29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture. PMID:25047714

  9. Hunter-gatherer inter-band interaction rates: implications for cumulative culture.

    PubMed

    Hill, Kim R; Wood, Brian M; Baggio, Jacopo; Hurtado, A Magdalena; Boyd, Robert T

    2014-01-01

    Our species exhibits spectacular success due to cumulative culture. While cognitive evolution of social learning mechanisms may be partially responsible for adaptive human culture, features of early human social structure may also play a role by increasing the number potential models from which to learn innovations. We present interview data on interactions between same-sex adult dyads of Ache and Hadza hunter-gatherers living in multiple distinct residential bands (20 Ache bands; 42 Hadza bands; 1201 dyads) throughout a tribal home range. Results show high probabilities (5%-29% per year) of cultural and cooperative interactions between randomly chosen adults. Multiple regression suggests that ritual relationships increase interaction rates more than kinship, and that affinal kin interact more often than dyads with no relationship. These may be important features of human sociality. Finally, yearly interaction rates along with survival data allow us to estimate expected lifetime partners for a variety of social activities, and compare those to chimpanzees. Hadza and Ache men are estimated to observe over 300 men making tools in a lifetime, whereas male chimpanzees interact with only about 20 other males in a lifetime. High intergroup interaction rates in ancestral humans may have promoted the evolution of cumulative culture.

  10. High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research

    PubMed Central

    Lachaux, Jean-Philippe; Axmacher, Nikolai; Mormann, Florian; Halgren, Eric; Crone, Nathan E.

    2013-01-01

    Human intracranial EEG (iEEG) recordings are primarily performed in epileptic patients for presurgical mapping. When patients perform cognitive tasks, iEEG signals reveal high-frequency neural activities (HFA, between around 40 Hz and 150 Hz) with exquisite anatomical, functional and temporal specificity. Such HFA were originally interpreted in the context of perceptual or motor binding, in line with animal studies on gamma-band (‘40Hz’) neural synchronization. Today, our understanding of HFA has evolved into a more general index of cortical processing: task-induced HFA reveals, with excellent spatial and time resolution, the participation of local neural ensembles in the task-at-hand, and perhaps the neural communication mechanisms allowing them to do so. This review promotes the claim that studying HFA with iEEG provides insights into the neural bases of cognition that cannot be derived as easily from other approaches, such as fMRI. We provide a series of examples supporting that claim, drawn from studies on memory, language and default-mode networks, and successful attempts of real-time functional mapping. These examples are followed by several guidelines for HFA research, intended for new groups interested by this approach. Overall, iEEG research on HFA should play an increasing role in cognitive neuroscience in humans, because it can be explicitly linked to basic research in animals. We conclude by discussing the future evolution of this field, which might expand that role even further, for instance through the use of multi-scale electrodes and the fusion of iEEG with MEG and fMRI. PMID:22750156

  11. The evolution of self-control

    PubMed Central

    MacLean, Evan L.; Hare, Brian; Nunn, Charles L.; Addessi, Elsa; Amici, Federica; Anderson, Rindy C.; Aureli, Filippo; Baker, Joseph M.; Bania, Amanda E.; Barnard, Allison M.; Boogert, Neeltje J.; Brannon, Elizabeth M.; Bray, Emily E.; Bray, Joel; Brent, Lauren J. N.; Burkart, Judith M.; Call, Josep; Cantlon, Jessica F.; Cheke, Lucy G.; Clayton, Nicola S.; Delgado, Mikel M.; DiVincenti, Louis J.; Fujita, Kazuo; Herrmann, Esther; Hiramatsu, Chihiro; Jacobs, Lucia F.; Jordan, Kerry E.; Laude, Jennifer R.; Leimgruber, Kristin L.; Messer, Emily J. E.; de A. Moura, Antonio C.; Ostojić, Ljerka; Picard, Alejandra; Platt, Michael L.; Plotnik, Joshua M.; Range, Friederike; Reader, Simon M.; Reddy, Rachna B.; Sandel, Aaron A.; Santos, Laurie R.; Schumann, Katrin; Seed, Amanda M.; Sewall, Kendra B.; Shaw, Rachael C.; Slocombe, Katie E.; Su, Yanjie; Takimoto, Ayaka; Tan, Jingzhi; Tao, Ruoting; van Schaik, Carel P.; Virányi, Zsófia; Visalberghi, Elisabetta; Wade, Jordan C.; Watanabe, Arii; Widness, Jane; Young, Julie K.; Zentall, Thomas R.; Zhao, Yini

    2014-01-01

    Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution. PMID:24753565

  12. Cognitive Approaches to Posttraumatic Stress Disorder: The Evolution of Multirepresentational Theorizing

    ERIC Educational Resources Information Center

    Dalgleish, Tim

    2004-01-01

    The evolution of multirepresentational cognitive theorizing in psychopathology is illustrated by detailed discussion and analysis of a number of prototypical models of posttraumatic stress disorder (PTSD). Network and schema theories, which focus on a single, explicit aspect/format of mental representation, are compared with theories that focus on…

  13. Subjective matters: from image quality to image psychology

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  14. New frontiers for intelligent content-based retrieval

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.

    2001-01-01

    In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.

  15. New frontiers for intelligent content-based retrieval

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.

    2000-12-01

    In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.

  16. The growth of language: Universal Grammar, experience, and principles of computation.

    PubMed

    Yang, Charles; Crain, Stephen; Berwick, Robert C; Chomsky, Noam; Bolhuis, Johan J

    2017-10-01

    Human infants develop language remarkably rapidly and without overt instruction. We argue that the distinctive ontogenesis of child language arises from the interplay of three factors: domain-specific principles of language (Universal Grammar), external experience, and properties of non-linguistic domains of cognition including general learning mechanisms and principles of efficient computation. We review developmental evidence that children make use of hierarchically composed structures ('Merge') from the earliest stages and at all levels of linguistic organization. At the same time, longitudinal trajectories of development show sensitivity to the quantity of specific patterns in the input, which suggests the use of probabilistic processes as well as inductive learning mechanisms that are suitable for the psychological constraints on language acquisition. By considering the place of language in human biology and evolution, we propose an approach that integrates principles from Universal Grammar and constraints from other domains of cognition. We outline some initial results of this approach as well as challenges for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Other-regarding preferences in a non-human primate: Common marmosets provision food altruistically

    PubMed Central

    Burkart, Judith M.; Fehr, Ernst; Efferson, Charles; van Schaik, Carel P.

    2007-01-01

    Human cooperation is unparalleled in the animal world and rests on an altruistic concern for the welfare of genetically unrelated strangers. The evolutionary roots of human altruism, however, remain poorly understood. Recent evidence suggests a discontinuity between humans and other primates because individual chimpanzees do not spontaneously provide food to other group members, indicating a lack of concern for their welfare. Here, we demonstrate that common marmoset monkeys (Callithrix jacchus) do spontaneously provide food to nonreciprocating and genetically unrelated individuals, indicating that other-regarding preferences are not unique to humans and that their evolution did not require advanced cognitive abilities such as theory of mind. Because humans and marmosets are cooperative breeders and the only two primate taxa in which such unsolicited prosociality has been found, we conclude that these prosocial predispositions may emanate from cooperative breeding. PMID:18077409

  18. Language evolution in the laboratory.

    PubMed

    Scott-Phillips, Thomas C; Kirby, Simon

    2010-09-01

    The historical origins of natural language cannot be observed directly. We can, however, study systems that support language and we can also develop models that explore the plausibility of different hypotheses about how language emerged. More recently, evolutionary linguists have begun to conduct language evolution experiments in the laboratory, where the emergence of new languages used by human participants can be observed directly. This enables researchers to study both the cognitive capacities necessary for language and the ways in which languages themselves emerge. One theme that runs through this work is how individual-level behaviours result in population-level linguistic phenomena. A central challenge for the future will be to explore how different forms of information transmission affect this process. 2010 Elsevier Ltd. All rights reserved.

  19. Big cats as a model system for the study of the evolution of intelligence.

    PubMed

    Borrego, Natalia

    2017-08-01

    Currently, carnivores, and felids in particular, are vastly underrepresented in cognitive literature, despite being an ideal model system for tests of social and ecological intelligence hypotheses. Within Felidae, big cats (Panthera) are uniquely suited to studies investigating the evolutionary links between social, ecological, and cognitive complexity. Intelligence likely did not evolve in a unitary way but instead evolved as the result of mutually reinforcing feedback loops within the physical and social environments. The domain-specific social intelligence hypothesis proposes that social complexity drives only the evolution of cognitive abilities adapted only to social domains. The domain-general hypothesis proposes that the unique demands of social life serve as a bootstrap for the evolution of superior general cognition. Big cats are one of the few systems in which we can directly address conflicting predictions of the domain-general and domain-specific hypothesis by comparing cognition among closely related species that face roughly equivalent ecological complexity but vary considerably in social complexity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evolution and genomics of the human brain.

    PubMed

    Rosales-Reynoso, M A; Juárez-Vázquez, C I; Barros-Núñez, P

    2018-05-01

    Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Experimental evolution of slowed cognitive aging in Drosophila melanogaster.

    PubMed

    Zwoinska, Martyna K; Maklakov, Alexei A; Kawecki, Tadeusz J; Hollis, Brian

    2017-03-01

    Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits' decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  2. A general theory of evolution based on energy efficiency: its implications for diseases.

    PubMed

    Yun, Anthony J; Lee, Patrick Y; Doux, John D; Conley, Buford R

    2006-01-01

    We propose a general theory of evolution based on energy efficiency. Life represents an emergent property of energy. The earth receives energy from cosmic sources such as the sun. Biologic life can be characterized by the conversion of available energy into complex systems. Direct energy converters such as photosynthetic microorganisms and plants transform light energy into high-energy phosphate bonds that fuel biochemical work. Indirect converters such as herbivores and carnivores predominantly feed off the food chain supplied by these direct converters. Improving energy efficiency confers competitive advantage in the contest among organisms for energy. We introduce a term, return on energy (ROE), as a measure of energy efficiency. We define ROE as a ratio of the amount of energy acquired by a system to the amount of energy consumed to generate that gain. Life-death cycling represents a tactic to sample the environment for innovations that allow increases in ROE to develop over generations rather than an individual lifespan. However, the variation-selection strategem of Darwinian evolution may define a particular tactic rather than an overarching biological paradigm. A theory of evolution based on competition for energy and driven by improvements in ROE both encompasses prior notions of evolution and portends post-Darwinian mechanisms. Such processes may involve the exchange of non-genetic traits that improve ROE, as exemplified by cognitive adaptations or memes. Under these circumstances, indefinite persistence may become favored over life-death cycling, as increases in ROE may then occur more efficiently within a single lifespan rather than over multiple generations. The key to this transition may involve novel methods to address the promotion of health and cognitive plasticity. We describe the implications of this theory for human diseases.

  3. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development

    PubMed Central

    Mora-Bermúdez, Felipe; Badsha, Farhath; Kanton, Sabina; Camp, J Gray; Vernot, Benjamin; Köhler, Kathrin; Voigt, Birger; Okita, Keisuke; Maricic, Tomislav; He, Zhisong; Lachmann, Robert; Pääbo, Svante; Treutlein, Barbara; Huttner, Wieland B

    2016-01-01

    Human neocortex expansion likely contributed to the remarkable cognitive abilities of humans. This expansion is thought to primarily reflect differences in proliferation versus differentiation of neural progenitors during cortical development. Here, we have searched for such differences by analysing cerebral organoids from human and chimpanzees using immunohistofluorescence, live imaging, and single-cell transcriptomics. We find that the cytoarchitecture, cell type composition, and neurogenic gene expression programs of humans and chimpanzees are remarkably similar. Notably, however, live imaging of apical progenitor mitosis uncovered a lengthening of prometaphase-metaphase in humans compared to chimpanzees that is specific to proliferating progenitors and not observed in non-neural cells. Consistent with this, the small set of genes more highly expressed in human apical progenitors points to increased proliferative capacity, and the proportion of neurogenic basal progenitors is lower in humans. These subtle differences in cortical progenitors between humans and chimpanzees may have consequences for human neocortex evolution. DOI: http://dx.doi.org/10.7554/eLife.18683.001 PMID:27669147

  4. Evolution of human brain functions: the functional structure of human consciousness.

    PubMed

    Cloninger, C Robert

    2009-11-01

    The functional structure of self-aware consciousness in human beings is described based on the evolution of human brain functions. Prior work on heritable temperament and character traits is extended to account for the quantum-like and holographic properties (i.e. parts elicit wholes) of self-aware consciousness. Cladistic analysis is used to identify the succession of ancestors leading to human beings. The functional capacities that emerge along this lineage of ancestors are described. The ecological context in which each cladogenesis occurred is described to illustrate the shifting balance of evolution as a complex adaptive system. Comparative neuroanatomy is reviewed to identify the brain structures and networks that emerged coincident with the emergent brain functions. Individual differences in human temperament traits were well developed in the common ancestor shared by reptiles and humans. Neocortical development in mammals proceeded in five major transitions: from early reptiles to early mammals, early primates, simians, early Homo, and modern Homo sapiens. These transitions provide the foundation for human self-awareness related to sexuality, materiality, emotionality, intellectuality, and spirituality, respectively. The functional structure of human self-aware consciousness is concerned with the regulation of five planes of being: sexuality, materiality, emotionality, intellectuality, and spirituality. Each plane elaborates neocortical functions organized around one of the five special senses. The interactions among these five planes gives rise to a 5 x 5 matrix of subplanes, which are functions that coarsely describe the focus of neocortical regulation. Each of these 25 neocortical functions regulates each of five basic motives or drives that can be measured as temperaments or basic emotions related to fear, anger, disgust, surprise, and happiness/sadness. The resulting 5 x 5 x 5 matrix of human characteristics provides a general and testable model of the functional structure of human consciousness that includes personality, physicality, emotionality, cognition, and spirituality in a unified developmental framework.

  5. Cognitive Processes in Decisions Under Risk are not the Same as in Decisions Under Uncertainty

    PubMed Central

    Volz, Kirsten G.; Gigerenzer, Gerd

    2012-01-01

    We deal with risk versus uncertainty, a distinction that is of fundamental importance for cognitive neuroscience yet largely neglected. In a world of risk (“small world”), all alternatives, consequences, and probabilities are known. In uncertain (“large”) worlds, some of this information is unknown or unknowable. Most of cognitive neuroscience studies exclusively study the neural correlates for decisions under risk (e.g., lotteries), with the tacit implication that understanding these would lead to an understanding of decision making in general. First, we show that normative strategies for decisions under risk do not generalize to uncertain worlds, where simple heuristics are often the more accurate strategies. Second, we argue that the cognitive processes for making decisions in a world of risk are not the same as those for dealing with uncertainty. Because situations with known risks are the exception rather than the rule in human evolution, it is unlikely that our brains are adapted to them. We therefore suggest a paradigm shift toward studying decision processes in uncertain worlds and provide first examples. PMID:22807893

  6. Empirical approaches to the study of language evolution.

    PubMed

    Fitch, W Tecumseh

    2017-02-01

    The study of language evolution, and human cognitive evolution more generally, has often been ridiculed as unscientific, but in fact it differs little from many other disciplines that investigate past events, such as geology or cosmology. Well-crafted models of language evolution make numerous testable hypotheses, and if the principles of strong inference (simultaneous testing of multiple plausible hypotheses) are adopted, there is an increasing amount of relevant data allowing empirical evaluation of such models. The articles in this special issue provide a concise overview of current models of language evolution, emphasizing the testable predictions that they make, along with overviews of the many sources of data available to test them (emphasizing comparative, neural, and genetic data). The key challenge facing the study of language evolution is not a lack of data, but rather a weak commitment to hypothesis-testing approaches and strong inference, exacerbated by the broad and highly interdisciplinary nature of the relevant data. This introduction offers an overview of the field, and a summary of what needed to evolve to provide our species with language-ready brains. It then briefly discusses different contemporary models of language evolution, followed by an overview of different sources of data to test these models. I conclude with my own multistage model of how different components of language could have evolved.

  7. The folk psychology of souls.

    PubMed

    Bering, Jesse M

    2006-10-01

    The present article examines how people's belief in an afterlife, as well as closely related supernatural beliefs, may open an empirical backdoor to our understanding of the evolution of human social cognition. Recent findings and logic from the cognitive sciences contribute to a novel theory of existential psychology, one that is grounded in the tenets of Darwinian natural selection. Many of the predominant questions of existential psychology strike at the heart of cognitive science. They involve: causal attribution (why is mortal behavior represented as being causally related to one's afterlife? how are dead agents envisaged as communicating messages to the living?), moral judgment (why are certain social behaviors, i.e., transgressions, believed to have ultimate repercussions after death or to reap the punishment of disgruntled ancestors?), theory of mind (how can we know what it is "like" to be dead? what social-cognitive strategies do people use to reason about the minds of the dead?), concept acquisition (how does a common-sense dualism interact with a formalized socio-religious indoctrination in childhood? how are supernatural properties of the dead conceptualized by young minds?), and teleological reasoning (why do people so often see their lives as being designed for a purpose that must be accomplished before they perish? how do various life events affect people's interpretation of this purpose?), among others. The central thesis of the present article is that an organized cognitive "system" dedicated to forming illusory representations of (1) psychological immortality, (2) the intelligent design of the self, and (3) the symbolic meaning of natural events evolved in response to the unique selective pressures of the human social environment.

  8. A Cultural Evolution Approach to Digital Media.

    PubMed

    Acerbi, Alberto

    2016-01-01

    Digital media have today an enormous diffusion, and their influence on the behavior of a vast part of the human population can hardly be underestimated. In this review I propose that cultural evolution theory, including both a sophisticated view of human behavior and a methodological attitude to modeling and quantitative analysis, provides a useful framework to study the effects and the developments of media in the digital age. I will first give a general presentation of the cultural evolution framework, and I will then introduce this more specific research program with two illustrative topics. The first topic concerns how cultural transmission biases, that is, simple heuristics such as "copy prestigious individuals" or "copy the majority," operate in the novel context of digital media. The existence of transmission biases is generally justified with their adaptivity in small-scale societies. How do they operate in an environment where, for example, prestigious individuals possess not-relevant skills, or popularity is explicitly quantified and advertised? The second aspect relates to fidelity of cultural transmission. Digitally-mediated interactions support cheap and immediate high-fidelity transmission, in opposition, for example, to oral traditions. How does this change the content that is more likely to spread? Overall, I suggest the usefulness of a "long view" to our contemporary digital environment, contextualized in cognitive science and cultural evolution theory, and I discuss how this perspective could help us to understand what is genuinely new and what is not.

  9. Beyond Descartes and Newton: Recovering life and humanity.

    PubMed

    Kauffman, Stuart A; Gare, Arran

    2015-12-01

    Attempts to 'naturalize' phenomenology challenge both traditional phenomenology and traditional approaches to cognitive science. They challenge Edmund Husserl's rejection of naturalism and his attempt to establish phenomenology as a foundational transcendental discipline, and they challenge efforts to explain cognition through mainstream science. While appearing to be a retreat from the bold claims made for phenomenology, it is really its triumph. Naturalized phenomenology is spearheading a successful challenge to the heritage of Cartesian dualism. This converges with the reaction against Cartesian thought within science itself. Descartes divided the universe between res cogitans, thinking substances, and res extensa, the mechanical world. The latter won with Newton and we have, in most of objective science since, literally lost our mind, hence our humanity. Despite Darwin, biologists remain children of Newton, and dream of a grand theory that is epistemologically complete and would allow lawful entailment of the evolution of the biosphere. This dream is no longer tenable. We now have to recognize that science and scientists are within and part of the world we are striving to comprehend, as proponents of endophysics have argued, and that physics, biology and mathematics have to be reconceived accordingly. Interpreting quantum mechanics from this perspective is shown to both illuminate conscious experience and reveal new paths for its further development. In biology we must now justify the use of the word "function". As we shall see, we cannot prestate the ever new biological functions that arise and constitute the very phase space of evolution. Hence, we cannot mathematize the detailed becoming of the biosphere, nor write differential equations for functional variables we do not know ahead of time, nor integrate those equations, so no laws "entail" evolution. The dream of a grand theory fails. In place of entailing laws, a post-entailing law explanatory framework is proposed in which Actuals arise in evolution that constitute new boundary conditions that are enabling constraints that create new, typically unprestatable, Adjacent Possible opportunities for further evolution, in which new Actuals arise, in a persistent becoming. Evolution flows into a typically unprestatable succession of Adjacent Possibles. Given the concept of function, the concept of functional closure of an organism making a living in its world, becomes central. Implications for patterns in evolution include historical reconstruction, and statistical laws such as the distribution of extinction events, or species per genus, and the use of formal cause, not efficient cause, laws. Copyright © 2015. Published by Elsevier Ltd.

  10. [Evolution of human brain and intelligence].

    PubMed

    Lakatos, László; Janka, Zoltán

    2008-07-30

    The biological evolution, including human evolution is mainly driven by environmental changes. Accidental genetic modifications and their innovative results make the successful adaptation possible. As we know the human evolution started 7-8 million years ago in the African savannah, where upright position and bipedalism were significantly advantageous. The main drive of improving manual actions and tool making could be to obtain more food. Our ancestor got more meat due to more successful hunting, resulting in more caloric intake, more protein and essential fatty acid in the meal. The nervous system uses disproportionally high level of energy, so better quality of food was a basic condition for the evolution of huge human brain. The size of human brain was tripled during 3.5 million years, it increased from the average of 450 cm3 of Australopithecinae to the average of 1350 cm3 of Homo sapiens. A genetic change in the system controlling gene expression could happen about 200 000 years ago, which influenced the development of nervous system, the sensorimotor function and learning ability for motor processes. The appearance and stabilisation of FOXP2 gene structure as feature of modern man coincided with the first presence and quick spread of Homo sapiens on the whole Earth. This genetic modification made opportunity for human language, as the basis of abrupt evolution of human intelligence. The brain region being responsible for human language is the left planum temporale, which is much larger in left hemisphere. This shows the most typical human brain asymmetry. In this case the anatomical asymmetry means a clearly defined functional asymmetry as well, where the brain hemispheres act differently. The preference in using hands, the lateralised using of tools resulted in the brain asymmetry, which is the precondition of human language and intelligence. However, it cannot be held anymore, that only humans make tools, because our closest relatives, the chimpanzees are able not only to use, but also to make tools, and they can be taught how to produce quite difficult ones. Some brain characteristics connected to human consciousness and intelligence, like brain asymmetry, the "consciousness" or "theory of mind" based on mirror neurons are surprisingly present in monkeys. Nevertheless, the human intelligence is extremely flexible and different, while the animal intelligence is specialised, producing one thing at high level. Based on recent knowledge the level of intelligence is related anatomically to the number of cortical neurons and physiologically to the speed of conductivity of neural pathways, the latter being dependent on the degree of myelinisation. The improvement of cognitive functions including language is driver by the need of more effective communication requiring less energy, the need of social dominance, the competitive advantages within smaller groups and species or against other species, which improves the opportunity for obtaining food. Better mental skills give also sexual dominance, which is beneficial for stabilising "cleverness" genes. The evolutionary history of human consciousness emphasises its adaptive survival helping nature. The evolution of language was the basic condition of conscious thinking as a qualitative change, which fundamentally differentiate us from all other creatures.

  11. Handedness in Neandertals from the El Sidrón (Asturias, Spain): Evidence from Instrumental Striations with Ontogenetic Inferences

    PubMed Central

    Estalrrich, Almudena; Rosas, Antonio

    2013-01-01

    The developed cognitive capabilities for Homo sapiens seems to be the result of a specialized and lateralized brain, and as a result of this, humans display the highest degree of manual specialization or handedness among the primates. Studies regarding its emergence and distribution within the genus Homo show that handedness is present very early. The mode in which it was articulated and spread across the different species during the course of human evolution could provide information about our own cognitive capacities. Here we report the manual laterality attributed to eleven 49,000 old Neandertal individuals from El Sidrón cave (Spain), through the study of instrumental or cultural striations on the anterior dentition. Our results show a predominant pattern addressed to right-handers. These results fit within the modern human handedness distribution pattern and provide indirect evidence for behavior and brain lateralization on Neandertals. They support the early establishment of handedness in our genus. Moreover, the individual identified as Juvenile 1 (6–8 years old at death), displays the same striation pattern as the adult Neandertals from the sample, and thereby the ontogenic development of manual laterality in that Neandertal population seems to be similar to that of living modern humans. PMID:23671635

  12. Handedness in Neandertals from the El Sidrón (Asturias, Spain): evidence from instrumental striations with ontogenetic inferences.

    PubMed

    Estalrrich, Almudena; Rosas, Antonio

    2013-01-01

    The developed cognitive capabilities for Homo sapiens seems to be the result of a specialized and lateralized brain, and as a result of this, humans display the highest degree of manual specialization or handedness among the primates. Studies regarding its emergence and distribution within the genus Homo show that handedness is present very early. The mode in which it was articulated and spread across the different species during the course of human evolution could provide information about our own cognitive capacities. Here we report the manual laterality attributed to eleven 49,000 old Neandertal individuals from El Sidrón cave (Spain), through the study of instrumental or cultural striations on the anterior dentition. Our results show a predominant pattern addressed to right-handers. These results fit within the modern human handedness distribution pattern and provide indirect evidence for behavior and brain lateralization on Neandertals. They support the early establishment of handedness in our genus. Moreover, the individual identified as Juvenile 1 (6-8 years old at death), displays the same striation pattern as the adult Neandertals from the sample, and thereby the ontogenic development of manual laterality in that Neandertal population seems to be similar to that of living modern humans.

  13. Music and language: relations and disconnections.

    PubMed

    Kraus, Nina; Slater, Jessica

    2015-01-01

    Music and language provide an important context in which to understand the human auditory system. While they perform distinct and complementary communicative functions, music and language are both rooted in the human desire to connect with others. Since sensory function is ultimately shaped by what is biologically important to the organism, the human urge to communicate has been a powerful driving force in both the evolution of auditory function and the ways in which it can be changed by experience within an individual lifetime. This chapter emphasizes the highly interactive nature of the auditory system as well as the depth of its integration with other sensory and cognitive systems. From the origins of music and language to the effects of auditory expertise on the neural encoding of sound, we consider key themes in auditory processing, learning, and plasticity. We emphasize the unique role of the auditory system as the temporal processing "expert" in the brain, and explore relationships between communication and cognition. We demonstrate how experience with music and language can have a significant impact on underlying neural function, and that auditory expertise strengthens some of the very same aspects of sound encoding that are deficient in impaired populations. © 2015 Elsevier B.V. All rights reserved.

  14. A neuropsychological perspective on the link between language and praxis in modern humans

    PubMed Central

    Roby-Brami, Agnes; Hermsdörfer, Joachim; Roy, Alice C.; Jacobs, Stéphane

    2012-01-01

    Hypotheses about the emergence of human cognitive abilities postulate strong evolutionary links between language and praxis, including the possibility that language was originally gestural. The present review considers functional and neuroanatomical links between language and praxis in brain-damaged patients with aphasia and/or apraxia. The neural systems supporting these functions are predominantly located in the left hemisphere. There are many parallels between action and language for recognition, imitation and gestural communication suggesting that they rely partially on large, common networks, differentially recruited depending on the nature of the task. However, this relationship is not unequivocal and the production and understanding of gestural communication are dependent on the context in apraxic patients and remains to be clarified in aphasic patients. The phonological, semantic and syntactic levels of language seem to share some common cognitive resources with the praxic system. In conclusion, neuropsychological observations do not allow support or rejection of the hypothesis that gestural communication may have constituted an evolutionary link between tool use and language. Rather they suggest that the complexity of human behaviour is based on large interconnected networks and on the evolution of specific properties within strategic areas of the left cerebral hemisphere. PMID:22106433

  15. The evolution of language and thought.

    PubMed

    Lieberman, Philip

    2016-06-20

    Language primarily evolved as a vocal medium that transmits the attributes of human culture and the necessities of daily communication. Human language has a long, complex evolutionary history. Language also serves as an instrument of thought since it has become evident that in the course of this process neural circuits that initially evolved to regulate motor control, motor responses to external events, and ultimately talking were recycled to serve tasks such as working memory, cognitive flexibility linguistic tasks such as comprehending distinctions in meaning conveyed by syntax. This precludes the human brain possessing an organ devoted exclusively to language, such as the Faculty of Language proposed by Chomsky (1972, 2012). In essence like Fodor's (1983) modular model, a restatement of archaic phrenological theories (Spurzheim, 1815). The subcortical basal ganglia can be traced back to early anurans. Although our knowledge of the neural circuits of the human brain is at a very early stage and incomplete, the findings of independent studies over the past 40 years, discussed here, have identified circuits linking the basal ganglia with various areas of prefrontal cortex, posterior cortical regions and other subcortical structures. These circuits are active in linguistic tasks such as lexical access, comprehending distinctions in meaning conferred by syntax and the range of higher cognitive tasks involving executive control and play a critical role in conferring cognitive flexibility. The cingulate cortex which appeared in Therapsids, transitional mammal-like reptiles who lived in age of the dinosaurs, most likely enhanced mother-infant interaction, contributing to success in the Darwinian (1859) "Struggle for Existence" - the survival of progeny. They continue to fill that role in present-day mammals as well as being involved in controlling laryngeal phonation during speech and directing attention (Newman & MacLean, 1983; Cummings, 1993". The cerebellum and hippocampus, archaic structures, play role in cognition. Natural selection acting on genetic and epigenetic events in the last 500,000 years enhanced human cognitive and linguistic capabilities. It is clear that human language did not suddenly come into being 70,000 to 100,000 years as Noam Chomsky (Bolhuis et al., 2014) and others claim. The archeological record and analyses of fossil and genetic evidence shows that Neanderthals, who diverged from the human line at least 500,000 years ago possessed some form of language. Nor did the human population suddenly acquire the capability to relate two seemingly unrelated concepts by means of associative learning 100,000 years ago, re-coined "Merge" by Chomsky and his adherents, Merge supposedly is the key to syntax but associative learning, one of the cognitive processes by which children learn languages and the myriad complexities of their cultures, is a capability present in dogs and virtually all animals.

  16. Being fat and smart: A comparative analysis of the fat-brain trade-off in mammals.

    PubMed

    Heldstab, Sandra A; van Schaik, Carel P; Isler, Karin

    2016-11-01

    Humans stand out among non-aquatic mammals by having both an extremely large brain and a relatively large amount of body fat. To understand the evolution of this human peculiarity we report a phylogenetic comparative study of 120 mammalian species, including 30 primates, using seasonal variation in adult body mass as a proxy of the tendency to store fat. Species that rely on storing fat to survive lean periods are expected to be less active because of higher costs of locomotion and have increased predation risk due to reduced agility. Because a fat-storage strategy reduces the net cognitive benefit of a large brain without reducing its cost, such species should be less likely to evolve a larger brain than non-fat-storing species. We therefore predict that the two strategies to buffer food shortages (storing body fat and cognitive flexibility) are compensatory, and therefore predict negative co-evolution between relative brain size and seasonal variation in body mass. This trade-off is expected to be stronger in predominantly arboreal species than in more terrestrial ones, as the cost of transporting additional adipose depots is higher for climbing than for horizontal locomotion. We did, indeed, find a significant negative correlation between brain size and coefficient of variation (CV) in body mass in both sexes for the subsample of arboreal species, both in all mammals and within primates. In predominantly terrestrial species, in contrast, this correlation was not significant. We therefore suggest that the adoption of habitually terrestrial locomotor habits, accompanied by a reduced reliance on climbing, has allowed for a primate of our body size the unique human combination of unusually large brains and unusually large adipose depots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Functional MRI in Awake Unrestrained Dogs

    PubMed Central

    Berns, Gregory S.; Brooks, Andrew M.; Spivak, Mark

    2012-01-01

    Because of dogs' prolonged evolution with humans, many of the canine cognitive skills are thought to represent a selection of traits that make dogs particularly sensitive to human cues. But how does the dog mind actually work? To develop a methodology to answer this question, we trained two dogs to remain motionless for the duration required to collect quality fMRI images by using positive reinforcement without sedation or physical restraints. The task was designed to determine which brain circuits differentially respond to human hand signals denoting the presence or absence of a food reward. Head motion within trials was less than 1 mm. Consistent with prior reinforcement learning literature, we observed caudate activation in both dogs in response to the hand signal denoting reward versus no-reward. PMID:22606363

  18. Dependency distance in language evolution. Comment on "Dependency distance: A new perspective on syntactic patterns in natural languages" by Haitao Liu et al.

    NASA Astrophysics Data System (ADS)

    Liu, Bingli; Chen, Xinying

    2017-07-01

    In the target article [1], Liu et al. provide an informative introduction to the dependency distance studies and proclaim that language syntactic patterns, that relate to the dependency distance, are associated with human cognitive mechanisms, such as limited working memory and syntax processing. Therefore, such syntactic patterns are probably 'human-driven' language universals. Sufficient evidence based on big data analysis is also given in the article for supporting this idea. The hypotheses generally seem very convincing yet still need further tests from various perspectives. Diachronic linguistic study based on authentic language data, on our opinion, can be one of those 'further tests'.

  19. A More Fine-Grained Measure of Students' Acceptance of Evolution: Development of the Inventory of Student Evolution Acceptance—I-SEA

    NASA Astrophysics Data System (ADS)

    Nadelson, Louis S.; Southerland, Sherry

    2012-07-01

    The potential influences of affective perceptions on cognitive engagement in learning, particularly with emotionally charged topics such as evolution, provide justification for acknowledging and assessing learners' attitudes toward content. One approach to determining students' attitudes toward a construct is to explicitly ask them to what degree they accept the related content. This was the approach we took as we developed the Inventory of Student Evolution Acceptance. Our goal was to make a finer-grained instrument that would assess acceptance on three evolution subscales: microevolution, macroevolution, and human evolution. Further, we sought to not conflate understanding with acceptance of the constructs. We began our instrument development with a series of interviews and open-ended questionnaires to determine students' perceptions of evolution acceptance. Based on the responses we developed and field tested a 49-item Likert scale instrument with stems distributed across our three targeted subscales. Using the data from our field test, we reduced the instrument to 24 items evenly distributed across the three subscales, and the revised instrument was again field tested with high school and undergraduate college students. The final instrument has an internal reliability of Cronbach's alpha of 0.96 and the items loaded onto three components that reflect documented evolution acceptance conditions. The instrument development, implications, and applications are discussed.

  20. Getting to Darwin: Obstacles to Accepting Evolution by Natural Selection

    NASA Astrophysics Data System (ADS)

    Thagard, Paul; Findlay, Scott

    2010-06-01

    Darwin’s theory of evolution by natural selection is central to modern biology, but is resisted by many people. This paper discusses the major psychological obstacles to accepting Darwin’s theory. Cognitive obstacles to adopting evolution by natural selection include conceptual difficulties, methodological issues, and coherence problems that derive from the intuitiveness of alternative theories. The main emotional obstacles to accepting evolution are its apparent conflict with valued beliefs about God, souls, and morality. We draw on the philosophy of science and on a psychological theory of cognitive and emotional belief revision to make suggestions about what can be done to improve acceptance of Darwinian ideas.

  1. Diversification and cumulative evolution in New Caledonian crow tool manufacture.

    PubMed Central

    Hunt, Gavin R; Gray, Russell D

    2003-01-01

    Many animals use tools but only humans are generally considered to have the cognitive sophistication required for cumulative technological evolution. Three important characteristics of cumulative technological evolution are: (i) the diversification of tool design; (ii) cumulative change; and (iii) high-fidelity social transmission. We present evidence that crows have diversified and cumulatively changed the design of their pandanus tools. In 2000 we carried out an intensive survey in New Caledonia to establish the geographical variation in the manufacture of these tools. We documented the shapes of 5550 tools from 21 sites throughout the range of pandanus tool manufacture. We found three distinct pandanus tool designs: wide tools, narrow tools and stepped tools. The lack of ecological correlates of the three tool designs and their different, continuous and overlapping geographical distributions make it unlikely that they evolved independently. The similarities in the manufacture method of each design further suggest that pandanus tools have gone through a process of cumulative change from a common historical origin. We propose a plausible scenario for this rudimentary cumulative evolution. PMID:12737666

  2. Evolution of speech and evolution of language.

    PubMed

    de Boer, Bart

    2017-02-01

    Speech is the physical signal used to convey spoken language. Because of its physical nature, speech is both easier to compare with other species' behaviors and easier to study in the fossil record than other aspects of language. Here I argue that convergent fossil evidence indicates adaptations for complex vocalizations at least as early as the common ancestor of Neanderthals and modern humans. Furthermore, I argue that it is unlikely that language evolved separately from speech, but rather that gesture, speech, and song coevolved to provide both a multimodal communication system and a musical system. Moreover, coevolution must also have played a role by allowing both cognitive and anatomical adaptations to language and speech to evolve in parallel. Although such a coevolutionary scenario is complex, it is entirely plausible from a biological point of view.

  3. Evolution of hemispheric specialisation of antagonistic systems of management of the body's energy resources.

    PubMed

    Braun, Claude M J

    2007-09-01

    Excellent and rich reviews of lateralised behaviour in animals have recently been published indexing renewed interest in biological theorising about hemispheric specialisation and yielding rich theory. The present review proposes a new account of the evolution of hemispheric specialisation, a primitive system of "management of the body's energy resources". This model is distinct from traditionally evoked cognitive science categories such as verbal/spatial, analytic/holistic, etc., or the current dominant neuroethological model proposing that the key is approach/avoidance behaviour. Specifically, I show that autonomic, immune, psychomotor, motivational, perceptual, and memory systems are similarly and coherently specialised in the brain hemispheres in rodents and man. This energy resource management model, extended to human neuropsychology, is termed here the "psychic tonus" model of hemispheric specialisation.

  4. The magnitude of innovation and its evolution in social animals.

    PubMed

    Arbilly, Michal; Laland, Kevin N

    2017-02-08

    Innovative behaviour in animals, ranging from invertebrates to humans, is increasingly recognized as an important topic for investigation by behavioural researchers. However, what constitutes an innovation remains controversial, and difficult to quantify. Drawing on a broad definition whereby any behaviour with a new component to it is an innovation, we propose a quantitative measure, which we call the magnitude of innovation , to describe the extent to which an innovative behaviour is novel. This allows us to distinguish between innovations that are a slight change to existing behaviours (low magnitude), and innovations that are substantially different (high magnitude). Using mathematical modelling and evolutionary computer simulations, we explored how aspects of social interaction, cognition and natural selection affect the frequency and magnitude of innovation. We show that high-magnitude innovations are likely to arise regularly even if the frequency of innovation is low, as long as this frequency is relatively constant, and that the selectivity of social learning and the existence of social rewards, such as prestige and royalties, are crucial for innovative behaviour to evolve. We suggest that consideration of the magnitude of innovation may prove a useful tool in the study of the evolution of cognition and of culture. © 2017 The Author(s).

  5. The magnitude of innovation and its evolution in social animals

    PubMed Central

    2017-01-01

    Innovative behaviour in animals, ranging from invertebrates to humans, is increasingly recognized as an important topic for investigation by behavioural researchers. However, what constitutes an innovation remains controversial, and difficult to quantify. Drawing on a broad definition whereby any behaviour with a new component to it is an innovation, we propose a quantitative measure, which we call the magnitude of innovation, to describe the extent to which an innovative behaviour is novel. This allows us to distinguish between innovations that are a slight change to existing behaviours (low magnitude), and innovations that are substantially different (high magnitude). Using mathematical modelling and evolutionary computer simulations, we explored how aspects of social interaction, cognition and natural selection affect the frequency and magnitude of innovation. We show that high-magnitude innovations are likely to arise regularly even if the frequency of innovation is low, as long as this frequency is relatively constant, and that the selectivity of social learning and the existence of social rewards, such as prestige and royalties, are crucial for innovative behaviour to evolve. We suggest that consideration of the magnitude of innovation may prove a useful tool in the study of the evolution of cognition and of culture. PMID:28179515

  6. Language Evolution: Why Hockett's Design Features are a Non-Starter.

    PubMed

    Wacewicz, Sławomir; Żywiczyński, Przemysław

    The set of design features developed by Charles Hockett in the 1950s and 1960s remains probably the most influential means of juxtaposing animal communication with human language. However, the general theoretical perspective of Hockett is largely incompatible with that of modern language evolution research. Consequently, we argue that his classificatory system-while useful for some descriptive purposes-is of very limited use as a theoretical framework for evolutionary linguistics. We see this incompatibility as related to the ontology of language, i.e. deriving from Hockett's interest in language as a product rather than a suite of sensorimotor, cognitive and social abilities that enable the use but also acquisition of language by biological creatures (the faculty of language ). After a reconstruction of Hockett's views on design features, we raise two criticisms: focus on the means at the expense of content and focus on the code itself rather than the cognitive abilities of its users . Finally, referring to empirical data, we illustrate some of the problems resulting from Hockett's approach by addressing three specific points-namely arbitrariness and semanticity , cultural transmission , and displacement -and show how the change of perspective allows to overcome those difficulties.

  7. Why Go There? Evolution of Mobility and Spatial Cognition in Women and Men : An Introduction to the Special Issue.

    PubMed

    Cashdan, Elizabeth; Gaulin, Steven J C

    2016-03-01

    Males in many non-monogamous species have larger ranges than females do, a sex difference that has been well documented for decades and seems to be an aspect of male mating competition. Until recently, parallel data for humans have been mostly anecdotal and qualitative, but this is now changing as human behavioral ecologists turn their attention to matters of individual mobility. Sex differences in spatial cognition were among the first accepted psychological sex differences and, like differences in ranging behavior, are documented for a growing set of species. This special issue is dedicated to exploring the possible adaptive links between these cognitive and ranging traits. Multiple hypotheses, at various levels of analysis, are considered. At the functional (ultimate) level, a mating-competition hypothesis suggests that range expansion may augment mating opportunities, and a fertility-and-parental-care hypothesis suggests that range contraction may facilitate offspring provisioning. At a more mechanistic (proximate) level, differences in cue availability may support or inhibit particular sex-specific navigation strategies, and spatial anxiety may usefully inhibit travel that would not justify its costs. Studies in four different cultures-Twe, Tsimane, Yucatec Maya, and Faroese-as well as an experimental study using virtual reality tools are the venue for testing these hypotheses. Our hope is to stimulate more research on the evolutionary and developmental processes responsible for this suite of linked behavioral and cognitive traits.

  8. Interpreting sulci on hominin endocasts: old hypotheses and new findings

    PubMed Central

    Falk, Dean

    2014-01-01

    Paleoneurologists analyze internal casts (endocasts) of fossilized braincases, which provide information about the size, shape and, to a limited degree, sulcal patterns reproduced from impressions left by the surface of the brain. When interpreted in light of comparative data from the brains of living apes and humans, sulcal patterns reproduced on hominin endocasts provide important information for studying the evolution of the cerebral cortex and cognition in human ancestors. Here, new evidence is discussed for the evolution of sulcal patterns associated with cortical reorganization in three parts of the hominin brain: (1) the parietotemporo-occipital association cortex, (2) Broca's speech area, and (3) dorsolateral prefrontal association cortex. Of the three regions, the evidence regarding the last is the clearest. Compared to great apes, Australopithecus endocasts reproduce a clear middle frontal sulcus in the dorsolateral prefrontal cortex that is derived toward the human condition. This finding is consistent with data from comparative cytoarchitectural studies of ape and human brains as well as shape analyses of australopithecine endocasts. The comparative and direct evidence for all three regions suggests that hominin brain reorganization was underway by at least the time of Australopithecus africanus (~2.5 to 3.0 mya), despite the ape-sized brains of these hominins, and that it entailed expansion of both rostral and caudal association cortices. PMID:24822043

  9. Illuminating the dark matter of social neuroscience: Considering the problem of social interaction from philosophical, psychological, and neuroscientific perspectives

    PubMed Central

    Przyrembel, Marisa; Smallwood, Jonathan; Pauen, Michael; Singer, Tania

    2012-01-01

    Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve. PMID:22737120

  10. On the nature and evolution of the neural bases of human language

    NASA Technical Reports Server (NTRS)

    Lieberman, Philip

    2002-01-01

    The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on the brains of human beings and other species provides insight into the evolution of the brain bases of human language. The neural substrate that regulated motor control in the common ancestor of apes and humans most likely was modified to enhance cognitive and linguistic ability. Speech communication played a central role in this process. However, the process that ultimately resulted in the human brain may have started when our earliest hominid ancestors began to walk.

  11. A Simple Artificial Life Model Explains Irrational Behavior in Human Decision-Making

    PubMed Central

    Feher da Silva, Carolina; Baldo, Marcus Vinícius Chrysóstomo

    2012-01-01

    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats’ neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments. PMID:22563454

  12. A simple artificial life model explains irrational behavior in human decision-making.

    PubMed

    Feher da Silva, Carolina; Baldo, Marcus Vinícius Chrysóstomo

    2012-01-01

    Although praised for their rationality, humans often make poor decisions, even in simple situations. In the repeated binary choice experiment, an individual has to choose repeatedly between the same two alternatives, where a reward is assigned to one of them with fixed probability. The optimal strategy is to perseverate with choosing the alternative with the best expected return. Whereas many species perseverate, humans tend to match the frequencies of their choices to the frequencies of the alternatives, a sub-optimal strategy known as probability matching. Our goal was to find the primary cognitive constraints under which a set of simple evolutionary rules can lead to such contrasting behaviors. We simulated the evolution of artificial populations, wherein the fitness of each animat (artificial animal) depended on its ability to predict the next element of a sequence made up of a repeating binary string of varying size. When the string was short relative to the animats' neural capacity, they could learn it and correctly predict the next element of the sequence. When it was long, they could not learn it, turning to the next best option: to perseverate. Animats from the last generation then performed the task of predicting the next element of a non-periodical binary sequence. We found that, whereas animats with smaller neural capacity kept perseverating with the best alternative as before, animats with larger neural capacity, which had previously been able to learn the pattern of repeating strings, adopted probability matching, being outperformed by the perseverating animats. Our results demonstrate how the ability to make predictions in an environment endowed with regular patterns may lead to probability matching under less structured conditions. They point to probability matching as a likely by-product of adaptive cognitive strategies that were crucial in human evolution, but may lead to sub-optimal performances in other environments.

  13. Craniosynostosis in the Middle Pleistocene human Cranium 14 from the Sima de los Huesos, Atapuerca, Spain.

    PubMed

    Gracia, Ana; Arsuaga, Juan Luis; Martínez, Ignacio; Lorenzo, Carlos; Carretero, José Miguel; Bermúdez de Castro, José María; Carbonell, Eudald

    2009-04-21

    We report here a previously undescribed human Middle Pleistocene immature specimen, Cranium 14, recovered at the Sima de los Huesos (SH) site (Atapuerca, Spain), that constitutes the oldest evidence in human evolution of a very rare pathology in our own species, lambdoid single suture craniosynostosis (SSC). Both the ecto- and endo-cranial deformities observed in this specimen are severe. All of the evidence points out that this severity implies that the SSC occurred before birth, and that facial asymmetries, as well as motor/cognitive disorders, were likely to be associated with this condition. The analysis of the present etiological data of this specimen lead us to consider that Cranium 14 is a case of isolated SSC, probably of traumatic origin. The existence of this pathological individual among the SH sample represents also a fact to take into account when referring to sociobiological behavior in Middle Pleistocene humans.

  14. Craniosynostosis in the Middle Pleistocene human Cranium 14 from the Sima de los Huesos, Atapuerca, Spain

    PubMed Central

    Gracia, Ana; Arsuaga, Juan Luis; Martínez, Ignacio; Lorenzo, Carlos; Carretero, José Miguel; Bermúdez de Castro, José María; Carbonell, Eudald

    2009-01-01

    We report here a previously undescribed human Middle Pleistocene immature specimen, Cranium 14, recovered at the Sima de los Huesos (SH) site (Atapuerca, Spain), that constitutes the oldest evidence in human evolution of a very rare pathology in our own species, lambdoid single suture craniosynostosis (SSC). Both the ecto- and endo-cranial deformities observed in this specimen are severe. All of the evidence points out that this severity implies that the SSC occurred before birth, and that facial asymmetries, as well as motor/cognitive disorders, were likely to be associated with this condition. The analysis of the present etiological data of this specimen lead us to consider that Cranium 14 is a case of isolated SSC, probably of traumatic origin. The existence of this pathological individual among the SH sample represents also a fact to take into account when referring to sociobiological behavior in Middle Pleistocene humans. PMID:19332773

  15. The Evolution of Facultative Conformity Based on Similarity.

    PubMed

    Efferson, Charles; Lalive, Rafael; Cacault, Maria Paula; Kistler, Deborah

    2016-01-01

    Conformist social learning can have a pronounced impact on the cultural evolution of human societies, and it can shape both the genetic and cultural evolution of human social behavior more broadly. Conformist social learning is beneficial when the social learner and the demonstrators from whom she learns are similar in the sense that the same behavior is optimal for both. Otherwise, the social learner's optimum is likely to be rare among demonstrators, and conformity is costly. The trade-off between these two situations has figured prominently in the longstanding debate about the evolution of conformity, but the importance of the trade-off can depend critically on the flexibility of one's social learning strategy. We developed a gene-culture coevolutionary model that allows cognition to encode and process information about the similarity between naive learners and experienced demonstrators. Facultative social learning strategies that condition on perceived similarity evolve under certain circumstances. When this happens, facultative adjustments are often asymmetric. Asymmetric adjustments mean that the tendency to follow the majority when learners perceive demonstrators as similar is stronger than the tendency to follow the minority when learners perceive demonstrators as different. In an associated incentivized experiment, we found that social learners adjusted how they used social information based on perceived similarity, but adjustments were symmetric. The symmetry of adjustments completely eliminated the commonly assumed trade-off between cases in which learners and demonstrators share an optimum versus cases in which they do not. In a second experiment that maximized the potential for social learners to follow their preferred strategies, a few social learners exhibited an inclination to follow the majority. Most, however, did not respond systematically to social information. Additionally, in the complete absence of information about their similarity to demonstrators, social learners were unwilling to make assumptions about whether they shared an optimum with demonstrators. Instead, social learners simply ignored social information even though this was the only information available. Our results suggest that social cognition equips people to use conformity in a discriminating fashion that moderates the evolutionary trade-offs that would occur if conformist social learning was rigidly applied.

  16. The Evolution of Facultative Conformity Based on Similarity

    PubMed Central

    Efferson, Charles; Lalive, Rafael; Cacault, Maria Paula; Kistler, Deborah

    2016-01-01

    Conformist social learning can have a pronounced impact on the cultural evolution of human societies, and it can shape both the genetic and cultural evolution of human social behavior more broadly. Conformist social learning is beneficial when the social learner and the demonstrators from whom she learns are similar in the sense that the same behavior is optimal for both. Otherwise, the social learner’s optimum is likely to be rare among demonstrators, and conformity is costly. The trade-off between these two situations has figured prominently in the longstanding debate about the evolution of conformity, but the importance of the trade-off can depend critically on the flexibility of one’s social learning strategy. We developed a gene-culture coevolutionary model that allows cognition to encode and process information about the similarity between naive learners and experienced demonstrators. Facultative social learning strategies that condition on perceived similarity evolve under certain circumstances. When this happens, facultative adjustments are often asymmetric. Asymmetric adjustments mean that the tendency to follow the majority when learners perceive demonstrators as similar is stronger than the tendency to follow the minority when learners perceive demonstrators as different. In an associated incentivized experiment, we found that social learners adjusted how they used social information based on perceived similarity, but adjustments were symmetric. The symmetry of adjustments completely eliminated the commonly assumed trade-off between cases in which learners and demonstrators share an optimum versus cases in which they do not. In a second experiment that maximized the potential for social learners to follow their preferred strategies, a few social learners exhibited an inclination to follow the majority. Most, however, did not respond systematically to social information. Additionally, in the complete absence of information about their similarity to demonstrators, social learners were unwilling to make assumptions about whether they shared an optimum with demonstrators. Instead, social learners simply ignored social information even though this was the only information available. Our results suggest that social cognition equips people to use conformity in a discriminating fashion that moderates the evolutionary trade-offs that would occur if conformist social learning was rigidly applied. PMID:28002461

  17. Developmental plasticity and language: A comparative perspective

    PubMed Central

    Griebel, Ulrike; Pepperberg, Irene; Oller, D. Kimbrough

    2016-01-01

    The growing field of evo-devo is increasingly demonstrating the complexity of steps involved in genetic, intracellular regulatory, and extracellular environmental control of the development of phenotypes. A key result of such work is an account for the remarkable plasticity of organismal form in many species based on relatively minor changes in regulation of highly conserved genes and genetic processes. Accounting for behavioral plasticity is of similar potential interest but has received far less attention. Of particular interest is plasticity in communication systems, where human language represents an ultimate target for research. The present paper considers plasticity of language capabilities in a comparative framework, focusing attention on examples of a remarkable fact: Whereas there exist design features of mature human language that have never been observed to occur in nonhumans in the wild, many of these features can be developed to notable extents when nonhumans are enculturated through human training (especially with intensive social interaction). These examples of enculturated developmental plasticity across extremely diverse taxa suggest, consistent with the evo-devo theme of highly conserved processes in evolution, that human language is founded in part on cognitive capabilities that are indeed ancient and that even modern humans show self-organized emergence of many language capabilities in the context of rich enculturation, built on the special social/ecological history of the hominin line. Human culture can thus be seen as a regulatory system encouraging language development in the context of a cognitive background with many highly conserved features. PMID:27003391

  18. Evolution of language: Lessons from the genome.

    PubMed

    Fisher, Simon E

    2017-02-01

    The post-genomic era is an exciting time for researchers interested in the biology of speech and language. Substantive advances in molecular methodologies have opened up entire vistas of investigation that were not previously possible, or in some cases even imagined. Speculations concerning the origins of human cognitive traits are being transformed into empirically addressable questions, generating specific hypotheses that can be explicitly tested using data collected from both the natural world and experimental settings. In this article, I discuss a number of promising lines of research in this area. For example, the field has begun to identify genes implicated in speech and language skills, including not just disorders but also the normal range of abilities. Such genes provide powerful entry points for gaining insights into neural bases and evolutionary origins, using sophisticated experimental tools from molecular neuroscience and developmental neurobiology. At the same time, sequencing of ancient hominin genomes is giving us an unprecedented view of the molecular genetic changes that have occurred during the evolution of our species. Synthesis of data from these complementary sources offers an opportunity to robustly evaluate alternative accounts of language evolution. Of course, this endeavour remains challenging on many fronts, as I also highlight in the article. Nonetheless, such an integrated approach holds great potential for untangling the complexities of the capacities that make us human.

  19. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language

    PubMed Central

    Scharff, Constance; Petri, Jana

    2011-01-01

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the ‘evo-devo’ conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this ‘deep homology’. Recently, ‘evo-devo’ has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can ‘descend with modification’. PMID:21690130

  20. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.

    PubMed

    Scharff, Constance; Petri, Jana

    2011-07-27

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.

  1. Parental investment theory and gender differences in the evolution of inhibition mechanisms.

    PubMed

    Bjorklund, D F; Kipp, K

    1996-09-01

    Based on the tenets of parental investment theory, the authors postulate that there was greater pressure to inhibit potentially maladaptive emotional, social, and sexual responses on prehistoric women than men in some contexts, resulting in enhanced inhibitory abilities in women in some domains. They reviewed studies whose researchers examined gender differences on social, behavioral, and cognitive tasks involving inhibition and found gender differences favoring female humans most consistent for social tasks (e.g., control of emotions), somewhat less pronounced for behavioral tasks (e.g., delay of gratification), and weak and inconsistent for cognitive tasks (e.g., conceptual tempo). This pattern was interrupted as being consistent with the position that gender differences in inhibition are relatively domain specific in nature, with women demonstrating greater abilities on tasks related to reproduction and childrearing, which is consistent with parental investment theory.

  2. Algorithms in the historical emergence of word senses.

    PubMed

    Ramiro, Christian; Srinivasan, Mahesh; Malt, Barbara C; Xu, Yang

    2018-03-06

    Human language relies on a finite lexicon to express a potentially infinite set of ideas. A key result of this tension is that words acquire novel senses over time. However, the cognitive processes that underlie the historical emergence of new word senses are poorly understood. Here, we present a computational framework that formalizes competing views of how new senses of a word might emerge by attaching to existing senses of the word. We test the ability of the models to predict the temporal order in which the senses of individual words have emerged, using an historical lexicon of English spanning the past millennium. Our findings suggest that word senses emerge in predictable ways, following an historical path that reflects cognitive efficiency, predominantly through a process of nearest-neighbor chaining. Our work contributes a formal account of the generative processes that underlie lexical evolution.

  3. Why developmental psychology is incomplete without comparative and cross-cultural perspectives.

    PubMed

    Nielsen, Mark; Haun, Daniel

    2016-01-19

    As a discipline, developmental psychology has a long history of relying on animal models and data collected among distinct cultural groups to enrich and inform theories of the ways social and cognitive processes unfold through the lifespan. However, approaches that draw together developmental, cross-cultural and comparative perspectives remain rare. The need for such an approach is reflected in the papers by Heyes (2015 Phil. Trans. R. Soc. B 371, 20150069. (doi:10.1098/rstb.2015.0069)), Schmelz & Call (2015 Phil. Trans. R. Soc. B 371, 20150067. (doi:10.1098/rstb.2015.0067)) and Keller (2015 Phil. Trans. R. Soc. B 371, 20150070. (doi:10.1098/rstb.2015.0070)) in this theme issue. Here, we incorporate these papers into a review of recent research endeavours covering a range of core aspects of social cognition, including social learning, cooperation and collaboration, prosociality, and theory of mind. In so doing, we aim to highlight how input from comparative and cross-cultural empiricism has altered our perspectives of human development and, in particular, led to a deeper understanding of the evolution of the human cultural mind. © 2015 The Author(s).

  4. Why developmental psychology is incomplete without comparative and cross-cultural perspectives

    PubMed Central

    Nielsen, Mark; Haun, Daniel

    2016-01-01

    As a discipline, developmental psychology has a long history of relying on animal models and data collected among distinct cultural groups to enrich and inform theories of the ways social and cognitive processes unfold through the lifespan. However, approaches that draw together developmental, cross-cultural and comparative perspectives remain rare. The need for such an approach is reflected in the papers by Heyes (2015 Phil. Trans. R. Soc. B 371, 20150069. (doi:10.1098/rstb.2015.0069)), Schmelz & Call (2015 Phil. Trans. R. Soc. B 371, 20150067. (doi:10.1098/rstb.2015.0067)) and Keller (2015 Phil. Trans. R. Soc. B 371, 20150070. (doi:10.1098/rstb.2015.0070)) in this theme issue. Here, we incorporate these papers into a review of recent research endeavours covering a range of core aspects of social cognition, including social learning, cooperation and collaboration, prosociality, and theory of mind. In so doing, we aim to highlight how input from comparative and cross-cultural empiricism has altered our perspectives of human development and, in particular, led to a deeper understanding of the evolution of the human cultural mind. PMID:26644590

  5. Problems faced by food-caching corvids and the evolution of cognitive solutions

    PubMed Central

    Grodzinski, Uri; Clayton, Nicola S.

    2010-01-01

    The scatter hoarding of food, or caching, is a widespread and well-studied behaviour. Recent experiments with caching corvids have provided evidence for episodic-like memory, future planning and possibly mental attribution, all cognitive abilities that were thought to be unique to humans. In addition to the complexity of making flexible, informed decisions about caching and recovering, this behaviour is underpinned by a motivationally controlled compulsion to cache. In this review, we shall first discuss the compulsive side of caching both during ontogeny and in the caching behaviour of adult corvids. We then consider some of the problems that these birds face and review the evidence for the cognitive abilities they use to solve them. Thus, the emergence of episodic-like memory is viewed as a solution for coping with food perishability, while the various cache-protection and pilfering strategies may be sophisticated tools to deprive competitors of information, either by reducing the quality of information they can gather, or invalidating the information they already have. Finally, we shall examine whether such future-oriented behaviour involves future planning and ask why this and other cognitive abilities might have evolved in corvids. PMID:20156820

  6. How to Create Shared Symbols.

    PubMed

    Fay, Nicolas; Walker, Bradley; Swoboda, Nik; Garrod, Simon

    2018-05-01

    Human cognition and behavior are dominated by symbol use. This paper examines the social learning strategies that give rise to symbolic communication. Experiment 1 contrasts an individual-level account, based on observational learning and cognitive bias, with an inter-individual account, based on social coordinative learning. Participants played a referential communication game in which they tried to communicate a range of recurring meanings to a partner by drawing, but without using their conventional language. Individual-level learning, via observation and cognitive bias, was sufficient to produce signs that became increasingly effective, efficient, and shared over games. However, breaking a referential precedent eliminated these benefits. The most effective, most efficient, and most shared signs arose when participants could directly interact with their partner, indicating that social coordinative learning is important to the creation of shared symbols. Experiment 2 investigated the contribution of two distinct aspects of social interaction: behavior alignment and concurrent partner feedback. Each played a complementary role in the creation of shared symbols: Behavior alignment primarily drove communication effectiveness, and partner feedback primarily drove the efficiency of the evolved signs. In conclusion, inter-individual social coordinative learning is important to the evolution of effective, efficient, and shared symbols. Copyright © 2018 Cognitive Science Society, Inc.

  7. Problems faced by food-caching corvids and the evolution of cognitive solutions.

    PubMed

    Grodzinski, Uri; Clayton, Nicola S

    2010-03-27

    The scatter hoarding of food, or caching, is a widespread and well-studied behaviour. Recent experiments with caching corvids have provided evidence for episodic-like memory, future planning and possibly mental attribution, all cognitive abilities that were thought to be unique to humans. In addition to the complexity of making flexible, informed decisions about caching and recovering, this behaviour is underpinned by a motivationally controlled compulsion to cache. In this review, we shall first discuss the compulsive side of caching both during ontogeny and in the caching behaviour of adult corvids. We then consider some of the problems that these birds face and review the evidence for the cognitive abilities they use to solve them. Thus, the emergence of episodic-like memory is viewed as a solution for coping with food perishability, while the various cache-protection and pilfering strategies may be sophisticated tools to deprive competitors of information, either by reducing the quality of information they can gather, or invalidating the information they already have. Finally, we shall examine whether such future-oriented behaviour involves future planning and ask why this and other cognitive abilities might have evolved in corvids.

  8. Perception and Cognition Are Largely Independent, but Still Affect Each Other in Systematic Ways: Arguments from Evolution and the Consciousness-Attention Dissociation

    PubMed Central

    Montemayor, Carlos; Haladjian, Harry H.

    2017-01-01

    The main thesis of this paper is that two prevailing theories about cognitive penetration are too extreme, namely, the view that cognitive penetration is pervasive and the view that there is a sharp and fundamental distinction between cognition and perception, which precludes any type of cognitive penetration. These opposite views have clear merits and empirical support. To eliminate this puzzling situation, we present an alternative theoretical approach that incorporates the merits of these views into a broader and more nuanced explanatory framework. A key argument we present in favor of this framework concerns the evolution of intentionality and perceptual capacities. An implication of this argument is that cases of cognitive penetration must have evolved more recently and that this is compatible with the cognitive impenetrability of early perceptual stages of processing information. A theoretical approach that explains why this should be the case is the consciousness and attention dissociation framework. The paper discusses why concepts, particularly issues concerning concept acquisition, play an important role in the interaction between perception and cognition. PMID:28174551

  9. An early and enduring advanced technology originating 71,000 years ago in South Africa.

    PubMed

    Brown, Kyle S; Marean, Curtis W; Jacobs, Zenobia; Schoville, Benjamin J; Oestmo, Simen; Fisher, Erich C; Bernatchez, Jocelyn; Karkanas, Panagiotis; Matthews, Thalassa

    2012-11-22

    There is consensus that the modern human lineage appeared in Africa before 100,000 years ago. But there is debate as to when cultural and cognitive characteristics typical of modern humans first appeared, and the role that these had in the expansion of modern humans out of Africa. Scientists rely on symbolically specific proxies, such as artistic expression, to document the origins of complex cognition. Advanced technologies with elaborate chains of production are also proxies, as these often demand high-fidelity transmission and thus language. Some argue that advanced technologies in Africa appear and disappear and thus do not indicate complex cognition exclusive to early modern humans in Africa. The origins of composite tools and advanced projectile weapons figure prominently in modern human evolution research, and the latter have been argued to have been in the exclusive possession of modern humans. Here we describe a previously unrecognized advanced stone tool technology from Pinnacle Point Site 5-6 on the south coast of South Africa, originating approximately 71,000 years ago. This technology is dominated by the production of small bladelets (microliths) primarily from heat-treated stone. There is agreement that microlithic technology was used to create composite tool components as part of advanced projectile weapons. Microliths were common worldwide by the mid-Holocene epoch, but have a patchy pattern of first appearance that is rarely earlier than 40,000 years ago, and were thought to appear briefly between 65,000 and 60,000 years ago in South Africa and then disappear. Our research extends this record to ~71,000 years, shows that microlithic technology originated early in South Africa, evolved over a vast time span (~11,000 years), and was typically coupled to complex heat treatment that persisted for nearly 100,000 years. Advanced technologies in Africa were early and enduring; a small sample of excavated sites in Africa is the best explanation for any perceived 'flickering' pattern.

  10. Nothing in medicine makes sense, except in the light of evolution.

    PubMed

    Varki, Ajit

    2012-05-01

    The practice of medicine is a fruitful marriage of classic diagnostic and healing arts with modern advancements in many relevant sciences. The scientific aspects of medicine are rooted in understanding the biology of our species and those of other organisms that interact with us in health and disease. Thus, it is reasonable to paraphrase Dobzhansky, stating that, "nothing in the biological aspects of medicine makes sense except in the light of evolution." However, the art and science of medicine are also rooted in the unusual cognitive abilities of humans and the cultural evolutionary processes arising. This explains the rather bold and inclusive title of this essay. The near complete absence of evolution in medical school curricula is a historical anomaly that needs correction. Otherwise, we will continue to train generations of physicians who lack understanding of some fundamental principles that should guide both medical practice and research. I here recount my attempts to correct this deficiency at my own medical school and the lessons learned. I also attempt to summarize what I teach in the limited amount of time allowed for the purpose. Particular attention is given to the value of comparing human physiology and disease with those of other closely related species. There is a long way to go before the teaching of evolution can be placed in its rightful context within the medical curriculum. However, the trend is in the right direction. Let us aim for a day when an essay like this will no longer be relevant.

  11. A Cultural Evolution Approach to Digital Media

    PubMed Central

    Acerbi, Alberto

    2016-01-01

    Digital media have today an enormous diffusion, and their influence on the behavior of a vast part of the human population can hardly be underestimated. In this review I propose that cultural evolution theory, including both a sophisticated view of human behavior and a methodological attitude to modeling and quantitative analysis, provides a useful framework to study the effects and the developments of media in the digital age. I will first give a general presentation of the cultural evolution framework, and I will then introduce this more specific research program with two illustrative topics. The first topic concerns how cultural transmission biases, that is, simple heuristics such as “copy prestigious individuals” or “copy the majority,” operate in the novel context of digital media. The existence of transmission biases is generally justified with their adaptivity in small-scale societies. How do they operate in an environment where, for example, prestigious individuals possess not-relevant skills, or popularity is explicitly quantified and advertised? The second aspect relates to fidelity of cultural transmission. Digitally-mediated interactions support cheap and immediate high-fidelity transmission, in opposition, for example, to oral traditions. How does this change the content that is more likely to spread? Overall, I suggest the usefulness of a “long view” to our contemporary digital environment, contextualized in cognitive science and cultural evolution theory, and I discuss how this perspective could help us to understand what is genuinely new and what is not. PMID:28018200

  12. Human-specific features of spatial gene expression and regulation in eight brain regions.

    PubMed

    Xu, Chuan; Li, Qian; Efimova, Olga; He, Liu; Tatsumoto, Shoji; Stepanova, Vita; Oishi, Takao; Udono, Toshifumi; Yamaguchi, Katsushi; Shigenobu, Shuji; Kakita, Akiyoshi; Nawa, Hiroyuki; Khaitovich, Philipp; Go, Yasuhiro

    2018-06-13

    Molecular maps of the human brain alone do not inform us of the features unique to humans. Yet, the identification of these features is important for understanding both the evolution and nature of human cognition. Here, we approached this question by analyzing gene expression and H3K27ac chromatin modification data collected in eight brain regions of humans, chimpanzees, gorillas, a gibbon and macaques. An analysis of spatial transcriptome trajectories across eight brain regions in four primate species revealed 1,851 genes showing human-specific transcriptome differences in one or multiple brain regions, in contrast to 240 chimpanzee-specific ones. More than half of these human-specific differences represented elevated expression of genes enriched in neuronal and astrocytic markers in the human hippocampus, while the rest were enriched in microglial markers and displayed human-specific expression in several frontal cortical regions and the cerebellum. An analysis of the predicted regulatory interactions driving these differences revealed the role of transcription factors in species-specific transcriptome changes, while epigenetic modifications were linked to spatial expression differences conserved across species. Published by Cold Spring Harbor Laboratory Press.

  13. From Pleistocene to Holocene: the prehistory of southwest Asia in evolutionary context.

    PubMed

    Watkins, Trevor

    2017-08-14

    In this paper I seek to show how cultural niche construction theory offers the potential to extend the human evolutionary story beyond the Pleistocene, through the Neolithic, towards the kind of very large-scale societies in which we live today. The study of the human past has been compartmentalised, each compartment using different analytical vocabularies, so that their accounts are written in mutually incompatible languages. In recent years social, cognitive and cultural evolutionary theories, building on a growing body of archaeological evidence, have made substantial sense of the social and cultural evolution of the genus Homo. However, specialists in this field of studies have found it difficult to extend their kind of analysis into the Holocene human world. Within southwest Asia the three or four millennia of the Neolithic period at the beginning of the Holocene represents a pivotal point, which saw the transformation of human society in the emergence of the first large-scale, permanent communities, the domestication of plants and animals, and the establishment of effective farming economies. Following the Neolithic, the pace of human social, economic and cultural evolution continued to increase. By 5000 years ago, in parts of southwest Asia and northeast Africa there were very large-scale urban societies, and the first large-scale states (kingdoms). An extension of cultural niche construction theory enables us to extend the evolutionary narrative of the Pleistocene into the Holocene, opening the way to developing a single, long-term, evolutionary account of human history.

  14. On the evolution of misunderstandings about evolutionary psychology.

    PubMed

    Young, J; Persell, R

    2000-04-01

    Some of the controversy surrounding evolutionary explanations of human behavior may be due to cognitive information-processing patterns that are themselves the result of evolutionary processes. Two such patterns are (1) the tendency to oversimplify information so as to reduce demand on cognitive resources and (2) our strong desire to generate predictability and stability from perceptions of the external world. For example, research on social stereotyping has found that people tend to focus automatically on simplified social-categorical information, to use such information when deciding how to behave, and to rely on such information even in the face of contradictory evidence. Similarly, an undying debate over nature vs. nurture is shaped by various data-reduction strategies that frequently oversimplify, and thus distort, the intent of the supporting arguments. This debate is also often marked by an assumption that either the nature or the nurture domain may be justifiably excluded at an explanatory level because one domain appears to operate in a sufficiently stable and predictable way for a particular argument. As a result, critiques in-veighed against evolutionary explanations of behavior often incorporate simplified--and erroneous--assumptions about either the mechanics of how evolution operates or the inevitable implications of evolution for understanding human behavior. The influences of these tendencies are applied to a discussion of the heritability of behavioral characteristics. It is suggested that the common view that Mendelian genetics can explain the heritability of complex behaviors, with a one-gene-one-trait process, is misguided. Complex behaviors are undoubtedly a product of a more complex interaction between genes and environment, ensuring that both nature and nurture must be accommodated in a yet-to-be-developed post-Mendelian model of genetic influence. As a result, current public perceptions of evolutionary explanations of behavior are handicapped by the lack of clear articulation of the relationship between inherited genes and manifest behavior.

  15. Functional mastery of percussive technology in nut-cracking and stone-flaking actions: experimental comparison and implications for the evolution of the human brain

    PubMed Central

    Bril, Blandine; Smaers, Jeroen; Steele, James; Rein, Robert; Nonaka, Tetsushi; Dietrich, Gilles; Biryukova, Elena; Hirata, Satoshi; Roux, Valentine

    2012-01-01

    Various authors have suggested behavioural similarities between tool use in early hominins and chimpanzee nut cracking, where nut cracking might be interpreted as a precursor of more complex stone flaking. In this paper, we bring together and review two separate strands of research on chimpanzee and human tool use and cognitive abilities. Firstly, and in the greatest detail, we review our recent experimental work on behavioural organization and skill acquisition in nut-cracking and stone-knapping tasks, highlighting similarities and differences between the two tasks that may be informative for the interpretation of stone tools in the early archaeological record. Secondly, and more briefly, we outline a model of the comparative neuropsychology of primate tool use and discuss recent descriptive anatomical and statistical analyses of anthropoid primate brain evolution, focusing on cortico-cerebellar systems. By juxtaposing these two strands of research, we are able to identify unsolved problems that can usefully be addressed by future research in each of these two research areas. PMID:22106427

  16. A Neo-Cognitive Dimension.

    ERIC Educational Resources Information Center

    Suarez, E. M.

    1988-01-01

    Responds to Mahoney and Lyddon's review of constructivism in previous article by focusing on developments emerged from work with Neo-Cognitive Psychotherapy that add new and necessary dimension to issues of agency and constructivism. Presents neo-cognitive view of thought and discusses the evolution of understanding. (NB)

  17. Exceptional Evolutionary Expansion of Prefrontal Cortex in Great Apes and Humans.

    PubMed

    Smaers, Jeroen B; Gómez-Robles, Aida; Parks, Ashley N; Sherwood, Chet C

    2017-03-06

    One of the enduring questions that has driven neuroscientific enquiry in the last century has been the nature of differences in the prefrontal cortex of humans versus other animals [1]. The prefrontal cortex has drawn particular interest due to its role in a range of evolutionarily specialized cognitive capacities such as language [2], imagination [3], and complex decision making [4]. Both cytoarchitectonic [5] and comparative neuroimaging [6] studies have converged on the conclusion that the proportion of prefrontal cortex in the human brain is greatly increased relative to that of other primates. However, considering the tremendous overall expansion of the neocortex in human evolution, it has proven difficult to ascertain whether this extent of prefrontal enlargement follows general allometric growth patterns, or whether it is exceptional [1]. Species' adherence to a common allometric relationship suggests conservation through phenotypic integration, while species' deviations point toward the occurrence of shifts in genetic and/or developmental mechanisms. Here we investigate prefrontal cortex scaling across anthropoid primates and find that great ape and human prefrontal cortex expansion are non-allometrically derived features of cortical organization. This result aligns with evidence for a developmental heterochronic shift in human prefrontal growth [7, 8], suggesting an association between neurodevelopmental changes and cortical organization on a macroevolutionary scale. The evolutionary origin of non-allometric prefrontal enlargement is estimated to lie at the root of great apes (∼19-15 mya), indicating that selection for changes in executive cognitive functions characterized both great ape and human cortical organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. How does variation in the environment and individual cognition explain the existence of consistent behavioral differences?

    PubMed Central

    Niemelä, Petri T; Vainikka, Anssi; Forsman, Jukka T; Loukola, Olli J; Kortet, Raine

    2013-01-01

    According to recent studies on animal personalities, the level of behavioral plasticity, which can be viewed as the slope of the behavioral reaction norm, varies among individuals, populations, and species. Still, it is conceptually unclear how the interaction between environmental variation and variation in animal cognition affect the evolution of behavioral plasticity and expression of animal personalities. Here, we (1) use literature to review how environmental variation and individual variation in cognition explain population and individual level expression of behavioral plasticity and (2) draw together empirically yet nontested, conceptual framework to clarify how these factors affect the evolution and expression of individually consistent behavior in nature. The framework is based on simple principles: first, information acquisition requires cognition that is inherently costly to build and maintain. Second, individual differences in animal cognition affect the differences in behavioral flexibility, i.e. the variance around the mean of the behavioral reaction norm, which defines plasticity. Third, along the lines of the evolution of cognition, we predict that environments with moderate variation favor behavioral flexibility. This occurs since in those environments costs of cognition are covered by being able to recognize and use information effectively. Similarly, nonflexible, stereotypic behaviors may be favored in environments that are either invariable or highly variable, since in those environments cognition does not give any benefits to cover the costs or cognition is not able to keep up with environmental change, respectively. If behavioral plasticity develops in response to increasing environmental variability, plasticity should dominate in environments that are moderately variable, and expression of animal personalities and behavioral syndromes may differ between environments. We give suggestions how to test our hypothesis and propose improvements to current behavioral testing protocols in the field of animal personality. PMID:23467316

  19. Place knowing of persons and populations: restoring the place work of nursing.

    PubMed

    Thomas, Elizabeth A

    2013-12-01

    Place emerges when space acquires definition in social constructions of meaning as landscape-languages, which reflect assumptions about physical and social realities. The place work of nursing, which resonated throughout Nightingale's work and the profession's evolution, focuses on human health and healing in the historical transitions and landscape-languages of populations. However, evidence-based practice dominated by empirical knowing inadequately addresses complex health and illness dynamics between place and populations. Translating evidence to the life course experiences of individuals and populations requires place knowing of human situated embodiment within discrete space. An exploration of the concept of place, its application to nursing, and the need for a place paradigm for practice is presented. A sense of salience and situated cognition has been identified as the essential element of the transformation needed in the education of nurses. Place knowing integrates other patterns of knowing (empirical, ethical, aesthetical, personal, unknowing, sociopolitical, and emancipatory) in a situated cognition. Place knowing, like other established patterns of knowing, is a significant epistemological foundation of nursing. Place knowing allows the nuanced intricately complex dynamics of embodied situated human health and illness to be examined, the salience of the particulars to be considered, and the whole of the landscape-languages to emerge.

  20. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition

    PubMed Central

    McLachlan, Neil M.; Wilson, Sarah J.

    2017-01-01

    The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications. PMID:28373850

  1. The shape of the human language-ready brain

    PubMed Central

    Boeckx, Cedric; Benítez-Burraco, Antonio

    2014-01-01

    Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny. PMID:24772099

  2. Chimpanzees, cooking, and a more comparative psychology.

    PubMed

    Beran, Michael J; Hopper, Lydia M; de Waal, Frans B M; Brosnan, Sarah F; Sayers, Ken

    2016-06-01

    A recent report suggested that chimpanzees demonstrate the cognitive capacities necessary to understand cooking (Warneken & Rosati, 2015). We offered alternative explanations and mechanisms that could account for the behavioral responses of those chimpanzees, and questioned the manner in which the data were used to examine human evolution (Beran, Hopper, de Waal, Sayers, & Brosnan, 2015). Two commentaries suggested either that we were overly critical of the original report's claims and methodology (Rosati & Warneken, 2016), or that, contrary to our statements, early biological thinkers contributed little to questions concerning the evolutionary importance of cooking (Wrangham, 2016). In addition, both commentaries took issue with our treatment of chimpanzee referential models in human evolutionary studies. Our response offers points of continued disagreement as well as points of conciliation. We view Warneken and Rosati's general conclusions as a case of affirming the consequent-a logical conundrum in which, in this case, a demonstration of a partial list of the underlying abilities required for a cognitive trait/suite (understanding of cooking) are suggested as evidence for that ability. And although we strongly concur with both Warneken and Rosati (2015) and Wrangham (2016) that chimpanzee research is invaluable and essential to understanding humanness, it can only achieve its potential via the holistic inclusion of all available evidence-including that from other animals, evolutionary theory, and the fossil and archaeological records.

  3. Cognition and Culture in Evolutionary Context.

    PubMed

    Colmenares, Fernando; Hernández-Lloreda, María Victoria

    2017-01-09

    In humans and other animals, the individuals' ability to adapt efficiently and effectively to the niches they have actively contributed to construct relies heavily on an evolved psychology which has been shaped by biological, social, and cultural processes over evolutionary time. As expected, although many of the behavioral and cognitive components of this evolved psychology are widely shared across species, many others are species-unique. Although many animal species are known to acquire group-specific traditions (or cultures) via social learning, human culture is unique in terms of its contents and characteristics (observable and unobservable products, cumulative effects, norm conformity, and norm enforcement) and of its cognitive underpinnings (imitation, instructed teaching, and language). Here we provide a brief overview of some of the issues that are currently tackled in the field. We also highlight some of the strengths of a biological, comparative, non-anthropocentric and evolutionarily grounded approach to the study of culture. The main contributions of this approach to the science of culture are its emphasis (a) on the integration of information on mechanisms, function, and evolution, and on mechanistic factors located at different levels of the biological hierarchy, and (b) on the search for general principles that account for commonalities and differences between species, both in the cultural products and in the processes of innovation, dissemination, and accumulation involved that operate during developmental and evolutionary timespans.

  4. Dynamics of Alliance Formation and the Egalitarian Revolution

    PubMed Central

    Gavrilets, Sergey; Duenez-Guzman, Edgar A.; Vose, Michael D.

    2008-01-01

    Background Arguably the most influential force in human history is the formation of social coalitions and alliances (i.e., long-lasting coalitions) and their impact on individual power. Understanding the dynamics of alliance formation and its consequences for biological, social, and cultural evolution is a formidable theoretical challenge. In most great ape species, coalitions occur at individual and group levels and among both kin and non-kin. Nonetheless, ape societies remain essentially hierarchical, and coalitions rarely weaken social inequality. In contrast, human hunter-gatherers show a remarkable tendency to egalitarianism, and human coalitions and alliances occur not only among individuals and groups, but also among groups of groups. These observations suggest that the evolutionary dynamics of human coalitions can only be understood in the context of social networks and cognitive evolution. Methodology/Principal Findings Here, we develop a stochastic model describing the emergence of networks of allies resulting from within-group competition for status or mates between individuals utilizing dyadic information. The model shows that alliances often emerge in a phase transition-like fashion if the group size, awareness, aggressiveness, and persuasiveness of individuals are large and the decay rate of individual affinities is small. With cultural inheritance of social networks, a single leveling alliance including all group members can emerge in several generations. Conclusions/Significance We propose a simple and flexible theoretical approach for studying the dynamics of alliance emergence applicable where game-theoretic methods are not practical. Our approach is both scalable and expandable. It is scalable in that it can be generalized to larger groups, or groups of groups. It is expandable in that it allows for inclusion of additional factors such as behavioral, genetic, social, and cultural features. Our results suggest that a rapid transition from a hierarchical society of great apes to an egalitarian society of hunter-gatherers (often referred to as “egalitarian revolution”) could indeed follow an increase in human cognitive abilities. The establishment of stable group-wide egalitarian alliances creates conditions promoting the origin of cultural norms favoring the group interests over those of individuals. PMID:18827928

  5. Music and the Meeting of Human Minds.

    PubMed

    Harvey, Alan R

    2018-01-01

    Over tens of thousands of years of human genetic and cultural evolution, many types and varieties of music and language have emerged; however, the fundamental components of each of these modes of communication seem to be common to all human cultures and social groups. In this brief review, rather than focusing on the development of different musical techniques and practices over time, the main issues addressed here concern: (i) when, and speculations as to why, modern Homo sapiens evolved musical behaviors, (ii) the evolutionary relationship between music and language, and (iii) why humans, perhaps unique among all living species, universally continue to possess two complementary but distinct communication streams. Did music exist before language, or vice versa, or was there a common precursor that in some way separated into two distinct yet still overlapping systems when cognitively modern H. sapiens evolved? A number of theories put forward to explain the origin and persistent universality of music are considered, but emphasis is given, supported by recent neuroimaging, physiological, and psychological findings, to the role that music can play in promoting trust, altruistic behavior, social bonding, and cooperation within groups of culturally compatible but not necessarily genetically related humans. It is argued that, early in our history, the unique socializing and harmonizing power of music acted as an essential counterweight to the new and evolving sense of self, to an emerging sense of individuality and mortality that was linked to the development of an advanced cognitive capacity and articulate language capability.

  6. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide.

    PubMed

    Perry, Clint J; Baciadonna, Luigi

    2017-11-01

    Until recently, whether invertebrates might exhibit emotions was unknown. This possibility has traditionally been dismissed by many as emotions are frequently defined with reference to human subjective experience, and invertebrates are often not considered to have the neural requirements for such sophisticated abilities. However, emotions are understood in humans and other vertebrates to be multifaceted brain states, comprising dissociable subjective, cognitive, behavioural and physiological components. In addition, accumulating literature is providing evidence of the impressive cognitive capacities and behavioural flexibility of invertebrates. Alongside these, within the past few years, a number of studies have adapted methods for assessing emotions in humans and other animals, to invertebrates, with intriguing results. Sea slugs, bees, crayfish, snails, crabs, flies and ants have all been shown to display various cognitive, behavioural and/or physiological phenomena that indicate internal states reminiscent of what we consider to be emotions. Given the limited neural architecture of many invertebrates, and the powerful tools available within invertebrate research, these results provide new opportunities for unveiling the neural mechanisms behind emotions and open new avenues towards the pharmacological manipulation of emotion and its genetic dissection, with advantages for disease research and therapeutic drug discovery. Here, we review the increasing evidence that invertebrates display some form of emotion, discuss the various methods used for assessing emotions in invertebrates and consider what can be garnered from further emotion research on invertebrates in terms of the evolution and underlying neural basis of emotion in a comparative context. © 2017. Published by The Company of Biologists Ltd.

  7. Form and Function in the Evolution of Grammar.

    PubMed

    Newmeyer, Frederick J

    2017-03-01

    This article focuses on claims about the origin and evolution of language from the point of view of the formalist-functionalist debate in linguistics. In linguistics, an account of a grammatical phenomenon is considered "formal" if it accords center stage to the structural properties of that phenomenon, and "functional" if it appeals to the language user's communicative needs or to domain-general human capacities. The gulf between formalism and functionalism has been bridged in language evolution research, in that some leading formalists, Ray Jackendoff for one, appeal to functional mechanisms such as natural selection. In Jackendoff's view, the biological evolution of language has proceeded in stages, each stage improving communicative efficiency. This article calls into question that idea, pointing to the fact that well-understood purely historical processes suffice to explain the emergence of many grammatical properties. However, one central aspect of formalist linguistic theorizing-the idea of the autonomy of syntax-poses a challenge to the idea, central to most functionalist approaches, that the nature of grammar is a product of purely historical (as opposed to biological) evolution. The article concludes with a discussion of the origins of the autonomy of syntax, speculating that it may well have arisen over evolutionary (as opposed to historical) time. Copyright © 2016 Cognitive Science Society, Inc.

  8. Evolution, immunity and the emergence of brain superautoantigens

    PubMed Central

    Nataf, Serge

    2017-01-01

    While some autoimmune disorders remain extremely rare, others largely predominate the epidemiology of human autoimmunity. Notably, these include psoriasis, diabetes, vitiligo, thyroiditis, rheumatoid arthritis and multiple sclerosis. Thus, despite the quasi-infinite number of "self" antigens that could theoretically trigger autoimmune responses, only a limited set of antigens, referred here as superautoantigens, induce pathogenic adaptive responses. Several lines of evidence reviewed in this paper indicate that, irrespective of the targeted organ (e.g. thyroid, pancreas, joints, brain or skin), a significant proportion of superautoantigens are highly expressed in the synaptic compartment of the central nervous system (CNS). Such an observation applies notably for GAD65, AchR, ribonucleoproteins, heat shock proteins, collagen IV, laminin, tyrosine hydroxylase and the acetylcholinesterase domain of thyroglobulin. It is also argued that cognitive alterations have been described in a number of autoimmune disorders, including psoriasis, rheumatoid arthritis, lupus, Crohn's disease and autoimmune thyroiditis. Finally, the present paper points out that a great majority of the "incidental" autoimmune conditions notably triggered by neoplasms, vaccinations or microbial infections are targeting the synaptic or myelin compartments. On this basis, the concept of an immunological homunculus, proposed by Irun Cohen more than 25 years ago, is extended here in a model where physiological autoimmunity against brain superautoantigens confers both: i) a crucial evolutionary-determined advantage via cognition-promoting autoimmunity; and ii) a major evolutionary-determined vulnerability, leading to the emergence of autoimmune disorders in Homo sapiens. Moreover, in this theoretical framework, the so called co-development/co-evolution model, both the development (at the scale of an individual) and evolution (at the scale of species) of the antibody and T-cell repertoires are coupled to those of the neural repertoires (i.e. the distinct neuronal populations and synaptic circuits supporting cognitive and sensorimotor functions). Clinical implications and future experimental insights are also presented and discussed. PMID:28529699

  9. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-05

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.

  10. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  11. Is behavioural flexibility evidence of cognitive complexity? How evolution can inform comparative cognition

    PubMed Central

    Mikhalevich, Irina

    2017-01-01

    Behavioural flexibility is often treated as the gold standard of evidence for more sophisticated or complex forms of animal cognition, such as planning, metacognition and mindreading. However, the evidential link between behavioural flexibility and complex cognition has not been explicitly or systematically defended. Such a defence is particularly pressing because observed flexible behaviours can frequently be explained by putatively simpler cognitive mechanisms. This leaves complex cognition hypotheses open to ‘deflationary’ challenges that are accorded greater evidential weight precisely because they offer putatively simpler explanations of equal explanatory power. This paper challenges the blanket preference for simpler explanations, and shows that once this preference is dispensed with, and the full spectrum of evidence—including evolutionary, ecological and phylogenetic data—is accorded its proper weight, an argument in support of the prevailing assumption that behavioural flexibility can serve as evidence for complex cognitive mechanisms may begin to take shape. An adaptive model of cognitive-behavioural evolution is proposed, according to which the existence of convergent trait–environment clusters in phylogenetically disparate lineages may serve as evidence for the same trait–environment clusters in other lineages. This, in turn, could permit inferences of cognitive complexity in cases of experimental underdetermination, thereby placing the common view that behavioural flexibility can serve as evidence for complex cognition on firmer grounds. PMID:28479981

  12. The Semantic Drift of Quotations in Blogspace: A Case Study in Short-Term Cultural Evolution.

    PubMed

    Lerique, Sébastien; Roth, Camille

    2018-01-01

    We present an empirical case study that connects psycholinguistics with the field of cultural evolution, in order to test for the existence of cultural attractors in the evolution of quotations. Such attractors have been proposed as a useful concept for understanding cultural evolution in relation with individual cognition, but their existence has been hard to test. We focus on the transformation of quotations when they are copied from blog to blog or media website: by coding words with a number of well-studied lexical features, we show that the way words are substituted in quotations is consistent (a) with the hypothesis of cultural attractors and (b) with known effects of the word features. In particular, words known to be harder to recall in lists have a higher tendency to be substituted, and words easier to recall are produced instead. Our results support the hypothesis that cultural attractors can result from the combination of individual cognitive biases in the interpretation and reproduction of representations. Copyright © 2017 Cognitive Science Society, Inc.

  13. Developmental heterochrony and the evolution of autistic perception, cognition and behavior

    PubMed Central

    2013-01-01

    Background Autism is usually conceptualized as a disorder or disease that involves fundamentally abnormal neurodevelopment. In the present work, the hypothesis that a suite of core autism-related traits may commonly represent simple delays or non-completion of typical childhood developmental trajectories is evaluated. Discussion A comprehensive review of the literature indicates that, with regard to the four phenotypes of (1) restricted interests and repetitive behavior, (2) short-range and long-range structural and functional brain connectivity, (3) global and local visual perception and processing, and (4) the presence of absolute pitch, the differences between autistic individuals and typically developing individuals closely parallel the differences between younger and older children. Summary The results of this study are concordant with a model of ‘developmental heterochrony’, and suggest that evolutionary extension of child development along the human lineage has potentiated and structured genetic risk for autism and the expression of autistic perception, cognition and behavior. PMID:23639054

  14. Developmental heterochrony and the evolution of autistic perception, cognition and behavior.

    PubMed

    Crespi, Bernard

    2013-05-02

    Autism is usually conceptualized as a disorder or disease that involves fundamentally abnormal neurodevelopment. In the present work, the hypothesis that a suite of core autism-related traits may commonly represent simple delays or non-completion of typical childhood developmental trajectories is evaluated. A comprehensive review of the literature indicates that, with regard to the four phenotypes of (1) restricted interests and repetitive behavior, (2) short-range and long-range structural and functional brain connectivity, (3) global and local visual perception and processing, and (4) the presence of absolute pitch, the differences between autistic individuals and typically developing individuals closely parallel the differences between younger and older children. The results of this study are concordant with a model of 'developmental heterochrony', and suggest that evolutionary extension of child development along the human lineage has potentiated and structured genetic risk for autism and the expression of autistic perception, cognition and behavior.

  15. Black swans, cognition, and the power of learning from failure.

    PubMed

    Catalano, Allison S; Redford, Kent; Margoluis, Richard; Knight, Andrew T

    2018-06-01

    Failure carries undeniable stigma and is difficult to confront for individuals, teams, and organizations. Disciplines such as commercial and military aviation, medicine, and business have long histories of grappling with it, beginning with the recognition that failure is inevitable in every human endeavor. Although conservation may arguably be more complex, conservation professionals can draw on the research and experience of these other disciplines to institutionalize activities and attitudes that foster learning from failure, whether they are minor setbacks or major disasters. Understanding the role of individual cognitive biases, team psychological safety, and organizational willingness to support critical self-examination all contribute to creating a cultural shift in conservation to one that is open to the learning opportunity that failure provides. This new approach to managing failure is a necessary next step in the evolution of conservation effectiveness. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  16. Evolution of group-wise cooperation: Is direct reciprocity insufficient?

    PubMed

    Kurokawa, Shun; Ihara, Yasuo

    2017-02-21

    Group-wise cooperation, or cooperation among three or more individuals, is an integral part of human societies. It is likely that group-wise cooperation also played a crucial role in the survival of early hominins, who were confronted with novel environmental challenges, long before the emergence of Homo sapiens. However, previous theoretical and empirical studies, focusing mainly on modern humans, have tended to suggest that evolution of cooperation in sizable groups cannot be explained by simple direct reciprocity and requires some additional mechanisms (reputation, punishment, etc.), which are cognitively too demanding for early hominins. As a partial resolution of the paradox, our recent analysis of a stochastic evolutionary model, which considers the effect of random drift, has revealed that evolution of group-wise cooperation is more likely to occur in larger groups when an individual's share of the benefit produced by one cooperator does not decrease with increasing group size (i.e., goods are non-rivalrous). In this paper, we further extend our previous analysis to explore possible consequences of introducing rare mistakes in behavior or imperfect information about behavior of others on the model outcome. Analyses of the extended models show that evolution of group-wise cooperation can be facilitated by large group size even when individuals intending to cooperate sometimes fail to do so or when all the information about the past behavior of group members is not available. We argue, therefore, that evolution of cooperation in sizable groups does not necessarily require other mechanisms than direct reciprocity if the goods to be produced via group-wise cooperation are non-rivalrous. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. From grasp to language: embodied concepts and the challenge of abstraction.

    PubMed

    Arbib, Michael A

    2008-01-01

    The discovery of mirror neurons in the macaque monkey and the discovery of a homologous "mirror system for grasping" in Broca's area in the human brain has revived the gestural origins theory of the evolution of the human capability for language, enriching it with the suggestion that mirror neurons provide the neurological core for this evolution. However, this notion of "mirror neuron support for the transition from grasp to language" has been worked out in very different ways in the Mirror System Hypothesis model [Arbib, M.A., 2005a. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics (with commentaries and author's response). Behavioral and Brain Sciences 28, 105-167; Rizzolatti, G., Arbib, M.A., 1998. Language within our grasp. Trends in Neuroscience 21(5), 188-194] and the Embodied Concept model [Gallese, V., Lakoff, G., 2005. The brain's concepts: the role of the sensory-motor system in reason and language. Cognitive Neuropsychology 22, 455-479]. The present paper provides a critique of the latter to enrich analysis of the former, developing the role of schema theory [Arbib, M.A., 1981. Perceptual structures and distributed motor control. In: Brooks, V.B. (Ed.), Handbook of Physiology--The Nervous System II. Motor Control. American Physiological Society, pp. 1449-1480].

  18. Music, cognition, culture, and evolution.

    PubMed

    Cross, I

    2001-06-01

    We seem able to define the biological foundations for our musicality within a clear and unitary framework, yet music itself does not appear so clearly definable. Music is different things and does different things in different cultures; the bundles of elements and functions that are music for any given culture may overlap minimally with those of another culture, even for those cultures where "music" constitutes a discrete and identifiable category of human activity in its own right. The dynamics of culture, of music as cultural praxis, are neither necessarily reducible, nor easily relatable, to the dynamics of our biologies. Yet music appears to be a universal human competence. Recent evolutionary theory, however, affords a means for exploring things biological and cultural within a framework in which they are at least commensurable. The adoption of this perspective shifts the focus of the search for the foundations of music away from the mature and particular expression of music within a specific culture or situation and on to the human capacity for musicality. This paper will survey recent research that examines that capacity and its evolutionary origins in the light of a definition of music that embraces music's multifariousness. It will be suggested that music, like speech, is a product of both our biologies and our social interactions; that music is a necessary and integral dimension of human development; and that music may have played a central role in the evolution of the modern human mind.

  19. Domestication of the dog from the wolf was promoted by enhanced excitatory synaptic plasticity: a hypothesis.

    PubMed

    Li, Yan; Wang, Guo-Dong; Wang, Ming-Shan; Irwin, David M; Wu, Dong-Dong; Zhang, Ya-Ping

    2014-11-05

    Dogs shared a much closer relationship with humans than any other domesticated animals, probably due to their unique social cognitive capabilities, which were hypothesized to be a by-product of selection for tameness toward humans. Here, we demonstrate that genes involved in glutamate metabolism, which account partially for fear response, indeed show the greatest population differentiation by whole-genome comparison of dogs and wolves. However, the changing direction of their expression supports a role in increasing excitatory synaptic plasticity in dogs rather than reducing fear response. Because synaptic plasticity are widely believed to be cellular correlates of learning and memory, this change may alter the learning and memory abilities of ancient scavenging wolves, weaken the fear reaction toward humans, and prompt the initial interspecific contact. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Anxiety from a Phylogenetic Perspective: Is there a Qualitative Difference between Human and Animal Anxiety?

    PubMed Central

    Belzung, Catherine; Philippot, Pierre

    2007-01-01

    A phylogenetic approach to anxiety is proposed. The different facets of human anxiety and their presence at different levels of the phylum are examined. All organisms, including unicellular such as protozoan, can display a specific reaction to danger. The mechanisms enabling the appraisal of harmful stimuli are fully present in insects. In higher invertebrates, fear is associated with a specific physiological response. In mammals, anxiety is accompanied by specific cognitive responses. The expression of emotions diversifies in higher vertebrates, only primates displaying facial expressions. Finally, autonoetic consciousness, a feature essential for human anxiety, appears only in great apes. This evolutive feature parallels the progress in the complexity of the logistic systems supporting it (e.g., the vegetative and central nervous systems). The ability to assess one's coping potential, the diversification of the anxiety responses, and autonoetic consciousness seem relevant markers in a phylogenetic perspective. PMID:17641735

  1. Persistent neuronal activity in human prefrontal cortex links perception and action

    PubMed Central

    Haller, Matar; Case, John; Crone, Nathan E.; Chang, Edward F.; King-Stephens, David; Laxer, Kenneth D.; Weber, Peter B.; Parvizi, Josef; Knight, Robert T.; Shestyuk, Avgusta Y.

    2017-01-01

    How do humans flexibly respond to changing environmental demands on a sub-second temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behavior, yet the core mechanisms that translate sensory information into behavior remain undefined. Utilizing direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity, indexed by the broadband gamma signal, while sixteen participants performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centered in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behavior.

  2. [Mindfulness-based stimulation in advanced Alzheimer's disease: A comparative, non-inferiority, clinical pilot study].

    PubMed

    Quintana Hernández, Domingo Jesús; Miró Barrachina, María Teresa; Ibáñez Fernández, Ignacio; Santana del Pino, Angelo; Rojas Hernández, Jaime; Rodríguez García, Javier; Quintana Montesdeoca, María del Pino

    2015-01-01

    A longitudinal study was conducted in order to analyze the feasibility, safety, and effects of the practice of mindfulness, relaxation and cognitive stimulation on the evolution of Alzheimer's disease, with the aim of testing the equivalence of these interventions. There were a total of 168 participants with probable Alzheimer's disease (AD) treated with donepezil. In the present article, the 21 participants with advanced AD who completed a follow-up period of 24 months are presented. The participants were grouped into three experimental groups (mindfulness, relaxation, and cognitive stimulation) and one control group. Each group carried out three weekly sessions with bi-annual follow-up measurements (cognition: CAMCOG and MMSE; functionality: RDRS; psychopathology: NPI). Non-parametric analyses were performed. The cognitive function and functionality scores showed no significant differences between the groups. However, the scores in cognitive function of the mindfulness group and the cognitive stimulation group did not decrease in an intra-group analysis. In NPI, there were significant differences between the mindfulness group and the control group by the end of the study (P<.017). The data showed that the treatment with donepezil in combination with mindfulness or cognitive stimulation presented a better clinical evolution than the pharmacological treatment alone or combined with relaxation. These data suggest that these therapeutic alternatives should be investigated further, and that the non-pharmacological treatments should be recommended in clinical practice in order to control the evolution of AD in the long term. In order to confirm these findings, a larger study is necessary. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.

  3. Artificial selection on brain-expressed genes during the domestication of dog.

    PubMed

    Li, Yan; Vonholdt, Bridgett M; Reynolds, Andy; Boyko, Adam R; Wayne, Robert K; Wu, Dong-Dong; Zhang, Ya-Ping

    2013-08-01

    Domesticated dogs have many unique behaviors not found in gray wolves that have augmented their interaction and communication with humans. The genetic basis of such unique behaviors in dogs remains poorly understood. We found that genes within regions highly differentiated between outbred Chinese native dogs (CNs) and wolves show high bias for expression localized to brain tissues, particularly the prefrontal cortex, a specific region responsible for complex cognitive behaviors. In contrast, candidate genes showing high population differentiation between CNs and German Shepherd dogs (GSs) did not demonstrate significant expression bias. These observations indicate that these candidate genes highly expressed in the brain have rapidly evolved. This rapid evolution was probably driven by artificial selection during the primary transition from wolves to ancient dogs and was consistent with the evolution of dog-specific characteristics, such as behavior transformation, for thousands of years.

  4. Human Behavior and Cognition in Evolutionary Economics.

    PubMed

    Nelson, Richard R

    2011-12-01

    My brand of evolutionary economics recognizes, highlights, that modern economies are always in the process of changing, never fully at rest, with much of the energy coming from innovation. This perspective obviously draws a lot from Schumpeter. Continuing innovation, and the creative destruction that innovation engenders, is driving the system. There are winners and losers in the process, but generally the changes can be regarded as progress. The processes through which economic activity and performance evolve has a lot in common with evolution in biology. In particular, at any time the economy is marked by considerable variety, there are selection forces winnowing on that variety, but also continuing emergence of new ways of doing things and often economic actors. But there also are important differences from biological evolution. In particular, both innovation and selection are to a considerable degree purposive activities, often undertaken on the basis of relatively strong knowledge.

  5. Specificity and multiplicity in the recognition of individuals: implications for the evolution of social behaviour.

    PubMed

    Wiley, R H

    2013-02-01

    Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.

  6. [Reason and emotion: integration of cognitive-behavioural and experiential interventions in the treatment of long evolution food disorders].

    PubMed

    Vilariño Besteiro, M P; Pérez Franco, C; Gallego Morales, L; Calvo Sagardoy, R; García de Lorenzo, A

    2009-01-01

    This paper intends to show the combination of therapeutical strategies in the treatment of long evolution food disorders. This fashion of work entitled "Modelo Santa Cristina" is based on several theoretical paradigms: Enabling Model, Action Control Model, Change Process Transtheoretical Model and Cognitive-Behavioural Model (Cognitive Restructuring and Learning Theories). Furthermore, Gestalt, Systemic and Psychodrama Orientation Techniques. The purpose of the treatment is both the normalization of food patterns and the increase in self-knowledge, self-acceptance and self-efficacy of patients. The exploration of ambivalence to change, the discovery of the functions of symptoms and the search for alternative behaviours, the normalization of food patterns, bodily image, cognitive restructuring, decision taking, communication skills and elaboration of traumatic experiences are among the main areas of intervention.

  7. Variables, Decisions, and Scripting in Construct

    DTIC Science & Technology

    2009-09-01

    grounded in sociology and cognitive science which seeks to model the processes and situations by which humans interact and share information...Construct is an embodiment of constructuralism (Carley 1986), a theory which posits that human social structures and cognitive structures co-evolve so that...human cognition reflects human social behavior, and that human social behavior simultaneously influences cognitive processes. Recent work with

  8. Origins of spatial, temporal and numerical cognition: Insights from comparative psychology.

    PubMed

    Haun, Daniel B M; Jordan, Fiona M; Vallortigara, Giorgio; Clayton, Nicky S

    2010-12-01

    Contemporary comparative cognition has a large repertoire of animal models and methods, with concurrent theoretical advances that are providing initial answers to crucial questions about human cognition. What cognitive traits are uniquely human? What are the species-typical inherited predispositions of the human mind? What is the human mind capable of without certain types of specific experiences with the surrounding environment? Here, we review recent findings from the domains of space, time and number cognition. These findings are produced using different comparative methodologies relying on different animal species, namely birds and non-human great apes. The study of these species not only reveals the range of cognitive abilities across vertebrates, but also increases our understanding of human cognition in crucial ways. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Human-Specific Histone Methylation Signatures at Transcription Start Sites in Prefrontal Neurons

    PubMed Central

    Cheung, Iris; Bharadwaj, Rahul; Chou, Hsin-Jung; Houston, Isaac B.; Peter, Cyril J.; Mitchell, Amanda C.; Yao, Wei-Dong; Myers, Richard H.; Chen, Jiang-fan; Preuss, Todd M.; Rogaev, Evgeny I.; Jensen, Jeffrey D.; Weng, Zhiping; Akbarian, Schahram

    2012-01-01

    Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5–1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans. PMID:23185133

  10. Social cognition on the Internet: testing constraints on social network size

    PubMed Central

    Dunbar, R. I. M.

    2012-01-01

    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members’ behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction. PMID:22734062

  11. A rock engraving made by Neanderthals in Gibraltar.

    PubMed

    Rodríguez-Vidal, Joaquín; d'Errico, Francesco; Giles Pacheco, Francisco; Blasco, Ruth; Rosell, Jordi; Jennings, Richard P; Queffelec, Alain; Finlayson, Geraldine; Fa, Darren A; Gutiérrez López, José María; Carrión, José S; Negro, Juan José; Finlayson, Stewart; Cáceres, Luís M; Bernal, Marco A; Fernández Jiménez, Santiago; Finlayson, Clive

    2014-09-16

    The production of purposely made painted or engraved designs on cave walls--a means of recording and transmitting symbolic codes in a durable manner--is recognized as a major cognitive step in human evolution. Considered exclusive to modern humans, this behavior has been used to argue in favor of significant cognitive differences between our direct ancestors and contemporary archaic hominins, including the Neanderthals. Here we present the first known example of an abstract pattern engraved by Neanderthals, from Gorham's Cave in Gibraltar. It consists of a deeply impressed cross-hatching carved into the bedrock of the cave that has remained covered by an undisturbed archaeological level containing Mousterian artifacts made by Neanderthals and is older than 39 cal kyr BP. Geochemical analysis of the epigenetic coating over the engravings and experimental replication show that the engraving was made before accumulation of the archaeological layers, and that most of the lines composing the design were made by repeatedly and carefully passing a pointed lithic tool into the grooves, excluding the possibility of an unintentional or utilitarian origin (e.g., food or fur processing). This discovery demonstrates the capacity of the Neanderthals for abstract thought and expression through the use of geometric forms.

  12. Varieties of numerical abilities.

    PubMed

    Dehaene, S

    1992-08-01

    This paper provides a tutorial introduction to numerical cognition, with a review of essential findings and current points of debate. A tacit hypothesis in cognitive arithmetic is that numerical abilities derive from human linguistic competence. One aim of this special issue is to confront this hypothesis with current knowledge of number representations in animals, infants, normal and gifted adults, and brain-lesioned patients. First, the historical evolution of number notations is presented, together with the mental processes for calculating and transcoding from one notation to another. While these domains are well described by formal symbol-processing models, this paper argues that such is not the case for two other domains of numerical competence: quantification and approximation. The evidence for counting, subitizing and numerosity estimation in infants, children, adults and animals is critically examined. Data are also presented which suggest a specialization for processing approximate numerical quantities in animals and humans. A synthesis of these findings is proposed in the form of a triple-code model, which assumes that numbers are mentally manipulated in an arabic, verbal or analogical magnitude code depending on the requested mental operation. Only the analogical magnitude representation seems available to animals and preverbal infants.

  13. Insights into the Biology and Therapeutic Applications of Neural Stem Cells

    PubMed Central

    Harris, Lachlan; Zalucki, Oressia; Piper, Michael; Heng, Julian Ik-Tsen

    2016-01-01

    The cerebral cortex is essential for our higher cognitive functions and emotional reasoning. Arguably, this brain structure is the distinguishing feature of our species, and yet our remarkable cognitive capacity has seemingly come at a cost to the regenerative capacity of the human brain. Indeed, the capacity for regeneration and neurogenesis of the brains of vertebrates has declined over the course of evolution, from fish to rodents to primates. Nevertheless, recent evidence supporting the existence of neural stem cells (NSCs) in the adult human brain raises new questions about the biological significance of adult neurogenesis in relation to ageing and the possibility that such endogenous sources of NSCs might provide therapeutic options for the treatment of brain injury and disease. Here, we highlight recent insights and perspectives on NSCs within both the developing and adult cerebral cortex. Our review of NSCs during development focuses upon the diversity and therapeutic potential of these cells for use in cellular transplantation and in the modeling of neurodevelopmental disorders. Finally, we describe the cellular and molecular characteristics of NSCs within the adult brain and strategies to harness the therapeutic potential of these cell populations in the treatment of brain injury and disease. PMID:27069486

  14. A rock engraving made by Neanderthals in Gibraltar

    PubMed Central

    Rodríguez-Vidal, Joaquín; d’Errico, Francesco; Pacheco, Francisco Giles; Blasco, Ruth; Rosell, Jordi; Jennings, Richard P.; Queffelec, Alain; Finlayson, Geraldine; Fa, Darren A.; Gutiérrez López, José María; Carrión, José S.; Negro, Juan José; Finlayson, Stewart; Cáceres, Luís M.; Bernal, Marco A.; Fernández Jiménez, Santiago; Finlayson, Clive

    2014-01-01

    The production of purposely made painted or engraved designs on cave walls—a means of recording and transmitting symbolic codes in a durable manner—is recognized as a major cognitive step in human evolution. Considered exclusive to modern humans, this behavior has been used to argue in favor of significant cognitive differences between our direct ancestors and contemporary archaic hominins, including the Neanderthals. Here we present the first known example of an abstract pattern engraved by Neanderthals, from Gorham’s Cave in Gibraltar. It consists of a deeply impressed cross-hatching carved into the bedrock of the cave that has remained covered by an undisturbed archaeological level containing Mousterian artifacts made by Neanderthals and is older than 39 cal kyr BP. Geochemical analysis of the epigenetic coating over the engravings and experimental replication show that the engraving was made before accumulation of the archaeological layers, and that most of the lines composing the design were made by repeatedly and carefully passing a pointed lithic tool into the grooves, excluding the possibility of an unintentional or utilitarian origin (e.g., food or fur processing). This discovery demonstrates the capacity of the Neanderthals for abstract thought and expression through the use of geometric forms. PMID:25197076

  15. On The Evolutionary Origin of Symbolic Communication

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul; D'Eleuterio, Gabriele M. T.; Christiansen, Morten H.; Lipson, Hod

    2016-10-01

    The emergence of symbolic communication is often cited as a critical step in the evolution of Homo sapiens, language, and human-level cognition. It is a widely held assumption that humans are the only species that possess natural symbolic communication schemes, although a variety of other species can be taught to use symbols. The origin of symbolic communication remains a controversial open problem, obfuscated by the lack of a fossil record. Here we demonstrate an unbroken evolutionary pathway from a population of initially noncommunicating robots to the spontaneous emergence of symbolic communication. Robots evolve in a simulated world and are supplied with only a single channel of communication. When their ability to reproduce is motivated by the need to find a mate, robots evolve indexical communication schemes from initially noncommunicating populations in 99% of all experiments. Furthermore, 9% of the populations evolve a symbolic communication scheme allowing pairs of robots to exchange information about two independent spatial dimensions over a one-dimensional channel, thereby increasing their chance of reproduction. These results suggest that the ability for symbolic communication could have emerged spontaneously under natural selection, without requiring cognitive preadaptations or preexisting iconic communication schemes as previously conjectured.

  16. Social cognition on the Internet: testing constraints on social network size.

    PubMed

    Dunbar, R I M

    2012-08-05

    The social brain hypothesis (an explanation for the evolution of brain size in primates) predicts that humans typically cannot maintain more than 150 relationships at any one time. The constraint is partly cognitive (ultimately determined by some aspect of brain volume) and partly one of time. Friendships (but not necessarily kin relationships) are maintained by investing time in them, and failure to do so results in an inexorable deterioration in the quality of a relationship. The Internet, and in particular the rise of social networking sites (SNSs), raises the possibility that digital media might allow us to circumvent some or all of these constraints. This allows us to test the importance of these constraints in limiting human sociality. Although the recency of SNSs means that there have been relatively few studies, those that are available suggest that, in general, the ability to broadcast to many individuals at once, and the possibilities this provides in terms of continuously updating our understanding of network members' behaviour and thoughts, do not allow larger networks to be maintained. This may be because only relatively weak quality relationships can be maintained without face-to-face interaction.

  17. Artificial consciousness and the consciousness-attention dissociation.

    PubMed

    Haladjian, Harry Haroutioun; Montemayor, Carlos

    2016-10-01

    Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to implement sophisticated forms of human intelligence in machines. This research attempts to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable once we overcome short-term engineering challenges. We believe, however, that phenomenal consciousness cannot be implemented in machines. This becomes clear when considering emotions and examining the dissociation between consciousness and attention in humans. While we may be able to program ethical behavior based on rules and machine learning, we will never be able to reproduce emotions or empathy by programming such control systems-these will be merely simulations. Arguments in favor of this claim include considerations about evolution, the neuropsychological aspects of emotions, and the dissociation between attention and consciousness found in humans. Ultimately, we are far from achieving artificial consciousness. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Evolution of the strongest vertebrate rightward action asymmetries: Marine mammal sidedness and human handedness.

    PubMed

    MacNeilage, Peter F

    2014-03-01

    Marine mammals and humans have the strongest manifestations of what is apparently a vertebrate-wide tendency toward a rightward action asymmetry associated with routine behavior. Marine mammal asymmetries usually involve whole-body actions associated with feeding. The human-like strength of these asymmetries may result from a problem of external aquatic support for the reactive component of the demanding lateral maneuvers of large marine mammals in daily pursuit of prey. Our asymmetrical primate heritage may also have begun with a rightward whole-body asymmetry, in prosimians, perhaps also resulting from problems of support for the reactive component of action; in this case arising from the arboreal habitat (and paradoxically including left-handedness). Monkeys and apes (simians) subsequently added right-sided adaptations for manipulation, bimanual coordination, bipedalism, throwing, and manual communication, most importantly by distal elaboration of limb function. The strength of human right-handedness may result partly from further elaboration of these simian action adaptations and partly from an evolving cognitive superstructure for tool use and language.

  19. Cognitive science contributions to decision science.

    PubMed

    Busemeyer, Jerome R

    2015-02-01

    This article briefly reviews the history and interplay between decision theory, behavioral decision-making research, and cognitive psychology. The review reveals the increasingly important impact that psychology and cognitive science have on decision science. One of the main contributions of cognitive science to decision science is the development of dynamic models that describe the cognitive processes that underlay the evolution of preferences during deliberation phase of making a decision. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evolution of Constructivism

    ERIC Educational Resources Information Center

    Liu, Chu Chih; Chen, I Ju

    2010-01-01

    The contrast between social constructivism and cognitive constructivism are depicted in different ways in many studies. The purpose of this paper is to summarize the evolution of constructivism and put a focus on social constructivism from the perception of Vygotsky. This study provides a general idea of the evolution of constructivism for people…

  1. Getting to Darwin: Obstacles to Accepting Evolution by Natural Selection

    ERIC Educational Resources Information Center

    Thagard, Paul; Findlay, Scott

    2010-01-01

    Darwin's theory of evolution by natural selection is central to modern biology, but is resisted by many people. This paper discusses the major psychological obstacles to accepting Darwin's theory. Cognitive obstacles to adopting evolution by natural selection include conceptual difficulties, methodological issues, and coherence problems that…

  2. The Distinct Cognitive Syndromes of Parkinson's Disease: 5 Year Follow-Up of the CamPaIGN Cohort

    ERIC Educational Resources Information Center

    Williams-Gray, Caroline H.; Evans, Jonathan R.; Goris, An; Foltynie, Thomas; Ban, Maria; Robbins, Trevor W.; Brayne, Carol; Kolachana, Bhaskar S.; Weinberger, Daniel R.; Sawcer, Stephen J.; Barker, Roger A.

    2009-01-01

    Cognitive abnormalities are common in Parkinson's disease, with important social and economic implications. Factors influencing their evolution remain unclear but are crucial to the development of targeted therapeutic strategies. We have investigated the development of cognitive impairment and dementia in Parkinson's disease using a longitudinal…

  3. Avian Models for Human Cognitive Neuroscience: A Proposal.

    PubMed

    Clayton, Nicola S; Emery, Nathan J

    2015-06-17

    Research on avian cognitive neuroscience over the past two decades has revealed the avian brain to be a better model for understanding human cognition than previously thought, despite differences in the neuroarchitecture of avian and mammalian brains. The brain, behavior, and cognition of songbirds have provided an excellent model of human cognition in one domain, namely learning human language and the production of speech. There are other important behavioral candidates of avian cognition, however, notably the capacity of corvids to remember the past and plan for the future, as well as their ability to think about another's perspective, and physical reasoning. We review this work and assess the evidence that the corvid brain can support such a cognitive architecture. We propose potential applications of these behavioral paradigms for cognitive neuroscience, including recent work on single-cell recordings and neuroimaging in corvids. Finally, we discuss their impact on understanding human developmental cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The knowledge instinct, cognitive algorithms, modeling of language and cultural evolution

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid I.

    2008-04-01

    The talk discusses mechanisms of the mind and their engineering applications. The past attempts at designing "intelligent systems" encountered mathematical difficulties related to algorithmic complexity. The culprit turned out to be logic, which in one way or another was used not only in logic rule systems, but also in statistical, neural, and fuzzy systems. Algorithmic complexity is related to Godel's theory, a most fundamental mathematical result. These difficulties were overcome by replacing logic with a dynamic process "from vague to crisp," dynamic logic. It leads to algorithms overcoming combinatorial complexity, and resulting in orders of magnitude improvement in classical problems of detection, tracking, fusion, and prediction in noise. I present engineering applications to pattern recognition, detection, tracking, fusion, financial predictions, and Internet search engines. Mathematical and engineering efficiency of dynamic logic can also be understood as cognitive algorithm, which describes fundamental property of the mind, the knowledge instinct responsible for all our higher cognitive functions: concepts, perception, cognition, instincts, imaginations, intuitions, emotions, including emotions of the beautiful. I present our latest results in modeling evolution of languages and cultures, their interactions in these processes, and role of music in cultural evolution. Experimental data is presented that support the theory. Future directions are outlined.

  5. Evolution, learning, and cognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.C.

    1988-01-01

    The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.

  6. Augmenting team cognition in human-automation teams performing in complex operational environments.

    PubMed

    Cuevas, Haydee M; Fiore, Stephen M; Caldwell, Barrett S; Strater, Laura

    2007-05-01

    There is a growing reliance on automation (e.g., intelligent agents, semi-autonomous robotic systems) to effectively execute increasingly cognitively complex tasks. Successful team performance for such tasks has become even more dependent on team cognition, addressing both human-human and human-automation teams. Team cognition can be viewed as the binding mechanism that produces coordinated behavior within experienced teams, emerging from the interplay between each team member's individual cognition and team process behaviors (e.g., coordination, communication). In order to better understand team cognition in human-automation teams, team performance models need to address issues surrounding the effect of human-agent and human-robot interaction on critical team processes such as coordination and communication. Toward this end, we present a preliminary theoretical framework illustrating how the design and implementation of automation technology may influence team cognition and team coordination in complex operational environments. Integrating constructs from organizational and cognitive science, our proposed framework outlines how information exchange and updating between humans and automation technology may affect lower-level (e.g., working memory) and higher-level (e.g., sense making) cognitive processes as well as teams' higher-order "metacognitive" processes (e.g., performance monitoring). Issues surrounding human-automation interaction are discussed and implications are presented within the context of designing automation technology to improve task performance in human-automation teams.

  7. Temporal Evolution of Poststroke Cognitive Impairment Using the Montreal Cognitive Assessment.

    PubMed

    Nijsse, Britta; Visser-Meily, Johanna M A; van Mierlo, Maria L; Post, Marcel W M; de Kort, Paul L M; van Heugten, Caroline M

    2017-01-01

    The Montreal Cognitive Assessment (MoCA) is nowadays recommended for the screening of poststroke cognitive impairment. However, little is known about the temporal evolution of MoCA-assessed cognition after stroke. The objective of this study was to examine the temporal pattern of overall and domain-specific cognition at 2 and 6 months after stroke using the MoCA and to identify patient groups at risk for cognitive impairment at 6 months after stroke. Prospective cohort study in which 324 patients were administered the MoCA at 2 and 6 months post stroke. Cognitive impairment was defined as MoCA<26. Differences in cognitive impairment rates between 2 and 6 months post stroke were analyzed in different subgroups. Patients with MoCA score <26 at 2 months, who improved by ≥2 points by 6 months, were defined as reverters. Logistic regression analyses were used to identify determinants of (1) cognitive impairment at 6 months post stroke and (2) reverter status. Between 2 and 6 months post stroke, mean MoCA score improved from 23.7 (3.9) to 24.7 (3.5), P<0.001. Prevalence of cognitive impairment at 2 months was 66.4%, compared with 51.9% at 6 months (P<0.001). More comorbidity and presence of cognitive impairment at 2 months were significant independent predictors of cognitive impairment 6 months post stroke. No significant determinants of reverter status were identified. Although cognitive improvement is seen ≤6 months post stroke, long-term cognitive deficits are prevalent. Identifying patients at risk of cognitive impairment is, therefore, important as well as targeting interventions to this group. © 2016 American Heart Association, Inc.

  8. Meta-analysis of associations between human brain volume and intelligence differences: How strong are they and what do they mean?

    PubMed

    Pietschnig, Jakob; Penke, Lars; Wicherts, Jelte M; Zeiler, Michael; Voracek, Martin

    2015-10-01

    Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of published studies and unpublished results obtained by personal communications with researchers, we identified 88 studies examining effect sizes of 148 healthy and clinical mixed-sex samples (>8000 individuals). Our results showed significant positive associations of brain volume and IQ (r=.24, R(2)=.06) that generalize over age (children vs. adults), IQ domain (full-scale, performance, and verbal IQ), and sex. Application of a number of methods for detection of publication bias indicates that strong and positive correlation coefficients have been reported frequently in the literature whilst small and non-significant associations appear to have been often omitted from reports. We show that the strength of the positive association of brain volume and IQ has been overestimated in the literature, but remains robust even when accounting for different types of dissemination bias, although reported effects have been declining over time. While it is tempting to interpret this association in the context of human cognitive evolution and species differences in brain size and cognitive ability, we show that it is not warranted to interpret brain size as an isomorphic proxy of human intelligence differences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Why are there so many explanations for primate brain evolution?

    PubMed Central

    2017-01-01

    The question as to why primates have evolved unusually large brains has received much attention, with many alternative proposals all supported by evidence. We review the main hypotheses, the assumptions they make and the evidence for and against them. Taking as our starting point the fact that every hypothesis has sound empirical evidence to support it, we argue that the hypotheses are best interpreted in terms of a framework of evolutionary causes (selection factors), consequences (evolutionary windows of opportunity) and constraints (usually physiological limitations requiring resolution if large brains are to evolve). Explanations for brain evolution in birds and mammals generally, and primates in particular, have to be seen against the backdrop of the challenges involved with the evolution of coordinated, cohesive, bonded social groups that require novel social behaviours for their resolution, together with the specialized cognition and neural substrates that underpin this. A crucial, but frequently overlooked, issue is that fact that the evolution of large brains required energetic, physiological and time budget constraints to be overcome. In some cases, this was reflected in the evolution of ‘smart foraging’ and technical intelligence, but in many cases required the evolution of behavioural competences (such as coalition formation) that required novel cognitive skills. These may all have been supported by a domain-general form of cognition that can be used in many different contexts. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673920

  10. Human-like machines: Transparency and comprehensibility.

    PubMed

    Patrzyk, Piotr M; Link, Daniela; Marewski, Julian N

    2017-01-01

    Artificial intelligence algorithms seek inspiration from human cognitive systems in areas where humans outperform machines. But on what level should algorithms try to approximate human cognition? We argue that human-like machines should be designed to make decisions in transparent and comprehensible ways, which can be achieved by accurately mirroring human cognitive processes.

  11. An enquiry concerning the nature of conceptual categories: a case-study on the social dimension of human cognition

    PubMed Central

    Stewart, John

    2014-01-01

    Cognitive Science, in all its guises, has not yet accorded any fundamental importance to the social dimension of human cognition. In order to illustrate the possibilities that have not so far been developed, this article seeks to pursue the idea, first put forward by Durkheim, that the major categories which render conceptual thought possible may actually have a social origin. Durkheim illustrated his thesis, convincingly enough, by examining the societies of Australian aborigines. The aim here is to extend this idea to cover the case of the conceptual categories underpinning modern Western science, as they developed historically first in Ancient Greece, and then at the Renaissance. These major non-empirical concepts include those of abstract Space (Euclidean space, perfectly homogeneous in all its dimensions); abstract Time (conceived as spatially linearized, with the possibility of imaginatively going back and forth); and a number of canonical logical categories (equality, abstract quantity, essential versus accidental properties, the continuous and the discontinuous, the transcendental…). Sohn-Rethel (1978) has proposed that the heart of the conceptual categories in question is to be found in an analysis of the exchange abstraction. This hypothesis will be fleshed out by examining the co-emergence of new social structures and new forms of conceptual thought in the course of historical evolution. This includes the Renaissance, which saw the emergence of both Capitalism and Modern Science; and on the contemporary situation, where the form of social life is dominated by financial speculation which goes together with the advent of automation in the processes of production. It is concluded that Cognitive Science, and in particular the nascent paradigm of Enaction, would do well to broaden its transdisciplinary scope to include the dimensions of sociology and anthropology. PMID:25009526

  12. An enquiry concerning the nature of conceptual categories: a case-study on the social dimension of human cognition.

    PubMed

    Stewart, John

    2014-01-01

    Cognitive Science, in all its guises, has not yet accorded any fundamental importance to the social dimension of human cognition. In order to illustrate the possibilities that have not so far been developed, this article seeks to pursue the idea, first put forward by Durkheim, that the major categories which render conceptual thought possible may actually have a social origin. Durkheim illustrated his thesis, convincingly enough, by examining the societies of Australian aborigines. The aim here is to extend this idea to cover the case of the conceptual categories underpinning modern Western science, as they developed historically first in Ancient Greece, and then at the Renaissance. These major non-empirical concepts include those of abstract Space (Euclidean space, perfectly homogeneous in all its dimensions); abstract Time (conceived as spatially linearized, with the possibility of imaginatively going back and forth); and a number of canonical logical categories (equality, abstract quantity, essential versus accidental properties, the continuous and the discontinuous, the transcendental…). Sohn-Rethel (1978) has proposed that the heart of the conceptual categories in question is to be found in an analysis of the exchange abstraction. This hypothesis will be fleshed out by examining the co-emergence of new social structures and new forms of conceptual thought in the course of historical evolution. This includes the Renaissance, which saw the emergence of both Capitalism and Modern Science; and on the contemporary situation, where the form of social life is dominated by financial speculation which goes together with the advent of automation in the processes of production. It is concluded that Cognitive Science, and in particular the nascent paradigm of Enaction, would do well to broaden its transdisciplinary scope to include the dimensions of sociology and anthropology.

  13. "The Two Brothers": Reconciling Perceptual-Cognitive and Statistical Models of Musical Evolution.

    PubMed

    Jan, Steven

    2018-01-01

    While the "units, events and dynamics" of memetic evolution have been abstractly theorized (Lynch, 1998), they have not been applied systematically to real corpora in music. Some researchers, convinced of the validity of cultural evolution in more than the metaphorical sense adopted by much musicology, but perhaps skeptical of some or all of the claims of memetics, have attempted statistically based corpus-analysis techniques of music drawn from molecular biology, and these have offered strong evidence in favor of system-level change over time (Savage, 2017). This article argues that such statistical approaches, while illuminating, ignore the psychological realities of music-information grouping, the transmission of such groups with varying degrees of fidelity, their selection according to relative perceptual-cognitive salience, and the power of this Darwinian process to drive the systemic changes (such as the development over time of systems of tonal organization in music) that statistical methodologies measure. It asserts that a synthesis between such statistical approaches to the study of music-cultural change and the theory of memetics as applied to music (Jan, 2007), in particular the latter's perceptual-cognitive elements, would harness the strengths of each approach and deepen understanding of cultural evolution in music.

  14. “The Two Brothers”: Reconciling Perceptual-Cognitive and Statistical Models of Musical Evolution

    PubMed Central

    Jan, Steven

    2018-01-01

    While the “units, events and dynamics” of memetic evolution have been abstractly theorized (Lynch, 1998), they have not been applied systematically to real corpora in music. Some researchers, convinced of the validity of cultural evolution in more than the metaphorical sense adopted by much musicology, but perhaps skeptical of some or all of the claims of memetics, have attempted statistically based corpus-analysis techniques of music drawn from molecular biology, and these have offered strong evidence in favor of system-level change over time (Savage, 2017). This article argues that such statistical approaches, while illuminating, ignore the psychological realities of music-information grouping, the transmission of such groups with varying degrees of fidelity, their selection according to relative perceptual-cognitive salience, and the power of this Darwinian process to drive the systemic changes (such as the development over time of systems of tonal organization in music) that statistical methodologies measure. It asserts that a synthesis between such statistical approaches to the study of music-cultural change and the theory of memetics as applied to music (Jan, 2007), in particular the latter's perceptual-cognitive elements, would harness the strengths of each approach and deepen understanding of cultural evolution in music. PMID:29670551

  15. Mill and mental phenomena: critical contributions to a science of cognition.

    PubMed

    Bistricky, Steven L

    2013-06-01

    Attempts to define cognition preceded John Stuart Mill's life and continue to this day. John Stuart Mill envisioned a science of mental phenomena informed by associationism, empirical introspection, and neurophysiology, and he advanced specific ideas that still influence modern conceptions of cognition. The present article briefly reviews Mill's personal history and the times in which he lived, and it traces the evolution of ideas that have run through him to contemporary cognitive concepts. The article also highlights contemporary problems in defining cognition and supports specific criteria regarding what constitutes cognition.

  16. Anthropomorphism in Human–Robot Co-evolution

    PubMed Central

    Damiano, Luisa; Dumouchel, Paul

    2018-01-01

    Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth. PMID:29632507

  17. Evolution of diagnostic criteria and assessments for Parkinson's disease mild cognitive impairment.

    PubMed

    Goldman, Jennifer G; Holden, Samantha K; Litvan, Irene; McKeith, Ian; Stebbins, Glenn T; Taylor, John-Paul

    2018-04-01

    Mild cognitive impairment has gained recognition as a construct and a potential prodromal stage to dementia in both Alzheimer's disease and Parkinson's disease (PD). Although mild cognitive impairment has been recognized in the Alzheimer's disease field, it is a relatively more recent topic of interest in PD. Recent advances include the development of diagnostic criteria for PD mild cognitive impairment to provide more uniform definitions for clinical and research use. Studies reveal that mild cognitive impairment in PD is frequent, but also heterogeneous, with variable clinical presentations, differences in its progression to dementia, and likely differences in underlying pathophysiology. Application of the International Parkinson and Movement Disorder Society PD Mild Cognitive Impairment Task Force diagnostic criteria has provided insights regarding cognitive measures, functional assessments, and other key topics that may require additional refinement. Furthermore, it is important to consider definitions of PD mild cognitive impairment in the landscape of other related Lewy body disorders, such as dementia with Lewy bodies, and in the context of prodromal and early-stage PD. This article examines the evolution of mild cognitive impairment in concept and definition, particularly in PD, but also in related disorders such as Alzheimer's disease and dementia with Lewy bodies; the development and application of International Parkinson and Movement Disorder Society PD Mild Cognitive Impairment diagnostic criteria; and insights and future directions for the field of PD mild cognitive impairment. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  18. Conceptualizing the autism spectrum in terms of natural selection and behavioral ecology: the solitary forager hypothesis.

    PubMed

    Reser, Jared Edward

    2011-05-21

    This article reviews etiological and comparative evidence supporting the hypothesis that some genes associated with the autism spectrum were naturally selected and represent the adaptive benefits of being cognitively suited for solitary foraging. People on the autism spectrum are conceptualized here as ecologically competent individuals that could have been adept at learning and implementing hunting and gathering skills in the ancestral environment. Upon independence from their mothers, individuals on the autism spectrum may have been psychologically predisposed toward a different life-history strategy, common among mammals and even some primates, to hunt and gather primarily on their own. Many of the behavioral and cognitive tendencies that autistic individuals exhibit are viewed here as adaptations that would have complemented a solitary lifestyle. For example, the obsessive, repetitive and systemizing tendencies in autism, which can be mistakenly applied toward activities such as block stacking today, may have been focused by hunger and thirst toward successful food procurement in the ancestral past. Both solitary mammals and autistic individuals are low on measures of gregariousness, socialization, direct gazing, eye contact, facial expression, facial recognition, emotional engagement, affiliative need and other social behaviors. The evolution of the neurological tendencies in solitary species that predispose them toward being introverted and reclusive may hold important clues for the evolution of the autism spectrum and the natural selection of autism genes. Solitary animals are thought to eschew unnecessary social contact as part of a foraging strategy often due to scarcity and wide dispersal of food in their native environments. It is thought that the human ancestral environment was often nutritionally sparse as well, and this may have driven human parties to periodically disband. Inconsistencies in group size must have led to inconsistencies in the manner in which natural selection fashioned the social minds of humans, which in turn may well be responsible for the large variation in social abilities seen in human populations. This article emphasizes that individuals on the autism spectrum may have only been partially solitary, that natural selection may have only favored subclinical autistic traits and that the most severe cases of autism may be due to assortative mating.

  19. An Integrated Self-Aware Cognitive Architecture

    DTIC Science & Technology

    2008-03-01

    human-like cognitive growth. Our approach is inspired by studies of the human brain -mind: in particular, by theoretical models of representations of...agency in the higher associative human brain areas. This feature (a theory of mind including representations of one’s self) allows the system to...self-aware cognition that we believe is necessary for human-like cognitive growth. Our approach is inspired by studies of the human brain -mind: in

  20. The Brain Circuitry Underlying the Temporal Evolution of Nausea in Humans

    PubMed Central

    Sheehan, James D.; Kim, Jieun; LaCount, Lauren T.; Park, Kyungmo; Kaptchuk, Ted J.; Rosen, Bruce R.; Kuo, Braden

    2013-01-01

    Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus–associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom. PMID:22473843

  1. The brain circuitry underlying the temporal evolution of nausea in humans.

    PubMed

    Napadow, Vitaly; Sheehan, James D; Kim, Jieun; Lacount, Lauren T; Park, Kyungmo; Kaptchuk, Ted J; Rosen, Bruce R; Kuo, Braden

    2013-04-01

    Nausea is a universal human experience. It evolves slowly over time, and brain mechanisms underlying this evolution are not well understood. Our functional magnetic resonance imaging (fMRI) approach evaluated brain activity contributing to and arising from increasing motion sickness. Subjects rated transitions to increasing nausea, produced by visually induced vection within the fMRI environment. We evaluated parametrically increasing brain activity 1) precipitating increasing nausea and 2) following transition to stronger nausea. All subjects demonstrated visual stimulus-associated activation (P < 0.01) in primary and extrastriate visual cortices. In subjects experiencing motion sickness, increasing phasic activity preceding nausea was found in amygdala, putamen, and dorsal pons/locus ceruleus. Increasing sustained response following increased nausea was found in a broader network including insular, anterior cingulate, orbitofrontal, somatosensory and prefrontal cortices. Moreover, sustained anterior insula activation to strong nausea was correlated with midcingulate activation (r = 0.87), suggesting a closer linkage between these specific regions within the brain circuitry subserving nausea perception. Thus, while phasic activation in fear conditioning and noradrenergic brainstem regions precipitates transition to strong nausea, sustained activation following this transition occurs in a broader interoceptive, limbic, somatosensory, and cognitive network, reflecting the multiple dimensions of this aversive commonly occurring symptom.

  2. Can Chimpanzee Biology Highlight Human Origin and Evolution?

    PubMed Central

    Roffman, Itai; Nevo, Eviatar

    2010-01-01

    The closest living relatives of humans are their chimpanzee/bonobo (Pan) sister species, members of the same subfamily “Homininae”. This classification is supported by over 50 years of research in the fields of chimpanzee cultural diversity, language competency, genomics, anatomy, high cognition, psychology, society, self-consciousness and relation to others, tool use/production, as well as Homo level emotions, symbolic competency, memory recollection, complex multifaceted problem-solving capabilities, and interspecies communication. Language competence and symbolism can be continuously bridged from chimpanzee to man. Emotions, intercommunity aggression, body language, gestures, facial expressions, and vocalization of intonations seem to parallel between the sister taxa Homo and Pan. The shared suite of traits between Pan and Homo genus demonstrated in this article integrates old and new information on human–chimpanzee evolution, bilateral informational and cross-cultural exchange, promoting the urgent need for Pan cultures in the wild to be protected, as they are part of the cultural heritage of mankind. Also, we suggest that bonobos, Pan paniscus, based on shared traits with Australopithecus, need to be included in Australopithecine’s subgenus, and may even represent living-fossil Australopithecines. Unfolding bonobo and chimpanzee biology highlights our common genetic and cultural evolutionary origins. PMID:23908781

  3. Advanced Computing Architectures for Cognitive Processing

    DTIC Science & Technology

    2009-07-01

    Evolution ................................................................................. 20  Figure 9: Logic diagram smart block-based neuron...48  Figure 21: Naive Grid Potential Kernel...processing would be helpful for Air Force systems acquisition. Specific cognitive processing approaches addressed herein include global information grid

  4. Biomechanics of microliths manufacture: a preliminary approach to Neanderthal's motor constrains in the frame of embodied cognition.

    PubMed

    Patiño, Francia; Luque, Manuel; Terradillos-Bernal, Marcos; Martín-Loeches, Manuel

    2017-12-30

    The systems of perception and action of the brain appear as important constraining factors in human evolution under current models of embodied cognition. In this view, the emergence of certain items in the archeological record is not necessarily subsequent to the emergence of a 'symbolic' mind, but instead to the appearance of the sensory-motor systems enabling that behavior. One of the products normally absent in pre- Homo sapiens species is the standardized microlith, whose production seems very demanding for the hand due to their small size and need for fine craft. In the present study, we provide preliminary empirical evidence that the biomechanical requirements of microliths manufacture made this industry difficult to achieve by Neanderthals. The biomechanical parameters of the human hand in the manufacture of microliths are here explored in two individuals with different degrees of expertise. The figures obtained in this manner are subsequently contrasted and extrapolated to Neanderthal's hand anthropometric data, as obtained from the available literature. Results indicate that Neanderthals would exhibit lower efficiency than modern humans as a consequence of their smaller hands and shorter arms, resulting in a smaller area to distribute forces and an increased mechanical stress in the microlith manufacturing processes. This might be a plausibly contributing factor for precluding microlith production in Neanderthals on noticeable scales, in consonance with the archeological record.

  5. Evolution of short cognitive test performance in stroke patients with vascular cognitive impairment and vascular dementia: Baseline evaluation and follow-up.

    PubMed

    Custodio, Nilton; Montesinos, Rosa; Lira, David; Herrera-Perez, Eder; Bardales, Yadira; Valeriano-Lorenzo, Lucia

    2017-01-01

    There is limited evidence about the progression of cognitive performance during the post-stroke stage. To assess the evolution of cognitive performance in stroke patients without vascular cognitive impairment (VCI), patients with vascular mild cognitive impairment (MCI), and patients with vascular dementia (VD). A prospective cohort of stroke outpatients from two secondary medical centers in Lima, Peru was studied. We performed standardized evaluations at definitive diagnosis (baseline evaluation), and control follow-ups at 6 and 12 months, including a battery of short cognitive tests: Clinical Dementia Rating (CDR), Addenbrooke's Cognitive Examination (ACE), and INECO Frontal Screening (IFS). 152 outpatients completed the follow-up, showing progressive increase in mean score on the CDR(0.34 to 0.46), contrary to the pattern observed on the ACE and IFS (78.18 to 76.48 and 23.63 to 22.24). The box plot for the CDR test showed that VCI patients had progressive worsening (0.79 to 0.16). Conversely, this trend was not observed in subjects without VCI. The box plot for the ACE and IFS showed that, for the majority of the differentiated stroke types, both non-VCI and VCI patients had progressive worsening. According to both ACE and IFS results during a 1-year follow-up, the cognitive performance of stroke patients worsened, a trend which was particularly consistent in infarction-type stroke patients.

  6. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    ERIC Educational Resources Information Center

    Paas, Fred; Sweller, John

    2012-01-01

    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with…

  7. The Experimental Detection of an Emotional Response to the Idea of Evolution

    ERIC Educational Resources Information Center

    Bland, Mark W.; Morrison, Elizabeth

    2015-01-01

    Evolution is widely regarded as biology's unifying theme, yet rates of rejection of evolutionary science remain high. Anecdotal evidence suggests that cognitive dissonance leading to an emotional response is a barrier to learning about and accepting evolution. We explored the hypothesis that students whose worldviews may be inconsistent with the…

  8. Cognition in Space Workshop. 1; Metrics and Models

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Fielder, Edna

    2005-01-01

    "Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.

  9. “It Don’t Mean a Thing if It Ain’t Got that Swing”– an Alternative Concept for Understanding the Evolution of Dance and Music in Human Beings

    PubMed Central

    Richter, Joachim; Ostovar, Roya

    2016-01-01

    The functions of dance and music in human evolution are a mystery. Current research on the evolution of music has mainly focused on its melodic attribute which would have evolved alongside (proto-)language. Instead, we propose an alternative conceptual framework which focuses on the co-evolution of rhythm and dance (R&D) as intertwined aspects of a multimodal phenomenon characterized by the unity of action and perception. Reviewing the current literature from this viewpoint we propose the hypothesis that R&D have co-evolved long before other musical attributes and (proto-)language. Our view is supported by increasing experimental evidence particularly in infants and children: beat is perceived and anticipated already by newborns and rhythm perception depends on body movement. Infants and toddlers spontaneously move to a rhythm irrespective of their cultural background. The impulse to dance may have been prepared by the susceptibility of infants to be soothed by rocking. Conceivable evolutionary functions of R&D include sexual attraction and transmission of mating signals. Social functions include bonding, synchronization of many individuals, appeasement of hostile individuals, and pre- and extra-verbal communication enabling embodied individual and collective memorizing. In many cultures R&D are used for entering trance, a base for shamanism and early religions. Individual benefits of R&D include improvement of body coordination, as well as painkilling, anti-depressive, and anti-boredom effects. Rhythm most likely paved the way for human speech as supported by studies confirming the overlaps between cognitive and neural resources recruited for language and rhythm. In addition, dance encompasses visual and gestural communication. In future studies attention should be paid to which attribute of music is focused on and that the close mutual relation between R&D is taken into account. The possible evolutionary functions of dance deserve more attention. PMID:27774058

  10. "It Don't Mean a Thing if It Ain't Got that Swing"- an Alternative Concept for Understanding the Evolution of Dance and Music in Human Beings.

    PubMed

    Richter, Joachim; Ostovar, Roya

    2016-01-01

    The functions of dance and music in human evolution are a mystery. Current research on the evolution of music has mainly focused on its melodic attribute which would have evolved alongside (proto-)language. Instead, we propose an alternative conceptual framework which focuses on the co-evolution of rhythm and dance (R&D) as intertwined aspects of a multimodal phenomenon characterized by the unity of action and perception. Reviewing the current literature from this viewpoint we propose the hypothesis that R&D have co-evolved long before other musical attributes and (proto-)language. Our view is supported by increasing experimental evidence particularly in infants and children: beat is perceived and anticipated already by newborns and rhythm perception depends on body movement. Infants and toddlers spontaneously move to a rhythm irrespective of their cultural background. The impulse to dance may have been prepared by the susceptibility of infants to be soothed by rocking. Conceivable evolutionary functions of R&D include sexual attraction and transmission of mating signals. Social functions include bonding, synchronization of many individuals, appeasement of hostile individuals, and pre- and extra-verbal communication enabling embodied individual and collective memorizing. In many cultures R&D are used for entering trance, a base for shamanism and early religions. Individual benefits of R&D include improvement of body coordination, as well as painkilling, anti-depressive, and anti-boredom effects. Rhythm most likely paved the way for human speech as supported by studies confirming the overlaps between cognitive and neural resources recruited for language and rhythm. In addition, dance encompasses visual and gestural communication. In future studies attention should be paid to which attribute of music is focused on and that the close mutual relation between R&D is taken into account. The possible evolutionary functions of dance deserve more attention.

  11. Superior pattern processing is the essence of the evolved human brain

    PubMed Central

    Mattson, Mark P.

    2014-01-01

    Humans have long pondered the nature of their mind/brain and, particularly why its capacities for reasoning, communication and abstract thought are far superior to other species, including closely related anthropoids. This article considers superior pattern processing (SPP) as the fundamental basis of most, if not all, unique features of the human brain including intelligence, language, imagination, invention, and the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical, neuronal network-based, encoding, integration, and transfer to other individuals of perceived or mentally-fabricated patterns. During human evolution, pattern processing capabilities became increasingly sophisticated as the result of expansion of the cerebral cortex, particularly the prefrontal cortex and regions involved in processing of images. Specific patterns, real or imagined, are reinforced by emotional experiences, indoctrination and even psychedelic drugs. Impaired or dysregulated SPP is fundamental to cognitive and psychiatric disorders. A broader understanding of SPP mechanisms, and their roles in normal and abnormal function of the human brain, may enable the development of interventions that reduce irrational decisions and destructive behaviors. PMID:25202234

  12. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia.

    PubMed

    Duncombe, Jessica; Kitamura, Akihiro; Hase, Yoshiki; Ihara, Masafumi; Kalaria, Raj N; Horsburgh, Karen

    2017-10-01

    Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. The dynamics of Machiavellian intelligence.

    PubMed

    Gavrilets, Sergey; Vose, Aaron

    2006-11-07

    The "Machiavellian intelligence" hypothesis (or the "social brain" hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated "Machiavellian" strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the "Machiavellian intelligence" hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies.

  14. The dynamics of Machiavellian intelligence

    PubMed Central

    Gavrilets, Sergey; Vose, Aaron

    2006-01-01

    The “Machiavellian intelligence” hypothesis (or the “social brain” hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated “Machiavellian” strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the “Machiavellian intelligence” hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies. PMID:17075072

  15. Directional dominance on stature and cognition in diverse human populations.

    PubMed

    Joshi, Peter K; Esko, Tonu; Mattsson, Hannele; Eklund, Niina; Gandin, Ilaria; Nutile, Teresa; Jackson, Anne U; Schurmann, Claudia; Smith, Albert V; Zhang, Weihua; Okada, Yukinori; Stančáková, Alena; Faul, Jessica D; Zhao, Wei; Bartz, Traci M; Concas, Maria Pina; Franceschini, Nora; Enroth, Stefan; Vitart, Veronique; Trompet, Stella; Guo, Xiuqing; Chasman, Daniel I; O'Connel, Jeffery R; Corre, Tanguy; Nongmaithem, Suraj S; Chen, Yuning; Mangino, Massimo; Ruggiero, Daniela; Traglia, Michela; Farmaki, Aliki-Eleni; Kacprowski, Tim; Bjonnes, Andrew; van der Spek, Ashley; Wu, Ying; Giri, Anil K; Yanek, Lisa R; Wang, Lihua; Hofer, Edith; Rietveld, Cornelius A; McLeod, Olga; Cornelis, Marilyn C; Pattaro, Cristian; Verweij, Niek; Baumbach, Clemens; Abdellaoui, Abdel; Warren, Helen R; Vuckovic, Dragana; Mei, Hao; Bouchard, Claude; Perry, John R B; Cappellani, Stefania; Mirza, Saira S; Benton, Miles C; Broeckel, Ulrich; Medland, Sarah E; Lind, Penelope A; Malerba, Giovanni; Drong, Alexander; Yengo, Loic; Bielak, Lawrence F; Zhi, Degui; van der Most, Peter J; Shriner, Daniel; Mägi, Reedik; Hemani, Gibran; Karaderi, Tugce; Wang, Zhaoming; Liu, Tian; Demuth, Ilja; Zhao, Jing Hua; Meng, Weihua; Lataniotis, Lazaros; van der Laan, Sander W; Bradfield, Jonathan P; Wood, Andrew R; Bonnefond, Amelie; Ahluwalia, Tarunveer S; Hall, Leanne M; Salvi, Erika; Yazar, Seyhan; Carstensen, Lisbeth; de Haan, Hugoline G; Abney, Mark; Afzal, Uzma; Allison, Matthew A; Amin, Najaf; Asselbergs, Folkert W; Bakker, Stephan J L; Barr, R Graham; Baumeister, Sebastian E; Benjamin, Daniel J; Bergmann, Sven; Boerwinkle, Eric; Bottinger, Erwin P; Campbell, Archie; Chakravarti, Aravinda; Chan, Yingleong; Chanock, Stephen J; Chen, Constance; Chen, Y-D Ida; Collins, Francis S; Connell, John; Correa, Adolfo; Cupples, L Adrienne; Smith, George Davey; Davies, Gail; Dörr, Marcus; Ehret, Georg; Ellis, Stephen B; Feenstra, Bjarke; Feitosa, Mary F; Ford, Ian; Fox, Caroline S; Frayling, Timothy M; Friedrich, Nele; Geller, Frank; Scotland, Generation; Gillham-Nasenya, Irina; Gottesman, Omri; Graff, Misa; Grodstein, Francine; Gu, Charles; Haley, Chris; Hammond, Christopher J; Harris, Sarah E; Harris, Tamara B; Hastie, Nicholas D; Heard-Costa, Nancy L; Heikkilä, Kauko; Hocking, Lynne J; Homuth, Georg; Hottenga, Jouke-Jan; Huang, Jinyan; Huffman, Jennifer E; Hysi, Pirro G; Ikram, M Arfan; Ingelsson, Erik; Joensuu, Anni; Johansson, Åsa; Jousilahti, Pekka; Jukema, J Wouter; Kähönen, Mika; Kamatani, Yoichiro; Kanoni, Stavroula; Kerr, Shona M; Khan, Nazir M; Koellinger, Philipp; Koistinen, Heikki A; Kooner, Manraj K; Kubo, Michiaki; Kuusisto, Johanna; Lahti, Jari; Launer, Lenore J; Lea, Rodney A; Lehne, Benjamin; Lehtimäki, Terho; Liewald, David C M; Lind, Lars; Loh, Marie; Lokki, Marja-Liisa; London, Stephanie J; Loomis, Stephanie J; Loukola, Anu; Lu, Yingchang; Lumley, Thomas; Lundqvist, Annamari; Männistö, Satu; Marques-Vidal, Pedro; Masciullo, Corrado; Matchan, Angela; Mathias, Rasika A; Matsuda, Koichi; Meigs, James B; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Mentch, Frank D; Mihailov, Evelin; Milani, Lili; Montasser, May E; Montgomery, Grant W; Morrison, Alanna; Myers, Richard H; Nadukuru, Rajiv; Navarro, Pau; Nelis, Mari; Nieminen, Markku S; Nolte, Ilja M; O'Connor, George T; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R; Pankow, James S; Patarcic, Inga; Pavani, Francesca; Peyser, Patricia A; Pietilainen, Kirsi; Poulter, Neil; Prokopenko, Inga; Ralhan, Sarju; Redmond, Paul; Rich, Stephen S; Rissanen, Harri; Robino, Antonietta; Rose, Lynda M; Rose, Richard; Sala, Cinzia; Salako, Babatunde; Salomaa, Veikko; Sarin, Antti-Pekka; Saxena, Richa; Schmidt, Helena; Scott, Laura J; Scott, William R; Sennblad, Bengt; Seshadri, Sudha; Sever, Peter; Shrestha, Smeeta; Smith, Blair H; Smith, Jennifer A; Soranzo, Nicole; Sotoodehnia, Nona; Southam, Lorraine; Stanton, Alice V; Stathopoulou, Maria G; Strauch, Konstantin; Strawbridge, Rona J; Suderman, Matthew J; Tandon, Nikhil; Tang, Sian-Tsun; Taylor, Kent D; Tayo, Bamidele O; Töglhofer, Anna Maria; Tomaszewski, Maciej; Tšernikova, Natalia; Tuomilehto, Jaakko; Uitterlinden, Andre G; Vaidya, Dhananjay; van Hylckama Vlieg, Astrid; van Setten, Jessica; Vasankari, Tuula; Vedantam, Sailaja; Vlachopoulou, Efthymia; Vozzi, Diego; Vuoksimaa, Eero; Waldenberger, Melanie; Ware, Erin B; Wentworth-Shields, William; Whitfield, John B; Wild, Sarah; Willemsen, Gonneke; Yajnik, Chittaranjan S; Yao, Jie; Zaza, Gianluigi; Zhu, Xiaofeng; Project, The BioBank Japan; Salem, Rany M; Melbye, Mads; Bisgaard, Hans; Samani, Nilesh J; Cusi, Daniele; Mackey, David A; Cooper, Richard S; Froguel, Philippe; Pasterkamp, Gerard; Grant, Struan F A; Hakonarson, Hakon; Ferrucci, Luigi; Scott, Robert A; Morris, Andrew D; Palmer, Colin N A; Dedoussis, George; Deloukas, Panos; Bertram, Lars; Lindenberger, Ulman; Berndt, Sonja I; Lindgren, Cecilia M; Timpson, Nicholas J; Tönjes, Anke; Munroe, Patricia B; Sørensen, Thorkild I A; Rotimi, Charles N; Arnett, Donna K; Oldehinkel, Albertine J; Kardia, Sharon L R; Balkau, Beverley; Gambaro, Giovanni; Morris, Andrew P; Eriksson, Johan G; Wright, Margie J; Martin, Nicholas G; Hunt, Steven C; Starr, John M; Deary, Ian J; Griffiths, Lyn R; Tiemeier, Henning; Pirastu, Nicola; Kaprio, Jaakko; Wareham, Nicholas J; Pérusse, Louis; Wilson, James G; Girotto, Giorgia; Caulfield, Mark J; Raitakari, Olli; Boomsma, Dorret I; Gieger, Christian; van der Harst, Pim; Hicks, Andrew A; Kraft, Peter; Sinisalo, Juha; Knekt, Paul; Johannesson, Magnus; Magnusson, Patrik K E; Hamsten, Anders; Schmidt, Reinhold; Borecki, Ingrid B; Vartiainen, Erkki; Becker, Diane M; Bharadwaj, Dwaipayan; Mohlke, Karen L; Boehnke, Michael; van Duijn, Cornelia M; Sanghera, Dharambir K; Teumer, Alexander; Zeggini, Eleftheria; Metspalu, Andres; Gasparini, Paolo; Ulivi, Sheila; Ober, Carole; Toniolo, Daniela; Rudan, Igor; Porteous, David J; Ciullo, Marina; Spector, Tim D; Hayward, Caroline; Dupuis, Josée; Loos, Ruth J F; Wright, Alan F; Chandak, Giriraj R; Vollenweider, Peter; Shuldiner, Alan; Ridker, Paul M; Rotter, Jerome I; Sattar, Naveed; Gyllensten, Ulf; North, Kari E; Pirastu, Mario; Psaty, Bruce M; Weir, David R; Laakso, Markku; Gudnason, Vilmundur; Takahashi, Atsushi; Chambers, John C; Kooner, Jaspal S; Strachan, David P; Campbell, Harry; Hirschhorn, Joel N; Perola, Markus; Polašek, Ozren; Wilson, James F

    2015-07-23

    Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.

  16. Directional dominance on stature and cognition in diverse human populations

    PubMed Central

    Mattsson, Hannele; Eklund, Niina; Gandin, Ilaria; Nutile, Teresa; Jackson, Anne U.; Schurmann, Claudia; Smith, Albert V.; Zhang, Weihua; Okada, Yukinori; Stančáková, Alena; Faul, Jessica D.; Zhao, Wei; Bartz, Traci M.; Concas, Maria Pina; Franceschini, Nora; Enroth, Stefan; Vitart, Veronique; Trompet, Stella; Guo, Xiuqing; Chasman, Daniel I.; O’Connel, Jeffery R.; Corre, Tanguy; Nongmaithem, Suraj S.; Chen, Yuning; Mangino, Massimo; Ruggiero, Daniela; Traglia, Michela; Farmaki, Aliki-Eleni; Kacprowski, Tim; Bjonnes, Andrew; van der Spek, Ashley; Wu, Ying; Giri, Anil K.; Yanek, Lisa R.; Wang, Lihua; Hofer, Edith; Rietveld, Cornelius A.; McLeod, Olga; Cornelis, Marilyn C.; Pattaro, Cristian; Verweij, Niek; Baumbach, Clemens; Abdellaoui, Abdel; Warren, Helen R.; Vuckovic, Dragana; Mei, Hao; Bouchard, Claude; Perry, John R.B.; Cappellani, Stefania; Mirza, Saira S.; Benton, Miles C.; Broeckel, Ulrich; Medland, Sarah E.; Lind, Penelope A.; Malerba, Giovanni; Drong, Alexander; Yengo, Loic; Bielak, Lawrence F.; Zhi, Degui; van der Most, Peter J.; Shriner, Daniel; Mägi, Reedik; Hemani, Gibran; Karaderi, Tugce; Wang, Zhaoming; Liu, Tian; Demuth, Ilja; Zhao, Jing Hua; Meng, Weihua; Lataniotis, Lazaros; van der Laan, Sander W.; Bradfield, Jonathan P.; Wood, Andrew R.; Bonnefond, Amelie; Ahluwalia, Tarunveer S.; Hall, Leanne M.; Salvi, Erika; Yazar, Seyhan; Carstensen, Lisbeth; de Haan, Hugoline G.; Abney, Mark; Afzal, Uzma; Allison, Matthew A.; Amin, Najaf; Asselbergs, Folkert W.; Bakker, Stephan J.L.; Barr, R. Graham; Baumeister, Sebastian E.; Benjamin, Daniel J.; Bergmann, Sven; Boerwinkle, Eric; Bottinger, Erwin P.; Campbell, Archie; Chakravarti, Aravinda; Chan, Yingleong; Chanock, Stephen J.; Chen, Constance; Chen, Y.-D. Ida; Collins, Francis S.; Connell, John; Correa, Adolfo; Cupples, L. Adrienne; Smith, George Davey; Davies, Gail; Dörr, Marcus; Ehret, Georg; Ellis, Stephen B.; Feenstra, Bjarke; Feitosa, Mary F.; Ford, Ian; Fox, Caroline S.; Frayling, Timothy M.; Friedrich, Nele; Geller, Frank; Scotland, Generation; Gillham-Nasenya, Irina; Gottesman, Omri; Graff, Misa; Grodstein, Francine; Gu, Charles; Haley, Chris; Hammond, Christopher J.; Harris, Sarah E.; Harris, Tamara B.; Hastie, Nicholas D.; Heard-Costa, Nancy L.; Heikkilä, Kauko; Hocking, Lynne J.; Homuth, Georg; Hottenga, Jouke-Jan; Huang, Jinyan; Huffman, Jennifer E.; Hysi, Pirro G.; Ikram, M. Arfan; Ingelsson, Erik; Joensuu, Anni; Johansson, Åsa; Jousilahti, Pekka; Jukema, J. Wouter; Kähönen, Mika; Kamatani, Yoichiro; Kanoni, Stavroula; Kerr, Shona M.; Khan, Nazir M.; Koellinger, Philipp; Koistinen, Heikki A.; Kooner, Manraj K.; Kubo, Michiaki; Kuusisto, Johanna; Lahti, Jari; Launer, Lenore J.; Lea, Rodney A.; Lehne, Benjamin; Lehtimäki, Terho; Liewald, David C.M.; Lind, Lars; Loh, Marie; Lokki, Marja-Liisa; London, Stephanie J.; Loomis, Stephanie J.; Loukola, Anu; Lu, Yingchang; Lumley, Thomas; Lundqvist, Annamari; Männistö, Satu; Marques-Vidal, Pedro; Masciullo, Corrado; Matchan, Angela; Mathias, Rasika A.; Matsuda, Koichi; Meigs, James B.; Meisinger, Christa; Meitinger, Thomas; Menni, Cristina; Mentch, Frank D.; Mihailov, Evelin; Milani, Lili; Montasser, May E.; Montgomery, Grant W.; Morrison, Alanna; Myers, Richard H.; Nadukuru, Rajiv; Navarro, Pau; Nelis, Mari; Nieminen, Markku S.; Nolte, Ilja M.; O’Connor, George T.; Ogunniyi, Adesola; Padmanabhan, Sandosh; Palmas, Walter R.; Pankow, James S.; Patarcic, Inga; Pavani, Francesca; Peyser, Patricia A.; Pietilainen, Kirsi; Poulter, Neil; Prokopenko, Inga; Ralhan, Sarju; Redmond, Paul; Rich, Stephen S.; Rissanen, Harri; Robino, Antonietta; Rose, Lynda M.; Rose, Richard; Sala, Cinzia; Salako, Babatunde; Salomaa, Veikko; Sarin, Antti-Pekka; Saxena, Richa; Schmidt, Helena; Scott, Laura J.; Scott, William R.; Sennblad, Bengt; Seshadri, Sudha; Sever, Peter; Shrestha, Smeeta; Smith, Blair H.; Smith, Jennifer A.; Soranzo, Nicole; Sotoodehnia, Nona; Southam, Lorraine; Stanton, Alice V.; Stathopoulou, Maria G.; Strauch, Konstantin; Strawbridge, Rona J.; Suderman, Matthew J.; Tandon, Nikhil; Tang, Sian-Tsun; Taylor, Kent D.; Tayo, Bamidele O.; Töglhofer, Anna Maria; Tomaszewski, Maciej; Tšernikova, Natalia; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Vaidya, Dhananjay; van Hylckama Vlieg, Astrid; van Setten, Jessica; Vasankari, Tuula; Vedantam, Sailaja; Vlachopoulou, Efthymia; Vozzi, Diego; Vuoksimaa, Eero; Waldenberger, Melanie; Ware, Erin B.; Wentworth-Shields, William; Whitfield, John B.; Wild, Sarah; Willemsen, Gonneke; Yajnik, Chittaranjan S.; Yao, Jie; Zaza, Gianluigi; Zhu, Xiaofeng; Project, The BioBank Japan; Salem, Rany M.; Melbye, Mads; Bisgaard, Hans; Samani, Nilesh J.; Cusi, Daniele; Mackey, David A.; Cooper, Richard S.; Froguel, Philippe; Pasterkamp, Gerard; Grant, Struan F.A.; Hakonarson, Hakon; Ferrucci, Luigi; Scott, Robert A.; Morris, Andrew D.; Palmer, Colin N.A.; Dedoussis, George; Deloukas, Panos; Bertram, Lars; Lindenberger, Ulman; Berndt, Sonja I.; Lindgren, Cecilia M.; Timpson, Nicholas J.; Tönjes, Anke; Munroe, Patricia B.; Sørensen, Thorkild I.A.; Rotimi, Charles N.; Arnett, Donna K.; Oldehinkel, Albertine J.; Kardia, Sharon L.R.; Balkau, Beverley; Gambaro, Giovanni; Morris, Andrew P.; Eriksson, Johan G.; Wright, Margie J.; Martin, Nicholas G.; Hunt, Steven C.; Starr, John M.; Deary, Ian J.; Griffiths, Lyn R.; Tiemeier, Henning; Pirastu, Nicola; Kaprio, Jaakko; Wareham, Nicholas J.; Pérusse, Louis; Wilson, James G.; Girotto, Giorgia; Caulfield, Mark J.; Raitakari, Olli; Boomsma, Dorret I.; Gieger, Christian; van der Harst, Pim; Hicks, Andrew A.; Kraft, Peter; Sinisalo, Juha; Knekt, Paul; Johannesson, Magnus; Magnusson, Patrik K.E.; Hamsten, Anders; Schmidt, Reinhold; Borecki, Ingrid B.; Vartiainen, Erkki; Becker, Diane M.; Bharadwaj, Dwaipayan; Mohlke, Karen L.; Boehnke, Michael; van Duijn, Cornelia M.; Sanghera, Dharambir K.; Teumer, Alexander; Zeggini, Eleftheria; Metspalu, Andres; Gasparini, Paolo; Ulivi, Sheila; Ober, Carole; Toniolo, Daniela; Rudan, Igor; Porteous, David J.; Ciullo, Marina; Spector, Tim D.; Hayward, Caroline; Dupuis, Josée; Loos, Ruth J.F.; Wright, Alan F.; Chandak, Giriraj R.; Vollenweider, Peter; Shuldiner, Alan; Ridker, Paul M.; Rotter, Jerome I.; Sattar, Naveed; Gyllensten, Ulf; North, Kari E.; Pirastu, Mario; Psaty, Bruce M.; Weir, David R.; Laakso, Markku; Gudnason, Vilmundur; Takahashi, Atsushi; Chambers, John C.; Kooner, Jaspal S.; Strachan, David P.; Campbell, Harry; Hirschhorn, Joel N.; Perola, Markus

    2015-01-01

    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been. PMID:26131930

  17. Genetic variability, individuality and the evolution of the mammalian brain.

    PubMed

    Lipp, H P

    1995-12-01

    The neo-Darwinian theory of evolution has difficulty in explaining the rapid evolution of mammalian brain and behavior. I shall argue that the plasticity mechanisms of the brain (i.e., system homeostasis, developmental reorganization, structural adult plasticity, and cognition and learning) have evolved primarily as genetic buffer systems which protect subtle mutations influencing brain structures from natural selection. These buffer systems permit accumulation of genetic variation in the higher system levels of the brain (simply defined as structures with late differentiation), while low-level systems are kept constant by natural selection. The organization of this intrinsic genetic buffering system provides several features facilitating neo-Darwinian evolution: In conclusion, the evolutionary appearance of cognition and intelligence is an ordinary biological mechanism compensating evolutionary drags such as long lifespans and fewer offspring. The concept has heuristic value for identifying gene-brain-behavior relationships and for explaining behavioral consequences of artifical gene deletions.

  18. Left brain, right brain: facts and fantasies.

    PubMed

    Corballis, Michael C

    2014-01-01

    Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the "norm" of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

  19. An experimental model for the study of cognitive disorders: the hippocampus and associative learning in mice.

    PubMed

    Delgado-García, José M; Gruart, Agnès

    2008-12-01

    The availability of transgenic mice mimicking selective human neurodegenerative and psychiatric disorders calls for new electrophysiological and microstimulation techniques capable of being applied in vivo in this species. In this article, we will concentrate on experiments and techniques developed in our laboratory during the past few years. Thus we have developed different techniques for the study of learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. These techniques include different trace (tone/SHOCK and shock/SHOCK) conditioning procedures ? that is, a classical conditioning task involving the cerebral cortex, including the hippocampus. We have also developed implantation and recording techniques for evoking long-term potentiation (LTP) in behaving mice and for recording the evolution of field excitatory postsynaptic potentials (fEPSP) evoked in the hippocampal CA1 area by the electrical stimulation of the commissural/Schaffer collateral pathway across conditioning sessions. Computer programs have also been developed to quantify the appearance and evolution of eyelid conditioned responses and the slope of evoked fEPSPs. According to the present results, the in vivo recording of the electrical activity of selected hippocampal sites during classical conditioning of eyelid responses appears to be a suitable experimental procedure for studying learning capabilities in genetically modified mice, and an excellent model for the study of selected neuropsychiatric disorders compromising cerebral cortex functioning.

  20. Fellow travellers: Working memory and mental time travel in rodents.

    PubMed

    Dere, Ekrem; Dere, Dorothea; de Souza Silva, Maria Angelica; Huston, Joseph P; Zlomuzica, Armin

    2017-03-19

    The impairment of mental time travel is a severe cognitive symptom in patients with brain lesions and a number of neuropsychiatric disorders. Whether animals are also able to mentally travel in time both forward and backward is still a matter of debate. In this regard, we have proposed a continuum of mental time travel abilities across different animal species, with humans being the species with the ability to perform most sophisticated forms of mental time travel. In this review and perspective article, we delineate a novel approach to understand the evolution, characteristics and function of human and animal mental time travel. Furthermore, we propose a novel approach to measure mental time travel in rodents in a comprehensive manner using a test battery composed of well-validated and easy applicable tests. Copyright © 2017. Published by Elsevier B.V.

  1. Application of social domain of human mind in water management

    NASA Astrophysics Data System (ADS)

    Piirimäe, Kristjan

    2010-05-01

    Currently, researches dispute whether a human reasons domain-generally or domain-specifically (Fiddick, 2004). The theory of several intuitive reasoning programmes in human mind suggests that the main driver to increase problem-solving abilities is social domain (Byrne & Bates, 2009). This theory leads to an idea to apply the social domain also in environmental management. More specifically, environmental problems might be presented through social aspects. Cosmides (1989) proposed that the most powerful programme in our social domain might be ‘cheater detection module' - a genetically determined mental tool whose dedicated function is to unmask cheaters. She even suggested that only cheater detection can enable logical reasoning. Recently, this idea has found experimental proof and specifications (Buchner et al., 2009). From this perspective, a participatory environmental decision support system requires involvement of the representatives of social control such as environmental agencies and NGOs. These evaluators might effectively discover legal and moral inconsistencies, logical errors and other weaknesses in proposals if they are encouraged to detect cheating. Thus, instead of just environmental concerns, the query of an artificial intelligence should emphasize cheating. Following the idea of Cosmides (1989), employment of cheater detectors to EDSS might appear the only way to achieve environmental management which applies correct logical reasoning as well as both, legislative requirements and conservationist moral. According to our hypothesis, representatives of social control can well discover legal and moral inconsistencies, logical errors and and other weaknesses in envirionmental management proposals if encouraged for cheater detection. In our social experiment, a draft plan of measures for sustainable management of Lake Peipsi environment was proposed to representatives of social control, including Ministry of Environment, other environmental authorities, and NGOs. These people were randomly divided to two working groups and asked to criticize the proposed plan. One group was encouraged to detect cheating behind the plan. Later, a group of independent experts evaluated the criticism of both groups and each individual person. The resulting assignements rated the group of cheater detectors as significantly more adequate decision-supporters. The results confirmed that simulation of the 'cheater detection module' of human mind might improve the performance of an EDSS. The study calls for the development of special methodologies for the stimulation and application of social domain in water management. References Buchner, A., Bell, R., Mehl, B., & Musch, J., (2009). No enhanced recognition memory, but better source memory for faces of cheaters. Evolution and Human Behaviour, 30(3), 212 - 224. Byrne, R., Bates, L. (2009). Sociality, evolution and cognition. Current Biology, 17(16), R714 - R723. Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason? Studies with the Wason selection task. Cognition, 31(3), 187-276. Fiddick, L. (2004). Domains of deontic reasoning: Resolving the discrepancy between the cognitive and moral reasoning literatures. The Quartlerly Journal of Experimental Psychology, 57A(3), 447 - 474.

  2. Cognitive architectures: choreographing the dance of mental operations with the task environment.

    PubMed

    Gray, Wayne D

    2008-06-01

    In this article, I present the ideas and trends that have given rise to the use of cognitive architectures in human factors and provide a cognitive engineering-oriented taxonomy of these architectures and a snapshot of their use for cognitive engineering. Architectures of cognition have had a long history in human factors but a brief past. The long history entails a 50-year preamble, whereas the explosion of work in the current decade reflects the brief past. Understanding this history is key to understanding the current and future prospects for applying cognitive science theory to human factors practice. The review defines three formative eras in cognitive engineering research: the 1950s, 1980s, and now. In the first era, the fledging fields of cognitive science and human factors emphasized characteristics of the dancer the limited capacity or bounded rationality view of the mind, and the ballroom, the task environment. The second era emphasized the dance (i.e., the dynamic interaction between mental operations and task environment). The third era has seen the rise of cognitive architectures as tools for choreographing the dance of mental operations within the complex environments posed by human factors practice. Hybrid architectures present the best vector for introducing cognitive science theories into a renewed engineering-based human factors. The taxonomy provided in this article may provide guidance on when and whether to apply a cognitive science or a hybrid architecture to a human factors issue.

  3. The Paradox of Isochrony in the Evolution of Human Rhythm

    PubMed Central

    Ravignani, Andrea; Madison, Guy

    2017-01-01

    Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general. PMID:29163252

  4. Human-machine interactions

    DOEpatents

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  5. Spacecraft Architecture and well being

    NASA Astrophysics Data System (ADS)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  6. Spacecraft Architecture and environmental pshychology

    NASA Astrophysics Data System (ADS)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  7. Out of this world and more

    NASA Astrophysics Data System (ADS)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  8. Spacecraft Architecture in long Duration Space Travels

    NASA Astrophysics Data System (ADS)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  9. The evolution and extinction of science fiction.

    PubMed

    Hrotic, Steven

    2014-11-01

    Science fiction literature reflects our constantly evolving attitudes towards science and technological innovations, and the kinds of societal impacts believed possible. The newly popular subgenre 'steampunk' shows that these attitudes have significantly shifted. Examined from a cognitive anthropological perspective, science fiction reveals the cultural evolution of the genre as intelligently designed, and implies a cognitive mechanism of group membership reliant on implicit memory. However, such an analysis also suggests that genre science fiction as it was in the 20th century may no longer exist. © The Author(s) 2013.

  10. Buddhism at Crossroads: A Case Study of Six Tibetan Buddhist Monks Navigating the Intersection of Buddhist Theology and Western Science

    NASA Astrophysics Data System (ADS)

    Sonam, Tenzin

    Recent effort to teach Western science in the Tibetan Buddhist monasteries has drawn interest both within and outside the quarters of these monasteries. This novel and historic move of bringing Western science in a traditional monastic community began around year 2000 at the behest of His Holiness the Dalai Lama, the spiritual head of Tibetan Buddhism. Despite the novelty of this effort, the literature in science education about learners from non-Western communities suggests various "cognitive conflicts" experienced by these non-Western learners due to fundamental difference in the worldview of the two knowledge traditions. Hence, in this research focuses on how six Tibetan Buddhist monks were situating/reconciling the scientific concepts like the theory of evolution into their traditional Buddhist worldview. The monks who participated in this study were engaged in a further study science at a university in the U.S. for two years. Using case study approach, the participants were interviewed individually and in groups over the two-year period. The findings revealed that although the monks scored highly on their acceptance of evolution on the Measurement of Acceptance of Theory of Evolution (MATE) survey, however in the follow-up individual and focus group interviews, certain conflicts as well as agreement between the theory of evolution and their Buddhist beliefs were revealed. The monks experienced conflicts over concepts within evolution such as common ancestry, human evolution, and origin of life, and in reconciling the Buddhist and scientific notion of life. The conflicts were analyzed using the theory of collateral learning and was found that the monks engaged in different kinds of collateral learning, which is the degree of interaction and resolution of conflicting schemas. The different collateral learning of the monks was correlated to the concepts within evolution and has no correlation to the monks' years in secular school, science learning or their proficiency of English language. This study has indicted that the Tibetan Buddhist monks also experience certain cognitive conflict when situating Western scientific concepts into their Buddhist worldview as suggested by research of science learners from other non-Western societies. By explicating how the monks make sense of scientific theories like the theory of evolution as an exemplar, I hope to inform the current effort to establish science education in the monastery to develop curricula that would result in meaningful science teaching and learning, and also sensitive to needs and the cultural survival of the monastics.

  11. Comparative Cognitive Development

    ERIC Educational Resources Information Center

    Matsuzawa, Tetsuro

    2007-01-01

    This paper aims to compare cognitive development in humans and chimpanzees to illuminate the evolutionary origins of human cognition. Comparison of morphological data and life history strongly highlights the common features of all primate species, including humans. The human mother-infant relationship is characterized by the physical separation of…

  12. The Evolution of "Enhanced" Cognitive Behavior Therapy for Eating Disorders: Learning from Treatment Nonresponse

    ERIC Educational Resources Information Center

    Cooper, Zafra; Fairburn, Christopher G.

    2011-01-01

    In recent years there has been widespread acceptance that cognitive behavior therapy (CBT) is the treatment of choice for bulimia nervosa. The cognitive behavioral treatment of bulimia nervosa (CBT-BN) was first described in 1981. Over the past decades the theory and treatment have evolved in response to a variety of challenges. The treatment has…

  13. Investigation of Dynamic Algorithms for Pattern Recognition Identified in Cerebral Cortex

    DTIC Science & Technology

    1991-12-02

    oscillatory and possibly chaotic activity forin the actual cortical substrate of the diverse sensory, motor, and cognitive operations now studied in...September Neural Information Processing Systems - Natural and Synthetic, Denver, Colo., November 1989 U.C. San Diego, Cognitive Science Dept...Baird. Biologically applied neural networks may foster the co-evolution of neurobiology and cognitive psychology. Brain and Behavioral Sciences, 37

  14. Mill and Mental Phenomena: Critical Contributions to a Science of Cognition

    PubMed Central

    Bistricky, Steven L.

    2013-01-01

    Attempts to define cognition preceded John Stuart Mill’s life and continue to this day. John Stuart Mill envisioned a science of mental phenomena informed by associationism, empirical introspection, and neurophysiology, and he advanced specific ideas that still influence modern conceptions of cognition. The present article briefly reviews Mill’s personal history and the times in which he lived, and it traces the evolution of ideas that have run through him to contemporary cognitive concepts. The article also highlights contemporary problems in defining cognition and supports specific criteria regarding what constitutes cognition. PMID:25379235

  15. A More Fine-Grained Measure of Students' Acceptance of Evolution: Development of the Inventory of Student Evolution Acceptance--I-SEA

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Southerland, Sherry

    2012-01-01

    The potential influences of affective perceptions on cognitive engagement in learning, particularly with emotionally charged topics such as evolution, provide justification for acknowledging and assessing learners' attitudes toward content. One approach to determining students' attitudes toward a construct is to explicitly ask them to what degree…

  16. Applying Cognitive Work Analysis to Time Critical Targeting Functionality

    DTIC Science & Technology

    2004-10-01

    Cognitive Task Analysis , CTA, Cognitive Task Analysis , Human Factors, GUI, Graphical User Interface, Heuristic Evaluation... Cognitive Task Analysis MITRE Briefing January 2000 Dynamic Battle Management Functional Architecture 3-1 Section 3 Human Factors...clear distinction between Cognitive Work Analysis (CWA) and Cognitive Task Analysis (CTA), therefore this document will refer to these

  17. Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain.

    PubMed

    Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas

    2013-01-21

    The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cultural Transmission: A View from Chimpanzees and Human Infants.

    ERIC Educational Resources Information Center

    Tomasello, Michael

    2001-01-01

    Characterizes primate and human forms of sociality and cultural transmission, describing the ontogeny of human cultural learning (joint attention, imitative learning, and cognitive representation). Humans share most cognitive skills and knowledge with other primates, but they also possess a species-unique social cognitive adaptation that enables…

  19. Co-evolution of cooperation and cognition: the impact of imperfect deliberation and context-sensitive intuition

    PubMed Central

    Kagan, Ari; Rand, David G.

    2017-01-01

    How does cognitive sophistication impact cooperation? We explore this question using a model of the co-evolution of cooperation and cognition. In our model, agents confront social dilemmas and coordination games, and make decisions using intuition or deliberation. Intuition is automatic and effortless, but relatively (although not necessarily completely) insensitive to context. Deliberation, conversely, is costly but relatively (although not necessarily perfectly) sensitive to context. We find that regardless of the sensitivity of intuition and imperfection of deliberation, deliberating undermines cooperation in social dilemmas, whereas deliberating can increase cooperation in coordination games if intuition is sufficiently sensitive. Furthermore, when coordination games are sufficiently likely, selection favours a strategy whose intuitive response ignores the contextual cues available and cooperates across contexts. Thus, we see how simple cognition can arise from active selection for simplicity, rather than just be forced to be simple due to cognitive constraints. Finally, we find that when deliberation is imperfect, the favoured strategy increases cooperation in social dilemmas (as a result of reducing deliberation) as the benefit of cooperation to the recipient increases. PMID:28330915

  20. A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease

    PubMed Central

    Preti, Maria Giulia; Makris, Nikos; Papadimitriou, George; Laganà, Maria Marcella; Griffanti, Ludovica; Clerici, Mario; Nemni, Raffaello; Westin, Carl-Fredrik; Baselli, Giuseppe; Baglio, Francesca

    2014-01-01

    Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimer's disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease. PMID:24637718

  1. Adaptation of the Aesop's Fable paradigm for use with raccoons (Procyon lotor): considerations for future application in non-avian and non-primate species.

    PubMed

    Stanton, Lauren; Davis, Emily; Johnson, Shylo; Gilbert, Amy; Benson-Amram, Sarah

    2017-11-01

    To gain a better understanding of the evolution of animal cognition, it is necessary to test and compare the cognitive abilities of a broad array of taxa. Meaningful inter-species comparisons are best achieved by employing universal paradigms that standardize testing among species. Many cognitive paradigms, however, have been tested in only a few taxa, mostly birds and primates. One such example, known as the Aesop's Fable paradigm, is designed to assess causal understanding in animals using water displacement. To evaluate the universal effectiveness of the Aesop's Fable paradigm, we applied this paradigm to a previously untested taxon, the raccoon (Procyon lotor). We first trained captive raccoons to drop stones into a tube of water to retrieve a floating food reward. Next, we presented successful raccoons with objects that differed in the amount of water they displaced to determine whether raccoons could select the most functional option. Raccoons performed differently than corvids and human children did in previous studies of Aesop's Fable, and we found raccoons to be innovative in many aspects of this task. We suggest that raccoon performance in this paradigm reflected differences in tangential factors, such as behavior, morphology, and testing procedures, rather than cognitive deficiencies. We also present insight into previously undocumented challenges that should better inform future Aesop's Fable studies incorporating more diverse taxa.

  2. Modeling Coevolution between Language and Memory Capacity during Language Origin

    PubMed Central

    Gong, Tao; Shuai, Lan

    2015-01-01

    Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language. PMID:26544876

  3. Modeling Coevolution between Language and Memory Capacity during Language Origin.

    PubMed

    Gong, Tao; Shuai, Lan

    2015-01-01

    Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language.

  4. Evolution of short cognitive test performance in stroke patients with vascular cognitive impairment and vascular dementia: Baseline evaluation and follow-up

    PubMed Central

    Custodio, Nilton; Montesinos, Rosa; Lira, David; Herrera-Perez, Eder; Bardales, Yadira; Valeriano-Lorenzo, Lucia

    2017-01-01

    ABSTRACT. There is limited evidence about the progression of cognitive performance during the post-stroke stage. Objective: To assess the evolution of cognitive performance in stroke patients without vascular cognitive impairment (VCI), patients with vascular mild cognitive impairment (MCI), and patients with vascular dementia (VD). Methods: A prospective cohort of stroke outpatients from two secondary medical centers in Lima, Peru was studied. We performed standardized evaluations at definitive diagnosis (baseline evaluation), and control follow-ups at 6 and 12 months, including a battery of short cognitive tests: Clinical Dementia Rating (CDR), Addenbrooke's Cognitive Examination (ACE), and INECO Frontal Screening (IFS). Results: 152 outpatients completed the follow-up, showing progressive increase in mean score on the CDR(0.34 to 0.46), contrary to the pattern observed on the ACE and IFS (78.18 to 76.48 and 23.63 to 22.24). The box plot for the CDR test showed that VCI patients had progressive worsening (0.79 to 0.16). Conversely, this trend was not observed in subjects without VCI. The box plot for the ACE and IFS showed that, for the majority of the differentiated stroke types, both non-VCI and VCI patients had progressive worsening. Conclusion: According to both ACE and IFS results during a 1-year follow-up, the cognitive performance of stroke patients worsened, a trend which was particularly consistent in infarction-type stroke patients. PMID:29354218

  5. Evolution of speech-specific cognitive adaptations.

    PubMed

    de Boer, Bart

    2015-01-01

    This paper argues that an evolutionary perspective is natural when investigating cognitive adaptations related to language. This is because there appears to be correspondence between traits that linguists consider interesting and traits that have undergone selective pressure related to language. The paper briefly reviews theoretical results that shed light on what kind of adaptations we can expect to have evolved and then reviews concrete work related to the evolution of adaptations for combinatorial speech. It turns out that there is as yet no strong direct evidence for cognitive traits that have undergone selection related to speech, but there is indirect evidence that indicates selection. However, the traits that may have undergone selection are expected to be continuously variable ones, rather than the discrete ones that linguists have focused on traditionally.

  6. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    PubMed

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  7. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    PubMed Central

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method. PMID:26884745

  8. A Proposed Neurological Interpretation of Language Evolution.

    PubMed

    Ardila, Alfredo

    2015-01-01

    Since the very beginning of the aphasia history it has been well established that there are two major aphasic syndromes (Wernicke's-type and Broca's-type aphasia); each one of them is related to the disturbance at a specific linguistic level (lexical/semantic and grammatical) and associated with a particular brain damage localization (temporal and frontal-subcortical). It is proposed that three stages in language evolution could be distinguished: (a) primitive communication systems similar to those observed in other animals, including nonhuman primates; (b) initial communication systems using sound combinations (lexicon) but without relationships among the elements (grammar); and (c) advanced communication systems including word-combinations (grammar). It is proposed that grammar probably originated from the internal representation of actions, resulting in the creation of verbs; this is an ability that depends on the so-called Broca's area and related brain networks. It is suggested that grammar is the basic ability for the development of so-called metacognitive executive functions. It is concluded that while the lexical/semantic language system (vocabulary) probably appeared during human evolution long before the contemporary man (Homo sapiens sapiens), the grammatical language historically represents a recent acquisition and is correlated with the development of complex cognition (metacognitive executive functions).

  9. A Proposed Neurological Interpretation of Language Evolution

    PubMed Central

    2015-01-01

    Since the very beginning of the aphasia history it has been well established that there are two major aphasic syndromes (Wernicke's-type and Broca's-type aphasia); each one of them is related to the disturbance at a specific linguistic level (lexical/semantic and grammatical) and associated with a particular brain damage localization (temporal and frontal-subcortical). It is proposed that three stages in language evolution could be distinguished: (a) primitive communication systems similar to those observed in other animals, including nonhuman primates; (b) initial communication systems using sound combinations (lexicon) but without relationships among the elements (grammar); and (c) advanced communication systems including word-combinations (grammar). It is proposed that grammar probably originated from the internal representation of actions, resulting in the creation of verbs; this is an ability that depends on the so-called Broca's area and related brain networks. It is suggested that grammar is the basic ability for the development of so-called metacognitive executive functions. It is concluded that while the lexical/semantic language system (vocabulary) probably appeared during human evolution long before the contemporary man (Homo sapiens sapiens), the grammatical language historically represents a recent acquisition and is correlated with the development of complex cognition (metacognitive executive functions). PMID:26124540

  10. The Cogs Are Coming: The Cognitive Augmentation Revolution

    ERIC Educational Resources Information Center

    Fulbright, Ron

    2016-01-01

    We are at the beginning of a new era in human history--the cognitive augmentation era. Until now, humans have had to do all of the thinking. The future will make it possible for humans to partner with cognitive systems doing some of the thinking themselves and in many ways thinking that is superior to humans. Together, humans and "cogs"…

  11. Comparative developmental psychology: how is human cognitive development unique?

    PubMed

    Rosati, Alexandra G; Wobber, Victoria; Hughes, Kelly; Santos, Laurie R

    2014-04-29

    The fields of developmental and comparative psychology both seek to illuminate the roots of adult cognitive systems. Developmental studies target the emergence of adult cognitive systems over ontogenetic time, whereas comparative studies investigate the origins of human cognition in our evolutionary history. Despite the long tradition of research in both of these areas, little work has examined the intersection of the two: the study of cognitive development in a comparative perspective. In the current article, we review recent work using this comparative developmental approach to study non-human primate cognition. We argue that comparative data on the pace and pattern of cognitive development across species can address major theoretical questions in both psychology and biology. In particular, such integrative research will allow stronger biological inferences about the function of developmental change, and will be critical in addressing how humans come to acquire species-unique cognitive abilities.

  12. Altruism, egoism, or neither: A cognitive-efficiency-based evolutionary biological perspective on helping behavior.

    PubMed

    Schulz, Armin W

    2016-04-01

    I argue for differences in the cognitive efficiency of different psychologies underlying helping behavior, and present an account of the adaptive pressures that result from these differences. Specifically, I argue that organisms often face pressure to move away from only being egoistically motivated to help: non-egoistic organisms are often able to determine how to help other organisms more quickly and with less recourse to costly cognitive resources like concentration and attention. Furthermore, I also argue that, while these pressures away from pure egoism can lead to the evolution of altruists, they can also lead to the evolution of reciprocation-focused behaviorist helpers or even of reflex-driven helpers (who are neither altruists nor egoists). In this way, I seek to broaden the set of considerations typically taken into account when assessing the evolution of the psychology of helping behavior-which tend to be restricted to matters of reliability-and also try to make clearer the role of evolutionary biological considerations in the discussion of this apparently straightforwardly psychological phenomenon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mapping the Structure and Dynamics of Genomics-Related MeSH Terms Complex Networks

    PubMed Central

    Siqueiros-García, Jesús M.; Hernández-Lemus, Enrique; García-Herrera, Rodrigo; Robina-Galatas, Andrea

    2014-01-01

    It has been proposed that the history and evolution of scientific ideas may reflect certain aspects of the underlying socio-cognitive frameworks in which science itself is developing. Systematic analyses of the development of scientific knowledge may help us to construct models of the collective dynamics of science. Aiming at scientific rigor, these models should be built upon solid empirical evidence, analyzed with formal tools leading to ever-improving results that support the related conclusions. Along these lines we studied the dynamics and structure of the development of research in genomics as represented by the entire collection of genomics-related scientific papers contained in the PubMed database. The analyzed corpus consisted in more than 49,000 articles published in the years 1987 (first appeareance of the term Genomics) to 2011, categorized by means of the Medical Subheadings (MeSH) content-descriptors. Complex networks were built where two MeSH terms were connected if they are descriptors of the same article(s). The analysis of such networks revealed a complex structure and dynamics that to certain extent resembled small-world networks. The evolution of such networks in time reflected interesting phenomena in the historical development of genomic research, including what seems to be a phase-transition in a period marked by the completion of the first draft of the Human Genome Project. We also found that different disciplinary areas have different dynamic evolution patterns in their MeSH connectivity networks. In the case of areas related to science, changes in topology were somewhat fast while retaining a certain core-stucture, whereas in the humanities, the evolution was pretty slow and the structure resulted highly redundant and in the case of technology related issues, the evolution was very fast and the structure remained tree-like with almost no overlapping terms. PMID:24699262

  14. Evolving building blocks of rhythm: how human cognition creates music via cultural transmission.

    PubMed

    Ravignani, Andrea; Thompson, Bill; Grossi, Thomas; Delgado, Tania; Kirby, Simon

    2018-03-06

    Why does musical rhythm have the structure it does? Musical rhythm, in all its cross-cultural diversity, exhibits commonalities across world cultures. Traditionally, music research has been split into two fields. Some scientists focused on musicality, namely the human biocognitive predispositions for music, with an emphasis on cross-cultural similarities. Other scholars investigated music, seen as a cultural product, focusing on the variation in world musical cultures. Recent experiments found deep connections between music and musicality, reconciling these opposing views. Here, we address the question of how individual cognitive biases affect the process of cultural evolution of music. Data from two experiments are analyzed using two complementary techniques. In the experiments, participants hear drumming patterns and imitate them. These patterns are then given to the same or another participant to imitate. The structure of these initially random patterns is tracked along experimental "generations." Frequentist statistics show how participants' biases are amplified by cultural transmission, making drumming patterns more structured. Structure is achieved faster in transmission within rather than between participants. A Bayesian model approximates the motif structures participants learned and created. Our data and models suggest that individual biases for musicality may shape the cultural transmission of musical rhythm. © 2018 New York Academy of Sciences.

  15. Human Cognitive Enhancement Ethical Implications for Airman-Machine Teaming

    DTIC Science & Technology

    2017-04-06

    34 Psychological Constructs versus Neural Mechanisms: Different Perspectives for Advanced Research of Cognitive Processes and Development of Neuroadaptive...AIR WAR COLLEGE AIR UNIVERSITY HUMAN COGNITIVE ENHANCEMENT ETHICAL IMPLICATIONS FOR AIRMAN-MACHINE TEAMING by William M. Curlin...increasingly challenging adversarial threats. It is hypothesized that by the year 2030, human system operators will be “ cognitively challenged” to keep pace

  16. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis.

    PubMed

    Herrmann, Esther; Call, Josep; Hernàndez-Lloreda, Maráa Victoria; Hare, Brian; Tomasello, Michael

    2007-09-07

    Humans have many cognitive skills not possessed by their nearest primate relatives. The cultural intelligence hypothesis argues that this is mainly due to a species-specific set of social-cognitive skills, emerging early in ontogeny, for participating and exchanging knowledge in cultural groups. We tested this hypothesis by giving a comprehensive battery of cognitive tests to large numbers of two of humans' closest primate relatives, chimpanzees and orangutans, as well as to 2.5-year-old human children before literacy and schooling. Supporting the cultural intelligence hypothesis and contradicting the hypothesis that humans simply have more "general intelligence," we found that the children and chimpanzees had very similar cognitive skills for dealing with the physical world but that the children had more sophisticated cognitive skills than either of the ape species for dealing with the social world.

  17. Winnicott's Transformational Metaphors: A Cognitive-Linguistic Analysis

    ERIC Educational Resources Information Center

    Casali, Michael A.

    2010-01-01

    This study examined D.W. Winnicott's construct object usage and related transformational metaphors from a cognitive-linguistic perspective. The paper "The Use of an Object" was positioned historically among extant theoretical models and employed to investigate the semantic evolution of key Winnicottian concepts. Biographical accounts revealed…

  18. From fish to fashion: experimental and theoretical insights into the evolution of culture

    PubMed Central

    Laland, K. N.; Atton, N.; Webster, M. M.

    2011-01-01

    Recent years have witnessed a re-evaluation of the cognitive capabilities of fishes, including with respect to social learning. Indeed, some of the best experimental evidence for animal traditions can be found in fishes. Laboratory experimental studies reveal that many fishes acquire dietary, food site and mating preferences, predator recognition and avoidance behaviour, and learn pathways, through copying1 other fishes. Concentrating on foraging behaviour, we will present the findings of laboratory experiments that reveal social learning, behavioural innovation, the diffusion of novel behaviour through populations and traditional use of food sites. Further studies reveal surprisingly complex social learning strategies deployed by sticklebacks. We will go on to place these observations of fish in a phylogenetic context, describing in which respects the learning and traditionality of fish are similar to, and differ from, that observed in other animals. We end by drawing on theoretical insights to suggest processes that may have played important roles in the evolution of the human cultural capability. PMID:21357218

  19. How far could we make ourselves understood by the Andromedans? - an evolutionary cybernetic problem in hierarchical dynamics

    NASA Astrophysics Data System (ADS)

    Santoli, Salvatore

    1994-01-01

    The mechanistic interpretation of the communication process between cognitive hierarchical systems as an iterated pair of convolutions between the incoming discrete time series signals and the chaotic dynamics (CD) at the nm-scale of the perception (energy) wetware level, with the consequent feeding of the resulting collective properties to the CD software (symbolic) level, shows that the category of quality, largely present in Galilean quantitative-minded science, is to be increasingly made into quantity for finding optimum common codes for communication between different intelligent beings. The problem is similar to that solved by biological evolution, of communication between the conscious logic brain and the underlying unfelt ultimate extra-logical processes, as well as to the problem of the mind-body or the structure-function dichotomies. Perspective cybernated nanotechnological and/or nanobiological interfaces, and time evolution of the 'contact language' (the iterated dialogic process) as a self-organising system might improve human-alien understanding.

  20. Embodied artificial agents for understanding human social cognition.

    PubMed

    Wykowska, Agnieszka; Chaminade, Thierry; Cheng, Gordon

    2016-05-05

    In this paper, we propose that experimental protocols involving artificial agents, in particular the embodied humanoid robots, provide insightful information regarding social cognitive mechanisms in the human brain. Using artificial agents allows for manipulation and control of various parameters of behaviour, appearance and expressiveness in one of the interaction partners (the artificial agent), and for examining effect of these parameters on the other interaction partner (the human). At the same time, using artificial agents means introducing the presence of artificial, yet human-like, systems into the human social sphere. This allows for testing in a controlled, but ecologically valid, manner human fundamental mechanisms of social cognition both at the behavioural and at the neural level. This paper will review existing literature that reports studies in which artificial embodied agents have been used to study social cognition and will address the question of whether various mechanisms of social cognition (ranging from lower- to higher-order cognitive processes) are evoked by artificial agents to the same extent as by natural agents, humans in particular. Increasing the understanding of how behavioural and neural mechanisms of social cognition respond to artificial anthropomorphic agents provides empirical answers to the conundrum 'What is a social agent?' © 2016 The Authors.

  1. Towards An Integrative Theory Of Consciousness: Part 2 (An Anthology Of Various Other Models)

    PubMed Central

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed. PMID:23678242

  2. Towards an integrative theory of consciousness: part 2 (an anthology of various other models).

    PubMed

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed.

  3. Acceptance of evolutionary explanations as they are applied to plants, animals, and humans

    NASA Astrophysics Data System (ADS)

    Thanukos, Anastasia

    In four investigations using Likert-scale questionnaires and think-aloud protocols with 173 university students in total, the willingness to accept evolutionary explanations regarding plant, animal, and human characteristics was examined. Participants were presented with evolutionary explanations for features and behaviors and were asked to rate how much they agreed with evolution as an explanation for each scenario. Some were also asked to explain their reasoning in think-aloud protocols or to discuss item ratings with one another. Overall, participants thought evolutionary explanations appropriate, with median ratings in the upper quarter of the rating scale. They were slightly more willing to ascribe evolutionary explanations to plant than to human phenomena; however, this general effect was mediated by more specific aspects of the evolutionary scenarios in question. Participants who were generally negative regarding evolution were particularly negative towards human evolution. Those who were positive or neutral towards evolution in general were more willing to accept human evolution, but were more likely to use evolution to explain similarities between humans and other species than to explain particular human adaptations. For example, they were more likely to agree that evolution is responsible for the DNA similarities between humans and chimpanzees than that evolution is responsible for human behavioral characteristics, such as the fight or flight response. Think-aloud protocols suggest that, while people are more familiar with human evolutionary relationships than plant evolutionary relationships, they may be less likely to see human characteristics as adaptively valuable. One plausible explanation for these patterns is that an evolutionary explanation is judged jointly by its availability in an individual's memory and its plausibility (i.e., its congruence with the individual's worldview). Popular media coverage, with its focus on controversy and litigation, makes it likely that awareness of human evolution is high, compared with plant evolution (which may not even "enter the radar screen" when most people think of evolution). Some aspects of human evolution, such as the basic relationship between all primates, may have become so pedestrian that they do not threaten many individuals' worldviews. However, even for those positively disposed towards evolution, extending the ramifications of human evolution by suggesting that evolution shapes our behaviors and physical traits may pose a threat to their sense of personal agency. This threat is not associated with plant evolution.

  4. First translational 'Think Tank' on cerebrovascular disease, cognitive impairment and dementia.

    PubMed

    Barone, Frank C; Gustafson, Deborah; Crystal, Howard A; Moreno, Herman; Adamski, Mateusz G; Arai, Ken; Baird, Alison E; Balucani, Clotilde; Brickman, Adam M; Cechetto, David; Gorelick, Philip; Biessels, Geert Jan; Kiliaan, Amanda; Launer, Lenore; Schneider, Julie; Sorond, Farzaneh A; Whitmer, Rachel; Wright, Clinton; Zhang, Zheng Gang

    2016-02-13

    As the human population continues to age, an increasing number of people will exhibit significant deficits in cognitive function and dementia. It is now recognized that cerebrovascular, metabolic and neurodegenerative diseases all play major roles in the evolution of cognitive impairment and dementia. Thus with our more recent recognition of these relationships and our need to understand and more positively impact on this world health problem, "The Leo and Anne Albert Charitable Trust" (Gene Pranzo, Trustee with significant support from Susan Brogan, Meeting Planner) provided generous support for this inaugural international workshop that was held from April 13-16, 2015 at the beautiful Ritz Carlton Golf Resort in North Naples, Florida. Researchers from SUNY Downstate Medical Center, Brooklyn, NY organized the event by selecting the present group of translationally inclined preclinical, clinical and population scientists focused on cerebrovascular disease (CVD) risk and its progression to vascular cognitive impairment (VCI) and dementia. Participants at the workshop addressed important issues related to aging, cognition and dementia by: (1) sharing new data, information and perspectives that intersect vascular, metabolic and neurodegenerative diseases, (2) discussing gaps in translating population risk, clinical and preclinical information to the progression of cognitive loss, and (3) debating new approaches and methods to fill these gaps that can translate into future therapeutic interventions. Participants agreed on topics for group discussion prior to the meeting and focused on specific translational goals that included promoting better understanding of dementia mechanisms, the identification of potential therapeutic targets for intervention, and discussed/debated the potential utility of diagnostic/prognostic markers. Below summarizes the new data-presentations, concepts, novel directions and specific discussion topics addressed by this international translational team at our "First Leo and Anne Albert Charitable Trust 'Think Tank' VCI workshop".

  5. Does human cognition allow Human Factors (HF) certification of advanced aircrew systems?

    NASA Technical Reports Server (NTRS)

    Macleod, Iain S.; Taylor, Robert M.

    1994-01-01

    This paper has examined the requirements of HF specification and certification within advanced or complex aircrew systems. It suggests reasons for current inadequacies in the use of HF in the design process, giving some examples in support, and suggesting an avenue towards the improvement of the HF certification process. The importance of human cognition to the operation and performance of advanced aircrew systems has been stressed. Many of the shortfalls of advanced aircrew systems must be attributed to over automated designs that show little consideration on either the mental limits or the cognitive capabilities of the human system component. Traditional approaches to system design and HF certification are set within an over physicalistic foundation. Also, traditionally it was assumed that physicalistic system functions could be attributed to either the human or the machine on a one to one basis. Moreover, any problems associated with the parallel needs, or promoting human understanding alongside system operation and direction, were generally equated in reality by the natural flexibility and adaptability of human skills. The consideration of the human component of a complex system is seen as being primarily based on manifestations of human behavior to the almost total exclusion of any appreciation of unobservable human mental and cognitive processes. The argument of this paper is that the considered functionality of any complex human-machine system must contain functions that are purely human and purely cognitive. Human-machine system reliability ultimately depends on human reliability and dependability and, therefore, on the form and frequency of cognitive processes that have to be conducted to support system performance. The greater the demand placed by an advanced aircraft system on the human component's basic knowledge processes or cognition, rather than on skill, the more insiduous the effects the human may have on that system. This paper discusses one example of an attempt to devise an improved method of specificaiton and certification with relation to the advanced aircrew system, that of the RN Merlin helicopter. The method is realized to have limitations in practice, these mainly associated with the late production of the system specification in relation to the system development process. The need for a careful appreciation of the capabilities and support needs of human cognition within the design process of a complex man machine system has been argued, especially with relation to the concept of system functionality. Unlike the physicalistic Fitts list, a new classification of system functionality is proposed, namely: (1) equipment - system equipment related; (2) cognitive - human cognition related; and (3) associated - necessary combinatin of equipment and cognitive. This paper has not proposed a method for a fuller consideration of cognition within systems design, but has suggested the need for such a method and indicated an avenue towards its development. Finally, the HF certification of advanced aircrew systems is seen as only being possible in a qualified sense until the important functions of human cognition are considered within the system design process. (This paper contains the opinions of its authors and does not necessarily refledt the standpoint of their respective organizations).

  6. Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH)

    DTIC Science & Technology

    2007-10-01

    Award Number: W81XWH-06-1-0761 TITLE: Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH) PRINCIPAL INVESTIGATOR...23 JUL 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Surgical Technology Integration with Tools for Cognitive Human Factors (STITCH) 5b. GRANT...by considering cognitive and environmental factors such as mental workload, stress, situation awareness, and level of comfort with complex tools

  7. The Effects of Stress and Stress Hormones on Human Cognition: Implications for the Field of Brain and Cognition

    ERIC Educational Resources Information Center

    Lupien, S. J.; Maheu, F.; Tu, M.; Fiocco, A.; Schramek, T. E.

    2007-01-01

    In this review, we report on studies that have assessed the effects of exogenous and endogenous increases in stress hormones on human cognitive performance. We first describe the history of the studies on the effects of using exogenous stress hormones such as glucocorticoids as anti-inflammatory medications on human cognition and mental health.…

  8. Architecture of Explanatory Inference in the Human Prefrontal Cortex

    PubMed Central

    Barbey, Aron K.; Patterson, Richard

    2011-01-01

    Causal reasoning is a ubiquitous feature of human cognition. We continuously seek to understand, at least implicitly and often explicitly, the causal scenarios in which we live, so that we may anticipate what will come next, plan a potential response and envision its outcome, decide among possible courses of action in light of their probable outcomes, make midstream adjustments in our goal-related activities as our situation changes, and so on. A considerable body of research shows that the lateral prefrontal cortex (PFC) is crucial for causal reasoning, but also that there are significant differences in the manner in which ventrolateral PFC, dorsolateral PFC, and anterolateral PFC support causal reasoning. We propose, on the basis of research on the evolution, architecture, and functional organization of the lateral PFC, a general framework for understanding its roles in the many and varied sorts of causal reasoning carried out by human beings. Specifically, the ventrolateral PFC supports the generation of basic causal explanations and inferences; dorsolateral PFC supports the evaluation of these scenarios in light of some given normative standard (e.g., of plausibility or correctness in light of real or imagined causal interventions); and anterolateral PFC supports explanation and inference at an even higher level of complexity, coordinating the processes of generation and evaluation with further cognitive processes, and especially with computations of hedonic value and emotional implications of possible behavioral scenarios – considerations that are often critical both for understanding situations causally and for deciding about our own courses of action. PMID:21845182

  9. Evolution of optimal Lévy-flight strategies in human mental searches

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo; Baronchelli, Andrea

    2012-06-01

    Recent analysis of empirical data [Radicchi, Baronchelli, and Amaral, PloS ONE1932-620310.1371/journal.pone.0029910 7, e029910 (2012)] showed that humans adopt Lévy-flight strategies when exploring the bid space in online auctions. A game theoretical model proved that the observed Lévy exponents are nearly optimal, being close to the exponent value that guarantees the maximal economical return to players. Here, we rationalize these findings by adopting an evolutionary perspective. We show that a simple evolutionary process is able to account for the empirical measurements with the only assumption that the reproductive fitness of the players is proportional to their search ability. Contrary to previous modeling, our approach describes the emergence of the observed exponent without resorting to any strong assumptions on the initial searching strategies. Our results generalize earlier research, and open novel questions in cognitive, behavioral, and evolutionary sciences.

  10. Presumed Symbolic Use of Diurnal Raptors by Neanderthals

    PubMed Central

    Morin, Eugène; Laroulandie, Véronique

    2012-01-01

    In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH) assemblages conservatively dated to ≈100–60 kilo-years (ka) ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS) 5b (≈90 ka) and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60–40 ka). The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions. PMID:22403717

  11. Presumed symbolic use of diurnal raptors by Neanderthals.

    PubMed

    Morin, Eugène; Laroulandie, Véronique

    2012-01-01

    In Africa and western Eurasia, occurrences of burials and utilized ocher fragments during the late Middle and early Late Pleistocene are often considered evidence for the emergence of symbolically-mediated behavior. Perhaps less controversial for the study of human cognitive evolution are finds of marine shell beads and complex designs on organic and mineral artifacts in early modern human (EMH) assemblages conservatively dated to ≈ 100-60 kilo-years (ka) ago. Here we show that, in France, Neanderthals used skeletal parts of large diurnal raptors presumably for symbolic purposes at Combe-Grenal in a layer dated to marine isotope stage (MIS) 5b (≈ 90 ka) and at Les Fieux in stratigraphic units dated to the early/middle phase of MIS 3 (60-40 ka). The presence of similar objects in other Middle Paleolithic contexts in France and Italy suggest that raptors were used as means of symbolic expression by Neanderthals in these regions.

  12. Wandering tales: evolutionary origins of mental time travel and language

    PubMed Central

    Corballis, Michael C.

    2013-01-01

    A central component of mind wandering is mental time travel, the calling to mind of remembered past events and of imagined future ones. Mental time travel may also be critical to the evolution of language, which enables us to communicate about the non-present, sharing memories, plans, and ideas. Mental time travel is indexed in humans by hippocampal activity, and studies also suggest that the hippocampus in rats is active when the animals replay or pre play activity in a spatial environment, such as a maze. Mental time travel may have ancient origins, contrary to the view that it is unique to humans. Since mental time travel is also thought to underlie language, these findings suggest that language evolved gradually from pre-existing cognitive capacities, contrary to the view of Chomsky and others that language and symbolic thought emerged abruptly, in a single step, within the past 100,000 years. PMID:23908641

  13. Emotional and Interactional Prosody across Animal Communication Systems: A Comparative Approach to the Emergence of Language

    PubMed Central

    Filippi, Piera

    2016-01-01

    Across a wide range of animal taxa, prosodic modulation of the voice can express emotional information and is used to coordinate vocal interactions between multiple individuals. Within a comparative approach to animal communication systems, I hypothesize that the ability for emotional and interactional prosody (EIP) paved the way for the evolution of linguistic prosody – and perhaps also of music, continuing to play a vital role in the acquisition of language. In support of this hypothesis, I review three research fields: (i) empirical studies on the adaptive value of EIP in non-human primates, mammals, songbirds, anurans, and insects; (ii) the beneficial effects of EIP in scaffolding language learning and social development in human infants; (iii) the cognitive relationship between linguistic prosody and the ability for music, which has often been identified as the evolutionary precursor of language. PMID:27733835

  14. Long-distance stone transport and pigment use in the earliest Middle Stone Age

    NASA Astrophysics Data System (ADS)

    Brooks, Alison S.; Yellen, John E.; Potts, Richard; Behrensmeyer, Anna K.; Deino, Alan L.; Leslie, David E.; Ambrose, Stanley H.; Ferguson, Jeffrey R.; d’Errico, Francesco; Zipkin, Andrew M.; Whittaker, Scott; Post, Jeffrey; Veatch, Elizabeth G.; Foecke, Kimberly; Clark, Jennifer B.

    2018-04-01

    Previous research suggests that the complex symbolic, technological, and socioeconomic behaviors that typify Homo sapiens had roots in the middle Pleistocene <200,000 years ago, but data bearing on human behavioral origins are limited. We present a series of excavated Middle Stone Age sites from the Olorgesailie basin, southern Kenya, dating from ≥295,000 to ~320,000 years ago by argon-40/argon-39 and uranium-series methods. Hominins at these sites made prepared cores and points, exploited iron-rich rocks to obtain red pigment, and procured stone tool materials from ≥25- to 50-kilometer distances. Associated fauna suggests a broad resource strategy that included large and small prey. These practices imply notable changes in how individuals and groups related to the landscape and to one another and provide documentation relevant to human social and cognitive evolution.

  15. Simulating motivated cognition

    NASA Technical Reports Server (NTRS)

    Gevarter, William B.

    1991-01-01

    A research effort to develop a sophisticated computer model of human behavior is described. A computer framework of motivated cognition was developed. Motivated cognition focuses on the motivations or affects that provide the context and drive in human cognition and decision making. A conceptual architecture of the human decision-making approach from the perspective of information processing in the human brain is developed in diagrammatic form. A preliminary version of such a diagram is presented. This architecture is then used as a vehicle for successfully constructing a computer program simulation Dweck and Leggett's findings that relate how an individual's implicit theories orient them toward particular goals, with resultant cognitions, affects, and behavior.

  16. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    PubMed

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  17. Interpreting Evidence: An Approach to Teaching Human Evolution in the Classroom

    ERIC Educational Resources Information Center

    DeSilva, Jeremy

    2004-01-01

    Paleoanthropology, which is the study of human evolution through fossil records, can be used as a tool for teaching human evolution in the classrooms. An updated approach to teaching human evolution and a model for explaining what is science and how it is done, is presented.

  18. The Tractable Cognition Thesis

    ERIC Educational Resources Information Center

    van Rooij, Iris

    2008-01-01

    The recognition that human minds/brains are finite systems with limited resources for computation has led some researchers to advance the "Tractable Cognition thesis": Human cognitive capacities are constrained by computational tractability. This thesis, if true, serves cognitive psychology by constraining the space of computational-level theories…

  19. Should the study of Homo sapiens be part of cognitive science?

    PubMed

    Clark Barrett, H; Stich, Stephen; Laurence, Stephen

    2012-07-01

    Beller, Bender, and Medin argue that a reconciliation between anthropology and cognitive science seems unlikely. We disagree. In our view, Beller et al.'s view of the scope of what anthropology can offer cognitive science is too narrow. In focusing on anthropology's role in elucidating cultural particulars, they downplay the fact that anthropology can reveal both variation and universals in human cognition, and is in a unique position to do so relative to the other subfields of cognitive science. Indeed, without cross-cultural research, the universality of any aspect of human cognition cannot truly be established. Therefore, if the goal of cognitive science is to understand the cognitive capacities of our species as a whole, then it cannot do without anthropology. We briefly review a growing body of anthropological work aimed at answering questions about human cognition and offer suggestions for future work. Copyright © 2012 Cognitive Science Society, Inc.

  20. Genetics of behavior in the silver fox.

    PubMed

    Kukekova, Anna V; Temnykh, Svetlana V; Johnson, Jennifer L; Trut, Lyudmila N; Acland, Gregory M

    2012-02-01

    The silver fox provides a rich resource for investigating the genetics of behavior, with strains developed by intensely selective breeding that display markedly different behavioral phenotypes. Until recently, however, the tools for conducting molecular genetic investigations in this species were very limited. In this review, the history of development of this resource and the tools to exploit it are described. Although the focus is on the genetics of domestication in the silver fox, there is a broader context. In particular, one expectation of the silver fox research is that it will be synergistic with studies in other species, including humans, to yield a more comprehensive understanding of the molecular mechanisms and evolution of a wider range of social cognitive behaviors.

Top