Sample records for human computer interfaces

  1. Human computer interface guide, revision A

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Human Computer Interface Guide, SSP 30540, is a reference document for the information systems within the Space Station Freedom Program (SSFP). The Human Computer Interface Guide (HCIG) provides guidelines for the design of computer software that affects human performance, specifically, the human-computer interface. This document contains an introduction and subparagraphs on SSFP computer systems, users, and tasks; guidelines for interactions between users and the SSFP computer systems; human factors evaluation and testing of the user interface system; and example specifications. The contents of this document are intended to be consistent with the tasks and products to be prepared by NASA Work Package Centers and SSFP participants as defined in SSP 30000, Space Station Program Definition and Requirements Document. The Human Computer Interface Guide shall be implemented on all new SSFP contractual and internal activities and shall be included in any existing contracts through contract changes. This document is under the control of the Space Station Control Board, and any changes or revisions will be approved by the deputy director.

  2. The Human-Computer Interface and Information Literacy: Some Basics and Beyond.

    ERIC Educational Resources Information Center

    Church, Gary M.

    1999-01-01

    Discusses human/computer interaction research, human/computer interface, and their relationships to information literacy. Highlights include communication models; cognitive perspectives; task analysis; theory of action; problem solving; instructional design considerations; and a suggestion that human/information interface may be a more appropriate…

  3. Design and Implementation of an Interface Editor for the Amadeus Multi- Relational Database Front-end System

    DTIC Science & Technology

    1993-03-25

    application of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has been incorporated...through the ap- plication of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has...programming and Human-Computer Interface (HCI) design. Knowledge gained from each is applied to the design of a Form-based interface for database data

  4. An intelligent multi-media human-computer dialogue system

    NASA Technical Reports Server (NTRS)

    Neal, J. G.; Bettinger, K. E.; Byoun, J. S.; Dobes, Z.; Thielman, C. Y.

    1988-01-01

    Sophisticated computer systems are being developed to assist in the human decision-making process for very complex tasks performed under stressful conditions. The human-computer interface is a critical factor in these systems. The human-computer interface should be simple and natural to use, require a minimal learning period, assist the user in accomplishing his task(s) with a minimum of distraction, present output in a form that best conveys information to the user, and reduce cognitive load for the user. In pursuit of this ideal, the Intelligent Multi-Media Interfaces project is devoted to the development of interface technology that integrates speech, natural language text, graphics, and pointing gestures for human-computer dialogues. The objective of the project is to develop interface technology that uses the media/modalities intelligently in a flexible, context-sensitive, and highly integrated manner modelled after the manner in which humans converse in simultaneous coordinated multiple modalities. As part of the project, a knowledge-based interface system, called CUBRICON (CUBRC Intelligent CONversationalist) is being developed as a research prototype. The application domain being used to drive the research is that of military tactical air control.

  5. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1991-01-01

    Some of the many analytical models in human-computer interface design that are currently being developed are described. The usefulness of analytical models for human-computer interface design is evaluated. Can the use of analytical models be recommended to interface designers? The answer, based on the empirical research summarized here, is: not at this time. There are too many unanswered questions concerning the validity of models and their ability to meet the practical needs of design organizations.

  6. Formal specification of human-computer interfaces

    NASA Technical Reports Server (NTRS)

    Auernheimer, Brent

    1990-01-01

    A high-level formal specification of a human computer interface is described. Previous work is reviewed and the ASLAN specification language is described. Top-level specifications written in ASLAN for a library and a multiwindow interface are discussed.

  7. Metaphors for the Nature of Human-Computer Interaction in an Empowering Environment: Interaction Style Influences the Manner of Human Accomplishment.

    ERIC Educational Resources Information Center

    Weller, Herman G.; Hartson, H. Rex

    1992-01-01

    Describes human-computer interface needs for empowering environments in computer usage in which the machine handles the routine mechanics of problem solving while the user concentrates on its higher order meanings. A closed-loop model of interaction is described, interface as illusion is discussed, and metaphors for human-computer interaction are…

  8. Language evolution and human-computer interaction

    NASA Technical Reports Server (NTRS)

    Grudin, Jonathan; Norman, Donald A.

    1991-01-01

    Many of the issues that confront designers of interactive computer systems also appear in natural language evolution. Natural languages and human-computer interfaces share as their primary mission the support of extended 'dialogues' between responsive entities. Because in each case one participant is a human being, some of the pressures operating on natural languages, causing them to evolve in order to better support such dialogue, also operate on human-computer 'languages' or interfaces. This does not necessarily push interfaces in the direction of natural language - since one entity in this dialogue is not a human, this is not to be expected. Nonetheless, by discerning where the pressures that guide natural language evolution also appear in human-computer interaction, we can contribute to the design of computer systems and obtain a new perspective on natural languages.

  9. Information visualization: Beyond traditional engineering

    NASA Technical Reports Server (NTRS)

    Thomas, James J.

    1995-01-01

    This presentation addresses a different aspect of the human-computer interface; specifically the human-information interface. This interface will be dominated by an emerging technology called Information Visualization (IV). IV goes beyond the traditional views of computer graphics, CADS, and enables new approaches for engineering. IV specifically must visualize text, documents, sound, images, and video in such a way that the human can rapidly interact with and understand the content structure of information entities. IV is the interactive visual interface between humans and their information resources.

  10. Multimodal neuroelectric interface development

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Rosipal, Roman; Clanton, Sam T.; Matthews, Bryan; Hibbs, Andrew D.; Matthews, Robert; Krupka, Michael

    2003-01-01

    We are developing electromyographic and electroencephalographic methods, which draw control signals for human-computer interfaces from the human nervous system. We have made progress in four areas: 1) real-time pattern recognition algorithms for decoding sequences of forearm muscle activity associated with control gestures; 2) signal-processing strategies for computer interfaces using electroencephalogram (EEG) signals; 3) a flexible computation framework for neuroelectric interface research; and d) noncontact sensors, which measure electromyogram or EEG signals without resistive contact to the body.

  11. Formalisms for user interface specification and design

    NASA Technical Reports Server (NTRS)

    Auernheimer, Brent J.

    1989-01-01

    The application of formal methods to the specification and design of human-computer interfaces is described. A broad outline of human-computer interface problems, a description of the field of cognitive engineering and two relevant research results, the appropriateness of formal specification techniques, and potential NASA application areas are described.

  12. An Architectural Experience for Interface Design

    ERIC Educational Resources Information Center

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  13. A Framework and Implementation of User Interface and Human-Computer Interaction Instruction

    ERIC Educational Resources Information Center

    Peslak, Alan

    2005-01-01

    Researchers have suggested that up to 50 % of the effort in development of information systems is devoted to user interface development (Douglas, Tremaine, Leventhal, Wills, & Manaris, 2002; Myers & Rosson, 1992). Yet little study has been performed on the inclusion of important interface and human-computer interaction topics into a current…

  14. Towards Better Human Robot Interaction: Understand Human Computer Interaction in Social Gaming Using a Video-Enhanced Diary Method

    NASA Astrophysics Data System (ADS)

    See, Swee Lan; Tan, Mitchell; Looi, Qin En

    This paper presents findings from a descriptive research on social gaming. A video-enhanced diary method was used to understand the user experience in social gaming. From this experiment, we found that natural human behavior and gamer’s decision making process can be elicited and speculated during human computer interaction. These are new information that we should consider as they can help us build better human computer interfaces and human robotic interfaces in future.

  15. Redesigning the Human-Machine Interface for Computer-Mediated Visual Technologies.

    ERIC Educational Resources Information Center

    Acker, Stephen R.

    1986-01-01

    This study examined an application of a human machine interface which relies on the use of optical bar codes incorporated in a computer-based module to teach radio production. The sequencing procedure used establishes the user rather than the computer as the locus of control for the mediated instruction. (Author/MBR)

  16. Telepresence: A "Real" Component in a Model to Make Human-Computer Interface Factors Meaningful in the Virtual Learning Environment

    ERIC Educational Resources Information Center

    Selverian, Melissa E. Markaridian; Lombard, Matthew

    2009-01-01

    A thorough review of the research relating to Human-Computer Interface (HCI) form and content factors in the education, communication and computer science disciplines reveals strong associations of meaningful perceptual "illusions" with enhanced learning and satisfaction in the evolving classroom. Specifically, associations emerge…

  17. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    ERIC Educational Resources Information Center

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  18. The Next Wave: Humans, Computers, and Redefining Reality

    NASA Technical Reports Server (NTRS)

    Little, William

    2018-01-01

    The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.

  19. Human perceptual deficits as factors in computer interface test and evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowser, S.E.

    1992-06-01

    Issues related to testing and evaluating human computer interfaces are usually based on the machine rather than on the human portion of the computer interface. Perceptual characteristics of the expected user are rarely investigated, and interface designers ignore known population perceptual limitations. For these reasons, environmental impacts on the equipment will more likely be defined than will user perceptual characteristics. The investigation of user population characteristics is most often directed toward intellectual abilities and anthropometry. This problem is compounded by the fact that some deficits capabilities tend to be found in higher-than-overall population distribution in some user groups. The testmore » and evaluation community can address the issue from two primary aspects. First, assessing user characteristics should be extended to include tests of perceptual capability. Secondly, interface designs should use multimode information coding.« less

  20. The use of graphics in the design of the human-telerobot interface

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson Space Center employs computer graphics tools in their design and evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot interface on the Shuttle and on the Space Station. It has been determined by the MSTL that the use of computer graphics can promote more expedient and less costly design endeavors. Several specific examples of computer graphics applied to the FTS user interface by the MSTL are described.

  1. Human-Computer Interface Controlled by Horizontal Directional Eye Movements and Voluntary Blinks Using AC EOG Signals

    NASA Astrophysics Data System (ADS)

    Kajiwara, Yusuke; Murata, Hiroaki; Kimura, Haruhiko; Abe, Koji

    As a communication support tool for cases of amyotrophic lateral sclerosis (ALS), researches on eye gaze human-computer interfaces have been active. However, since voluntary and involuntary eye movements cannot be distinguished in the interfaces, their performance is still not sufficient for practical use. This paper presents a high performance human-computer interface system which unites high quality recognitions of horizontal directional eye movements and voluntary blinks. The experimental results have shown that the number of incorrect inputs is decreased by 35.1% in an existing system which equips recognitions of horizontal and vertical directional eye movements in addition to voluntary blinks and character inputs are speeded up by 17.4% from the existing system.

  2. Human-computer interfaces applied to numerical solution of the Plateau problem

    NASA Astrophysics Data System (ADS)

    Elias Fabris, Antonio; Soares Bandeira, Ivana; Ramos Batista, Valério

    2015-09-01

    In this work we present a code in Matlab to solve the Problem of Plateau numerically, and the code will include human-computer interface. The Problem of Plateau has applications in areas of knowledge like, for instance, Computer Graphics. The solution method will be the same one of the Surface Evolver, but the difference will be a complete graphical interface with the user. This will enable us to implement other kinds of interface like ocular mouse, voice, touch, etc. To date, Evolver does not include any graphical interface, which restricts its use by the scientific community. Specially, its use is practically impossible for most of the Physically Challenged People.

  3. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    NASA Technical Reports Server (NTRS)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.

  4. The use of analytical models in human-computer interface design

    NASA Technical Reports Server (NTRS)

    Gugerty, Leo

    1993-01-01

    Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.

  5. Implantable brain computer interface: challenges to neurotechnology translation.

    PubMed

    Konrad, Peter; Shanks, Todd

    2010-06-01

    This article reviews three concepts related to implantable brain computer interface (BCI) devices being designed for human use: neural signal extraction primarily for motor commands, signal insertion to restore sensation, and technological challenges that remain. A significant body of literature has occurred over the past four decades regarding motor cortex signal extraction for upper extremity movement or computer interface. However, little is discussed regarding postural or ambulation command signaling. Auditory prosthesis research continues to represent the majority of literature on BCI signal insertion. Significant hurdles continue in the technological translation of BCI implants. These include developing a stable neural interface, significantly increasing signal processing capabilities, and methods of data transfer throughout the human body. The past few years, however, have provided extraordinary human examples of BCI implant potential. Despite technological hurdles, proof-of-concept animal and human studies provide significant encouragement that BCI implants may well find their way into mainstream medical practice in the foreseeable future.

  6. Perspectives on Human-Computer Interface: Introduction and Overview.

    ERIC Educational Resources Information Center

    Harman, Donna; Lunin, Lois F.

    1992-01-01

    Discusses human-computer interfaces in information seeking that focus on end users, and provides an overview of articles in this section that (1) provide librarians and information specialists with guidelines for selecting information-seeking systems; (2) provide producers of information systems with directions for production or research; and (3)…

  7. Learning Machine, Vietnamese Based Human-Computer Interface.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    The sixth session of IT@EDU98 consisted of seven papers on the topic of the learning machine--Vietnamese based human-computer interface, and was chaired by Phan Viet Hoang (Informatics College, Singapore). "Knowledge Based Approach for English Vietnamese Machine Translation" (Hoang Kiem, Dinh Dien) presents the knowledge base approach,…

  8. Human-machine interface hardware: The next decade

    NASA Technical Reports Server (NTRS)

    Marcus, Elizabeth A.

    1991-01-01

    In order to understand where human-machine interface hardware is headed, it is important to understand where we are today, how we got there, and what our goals for the future are. As computers become more capable, faster, and programs become more sophisticated, it becomes apparent that the interface hardware is the key to an exciting future in computing. How can a user interact and control a seemingly limitless array of parameters effectively? Today, the answer is most often a limitless array of controls. The link between these controls and human sensory motor capabilities does not utilize existing human capabilities to their full extent. Interface hardware for teleoperation and virtual environments is now facing a crossroad in design. Therefore, we as developers need to explore how the combination of interface hardware, human capabilities, and user experience can be blended to get the best performance today and in the future.

  9. Assessment of a human computer interface prototyping environment

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1993-01-01

    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

  10. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    PubMed Central

    Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results. PMID:26457077

  11. Usability Studies in Virtual and Traditional Computer Aided Design Environments for Fault Identification

    DTIC Science & Technology

    2017-08-08

    Usability Studies In Virtual And Traditional Computer Aided Design Environments For Fault Identification Dr. Syed Adeel Ahmed, Xavier University...virtual environment with wand interfaces compared directly with a workstation non-stereoscopic traditional CAD interface with keyboard and mouse. In...the differences in interaction when compared with traditional human computer interfaces. This paper provides analysis via usability study methods

  12. TangibleCubes — Implementation of Tangible User Interfaces through the Usage of Microcontroller and Sensor Technology

    NASA Astrophysics Data System (ADS)

    Setscheny, Stephan

    The interaction between human beings and technology builds a central aspect in human life. The most common form of this human-technology interface is the graphical user interface which is controlled through the mouse and the keyboard. In consequence of continuous miniaturization and the increasing performance of microcontrollers and sensors for the detection of human interactions, developers receive new possibilities for realising innovative interfaces. As far as this movement is concerned, the relevance of computers in the common sense and graphical user interfaces is decreasing. Especially in the area of ubiquitous computing and the interaction through tangible user interfaces a highly impact of this technical evolution can be seen. Apart from this, tangible and experience able interaction offers users the possibility of an interactive and intuitive method for controlling technical objects. The implementation of microcontrollers for control functions and sensors enables the realisation of these experience able interfaces. Besides the theories about tangible user interfaces, the consideration about sensors and the Arduino platform builds a main aspect of this work.

  13. A model for the control mode man-computer interface dialogue

    NASA Technical Reports Server (NTRS)

    Chafin, R. L.

    1981-01-01

    A four stage model is presented for the control mode man-computer interface dialogue. It consists of context development, semantic development syntactic development, and command execution. Each stage is discussed in terms of the operator skill levels (naive, novice, competent, and expert) and pertinent human factors issues. These issues are human problem solving, human memory, and schemata. The execution stage is discussed in terms of the operators typing skills. This model provides an understanding of the human process in command mode activity for computer systems and a foundation for relating system characteristics to operator characteristics.

  14. Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades

    DTIC Science & Technology

    2012-05-13

    Research Triangle Park, NC 27709-2211 Augmented brain–computer interface (ABCI);biosensor; cognitive-state monitoring; electroencephalogram( EEG ); human...biosensor; cognitive-state monitoring; electroencephalogram ( EEG ); human brain imaging Manuscript received November 28, 2011; accepted December 20...magnetic reso- nance imaging (fMRI) [1], positron emission tomography (PET) [2], electroencephalograms ( EEGs ) and optical brain imaging techniques (i.e

  15. Human/Computer Interfacing in Educational Environments.

    ERIC Educational Resources Information Center

    Sarti, Luigi

    1992-01-01

    This discussion of educational applications of user interfaces covers the benefits of adopting database techniques in organizing multimedia materials; the evolution of user interface technology, including teletype interfaces, analogic overlay graphics, window interfaces, and adaptive systems; application design problems, including the…

  16. Introduction to human factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winters, J.M.

    Some background is given on the field of human factors. The nature of problems with current human/computer interfaces is discussed, some costs are identified, ideal attributes of graceful system interfaces are outlined, and some reasons are indicated why it's not easy to fix the problems. (LEW)

  17. User Language Considerations in Military Human-Computer Interface Design

    DTIC Science & Technology

    1988-06-30

    InterfatceDe~sign (rinclassilied i. PEASO2NAL AUTHOR(S) 11rinil 3. Pond_ & VWilliamK. Cbruvn _______ Ia. TYPE OF REFORT Ib. TIME COVERED 14 DAt( OP...report details the soldtar lanquagoiculli-o ’s,.tves of poDzibIo releivance to US Military 01IOCliveneSS. 0&poCiatty in thosesV,tqIm& wtth cit:1c~l...IMPLICATIONS OF BILINGUALISM 7. Stress Effects 7 Significance for the US Military 9 BILINGUALISM AND THE HUMAN-COMPUTER INTERFACE 11 Computer-specific

  18. Concept of software interface for BCI systems

    NASA Astrophysics Data System (ADS)

    Svejda, Jaromir; Zak, Roman; Jasek, Roman

    2016-06-01

    Brain Computer Interface (BCI) technology is intended to control external system by brain activity. One of main part of such system is software interface, which carries about clear communication between brain and either computer or additional devices connected to computer. This paper is organized as follows. Firstly, current knowledge about human brain is briefly summarized to points out its complexity. Secondly, there is described a concept of BCI system, which is then used to build an architecture of proposed software interface. Finally, there are mentioned disadvantages of sensing technology discovered during sensing part of our research.

  19. Eye-movements and Voice as Interface Modalities to Computer Systems

    NASA Astrophysics Data System (ADS)

    Farid, Mohsen M.; Murtagh, Fionn D.

    2003-03-01

    We investigate the visual and vocal modalities of interaction with computer systems. We focus our attention on the integration of visual and vocal interface as possible replacement and/or additional modalities to enhance human-computer interaction. We present a new framework for employing eye gaze as a modality of interface. While voice commands, as means of interaction with computers, have been around for a number of years, integration of both the vocal interface and the visual interface, in terms of detecting user's eye movements through an eye-tracking device, is novel and promises to open the horizons for new applications where a hand-mouse interface provides little or no apparent support to the task to be accomplished. We present an array of applications to illustrate the new framework and eye-voice integration.

  20. On the Rhetorical Contract in Human-Computer Interaction.

    ERIC Educational Resources Information Center

    Wenger, Michael J.

    1991-01-01

    An exploration of the rhetorical contract--i.e., the expectations for appropriate interaction--as it develops in human-computer interaction revealed that direct manipulation interfaces were more likely to establish social expectations. Study results suggest that the social nature of human-computer interactions can be examined with reference to the…

  1. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  2. Human Computer Interface Design Criteria. Volume 1. User Interface Requirements

    DTIC Science & Technology

    2010-03-19

    Television tuners, including tuner cards for use in computers, shall be equipped with secondary audio program playback circuitry. (c) All training...Shelf CSS Cascading Style Sheets DII Defense Information Infrastructure DISA Defense Information Systems Agency DoD Department of Defense

  3. An automatic eye detection and tracking technique for stereo video sequences

    NASA Astrophysics Data System (ADS)

    Paduru, Anirudh; Charalampidis, Dimitrios; Fouts, Brandon; Jovanovich, Kim

    2009-05-01

    Human-computer interfacing (HCI) describes a system or process with which two information processors, namely a human and a computer, attempt to exchange information. Computer-to-human (CtH) information transfer has been relatively effective through visual displays and sound devices. On the other hand, the human-tocomputer (HtC) interfacing avenue has yet to reach its full potential. For instance, the most common HtC communication means are the keyboard and mouse, which are already becoming a bottleneck in the effective transfer of information. The solution to the problem is the development of algorithms that allow the computer to understand human intentions based on their facial expressions, head motion patterns, and speech. In this work, we are investigating the feasibility of a stereo system to effectively determine the head position, including the head rotation angles, based on the detection of eye pupils.

  4. A novel device for head gesture measurement system in combination with eye-controlled human machine interface

    NASA Astrophysics Data System (ADS)

    Lin, Chern-Sheng; Ho, Chien-Wa; Chang, Kai-Chieh; Hung, San-Shan; Shei, Hung-Jung; Yeh, Mau-Shiun

    2006-06-01

    This study describes the design and combination of an eye-controlled and a head-controlled human-machine interface system. This system is a highly effective human-machine interface, detecting head movement by changing positions and numbers of light sources on the head. When the users utilize the head-mounted display to browse a computer screen, the system will catch the images of the user's eyes with CCD cameras, which can also measure the angle and position of the light sources. In the eye-tracking system, the program in the computer will locate each center point of the pupils in the images, and record the information on moving traces and pupil diameters. In the head gesture measurement system, the user wears a double-source eyeglass frame, so the system catches images of the user's head by using a CCD camera in front of the user. The computer program will locate the center point of the head, transferring it to the screen coordinates, and then the user can control the cursor by head motions. We combine the eye-controlled and head-controlled human-machine interface system for the virtual reality applications.

  5. Designers' models of the human-computer interface

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Breedin, Sarah D.

    1993-01-01

    Understanding design models of the human-computer interface (HCI) may produce two types of benefits. First, interface development often requires input from two different types of experts: human factors specialists and software developers. Given the differences in their backgrounds and roles, human factors specialists and software developers may have different cognitive models of the HCI. Yet, they have to communicate about the interface as part of the design process. If they have different models, their interactions are likely to involve a certain amount of miscommunication. Second, the design process in general is likely to be guided by designers' cognitive models of the HCI, as well as by their knowledge of the user, tasks, and system. Designers do not start with a blank slate; rather they begin with a general model of the object they are designing. The author's approach to a design model of the HCI was to have three groups make judgments of categorical similarity about the components of an interface: human factors specialists with HCI design experience, software developers with HCI design experience, and a baseline group of computer users with no experience in HCI design. The components of the user interface included both display components such as windows, text, and graphics, and user interaction concepts, such as command language, editing, and help. The judgments of the three groups were analyzed using hierarchical cluster analysis and Pathfinder. These methods indicated, respectively, how the groups categorized the concepts, and network representations of the concepts for each group. The Pathfinder analysis provides greater information about local, pairwise relations among concepts, whereas the cluster analysis shows global, categorical relations to a greater extent.

  6. Design of an efficient framework for fast prototyping of customized human-computer interfaces and virtual environments for rehabilitation.

    PubMed

    Avola, Danilo; Spezialetti, Matteo; Placidi, Giuseppe

    2013-06-01

    Rehabilitation is often required after stroke, surgery, or degenerative diseases. It has to be specific for each patient and can be easily calibrated if assisted by human-computer interfaces and virtual reality. Recognition and tracking of different human body landmarks represent the basic features for the design of the next generation of human-computer interfaces. The most advanced systems for capturing human gestures are focused on vision-based techniques which, on the one hand, may require compromises from real-time and spatial precision and, on the other hand, ensure natural interaction experience. The integration of vision-based interfaces with thematic virtual environments encourages the development of novel applications and services regarding rehabilitation activities. The algorithmic processes involved during gesture recognition activity, as well as the characteristics of the virtual environments, can be developed with different levels of accuracy. This paper describes the architectural aspects of a framework supporting real-time vision-based gesture recognition and virtual environments for fast prototyping of customized exercises for rehabilitation purposes. The goal is to provide the therapist with a tool for fast implementation and modification of specific rehabilitation exercises for specific patients, during functional recovery. Pilot examples of designed applications and preliminary system evaluation are reported and discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Human-computer interface

    DOEpatents

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  8. Visual design for the user interface, Part 1: Design fundamentals.

    PubMed

    Lynch, P J

    1994-01-01

    Digital audiovisual media and computer-based documents will be the dominant forms of professional communication in both clinical medicine and the biomedical sciences. The design of highly interactive multimedia systems will shortly become a major activity for biocommunications professionals. The problems of human-computer interface design are intimately linked with graphic design for multimedia presentations and on-line document systems. This article outlines the history of graphic interface design and the theories that have influenced the development of today's major graphic user interfaces.

  9. Modeling User Behavior in Computer Learning Tasks.

    ERIC Educational Resources Information Center

    Mantei, Marilyn M.

    Model building techniques from Artifical Intelligence and Information-Processing Psychology are applied to human-computer interface tasks to evaluate existing interfaces and suggest new and better ones. The model is in the form of an augmented transition network (ATN) grammar which is built by applying grammar induction heuristics on a sequential…

  10. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  11. Hands in space: gesture interaction with augmented-reality interfaces.

    PubMed

    Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai

    2014-01-01

    Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.

  12. Ocular attention-sensing interface system

    NASA Technical Reports Server (NTRS)

    Zaklad, Allen; Glenn, Floyd A., III; Iavecchia, Helene P.; Stokes, James M.

    1986-01-01

    The purpose of the research was to develop an innovative human-computer interface based on eye movement and voice control. By eliminating a manual interface (keyboard, joystick, etc.), OASIS provides a control mechanism that is natural, efficient, accurate, and low in workload.

  13. Independent Verification and Validation of Complex User Interfaces: A Human Factors Approach

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Berman, Andrea; Chmielewski, Cynthia

    1996-01-01

    The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center has identified and evaluated a potential automated software interface inspection tool capable of assessing the degree to which space-related critical and high-risk software system user interfaces meet objective human factors standards across each NASA program and project. Testing consisted of two distinct phases. Phase 1 compared analysis times and similarity of results for the automated tool and for human-computer interface (HCI) experts. In Phase 2, HCI experts critiqued the prototype tool's user interface. Based on this evaluation, it appears that a more fully developed version of the tool will be a promising complement to a human factors-oriented independent verification and validation (IV&V) process.

  14. A Research Roadmap for Computation-Based Human Reliability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is oftenmore » secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.« less

  15. Designing the Instructional Interface.

    ERIC Educational Resources Information Center

    Lohr, L. L.

    2000-01-01

    Designing the instructional interface is a challenging endeavor requiring knowledge and skills in instructional and visual design, psychology, human-factors, ergonomic research, computer science, and editorial design. This paper describes the instructional interface, the challenges of its development, and an instructional systems approach to its…

  16. [The current state of the brain-computer interface problem].

    PubMed

    Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A

    2015-01-01

    It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.

  17. Ten Design Points for the Human Interface to Instructional Multimedia.

    ERIC Educational Resources Information Center

    McFarland, Ronald D.

    1995-01-01

    Ten ways to design an effective Human-Computer Interface are explained. Highlights include material delivery that relates to user knowledge; appropriate screen presentations; attention value versus learning and recall; the relationship of packaging and message; the effectiveness of visuals and text; the use of color to enhance communication; the…

  18. MARTI: man-machine animation real-time interface

    NASA Astrophysics Data System (ADS)

    Jones, Christian M.; Dlay, Satnam S.

    1997-05-01

    The research introduces MARTI (man-machine animation real-time interface) for the realization of natural human-machine interfacing. The system uses simple vocal sound-tracks of human speakers to provide lip synchronization of computer graphical facial models. We present novel research in a number of engineering disciplines, which include speech recognition, facial modeling, and computer animation. This interdisciplinary research utilizes the latest, hybrid connectionist/hidden Markov model, speech recognition system to provide very accurate phone recognition and timing for speaker independent continuous speech, and expands on knowledge from the animation industry in the development of accurate facial models and automated animation. The research has many real-world applications which include the provision of a highly accurate and 'natural' man-machine interface to assist user interactions with computer systems and communication with one other using human idiosyncrasies; a complete special effects and animation toolbox providing automatic lip synchronization without the normal constraints of head-sets, joysticks, and skilled animators; compression of video data to well below standard telecommunication channel bandwidth for video communications and multi-media systems; assisting speech training and aids for the handicapped; and facilitating player interaction for 'video gaming' and 'virtual worlds.' MARTI has introduced a new level of realism to man-machine interfacing and special effect animation which has been previously unseen.

  19. Evaluation of a computerized aid for creating human behavioral representations of human-computer interaction.

    PubMed

    Williams, Kent E; Voigt, Jeffrey R

    2004-01-01

    The research reported herein presents the results of an empirical evaluation that focused on the accuracy and reliability of cognitive models created using a computerized tool: the cognitive analysis tool for human-computer interaction (CAT-HCI). A sample of participants, expert in interacting with a newly developed tactical display for the U.S. Army's Bradley Fighting Vehicle, individually modeled their knowledge of 4 specific tasks employing the CAT-HCI tool. Measures of the accuracy and consistency of task models created by these task domain experts using the tool were compared with task models created by a double expert. The findings indicated a high degree of consistency and accuracy between the different "single experts" in the task domain in terms of the resultant models generated using the tool. Actual or potential applications of this research include assessing human-computer interaction complexity, determining the productivity of human-computer interfaces, and analyzing an interface design to determine whether methods can be automated.

  20. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  1. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  2. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  3. CDROM User Interface Evaluation: The Appropriateness of GUIs.

    ERIC Educational Resources Information Center

    Bosch, Victoria Manglano; Hancock-Beaulieu, Micheline

    1995-01-01

    Assesses the appropriateness of GUIs (graphical user interfaces), more specifically Windows-based interfaces for CD-ROM. An evaluation model is described that was developed to carry out an expert evaluation of the interfaces of seven CD-ROM products. Results are discussed in light of HCI (human-computer interaction) usability criteria and design…

  4. Designing the user interface: strategies for effective human-computer interaction

    NASA Astrophysics Data System (ADS)

    Shneiderman, B.

    1998-03-01

    In revising this popular book, Ben Shneiderman again provides a complete, current and authoritative introduction to user-interface design. The user interface is the part of every computer system that determines how people control and operate that system. When the interface is well designed, it is comprehensible, predictable, and controllable; users feel competent, satisfied, and responsible for their actions. Shneiderman discusses the principles and practices needed to design such effective interaction. Based on 20 years experience, Shneiderman offers readers practical techniques and guidelines for interface design. He also takes great care to discuss underlying issues and to support conclusions with empirical results. Interface designers, software engineers, and product managers will all find this book an invaluable resource for creating systems that facilitate rapid learning and performance, yield low error rates, and generate high user satisfaction. Coverage includes the human factors of interactive software (with a new discussion of diverse user communities), tested methods to develop and assess interfaces, interaction styles such as direct manipulation for graphical user interfaces, and design considerations such as effective messages, consistent screen design, and appropriate color.

  5. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  6. Brain Computer Interfaces for Enhanced Interaction with Mobile Robot Agents

    DTIC Science & Technology

    2016-07-27

    synergistic and complementary way. This project focused on acquiring a mobile robotic agent platform that can be used to explore these interfaces...providing a test environment where the human control of a robot agent can be experimentally validated in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Distribution Unlimited UU UU UU UU 27-07-2016 17-Sep-2013 16-Sep-2014 Final Report: Brain Computer Interfaces for Enhanced Interactions with Mobile Robot

  7. A human factors approach to range scheduling for satellite control

    NASA Technical Reports Server (NTRS)

    Wright, Cameron H. G.; Aitken, Donald J.

    1991-01-01

    Range scheduling for satellite control presents a classical problem: supervisory control of a large-scale dynamic system, with unwieldy amounts of interrelated data used as inputs to the decision process. Increased automation of the task, with the appropriate human-computer interface, is highly desirable. The development and user evaluation of a semi-automated network range scheduling system is described. The system incorporates a synergistic human-computer interface consisting of a large screen color display, voice input/output, a 'sonic pen' pointing device, a touchscreen color CRT, and a standard keyboard. From a human factors standpoint, this development represents the first major improvement in almost 30 years to the satellite control network scheduling task.

  8. Human Factors in the Design of a Computer-Assisted Instruction System. Technical Progress Report.

    ERIC Educational Resources Information Center

    Mudge, J. C.

    A research project built an author-controlled computer-assisted instruction (CAI) system to study ease-of-use factors in student-system, author-system, and programer-system interfaces. Interfaces were designed and observed in use and systematically revised. Development of course material by authors, use by students, and administrative tasks were…

  9. Focus Your Young Visitors: Kids Innovation--Fundamental Changes in Digital Edutainment.

    ERIC Educational Resources Information Center

    Sauer, Sebastian; Gobel, Stefan

    With regard to the acceptance of human-computer interfaces, immersion represents one of the most important methods for attracting young visitors into museum exhibitions. Exciting and diversely presented content as well as intuitive, natural and human-like interfaces are indispensable to bind users to an interactive system with real and digital…

  10. Spacecraft crew procedures from paper to computers

    NASA Technical Reports Server (NTRS)

    Oneal, Michael; Manahan, Meera

    1991-01-01

    Described here is a research project that uses human factors and computer systems knowledge to explore and help guide the design and creation of an effective Human-Computer Interface (HCI) for spacecraft crew procedures. By having a computer system behind the user interface, it is possible to have increased procedure automation, related system monitoring, and personalized annotation and help facilities. The research project includes the development of computer-based procedure system HCI prototypes and a testbed for experiments that measure the effectiveness of HCI alternatives in order to make design recommendations. The testbed will include a system for procedure authoring, editing, training, and execution. Progress on developing HCI prototypes for a middeck experiment performed on Space Shuttle Mission STS-34 and for upcoming medical experiments are discussed. The status of the experimental testbed is also discussed.

  11. Human Machine Interfaces for Teleoperators and Virtual Environments Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.

  12. User interface issues in supporting human-computer integrated scheduling

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.

  13. Guidance for human interface with artificial intelligence systems

    NASA Technical Reports Server (NTRS)

    Potter, Scott S.; Woods, David D.

    1991-01-01

    The beginning of a research effort to collect and integrate existing research findings about how to combine computer power and people is discussed, including problems and pitfalls as well as desirable features. The goal of the research is to develop guidance for the design of human interfaces with intelligent systems. Fault management tasks in NASA domains are the focus of the investigation. Research is being conducted to support the development of guidance for designers that will enable them to make human interface considerations into account during the creation of intelligent systems.

  14. Human-machine interface for a VR-based medical imaging environment

    NASA Astrophysics Data System (ADS)

    Krapichler, Christian; Haubner, Michael; Loesch, Andreas; Lang, Manfred K.; Englmeier, Karl-Hans

    1997-05-01

    Modern 3D scanning techniques like magnetic resonance imaging (MRI) or computed tomography (CT) produce high- quality images of the human anatomy. Virtual environments open new ways to display and to analyze those tomograms. Compared with today's inspection of 2D image sequences, physicians are empowered to recognize spatial coherencies and examine pathological regions more facile, diagnosis and therapy planning can be accelerated. For that purpose a powerful human-machine interface is required, which offers a variety of tools and features to enable both exploration and manipulation of the 3D data. Man-machine communication has to be intuitive and efficacious to avoid long accustoming times and to enhance familiarity with and acceptance of the interface. Hence, interaction capabilities in virtual worlds should be comparable to those in the real work to allow utilization of our natural experiences. In this paper the integration of hand gestures and visual focus, two important aspects in modern human-computer interaction, into a medical imaging environment is shown. With the presented human- machine interface, including virtual reality displaying and interaction techniques, radiologists can be supported in their work. Further, virtual environments can even alleviate communication between specialists from different fields or in educational and training applications.

  15. Human-Computer Interaction: A Review of the Research on Its Affective and Social Aspects.

    ERIC Educational Resources Information Center

    Deaudelin, Colette; Dussault, Marc; Brodeur, Monique

    2003-01-01

    Discusses a review of 34 qualitative and non-qualitative studies related to affective and social aspects of student-computer interactions. Highlights include the nature of the human-computer interaction (HCI); the interface, comparing graphic and text types; and the relation between variables linked to HCI, mainly trust, locus of control,…

  16. User Centered System Design: Papers for the CHI '83 Conference on Human Factors in Computer Systems.

    ERIC Educational Resources Information Center

    California Univ., San Diego. Center for Human Information Processing.

    Four papers from the University of California at San Diego (UCSD) Project on Human-Computer Interfaces are presented in this report. "Evaluation and Analysis of User's Activity Organization," by Liam Bannon, Allen Cypher, Steven Greenspan, and Melissa Monty, analyzes the activities performed by users of computer systems, develops a…

  17. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    NASA Astrophysics Data System (ADS)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  18. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    PubMed Central

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  19. Human factors in the presentation of computer-generated information - Aspects of design and application in automated flight traffic

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.

  20. INCOMMANDS TDP: Human Factors Design and Evaluation Guide (PDT INCOMMANDS: Guide de Conception et d’Evaluation des Facteurs Humains)

    DTIC Science & Technology

    2009-12-01

    Human-Computer Interface (AHCI) Style Guide, (Report No. 64201-97U/61223), Veridian, Veda Operations, Dayton Ohio. [13] CSFAB Osga, G. and Kellmeyer, D...Interface (AHCI) Style Guide, (Report No. 64201-97U/61223), Veridian, Veda Operations, Dayton Ohio. [14] Osga, G. and Kellmeyer, D. (2000), Combat

  1. Human factors with nonhumans - Factors that affect computer-task performance

    NASA Technical Reports Server (NTRS)

    Washburn, David A.

    1992-01-01

    There are two general strategies that may be employed for 'doing human factors research with nonhuman animals'. First, one may use the methods of traditional human factors investigations to examine the nonhuman animal-to-machine interface. Alternatively, one might use performance by nonhuman animals as a surrogate for or model of performance by a human operator. Each of these approaches is illustrated with data in the present review. Chronic ambient noise was found to have a significant but inconsequential effect on computer-task performance by rhesus monkeys (Macaca mulatta). Additional data supported the generality of findings such as these to humans, showing that rhesus monkeys are appropriate models of human psychomotor performance. It is argued that ultimately the interface between comparative psychology and technology will depend on the coordinated use of both strategies of investigation.

  2. Human Factors Considerations in System Design

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)

    1983-01-01

    Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.

  3. A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.

    PubMed

    Yu, Jun; Wang, Zeng-Fu

    2015-05-01

    A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.

  4. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants' mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99% in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text "chat" communications, manipulation of procedures/checklists, cataloguing/annotating images, scientific note taking, human-robot interaction, and control of suit and/or other EVA systems.

  5. Glove-Enabled Computer Operations (GECO): Design and Testing of an Extravehicular Activity Glove Adapted for Human-Computer Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.; Olowin, Aaron; Krepkovich, Eileen; Hannaford, Blake; Lindsay, Jack I. C.; Homer, Peter; Patrie, James T.; Sands, O. Scott

    2013-01-01

    The Glove-Enabled Computer Operations (GECO) system enables an extravehicular activity (EVA) glove to be dual-purposed as a human-computer interface device. This paper describes the design and human participant testing of a right-handed GECO glove in a pressurized glove box. As part of an investigation into the usability of the GECO system for EVA data entry, twenty participants were asked to complete activities including (1) a Simon Says Games in which they attempted to duplicate random sequences of targeted finger strikes and (2) a Text Entry activity in which they used the GECO glove to enter target phrases in two different virtual keyboard modes. In a within-subjects design, both activities were performed both with and without vibrotactile feedback. Participants mean accuracies in correctly generating finger strikes with the pressurized glove were surprisingly high, both with and without the benefit of tactile feedback. Five of the subjects achieved mean accuracies exceeding 99 in both conditions. In Text Entry, tactile feedback provided a statistically significant performance benefit, quantified by characters entered per minute, as well as reduction in error rate. Secondary analyses of responses to a NASA Task Loader Index (TLX) subjective workload assessments reveal a benefit for tactile feedback in GECO glove use for data entry. This first-ever investigation of employment of a pressurized EVA glove for human-computer interface opens up a wide range of future applications, including text chat communications, manipulation of procedureschecklists, cataloguingannotating images, scientific note taking, human-robot interaction, and control of suit andor other EVA systems.

  6. Designing Interactions for Learning: Physicality, Interactivity, and Interface Effects in Digital Environments

    ERIC Educational Resources Information Center

    Hoffman, Daniel L.

    2013-01-01

    The purpose of the study is to better understand the role of physicality, interactivity, and interface effects in learning with digital content. Drawing on work in cognitive science, human-computer interaction, and multimedia learning, the study argues that interfaces that promote physical interaction can provide "conceptual leverage"…

  7. Fusion interfaces for tactical environments: An application of virtual reality technology

    NASA Technical Reports Server (NTRS)

    Haas, Michael W.

    1994-01-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and nonvirtual concepts and devices across the visual, auditory, and haptic sensory modalities. A fusion interface is a multisensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion interface concepts. This new facility, the Fusion Interfaces for Tactical Environments (FITE) Facility is a specialized flight simulator enabling efficient concept development through rapid prototyping and direct experience of new fusion concepts. The FITE Facility also supports evaluation of fusion concepts by operation fighter pilots in an air combat environment. The facility is utilized by a multidisciplinary design team composed of human factors engineers, electronics engineers, computer scientists, experimental psychologists, and oeprational pilots. The FITE computational architecture is composed of twenty-five 80486-based microcomputers operating in real-time. The microcomputers generate out-the-window visuals, in-cockpit and head-mounted visuals, localized auditory presentations, haptic displays on the stick and rudder pedals, as well as executing weapons models, aerodynamic models, and threat models.

  8. A truly human interface: interacting face-to-face with someone whose words are determined by a computer program

    PubMed Central

    Corti, Kevin; Gillespie, Alex

    2015-01-01

    We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower) repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots) become hybrid agents (“echoborgs”) capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg did not sense a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human–computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence. PMID:26042066

  9. A haptic interface for virtual simulation of endoscopic surgery.

    PubMed

    Rosenberg, L B; Stredney, D

    1996-01-01

    Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.

  10. Human factors dimensions in the evolution of increasingly automated control rooms for near-earth satellites

    NASA Technical Reports Server (NTRS)

    Mitchell, C. M.

    1982-01-01

    The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.

  11. Pilot-Vehicle Interface

    DTIC Science & Technology

    1993-11-01

    way is to develop a crude but working model of an entire system. The other is by developing a realistic model of the user interface , leaving out most...devices or by incorporating software for a more user -friendly interface . Automation introduces the possibility of making data entry errors. Multimode...across various human- computer interfaces . 127 a Memory: Minimize the amount of information that the user must maintain in short-term memory

  12. Perception and Haptic Rendering of Friction Moments.

    PubMed

    Kawasaki, H; Ohtuka, Y; Koide, S; Mouri, T

    2011-01-01

    This paper considers moments due to friction forces on the human fingertip. A computational technique called the friction moment arc method is presented. The method computes the static and/or dynamic friction moment independent of a friction force calculation. In addition, a new finger holder to display friction moment is presented. This device incorporates a small brushless motor and disk, and connects the human's finger to an interface finger of the five-fingered haptic interface robot HIRO II. Subjects' perception of friction moment while wearing the finger holder, as well as perceptions during object manipulation in a virtual reality environment, were evaluated experimentally.

  13. Novel 3-D Computer Model Can Help Predict Pathogens’ Roles in Cancer | Poster

    Cancer.gov

    To understand how bacterial and viral infections contribute to human cancers, four NCI at Frederick scientists turned not to the lab bench, but to a computer. The team has created the world’s first—and currently, only—3-D computational approach for studying interactions between pathogen proteins and human proteins based on a molecular adaptation known as interface mimicry.

  14. NAS infrastructure management system build 1.5 computer-human interface

    DOT National Transportation Integrated Search

    2001-01-01

    Human factors engineers from the National Airspace System (NAS) Human Factors Branch (ACT-530) of the Federal Aviation Administration William J. Hughes Technical Center conducted an evaluation of the NAS Infrastructure Management System (NIMS) Build ...

  15. Ethics in published brain-computer interface research

    NASA Astrophysics Data System (ADS)

    Specker Sullivan, L.; Illes, J.

    2018-02-01

    Objective. Sophisticated signal processing has opened the doors to more research with human subjects than ever before. The increase in the use of human subjects in research comes with a need for increased human subjects protections. Approach. We quantified the presence or absence of ethics language in published reports of brain-computer interface (BCI) studies that involved human subjects and qualitatively characterized ethics statements. Main results. Reports of BCI studies with human subjects that are published in neural engineering and engineering journals are anchored in the rationale of technological improvement. Ethics language is markedly absent, omitted from 31% of studies published in neural engineering journals and 59% of studies in biomedical engineering journals. Significance. As the integration of technological tools with the capacities of the mind deepens, explicit attention to ethical issues will ensure that broad human benefit is embraced and not eclipsed by technological exclusiveness.

  16. Experiments on Interfaces To Support Query Expansion.

    ERIC Educational Resources Information Center

    Beaulieu, M.

    1997-01-01

    Focuses on the user and human-computer interaction aspects of the research based on the Okapi text retrieval system. Three experiments implementing different approaches to query expansion are described, including the use of graphical user interfaces with different windowing techniques. (Author/LRW)

  17. The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2011-01-01

    This article is a review of experiments comparing the effectiveness of human tutoring, computer tutoring, and no tutoring. "No tutoring" refers to instruction that teaches the same content without tutoring. The computer tutoring systems were divided by their granularity of the user interface interaction into answer-based, step-based, and…

  18. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    NASA Astrophysics Data System (ADS)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  19. Human-computer interface for the study of information fusion concepts in situation analysis and command decision support systems

    NASA Astrophysics Data System (ADS)

    Roy, Jean; Breton, Richard; Paradis, Stephane

    2001-08-01

    Situation Awareness (SAW) is essential for commanders to conduct decision-making (DM) activities. Situation Analysis (SA) is defined as a process, the examination of a situation, its elements, and their relations, to provide and maintain a product, i.e., a state of SAW for the decision maker. Operational trends in warfare put the situation analysis process under pressure. This emphasizes the need for a real-time computer-based Situation analysis Support System (SASS) to aid commanders in achieving the appropriate situation awareness, thereby supporting their response to actual or anticipated threats. Data fusion is clearly a key enabler for SA and a SASS. Since data fusion is used for SA in support of dynamic human decision-making, the exploration of the SA concepts and the design of data fusion techniques must take into account human factor aspects in order to ensure a cognitive fit of the fusion system with the decision-maker. Indeed, the tight human factor aspects in order to ensure a cognitive fit of the fusion system with the decision-maker. Indeed, the tight integration of the human element with the SA technology is essential. Regarding these issues, this paper provides a description of CODSI (Command Decision Support Interface), and operational- like human machine interface prototype for investigations in computer-based SA and command decision support. With CODSI, one objective was to apply recent developments in SA theory and information display technology to the problem of enhancing SAW quality. It thus provides a capability to adequately convey tactical information to command decision makers. It also supports the study of human-computer interactions for SA, and methodologies for SAW measurement.

  20. Broadening the interface bandwidth in simulation based training

    NASA Technical Reports Server (NTRS)

    Somers, Larry E.

    1989-01-01

    Currently most computer based simulations rely exclusively on computer generated graphics to create the simulation. When training is involved, the method almost exclusively used to display information to the learner is text displayed on the cathode ray tube. MICROEXPERT Systems is concentrating on broadening the communications bandwidth between the computer and user by employing a novel approach to video image storage combined with sound and voice output. An expert system is used to combine and control the presentation of analog video, sound, and voice output with computer based graphics and text. Researchers are currently involved in the development of several graphics based user interfaces for NASA, the U.S. Army, and the U.S. Navy. Here, the focus is on the human factors considerations, software modules, and hardware components being used to develop these interfaces.

  1. Using Eye Movement to Control a Computer: A Design for a Lightweight Electro-Oculogram Electrode Array and Computer Interface

    PubMed Central

    Iáñez, Eduardo; Azorin, Jose M.; Perez-Vidal, Carlos

    2013-01-01

    This paper describes a human-computer interface based on electro-oculography (EOG) that allows interaction with a computer using eye movement. The EOG registers the movement of the eye by measuring, through electrodes, the difference of potential between the cornea and the retina. A new pair of EOG glasses have been designed to improve the user's comfort and to remove the manual procedure of placing the EOG electrodes around the user's eye. The interface, which includes the EOG electrodes, uses a new processing algorithm that is able to detect the gaze direction and the blink of the eyes from the EOG signals. The system reliably enabled subjects to control the movement of a dot on a video screen. PMID:23843986

  2. Can Robots and Humans Get Along?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean

    2007-06-01

    Now that robots have moved into the mainstream—as vacuum cleaners, lawn mowers, autonomous vehicles, tour guides, and even pets—it is important to consider how everyday people will interact with them. A robot is really just a computer, but many researchers are beginning to understand that human-robot interactions are much different than human-computer interactions. So while the metrics used to evaluate the human-computer interaction (usability of the software interface in terms of time, accuracy, and user satisfaction) may also be appropriate for human-robot interactions, we need to determine whether there are additional metrics that should be considered.

  3. A pen-based system to support pre-operative data collection within an anaesthesia department.

    PubMed Central

    Sanz, M. F.; Gómez, E. J.; Trueba, I.; Cano, P.; Arredondo, M. T.; del Pozo, F.

    1993-01-01

    This paper describes the design and implementation of a pen-based computer system for remote preoperative data collection. The system is envisaged to be used by anaesthesia staff at different hospital scenarios where pre-operative data are generated. Pen-based technology offers important advantages in terms of portability and human-computer interaction, as direct manipulation interfaces by direct pointing, and "notebook user interfaces metaphors". Being the human factors analysis and user interface design a vital stage to achieve the appropriate user acceptability, a methodology that integrates the "usability" evaluation from the earlier development stages was used. Additionally, the selection of a pen-based computer system as a portable device to be used by health care personnel allows to evaluate the appropriateness of this new technology for remote data collection within the hospital environment. The work presented is currently being realised under the Research Project "TANIT: Telematics in Anaesthesia and Intensive Care", within the "A.I.M.--Telematics in Health CARE" European Research Program. PMID:8130488

  4. The design of an intelligent human-computer interface for the test, control and monitor system

    NASA Technical Reports Server (NTRS)

    Shoaff, William D.

    1988-01-01

    The graphical intelligence and assistance capabilities of a human-computer interface for the Test, Control, and Monitor System at Kennedy Space Center are explored. The report focuses on how a particular commercial off-the-shelf graphical software package, Data Views, can be used to produce tools that build widgets such as menus, text panels, graphs, icons, windows, and ultimately complete interfaces for monitoring data from an application; controlling an application by providing input data to it; and testing an application by both monitoring and controlling it. A complete set of tools for building interfaces is described in a manual for the TCMS toolkit. Simple tools create primitive widgets such as lines, rectangles and text strings. Intermediate level tools create pictographs from primitive widgets, and connect processes to either text strings or pictographs. Other tools create input objects; Data Views supports output objects directly, thus output objects are not considered. Finally, a set of utilities for executing, monitoring use, editing, and displaying the content of interfaces is included in the toolkit.

  5. A visual interface to computer programs for linkage analysis.

    PubMed

    Chapman, C J

    1990-06-01

    This paper describes a visual approach to the input of information about human families into computer data bases, making use of the GEM graphic interface on the Atari ST. Similar approaches could be used on the Apple Macintosh or on the IBM PC AT (to which it has been transferred). For occasional users of pedigree analysis programs, this approach has considerable advantages in ease of use and accessibility. An example of such use might be the analysis of risk in families with Huntington disease using linked RFLPs. However, graphic interfaces do make much greater demands on the programmers of these systems.

  6. Certification for civil flight decks and the human-computer interface

    NASA Technical Reports Server (NTRS)

    Mcclumpha, Andrew J.; Rudisill, Marianne

    1994-01-01

    This paper will address the issue of human factor aspects of civil flight deck certification, with emphasis on the pilot's interface with automation. In particular, three questions will be asked that relate to this certification process: (1) are the methods, data, and guidelines available from human factors to adequately address the problems of certifying as safe and error tolerant the complex automated systems of modern civil transport aircraft; (2) do aircraft manufacturers effectively apply human factors information during the aircraft flight deck design process; and (3) do regulatory authorities effectively apply human factors information during the aircraft certification process?

  7. EOG-sEMG Human Interface for Communication

    PubMed Central

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as “dual-modality” for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%. PMID:27418924

  8. EOG-sEMG Human Interface for Communication.

    PubMed

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  9. Information Presentation and Control in a Modern Air Traffic Control Tower Simulator

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Doubek, Sharon; Rabin, Boris; Harke, Stanton

    1996-01-01

    The proper presentation and management of information in America's largest and busiest (Level V) air traffic control towers calls for an in-depth understanding of many different human-computer considerations: user interface design for graphical, radar, and text; manual and automated data input hardware; information/display output technology; reconfigurable workstations; workload assessment; and many other related subjects. This paper discusses these subjects in the context of the Surface Development and Test Facility (SDTF) currently under construction at NASA's Ames Research Center, a full scale, multi-manned, air traffic control simulator which will provide the "look and feel" of an actual airport tower cab. Special emphasis will be given to the human-computer interfaces required for the different kinds of information displayed at the various controller and supervisory positions and to the computer-aided design (CAD) and other analytic, computer-based tools used to develop the facility.

  10. Design Guidelines and Criteria for User/Operator Transactions with Battlefield Automated Systems. Volume 2. Technical Discussion

    DTIC Science & Technology

    1981-02-01

    Continue on tevetee «Id* If necemtery mid Identify br black number) Battlefield automated systems Human- computer interaction. Design criteria System...Report (this report) In-Depth Analyses of Individual Systems A. Tactical Fire Direction System (TACFIRE) (RP 81-26) B. Tactical Computer Terminal...select the design features and operating procedures of the human- computer Interface which best match the require- ments and capabilities of anticipated

  11. US Army Weapon Systems Human-Computer Interface (WSHCI) style guide, Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.

    1996-09-30

    A stated goal of the U.S. Army has been the standardization of the human computer interfaces (HCIS) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of style guides. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4), in conjunctionmore » with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide. This document, the U.S. Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide, represents the first version of that style guide. The purpose of this document is to provide HCI design guidance for RT/NRT Army systems across the weapon systems domains of ground, aviation, missile, and soldier systems. Each domain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their domains.« less

  12. Automating a human factors evaluation of graphical user interfaces for NASA applications: An update on CHIMES

    NASA Technical Reports Server (NTRS)

    Jiang, Jian-Ping; Murphy, Elizabeth D.; Bailin, Sidney C.; Truszkowski, Walter F.

    1993-01-01

    Capturing human factors knowledge about the design of graphical user interfaces (GUI's) and applying this knowledge on-line are the primary objectives of the Computer-Human Interaction Models (CHIMES) project. The current CHIMES prototype is designed to check a GUI's compliance with industry-standard guidelines, general human factors guidelines, and human factors recommendations on color usage. Following the evaluation, CHIMES presents human factors feedback and advice to the GUI designer. The paper describes the approach to modeling human factors guidelines, the system architecture, a new method developed to convert quantitative RGB primaries into qualitative color representations, and the potential for integrating CHIMES with user interface management systems (UIMS). Both the conceptual approach and its implementation are discussed. This paper updates the presentation on CHIMES at the first International Symposium on Ground Data Systems for Spacecraft Control.

  13. User interface issues in supporting human-computer integrated scheduling

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.; Biefeld, Eric W.

    1991-01-01

    Explored here is the user interface problems encountered with the Operations Missions Planner (OMP) project at the Jet Propulsion Laboratory (JPL). OMP uses a unique iterative approach to planning that places additional requirements on the user interface, particularly to support system development and maintenance. These requirements are necessary to support the concepts of heuristically controlled search, in-progress assessment, and iterative refinement of the schedule. The techniques used to address the OMP interface needs are given.

  14. Visual Environments for CFD Research

    NASA Technical Reports Server (NTRS)

    Watson, Val; George, Michael W. (Technical Monitor)

    1994-01-01

    This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.

  15. Computational Model-Based Prediction of Human Episodic Memory Performance Based on Eye Movements

    NASA Astrophysics Data System (ADS)

    Sato, Naoyuki; Yamaguchi, Yoko

    Subjects' episodic memory performance is not simply reflected by eye movements. We use a ‘theta phase coding’ model of the hippocampus to predict subjects' memory performance from their eye movements. Results demonstrate the ability of the model to predict subjects' memory performance. These studies provide a novel approach to computational modeling in the human-machine interface.

  16. Surgical Planning and Informed Consent

    ClinicalTrials.gov

    2018-04-11

    Communication; Feedback, Psychological; Health Knowledge, Attitudes, Practice; Humans; Informed Consent; Neurosurgery; Patient Compliance; Patient-Centered Care; Physician-Patient Relations; User-Computer Interface

  17. Analysis of operational comfort in manual tasks using human force manipulability measure.

    PubMed

    Tanaka, Yoshiyuki; Nishikawa, Kazuo; Yamada, Naoki; Tsuji, Toshio

    2015-01-01

    This paper proposes a scheme for human force manipulability (HFM) based on the use of isometric joint torque properties to simulate the spatial characteristics of human operation forces at an end-point of a limb with feasible magnitudes for a specified limb posture. This is also applied to the evaluation/prediction of operational comfort (OC) when manually operating a human-machine interface. The effectiveness of HFM is investigated through two experiments and computer simulations of humans generating forces by using their upper extremities. Operation force generation with maximum isometric effort can be roughly estimated with an HFM measure computed from information on the arm posture during a maintained posture. The layout of a human-machine interface is then discussed based on the results of operational experiments using an electric gear-shifting system originally developed for robotic devices. The results indicate a strong relationship between the spatial characteristics of the HFM and OC levels when shifting, and the OC is predicted by using a multiple regression model with HFM measures.

  18. Intelligent Adaptive Interface: A Design Tool for Enhancing Human-Machine System Performances

    DTIC Science & Technology

    2009-10-01

    and customizable. Thus, an intelligent interface should tailor its parameters to certain prescribed specifications or convert itself and adjust to...Computer Interaction 3(2): 87-122. [51] Schereiber, G., Akkermans, H., Anjewierden, A., de Hoog , R., Shadbolt, N., Van de Velde, W., & Wielinga, W

  19. Human-computer interface glove using flexible piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Cha, Youngsu; Seo, Jeonggyu; Kim, Jun-Sik; Park, Jung-Min

    2017-05-01

    In this note, we propose a human-computer interface glove based on flexible piezoelectric sensors. We select polyvinylidene fluoride as the piezoelectric material for the sensors because of advantages such as a steady piezoelectric characteristic and good flexibility. The sensors are installed in a fabric glove by means of pockets and Velcro bands. We detect changes in the angles of the finger joints from the outputs of the sensors, and use them for controlling a virtual hand that is utilized in virtual object manipulation. To assess the sensing ability of the piezoelectric sensors, we compare the processed angles from the sensor outputs with the real angles from a camera recoding. With good agreement between the processed and real angles, we successfully demonstrate the user interaction system with the virtual hand and interface glove based on the flexible piezoelectric sensors, for four hand motions: fist clenching, pinching, touching, and grasping.

  20. Crew interface analysis: Selected articles on space human factors research, 1987 - 1991

    NASA Technical Reports Server (NTRS)

    Bagian, Tandi (Compiler)

    1993-01-01

    As part of the Flight Crew Support Division at NASA, the Crew Interface Analysis Section is dedicated to the study of human factors in the manned space program. It assumes a specialized role that focuses on answering operational questions pertaining to NASA's Space Shuttle and Space Station Freedom Programs. One of the section's key contributions is to provide knowledge and information about human capabilities and limitations that promote optimal spacecraft and habitat design and use to enhance crew safety and productivity. The section provides human factors engineering for the ongoing missions as well as proposed missions that aim to put human settlements on the Moon and Mars. Research providing solutions to operational issues is the primary objective of the Crew Interface Analysis Section. The studies represent such subdisciplines as ergonomics, space habitability, man-computer interaction, and remote operator interaction.

  1. Making intelligent systems team players: Case studies and design issues. Volume 1: Human-computer interaction design

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Woods, David D.; Potter, Scott S.; Johannesen, Leila; Holloway, Matthew; Forbus, Kenneth D.

    1991-01-01

    Initial results are reported from a multi-year, interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. The objective is to achieve more effective human-computer interaction (HCI) for systems with real time fault management capabilities. Intelligent fault management systems within the NASA were evaluated for insight into the design of systems with complex HCI. Preliminary results include: (1) a description of real time fault management in aerospace domains; (2) recommendations and examples for improving intelligent systems design and user interface design; (3) identification of issues requiring further research; and (4) recommendations for a development methodology integrating HCI design into intelligent system design.

  2. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    NASA Technical Reports Server (NTRS)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The technical challenges, engineering solutions, and results of the NOCC computer-human interface design are presented. The use-centered design process was as follows: determine the design criteria for user concerns; assess the impact of design decisions on the users; and determine the technical aspects of the implementation (tools, platforms, etc.). The NOCC hardware architecture is illustrated. A graphical model of the DSN that represented the hierarchical structure of the data was constructed. The DSN spacecraft summary display is shown. Navigation from top to bottom is accomplished by clicking the appropriate button for the element about which the user desires more detail. The telemetry summary display and the antenna color decision table are also shown.

  3. Workload-Adaptive Human Interface to Aid Robust Decision Making in Human-System Interface. Year 1 Report

    DTIC Science & Technology

    2014-04-30

    performance is to create a computational system to mimic human game-play patterns. The objective of this study is to see to what extent we can...estimates as a function of task load. We conducted a pair of studies towards’ this end. In a first study , described in detail in Appendix D...could inform a system as to the relative workload of a user. In a second study , described in detail in Appendix E, participants were exposed to a 40

  4. Researching and Reducing the Health Burden of Stroke

    MedlinePlus

    ... the result of continuing research to map the brain and interface it with a computer to enable stroke patients to regain function. How important is the new effort to map the human brain? The brain is more complex than any computer ...

  5. Human-Avatar Symbiosis for the Treatment of Auditory Verbal Hallucinations in Schizophrenia through Virtual/Augmented Reality and Brain-Computer Interfaces

    PubMed Central

    Fernández-Caballero, Antonio; Navarro, Elena; Fernández-Sotos, Patricia; González, Pascual; Ricarte, Jorge J.; Latorre, José M.; Rodriguez-Jimenez, Roberto

    2017-01-01

    This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications. Our position is that their combined use in computer-based therapies offers still unforeseen possibilities for the treatment of physical and mental disabilities. This is why, the paper expects that researchers and clinicians undergo a pathway toward human-avatar symbiosis for AVH by taking full advantage of new technologies. This outlook supposes to address challenging issues in the understanding of non-pharmacological treatment of schizophrenia-related disorders and the exploitation of VR/AR and BCI to achieve a real human-avatar symbiosis. PMID:29209193

  6. Human-Avatar Symbiosis for the Treatment of Auditory Verbal Hallucinations in Schizophrenia through Virtual/Augmented Reality and Brain-Computer Interfaces.

    PubMed

    Fernández-Caballero, Antonio; Navarro, Elena; Fernández-Sotos, Patricia; González, Pascual; Ricarte, Jorge J; Latorre, José M; Rodriguez-Jimenez, Roberto

    2017-01-01

    This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications. Our position is that their combined use in computer-based therapies offers still unforeseen possibilities for the treatment of physical and mental disabilities. This is why, the paper expects that researchers and clinicians undergo a pathway toward human-avatar symbiosis for AVH by taking full advantage of new technologies. This outlook supposes to address challenging issues in the understanding of non-pharmacological treatment of schizophrenia-related disorders and the exploitation of VR/AR and BCI to achieve a real human-avatar symbiosis.

  7. An intelligent interface for satellite operations: Your Orbit Determination Assistant (YODA)

    NASA Technical Reports Server (NTRS)

    Schur, Anne

    1988-01-01

    An intelligent interface is often characterized by the ability to adapt evaluation criteria as the environment and user goals change. Some factors that impact these adaptations are redefinition of task goals and, hence, user requirements; time criticality; and system status. To implement adaptations affected by these factors, a new set of capabilities must be incorporated into the human-computer interface design. These capabilities include: (1) dynamic update and removal of control states based on user inputs, (2) generation and removal of logical dependencies as change occurs, (3) uniform and smooth interfacing to numerous processes, databases, and expert systems, and (4) unobtrusive on-line assistance to users of concepts were applied and incorporated into a human-computer interface using artificial intelligence techniques to create a prototype expert system, Your Orbit Determination Assistant (YODA). YODA is a smart interface that supports, in real teime, orbit analysts who must determine the location of a satellite during the station acquisition phase of a mission. Also described is the integration of four knowledge sources required to support the orbit determination assistant: orbital mechanics, spacecraft specifications, characteristics of the mission support software, and orbit analyst experience. This initial effort is continuing with expansion of YODA's capabilities, including evaluation of results of the orbit determination task.

  8. Evaluation of a wireless wearable tongue–computer interface by individuals with high-level spinal cord injuries

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2010-01-01

    The tongue drive system (TDS) is an unobtrusive, minimally invasive, wearable and wireless tongue–computer interface (TCI), which can infer its users' intentions, represented in their volitional tongue movements, by detecting the position of a small permanent magnetic tracer attached to the users' tongues. Any specific tongue movements can be translated into user-defined commands and used to access and control various devices in the users' environments. The latest external TDS (eTDS) prototype is built on a wireless headphone and interfaced to a laptop PC and a powered wheelchair. Using customized sensor signal processing algorithms and graphical user interface, the eTDS performance was evaluated by 13 naive subjects with high-level spinal cord injuries (C2–C5) at the Shepherd Center in Atlanta, GA. Results of the human trial show that an average information transfer rate of 95 bits/min was achieved for computer access with 82% accuracy. This information transfer rate is about two times higher than the EEG-based BCIs that are tested on human subjects. It was also demonstrated that the subjects had immediate and full control over the powered wheelchair to the extent that they were able to perform complex wheelchair navigation tasks, such as driving through an obstacle course. PMID:20332552

  9. Design and development of data glove based on printed polymeric sensors and Zigbee networks for Human-Computer Interface.

    PubMed

    Tongrod, Nattapong; Lokavee, Shongpun; Watthanawisuth, Natthapol; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2013-03-01

    Current trends in Human-Computer Interface (HCI) have brought on a wave of new consumer devices that can track the motion of our hands. These devices have enabled more natural interfaces with computer applications. Data gloves are commonly used as input devices, equipped with sensors that detect the movements of hands and communication unit that interfaces those movements with a computer. Unfortunately, the high cost of sensor technology inevitably puts some burden to most general users. In this research, we have proposed a low-cost data glove concept based on printed polymeric sensor to make pressure and bending sensors fabricated by a consumer ink-jet printer. These sensors were realized using a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) [PEDOT:PSS]) thin film printed on glossy photo paper. Performance of these sensors can be enhanced by addition of dimethyl sulfoxide (DMSO) into the aqueous dispersion of PEDOT:PSS. The concept of surface resistance was successfully adopted for the design and fabrication of sensors. To demonstrate the printed sensors, we constructed a data glove using such sensors and developed software for real time hand tracking. Wireless networks based on low-cost Zigbee technology were used to transfer data from the glove to a computer. To our knowledge, this is the first report on low cost data glove based on paper pressure sensors. This low cost implementation of both sensors and communication network as proposed in this paper should pave the way toward a widespread implementation of data glove for real-time hand tracking applications.

  10. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano; Vaz, Luis; Vaz, Luís

    2010-01-01

    This paper presents a shared-control approach for Assistive Mobile Robots (AMR), which depends on the user's ability to navigate a semi-autonomous powered wheelchair, using a sparse and discrete human-machine interface (HMI). This system is primarily intended to help users with severe motor disabilities that prevent them to use standard human-machine interfaces. Scanning interfaces and Brain Computer Interfaces (BCI), characterized to provide a small set of commands issued sparsely, are possible HMIs. This shared-control approach is intended to be applied in an Assisted Navigation Training Framework (ANTF) that is used to train users' ability in steering a powered wheelchair in an appropriate manner, given the restrictions imposed by their limited motor capabilities. A shared-controller based on user characterization, is proposed. This controller is able to share the information provided by the local motion planning level with the commands issued sparsely by the user. Simulation results of the proposed shared-control method, are presented.

  11. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game

    PubMed Central

    de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named “Get Coins,” through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user. PMID:29849549

  12. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.

    PubMed

    Leite, Harlei Miguel de Arruda; de Carvalho, Sarah Negreiros; Costa, Thiago Bulhões da Silva; Attux, Romis; Hornung, Heiko Horst; Arantes, Dalton Soares

    2018-01-01

    This paper presents a systematic analysis of a game controlled by a Brain-Computer Interface (BCI) based on Steady-State Visually Evoked Potentials (SSVEP). The objective is to understand BCI systems from the Human-Computer Interface (HCI) point of view, by observing how the users interact with the game and evaluating how the interface elements influence the system performance. The interactions of 30 volunteers with our computer game, named "Get Coins," through a BCI based on SSVEP, have generated a database of brain signals and the corresponding responses to a questionnaire about various perceptual parameters, such as visual stimulation, acoustic feedback, background music, visual contrast, and visual fatigue. Each one of the volunteers played one match using the keyboard and four matches using the BCI, for comparison. In all matches using the BCI, the volunteers achieved the goals of the game. Eight of them achieved a perfect score in at least one of the four matches, showing the feasibility of the direct communication between the brain and the computer. Despite this successful experiment, adaptations and improvements should be implemented to make this innovative technology accessible to the end user.

  13. Voice Response Systems Technology.

    ERIC Educational Resources Information Center

    Gerald, Jeanette

    1984-01-01

    Examines two methods of generating synthetic speech in voice response systems, which allow computers to communicate in human terms (speech), using human interface devices (ears): phoneme and reconstructed voice systems. Considerations prior to implementation, current and potential applications, glossary, directory, and introduction to Input Output…

  14. Haptic interfaces: Hardware, software and human performance

    NASA Technical Reports Server (NTRS)

    Srinivasan, Mandayam A.

    1995-01-01

    Virtual environments are computer-generated synthetic environments with which a human user can interact to perform a wide variety of perceptual and motor tasks. At present, most of the virtual environment systems engage only the visual and auditory senses, and not the haptic sensorimotor system that conveys the sense of touch and feel of objects in the environment. Computer keyboards, mice, and trackballs constitute relatively simple haptic interfaces. Gloves and exoskeletons that track hand postures have more interaction capabilities and are available in the market. Although desktop and wearable force-reflecting devices have been built and implemented in research laboratories, the current capabilities of such devices are quite limited. To realize the full promise of virtual environments and teleoperation of remote systems, further developments of haptic interfaces are critical. In this paper, the status and research needs in human haptics, technology development and interactions between the two are described. In particular, the excellent performance characteristics of Phantom, a haptic interface recently developed at MIT, are highlighted. Realistic sensations of single point of contact interactions with objects of variable geometry (e.g., smooth, textured, polyhedral) and material properties (e.g., friction, impedance) in the context of a variety of tasks (e.g., needle biopsy, switch panels) achieved through this device are described and the associated issues in haptic rendering are discussed.

  15. MESO-Adaptation Based on Model Oriented Reengineering Process for Human-Computer Interface (MESOMORPH)

    DTIC Science & Technology

    2004-02-01

    Publishing Company , Addison- Wesley Systems Programming Series, 1990. [5] E. Stroulia and T. Systa. Dynamic analysis for reverse engineering and program...understanding, Applied Computing Reviews, Spring 2002, ACM Press. [6] El- Ramly , Mohammad; Stroulia, Eleni; Sorenson, Paul. “Recovering software

  16. Intelligent user interface concept for space station

    NASA Technical Reports Server (NTRS)

    Comer, Edward; Donaldson, Cameron; Bailey, Elizabeth; Gilroy, Kathleen

    1986-01-01

    The space station computing system must interface with a wide variety of users, from highly skilled operations personnel to payload specialists from all over the world. The interface must accommodate a wide variety of operations from the space platform, ground control centers and from remote sites. As a result, there is a need for a robust, highly configurable and portable user interface that can accommodate the various space station missions. The concept of an intelligent user interface executive, written in Ada, that would support a number of advanced human interaction techniques, such as windowing, icons, color graphics, animation, and natural language processing is presented. The user interface would provide intelligent interaction by understanding the various user roles, the operations and mission, the current state of the environment and the current working context of the users. In addition, the intelligent user interface executive must be supported by a set of tools that would allow the executive to be easily configured and to allow rapid prototyping of proposed user dialogs. This capability would allow human engineering specialists acting in the role of dialog authors to define and validate various user scenarios. The set of tools required to support development of this intelligent human interface capability is discussed and the prototyping and validation efforts required for development of the Space Station's user interface are outlined.

  17. Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    NASA Technical Reports Server (NTRS)

    Savely, Robert T. (Editor)

    1991-01-01

    The papers from the symposium are presented. Emphasis is placed on human factors engineering and space environment interactions. The technical areas covered in the human factors section include: satellite monitoring and control, man-computer interfaces, expert systems, AI/robotics interfaces, crew system dynamics, and display devices. The space environment interactions section presents the following topics: space plasma interaction, spacecraft contamination, space debris, and atomic oxygen interaction with materials. Some of the above topics are discussed in relation to the space station and space shuttle.

  18. Adapting human-machine interfaces to user performance.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2008-01-01

    The goal of this study was to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user of a human-machine interface and the controlled device. In this experiment, subjects' high-dimensional finger motions remotely controlled the joint angles of a simulated planar 2-link arm, which was used to hit targets on a computer screen. Subjects were required to move the cursor at the endpoint of the simulated arm.

  19. Process and representation in graphical displays

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne

    1993-01-01

    Our initial model of graphic comprehension has focused on statistical graphs. Like other models of human-computer interaction, models of graphical comprehension can be used by human-computer interface designers and developers to create interfaces that present information in an efficient and usable manner. Our investigation of graph comprehension addresses two primary questions: how do people represent the information contained in a data graph?; and how do they process information from the graph? The topics of focus for graphic representation concern the features into which people decompose a graph and the representations of the graph in memory. The issue of processing can be further analyzed as two questions: what overall processing strategies do people use?; and what are the specific processing skills required?

  20. Tactile Data Entry System

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    2015-01-01

    The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.

  1. Wearable computer for mobile augmented-reality-based controlling of an intelligent robot

    NASA Astrophysics Data System (ADS)

    Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino

    2000-10-01

    An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.

  2. Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.

    PubMed

    Zander, Thorsten O; Kothe, Christian

    2011-04-01

    Cognitive monitoring is an approach utilizing realtime brain signal decoding (RBSD) for gaining information on the ongoing cognitive user state. In recent decades this approach has brought valuable insight into the cognition of an interacting human. Automated RBSD can be used to set up a brain-computer interface (BCI) providing a novel input modality for technical systems solely based on brain activity. In BCIs the user usually sends voluntary and directed commands to control the connected computer system or to communicate through it. In this paper we propose an extension of this approach by fusing BCI technology with cognitive monitoring, providing valuable information about the users' intentions, situational interpretations and emotional states to the technical system. We call this approach passive BCI. In the following we give an overview of studies which utilize passive BCI, as well as other novel types of applications resulting from BCI technology. We especially focus on applications for healthy users, and the specific requirements and demands of this user group. Since the presented approach of combining cognitive monitoring with BCI technology is very similar to the concept of BCIs itself we propose a unifying categorization of BCI-based applications, including the novel approach of passive BCI.

  3. Virtual workstations and telepresence interfaces: Design accommodations and prototypes for Space Station Freedom evolution

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1990-01-01

    An advanced human-system interface is being developed for evolutionary Space Station Freedom as part of the NASA Office of Space Station (OSS) Advanced Development Program. The human-system interface is based on body-pointed display and control devices. The project will identify and document the design accommodations ('hooks and scars') required to support virtual workstations and telepresence interfaces, and prototype interface systems will be built, evaluated, and refined. The project is a joint enterprise of Marquette University, Astronautics Corporation of America (ACA), and NASA's ARC. The project team is working with NASA's JSC and McDonnell Douglas Astronautics Company (the Work Package contractor) to ensure that the project is consistent with space station user requirements and program constraints. Documentation describing design accommodations and tradeoffs will be provided to OSS, JSC, and McDonnell Douglas, and prototype interface devices will be delivered to ARC and JSC. ACA intends to commercialize derivatives of the interface for use with computer systems developed for scientific visualization and system simulation.

  4. Conscious brain-to-brain communication in humans using non-invasive technologies.

    PubMed

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  5. Conscious Brain-to-Brain Communication in Humans Using Non-Invasive Technologies

    PubMed Central

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L.; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues. PMID:25137064

  6. The Contribution of Cognitive Engineering to the Effective Design and Use of Information Systems.

    ERIC Educational Resources Information Center

    Garg-Janardan, Chaya; Salvendy, Gavriel

    1986-01-01

    Examines the role of human information processing and decision-making capabilities and limitations in the design of effective human-computer interfaces. Several cognitive engineering principles that should guide the design process are outlined. (48 references) (Author/CLB)

  7. Within the Interface: Visual Rhetoric, Pedagogy, and Writing Center Website Design

    ERIC Educational Resources Information Center

    Myatt, Alice J.

    2010-01-01

    My dissertation examines the theory and praxis of taking an expanded concept of the human-computer interface (HCI) and working with the resulting concept to foster a more conversational approach for online tutoring sessions and the design of the writing center websites that facilitate online tutoring. For the purposes of my research, I describe…

  8. Brain-Computer Interfaces: A Neuroscience Paradigm of Social Interaction? A Matter of Perspective

    PubMed Central

    Mattout, Jérémie

    2012-01-01

    A number of recent studies have put human subjects in true social interactions, with the aim of better identifying the psychophysiological processes underlying social cognition. Interestingly, this emerging Neuroscience of Social Interactions (NSI) field brings up challenges which resemble important ones in the field of Brain-Computer Interfaces (BCI). Importantly, these challenges go beyond common objectives such as the eventual use of BCI and NSI protocols in the clinical domain or common interests pertaining to the use of online neurophysiological techniques and algorithms. Common fundamental challenges are now apparent and one can argue that a crucial one is to develop computational models of brain processes relevant to human interactions with an adaptive agent, whether human or artificial. Coupled with neuroimaging data, such models have proved promising in revealing the neural basis and mental processes behind social interactions. Similar models could help BCI to move from well-performing but offline static machines to reliable online adaptive agents. This emphasizes a social perspective to BCI, which is not limited to a computational challenge but extends to all questions that arise when studying the brain in interaction with its environment. PMID:22675291

  9. Visual analysis of fluid dynamics at NASA's numerical aerodynamic simulation facility

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.

    1991-01-01

    A study aimed at describing and illustrating visualization tools used in Computational Fluid Dynamics (CFD) and indicating how these tools are likely to change by showing a projected resolution of the human computer interface is presented. The following are outlined using a graphically based test format: the revolution of human computer environments for CFD research; comparison of current environments; current environments with the ideal; predictions for the future CFD environments; what can be done to accelerate the improvements. The following comments are given: when acquiring visualization tools, potential rapid changes must be considered; environmental changes over the next ten years due to human computer interface cannot be fathomed; data flow packages such as AVS, apE, Explorer and Data Explorer are easy to learn and use for small problems, excellent for prototyping, but not so efficient for large problems; the approximation techniques used in visualization software must be appropriate for the data; it has become more cost effective to move jobs that fit on workstations and run only memory intensive jobs on the supercomputer; use of three dimensional skills will be maximized when the three dimensional environment is built in from the start.

  10. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  11. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface.

    PubMed

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1). Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  12. Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface.

    PubMed

    Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav

    2016-08-01

    Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.

  13. Use of parallel computing for analyzing big data in EEG studies of ambiguous perception

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Grubov, Vadim V.; Kirsanov, Daniil V.

    2018-02-01

    Problem of interaction between human and machine systems through the neuro-interfaces (or brain-computer interfaces) is an urgent task which requires analysis of large amount of neurophysiological EEG data. In present paper we consider the methods of parallel computing as one of the most powerful tools for processing experimental data in real-time with respect to multichannel structure of EEG. In this context we demonstrate the application of parallel computing for the estimation of the spectral properties of multichannel EEG signals, associated with the visual perception. Using CUDA C library we run wavelet-based algorithm on GPUs and show possibility for detection of specific patterns in multichannel set of EEG data in real-time.

  14. User participation in the development of the human/computer interface for control centers

    NASA Technical Reports Server (NTRS)

    Broome, Richard; Quick-Campbell, Marlene; Creegan, James; Dutilly, Robert

    1996-01-01

    Technological advances coupled with the requirements to reduce operations staffing costs led to the demand for efficient, technologically-sophisticated mission operations control centers. The control center under development for the earth observing system (EOS) is considered. The users are involved in the development of a control center in order to ensure that it is cost-efficient and flexible. A number of measures were implemented in the EOS program in order to encourage user involvement in the area of human-computer interface development. The following user participation exercises carried out in relation to the system analysis and design are described: the shadow participation of the programmers during a day of operations; the flight operations personnel interviews; and the analysis of the flight operations team tasks. The user participation in the interface prototype development, the prototype evaluation, and the system implementation are reported on. The involvement of the users early in the development process enables the requirements to be better understood and the cost to be reduced.

  15. Development of a stereoscopic three-dimensional drawing application

    NASA Astrophysics Data System (ADS)

    Carver, Donald E.; McAllister, David F.

    1991-08-01

    With recent advances in 3-D technology, computer users have the opportunity to work within a natural 3-D environment; a flat panel LCD computer display of this type, the DTI-100M made by Dimension Technologies, Inc., recently went on the market. In a joint venture between DTI and NCSU, an object-oriented 3-D drawing application, 3-D Draw, was developed to address some issues of human interface design for interactive stereo drawing applications. The focus of this paper is to determine some of the procedures a user would naturally expect to follow while working within a true 3-D environment. The paper discusses (1) the interface between the Macintosh II and DTI-100M during implementation of 3-D Draw, including stereo cursor development and presentation of current 2-D systems, with an additional `depth'' parameter, in the 3-D world, (2) problems in general for human interface into the 3-D environment, and (3) necessary functions and/or problems in developing future stereoscopic 3-D operating systems/tools.

  16. Cognitive engineering models: A prerequisite to the design of human-computer interaction in complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1993-01-01

    This chapter examines a class of human-computer interaction applications, specifically the design of human-computer interaction for the operators of complex systems. Such systems include space systems (e.g., manned systems such as the Shuttle or space station, and unmanned systems such as NASA scientific satellites), aviation systems (e.g., the flight deck of 'glass cockpit' airplanes or air traffic control) and industrial systems (e.g., power plants, telephone networks, and sophisticated, e.g., 'lights out,' manufacturing facilities). The main body of human-computer interaction (HCI) research complements but does not directly address the primary issues involved in human-computer interaction design for operators of complex systems. Interfaces to complex systems are somewhat special. The 'user' in such systems - i.e., the human operator responsible for safe and effective system operation - is highly skilled, someone who in human-machine systems engineering is sometimes characterized as 'well trained, well motivated'. The 'job' or task context is paramount and, thus, human-computer interaction is subordinate to human job interaction. The design of human interaction with complex systems, i.e., the design of human job interaction, is sometimes called cognitive engineering.

  17. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  18. Haptic force-feedback devices for the office computer: performance and musculoskeletal loading issues.

    PubMed

    Dennerlein, J T; Yang, M C

    2001-01-01

    Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.

  19. Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design

    PubMed Central

    Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.

    2014-01-01

    Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941

  20. The Voice as Computer Interface: A Look at Tomorrow's Technologies.

    ERIC Educational Resources Information Center

    Lange, Holley R.

    1991-01-01

    Discussion of voice as the communications device for computer-human interaction focuses on voice recognition systems for use within a library environment. Voice technologies are described, including voice response and voice recognition; examples of voice systems in use in libraries are examined; and further possibilities, including use with…

  1. Dismal: A Spreadsheet for Sequential Data Analysis and HCI Experimentation

    DTIC Science & Technology

    2002-01-24

    Hambly, Alder, Wyatt- Millington, Shrayane, Crawshaw , et al., 1996). Table 2 provides some example data. An automatically generated header comes first...Shrayane, N. M., Crawshaw , C. M., & Hockey, G. R. J. (1996). Investigating the human-computer interface using the Datalogger. Behavior Research Methods, Instruments, & Computers, 28(4), 603-606.

  2. U.S. Army weapon systems human-computer interface style guide. Version 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, L.W.; O`Mara, P.A.; Shepard, A.P.

    1997-12-31

    A stated goal of the US Army has been the standardization of the human computer interfaces (HCIs) of its system. Some of the tools being used to accomplish this standardization are HCI design guidelines and style guides. Currently, the Army is employing a number of HCI design guidance documents. While these style guides provide good guidance for the command, control, communications, computers, and intelligence (C4I) domain, they do not necessarily represent the more unique requirements of the Army`s real time and near-real time (RT/NRT) weapon systems. The Office of the Director of Information for Command, Control, Communications, and Computers (DISC4),more » in conjunction with the Weapon Systems Technical Architecture Working Group (WSTAWG), recognized this need as part of their activities to revise the Army Technical Architecture (ATA), now termed the Joint Technical Architecture-Army (JTA-A). To address this need, DISC4 tasked the Pacific Northwest National Laboratory (PNNL) to develop an Army weapon systems unique HCI style guide, which resulted in the US Army Weapon Systems Human-Computer Interface (WSHCI) Style Guide Version 1. Based on feedback from the user community, DISC4 further tasked PNNL to revise Version 1 and publish Version 2. The intent was to update some of the research and incorporate some enhancements. This document provides that revision. The purpose of this document is to provide HCI design guidance for the RT/NRT Army system domain across the weapon systems subdomains of ground, aviation, missile, and soldier systems. Each subdomain should customize and extend this guidance by developing their domain-specific style guides, which will be used to guide the development of future systems within their subdomains.« less

  3. Using the Electrocorticographic Speech Network to Control a Brain-Computer Interface in Humans

    PubMed Central

    Leuthardt, Eric C.; Gaona, Charles; Sharma, Mohit; Szrama, Nicholas; Roland, Jarod; Freudenberg, Zac; Solis, Jamie; Breshears, Jonathan; Schalk, Gerwin

    2013-01-01

    Electrocorticography (ECoG) has emerged as a new signal platform for brain-computer interface (BCI) systems. Classically, the cortical physiology that has been commonly investigated and utilized for device control in humans has been brain signals from sensorimotor cortex. Hence, it was unknown whether other neurophysiological substrates, such as the speech network, could be used to further improve on or complement existing motor-based control paradigms. We demonstrate here for the first time that ECoG signals associated with different overt and imagined phoneme articulation can enable invasively monitored human patients to control a one-dimensional computer cursor rapidly and accurately. This phonetic content was distinguishable within higher gamma frequency oscillations and enabled users to achieve final target accuracies between 68 and 91% within 15 minutes. Additionally, one of the patients achieved robust control using recordings from a microarray consisting of 1 mm spaced microwires. These findings suggest that the cortical network associated with speech could provide an additional cognitive and physiologic substrate for BCI operation and that these signals can be acquired from a cortical array that is small and minimally invasive. PMID:21471638

  4. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations

    PubMed Central

    Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  5. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  6. Designing Guiding Systems for Brain-Computer Interfaces

    PubMed Central

    Kosmyna, Nataliya; Lécuyer, Anatole

    2017-01-01

    Brain–Computer Interface (BCI) community has focused the majority of its research efforts on signal processing and machine learning, mostly neglecting the human in the loop. Guiding users on how to use a BCI is crucial in order to teach them to produce stable brain patterns. In this work, we explore the instructions and feedback for BCIs in order to provide a systematic taxonomy to describe the BCI guiding systems. The purpose of our work is to give necessary clues to the researchers and designers in Human–Computer Interaction (HCI) in making the fusion between BCIs and HCI more fruitful but also to better understand the possibilities BCIs can provide to them. PMID:28824400

  7. Advancements in remote physiological measurement and applications in human-computer interaction

    NASA Astrophysics Data System (ADS)

    McDuff, Daniel

    2017-04-01

    Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.

  8. The Research of Computer Aided Farm Machinery Designing Method Based on Ergonomics

    NASA Astrophysics Data System (ADS)

    Gao, Xiyin; Li, Xinling; Song, Qiang; Zheng, Ying

    Along with agricultural economy development, the farm machinery product type Increases gradually, the ergonomics question is also getting more and more prominent. The widespread application of computer aided machinery design makes it possible that farm machinery design is intuitive, flexible and convenient. At present, because the developed computer aided ergonomics software has not suitable human body database, which is needed in view of farm machinery design in China, the farm machinery design have deviation in ergonomics analysis. This article puts forward that using the open database interface procedure in CATIA to establish human body database which aims at the farm machinery design, and reading the human body data to ergonomics module of CATIA can product practical application virtual body, using human posture analysis and human activity analysis module to analysis the ergonomics in farm machinery, thus computer aided farm machinery designing method based on engineering can be realized.

  9. SIG -- The Role of Human-Computer Interaction in Next-Generation Control Rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Jacques Hugo; Christian Richard

    2005-04-01

    The purpose of this CHI Special Interest Group (SIG) is to facilitate the convergence between human-computer interaction (HCI) and control room design. HCI researchers and practitioners actively need to infuse state-of-the-art interface technology into control rooms to meet usability, safety, and regulatory requirements. This SIG outlines potential HCI contributions to instrumentation and control (I&C) and automation in control rooms as well as to general control room design.

  10. Techno-Human Mesh: The Growing Power of Information Technologies.

    ERIC Educational Resources Information Center

    West, Cynthia K.

    This book examines the intersection of information technologies, power, people, and bodies. It explores how information technologies are on a path of creating efficiency, productivity, profitability, surveillance, and control, and looks at the ways in which human-machine interface technologies, such as wearable computers, biometric technologies,…

  11. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    NASA Astrophysics Data System (ADS)

    Simeral, J. D.; Kim, S.-P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R.

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

  12. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    PubMed Central

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2013-01-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor. PMID:21436513

  13. A breakthrough for experiencing and understanding simulated physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1988-01-01

    The use of computer simulation in physics research is discussed, focusing on improvements to graphic workstations. Simulation capabilities and applications of enhanced visualization tools are outlined. The elements of an ideal computer simulation are presented and the potential for improving various simulation elements is examined. The interface between the human and the computer and simulation models are considered. Recommendations are made for changes in computer simulation practices and applications of simulation technology in education.

  14. Design and Implementation of an Experimental Cataloging Advisor--Mapper.

    ERIC Educational Resources Information Center

    Ercegovac, Zorana; Borko, Harold

    1992-01-01

    Describes the design of an experimental computer-aided cataloging advisor, Mapper, that was developed to help novice users with the descriptive cataloging of single-sheet maps from U.S. publishers. The human-computer interface is considered, the use of HyperCard is discussed, the knowledge base is explained, and assistance screens are described.…

  15. An Empathic Avatar in a Computer-Aided Learning Program to Encourage and Persuade Learners

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Lee, Jih-Hsien; Wang, Chin-Yeh; Chao, Po-Yao; Li, Liang-Yi; Lee, Tzung-Yi

    2012-01-01

    Animated pedagogical agents with characteristics such as facial expressions, gestures, and human emotions, under an interactive user interface are attractive to students and have high potential to promote students' learning. This study proposes a convenient method to add an embodied empathic avatar into a computer-aided learning program; learners…

  16. Designing Social Presence in e-Learning Environments: Testing the Effect of Interactivity on Children

    ERIC Educational Resources Information Center

    Tung, Fang-Wu; Deng, Yi-Shin

    2006-01-01

    The "computers are social actors" paradigm asserts that human-to-computer interactions are fundamentally social responses. Earlier research has shown that effective management of the social presence in user interface design can improve user engagement and motivation. Much of this research has focused on adult subjects. This study…

  17. A Kinect-Based Assessment System for Smart Classroom

    ERIC Educational Resources Information Center

    Kumara, W. G. C. W.; Wattanachote, Kanoksak; Battulga, Batbaatar; Shih, Timothy K.; Hwang, Wu-Yuin

    2015-01-01

    With the advancements of the human computer interaction field, nowadays it is possible for the users to use their body motions, such as swiping, pushing and moving, to interact with the content of computers or smart phones without traditional input devices like mouse and keyboard. With the introduction of gesture-based interface Kinect from…

  18. Enrichment of Human-Computer Interaction in Brain-Computer Interfaces via Virtual Environments

    PubMed Central

    Víctor Rodrigo, Mercado-García

    2017-01-01

    Tridimensional representations stimulate cognitive processes that are the core and foundation of human-computer interaction (HCI). Those cognitive processes take place while a user navigates and explores a virtual environment (VE) and are mainly related to spatial memory storage, attention, and perception. VEs have many distinctive features (e.g., involvement, immersion, and presence) that can significantly improve HCI in highly demanding and interactive systems such as brain-computer interfaces (BCI). BCI is as a nonmuscular communication channel that attempts to reestablish the interaction between an individual and his/her environment. Although BCI research started in the sixties, this technology is not efficient or reliable yet for everyone at any time. Over the past few years, researchers have argued that main BCI flaws could be associated with HCI issues. The evidence presented thus far shows that VEs can (1) set out working environmental conditions, (2) maximize the efficiency of BCI control panels, (3) implement navigation systems based not only on user intentions but also on user emotions, and (4) regulate user mental state to increase the differentiation between control and noncontrol modalities. PMID:29317861

  19. The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    NASA Technical Reports Server (NTRS)

    Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.

    1989-01-01

    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.

  20. A Dual-Mode Human Computer Interface Combining Speech and Tongue Motion for People with Severe Disabilities

    PubMed Central

    Huo, Xueliang; Park, Hangue; Kim, Jeonghee; Ghovanloo, Maysam

    2015-01-01

    We are presenting a new wireless and wearable human computer interface called the dual-mode Tongue Drive System (dTDS), which is designed to allow people with severe disabilities to use computers more effectively with increased speed, flexibility, usability, and independence through their tongue motion and speech. The dTDS detects users’ tongue motion using a magnetic tracer and an array of magnetic sensors embedded in a compact and ergonomic wireless headset. It also captures the users’ voice wirelessly using a small microphone embedded in the same headset. Preliminary evaluation results based on 14 able-bodied subjects and three individuals with high level spinal cord injuries at level C3–C5 indicated that the dTDS headset, combined with a commercially available speech recognition (SR) software, can provide end users with significantly higher performance than either unimodal forms based on the tongue motion or speech alone, particularly in completing tasks that require both pointing and text entry. PMID:23475380

  1. Evolution of brain-computer interfaces: going beyond classic motor physiology

    PubMed Central

    Leuthardt, Eric C.; Schalk, Gerwin; Roland, Jarod; Rouse, Adam; Moran, Daniel W.

    2010-01-01

    The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future. PMID:19569892

  2. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    PubMed

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  3. Functional near-infrared spectroscopy for adaptive human-computer interfaces

    NASA Astrophysics Data System (ADS)

    Yuksel, Beste F.; Peck, Evan M.; Afergan, Daniel; Hincks, Samuel W.; Shibata, Tomoki; Kainerstorfer, Jana; Tgavalekos, Kristen; Sassaroli, Angelo; Fantini, Sergio; Jacob, Robert J. K.

    2015-03-01

    We present a brain-computer interface (BCI) that detects, analyzes and responds to user cognitive state in real-time using machine learning classifications of functional near-infrared spectroscopy (fNIRS) data. Our work is aimed at increasing the narrow communication bandwidth between the human and computer by implicitly measuring users' cognitive state without any additional effort on the part of the user. Traditionally, BCIs have been designed to explicitly send signals as the primary input. However, such systems are usually designed for people with severe motor disabilities and are too slow and inaccurate for the general population. In this paper, we demonstrate with previous work1 that a BCI that implicitly measures cognitive workload can improve user performance and awareness compared to a control condition by adapting to user cognitive state in real-time. We also discuss some of the other applications we have used in this field to measure and respond to cognitive states such as cognitive workload, multitasking, and user preference.

  4. Ecological Interface Design for Computer Network Defense.

    PubMed

    Bennett, Kevin B; Bryant, Adam; Sushereba, Christen

    2018-05-01

    A prototype ecological interface for computer network defense (CND) was developed. Concerns about CND run high. Although there is a vast literature on CND, there is some indication that this research is not being translated into operational contexts. Part of the reason may be that CND has historically been treated as a strictly technical problem, rather than as a socio-technical problem. The cognitive systems engineering (CSE)/ecological interface design (EID) framework was used in the analysis and design of the prototype interface. A brief overview of CSE/EID is provided. EID principles of design (i.e., direct perception, direct manipulation and visual momentum) are described and illustrated through concrete examples from the ecological interface. Key features of the ecological interface include (a) a wide variety of alternative visual displays, (b) controls that allow easy, dynamic reconfiguration of these displays, (c) visual highlighting of functionally related information across displays, (d) control mechanisms to selectively filter massive data sets, and (e) the capability for easy expansion. Cyber attacks from a well-known data set are illustrated through screen shots. CND support needs to be developed with a triadic focus (i.e., humans interacting with technology to accomplish work) if it is to be effective. Iterative design and formal evaluation is also required. The discipline of human factors has a long tradition of success on both counts; it is time that HF became fully involved in CND. Direct application in supporting cyber analysts.

  5. Hybrid soft computing systems for electromyographic signals analysis: a review.

    PubMed

    Xie, Hong-Bo; Guo, Tianruo; Bai, Siwei; Dokos, Socrates

    2014-02-03

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis.

  6. Hybrid soft computing systems for electromyographic signals analysis: a review

    PubMed Central

    2014-01-01

    Electromyographic (EMG) is a bio-signal collected on human skeletal muscle. Analysis of EMG signals has been widely used to detect human movement intent, control various human-machine interfaces, diagnose neuromuscular diseases, and model neuromusculoskeletal system. With the advances of artificial intelligence and soft computing, many sophisticated techniques have been proposed for such purpose. Hybrid soft computing system (HSCS), the integration of these different techniques, aims to further improve the effectiveness, efficiency, and accuracy of EMG analysis. This paper reviews and compares key combinations of neural network, support vector machine, fuzzy logic, evolutionary computing, and swarm intelligence for EMG analysis. Our suggestions on the possible future development of HSCS in EMG analysis are also given in terms of basic soft computing techniques, further combination of these techniques, and their other applications in EMG analysis. PMID:24490979

  7. Reducing Wrong Patient Selection Errors: Exploring the Design Space of User Interface Techniques

    PubMed Central

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients’ identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed. PMID:25954415

  8. Reducing wrong patient selection errors: exploring the design space of user interface techniques.

    PubMed

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients' identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed.

  9. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    NASA Astrophysics Data System (ADS)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  10. A Direct Brain-to-Brain Interface in Humans

    PubMed Central

    Rao, Rajesh P. N.; Stocco, Andrea; Bryan, Matthew; Sarma, Devapratim; Youngquist, Tiffany M.; Wu, Joseph; Prat, Chantel S.

    2014-01-01

    We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the “sender”) and transmits this information over the internet to the motor cortex region of a second subject (the “receiver”). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender’s signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means. PMID:25372285

  11. Passive wireless tags for tongue controlled assistive technology interfaces.

    PubMed

    Rakibet, Osman O; Horne, Robert J; Kelly, Stephen W; Batchelor, John C

    2016-03-01

    Tongue control with low profile, passive mouth tags is demonstrated as a human-device interface by communicating values of tongue-tag separation over a wireless link. Confusion matrices are provided to demonstrate user accuracy in targeting by tongue position. Accuracy is found to increase dramatically after short training sequences with errors falling close to 1% in magnitude with zero missed targets. The rate at which users are able to learn accurate targeting with high accuracy indicates that this is an intuitive device to operate. The significance of the work is that innovative very unobtrusive, wireless tags can be used to provide intuitive human-computer interfaces based on low cost and disposable mouth mounted technology. With the development of an appropriate reading system, control of assistive devices such as computer mice or wheelchairs could be possible for tetraplegics and others who retain fine motor control capability of their tongues. The tags contain no battery and are intended to fit directly on the hard palate, detecting tongue position in the mouth with no need for tongue piercings.

  12. Closed-loop dialog model of face-to-face communication with a photo-real virtual human

    NASA Astrophysics Data System (ADS)

    Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás

    2004-01-01

    We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.

  13. A Human Factors Framework for Payload Display Design

    NASA Technical Reports Server (NTRS)

    Dunn, Mariea C.; Hutchinson, Sonya L.

    1998-01-01

    During missions to space, one charge of the astronaut crew is to conduct research experiments. These experiments, referred to as payloads, typically are controlled by computers. Crewmembers interact with payload computers by using visual interfaces or displays. To enhance the safety, productivity, and efficiency of crewmember interaction with payload displays, particular attention must be paid to the usability of these displays. Enhancing display usability requires adoption of a design process that incorporates human factors engineering principles at each stage. This paper presents a proposed framework for incorporating human factors engineering principles into the payload display design process.

  14. Visual Debugging of Object-Oriented Systems With the Unified Modeling Language

    DTIC Science & Technology

    2004-03-01

    to be “the systematic and imaginative use of the technology of interactive computer graphics and the disciplines of graphic design , typography ... Graphics volume 23 no 6, pp893-901, 1999. [SHN98] Shneiderman, B. Designing the User Interface. Strategies for Effective Human-Computer Interaction...System Design Objectives ................................................................................ 44 3.3 System Architecture

  15. Virtual reality applications to automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Hale, Joseph; Oneil, Daniel

    1991-01-01

    Virtual Reality (VR) is a rapidly developing Human/Computer Interface (HCI) technology. The evolution of high-speed graphics processors and development of specialized anthropomorphic user interface devices, that more fully involve the human senses, have enabled VR technology. Recently, the maturity of this technology has reached a level where it can be used as a tool in a variety of applications. This paper provides an overview of: VR technology, VR activities at Marshall Space Flight Center (MSFC), applications of VR to Automated Rendezvous and Capture (AR&C), and identifies areas of VR technology that requires further development.

  16. Human Factors Society, Annual Meeting, 35th, San Francisco, CA, Sept. 2-6, 1991, Proceedings. Vols. 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    These proceedings discuss human factor issues related to aerospace systems, aging, communications, computer systems, consumer products, education and forensic topics, environmental design, industrial ergonomics, international technology transfer, organizational design and management, personality and individual differences in human performance, safety, system development, test and evaluation, training, and visual performance. Particular attention is given to HUDs, attitude indicators, and sensor displays; human factors of space exploration; behavior and aging; the design and evaluation of phone-based interfaces; knowledge acquisition and expert systems; handwriting, speech, and other input techniques; interface design for text, numerics, and speech; and human factor issues in medicine. Also discussedmore » are cumulative trauma disorders, industrial safety, evaluative techniques for automation impacts on the human operators, visual issues in training, and interpreting and organizing human factor concepts and information.« less

  17. Brain-Computer Symbiosis

    PubMed Central

    Schalk, Gerwin

    2009-01-01

    The theoretical groundwork of the 1930’s and 1940’s and the technical advance of computers in the following decades provided the basis for dramatic increases in human efficiency. While computers continue to evolve, and we can still expect increasing benefits from their use, the interface between humans and computers has begun to present a serious impediment to full realization of the potential payoff. This article is about the theoretical and practical possibility that direct communication between the brain and the computer can be used to overcome this impediment by improving or augmenting conventional forms of human communication. It is about the opportunity that the limitations of our body’s input and output capacities can be overcome using direct interaction with the brain, and it discusses the assumptions, possible limitations, and implications of a technology that I anticipate will be a major source of pervasive changes in the coming decades. PMID:18310804

  18. Applications of airborne ultrasound in human-computer interaction.

    PubMed

    Dahl, Tobias; Ealo, Joao L; Bang, Hans J; Holm, Sverre; Khuri-Yakub, Pierre

    2014-09-01

    Airborne ultrasound is a rapidly developing subfield within human-computer interaction (HCI). Touchless ultrasonic interfaces and pen tracking systems are part of recent trends in HCI and are gaining industry momentum. This paper aims to provide the background and overview necessary to understand the capabilities of ultrasound and its potential future in human-computer interaction. The latest developments on the ultrasound transducer side are presented, focusing on capacitive micro-machined ultrasonic transducers, or CMUTs. Their introduction is an important step toward providing real, low-cost multi-sensor array and beam-forming options. We also provide a unified mathematical framework for understanding and analyzing algorithms used for ultrasound detection and tracking for some of the most relevant applications. Copyright © 2014. Published by Elsevier B.V.

  19. Reviews.

    ERIC Educational Resources Information Center

    Repak, Arthur J.; And Others

    1988-01-01

    Computer software, audiovisuals, and books are reviewed. Includes topics on interfacing, ionic equilibrium, space, the classification system, Acquired Immune Disease Syndrome, evolution, human body processes, energy, pesticides, teaching school, cells, and geological aspects. Availability, price, and a description of each are provided. (RT)

  20. On the Use of Electrooculogram for Efficient Human Computer Interfaces

    PubMed Central

    Usakli, A. B.; Gurkan, S.; Aloise, F.; Vecchiato, G.; Babiloni, F.

    2010-01-01

    The aim of this study is to present electrooculogram signals that can be used for human computer interface efficiently. Establishing an efficient alternative channel for communication without overt speech and hand movements is important to increase the quality of life for patients suffering from Amyotrophic Lateral Sclerosis or other illnesses that prevent correct limb and facial muscular responses. We have made several experiments to compare the P300-based BCI speller and EOG-based new system. A five-letter word can be written on average in 25 seconds and in 105 seconds with the EEG-based device. Giving message such as “clean-up” could be performed in 3 seconds with the new system. The new system is more efficient than P300-based BCI system in terms of accuracy, speed, applicability, and cost efficiency. Using EOG signals, it is possible to improve the communication abilities of those patients who can move their eyes. PMID:19841687

  1. Addition of visual noise boosts evoked potential-based brain-computer interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  2. Effective color design for displays

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    2002-06-01

    Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.

  3. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  4. Development and application of virtual reality for man/systems integration

    NASA Technical Reports Server (NTRS)

    Brown, Marcus

    1991-01-01

    While the graphical presentation of computer models signified a quantum leap over presentations limited to text and numbers, it still has the problem of presenting an interface barrier between the human user and the computer model. The user must learn a command language in order to orient themselves in the model. For example, to move left from the current viewpoint of the model, they might be required to type 'LEFT' at a keyboard. This command is fairly intuitive, but if the viewpoint moves far enough that there are no visual cues overlapping with the first view, the user does not know if the viewpoint has moved inches, feet, or miles to the left, or perhaps remained in the same position, but rotated to the left. Until the user becomes quite familiar with the interface language of the computer model presentation, they will be proned to lossing their bearings frequently. Even a highly skilled user will occasionally get lost in the model. A new approach to presenting type type of information is to directly interpret the user's body motions as the input language for determining what view to present. When the user's head turns 45 degrees to the left, the viewpoint should be rotated 45 degrees to the left. Since the head moves through several intermediate angles between the original view and the final one, several intermediate views should be presented, providing the user with a sense of continuity between the original view and the final one. Since the primary way a human physically interacts with their environment should monitor the movements of the user's hands and alter objects in the virtual model in a way consistent with the way an actual object would move when manipulated using the same hand movements. Since this approach to the man-computer interface closely models the same type of interface that humans have with the physical world, this type of interface is often called virtual reality, and the model is referred to as a virtual world. The task of this summer fellowship was to set up a virtual reality system at MSFC and begin applying it to some of the questions which concern scientists and engineers involved in space flight. A brief discussion of this work is presented.

  5. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.

    PubMed

    Kansaku, Kenji; Hata, Naoki; Takano, Kouji

    2010-02-01

    A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.

  6. Modeling Goal-Directed User Exploration in Human-Computer Interaction

    DTIC Science & Technology

    2011-02-01

    scent, other factors including the layout position and grouping of options in the user-interface also affect user exploration and the likelihood of...grouping of options in the user-interface also affect user exploration and the likelihood of success. This dissertation contributes a new model of goal...better inform UI design. 1.1 RESEARCH GAPS IN MODELING In addition to infoscent, the layout of the UI also affects the choices made during

  7. Human-Computer Interaction in Tactical Operations: Designing for Effective Human-Computer Dialogue

    DTIC Science & Technology

    1990-09-01

    developing re-usable interface software. Furthermore, steps can be taken toward standardization, and the specifier may be able to take on an increased...The semantic level deals with the meaning of the dialogue to the user. The user has a "point of view" or a " mental model" which provides a context for...information may not occur. As shown in Figure 3-4, the user’s mental model is termed the USER MODEL (Norman and Draper, 1986, p. 47). The programmer’s

  8. AstrodyToolsWeb an e-Science project in Astrodynamics and Celestial Mechanics fields

    NASA Astrophysics Data System (ADS)

    López, R.; San-Juan, J. F.

    2013-05-01

    Astrodynamics Web Tools, AstrodyToolsWeb (http://tastrody.unirioja.es), is an ongoing collaborative Web Tools computing infrastructure project which has been specially designed to support scientific computation. AstrodyToolsWeb provides project collaborators with all the technical and human facilities in order to wrap, manage, and use specialized noncommercial software tools in Astrodynamics and Celestial Mechanics fields, with the aim of optimizing the use of resources, both human and material. However, this project is open to collaboration from the whole scientific community in order to create a library of useful tools and their corresponding theoretical backgrounds. AstrodyToolsWeb offers a user-friendly web interface in order to choose applications, introduce data, and select appropriate constraints in an intuitive and easy way for the user. After that, the application is executed in real time, whenever possible; then the critical information about program behavior (errors and logs) and output, including the postprocessing and interpretation of its results (graphical representation of data, statistical analysis or whatever manipulation therein), are shown via the same web interface or can be downloaded to the user's computer.

  9. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces

    PubMed Central

    Heo, Jeong; Yoon, Heenam; Park, Kwang Suk

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) patients whose voluntary muscles are paralyzed commonly communicate with the outside world using eye movement. There have been many efforts to support this method of communication by tracking or detecting eye movement. An electrooculogram (EOG), an electro-physiological signal, is generated by eye movements and can be measured with electrodes placed around the eye. In this study, we proposed a new practical electrode position on the forehead to measure EOG signals, and we developed a wearable forehead EOG measurement system for use in Human Computer/Machine interfaces (HCIs/HMIs). Four electrodes, including the ground electrode, were placed on the forehead. The two channels were arranged vertically and horizontally, sharing a positive electrode. Additionally, a real-time eye movement classification algorithm was developed based on the characteristics of the forehead EOG. Three applications were employed to evaluate the proposed system: a virtual keyboard using a modified Bremen BCI speller and an automatic sequential row-column scanner, and a drivable power wheelchair. The mean typing speeds of the modified Bremen brain–computer interface (BCI) speller and automatic row-column scanner were 10.81 and 7.74 letters per minute, and the mean classification accuracies were 91.25% and 95.12%, respectively. In the power wheelchair demonstration, the user drove the wheelchair through an 8-shape course without collision with obstacles. PMID:28644398

  10. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.

    PubMed

    Heo, Jeong; Yoon, Heenam; Park, Kwang Suk

    2017-06-23

    Amyotrophic lateral sclerosis (ALS) patients whose voluntary muscles are paralyzed commonly communicate with the outside world using eye movement. There have been many efforts to support this method of communication by tracking or detecting eye movement. An electrooculogram (EOG), an electro-physiological signal, is generated by eye movements and can be measured with electrodes placed around the eye. In this study, we proposed a new practical electrode position on the forehead to measure EOG signals, and we developed a wearable forehead EOG measurement system for use in Human Computer/Machine interfaces (HCIs/HMIs). Four electrodes, including the ground electrode, were placed on the forehead. The two channels were arranged vertically and horizontally, sharing a positive electrode. Additionally, a real-time eye movement classification algorithm was developed based on the characteristics of the forehead EOG. Three applications were employed to evaluate the proposed system: a virtual keyboard using a modified Bremen BCI speller and an automatic sequential row-column scanner, and a drivable power wheelchair. The mean typing speeds of the modified Bremen brain-computer interface (BCI) speller and automatic row-column scanner were 10.81 and 7.74 letters per minute, and the mean classification accuracies were 91.25% and 95.12%, respectively. In the power wheelchair demonstration, the user drove the wheelchair through an 8-shape course without collision with obstacles.

  11. Analyzing Robotic Kinematics Via Computed Simulations

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  12. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  13. Computer animation for minimally invasive surgery: computer system requirements and preferred implementations

    NASA Astrophysics Data System (ADS)

    Pieper, Steven D.; McKenna, Michael; Chen, David; McDowall, Ian E.

    1994-04-01

    We are interested in the application of computer animation to surgery. Our current project, a navigation and visualization tool for knee arthroscopy, relies on real-time computer graphics and the human interface technologies associated with virtual reality. We believe that this new combination of techniques will lead to improved surgical outcomes and decreased health care costs. To meet these expectations in the medical field, the system must be safe, usable, and cost-effective. In this paper, we outline some of the most important hardware and software specifications in the areas of video input and output, spatial tracking, stereoscopic displays, computer graphics models and libraries, mass storage and network interfaces, and operating systems. Since this is a fairly new combination of technologies and a new application, our justification for our specifications are drawn from the current generation of surgical technology and by analogy to other fields where virtual reality technology has been more extensively applied and studied.

  14. Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: Proof of concept study.

    PubMed

    Kasashima-Shindo, Yuko; Fujiwara, Toshiyuki; Ushiba, Junichi; Matsushika, Yayoi; Kamatani, Daiki; Oto, Misa; Ono, Takashi; Nishimoto, Atsuko; Shindo, Keiichiro; Kawakami, Michiyuki; Tsuji, Tetsuya; Liu, Meigen

    2015-04-01

    Brain-computer interface technology has been applied to stroke patients to improve their motor function. Event-related desynchronization during motor imagery, which is used as a brain-computer interface trigger, is sometimes difficult to detect in stroke patients. Anodal transcranial direct current stimulation (tDCS) is known to increase event-related desynchronization. This study investigated the adjunctive effect of anodal tDCS for brain-computer interface training in patients with severe hemiparesis. Eighteen patients with chronic stroke. A non-randomized controlled study. Subjects were divided between a brain-computer interface group and a tDCS- brain-computer interface group and participated in a 10-day brain-computer interface training. Event-related desynchronization was detected in the affected hemisphere during motor imagery of the affected fingers. The tDCS-brain-computer interface group received anodal tDCS before brain-computer interface training. Event-related desynchronization was evaluated before and after the intervention. The Fugl-Meyer Assessment upper extremity motor score (FM-U) was assessed before, immediately after, and 3 months after, the intervention. Event-related desynchronization was significantly increased in the tDCS- brain-computer interface group. The FM-U was significantly increased in both groups. The FM-U improvement was maintained at 3 months in the tDCS-brain-computer interface group. Anodal tDCS can be a conditioning tool for brain-computer interface training in patients with severe hemiparetic stroke.

  15. Overview of Human-Centric Space Situational Awareness Science and Technology

    DTIC Science & Technology

    2012-09-01

    AGI), the developers of Satellite Tool Kit ( STK ), has provided demonstrations of innovative SSA visualization concepts that take advantage of the...needs inherent with SSA. RH has conducted CTAs and developed work-centered human-computer interfaces, visualizations , and collaboration technologies...all end users. RH’s Battlespace Visualization Branch researches methods to exploit the visual channel primarily to improve decision making and

  16. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  17. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  18. Adding tactile realism to a virtual reality laparoscopic surgical simulator with a cost-effective human interface device

    NASA Astrophysics Data System (ADS)

    Mack, Ian W.; Potts, Stephen; McMenemy, Karen R.; Ferguson, R. S.

    2006-02-01

    The laparoscopic technique for performing abdominal surgery requires a very high degree of skill in the medical practitioner. Much interest has been focused on using computer graphics to provide simulators for training surgeons. Unfortunately, these tend to be complex and have a very high cost, which limits availability and restricts the length of time over which individuals can practice their skills. With computer game technology able to provide the graphics required for a surgical simulator, the cost does not have to be high. However, graphics alone cannot serve as a training simulator. Human interface hardware, the equivalent of the force feedback joystick for a flight simulator game, is required to complete the system. This paper presents a design for a very low cost device to address this vital issue. The design encompasses: the mechanical construction, the electronic interfaces and the software protocols to mimic a laparoscopic surgical set-up. Thus the surgeon has the capability of practicing two-handed procedures with the possibility of force feedback. The force feedback and collision detection algorithms allow surgeons to practice realistic operating theatre procedures with a good degree of authenticity.

  19. Design for interaction between humans and intelligent systems during real-time fault management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  20. The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology

    PubMed Central

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Fazli, Siamac; Sannelli, Claudia; Haufe, Stefan; Maeder, Cecilia; Ramsey, Lenny; Sturm, Irene; Curio, Gabriel; Müller, Klaus-Robert

    2010-01-01

    Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research was focused on applications for paralyzed patients, increasingly more alternative applications in healthy human subjects are proposed and investigated. In particular, monitoring of mental states and decoding of covert user states have seen a strong rise of interest. Here, we present some examples of such novel applications which provide evidence for the promising potential of BCI technology for non-medical uses. Furthermore, we discuss distinct methodological improvements required to bring non-medical applications of BCI technology to a diversity of layperson target groups, e.g., ease of use, minimal training, general usability, short control latencies. PMID:21165175

  1. The Computer as Lab Partner.

    ERIC Educational Resources Information Center

    Nicklin, R. C.

    1985-01-01

    Microcomputers can record laboratory measurements which human laboratory partners can never collect. Simple, harder, and general-purpose interfaces are discussed, with suggestions for several experiments involving an exercise bike, acceleration, and pendulums. Additional applications with pH meters, spectrophotometers, and chromatographs are also…

  2. Customization of user interfaces to reduce errors and enhance user acceptance.

    PubMed

    Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram

    2014-03-01

    Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  4. Automation in the graphic arts

    NASA Astrophysics Data System (ADS)

    Truszkowski, Walt

    1995-04-01

    The CHIMES (Computer-Human Interaction Models) tool was designed to help solve a simply-stated but important problem, i.e., the problem of generating a user interface to a system that complies with established human factors standards and guidelines. Though designed for use in a fairly restricted user domain, i.e., spacecraft mission operations, the CHIMES system is essentially domain independent and applicable wherever graphical user interfaces of displays are to be encountered. The CHIMES philosophy and operating strategy are quite simple. Instead of requiring a human designer to actively maintain in his or her head the now encyclopedic knowledge that human factors and user interface specialists have evolved, CHIMES incorporates this information in its knowledge bases. When directed to evaluated a design, CHIMES determines and accesses the appropriate knowledge, performs an evaluation of the design against that information, determines whether the design is compliant with the selected guidelines and suggests corrective actions if deviations from guidelines are discovered. This paper will provide an overview of the capabilities of the current CHIMES tool and discuss the potential integration of CHIMES-like technology in automated graphic arts systems.

  5. The role of voice input for human-machine communication.

    PubMed Central

    Cohen, P R; Oviatt, S L

    1995-01-01

    Optimism is growing that the near future will witness rapid growth in human-computer interaction using voice. System prototypes have recently been built that demonstrate speaker-independent real-time speech recognition, and understanding of naturally spoken utterances with vocabularies of 1000 to 2000 words, and larger. Already, computer manufacturers are building speech recognition subsystems into their new product lines. However, before this technology can be broadly useful, a substantial knowledge base is needed about human spoken language and performance during computer-based spoken interaction. This paper reviews application areas in which spoken interaction can play a significant role, assesses potential benefits of spoken interaction with machines, and compares voice with other modalities of human-computer interaction. It also discusses information that will be needed to build a firm empirical foundation for the design of future spoken and multimodal interfaces. Finally, it argues for a more systematic and scientific approach to investigating spoken input and performance with future language technology. PMID:7479803

  6. Turning Shortcomings into Challenges: Brain-Computer Interfaces for Games

    NASA Astrophysics Data System (ADS)

    Nijholt, Anton; Reuderink, Boris; Oude Bos, Danny

    In recent years we have seen a rising interest in brain-computer interfacing for human-computer interaction and potential game applications. Until now, however, we have almost only seen attempts where BCI is used to measure the affective state of the user or in neurofeedback games. There have hardly been any attempts to design BCI games where BCI is considered to be one of the possible input modalities that can be used to control the game. One reason may be that research still follows the paradigms of the traditional, medically oriented, BCI approaches. In this paper we discuss current BCI research from the viewpoint of games and game design. It is hoped that this survey will make clear that we need to design different games than we used to, but that such games can nevertheless be interesting and exciting.

  7. Exploring Gigabyte Datasets in Real Time: Architectures, Interfaces and Time-Critical Design

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Architectures and Interfaces: The implications of real-time interaction on software architecture design: decoupling of interaction/graphics and computation into asynchronous processes. The performance requirements of graphics and computation for interaction. Time management in such an architecture. Examples of how visualization algorithms must be modified for high performance. Brief survey of interaction techniques and design, including direct manipulation and manipulation via widgets. talk discusses how human factors considerations drove the design and implementation of the virtual wind tunnel. Time-Critical Design: A survey of time-critical techniques for both computation and rendering. Emphasis on the assignment of a time budget to both the overall visualization environment and to each individual visualization technique in the environment. The estimation of the benefit and cost of an individual technique. Examples of the modification of visualization algorithms to allow time-critical control.

  8. A robust human face detection algorithm

    NASA Astrophysics Data System (ADS)

    Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.

    2012-01-01

    Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.

  9. Clinical application of a light-pen computer system for quantitative angiography

    NASA Technical Reports Server (NTRS)

    Alderman, E. L.

    1975-01-01

    The important features in a clinical system for quantitative angiography were examined. The human interface for data input, whether an electrostatic pen, sonic pen, or light-pen must be engineered to optimize the quality of margin definition. The computer programs which the technician uses for data entry and computation of ventriculographic measurements must be convenient to use on a routine basis in a laboratory performing multiple studies per day. The method used for magnification correction must be continuously monitored.

  10. Usefulness and preference for tablet personal computers by medical students: are the features worth the money?

    PubMed

    Wiese, Dawn; Atreja, Ashish; Mehta, Neil

    2008-11-06

    Tablet Personal Computers (PCs) have a huge potential in medical education due to their interactive human- computer interface and the need for anatomical diagrams, annotations, biochemistry flow charts etc. We conducted an online survey of medical students to determine their pattern of usage of the tablet features. The results revealed that the majority of medical students use the tablet features infrequently and most do not place a high value on the tablet features.

  11. Human-system interfaces for space cognitive awareness

    NASA Astrophysics Data System (ADS)

    Ianni, J.

    Space situational awareness is a human activity. We have advanced sensors and automation capabilities but these continue to be tools for humans to use. The reality is, however, that humans cannot take full advantage of the power of these tools due to time constraints, cognitive limitations, poor tool integration, poor human-system interfaces, and other reasons. Some excellent tools may never be used in operations and, even if they were, they may not be well suited to provide a cohesive and comprehensive picture. Recognizing this, the Air Force Research Laboratory (AFRL) is applying cognitive science principles to increase the knowledge derived from existing tools and creating new capabilities to help space analysts and decision makers. At the center of this research is Sensemaking Support Environment technology. The concept is to create cognitive-friendly computer environments that connect critical and creative thinking for holistic decision making. AFRL is also investigating new visualization technologies for multi-sensor exploitation and space weather, human-to-human collaboration technologies, and other technology that will be discussed in this paper.

  12. System for assisted mobility using eye movements based on electrooculography.

    PubMed

    Barea, Rafael; Boquete, Luciano; Mazo, Manuel; López, Elena

    2002-12-01

    This paper describes an eye-control method based on electrooculography (EOG) to develop a system for assisted mobility. One of its most important features is its modularity, making it adaptable to the particular needs of each user according to the type and degree of handicap involved. An eye model based on electroculographic signal is proposed and its validity is studied. Several human-machine interfaces (HMI) based on EOG are commented, focusing our study on guiding and controlling a wheelchair for disabled people, where the control is actually effected by eye movements within the socket. Different techniques and guidance strategies are then shown with comments on the advantages and disadvantages of each one. The system consists of a standard electric wheelchair with an on-board computer, sensors and a graphic user interface run by the computer. On the other hand, this eye-control method can be applied to handle graphical interfaces, where the eye is used as a mouse computer. Results obtained show that this control technique could be useful in multiple applications, such as mobility and communication aid for handicapped persons.

  13. Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate

    MedlinePlus

    ... Home Current Issue Past Issues Connections that Count: Brain-Computer Interface Enables the Profoundly Paralyzed to Communicate ... of this page please turn Javascript on. A brain-computer interface (BCI) system This brain-computer interface ( ...

  14. The experience of agency in human-computer interactions: a review

    PubMed Central

    Limerick, Hannah; Coyle, David; Moore, James W.

    2014-01-01

    The sense of agency is the experience of controlling both one’s body and the external environment. Although the sense of agency has been studied extensively, there is a paucity of studies in applied “real-life” situations. One applied domain that seems highly relevant is human-computer-interaction (HCI), as an increasing number of our everyday agentive interactions involve technology. Indeed, HCI has long recognized the feeling of control as a key factor in how people experience interactions with technology. The aim of this review is to summarize and examine the possible links between sense of agency and understanding control in HCI. We explore the overlap between HCI and sense of agency for computer input modalities and system feedback, computer assistance, and joint actions between humans and computers. An overarching consideration is how agency research can inform HCI and vice versa. Finally, we discuss the potential ethical implications of personal responsibility in an ever-increasing society of technology users and intelligent machine interfaces. PMID:25191256

  15. Extending human proprioception to cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Keller, Kevin; Robinson, Ethan; Dickstein, Leah; Hahn, Heidi A.; Cattaneo, Alessandro; Mascareñas, David

    2016-04-01

    Despite advances in computational cognition, there are many cyber-physical systems where human supervision and control is desirable. One pertinent example is the control of a robot arm, which can be found in both humanoid and commercial ground robots. Current control mechanisms require the user to look at several screens of varying perspective on the robot, then give commands through a joystick-like mechanism. This control paradigm fails to provide the human operator with an intuitive state feedback, resulting in awkward and slow behavior and underutilization of the robot's physical capabilities. To overcome this bottleneck, we introduce a new human-machine interface that extends the operator's proprioception by exploiting sensory substitution. Humans have a proprioceptive sense that provides us information on how our bodies are configured in space without having to directly observe our appendages. We constructed a wearable device with vibrating actuators on the forearm, where frequency of vibration corresponds to the spatial configuration of a robotic arm. The goal of this interface is to provide a means to communicate proprioceptive information to the teleoperator. Ultimately we will measure the change in performance (time taken to complete the task) achieved by the use of this interface.

  16. How controllers compensate for the lack of flight progress strips.

    DOT National Transportation Integrated Search

    1996-02-01

    The role of the Flight Progress Strip, currently used to display important flight data, has been debated because of long range plans to automate the air traffic control (ATC) human-computer interface. Currently, the Fight Progress Strip is viewed by ...

  17. Selecting Appropriate Functionality and Technologies for EPSS.

    ERIC Educational Resources Information Center

    McGraw, Karen L.

    1995-01-01

    Presents background information that describes the major components of an embedded performance support system, compares levels of functionality, and discusses some of the required technologies. Highlights include the human-computer interface; online help; advisors; training and tutoring; hypermedia; and artificial intelligence techniques. (LRW)

  18. Artificial Intelligence--Applications in Education.

    ERIC Educational Resources Information Center

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  19. An Affordance-Based Framework for Human Computation and Human-Computer Collaboration.

    PubMed

    Crouser, R J; Chang, R

    2012-12-01

    Visual Analytics is "the science of analytical reasoning facilitated by visual interactive interfaces". The goal of this field is to develop tools and methodologies for approaching problems whose size and complexity render them intractable without the close coupling of both human and machine analysis. Researchers have explored this coupling in many venues: VAST, Vis, InfoVis, CHI, KDD, IUI, and more. While there have been myriad promising examples of human-computer collaboration, there exists no common language for comparing systems or describing the benefits afforded by designing for such collaboration. We argue that this area would benefit significantly from consensus about the design attributes that define and distinguish existing techniques. In this work, we have reviewed 1,271 papers from many of the top-ranking conferences in visual analytics, human-computer interaction, and visualization. From these, we have identified 49 papers that are representative of the study of human-computer collaborative problem-solving, and provide a thorough overview of the current state-of-the-art. Our analysis has uncovered key patterns of design hinging on human and machine-intelligence affordances, and also indicates unexplored avenues in the study of this area. The results of this analysis provide a common framework for understanding these seemingly disparate branches of inquiry, which we hope will motivate future work in the field.

  20. Development of high-performance low-reflection rugged resistive touch screens for military displays

    NASA Astrophysics Data System (ADS)

    Wang, Raymond; Wang, Minshine; Thomas, John; Wang, Lawrence; Chang, Victor

    2010-04-01

    Just as iPhones with sophisticated touch interfaces have revolutionised the human interface for the ubiquitous cell phone, the Military is rapidly adopting touch-screens as a primary interface to their computers and vehicle systems. This paper describes the development of a true military touch interface solution from an existing industrial design. We will report on successful development of 10.4" and 15.4" high performance rugged resistive touch panels using IAD sputter coating. Low reflectance (specular < 1% and diffuse < 0.07%) was achieved with high impact, dust, and chemical resistant surface finishes. These touch panels were qualified over a wide operational temperature range, -51°C to +80°C specifically for military and rugged industrial applications.

  1. User interface design principles for the SSM/PMAD automated power system

    NASA Technical Reports Server (NTRS)

    Jakstas, Laura M.; Myers, Chris J.

    1991-01-01

    Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.

  2. Man-machine analysis of translation and work tasks of Skylab films

    NASA Technical Reports Server (NTRS)

    Hosler, W. W.; Boelter, J. G.; Morrow, J. R., Jr.; Jackson, J. T.

    1979-01-01

    An objective approach to determine the concurrent validity of computer-graphic models is real time film analysis. This technique was illustrated through the procedures and results obtained in an evaluation of translation of Skylab mission astronauts. The quantitative analysis was facilitated by the use of an electronic film analyzer, minicomputer, and specifically supportive software. The uses of this technique for human factors research are: (1) validation of theoretical operator models; (2) biokinetic analysis; (3) objective data evaluation; (4) dynamic anthropometry; (5) empirical time-line analysis; and (6) consideration of human variability. Computer assisted techniques for interface design and evaluation have the potential for improving the capability for human factors engineering.

  3. Face Processing: Models For Recognition

    NASA Astrophysics Data System (ADS)

    Turk, Matthew A.; Pentland, Alexander P.

    1990-03-01

    The human ability to process faces is remarkable. We can identify perhaps thousands of faces learned throughout our lifetime and read facial expression to understand such subtle qualities as emotion. These skills are quite robust, despite sometimes large changes in the visual stimulus due to expression, aging, and distractions such as glasses or changes in hairstyle or facial hair. Computers which model and recognize faces will be useful in a variety of applications, including criminal identification, human-computer interface, and animation. We discuss models for representing faces and their applicability to the task of recognition, and present techniques for identifying faces and detecting eye blinks.

  4. Factors in Human-Computer Interface Design (A Pilot Study).

    DTIC Science & Technology

    1994-12-01

    This study used a pretest - posttest control group experimental design to test the effect of consistency on speed, retention, and user satisfaction. Four...analysis. The overall methodology was a pretest - posttest control group experimental design using different prototypes to test the effects of...methodology used for this study was a pretest - posttest control group experimental design using different prototypes to test for features of the human

  5. Experiencing the Sights, Smells, Sounds, and Climate of Southern Italy in VR.

    PubMed

    Manghisi, Vito M; Fiorentino, Michele; Gattullo, Michele; Boccaccio, Antonio; Bevilacqua, Vitoantonio; Cascella, Giuseppe L; Dassisti, Michele; Uva, Antonio E

    2017-01-01

    This article explores what it takes to make interactive computer graphics and VR attractive as a promotional vehicle, from the points of view of tourism agencies and the tourists themselves. The authors exploited current VR and human-machine interface (HMI) technologies to develop an interactive, innovative, and attractive user experience called the Multisensory Apulia Touristic Experience (MATE). The MATE system implements a natural gesture-based interface and multisensory stimuli, including visuals, audio, smells, and climate effects.

  6. The Transportable Applications Environment - An interactive design-to-production development system

    NASA Technical Reports Server (NTRS)

    Perkins, Dorothy C.; Howell, David R.; Szczur, Martha R.

    1988-01-01

    An account is given of the design philosophy and architecture of the Transportable Applications Environment (TAE), an executive program binding a system of applications programs into a single, easily operable whole. TAE simplifies the job of a system developer by furnishing a stable framework for system-building; it also integrates system activities, and cooperates with the host operating system in order to perform such functions as task-scheduling and I/O. The initial TAE human/computer interface supported command and menu interfaces, data displays, parameter-prompting, error-reporting, and online help. Recent extensions support graphics workstations with a window-based, modeless user interface.

  7. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain

    PubMed Central

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain. PMID:26982717

  8. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    PubMed

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  9. Simulating Humans as Integral Parts of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine

    2006-01-01

    The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.

  10. Virtual reality systems

    NASA Technical Reports Server (NTRS)

    Johnson, David W.

    1992-01-01

    Virtual realities are a type of human-computer interface (HCI) and as such may be understood from a historical perspective. In the earliest era, the computer was a very simple, straightforward machine. Interaction was human manipulation of an inanimate object, little more than the provision of an explicit instruction set to be carried out without deviation. In short, control resided with the user. In the second era of HCI, some level of intelligence and control was imparted to the system to enable a dialogue with the user. Simple context sensitive help systems are early examples, while more sophisticated expert system designs typify this era. Control was shared more equally. In this, the third era of the HCI, the constructed system emulates a particular environment, constructed with rules and knowledge about 'reality'. Control is, in part, outside the realm of the human-computer dialogue. Virtual reality systems are discussed.

  11. Predicting human activities in sequences of actions in RGB-D videos

    NASA Astrophysics Data System (ADS)

    Jardim, David; Nunes, Luís.; Dias, Miguel

    2017-03-01

    In our daily activities we perform prediction or anticipation when interacting with other humans or with objects. Prediction of human activity made by computers has several potential applications: surveillance systems, human computer interfaces, sports video analysis, human-robot-collaboration, games and health-care. We propose a system capable of recognizing and predicting human actions using supervised classifiers trained with automatically labeled data evaluated in our human activity RGB-D dataset (recorded with a Kinect sensor) and using only the position of the main skeleton joints to extract features. Using conditional random fields (CRFs) to model the sequential nature of actions in a sequence has been used before, but where other approaches try to predict an outcome or anticipate ahead in time (seconds), we try to predict what will be the next action of a subject. Our results show an activity prediction accuracy of 89.9% using an automatically labeled dataset.

  12. [Mechatronic in functional endoscopic sinus surgery. First experiences with the daVinci Telemanipulatory System].

    PubMed

    Strauss, G; Winkler, D; Jacobs, S; Trantakis, C; Dietz, A; Bootz, F; Meixensberger, J; Falk, V

    2005-07-01

    This study examines the advantages and disadvantages of a commercial telemanipulator system (daVinci, Intuitive Surgical, USA) with computer-guided instruments in functional endoscopic sinus surgery (FESS). We performed five different surgical FESS steps on 14 anatomical preparation and compared them with conventional FESS. A total of 140 procedures were examined taking into account the following parameters: degrees of freedom (DOF), duration , learning curve, force feedback, human-machine-interface. Telemanipulatory instruments have more DOF available then conventional instrumentation in FESS. The average time consumed by configuration of the telemanipulator is around 9+/-2 min. Missing force feedback is evaluated mainly as a disadvantage of the telemanipulator. Scaling was evaluated as helpful. The ergonomic concept seems to be better than the conventional solution. Computer guided instruments showed better results for the available DOF of the instruments. The human-machine-interface is more adaptable and variable then in conventional instrumentation. Motion scaling and indexing are characteristics of the telemanipulator concept which are helpful for FESS in our study.

  13. Tactile objects based on an amplitude disturbed diffraction pattern method

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Nikolovski, Jean-Pierre; Mechbal, Nazih; Hafez, Moustapha; Vergé, Michel

    2009-12-01

    Tactile sensing is becoming widely used in human-computer interfaces. Recent advances in acoustic approaches demonstrated the possibilities to transform ordinary solid objects into interactive interfaces. This letter proposes a static finger contact localization process using an amplitude disturbed diffraction pattern method. The localization method is based on the following physical phenomenon: a finger contact modifies the energy distribution of acoustic wave in a solid; these variations depend on the wave frequency and the contact position. The presented method first consists of exciting the object with an acoustic signal with plural frequency components. In a second step, a measured acoustic signal is compared with prerecorded values to deduce the contact position. This position is then used for human-machine interaction (e.g., finger tracking on computer screen). The selection of excitation signals is discussed and a frequency choice criterion based on contrast value is proposed. Tests on a sandwich plate (liquid crystal display screen) prove the simplicity and easiness to apply the process in various solids.

  14. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  15. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  16. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon W.; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  17. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  18. Simulation of a sensor array for multiparameter measurements at the prosthetic limb interface

    NASA Astrophysics Data System (ADS)

    Rowe, Gabriel I.; Mamishev, Alexander V.

    2004-07-01

    Sensitive skin is a highly desired device for biomechanical devices, wearable computing, human-computer interfaces, exoskeletons, and, most pertinent to this paper, for lower limb prosthetics. The measurement of shear stress is very important because shear effects are key factors in developing surface abrasions and pressure sores in paraplegics and users of prosthetic/orthotic devices. A single element of a sensitive skin is simulated and characterized in this paper. Conventional tactile sensors are designed for measurement of the normal stress only, which is inadequate for comprehensive assessment of surface contact conditions. The sensitive skin discussed here is a flexible array capable of sensing shear and normal forces, as well as humidity and temperature on each element.

  19. [Design and implementation of controlling smart car systems using P300 brain-computer interface].

    PubMed

    Wang, Jinjia; Yang, Chengjie; Hu, Bei

    2013-04-01

    Using human electroencephalogram (EEG) to control external devices in order to achieve a variety of functions has been focus of the field of brain-computer interface (BCI) research. P300 is experiments which stimulate the eye to produce EEG by using letters flashing, and then identify the corresponding letters. In this paper, some improvements based on the P300 experiments were made??. Firstly, the matrix of flashing letters were modified into words which represent a certain sense. Secondly, the BCI2000 procedures were added with the corresponding source code. Thirdly, the smart car systems were designed using the radiofrequency signal. Finally it was realized that the evoked potentials were used to control the state of the smart car.

  20. Brain-computer interface on the basis of EEG system Encephalan

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir; Badarin, Artem; Nedaivozov, Vladimir; Kirsanov, Daniil; Hramov, Alexander

    2018-04-01

    We have proposed brain-computer interface (BCI) for the estimation of the brain response on the presented visual tasks. Proposed BCI is based on the EEG recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia) supplemented by a special home-made developed acquisition software. BCI is tested during experimental session while subject is perceiving the bistable visual stimuli and classifying them according to the interpretation. We have subjected the participant to the different external conditions and observed the significant decrease in the response, associated with the perceiving the bistable visual stimuli, during the presence of distraction. Based on the obtained results we have proposed possibility to use of BCI for estimation of the human alertness during solving the tasks required substantial visual attention.

  1. ChemPreview: an augmented reality-based molecular interface.

    PubMed

    Zheng, Min; Waller, Mark P

    2017-05-01

    Human computer interfaces make computational science more comprehensible and impactful. Complex 3D structures such as proteins or DNA are magnified by digital representations and displayed on two-dimensional monitors. Augmented reality has recently opened another door to access the virtual three-dimensional world. Herein, we present an augmented reality application called ChemPreview with the potential to manipulate bio-molecular structures at an atomistic level. ChemPreview is available at https://github.com/wallerlab/chem-preview/releases, and is built on top of the Meta 1 platform https://www.metavision.com/. ChemPreview can be used to interact with a protein in an intuitive way using natural hand gestures, thereby making it appealing to computational chemists or structural biologists. The ability to manipulate atoms in real world could eventually provide new and more efficient ways of extracting structural knowledge, or designing new molecules in silico. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. An online hybrid brain-computer interface combining multiple physiological signals for webpage browse.

    PubMed

    Long Chen; Zhongpeng Wang; Feng He; Jiajia Yang; Hongzhi Qi; Peng Zhou; Baikun Wan; Dong Ming

    2015-08-01

    The hybrid brain computer interface (hBCI) could provide higher information transfer rate than did the classical BCIs. It included more than one brain-computer or human-machine interact paradigms, such as the combination of the P300 and SSVEP paradigms. Research firstly constructed independent subsystems of three different paradigms and tested each of them with online experiments. Then we constructed a serial hybrid BCI system which combined these paradigms to achieve the functions of typing letters, moving and clicking cursor, and switching among them for the purpose of browsing webpages. Five subjects were involved in this study. They all successfully realized these functions in the online tests. The subjects could achieve an accuracy above 90% after training, which met the requirement in operating the system efficiently. The results demonstrated that it was an efficient system capable of robustness, which provided an approach for the clinic application.

  3. Soft drink effects on sensorimotor rhythm brain computer interface performance and resting-state spectral power.

    PubMed

    Mundahl, John; Jianjun Meng; He, Jeffrey; Bin He

    2016-08-01

    Brain-computer interface (BCI) systems allow users to directly control computers and other machines by modulating their brain waves. In the present study, we investigated the effect of soft drinks on resting state (RS) EEG signals and BCI control. Eight healthy human volunteers each participated in three sessions of BCI cursor tasks and resting state EEG. During each session, the subjects drank an unlabeled soft drink with either sugar, caffeine, or neither ingredient. A comparison of resting state spectral power shows a substantial decrease in alpha and beta power after caffeine consumption relative to control. Despite attenuation of the frequency range used for the control signal, caffeine average BCI performance was the same as control. Our work provides a useful characterization of caffeine, the world's most popular stimulant, on brain signal frequencies and their effect on BCI performance.

  4. Technology transfer of operator-in-the-loop simulation

    NASA Technical Reports Server (NTRS)

    Yae, K. H.; Lin, H. C.; Lin, T. C.; Frisch, H. P.

    1994-01-01

    The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design.

  5. Emerging CAE technologies and their role in Future Ambient Intelligence Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2011-03-01

    Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.

  6. Camera systems in human motion analysis for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  7. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  8. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  9. Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5.

    PubMed

    Azoitei, M L; Ban, Y A; Kalyuzhny, O; Guenaga, J; Schroeter, A; Porter, J; Wyatt, R; Schief, William R

    2014-10-01

    Rational design of proteins with novel binding specificities and increased affinity is one of the major goals of computational protein design. Epitope-scaffolds are a new class of antigens engineered by transplanting viral epitopes of predefined structure to protein scaffolds, or by building protein scaffolds around such epitopes. Epitope-scaffolds are of interest as vaccine components to attempt to elicit neutralizing antibodies targeting the specified epitope. In this study we developed a new computational protocol, MultiGraft Interface, that transplants epitopes but also designs additional scaffold features outside the epitope to enhance antibody-binding specificity and potentially influence the specificity of elicited antibodies. We employed MultiGraft Interface to engineer novel epitope-scaffolds that display the known epitope of human immunodeficiency virus 1 (HIV-1) neutralizing antibody 2F5 and that also interact with the functionally important CDR H3 antibody loop. MultiGraft Interface generated an epitope-scaffold that bound 2F5 with subnanomolar affinity (K(D) = 400 pM) and that interacted with the antibody CDR H3 loop through computationally designed contacts. Substantial structural modifications were necessary to engineer this antigen, with the 2F5 epitope replacing a helix in the native scaffold and with 15% of the native scaffold sequence being modified in the design stage. This epitope-scaffold represents a successful example of rational protein backbone engineering and protein-protein interface design and could prove useful in the field of HIV vaccine design. MultiGraft Interface can be generally applied to engineer novel binding partners with altered specificity and optimized affinity. © 2014 Wiley Periodicals, Inc.

  10. Robot services for elderly with cognitive impairment: testing usability of graphical user interfaces.

    PubMed

    Granata, C; Pino, M; Legouverneur, G; Vidal, J-S; Bidaud, P; Rigaud, A-S

    2013-01-01

    Socially assistive robotics for elderly care is a growing field. However, although robotics has the potential to support elderly in daily tasks by offering specific services, the development of usable interfaces is still a challenge. Since several factors such as age or disease-related changes in perceptual or cognitive abilities and familiarity with computer technologies influence technology use they must be considered when designing interfaces for these users. This paper presents findings from usability testing of two different services provided by a social assistive robot intended for elderly with cognitive impairment: a grocery shopping list and an agenda application. The main goal of this study is to identify the usability problems of the robot interface for target end-users as well as to isolate the human factors that affect the use of the technology by elderly. Socio-demographic characteristics and computer experience were examined as factors that could have an influence on task performance. A group of 11 elderly persons with Mild Cognitive Impairment and a group of 11 cognitively healthy elderly individuals took part in this study. Performance measures (task completion time and number of errors) were collected. Cognitive profile, age and computer experience were found to impact task performance. Participants with cognitive impairment achieved the tasks committing more errors than cognitively healthy elderly. Instead younger participants and those with previous computer experience were faster at completing the tasks confirming previous findings in the literature. The overall results suggested that interfaces and contents of the services assessed were usable by older adults with cognitive impairment. However, some usability problems were identified and should be addressed to better meet the needs and capacities of target end-users.

  11. Design Guidelines for CAI Authoring Systems.

    ERIC Educational Resources Information Center

    Hunka, S.

    1989-01-01

    Discussion of the use of authoring systems for courseware development focuses on guidelines to be considered when designing authoring systems. Topics discussed include allowing a variety of instructional strategies; interaction with peripheral processes such as student records; the editing process; and human factors in computer interface design,…

  12. Control-display mapping in brain-computer interfaces.

    PubMed

    Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter

    2012-01-01

    Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.

  13. A Mobile Decision Aid for Determining Detection Probabilities for Acoustic Targets

    DTIC Science & Technology

    2002-08-01

    propagation mobile application . Personal Computer Memory Card International Association, an organization of some 500 companies that has developed a...SENSOR: lHuman and possible outputs, it was felt that for a mobile application , the interface and number of output parameters should be kept simple...value could be computed on the server and transmitted back to the mobile application for display. FUTURE CAPABILITIES 2-D/3-D Displays The full ABFA

  14. Man-Machine Interface (MMI) Requirements Definition and Design Guidelines

    DTIC Science & Technology

    1981-02-01

    be provided to interrogate the user to resolve any input ambiguities resulting from hardware limitations; see Smith and Goodwin, 1971 . Reference...Smith, S. L. and Goodwin, N. C’. Alphabetic data v entry via the Touch-Tone pad: A comment. Human Factors, 1971 , 13(2), 189-190. 41 All~ 1.0 General (con...software designer. Reference: Miller, R. B. Response time in man-computer conversational transactions. In Proceedings of the AFIPS kall Joint Computer

  15. The power of pezonomics

    NASA Technical Reports Server (NTRS)

    Orr, Joel N.

    1995-01-01

    This reflection of human-computer interface and its requirements as virtual technology is advanced, proposes a new term: 'Pezonomics'. The term replaces the term ergonomics ('the law of work') with a definition pointing to 'the law of play.' The necessity of this term, the author reasons, comes from the need to 'capture the essence of play and calibrate our computer systems to its cadences.' Pezonomics will ensure that artificial environments, in particular virtual reality, are user friendly.

  16. Decoding Onset and Direction of Movements Using Electrocorticographic (ECoG) Signals in Humans

    DTIC Science & Technology

    2012-08-08

    Institute, Troy, NY, USA 2 J Crayton Pruitt Family Department of Biomed Engineering, University of Florida, Gainesville, FL, USA 3 BCI R&D Program...INTRODUCTION Brain-computer interfaces ( BCIs ) aim to translate a person’s intentions into meaningful computer commands using brain activity alone...applications for those suffering from neuromuscular disorders (Sejnowski et al., 2007; Tan and Nijholt, 2010). For example, a BCI that detects intended move

  17. A Graphics Editor for Structured Analysis with a Data Dictionary.

    DTIC Science & Technology

    1987-12-01

    4-3 Human/Computer Interface Considerations 4-3 Screen Layout .... ............. 4-4 Menu System ..... .............. 4-6 Voice Feedback...central computer system . This project is a direct follow on to the 1986 thesis by James W. Urscheler. lie created an initial version of a tool (nicknamed...graphics information. Background r SADT. SADT is the name of SofTech’s methodology for doing requirement analysis and system design. It was first published

  18. Conversing with Computers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    I/NET, Inc., is making the dream of natural human-computer conversation a practical reality. Through a combination of advanced artificial intelligence research and practical software design, I/NET has taken the complexity out of developing advanced, natural language interfaces. Conversational capabilities like pronoun resolution, anaphora and ellipsis processing, and dialog management that were once available only in the laboratory can now be brought to any application with any speech recognition system using I/NET s conversational engine middleware.

  19. Avionics Collaborative Engineering Technology Delivery Order 0035: Secure Knowledge Management (SKM) Technology Research Roadmap - Technology Trends for Collaborative Information and Knowledge Management Research

    DTIC Science & Technology

    2004-06-01

    such as that represented in the know-how of the master craftsman), and cognitive (know why, perceptions, values, beliefs, and mental models).4... cognitive engineering, educational technology, industrial/organizational psychology, sociology, cultural anthropology, and computational...such as human-human interaction, interface design and evaluation methodology, cognitive models and user models, health and ergonomic studies, empirical

  20. A mobile Nursing Information System based on human-computer interaction design for improving quality of nursing.

    PubMed

    Su, Kuo-Wei; Liu, Cheng-Li

    2012-06-01

    A conventional Nursing Information System (NIS), which supports the role of nurse in some areas, is typically deployed as an immobile system. However, the traditional information system can't response to patients' conditions in real-time, causing delays on the availability of this information. With the advances of information technology, mobile devices are increasingly being used to extend the human mind's limited capacity to recall and process large numbers of relevant variables and to support information management, general administration, and clinical practice. Unfortunately, there have been few studies about the combination of a well-designed small-screen interface with a personal digital assistant (PDA) in clinical nursing. Some researchers found that user interface design is an important factor in determining the usability and potential use of a mobile system. Therefore, this study proposed a systematic approach to the development of a mobile nursing information system (MNIS) based on Mobile Human-Computer Interaction (M-HCI) for use in clinical nursing. The system combines principles of small-screen interface design with user-specified requirements. In addition, the iconic functions were designed with metaphor concept that will help users learn the system more quickly with less working-memory. An experiment involving learnability testing, thinking aloud and a questionnaire investigation was conducted for evaluating the effect of MNIS on PDA. The results show that the proposed MNIS is good on learning and higher satisfaction on symbol investigation, terminology and system information.

  1. Personalized keystroke dynamics for self-powered human--machine interfacing.

    PubMed

    Chen, Jun; Zhu, Guang; Yang, Jin; Jing, Qingshen; Bai, Peng; Yang, Weiqing; Qi, Xuewei; Su, Yuanjie; Wang, Zhong Lin

    2015-01-27

    The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.

  2. The coming technological singularity: How to survive in the post-human era

    NASA Technical Reports Server (NTRS)

    Vinge, Vernor

    1993-01-01

    The acceleration of technological progress has been the central feature of this century. I argue in this paper that we are on the edge of change comparable to the rise of human life on Earth. The precise cause of this change is the imminent creation by technology of entities with greater than human intelligence. There are several means by which science may achieve this breakthrough (and this is another reason for having confidence that the event will occur): (1) the development of computers that are 'awake' and superhumanly intelligent (to date, most controversy in the area of AI relates to whether we can create human equivalence in a machine. But if the answer is 'yes, we can', then there is little doubt that beings more intelligent can be constructed shortly thereafter); (2) large computer networks (and their associated users) may 'wake up' as a superhumanly intelligent entity; (3) computer/human interfaces may become so intimate that users may reasonably be considered superhumanly intelligent; and (4) biological science may find ways to improve upon the natural human intellect. The first three possibilities depend in large part on improvements in computer hardware. Progress in computer hardware has followed an amazingly steady curve in the last few decades. Based largely on this trend, I believe that the creation of greater than human intelligence will occur during the next thirty years.

  3. Baseline experiments in teleoperator control

    NASA Technical Reports Server (NTRS)

    Hankins, W. W., III; Mixon, R. W.

    1986-01-01

    Studies have been conducted at the NASA Langley Research Center (LaRC) to establish baseline human teleoperator interface data and to assess the influence of some of the interface parameters on human performance in teleoperation. As baseline data, the results will be used to assess future interface improvements resulting from this research in basic teleoperator human factors. In addition, the data have been used to validate LaRC's basic teleoperator hardware setup and to compare initial teleoperator study results. Four subjects controlled a modified industrial manipulator to perform a simple task involving both high and low precision. Two different schemes for controlling the manipulator were studied along with both direct and indirect viewing of the task. Performance of the task was measured as the length of time required to complete the task along with the number of errors made in the process. Analyses of variance were computed to determine the significance of the influences of each of the independent variables. Comparisons were also made between the LaRC data and data taken earlier by Grumman Aerospace Corp. at their facilities.

  4. Evaluating a Computerized Aid for Conducting a Cognitive Task Analysis

    DTIC Science & Technology

    2000-01-01

    in conducting a cognitive task analysis . The conduct of a cognitive task analysis is costly and labor intensive. As a result, a few computerized aids...evaluation of a computerized aid, specifically CAT-HCI (Cognitive Analysis Tool - Human Computer Interface), for the conduct of a detailed cognitive task analysis . A

  5. The Influence of Individual Differences on Diagrammatic Communication and Problem Representation

    ERIC Educational Resources Information Center

    King, Laurel A.

    2009-01-01

    Understanding the user and customizing the interface to augment cognition and usability are goals of human computer interaction research and design. Yet, little is known about the influence of individual visual-verbal information presentation preferences on visual navigation and screen element usage. If consistent differences in visual navigation…

  6. A Review and Reappraisal of Adaptive Human-Computer Interfaces in Complex Control Systems

    DTIC Science & Technology

    2006-08-01

    maneuverability measures. The cost elements were expressed as fuzzy membership functions. Figure 9 shows the flowchart of the route planner. A fuzzy navigator...and updating of the user model, which contains information about three generic stereotypes ( beginner , intermediate and expert users) plus an

  7. Technology for Consumers: Proceedings of the RESNA International Conference (Toronto, Ontario, Canada, June 6-11, 1992).

    ERIC Educational Resources Information Center

    Presperin, Jessica J., Ed.

    This proceedings document contains approximately 250 papers and posters presented at a conference on the advancement of rehabilitation and assistive technology. Individual sessions focused on the following topics: quantitative functional evaluation, upper limb and therapeutic stimulation, human-computer interface developments, information…

  8. Virtual Reality: A Dream Come True or a Nightmare.

    ERIC Educational Resources Information Center

    Cornell, Richard; Bailey, Dan

    Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…

  9. Helping Disabled People: The Potentials of Biometric Information

    ERIC Educational Resources Information Center

    Ann, Ong Chin; Theng, Lau Bee

    2012-01-01

    Purpose: The purpose of this paper is to investigate an idea of producing an assistive and augmentative communication (AAC) tool that uses natural human computer interfacing to accommodate the disabilities of children with cerebral palsy (CP) and assist them in their daily communication. Design/methodology/approach: The authors developed a…

  10. Region based Brain Computer Interface for a home control application.

    PubMed

    Akman Aydin, Eda; Bay, Omer Faruk; Guler, Inan

    2015-08-01

    Environment control is one of the important challenges for disabled people who suffer from neuromuscular diseases. Brain Computer Interface (BCI) provides a communication channel between the human brain and the environment without requiring any muscular activation. The most important expectation for a home control application is high accuracy and reliable control. Region-based paradigm is a stimulus paradigm based on oddball principle and requires selection of a target at two levels. This paper presents an application of region based paradigm for a smart home control application for people with neuromuscular diseases. In this study, a region based stimulus interface containing 49 commands was designed. Five non-disabled subjects were attended to the experiments. Offline analysis results of the experiments yielded 95% accuracy for five flashes. This result showed that region based paradigm can be used to select commands of a smart home control application with high accuracy in the low number of repetitions successfully. Furthermore, a statistically significant difference was not observed between the level accuracies.

  11. Development traumatic brain injury computer user interface for disaster area in Indonesia supported by emergency broadband access network.

    PubMed

    Sutiono, Agung Budi; Suwa, Hirohiko; Ohta, Toshizumi; Arifin, Muh Zafrullah; Kitamura, Yohei; Yoshida, Kazunari; Merdika, Daduk; Qiantori, Andri; Iskandar

    2012-12-01

    Disasters bring consequences of negative impacts on the environment and human life. One of the common cause of critical condition is traumatic brain injury (TBI), namely, epidural (EDH) and subdural hematoma (SDH), due to downfall hard things during earthquake. We proposed and analyzed the user response, namely neurosurgeon, general doctor/surgeon and nurse when they interacted with TBI computer interface. The communication systems was supported by TBI web based applications using emergency broadband access network with tethered balloon and simulated in the field trial to evaluate the coverage area. The interface consisted of demography data and multi tabs for anamnesis, treatment, follow up and teleconference interfaces. The interface allows neurosurgeon, surgeon/general doctors and nurses to entry the EDH and SDH patient's data during referring them on the emergency simulation and evaluated based on time needs and their understanding. The average time needed was obtained after simulated by Lenovo T500 notebook using mouse; 8-10 min for neurosurgeons, 12-15 min for surgeons/general doctors and 15-19 min for nurses. By using Think Pad X201 Tablet, the time needed for entry data was 5-7 min for neurosurgeon, 7-10 min for surgeons/general doctors and 12-16 min for nurses. We observed that the time difference was depending on the computer type and user literacy qualification as well as their understanding on traumatic brain injury, particularly for the nurses. In conclusion, there are five data classification for simply TBI GUI, namely, 1) demography, 2) specific anamnesis for EDH and SDH, 3) treatment action and medicine of TBI, 4) follow up data display and 5) teleneurosurgery for streaming video consultation. The type of computer, particularly tablet PC was more convenient and faster for entry data, compare to that computer mouse touched pad. Emergency broadband access network using tethered balloon is possible to be employed to cover the communications systems in disaster area.

  12. Developing the human-computer interface for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Holden, Kritina L.

    1991-01-01

    For the past two years, the Human-Computer Interaction Laboratory (HCIL) at the Johnson Space Center has been involved in prototyping and prototype reviews of in support of the definition phase of the Space Station Freedom program. On the Space Station, crew members will be interacting with multi-monitor workstations where interaction with several displays at one time will be common. The HCIL has conducted several experiments to begin to address design issues for this complex system. Experiments have dealt with design of ON/OFF indicators, the movement of the cursor across multiple monitors, and the importance of various windowing capabilities for users performing multiple tasks simultaneously.

  13. Aerospace Ground Equipment for model 4080 sequence programmer. A standard computer terminal is adapted to provide convenient operator to device interface

    NASA Technical Reports Server (NTRS)

    Nissley, L. E.

    1979-01-01

    The Aerospace Ground Equipment (AGE) provides an interface between a human operator and a complete spaceborne sequence timing device with a memory storage program. The AGE provides a means for composing, editing, syntax checking, and storing timing device programs. The AGE is implemented with a standard Hewlett-Packard 2649A terminal system and a minimum of special hardware. The terminal's dual tape interface is used to store timing device programs and to read in special AGE operating system software. To compose a new program for the timing device the keyboard is used to fill in a form displayed on the screen.

  14. The MEDIGATE graphical user interface for entry of physical findings: design principles and implementation. Medical Examination Direct Iconic and Graphic Augmented Text Entry System.

    PubMed

    Yoder, J W; Schultz, D F; Williams, B T

    1998-10-01

    The solution to many of the problems of the computer-based recording of the medical record has been elusive, largely due to difficulties in the capture of those data elements that comprise the records of the Present Illness and of the Physical Findings. Reliable input of data has proven to be more complex than originally envisioned by early work in the field. This has led to more research and development into better data collection protocols and easy to use human-computer interfaces as support tools. The Medical Examination Direct Iconic and Graphic Augmented Text Entry System (MEDIGATE System) is a computer enhanced interactive graphic and textual record of the findings from physical examinations designed to provide ease of user input and to support organization and processing of the data characterizing these findings. The primary design objective of the MEDIGATE System is to develop and evaluate different interface designs for recording observations from the physical examination in an attempt to overcome some of the deficiencies in this major component of the individual record of health and illness.

  15. Supervised learning from human performance at the computationally hard problem of optimal traffic signal control on a network of junctions

    PubMed Central

    Box, Simon

    2014-01-01

    Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human ‘player’ to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable. PMID:26064570

  16. Supervised learning from human performance at the computationally hard problem of optimal traffic signal control on a network of junctions.

    PubMed

    Box, Simon

    2014-12-01

    Optimal switching of traffic lights on a network of junctions is a computationally intractable problem. In this research, road traffic networks containing signallized junctions are simulated. A computer game interface is used to enable a human 'player' to control the traffic light settings on the junctions within the simulation. A supervised learning approach, based on simple neural network classifiers can be used to capture human player's strategies in the game and thus develop a human-trained machine control (HuTMaC) system that approaches human levels of performance. Experiments conducted within the simulation compare the performance of HuTMaC to two well-established traffic-responsive control systems that are widely deployed in the developed world and also to a temporal difference learning-based control method. In all experiments, HuTMaC outperforms the other control methods in terms of average delay and variance over delay. The conclusion is that these results add weight to the suggestion that HuTMaC may be a viable alternative, or supplemental method, to approximate optimization for some practical engineering control problems where the optimal strategy is computationally intractable.

  17. Potential benefits and hazards of increased reliance on cockpit automation

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1990-01-01

    A review is presented of the introduction of advanced technology into the modern aircraft cockpit, bringing a new era of cockpit automation, and the opportunity for safe, fuel-efficient, computer-directed flight. It is shown that this advanced technology has also brought a number of problems, not due to equipment failure, but due to problems at the human-automation interface. Consideration is given to the interface, the ATC system, and to company, regulatory, and economic environments, as well as to how they contribute to these new problems.

  18. Hardware enhance of brain computer interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    The history of brain-computer interfaces (BCIs) starts with Hans Berger's discovery of the electrical activity of the human brain and the development of electroencephalography (EEG). Recent years, BCI researches are focused on Invasive, Partially invasive, and Non-invasive BCI. Furthermore, EEG can be also applied to telepathic communication which could provide the basis for brain-based communication using imagined speech. It is possible to use EEG signals to discriminate the vowels and consonants embedded in spoken and in imagined words and apply to military product. In this report, we begin with an example of using high density EEG with high electrode density and analysis the results by using BCIs. The BCIs in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  19. Advancements in RNASeqGUI towards a Reproducible Analysis of RNA-Seq Experiments

    PubMed Central

    Russo, Francesco; Righelli, Dario

    2016-01-01

    We present the advancements and novelties recently introduced in RNASeqGUI, a graphical user interface that helps biologists to handle and analyse large data collected in RNA-Seq experiments. This work focuses on the concept of reproducible research and shows how it has been incorporated in RNASeqGUI to provide reproducible (computational) results. The novel version of RNASeqGUI combines graphical interfaces with tools for reproducible research, such as literate statistical programming, human readable report, parallel executions, caching, and interactive and web-explorable tables of results. These features allow the user to analyse big datasets in a fast, efficient, and reproducible way. Moreover, this paper represents a proof of concept, showing a simple way to develop computational tools for Life Science in the spirit of reproducible research. PMID:26977414

  20. Control of a visual keyboard using an electrocorticographic brain-computer interface.

    PubMed

    Krusienski, Dean J; Shih, Jerry J

    2011-05-01

    Brain-computer interfaces (BCIs) are devices that enable severely disabled people to communicate and interact with their environments using their brain waves. Most studies investigating BCI in humans have used scalp EEG as the source of electrical signals and focused on motor control of prostheses or computer cursors on a screen. The authors hypothesize that the use of brain signals obtained directly from the cortical surface will more effectively control a communication/spelling task compared to scalp EEG. A total of 6 patients with medically intractable epilepsy were tested for the ability to control a visual keyboard using electrocorticographic (ECOG) signals. ECOG data collected during a P300 visual task paradigm were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in 5 of the 6 people tested. ECOG data from electrodes outside the language cortex contributed to the classifier and enabled participants to write words on a visual keyboard. This is a novel finding because previous invasive BCI research in humans used signals exclusively from the motor cortex to control a computer cursor or prosthetic device. These results demonstrate that ECOG signals from electrodes both overlying and outside the language cortex can reliably control a visual keyboard to generate language output without voice or limb movements.

  1. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    PubMed Central

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  2. Steering a tractor by means of an EMG-based human-machine interface.

    PubMed

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  3. Distributed computing system with dual independent communications paths between computers and employing split tokens

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert D. (Inventor); Manning, Robert M. (Inventor); Lewis, Blair F. (Inventor); Bolotin, Gary S. (Inventor); Ward, Richard S. (Inventor)

    1990-01-01

    This is a distributed computing system providing flexible fault tolerance; ease of software design and concurrency specification; and dynamic balance of the loads. The system comprises a plurality of computers each having a first input/output interface and a second input/output interface for interfacing to communications networks each second input/output interface including a bypass for bypassing the associated computer. A global communications network interconnects the first input/output interfaces for providing each computer the ability to broadcast messages simultaneously to the remainder of the computers. A meshwork communications network interconnects the second input/output interfaces providing each computer with the ability to establish a communications link with another of the computers bypassing the remainder of computers. Each computer is controlled by a resident copy of a common operating system. Communications between respective ones of computers is by means of split tokens each having a moving first portion which is sent from computer to computer and a resident second portion which is disposed in the memory of at least one of computer and wherein the location of the second portion is part of the first portion. The split tokens represent both functions to be executed by the computers and data to be employed in the execution of the functions. The first input/output interfaces each include logic for detecting a collision between messages and for terminating the broadcasting of a message whereby collisions between messages are detected and avoided.

  4. What Machines Need to Learn to Support Human Problem-Solving

    NASA Technical Reports Server (NTRS)

    Vera, Alonso

    2017-01-01

    In the development of intelligent systems that interact with humans, there is often confusion between how the system functions with respect to the humans it interacts with and how it interfaces with those humans. The former is a much deeper challenge than the latter it requires a system-level understanding of evolving human roles as well as an understanding of what humans need to know (and when) in order to perform their tasks. This talk will focus on some of the challenges in getting this right as well as on the type of research and development that results in successful human-autonomy teaming. Brief Bio: Dr. Alonso Vera is Chief of the Human Systems Integration Division at NASA Ames Research Center. His expertise is in human-computer interaction, information systems, artificial intelligence, and computational human performance modeling. He has led the design, development and deployment of mission software systems across NASA robotic and human space flight missions, including Mars Exploration Rovers, Phoenix Mars Lander, ISS, Constellation, and Exploration Systems. Dr. Vera received a Bachelor of Science with First Class Honors from McGill University in 1985 and a Ph.D. from Cornell University in 1991. He went on to a Post-Doctoral Fellowship in the School of Computer Science at Carnegie Mellon University from 1990-93.

  5. Analysis of hand contact areas and interaction capabilities during manipulation and exploration.

    PubMed

    Gonzalez, Franck; Gosselin, Florian; Bachta, Wael

    2014-01-01

    Manual human-computer interfaces for virtual reality are designed to allow an operator interacting with a computer simulation as naturally as possible. Dexterous haptic interfaces are the best suited for this goal. They give intuitive and efficient control on the environment with haptic and tactile feedback. This paper is aimed at helping in the choice of the interaction areas to be taken into account in the design of such interfaces. The literature dealing with hand interactions is first reviewed in order to point out the contact areas involved in exploration and manipulation tasks. Their frequencies of use are then extracted from existing recordings. The results are gathered in an original graphical interaction map allowing for a simple visualization of the way the hand is used, and compared with a map of mechanoreceptors densities. Then an interaction tree, mapping the relative amount of actions made available through the use of a given contact area, is built and correlated with the losses of hand function induced by amputations. A rating of some existing haptic interfaces and guidelines for their design are finally achieved to illustrate a possible use of the developed graphical tools.

  6. PointCom: semi-autonomous UGV control with intuitive interface

    NASA Astrophysics Data System (ADS)

    Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham

    2008-04-01

    Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).

  7. Neuroengineering tools/applications for bidirectional interfaces, brain-computer interfaces, and neuroprosthetic implants - a review of recent progress.

    PubMed

    Rothschild, Ryan Mark

    2010-01-01

    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain-computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques.

  8. Neuroengineering Tools/Applications for Bidirectional Interfaces, Brain–Computer Interfaces, and Neuroprosthetic Implants – A Review of Recent Progress

    PubMed Central

    Rothschild, Ryan Mark

    2010-01-01

    The main focus of this review is to provide a holistic amalgamated overview of the most recent human in vivo techniques for implementing brain–computer interfaces (BCIs), bidirectional interfaces, and neuroprosthetics. Neuroengineering is providing new methods for tackling current difficulties; however neuroprosthetics have been studied for decades. Recent progresses are permitting the design of better systems with higher accuracies, repeatability, and system robustness. Bidirectional interfaces integrate recording and the relaying of information from and to the brain for the development of BCIs. The concepts of non-invasive and invasive recording of brain activity are introduced. This includes classical and innovative techniques like electroencephalography and near-infrared spectroscopy. Then the problem of gliosis and solutions for (semi-) permanent implant biocompatibility such as innovative implant coatings, materials, and shapes are discussed. Implant power and the transmission of their data through implanted pulse generators and wireless telemetry are taken into account. How sensation can be relayed back to the brain to increase integration of the neuroengineered systems with the body by methods such as micro-stimulation and transcranial magnetic stimulation are then addressed. The neuroprosthetic section discusses some of the various types and how they operate. Visual prosthetics are discussed and the three types, dependant on implant location, are examined. Auditory prosthetics, being cochlear or cortical, are then addressed. Replacement hand and limb prosthetics are then considered. These are followed by sections concentrating on the control of wheelchairs, computers and robotics directly from brain activity as recorded by non-invasive and invasive techniques. PMID:21060801

  9. Graphical User Interface Programming in Introductory Computer Science.

    ERIC Educational Resources Information Center

    Skolnick, Michael M.; Spooner, David L.

    Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…

  10. Methods for Improving the User-Computer Interface. Technical Report.

    ERIC Educational Resources Information Center

    McCann, Patrick H.

    This summary of methods for improving the user-computer interface is based on a review of the pertinent literature. Requirements of the personal computer user are identified and contrasted with computer designer perspectives towards the user. The user's psychological needs are described, so that the design of the user-computer interface may be…

  11. Wearable computer technology for dismounted applications

    NASA Astrophysics Data System (ADS)

    Daniels, Reginald

    2010-04-01

    Small computing devices which rival the compact size of traditional personal digital assistants (PDA) have recently established a market niche. These computing devices are small enough to be considered unobtrusive for humans to wear. The computing devices are also powerful enough to run full multi-tasking general purpose operating systems. This paper will explore the wearable computer information system for dismounted applications recently fielded for ground-based US Air Force use. The environments that the information systems are used in will be reviewed, as well as a description of the net-centric, ground-based warrior. The paper will conclude with a discussion regarding the importance of intuitive, usable, and unobtrusive operator interfaces for dismounted operators.

  12. An intelligent control and virtual display system for evolutionary space station workstation design

    NASA Technical Reports Server (NTRS)

    Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.

    1992-01-01

    Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.

  13. Implementing Artificial Intelligence Behaviors in a Virtual World

    NASA Technical Reports Server (NTRS)

    Krisler, Brian; Thome, Michael

    2012-01-01

    In this paper, we will present a look at the current state of the art in human-computer interface technologies, including intelligent interactive agents, natural speech interaction and gestural based interfaces. We describe our use of these technologies to implement a cost effective, immersive experience on a public region in Second Life. We provision our Artificial Agents as a German Shepherd Dog avatar with an external rules engine controlling the behavior and movement. To interact with the avatar, we implemented a natural language and gesture system allowing the human avatars to use speech and physical gestures rather than interacting via a keyboard and mouse. The result is a system that allows multiple humans to interact naturally with AI avatars by playing games such as fetch with a flying disk and even practicing obedience exercises using voice and gesture, a natural seeming day in the park.

  14. Digital and biological computing in organizations.

    PubMed

    Kampfner, Roberto R

    2002-01-01

    Michael Conrad unveiled many of the fundamental characteristics of biological computing. Underlying the behavioral variability and the adaptability of biological systems are these characteristics, including the ability of biological information processing to exploit quantum features at the atomic level, the powerful 3-D pattern recognition capabilities of macromolecules, the computational efficiency, and the ability to support biological function. Among many other things, Conrad formalized and explicated the underlying principles of biological adaptability, characterized the differences between biological and digital computing in terms of a fundamental tradeoff between adaptability and programmability of information processing, and discussed the challenges of interfacing digital computers and human society. This paper is about the encounter of biological and digital computing. The focus is on the nature of the biological information processing infrastructure of organizations and how it can be extended effectively with digital computing. In order to achieve this goal effectively, however, we need to embed properly digital computing into the information processing aspects of human and social behavior and intelligence, which are fundamentally biological. Conrad's legacy provides a firm, strong, and inspiring foundation for this endeavor.

  15. iTools: a framework for classification, categorization and integration of computational biology resources.

    PubMed

    Dinov, Ivo D; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H V; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D Stott; Toga, Arthur W

    2008-05-28

    The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu.

  16. iTools: A Framework for Classification, Categorization and Integration of Computational Biology Resources

    PubMed Central

    Dinov, Ivo D.; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H. V.; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D. Stott; Toga, Arthur W.

    2008-01-01

    The advancement of the computational biology field hinges on progress in three fundamental directions – the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources–data, software tools and web-services. The iTools design, implementation and resource meta - data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu. PMID:18509477

  17. A USB 2.0 computer interface for the UCO/Lick CCD cameras

    NASA Astrophysics Data System (ADS)

    Wei, Mingzhi; Stover, Richard J.

    2004-09-01

    The new UCO/Lick Observatory CCD camera uses a 200 MHz fiber optic cable to transmit image data and an RS232 serial line for low speed bidirectional command and control. Increasingly RS232 is a legacy interface supported on fewer computers. The fiber optic cable requires either a custom interface board that is plugged into the mainboard of the image acquisition computer to accept the fiber directly or an interface converter that translates the fiber data onto a widely used standard interface. We present here a simple USB 2.0 interface for the UCO/Lick camera. A single USB cable connects to the image acquisition computer and the camera's RS232 serial and fiber optic cables plug into the USB interface. Since most computers now support USB 2.0 the Lick interface makes it possible to use the camera on essentially any modern computer that has the supporting software. No hardware modifications or additions to the computer are needed. The necessary device driver software has been written for the Linux operating system which is now widely used at Lick Observatory. The complete data acquisition software for the Lick CCD camera is running on a variety of PC style computers as well as an HP laptop.

  18. Factors Influencing Undergraduate Students' Acceptance of a Haptic Interface for Learning Gross Anatomy

    ERIC Educational Resources Information Center

    Yeom, Soonja; Choi-Lundberg, Derek L.; Fluck, Andrew Edward; Sale, Arthur

    2017-01-01

    Purpose: This study aims to evaluate factors influencing undergraduate students' acceptance of a computer-aided learning resource using the Phantom Omni haptic stylus to enable rotation, touch and kinaesthetic feedback and display of names of three-dimensional (3D) human anatomical structures on a visual display. Design/methodology/approach: The…

  19. Virtual Reality: An Experiential Tool for Clinical Psychology

    ERIC Educational Resources Information Center

    Riva, Giuseppe

    2009-01-01

    Several Virtual Reality (VR) applications for the understanding, assessment and treatment of mental health problems have been developed in the last 15 years. Typically, in VR the patient learns to manipulate problematic situations related to his/her problem. In fact, VR can be described as an advanced form of human-computer interface that is able…

  20. Content-Free Computer Supports for Self-Explaining: Modifiable Typing Interface and Prompting

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Liang, Hung-Ta

    2009-01-01

    Self-explaining, which asks students to generate explanations while reading a text, is a self-constructive activity and is helpful for students' learning. Studies have revealed that prompts by a human tutor promote students' self-explanations. However, most studies on self-explaining focus on spoken self-explanations. This study investigates the…

  1. Personal and Interpersonal Development of Humans in High Technology Environments.

    ERIC Educational Resources Information Center

    Morgan, Konrad; Morgan, Madeleine; Hall, John

    This paper discusses psychological effects associated with the latest technology in computer interfaces. Emphasis is given to issues involved with multi-media systems and the development of the self on emotional, intellectual, and social levels. A review of technology attitudes and individual differences is presented in relation to the voluntary…

  2. Issues in Interaction Language Specification and Representation.

    DTIC Science & Technology

    1983-11-01

    of Dialogues for Human-Computer Interfaces," to be submitted for publication (1983). IHEINL75] Heindel, L. and J. Roberto . "LANG-PAK: An Interactive...22043 Bolling Air Force Base Washington, D.C. 20332 Dr. Paul E. Lehner PAR Technology Corp. AFHRL/LRS TDC P.O. Box 2005 Attn: Susan Ewing Reston, VA 22090

  3. Enhancing Image Findability through a Dual-Perspective Navigation Framework

    ERIC Educational Resources Information Center

    Lin, Yi-Ling

    2013-01-01

    This dissertation focuses on investigating whether users will locate desired images more efficiently and effectively when they are provided with information descriptors from both experts and the general public. This study develops a way to support image finding through a human-computer interface by providing subject headings and social tags about…

  4. Towards New Interfaces for Pedagogy

    ERIC Educational Resources Information Center

    Stein, Murphy Martin

    2014-01-01

    Developing technology to help people teach and learn is an important topic in Human Computer Interaction (HCI). In this thesis we present three studies on this topic. In the first study, we demonstrate new games for learning mathematics and discuss the evidence for key design decisions from user studies. In the second study, we develop a real-time…

  5. TheBrain Technologies Corporation: Collapsing the Time to Knowledge.

    ERIC Educational Resources Information Center

    Misek, Marla

    2003-01-01

    TheBrain was created to take advantage of the most powerful information processor in existence - the human mind. Explains products of TheBrain Technologies Corporation,, which has developed computer interfaces to help individual users and corporations organize information in ways that make sense to them in the proper context. Describes a…

  6. Optimizations and Applications in Head-Mounted Video-Based Eye Tracking

    ERIC Educational Resources Information Center

    Li, Feng

    2011-01-01

    Video-based eye tracking techniques have become increasingly attractive in many research fields, such as visual perception and human-computer interface design. The technique primarily relies on the positional difference between the center of the eye's pupil and the first-surface reflection at the cornea, the corneal reflection (CR). This…

  7. Foundations of an Age-Differentiated Adaptation of the Human-Computer Interface

    ERIC Educational Resources Information Center

    Schneider, N.; Schreiber, S.; Wilkes, J.; Grandt, M.; Schlick, C. M.

    2008-01-01

    An important issue of the demographic change in the German population is the maintenance and promotion of the employability of aging workforces. However, there are hardly any suitable concepts or usable tools available to realize this goal. Possible approaches should push the individual strengths of the aging workers to the foreground and…

  8. Top-down methodology for human factors research

    NASA Technical Reports Server (NTRS)

    Sibert, J.

    1983-01-01

    User computer interaction as a conversation is discussed. The design of user interfaces which depends on viewing communications between a user and the computer as a conversion is presented. This conversation includes inputs to the computer (outputs from the user), outputs from the computer (inputs to the user), and the sequencing in both time and space of those outputs and inputs. The conversation is viewed from the user's side of the conversation. Two languages are modeled: the one with which the user communicates with the computer and the language where communication flows from the computer to the user. Both languages exist on three levels; the semantic, syntactic and lexical. It is suggested that natural languages can also be considered in these terms.

  9. Critical Software for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Preden, Antonio; Kaschner, Jens; Rettig, Felix; Rodriggs, Michael

    2017-01-01

    The NASA Orion vehicle that will fly to the moon in the next years is propelled along its mission by the European Service Module (ESM), developed by ESA and its prime contractor Airbus Defense and Space. This paper describes the development of the Propulsion Drive Electronics (PDE) Software that provides the interface between the propulsion hardware of the European Service Module with the Orion flight computers, and highlights the challenges that have been faced during the development. Particularly, the specific aspects relevant to Human Spaceflight in an international cooperation are presented, as the compliance to both European and US standards and the software criticality classification to the highest category A. An innovative aspect of the PDE SW is its Time- Triggered Ethernet interface with the Orion Flight Computers, which has never been flown so far on any European spacecraft. Finally the verification aspects are presented, applying the most exigent quality requirements defined in the European Cooperation for Space Standardization (ECSS) standards such as the structural coverage analysis of the object code and the recourse to an independent software verification and validation activity carried on in parallel by a different team.

  10. Display integration for ground combat vehicles

    NASA Astrophysics Data System (ADS)

    Busse, David J.

    1998-09-01

    The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.

  11. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.

    PubMed

    Wu, Shang-Lin; Liao, Lun-De; Lu, Shao-Wei; Jiang, Wei-Ling; Chen, Shi-An; Lin, Chin-Teng

    2013-08-01

    Electrooculography (EOG) signals can be used to control human-computer interface (HCI) systems, if properly classified. The ability to measure and process these signals may help HCI users to overcome many of the physical limitations and inconveniences in daily life. However, there are currently no effective multidirectional classification methods for monitoring eye movements. Here, we describe a classification method used in a wireless EOG-based HCI device for detecting eye movements in eight directions. This device includes wireless EOG signal acquisition components, wet electrodes and an EOG signal classification algorithm. The EOG classification algorithm is based on extracting features from the electrical signals corresponding to eight directions of eye movement (up, down, left, right, up-left, down-left, up-right, and down-right) and blinking. The recognition and processing of these eight different features were achieved in real-life conditions, demonstrating that this device can reliably measure the features of EOG signals. This system and its classification procedure provide an effective method for identifying eye movements. Additionally, it may be applied to study eye functions in real-life conditions in the near future.

  12. Development of the Computer Interface Literacy Measure.

    ERIC Educational Resources Information Center

    Turner, G. Marc; Sweany, Noelle Wall; Husman, Jenefer

    2000-01-01

    Discussion of computer literacy and the rapidly changing face of technology focuses on a study that redefined computer literacy to include competencies for using graphical user interfaces for operating systems, hypermedia applications, and the Internet. Describes the development and testing of the Computer Interface Literacy Measure with…

  13. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.

    PubMed

    Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin

    2014-11-11

    Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.

  14. Virtually-augmented interfaces for tactical aircraft.

    PubMed

    Haas, M W

    1995-05-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.

  15. Potential of Cognitive Computing and Cognitive Systems

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2015-01-01

    Cognitive computing and cognitive technologies are game changers for future engineering systems, as well as for engineering practice and training. They are major drivers for knowledge automation work, and the creation of cognitive products with higher levels of intelligence than current smart products. This paper gives a brief review of cognitive computing and some of the cognitive engineering systems activities. The potential of cognitive technologies is outlined, along with a brief description of future cognitive environments, incorporating cognitive assistants - specialized proactive intelligent software agents designed to follow and interact with humans and other cognitive assistants across the environments. The cognitive assistants engage, individually or collectively, with humans through a combination of adaptive multimodal interfaces, and advanced visualization and navigation techniques. The realization of future cognitive environments requires the development of a cognitive innovation ecosystem for the engineering workforce. The continuously expanding major components of the ecosystem include integrated knowledge discovery and exploitation facilities (incorporating predictive and prescriptive big data analytics); novel cognitive modeling and visual simulation facilities; cognitive multimodal interfaces; and cognitive mobile and wearable devices. The ecosystem will provide timely, engaging, personalized / collaborative, learning and effective decision making. It will stimulate creativity and innovation, and prepare the participants to work in future cognitive enterprises and develop new cognitive products of increasing complexity. http://www.aee.odu.edu/cognitivecomp

  16. A natural language-based presentation of cognitive stimulation to people with dementia in assistive technology: A pilot study.

    PubMed

    Dethlefs, Nina; Milders, Maarten; Cuayáhuitl, Heriberto; Al-Salkini, Turkey; Douglas, Lorraine

    2017-12-01

    Currently, an estimated 36 million people worldwide are affected by Alzheimer's disease or related dementias. In the absence of a cure, non-pharmacological interventions, such as cognitive stimulation, which slow down the rate of deterioration can benefit people with dementia and their caregivers. Such interventions have shown to improve well-being and slow down the rate of cognitive decline. It has further been shown that cognitive stimulation in interaction with a computer is as effective as with a human. However, the need to operate a computer often represents a difficulty for the elderly and stands in the way of widespread adoption. A possible solution to this obstacle is to provide a spoken natural language interface that allows people with dementia to interact with the cognitive stimulation software in the same way as they would interact with a human caregiver. This makes the assistive technology accessible to users regardless of their technical skills and provides a fully intuitive user experience. This article describes a pilot study that evaluated the feasibility of computer-based cognitive stimulation through a spoken natural language interface. Prototype software was evaluated with 23 users, including healthy elderly people and people with dementia. Feedback was overwhelmingly positive.

  17. Investigation of prescribed movement in fluid–structure interaction simulation for the human phonation process☆

    PubMed Central

    Zörner, S.; Kaltenbacher, M.; Döllinger, M.

    2013-01-01

    In a partitioned approach for computational fluid–structure interaction (FSI) the coupling between fluid and structure causes substantial computational resources. Therefore, a convenient alternative is to reduce the problem to a pure flow simulation with preset movement and applying appropriate boundary conditions. This work investigates the impact of replacing the fully-coupled interface condition with a one-way coupling. To continue to capture structural movement and its effect onto the flow field, prescribed wall movements from separate simulations and/or measurements are used. As an appropriate test case, we apply the different coupling strategies to the human phonation process, which is a highly complex interaction of airflow through the larynx and structural vibration of the vocal folds (VF). We obtain vocal fold vibrations from a fully-coupled simulation and use them as input data for the simplified simulation, i.e. just solving the fluid flow. All computations are performed with our research code CFS++, which is based on the finite element (FE) method. The presented results show that a pure fluid simulation with prescribed structural movement can substitute the fully-coupled approach. However, caution must be used to ensure accurate boundary conditions on the interface, and we found that only a pressure driven flow correctly responds to the physical effects when using specified motion. PMID:24204083

  18. Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems

    PubMed Central

    Castermans, Thierry; Duvinage, Matthieu; Cheron, Guy; Dutoit, Thierry

    2014-01-01

    In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), single-photon emission-computed tomography (SPECT)] and invasive studies. The first brain-computer interface (BCI) applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation. PMID:24961699

  19. Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A. (Editor); Beymer, Mark A. (Editor)

    1990-01-01

    A collection of technical reports on research conducted by the participants in this program is presented. The topics covered include: human-computer interface software, multimode fiber optic communication links, electrochemical impedance spectroscopy, rocket-triggered lightning, robotics, a flammability study of thin polymeric film materials, a vortex shedding flowmeter, modeling of flow systems, monomethyl hydrazine vapor detection, a rocket noise filter system using digital filters, computer programs, lower body negative pressure, closed ecological systems, and others. Several reports with respect to space shuttle orbiters are presented.

  20. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi Changwen; Jun, Sukky; Kouris, Demitris A.

    2008-02-15

    The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfacesmore » of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior.« less

  1. Human Aspects of Library Automation: Helping Staff and Patrons Cope. Papers presented at the Annual Clinic on Library Applications of Data Processing (22nd, Urbana, Illinois, April 14-16, 1985).

    ERIC Educational Resources Information Center

    Shaw, Debora, Ed.

    This collection explores the human aspect of the automation and reautomation of library functions as both library staff and library users are expected to adapt to and use computers. A brief introduction by Debora Shaw sets the stage for the following papers: (1) "Terminal Paralysis, or Showdown at the Interface" (Sara Fine); (2)…

  2. Assessing the Impact of Low Workload in Supervisory Control of Networked Unmanned Vehicles

    DTIC Science & Technology

    2010-06-01

    influence is expected to contain men and women between the ages of 18 and 50 with an interest in using computers. You should read the information below...controlling land, air, and sea vehicles of all different types from the same supervisory control interface. As human supervisory control of UxVs...expressions indicated when boredom was occurring. Video coding shows that humans deal with boredom in different ways. Some individuals are more

  3. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    PubMed Central

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  4. Design of an EEG-based brain-computer interface (BCI) from standard components running in real-time under Windows.

    PubMed

    Guger, C; Schlögl, A; Walterspacher, D; Pfurtscheller, G

    1999-01-01

    An EEG-based brain-computer interface (BCI) is a direct connection between the human brain and the computer. Such a communication system is needed by patients with severe motor impairments (e.g. late stage of Amyotrophic Lateral Sclerosis) and has to operate in real-time. This paper describes the selection of the appropriate components to construct such a BCI and focuses also on the selection of a suitable programming language and operating system. The multichannel system runs under Windows 95, equipped with a real-time Kernel expansion to obtain reasonable real-time operations on a standard PC. Matlab controls the data acquisition and the presentation of the experimental paradigm, while Simulink is used to calculate the recursive least square (RLS) algorithm that describes the current state of the EEG in real-time. First results of the new low-cost BCI show that the accuracy of differentiating imagination of left and right hand movement is around 95%.

  5. Guidance of visual attention by semantic information in real-world scenes

    PubMed Central

    Wu, Chia-Chien; Wick, Farahnaz Ahmed; Pomplun, Marc

    2014-01-01

    Recent research on attentional guidance in real-world scenes has focused on object recognition within the context of a scene. This approach has been valuable for determining some factors that drive the allocation of visual attention and determine visual selection. This article provides a review of experimental work on how different components of context, especially semantic information, affect attentional deployment. We review work from the areas of object recognition, scene perception, and visual search, highlighting recent studies examining semantic structure in real-world scenes. A better understanding on how humans parse scene representations will not only improve current models of visual attention but also advance next-generation computer vision systems and human-computer interfaces. PMID:24567724

  6. An Investment Behavior Analysis using by Brain Computer Interface

    NASA Astrophysics Data System (ADS)

    Suzuki, Kyoko; Kinoshita, Kanta; Miyagawa, Kazuhiro; Shiomi, Shinichi; Misawa, Tadanobu; Shimokawa, Tetsuya

    In this paper, we will construct a new Brain Computer Interface (BCI), for the purpose of analyzing human's investment decision makings. The BCI is made up of three functional parts which take roles of, measuring brain information, determining market price in an artificial market, and specifying investment decision model, respectively. When subjects make decisions, their brain information is conveyed to the part of specifying investment decision model through the part of measuring brain information, whereas, their decisions of investment order are sent to the part of artificial market to form market prices. Both the support vector machine and the 3 layered perceptron are used to assess the investment decision model. In order to evaluate our BCI, we conduct an experiment in which subjects and a computer trader agent trade shares of stock in the artificial market and test how the computer trader agent can forecast market price formation and investment decision makings from the brain information of subjects. The result of the experiment shows that the brain information can improve the accuracy of forecasts, and so the computer trader agent can supply market liquidity to stabilize market volatility without his loss.

  7. CD4-gp120 interaction interface - a gateway for HIV-1 infection in human: molecular network, modeling and docking studies.

    PubMed

    Pandey, Deeksha; Podder, Avijit; Pandit, Mansi; Latha, Narayanan

    2017-09-01

    The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4-gp120 interaction interface has been studied through a comprehensive protein-protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.

  8. Choice of Human-Computer Interaction Mode in Stroke Rehabilitation.

    PubMed

    Mousavi Hondori, Hossein; Khademi, Maryam; Dodakian, Lucy; McKenzie, Alison; Lopes, Cristina V; Cramer, Steven C

    2016-03-01

    Advances in technology are providing new forms of human-computer interaction. The current study examined one form of human-computer interaction, augmented reality (AR), whereby subjects train in the real-world workspace with virtual objects projected by the computer. Motor performances were compared with those obtained while subjects used a traditional human-computer interaction, that is, a personal computer (PC) with a mouse. Patients used goal-directed arm movements to play AR and PC versions of the Fruit Ninja video game. The 2 versions required the same arm movements to control the game but had different cognitive demands. With AR, the game was projected onto the desktop, where subjects viewed the game plus their arm movements simultaneously, in the same visual coordinate space. In the PC version, subjects used the same arm movements but viewed the game by looking up at a computer monitor. Among 18 patients with chronic hemiparesis after stroke, the AR game was associated with 21% higher game scores (P = .0001), 19% faster reaching times (P = .0001), and 15% less movement variability (P = .0068), as compared to the PC game. Correlations between game score and arm motor status were stronger with the AR version. Motor performances during the AR game were superior to those during the PC game. This result is due in part to the greater cognitive demands imposed by the PC game, a feature problematic for some patients but clinically useful for others. Mode of human-computer interface influences rehabilitation therapy demands and can be individualized for patients. © The Author(s) 2015.

  9. Gender Differences between Graphical User Interfaces and Command Line Interfaces in Computer Instruction.

    ERIC Educational Resources Information Center

    Barker, Dan L.

    This study focused primarily on two types of computer interfaces and the differences in academic performance that resulted from their use; it was secondarily designed to examine gender differences that may have existed before and after any change in interface. Much of the basic research in computer use was conducted with command line interface…

  10. A virtual reality interface for pre-planning of surgical operations based on a customized model of the patient

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Lenar, Janusz; Sitnik, Robert; Verdonschot, Nico

    2012-03-01

    We present a human-computer interface that enables the operator to plan a surgical procedure on the musculoskeletal (MS) model of the patient's lower limbs, send the modified model to the bio-mechanical analysis module, and export the scenario parameters to the surgical navigation system. The interface provides the operator with tools for: importing customized MS model of the patient, cutting bones and manipulating/removal of bony fragments, repositioning muscle insertion points, muscle removal and placing implants. After planning the operator exports the modified MS model for bio-mechanical analysis of the functional outcome. If the simulation result is satisfactory the exported scenario data may be directly used during the actual surgery. The advantages of the developed interface are the possibility of installing it in various hardware configurations and coherent operation regardless of the devices used. The hardware configurations proposed to be used with the interface are: (a) a standard computer keyboard and mouse, and a 2-D display, (b) a touch screen as a single device for both input and output, or (c) a 3-D display and a haptic device for natural manipulation of 3-D objects. The interface may be utilized in two main fields. Experienced surgeons may use it to simulate their intervention plans and prepare input data for a surgical navigation system while student or novice surgeons can use it for simulating results of their hypothetical procedure. The interface has been developed in the TLEMsafe project (www.tlemsafe.eu) funded by the European Commission FP7 program.

  11. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    PubMed

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  12. Estimating the mutual information of an EEG-based Brain-Computer Interface.

    PubMed

    Schlögl, A; Neuper, C; Pfurtscheller, G

    2002-01-01

    An EEG-based Brain-Computer Interface (BCI) could be used as an additional communication channel between human thoughts and the environment. The efficacy of such a BCI depends mainly on the transmitted information rate. Shannon's communication theory was used to quantify the information rate of BCI data. For this purpose, experimental EEG data from four BCI experiments was analyzed off-line. Subjects imaginated left and right hand movements during EEG recording from the sensorimotor area. Adaptive autoregressive (AAR) parameters were used as features of single trial EEG and classified with linear discriminant analysis. The intra-trial variation as well as the inter-trial variability, the signal-to-noise ratio, the entropy of information, and the information rate were estimated. The entropy difference was used as a measure of the separability of two classes of EEG patterns.

  13. On the tip of the tongue: learning typing and pointing with an intra-oral computer interface.

    PubMed

    Caltenco, Héctor A; Breidegard, Björn; Struijk, Lotte N S Andreasen

    2014-07-01

    To evaluate typing and pointing performance and improvement over time of four able-bodied participants using an intra-oral tongue-computer interface for computer control. A physically disabled individual may lack the ability to efficiently control standard computer input devices. There have been several efforts to produce and evaluate interfaces that provide individuals with physical disabilities the possibility to control personal computers. Training with the intra-oral tongue-computer interface was performed by playing games over 18 sessions. Skill improvement was measured through typing and pointing exercises at the end of each training session. Typing throughput improved from averages of 2.36 to 5.43 correct words per minute. Pointing throughput improved from averages of 0.47 to 0.85 bits/s. Target tracking performance, measured as relative time on target, improved from averages of 36% to 47%. Path following throughput improved from averages of 0.31 to 0.83 bits/s and decreased to 0.53 bits/s with more difficult tasks. Learning curves support the notion that the tongue can rapidly learn novel motor tasks. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, which makes the tongue a feasible input organ for computer control. Intra-oral computer interfaces could provide individuals with severe upper-limb mobility impairments the opportunity to control computers and automatic equipment. Typing and pointing performance of the tongue-computer interface is comparable to performances of other proficient assistive devices, but does not cause fatigue easily and might be invisible to other people, which is highly prioritized by assistive device users. Combination of visual and auditory feedback is vital for a good performance of an intra-oral computer interface and helps to reduce involuntary or erroneous activations.

  14. CBP for Field Workers – Results and Insights from Three Usability and Interface Design Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Bly, Aaron Douglas

    2015-09-01

    Nearly all activities that involve human interaction with the systems in a nuclear power plant are guided by procedures. Even though the paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety, improving procedure use could yield significant savings in increased efficiency as well as improved nuclear safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use and adherence, researchers in the Light-Water Reactor Sustainability (LWRS) Program, togethermore » with the nuclear industry, have been investigating the possibility and feasibility of replacing the current paper-based procedure process with a computer-based procedure (CBP) system. This report describes a field evaluation of new design concepts of a prototype computer-based procedure system.« less

  15. Designing for adaptation to novelty and change: functional information, emergent feature graphics, and higher-level control.

    PubMed

    Hajdukiewicz, John R; Vicente, Kim J

    2002-01-01

    Ecological interface design (EID) is a theoretical framework that aims to support worker adaptation to change and novelty in complex systems. Previous evaluations of EID have emphasized representativeness to enhance generalizability of results to operational settings. The research presented here is complementary, emphasizing experimental control to enhance theory building. Two experiments were conducted to test the impact of functional information and emergent feature graphics on adaptation to novelty and change in a thermal-hydraulic process control microworld. Presenting functional information in an interface using emergent features encouraged experienced participants to become perceptually coupled to the interface and thereby to exhibit higher-level control and more successful adaptation to unanticipated events. The absence of functional information or of emergent features generally led to lower-level control and less success at adaptation, the exception being a minority of participants who compensated by relying on analytical reasoning. These findings may have practical implications for shaping coordination in complex systems and fundamental implications for the development of a general unified theory of coordination for the technical, human, and social sciences. Actual or potential applications of this research include the design of human-computer interfaces that improve safety in complex sociotechnical systems.

  16. Exploring the simulation requirements for virtual regional anesthesia training

    NASA Astrophysics Data System (ADS)

    Charissis, V.; Zimmer, C. R.; Sakellariou, S.; Chan, W.

    2010-01-01

    This paper presents an investigation towards the simulation requirements for virtual regional anaesthesia training. To this end we have developed a prototype human-computer interface designed to facilitate Virtual Reality (VR) augmenting educational tactics for regional anaesthesia training. The proposed interface system, aims to compliment nerve blocking techniques methods. The system is designed to operate in real-time 3D environment presenting anatomical information and enabling the user to explore the spatial relation of different human parts without any physical constrains. Furthermore the proposed system aims to assist the trainee anaesthetists so as to build a mental, three-dimensional map of the anatomical elements and their depictive relationship to the Ultra-Sound imaging which is used for navigation of the anaesthetic needle. Opting for a sophisticated approach of interaction, the interface elements are based on simplified visual representation of real objects, and can be operated through haptic devices and surround auditory cues. This paper discusses the challenges involved in the HCI design, introduces the visual components of the interface and presents a tentative plan of future work which involves the development of realistic haptic feedback and various regional anaesthesia training scenarios.

  17. An assisted navigation training framework based on judgment theory using sparse and discrete human-machine interfaces.

    PubMed

    Lopes, Ana C; Nunes, Urbano

    2009-01-01

    This paper aims to present a new framework to train people with severe motor disabilities steering an assisted mobile robot (AMR), such as a powered wheelchair. Users with high level of motor disabilities are not able to use standard HMIs, which provide a continuous command signal (e. g. standard joystick). For this reason HMIs providing a small set of simple commands, which are sparse and discrete in time must be used (e. g. scanning interface, or brain computer interface), making very difficult to steer the AMR. In this sense, the assisted navigation training framework (ANTF) is designed to train users driving the AMR, in indoor structured environments, using this type of HMIs. Additionally it provides user characterization on steering the robot, which will later be used to adapt the AMR navigation system to human competence steering the AMR. A rule-based lens (RBL) model is used to characterize users on driving the AMR. Individual judgment performance choosing the best manoeuvres is modeled using a genetic-based policy capturing (GBPC) technique characterized to infer non-compensatory judgment strategies from human decision data. Three user models, at three different learning stages, using the RBL paradigm, are presented.

  18. Virtual personal assistance

    NASA Astrophysics Data System (ADS)

    Aditya, K.; Biswadeep, G.; Kedar, S.; Sundar, S.

    2017-11-01

    Human computer communication has growing demand recent days. The new generation of autonomous technology aspires to give computer interfaces emotional states that relate and consider user as well as system environment considerations. In the existing computational model is based an artificial intelligent and externally by multi-modal expression augmented with semi human characteristics. But the main problem with is multi-model expression is that the hardware control given to the Artificial Intelligence (AI) is very limited. So, in our project we are trying to give the Artificial Intelligence (AI) more control on the hardware. There are two main parts such as Speech to Text (STT) and Text to Speech (TTS) engines are used accomplish the requirement. In this work, we are using a raspberry pi 3, a speaker and a mic as hardware and for the programing part, we are using python scripting.

  19. Structure‐function relationships at the human spinal disc‐vertebra interface

    PubMed Central

    Berg‐Johansen, Britta; Fields, Aaron J.; Liebenberg, Ellen C.; Li, Alfred

    2017-01-01

    ABSTRACT Damage at the intervertebral disc‐vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc‐vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure‐function relationships at this vulnerable location. Vertebra‐disc‐vertebra specimens from human cadaver thoracic spines were scanned with micro‐computed tomography (μCT), surface speckle‐coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy‐one percent of specimens failed initially at the cartilage endplate‐bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc‐vertebra interface injury. The disc‐vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure‐function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc‐vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192–201, 2018. PMID:28590060

  20. Advances in data representation for hard/soft information fusion

    NASA Astrophysics Data System (ADS)

    Rimland, Jeffrey C.; Coughlin, Dan; Hall, David L.; Graham, Jacob L.

    2012-06-01

    Information fusion is becoming increasingly human-centric. While past systems typically relegated humans to the role of analyzing a finished fusion product, current systems are exploring the role of humans as integral elements in a modular and extensible distributed framework where many tasks can be accomplished by either human or machine performers. For example, "participatory sensing" campaigns give humans the role of "soft sensors" by uploading their direct observations or as "soft sensor platforms" by using mobile devices to record human-annotated, GPS-encoded high quality photographs, video, or audio. Additionally, the role of "human-in-the-loop", in which individuals or teams using advanced human computer interface (HCI) tools such as stereoscopic 3D visualization, haptic interfaces, or aural "sonification" interfaces can help to effectively engage the innate human capability to perform pattern matching, anomaly identification, and semantic-based contextual reasoning to interpret an evolving situation. The Pennsylvania State University is participating in a Multi-disciplinary University Research Initiative (MURI) program funded by the U.S. Army Research Office to investigate fusion of hard and soft data in counterinsurgency (COIN) situations. In addition to the importance of this research for Intelligence Preparation of the Battlefield (IPB), many of the same challenges and techniques apply to health and medical informatics, crisis management, crowd-sourced "citizen science", and monitoring environmental concerns. One of the key challenges that we have encountered is the development of data formats, protocols, and methodologies to establish an information architecture and framework for the effective capture, representation, transmission, and storage of the vastly heterogeneous data and accompanying metadata -- including capabilities and characteristics of human observers, uncertainty of human observations, "soft" contextual data, and information pedigree. This paper describes our findings and offers insights into the role of data representation in hard/soft fusion.

  1. Collaborative Brain-Computer Interface for Aiding Decision-Making

    PubMed Central

    Poli, Riccardo; Valeriani, Davide; Cinel, Caterina

    2014-01-01

    We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making. PMID:25072739

  2. Using machine learning to emulate human hearing for predictive maintenance of equipment

    NASA Astrophysics Data System (ADS)

    Verma, Dinesh; Bent, Graham

    2017-05-01

    At the current time, interfaces between humans and machines use only a limited subset of senses that humans are capable of. The interaction among humans and computers can become much more intuitive and effective if we are able to use more senses, and create other modes of communicating between them. New machine learning technologies can make this type of interaction become a reality. In this paper, we present a framework for a holistic communication between humans and machines that uses all of the senses, and discuss how a subset of this capability can allow machines to talk to humans to indicate their health for various tasks such as predictive maintenance.

  3. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    NASA Astrophysics Data System (ADS)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  4. Automated smear counting and data processing using a notebook computer in a biomedical research facility.

    PubMed

    Ogata, Y; Nishizawa, K

    1995-10-01

    An automated smear counting and data processing system for a life science laboratory was developed to facilitate routine surveys and eliminate human errors by using a notebook computer. This system was composed of a personal computer, a liquid scintillation counter and a well-type NaI(Tl) scintillation counter. The radioactivity of smear samples was automatically measured by these counters. The personal computer received raw signals from the counters through an interface of RS-232C. The software for the computer evaluated the surface density of each radioisotope and printed out that value along with other items as a report. The software was programmed in Pascal language. This system was successfully applied to routine surveys for contamination in our facility.

  5. The Binding Interface between Human APOBEC3F and HIV-1 Vif Elucidated by Genetic and Computational Approaches.

    PubMed

    Richards, Christopher; Albin, John S; Demir, Özlem; Shaban, Nadine M; Luengas, Elizabeth M; Land, Allison M; Anderson, Brett D; Holten, John R; Anderson, John S; Harki, Daniel A; Amaro, Rommie E; Harris, Reuben S

    2015-12-01

    APOBEC3 family DNA cytosine deaminases provide overlapping defenses against pathogen infections. However, most viruses have elaborate evasion mechanisms such as the HIV-1 Vif protein, which subverts cellular CBF-β and a polyubiquitin ligase complex to neutralize these enzymes. Despite advances in APOBEC3 and Vif biology, a full understanding of this direct host-pathogen conflict has been elusive. We combine virus adaptation and computational studies to interrogate the APOBEC3F-Vif interface and build a robust structural model. A recurring compensatory amino acid substitution from adaptation experiments provided an initial docking constraint, and microsecond molecular dynamic simulations optimized interface contacts. Virus infectivity experiments validated a long-lasting electrostatic interaction between APOBEC3F E289 and HIV-1 Vif R15. Taken together with mutagenesis results, we propose a wobble model to explain how HIV-1 Vif has evolved to bind different APOBEC3 enzymes and, more generally, how pathogens may evolve to escape innate host defenses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. An auditory brain-computer interface evoked by natural speech

    NASA Astrophysics Data System (ADS)

    Lopez-Gordo, M. A.; Fernandez, E.; Romero, S.; Pelayo, F.; Prieto, Alberto

    2012-06-01

    Brain-computer interfaces (BCIs) are mainly intended for people unable to perform any muscular movement, such as patients in a complete locked-in state. The majority of BCIs interact visually with the user, either in the form of stimulation or biofeedback. However, visual BCIs challenge their ultimate use because they require the subjects to gaze, explore and shift eye-gaze using their muscles, thus excluding patients in a complete locked-in state or under the condition of the unresponsive wakefulness syndrome. In this study, we present a novel fully auditory EEG-BCI based on a dichotic listening paradigm using human voice for stimulation. This interface has been evaluated with healthy volunteers, achieving an average information transmission rate of 1.5 bits min-1 in full-length trials and 2.7 bits min-1 using the optimal length of trials, recorded with only one channel and without formal training. This novel technique opens the door to a more natural communication with users unable to use visual BCIs, with promising results in terms of performance, usability, training and cognitive effort.

  7. Evaluation of Head Orientation and Neck Muscle EMG Signals as Command Inputs to a Human-Computer Interface for Individuals with High Tetraplegia

    PubMed Central

    Williams, Matthew R.; Kirsch, Robert F.

    2013-01-01

    We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, EMG from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2D, center-out, Fitts’ Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application. PMID:18990652

  8. The social-sensory interface: category interactions in person perception

    PubMed Central

    Freeman, Jonathan B.; Johnson, Kerri L.; Adams, Reginald B.; Ambady, Nalini

    2012-01-01

    Research is increasingly challenging the claim that distinct sources of social information—such as sex, race, and emotion—are processed in discrete fashion. Instead, there appear to be functionally relevant interactions that occur. In the present article, we describe research examining how cues conveyed by the human face, voice, and body interact to form the unified representations that guide our perceptions of and responses to other people. We explain how these information sources are often thrown into interaction through bottom-up forces (e.g., phenotypic cues) as well as top-down forces (e.g., stereotypes and prior knowledge). Such interactions point to a person perception process that is driven by an intimate interface between bottom-up perceptual and top-down social processes. Incorporating data from neuroimaging, event-related potentials (ERP), computational modeling, computer mouse-tracking, and other behavioral measures, we discuss the structure of this interface, and we consider its implications and adaptive purposes. We argue that an increased understanding of person perception will likely require a synthesis of insights and techniques, from social psychology to the cognitive, neural, and vision sciences. PMID:23087622

  9. Small computer interface to a stepper motor

    NASA Technical Reports Server (NTRS)

    Berry, Fred A., Jr.

    1986-01-01

    A Commodore VIC-20 computer has been interfaced with a stepper motor to provide an inexpensive stepper motor controller. Only eight transistors and two integrated circuits compose the interface. The software controls the parallel interface of the computer and provides the four phase drive signals for the motor. Optical sensors control the zeroing of the 12-inch turntable positioned by the controller. The computer calculates the position information and movement of the table and may be programmed in BASIC to execute automatic sequences.

  10. Biennial Conference on Chemical Education, Abstracts (11th, Atlanta, Georgia, August 5-9, 1990).

    ERIC Educational Resources Information Center

    Mellon, E. K.; Pulliam, E. J.

    This publication includes more than 470 abstracts of papers scheduled to be presented at a chemical education conference. Topics of the papers include: (1) human impact on the environment; (2) technology; (3) forensic science; (4) paper chemistry; (5) computer interfacing, software, videodisc and graphics; (6) faculty enhancement programs; (7)…

  11. Assessing the Quality of Academic Libraries on the Web: The Development and Testing of Criteria.

    ERIC Educational Resources Information Center

    Chao, Hungyune

    2002-01-01

    This study develops and tests an instrument useful for evaluating the quality of academic library Web sites. Discusses criteria for print materials and human-computer interfaces; user-based perspectives; the use of factor analysis; a survey of library experts; testing reliability through analysis of variance; and regression models. (Contains 53…

  12. Decision-Making and the Interface between Human Intelligence and Artificial Intelligence. AIR 1987 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Henard, Ralph E.

    Possible future developments in artificial intelligence (AI) as well as its limitations are considered that have implications for institutional research in higher education, and especially decision making and decision support systems. It is noted that computer software programs have been developed that store knowledge and mimic the decision-making…

  13. Eye Tracking Based Control System for Natural Human-Computer Interaction

    PubMed Central

    Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design. PMID:29403528

  14. Eye Tracking Based Control System for Natural Human-Computer Interaction.

    PubMed

    Zhang, Xuebai; Liu, Xiaolong; Yuan, Shyan-Ming; Lin, Shu-Fan

    2017-01-01

    Eye movement can be regarded as a pivotal real-time input medium for human-computer communication, which is especially important for people with physical disability. In order to improve the reliability, mobility, and usability of eye tracking technique in user-computer dialogue, a novel eye control system with integrating both mouse and keyboard functions is proposed in this paper. The proposed system focuses on providing a simple and convenient interactive mode by only using user's eye. The usage flow of the proposed system is designed to perfectly follow human natural habits. Additionally, a magnifier module is proposed to allow the accurate operation. In the experiment, two interactive tasks with different difficulty (searching article and browsing multimedia web) were done to compare the proposed eye control tool with an existing system. The Technology Acceptance Model (TAM) measures are used to evaluate the perceived effectiveness of our system. It is demonstrated that the proposed system is very effective with regard to usability and interface design.

  15. Making intelligent systems team players: Additional case studies

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schreckenghost, Debra L.; Rhoads, Ron W.

    1993-01-01

    Observations from a case study of intelligent systems are reported as part of a multi-year interdisciplinary effort to provide guidance and assistance for designers of intelligent systems and their user interfaces. A series of studies were conducted to investigate issues in designing intelligent fault management systems in aerospace applications for effective human-computer interaction. The results of the initial study are documented in two NASA technical memoranda: TM 104738 Making Intelligent Systems Team Players: Case Studies and Design Issues, Volumes 1 and 2; and TM 104751, Making Intelligent Systems Team Players: Overview for Designers. The objective of this additional study was to broaden the investigation of human-computer interaction design issues beyond the focus on monitoring and fault detection in the initial study. The results of this second study are documented which is intended as a supplement to the original design guidance documents. These results should be of interest to designers of intelligent systems for use in real-time operations, and to researchers in the areas of human-computer interaction and artificial intelligence.

  16. Development of the User Interface for AIR-Spec

    NASA Astrophysics Data System (ADS)

    Cervantes Alcala, E.; Guth, G.; Fedeler, S.; Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.

    2016-12-01

    The airborne infrared spectrometer (AIR-Spec) is an imaging spectrometer that will observe the solar corona during the 2017 total solar eclipse. This eclipse will provide a unique opportunity to observe infrared emission lines in the corona. Five spectral lines are of particular interest because they may eventually be used to measure the coronal magnetic field. To avoid infrared absorption from atmospheric water vapor, AIR-Spec will be placed on an NSF Gulfstream aircraft flying above 14.9 km. AIR-Spec must be capable of taking stable images while the plane moves. The instrument includes an image stabilization system, which uses fiber-optic gyroscopes to determine platform rotation, GPS to calculate the ephemeris of the sun, and a voltage-driven mirror to correct the line of sight. An operator monitors a white light image of the eclipse and manually corrects for residual drift. The image stabilization calculation is performed by a programmable automatic controller (PAC), which interfaces with the gyroscopes and mirror controller. The operator interfaces with a separate computer, which acquires images and computes the solar ephemeris. To ensure image stabilization is successful, a human machine interface (HMI) was developed to allow connection between the client and PAC. In order to make control of the instruments user friendly during the short eclipse observation, a graphical user interface (GUI) was also created. The GUI's functionality includes turning image stabilization on and off, allowing the user to input information about the geometric setup, calculating the solar ephemeris, refining estimates of the initial aircraft attitude, and storing data from the PAC on the operator's computer. It also displays time, location, attitude, ephemeris, gyro rates and mirror angles.

  17. INCOMMANDS TDP: Development of Decision Aid Implementation Guidance for the INCOMMANDS Human Factors Design and Evaluation Guide (Elaboration des Directives Relatives a la Mise en Oeuvre de l’Aide a la Decision Pour le Guide de Conception et d’evaluation Tenant Compte des Facteurs Humains - INCOMMANDS)

    DTIC Science & Technology

    2007-05-01

    information. Aviation Human-Computer Interface (AHCI) Style Guide. (1998). Report Number 64201-97U/61223. Prepared by Veridian, Veda Operations The...Prepared by Veridian, Veda Operations. Banbury, S., Dudfield, H. Hoermann, H. J., and Soll, H. (in press). FASA: Development and validation of a scale

  18. Audio-visual affective expression recognition

    NASA Astrophysics Data System (ADS)

    Huang, Thomas S.; Zeng, Zhihong

    2007-11-01

    Automatic affective expression recognition has attracted more and more attention of researchers from different disciplines, which will significantly contribute to a new paradigm for human computer interaction (affect-sensitive interfaces, socially intelligent environments) and advance the research in the affect-related fields including psychology, psychiatry, and education. Multimodal information integration is a process that enables human to assess affective states robustly and flexibly. In order to understand the richness and subtleness of human emotion behavior, the computer should be able to integrate information from multiple sensors. We introduce in this paper our efforts toward machine understanding of audio-visual affective behavior, based on both deliberate and spontaneous displays. Some promising methods are presented to integrate information from both audio and visual modalities. Our experiments show the advantage of audio-visual fusion in affective expression recognition over audio-only or visual-only approaches.

  19. DMA shared byte counters in a parallel computer

    DOEpatents

    Chen, Dong; Gara, Alan G.; Heidelberger, Philip; Vranas, Pavlos

    2010-04-06

    A parallel computer system is constructed as a network of interconnected compute nodes. Each of the compute nodes includes at least one processor, a memory and a DMA engine. The DMA engine includes a processor interface for interfacing with the at least one processor, DMA logic, a memory interface for interfacing with the memory, a DMA network interface for interfacing with the network, injection and reception byte counters, injection and reception FIFO metadata, and status registers and control registers. The injection FIFOs maintain memory locations of the injection FIFO metadata memory locations including its current head and tail, and the reception FIFOs maintain the reception FIFO metadata memory locations including its current head and tail. The injection byte counters and reception byte counters may be shared between messages.

  20. TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP)

    NASA Technical Reports Server (NTRS)

    Carnright, Robert; Stodden, David; Coggi, John

    2009-01-01

    The Transmission Control Protocol/ Internet protocol (TCP/IP) interface for the Satellite Orbit Analysis Program (SOAP) provides the means for the software to establish real-time interfaces with other software. Such interfaces can operate between two programs, either on the same computer or on different computers joined by a network. The SOAP TCP/IP module employs a client/server interface where SOAP is the server and other applications can be clients. Real-time interfaces between software offer a number of advantages over embedding all of the common functionality within a single program. One advantage is that they allow each program to divide the computation labor between processors or computers running the separate applications. Secondly, each program can be allowed to provide its own expertise domain with other programs able to use this expertise.

  1. Permanency analysis on human electroencephalogram signals for pervasive Brain-Computer Interface systems.

    PubMed

    Sadeghi, Koosha; Junghyo Lee; Banerjee, Ayan; Sohankar, Javad; Gupta, Sandeep K S

    2017-07-01

    Brain-Computer Interface (BCI) systems use some permanent features of brain signals to recognize their corresponding cognitive states with high accuracy. However, these features are not perfectly permanent, and BCI system should be continuously trained over time, which is tedious and time consuming. Thus, analyzing the permanency of signal features is essential in determining how often to repeat training. In this paper, we monitor electroencephalogram (EEG) signals, and analyze their behavior through continuous and relatively long period of time. In our experiment, we record EEG signals corresponding to rest state (eyes open and closed) from one subject everyday, for three and a half months. The results show that signal features such as auto-regression coefficients remain permanent through time, while others such as power spectral density specifically in 5-7 Hz frequency band are not permanent. In addition, eyes open EEG data shows more permanency than eyes closed data.

  2. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    PubMed Central

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  3. DARPA-funded efforts in the development of novel brain-computer interface technologies.

    PubMed

    Miranda, Robbin A; Casebeer, William D; Hein, Amy M; Judy, Jack W; Krotkov, Eric P; Laabs, Tracy L; Manzo, Justin E; Pankratz, Kent G; Pratt, Gill A; Sanchez, Justin C; Weber, Douglas J; Wheeler, Tracey L; Ling, Geoffrey S F

    2015-04-15

    The Defense Advanced Research Projects Agency (DARPA) has funded innovative scientific research and technology developments in the field of brain-computer interfaces (BCI) since the 1970s. This review highlights some of DARPA's major advances in the field of BCI, particularly those made in recent years. Two broad categories of DARPA programs are presented with respect to the ultimate goals of supporting the nation's warfighters: (1) BCI efforts aimed at restoring neural and/or behavioral function, and (2) BCI efforts aimed at improving human training and performance. The programs discussed are synergistic and complementary to one another, and, moreover, promote interdisciplinary collaborations among researchers, engineers, and clinicians. Finally, this review includes a summary of some of the remaining challenges for the field of BCI, as well as the goals of new DARPA efforts in this domain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface

    PubMed Central

    Kamrunnahar, M.; Schiff, S. J.

    2017-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799

  5. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  6. Digital interface for bi-directional communication between a computer and a peripheral device

    NASA Technical Reports Server (NTRS)

    Bond, H. H., Jr. (Inventor); Franklin, C. R.

    1984-01-01

    For transmission of data from the computer to the peripheral, the computer initially clears a flipflop which provides a select signal to a multiplexer. A data available signal or data strobe signal is produced while tht data is being provided to the interface. Setting of the flipflop causes a gate to provide to the peripherial a signal indicating that the interface has data available for transmission. The peripheral provides an acknowledge or strobe signal to transfer the data to the peripheral. For transmission of data from the peripheral to the computer, the computer presents the initially cleared flipflop. A data request signal from the peripheral indicates that the peripheral has data available for transmission to the computer. An acknowledge signal indicates that the interface is ready to receive data from the peripheral and to strobe that data into the interface.

  7. Application of Fault-Tolerant Computing For Spacecraft Using Commercial-Off-The-Shelf Microprocessors

    DTIC Science & Technology

    2000-06-01

    real - time operating system and design of a human-computer interface (HCI) for a triple modular redundant (TMR) fault-tolerant microprocessor for use in space-based applications. Once disadvantage of using COTS hardware components is their susceptibility to the radiation effects present in the space environment. and specifically, radiation-induced single-event upsets (SEUs). In the event of an SEU, a fault-tolerant system can mitigate the effects of the upset and continue to process from the last known correct system state. The TMR basic hardware

  8. A data mining technique for discovering distinct patterns of hand signs: implications in user training and computer interface design.

    PubMed

    Ye, Nong; Li, Xiangyang; Farley, Toni

    2003-01-15

    Hand signs are considered as one of the important ways to enter information into computers for certain tasks. Computers receive sensor data of hand signs for recognition. When using hand signs as computer inputs, we need to (1) train computer users in the sign language so that their hand signs can be easily recognized by computers, and (2) design the computer interface to avoid the use of confusing signs for improving user input performance and user satisfaction. For user training and computer interface design, it is important to have a knowledge of which signs can be easily recognized by computers and which signs are not distinguishable by computers. This paper presents a data mining technique to discover distinct patterns of hand signs from sensor data. Based on these patterns, we derive a group of indistinguishable signs by computers. Such information can in turn assist in user training and computer interface design.

  9. Designing an operator interface? Consider user`s `psychology`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toffer, D.E.

    The modern operator interface is a channel of communication between operators and the plant that, ideally, provides them with information necessary to keep the plant running at maximum efficiency. Advances in automation technology have increased information flow from the field to the screen. New and improved Supervisory Control and Data Acquisition (SCADA) packages provide designers with powerful and open design considerations. All too often, however, systems go to the field designed for the software rather than the operator. Plant operators` jobs have changed fundamentally, from controlling their plants from out in the field to doing so from within control rooms.more » Control room-based operation does not denote idleness. Trained operators should be engaged in examination of plant status and cognitive evaluation of plant efficiencies. Designers who are extremely computer literate, often do not consider demographics of field operators. Many field operators have little knowledge of modern computer systems. As a result, they do not take full advantage of the interface`s capabilities. Designers often fail to understand the true nature of how operators run their plants. To aid field operators, designers must provide familiar controls and intuitive choices. To achieve success in interface design, it is necessary to understand the ways in which humans think conceptually, and to understand how they process this information physically. The physical and the conceptual are closely related when working with any type of interface. Designers should ask themselves: {open_quotes}What type of information is useful to the field operator?{close_quotes} Let`s explore an integration model that contains the following key elements: (1) Easily navigated menus; (2) Reduced chances for misunderstanding; (3) Accurate representations of the plant or operation; (4) Consistent and predictable operation; (5) A pleasant and engaging interface that conforms to the operator`s expectations. 4 figs.« less

  10. Distributed user interfaces for clinical ubiquitous computing applications.

    PubMed

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  11. Non-invasive transmission of sensorimotor information in humans using an EEG/focused ultrasound brain-to-brain interface

    PubMed Central

    Lee, Wonhye; Kim, Suji; Kim, Byeongnam; Lee, Chungki; Chung, Yong An; Kim, Laehyun; Yoo, Seung-Schik

    2017-01-01

    We present non-invasive means that detect unilateral hand motor brain activity from one individual and subsequently stimulate the somatosensory area of another individual, thus, enabling the remote hemispheric link between each brain hemisphere in humans. Healthy participants were paired as a sender and a receiver. A sender performed a motor imagery task of either right or left hand, and associated changes in the electroencephalogram (EEG) mu rhythm (8–10 Hz) originating from either hemisphere were programmed to move a computer cursor to a target that appeared in either left or right of the computer screen. When the cursor reaches its target, the outcome was transmitted to another computer over the internet, and actuated the focused ultrasound (FUS) devices that selectively and non-invasively stimulated either the right or left hand somatosensory area of the receiver. Small FUS transducers effectively allowed for the independent administration of stimulatory ultrasonic waves to somatosensory areas. The stimulation elicited unilateral tactile sensation of the hand from the receiver, thus establishing the hemispheric brain-to-brain interface (BBI). Although there was a degree of variability in task accuracy, six pairs of volunteers performed the BBI task in high accuracy, transferring approximately eight commands per minute. Linkage between the hemispheric brain activities among individuals suggests the possibility for expansion of the information bandwidth in the context of BBI. PMID:28598972

  12. Systematically evaluating interfaces for RNA-seq analysis from a life scientist perspective.

    PubMed

    Poplawski, Alicia; Marini, Federico; Hess, Moritz; Zeller, Tanja; Mazur, Johanna; Binder, Harald

    2016-03-01

    RNA-sequencing (RNA-seq) has become an established way for measuring gene expression in model organisms and humans. While methods development for refining the corresponding data processing and analysis pipeline is ongoing, protocols for typical steps have been proposed and are widely used. Several user interfaces have been developed for making such analysis steps accessible to life scientists without extensive knowledge of command line tools. We performed a systematic search and evaluation of such interfaces to investigate to what extent these can indeed facilitate RNA-seq data analysis. We found a total of 29 open source interfaces, and six of the more widely used interfaces were evaluated in detail. Central criteria for evaluation were ease of configuration, documentation, usability, computational demand and reporting. No interface scored best in all of these criteria, indicating that the final choice will depend on the specific perspective of users and the corresponding weighting of criteria. Considerable technical hurdles had to be overcome in our evaluation. For many users, this will diminish potential benefits compared with command line tools, leaving room for future improvement of interfaces. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    PubMed

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  14. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  15. Three-dimensional virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    The development of an alternative medium for displaying information in complex human-machine interfaces is described. The 3-D virtual acoustic display is a means for accurately transferring information to a human operator using the auditory modality; it combines directional and semantic characteristics to form naturalistic representations of dynamic objects and events in remotely sensed or simulated environments. Although the technology can stand alone, it is envisioned as a component of a larger multisensory environment and will no doubt find its greatest utility in that context. The general philosophy in the design of the display has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and later by technological capabilities or constraints. In expanding on this view, current and potential uses are addressed of virtual acoustic displays, such displays are characterized, and recent approaches to their implementation and application are reviewed, the research project at NASA-Ames is described in detail, and finally some critical research issues for the future are outlined.

  16. Structural Model for the Interaction of a Designed Ankyrin Repeat Protein with the Human Epidermal Growth Factor Receptor 2

    PubMed Central

    Epa, V. Chandana; Dolezal, Olan; Doughty, Larissa; Xiao, Xiaowen; Jost, Christian; Plückthun, Andreas; Adams, Timothy E.

    2013-01-01

    Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84–1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions. PMID:23527120

  17. G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy.

    PubMed

    Slimani, Faiçal A A; Hamdi, Mahdjoub; Bentourkia, M'hamed

    2018-05-01

    Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Naturalistic Decision Making: Implications for Design

    DTIC Science & Technology

    1993-04-01

    Cognitive Task Analysis Decision Making Design Engineer Design System Human-Computer Interface System Development 15. NUMBER OF PAGES 182 16...people use to select a course of action. The SOAR explains how stress affects the decision making of both individuals and teams. COGNITIVE TASK ANALYSIS : This...procedures for Cognitive Task Analysis , contrasting the strengths and weaknesses of each, and showing how a Cognitive Task Analysis

  19. Unmanned Surface Vehicle Human-Computer Interface for Amphibious Operations

    DTIC Science & Technology

    2013-08-01

    Amy Bolton from 2007 through 2011, with a follow- on effort conducted during 2012 sponsored by LCS Mission Modules Program Office (PMS 420) under the...performance, the researchers conclude that improvements in on -board sensor capabilities and obstacle avoidance systems may still be necessary to safely...38 5.4.2 Phase I – One USV vs. Two USVs with Baseline HCI

  20. Cognitive Design for Learning: Cognition and Emotion in the Design Process

    ERIC Educational Resources Information Center

    Hasebrook, Joachim

    2016-01-01

    We are so used to accept new technologies being the driver of change and innovation in human computer interfaces (HCI). In our research we focus on the development of innovations as a design process--or design, for short. We also refer to the entire process of creating innovations and putting them to use as "cognitive processes"--or…

  1. Rapid, Agile Modeling Support for Human-Computer Interface Conceptual Design

    DTIC Science & Technology

    2008-12-01

    12 5.6 COLIDES MODEL ...........................................................................................................12 5.7 LATENT...on the screen. This limitation is dealt with in the CoLiDeS model. 5.6 COLIDES MODEL CoLiDeS is an acronym for Comprehension-based Link model of...Deliberate Search (Blackmon, Kitajima, Polson, 2005; Blackmon, Kitajima, Polson, 2003; Blackmon, Polson, Kitajima , and Lewis, 2005). CoLideS is

  2. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  3. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-01-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915

  4. A reductionist approach to the analysis of learning in brain-computer interfaces.

    PubMed

    Danziger, Zachary

    2014-04-01

    The complexity and scale of brain-computer interface (BCI) studies limit our ability to investigate how humans learn to use BCI systems. It also limits our capacity to develop adaptive algorithms needed to assist users with their control. Adaptive algorithm development is forced offline and typically uses static data sets. But this is a poor substitute for the online, dynamic environment where algorithms are ultimately deployed and interact with an adapting user. This work evaluates a paradigm that simulates the control problem faced by human subjects when controlling a BCI, but which avoids the many complications associated with full-scale BCI studies. Biological learners can be studied in a reductionist way as they solve BCI-like control problems, and machine learning algorithms can be developed and tested in closed loop with the subjects before being translated to full BCIs. The method is to map 19 joint angles of the hand (representing neural signals) to the position of a 2D cursor which must be piloted to displayed targets (a typical BCI task). An investigation is presented on how closely the joint angle method emulates BCI systems; a novel learning algorithm is evaluated, and a performance difference between genders is discussed.

  5. Selection of suitable hand gestures for reliable myoelectric human computer interface.

    PubMed

    Castro, Maria Claudia F; Arjunan, Sridhar P; Kumar, Dinesh K

    2015-04-09

    Myoelectric controlled prosthetic hand requires machine based identification of hand gestures using surface electromyogram (sEMG) recorded from the forearm muscles. This study has observed that a sub-set of the hand gestures have to be selected for an accurate automated hand gesture recognition, and reports a method to select these gestures to maximize the sensitivity and specificity. Experiments were conducted where sEMG was recorded from the muscles of the forearm while subjects performed hand gestures and then was classified off-line. The performances of ten gestures were ranked using the proposed Positive-Negative Performance Measurement Index (PNM), generated by a series of confusion matrices. When using all the ten gestures, the sensitivity and specificity was 80.0% and 97.8%. After ranking the gestures using the PNM, six gestures were selected and these gave sensitivity and specificity greater than 95% (96.5% and 99.3%); Hand open, Hand close, Little finger flexion, Ring finger flexion, Middle finger flexion and Thumb flexion. This work has shown that reliable myoelectric based human computer interface systems require careful selection of the gestures that have to be recognized and without such selection, the reliability is poor.

  6. Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems.

    PubMed

    Stieglitz, T

    2007-01-01

    Today applications of neural prostheses that successfully help patients to increase their activities of daily living and participate in social life again are quite simple implants that yield definite tissue response and are well recognized as foreign body. Latest developments in genetic engineering, nanotechnologies and materials sciences have paved the way to new scenarios towards highly complex systems to interface the human nervous system. Combinations of neural cells with microimplants promise stable biohybrid interfaces. Nanotechnology opens the door to macromolecular landscapes on implants that mimic the biologic topology and surface interaction of biologic cells. Computer sciences dream of technical cognitive systems that act and react due to knowledge-based conclusion mechanisms to a changing or adaptive environment. Different sciences start to interact and discuss the synergies when methods and paradigms from biology, computer sciences and engineering, neurosciences, psychology will be combined. They envision the era of "converging technologies" to completely change the understanding of science and postulate a new vision of humans. In this chapter, these research lines will be discussed on some examples as well as the societal implications and ethical questions that arise from these new opportunities.

  7. Using minimal human-computer interfaces for studying the interactive development of social awareness

    PubMed Central

    Froese, Tom; Iizuka, Hiroyuki; Ikegami, Takashi

    2014-01-01

    According to the enactive approach to cognitive science, perception is essentially a skillful engagement with the world. Learning how to engage via a human-computer interface (HCI) can therefore be taken as an instance of developing a new mode of experiencing. Similarly, social perception is theorized to be primarily constituted by skillful engagement between people, which implies that it is possible to investigate the origins and development of social awareness using multi-user HCIs. We analyzed the trial-by-trial objective and subjective changes in sociality that took place during a perceptual crossing experiment in which embodied interaction between pairs of adults was mediated over a minimalist haptic HCI. Since that study required participants to implicitly relearn how to mutually engage so as to perceive each other's presence, we hypothesized that there would be indications that the initial developmental stages of social awareness were recapitulated. Preliminary results reveal that, despite the lack of explicit feedback about task performance, there was a trend for the clarity of social awareness to increase over time. We discuss the methodological challenges involved in evaluating whether this trend was characterized by distinct developmental stages of objective behavior and subjective experience. PMID:25309490

  8. Brain-computer interfaces in the continuum of consciousness.

    PubMed

    Kübler, Andrea; Kotchoubey, Boris

    2007-12-01

    To summarize recent developments and look at important future aspects of brain-computer interfaces. Recent brain-computer interface studies are largely targeted at helping severely or even completely paralysed patients. The former are only able to communicate yes or no via a single muscle twitch, and the latter are totally nonresponsive. Such patients can control brain-computer interfaces and use them to select letters, words or items on a computer screen, for neuroprosthesis control or for surfing the Internet. This condition of motor paralysis, in which cognition and consciousness appear to be unaffected, is traditionally opposed to nonresponsiveness due to disorders of consciousness. Although these groups of patients may appear to be very alike, numerous transition states between them are demonstrated by recent studies. All nonresponsive patients can be regarded on a continuum of consciousness which may vary even within short time periods. As overt behaviour is lacking, cognitive functions in such patients can only be investigated using neurophysiological methods. We suggest that brain-computer interfaces may provide a new tool to investigate cognition in disorders of consciousness, and propose a hierarchical procedure entailing passive stimulation, active instructions, volitional paradigms, and brain-computer interface operation.

  9. Evaluation of a modified Fitts law brain-computer interface target acquisition task in able and motor disabled individuals

    NASA Astrophysics Data System (ADS)

    Felton, E. A.; Radwin, R. G.; Wilson, J. A.; Williams, J. C.

    2009-10-01

    A brain-computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts' law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts' law, which has been used as a predictor of movement time in studies of human movement, was used here to determine the information transfer rate, which was based on target acquisition time and target difficulty. The information transfer rate was used to make comparisons between control modalities and subject groups on the same task. Data were analyzed from eight able-bodied and five motor disabled participants who wore an electrode cap that recorded and translated their electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons were made between able-bodied and disabled subjects, and between EEG and joystick cursor control in able-bodied subjects. Fitts' law aptly described the relationship between movement time and index of difficulty for each task movement direction when evaluated separately and averaged together. This study showed that Fitts' law can be successfully applied to computer cursor movement controlled by neural signals.

  10. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    PubMed

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct additional research to the study of influenza transmission dynamics in animals and at the animal-human interface. © 2012 Blackwell Verlag GmbH.

  11. A flexible telerobotic system for space operations

    NASA Technical Reports Server (NTRS)

    Sliwa, N. O.; Will, R. W.

    1987-01-01

    The objective and design of a proposed goal-oriented knowledge-based telerobotic system for space operations is described. This design effort encompasses the elements of the system executive and user interface and the distribution and general structure of the knowledge base, the displays, and the task sequencing. The objective of the design effort is to provide an expandable structure for a telerobotic system that provides cooperative interaction between the human operator and computer control. The initial phase of the implementation provides a rule-based, goal-oriented script generator to interface to the existing control modes of a telerobotic research system, in the Intelligent Systems Research Lab at NASA Research Center.

  12. Multimodal visualization interface for data management, self-learning and data presentation.

    PubMed

    Van Sint Jan, S; Demondion, X; Clapworthy, G; Louryan, S; Rooze, M; Cotten, A; Viceconti, M

    2006-10-01

    A multimodal visualization software, called the Data Manager (DM), has been developed to increase interdisciplinary communication around the topic of visualization and modeling of various aspects of the human anatomy. Numerous tools used in Radiology are integrated in the interface that runs on standard personal computers. The available tools, combined to hierarchical data management and custom layouts, allow analyzing of medical imaging data using advanced features outside radiological premises (for example, for patient review, conference presentation or tutorial preparation). The system is free, and based on an open-source software development architecture, and therefore updates of the system for custom applications are possible.

  13. Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sadeh, I.; Oya, I.; Schwarz, J.; Pietriga, E.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.

  14. Quadcopter control using a BCI

    NASA Astrophysics Data System (ADS)

    Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.

    2018-01-01

    The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.

  15. CAD/CAE Integration Enhanced by New CAD Services Standard

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.

    2002-01-01

    A Government-industry team led by the NASA Glenn Research Center has developed a computer interface standard for accessing data from computer-aided design (CAD) systems. The Object Management Group, an international computer standards organization, has adopted this CAD services standard. The new standard allows software (e.g., computer-aided engineering (CAE) and computer-aided manufacturing software to access multiple CAD systems through one programming interface. The interface is built on top of a distributed computing system called the Common Object Request Broker Architecture (CORBA). CORBA allows the CAD services software to operate in a distributed, heterogeneous computing environment.

  16. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia*

    PubMed Central

    Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Black, Michael J

    2010-01-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. PMID:19015583

  17. An overview of computer-based natural language processing

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Computer based Natural Language Processing (NLP) is the key to enabling humans and their computer based creations to interact with machines in natural language (like English, Japanese, German, etc., in contrast to formal computer languages). The doors that such an achievement can open have made this a major research area in Artificial Intelligence and Computational Linguistics. Commercial natural language interfaces to computers have recently entered the market and future looks bright for other applications as well. This report reviews the basic approaches to such systems, the techniques utilized, applications, the state of the art of the technology, issues and research requirements, the major participants and finally, future trends and expectations. It is anticipated that this report will prove useful to engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  18. Eye-gaze and intent: Application in 3D interface control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Goldberg, J.H.

    1993-06-01

    Computer interface control is typically accomplished with an input ``device`` such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less

  19. Eye-gaze and intent: Application in 3D interface control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schryver, J.C.; Goldberg, J.H.

    1993-01-01

    Computer interface control is typically accomplished with an input device'' such as keyboard, mouse, trackball, etc. An input device translates a users input actions, such as mouse clicks and key presses, into appropriate computer commands. To control the interface, the user must first convert intent into the syntax of the input device. A more natural means of computer control is possible when the computer can directly infer user intent, without need of intervening input devices. We describe an application of eye-gaze-contingent control of an interactive three-dimensional (3D) user interface. A salient feature of the user interface is natural input, withmore » a heightened impression of controlling the computer directly by the mind. With this interface, input of rotation and translation are intuitive, whereas other abstract features, such as zoom, are more problematic to match with user intent. This paper describes successes with implementation to date, and ongoing efforts to develop a more sophisticated intent inferencing methodology.« less

  20. Proactive health computing.

    PubMed

    Timpka, T

    2001-08-01

    In an analysis departing from the global health situation, the foundation for a change of paradigm in health informatics based on socially embedded information infrastructures and technologies is identified and discussed. It is shown how an increasing computing and data transmitting capacity can be employed for proactive health computing. As a foundation for ubiquitous health promotion and prevention of disease and injury, proactive health systems use data from multiple sources to supply individuals and communities evidence-based information on means to improve their state of health and avoid health risks. The systems are characterised by: (1) being profusely connected to the world around them, using perceptual interfaces, sensors and actuators; (2) responding to external stimuli at faster than human speeds; (3) networked feedback loops; and (4) humans remaining in control, while being left outside the primary computing loop. The extended scientific mission of this new partnership between computer science, electrical engineering and social medicine is suggested to be the investigation of how the dissemination of information and communication technology on democratic grounds can be made even more important for global health than sanitation and urban planning became a century ago.

  1. Software for Simulating a Complex Robot

    NASA Technical Reports Server (NTRS)

    Goza, S. Michael

    2003-01-01

    RoboSim (Robot Simulation) is a computer program that simulates the poses and motions of the Robonaut a developmental anthropomorphic robot that has a complex system of joints with 43 degrees of freedom and multiple modes of operation and control. RoboSim performs a full kinematic simulation of all degrees of freedom. It also includes interface components that duplicate the functionality of the real Robonaut interface with control software and human operators. Basically, users see no difference between the real Robonaut and the simulation. Consequently, new control algorithms can be tested by computational simulation, without risk to the Robonaut hardware, and without using excessive Robonaut-hardware experimental time, which is always at a premium. Previously developed software incorporated into RoboSim includes Enigma (for graphical displays), OSCAR (for kinematical computations), and NDDS (for communication between the Robonaut and external software). In addition, RoboSim incorporates unique inverse-kinematical algorithms for chains of joints that have fewer than six degrees of freedom (e.g., finger joints). In comparison with the algorithms of OSCAR, these algorithms are more readily adaptable and provide better results when using equivalent sets of data.

  2. Neurobionics and the brain-computer interface: current applications and future horizons.

    PubMed

    Rosenfeld, Jeffrey V; Wong, Yan Tat

    2017-05-01

    The brain-computer interface (BCI) is an exciting advance in neuroscience and engineering. In a motor BCI, electrical recordings from the motor cortex of paralysed humans are decoded by a computer and used to drive robotic arms or to restore movement in a paralysed hand by stimulating the muscles in the forearm. Simultaneously integrating a BCI with the sensory cortex will further enhance dexterity and fine control. BCIs are also being developed to: provide ambulation for paraplegic patients through controlling robotic exoskeletons; restore vision in people with acquired blindness; detect and control epileptic seizures; and improve control of movement disorders and memory enhancement. High-fidelity connectivity with small groups of neurons requires microelectrode placement in the cerebral cortex. Electrodes placed on the cortical surface are less invasive but produce inferior fidelity. Scalp surface recording using electroencephalography is much less precise. BCI technology is still in an early phase of development and awaits further technical improvements and larger multicentre clinical trials before wider clinical application and impact on the care of people with disabilities. There are also many ethical challenges to explore as this technology evolves.

  3. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  4. Electro-Optic Computing Architectures. Volume I

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit (OW

  5. Design of a Computer-Controlled, Random-Access Slide Projector Interface. Final Report (April 1974 - November 1974).

    ERIC Educational Resources Information Center

    Kirby, Paul J.; And Others

    The design, development, test, and evaluation of an electronic hardware device interfacing a commercially available slide projector with a plasma panel computer terminal is reported. The interface device allows an instructional computer program to select slides for viewing based upon the lesson student situation parameters of the instructional…

  6. A Development of Lightweight Grid Interface

    NASA Astrophysics Data System (ADS)

    Iwai, G.; Kawai, Y.; Sasaki, T.; Watase, Y.

    2011-12-01

    In order to help a rapid development of Grid/Cloud aware applications, we have developed API to abstract the distributed computing infrastructures based on SAGA (A Simple API for Grid Applications). SAGA, which is standardized in the OGF (Open Grid Forum), defines API specifications to access distributed computing infrastructures, such as Grid, Cloud and local computing resources. The Universal Grid API (UGAPI), which is a set of command line interfaces (CLI) and APIs, aims to offer simpler API to combine several SAGA interfaces with richer functionalities. These CLIs of the UGAPI offer typical functionalities required by end users for job management and file access to the different distributed computing infrastructures as well as local computing resources. We have also built a web interface for the particle therapy simulation and demonstrated the large scale calculation using the different infrastructures at the same time. In this paper, we would like to present how the web interface based on UGAPI and SAGA achieve more efficient utilization of computing resources over the different infrastructures with technical details and practical experiences.

  7. Ubiquitous Wireless Smart Sensing and Control

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  8. Ubiquitous Wireless Smart Sensing and Control. Pumps and Pipes JSC: Uniquely Houston

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools).Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  9. Development of a Common User Interface for the Launch Decision Support System

    NASA Technical Reports Server (NTRS)

    Scholtz, Jean C.

    1991-01-01

    The Launch Decision Support System (LDSS) is software to be used by the NASA Test Director (NTD) in the firing room during countdown. This software is designed to assist the NTD with time management, that is, when to resume from a hold condition. This software will assist the NTD in making and evaluating alternate plans and will keep him advised of the existing situation. As such, the interface to this software must be designed to provide the maximum amount of information in the clearest fashion and in a timely manner. This research involves applying user interface guidelines to a mature prototype of LDSS and developing displays that will enable the users to easily and efficiently obtain information from the LDSS displays. This research also extends previous work on organizing and prioritizing human-computer interaction knowledge.

  10. Discriminating between intentional and unintentional gaze fixation using multimodal-based fuzzy logic algorithm for gaze tracking system with NIR camera sensor

    NASA Astrophysics Data System (ADS)

    Naqvi, Rizwan Ali; Park, Kang Ryoung

    2016-06-01

    Gaze tracking systems are widely used in human-computer interfaces, interfaces for the disabled, game interfaces, and for controlling home appliances. Most studies on gaze detection have focused on enhancing its accuracy, whereas few have considered the discrimination of intentional gaze fixation (looking at a target to activate or select it) from unintentional fixation while using gaze detection systems. Previous research methods based on the use of a keyboard or mouse button, eye blinking, and the dwell time of gaze position have various limitations. Therefore, we propose a method for discriminating between intentional and unintentional gaze fixation using a multimodal fuzzy logic algorithm applied to a gaze tracking system with a near-infrared camera sensor. Experimental results show that the proposed method outperforms the conventional method for determining gaze fixation.

  11. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  12. [Neurophysiological Foundations and Practical Realizations of the Brain-Machine Interfaces the Technology in Neurological Rehabilitation].

    PubMed

    Kaplan, A Ya

    2016-01-01

    Technology brain-computer interface (BCI) based on the registration and interpretation of EEG has recently become one of the most popular developments in neuroscience and psychophysiology. This is due not only to the intended future use of these technologies in many areas of practical human activity, but also to the fact that IMC--is a completely new paradigm in psychophysiology, allowing test hypotheses about the possibilities of the human brain to the development of skills of interaction with the outside world without the mediation of the motor system, i.e. only with the help of voluntary modulation of EEG generators. This paper examines the theoretical and experimental basis, the current state and prospects of development of training, communicational and assisting complexes based on BCI to control them without muscular effort on the basis of mental commands detected in the EEG of patients with severely impaired speech and motor system.

  13. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled.

    PubMed

    Kencana, Andy Prima; Heng, John

    2008-11-01

    This paper introduces a novel passive tongue control and tracking device. The device is intended to be used by the severely disabled or quadriplegic person. The main focus of this device when compared to the other existing tongue tracking devices is that the sensor employed is passive which means it requires no powered electrical sensor to be inserted into the user's mouth and hence no trailing wires. This haptic interface device employs the use of inductive sensors to track the position of the user's tongue. The device is able perform two main PC functions that of the keyboard and mouse function. The results show that this device allows the severely disabled person to have some control in his environment, such as to turn on and off or control daily electrical devices or appliances; or to be used as a viable PC Human Computer Interface (HCI) by tongue control. The operating principle and set-up of such a novel passive tongue HCI has been established with successful laboratory trials and experiments. Further clinical trials will be required to test out the device on disabled persons before it is ready for future commercial development.

  14. Image based Monte Carlo Modeling for Computational Phantom

    NASA Astrophysics Data System (ADS)

    Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican

    2014-06-01

    The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.

  15. Transportable Applications Environment (TAE) Tenth Users' Conference

    NASA Technical Reports Server (NTRS)

    Rouff, Chris (Editor); Harris, Elfrieda (Editor); Yeager, Arleen (Editor)

    1993-01-01

    Conference proceedings are represented in graphic visual-aid form. Presentation and panel discussion topics include user experiences with C++ and Ada; the design and interaction of the user interface; the history and goals of TAE; commercialization and testing of TAE Plus; Computer-Human Interaction Models (CHIMES); data driven objects; item-to-item connections and object dependencies; and integration with other software. There follows a list of conference attendees.

  16. A multimodal dataset for authoring and editing multimedia content: The MAMEM project.

    PubMed

    Nikolopoulos, Spiros; Petrantonakis, Panagiotis C; Georgiadis, Kostas; Kalaganis, Fotis; Liaros, Georgios; Lazarou, Ioulietta; Adam, Katerina; Papazoglou-Chalikias, Anastasios; Chatzilari, Elisavet; Oikonomou, Vangelis P; Kumar, Chandan; Menges, Raphael; Staab, Steffen; Müller, Daniel; Sengupta, Korok; Bostantjopoulou, Sevasti; Katsarou, Zoe; Zeilig, Gabi; Plotnik, Meir; Gotlieb, Amihai; Kizoni, Racheli; Fountoukidou, Sofia; Ham, Jaap; Athanasiou, Dimitrios; Mariakaki, Agnes; Comanducci, Dario; Sabatini, Edoardo; Nistico, Walter; Plank, Markus; Kompatsiaris, Ioannis

    2017-12-01

    We present a dataset that combines multimodal biosignals and eye tracking information gathered under a human-computer interaction framework. The dataset was developed in the vein of the MAMEM project that aims to endow people with motor disabilities with the ability to edit and author multimedia content through mental commands and gaze activity. The dataset includes EEG, eye-tracking, and physiological (GSR and Heart rate) signals collected from 34 individuals (18 able-bodied and 16 motor-impaired). Data were collected during the interaction with specifically designed interface for web browsing and multimedia content manipulation and during imaginary movement tasks. The presented dataset will contribute towards the development and evaluation of modern human-computer interaction systems that would foster the integration of people with severe motor impairments back into society.

  17. Four principles for user interface design of computerised clinical decision support systems.

    PubMed

    Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian

    2011-01-01

    The paper presents results from a design research project of a user interface (UI) for a Computerised Clinical Decision Support System (CDSS). The ambition has been to design Human-Computer Interaction (HCI) that can minimise medication errors. Through an iterative design process a digital prototype for prescription of medicine has been developed. This paper presents results from the formative evaluation of the prototype conducted in a simulation laboratory with ten participating physicians. Data from the simulation is analysed by use of theory on how users perceive information. The conclusion is a model, which sum up four principles of interaction for design of CDSS. The four principles for design of user interfaces for CDSS are summarised as four A's: All in one, At a glance, At hand and Attention. The model emphasises integration of all four interaction principles in the design of user interfaces for CDSS, i.e. the model is an integrated model which we suggest as a guide for interaction design when working with preventing medication errors.

  18. Brain-Computer Interface with Inhibitory Neurons Reveals Subtype-Specific Strategies.

    PubMed

    Mitani, Akinori; Dong, Mingyuan; Komiyama, Takaki

    2018-01-08

    Brain-computer interfaces have seen an increase in popularity due to their potential for direct neuroprosthetic applications for amputees and disabled individuals. Supporting this promise, animals-including humans-can learn even arbitrary mapping between the activity of cortical neurons and movement of prosthetic devices [1-4]. However, the performance of neuroprosthetic device control has been nowhere near that of limb control in healthy individuals, presenting a dire need to improve the performance. One potential limitation is the fact that previous work has not distinguished diverse cell types in the neocortex, even though different cell types possess distinct functions in cortical computations [5-7] and likely distinct capacities to control brain-computer interfaces. Here, we made a first step in addressing this issue by tracking the plastic changes of three major types of cortical inhibitory neurons (INs) during a neuron-pair operant conditioning task using two-photon imaging of IN subtypes expressing GCaMP6f. Mice were rewarded when the activity of the positive target neuron (N+) exceeded that of the negative target neuron (N-) beyond a set threshold. Mice improved performance with all subtypes, but the strategies were subtype specific. When parvalbumin (PV)-expressing INs were targeted, the activity of N- decreased. However, targeting of somatostatin (SOM)- and vasoactive intestinal peptide (VIP)-expressing INs led to an increase of the N+ activity. These results demonstrate that INs can be individually modulated in a subtype-specific manner and highlight the versatility of neural circuits in adapting to new demands by using cell-type-specific strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. On the origin of the electrostatic potential difference at a liquid-vacuum interface.

    PubMed

    Harder, Edward; Roux, Benoît

    2008-12-21

    The microscopic origin of the interface potential calculated from computer simulations is elucidated by considering a simple model of molecules near an interface. The model posits that molecules are isotropically oriented and their charge density is Gaussian distributed. Molecules that have a charge density that is more negative toward their interior tend to give rise to a negative interface potential relative to the gaseous phase, while charge densities more positive toward their interior give rise to a positive interface potential. The interface potential for the model is compared to the interface potential computed from molecular dynamics simulations of the nonpolar vacuum-methane system and the polar vacuum-water interface system. The computed vacuum-methane interface potential from a molecular dynamics simulation (-220 mV) is captured with quantitative precision by the model. For the vacuum-water interface system, the model predicts a potential of -400 mV compared to -510 mV, calculated from a molecular dynamics simulation. The physical implications of this isotropic contribution to the interface potential is examined using the example of ion solvation in liquid methane.

  20. Method and apparatus for managing transactions with connected computers

    DOEpatents

    Goldsmith, Steven Y.; Phillips, Laurence R.; Spires, Shannon V.

    2003-01-01

    The present invention provides a method and apparatus that make use of existing computer and communication resources and that reduce the errors and delays common to complex transactions such as international shipping. The present invention comprises an agent-based collaborative work environment that assists geographically distributed commercial and government users in the management of complex transactions such as the transshipment of goods across the U.S.-Mexico border. Software agents can mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, using the World-Wide Web to interface with human users.

  1. Human factors aspects of control room design

    NASA Technical Reports Server (NTRS)

    Jenkins, J. P.

    1983-01-01

    A plan for the design and analysis of a multistation control room is reviewed. It is found that acceptance of the computer based information system by the uses in the control room is mandatory for mission and system success. Criteria to improve computer/user interface include: match of system input/output with user; reliability, compatibility and maintainability; easy to learn and little training needed; self descriptive system; system under user control; transparent language, format and organization; corresponds to user expectations; adaptable to user experience level; fault tolerant; dialog capability user communications needs reflected in flexibility, complexity, power and information load; integrated system; and documentation.

  2. Electro-Optic Computing Architectures: Volume II. Components and System Design and Analysis

    DTIC Science & Technology

    1998-02-01

    The objective of the Electro - Optic Computing Architecture (EOCA) program was to develop multi-function electro - optic interfaces and optical...interconnect units to enhance the performance of parallel processor systems and form the building blocks for future electro - optic computing architectures...Specifically, three multi-function interface modules were targeted for development - an Electro - Optic Interface (EOI), an Optical Interconnection Unit

  3. Portable computing - A fielded interactive scientific application in a small off-the-shelf package

    NASA Technical Reports Server (NTRS)

    Groleau, Nicolas; Hazelton, Lyman; Frainier, Rich; Compton, Michael; Colombano, Silvano; Szolovits, Peter

    1993-01-01

    Experience with the design and implementation of a portable computing system for STS crew-conducted science is discussed. Principal-Investigator-in-a-Box (PI) will help the SLS-2 astronauts perform vestibular (human orientation system) experiments in flight. PI is an interactive system that provides data acquisition and analysis, experiment step rescheduling, and various other forms of reasoning to astronaut users. The hardware architecture of PI consists of a computer and an analog interface box. 'Off-the-shelf' equipment is employed in the system wherever possible in an effort to use widely available tools and then to add custom functionality and application codes to them. Other projects which can help prospective teams to learn more about portable computing in space are also discussed.

  4. Multichannel micromanipulator and chamber system for recording multineuronal activity in alert, non-human primates.

    PubMed

    Gray, Charles M; Goodell, Baldwin; Lear, Alex

    2007-07-01

    We describe the design and performance of an electromechanical system for conducting multineuron recording experiments in alert non-human primates. The system is based on a simple design, consisting of a microdrive, control electronics, software, and a unique type of recording chamber. The microdrive consists of an aluminum frame, a set of eight linear actuators driven by computer-controlled miniature stepping motors, and two printed circuit boards (PCBs) that provide connectivity to the electrodes and the control electronics. The control circuitry is structured around an Atmel RISC-based microcontroller, which sends commands to as many as eight motor control cards, each capable of controlling eight motors. The microcontroller is programmed in C and uses serial communication to interface with a host computer. The graphical user interface for sending commands is written in C and runs on a conventional personal computer. The recording chamber is low in profile, mounts within a circular craniotomy, and incorporates a removable internal sleeve. A replaceable Sylastic membrane can be stretched across the bottom opening of the sleeve to provide a watertight seal between the cranial cavity and the external environment. This greatly reduces the susceptibility to infection, nearly eliminates the need for routine cleaning, and permits repeated introduction of electrodes into the brain at the same sites while maintaining the watertight seal. The system is reliable, easy to use, and has several advantages over other commercially available systems with similar capabilities.

  5. Beyond intuitive anthropomorphic control: recent achievements using brain computer interface technologies

    NASA Astrophysics Data System (ADS)

    Pohlmeyer, Eric A.; Fifer, Matthew; Rich, Matthew; Pino, Johnathan; Wester, Brock; Johannes, Matthew; Dohopolski, Chris; Helder, John; D'Angelo, Denise; Beaty, James; Bensmaia, Sliman; McLoughlin, Michael; Tenore, Francesco

    2017-05-01

    Brain-computer interface (BCI) research has progressed rapidly, with BCIs shifting from animal tests to human demonstrations of controlling computer cursors and even advanced prosthetic limbs, the latter having been the goal of the Revolutionizing Prosthetics (RP) program. These achievements now include direct electrical intracortical microstimulation (ICMS) of the brain to provide human BCI users feedback information from the sensors of prosthetic limbs. These successes raise the question of how well people would be able to use BCIs to interact with systems that are not based directly on the body (e.g., prosthetic arms), and how well BCI users could interpret ICMS information from such devices. If paralyzed individuals could use BCIs to effectively interact with such non-anthropomorphic systems, it would offer them numerous new opportunities to control novel assistive devices. Here we explore how well a participant with tetraplegia can detect infrared (IR) sources in the environment using a prosthetic arm mounted camera that encodes IR information via ICMS. We also investigate how well a BCI user could transition from controlling a BCI based on prosthetic arm movements to controlling a flight simulator, a system with different physical dynamics than the arm. In that test, the BCI participant used environmental information encoded via ICMS to identify which of several upcoming flight routes was the best option. For both tasks, the BCI user was able to quickly learn how to interpret the ICMSprovided information to achieve the task goals.

  6. Improvement of design of a surgical interface using an eye tracking device

    PubMed Central

    2014-01-01

    Background Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Methods Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Results Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. Conclusions This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability. PMID:25080176

  7. Improvement of design of a surgical interface using an eye tracking device.

    PubMed

    Erol Barkana, Duygun; Açık, Alper; Duru, Dilek Goksel; Duru, Adil Deniz

    2014-05-07

    Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) and Short Post-Assessment Situational Awareness (SPASA) questionnaire results have shown that overall mental workload of surgeons related with surgical interface has been low as it has been aimed, and overall situational awareness scores of surgeons have been considerably high. This preliminary study highlights the improvement of a developed surgical interface using eye tracking technology to obtain the best SI configuration. The results presented here reveal that visual surgical interface design prepared according to eye movement characteristics may lead to improved usability.

  8. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Batt, Russell H., Ed.

    1990-01-01

    Four applications of microcomputers in the chemical laboratory are presented. Included are "Mass Spectrometer Interface with an Apple II Computer,""Interfacing the Spectronic 20 to a Computer,""A pH-Monitoring and Control System for Teaching Laboratories," and "A Computer-Aided Optical Melting Point Device." Software, instrumentation, and uses are…

  9. Design and verification of halogen-bonding system at the complex interface of human fertilization-related MUP PDZ5 domain with CAMK's C-terminal peptide.

    PubMed

    Wang, Juan; Guo, Yunjie; Zhang, Xue

    2018-02-01

    Calmodulin-dependent protein kinase (CAMK) is physiologically activated in fertilized human oocytes and is involved in the Ca 2+ response pathways that link the fertilization calmodulin signal to meiosis resumption and cortical granule exocytosis. The kinase has an unstructured C-terminal tail that can be recognized and bound by the PDZ5 domain of its cognate partner, the multi-PDZ domain protein (MUP). In the current study, we reported a rational biomolecular design of halogen-bonding system at the complex interface of CAMK's C-terminal peptide with MUP PDZ5 domain by using high-level computational approaches. Four organic halogens were employed as atom probes to explore the structural geometry and energetic property of designed halogen bonds in the PDZ5-peptide complex. It was found that the heavier halogen elements such as bromine Br and iodine I can confer stronger halogen bond but would cause bad atomic contacts and overlaps at the complex interface, while fluorine F cannot form effective halogen bond in the complex. In addition, the halogen substitution at different positions of peptide's aromatic ring would result in distinct effects on the halogen-bonding system. The computational findings were then verified by using fluorescence analysis; it is indicated that the halogen type and substitution position play critical role in the interaction strength of halogen bonds, and thus the PDZ5-peptide binding affinity can be improved considerably by optimizing their combination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Interface Provides Standard-Bus Communication

    NASA Technical Reports Server (NTRS)

    Culliton, William G.

    1995-01-01

    Microprocessor-controlled interface (IEEE-488/LVABI) incorporates service-request and direct-memory-access features. Is circuit card enabling digital communication between system called "laser auto-covariance buffer interface" (LVABI) and compatible personal computer via general-purpose interface bus (GPIB) conforming to Institute for Electrical and Electronics Engineers (IEEE) Standard 488. Interface serves as second interface enabling first interface to exploit advantages of GPIB, via utility software written specifically for GPIB. Advantages include compatibility with multitasking and support of communication among multiple computers. Basic concept also applied in designing interfaces for circuits other than LVABI for unidirectional or bidirectional handling of parallel data up to 16 bits wide.

  11. Combining factual and heuristic knowledge in knowledge acquisition

    NASA Technical Reports Server (NTRS)

    Gomez, Fernando; Hull, Richard; Karr, Clark; Hosken, Bruce; Verhagen, William

    1992-01-01

    A knowledge acquisition technique that combines heuristic and factual knowledge represented as two hierarchies is described. These ideas were applied to the construction of a knowledge acquisition interface to the Expert System Analyst (OPERA). The goal of OPERA is to improve the operations support of the computer network in the space shuttle launch processing system. The knowledge acquisition bottleneck lies in gathering knowledge from human experts and transferring it to OPERA. OPERA's knowledge acquisition problem is approached as a classification problem-solving task, combining this approach with the use of factual knowledge about the domain. The interface was implemented in a Symbolics workstation making heavy use of windows, pull-down menus, and other user-friendly devices.

  12. Are we there yet? Evaluating commercial grade brain-computer interface for control of computer applications by individuals with cerebral palsy.

    PubMed

    Taherian, Sarvnaz; Selitskiy, Dmitry; Pau, James; Claire Davies, T

    2017-02-01

    Using a commercial electroencephalography (EEG)-based brain-computer interface (BCI), the training and testing protocol for six individuals with spastic quadriplegic cerebral palsy (GMFCS and MACS IV and V) was evaluated. A customised, gamified training paradigm was employed. Over three weeks, the participants spent two sessions exploring the system, and up to six sessions playing the game which focussed on EEG feedback of left and right arm motor imagery. The participants showed variable inconclusive results in the ability to produce two distinct EEG patterns. Participant performance was influenced by physical illness, motivation, fatigue and concentration. The results from this case study highlight the infancy of BCIs as a form of assistive technology for people with cerebral palsy. Existing commercial BCIs are not designed according to the needs of end-users. Implications for Rehabilitation Mood, fatigue, physical illness and motivation influence the usability of a brain-computer interface. Commercial brain-computer interfaces are not designed for practical assistive technology use for people with cerebral palsy. Practical brain-computer interface assistive technologies may need to be flexible to suit individual needs.

  13. A design of an interface board between a MRC thermistor probe and a personal computer.

    DOT National Transportation Integrated Search

    2013-09-01

    The main purpose of this project was to design and build a prototype of an interface board between an MRC temperature probe : (thermistor array) and a personal laptop computer. This interface board replaces and significantly improve the capabilities ...

  14. The Graphical User Interface: Crisis, Danger, and Opportunity.

    ERIC Educational Resources Information Center

    Boyd, L. H.; And Others

    1990-01-01

    This article describes differences between the graphical user interface and traditional character-based interface systems, identifies potential problems posed by graphic computing environments for blind computer users, and describes some programs and strategies that are being developed to provide access to those environments. (Author/JDD)

  15. Student Preferences toward Microcomputer User Interfaces.

    ERIC Educational Resources Information Center

    Hazari, Sunil I.; Reaves, Rita R.

    1994-01-01

    Describes a study of undergraduates that was conducted to determine students' preferences toward Graphical User Interface versus Command Line Interface during computer-assisted instruction. Previous experience, comfort level, performance scores, and student attitudes are examined and compared, and the computer use survey is appended. (Contains 13…

  16. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  17. Man-machine interfaces in LACIE/ERIPS

    NASA Technical Reports Server (NTRS)

    Duprey, B. B. (Principal Investigator)

    1979-01-01

    One of the most important aspects of the interactive portion of the LACIE/ERIPS software system is the way in which the analysis and decision-making capabilities of a human being are integrated with the speed and accuracy of a computer to produce a powerful analysis system. The three major man-machine interfaces in the system are (1) the use of menus for communications between the software and the interactive user; (2) the checkpoint/restart facility to recreate in one job the internal environment achieved in an earlier one; and (3) the error recovery capability which would normally cause job termination. This interactive system, which executes on an IBM 360/75 mainframe, was adapted for use in noninteractive (batch) mode. A case study is presented to show how the interfaces work in practice by defining some fields based on an image screen display, noting the field definitions, and obtaining a film product of the classification map.

  18. A Survey of Object Oriented Languages in Programming Environments.

    DTIC Science & Technology

    1987-06-01

    subset of natural languages might be more effective , and make the human-computer interface more friendly. 19 .. .. . . -.. -, " ,. o...and complexty of Ada. He meant that the language contained too many features that made it complicated to use effectively . Much of the complexity comes...by sending messages to a class instance. A small subset of the methods in Smalltalk-80 are not expressed in the !-’ Smalhalk-80 programming language

  19. Basic concepts and development of an all-purpose computer interface for ROC/FROC observer study.

    PubMed

    Shiraishi, Junji; Fukuoka, Daisuke; Hara, Takeshi; Abe, Hiroyuki

    2013-01-01

    In this study, we initially investigated various aspects of requirements for a computer interface employed in receiver operating characteristic (ROC) and free-response ROC (FROC) observer studies which involve digital images and ratings obtained by observers (radiologists). Secondly, by taking into account these aspects, an all-purpose computer interface utilized for these observer performance studies was developed. Basically, the observer studies can be classified into three paradigms, such as one rating for one case without an identification of a signal location, one rating for one case with an identification of a signal location, and multiple ratings for one case with identification of signal locations. For these paradigms, display modes on the computer interface can be used for single/multiple views of a static image, continuous viewing with cascade images (i.e., CT, MRI), and dynamic viewing of movies (i.e., DSA, ultrasound). Various functions on these display modes, which include windowing (contrast/level), magnifications, and annotations, are needed to be selected by an experimenter corresponding to the purpose of the research. In addition, the rules of judgment for distinguishing between true positives and false positives are an important factor for estimating diagnostic accuracy in an observer study. We developed a computer interface which runs on a Windows operating system by taking into account all aspects required for various observer studies. This computer interface requires experimenters to have sufficient knowledge about ROC/FROC observer studies, but allows its use for any purpose of the observer studies. This computer interface will be distributed publicly in the near future.

  20. Brain computer interface to enhance episodic memory in human participants

    PubMed Central

    Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.

    2015-01-01

    Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605

  1. PC/AT-based architecture for shared telerobotic control

    NASA Astrophysics Data System (ADS)

    Schinstock, Dale E.; Faddis, Terry N.; Barr, Bill G.

    1993-03-01

    A telerobotic control system must include teleoperational, shared, and autonomous modes of control in order to provide a robot platform for incorporating the rapid advances that are occurring in telerobotics and associated technologies. These modes along with the ability to modify the control algorithms are especially beneficial for telerobotic control systems used for research purposes. The paper describes an application of the PC/AT platform to the control system of a telerobotic test cell. The paper provides a discussion of the suitability of the PC/AT as a platform for a telerobotic control system. The discussion is based on the many factors affecting the choice of a computer platform for a real time control system. The factors include I/O capabilities, simplicity, popularity, computational performance, and communication with external systems. The paper also includes a description of the actuation, measurement, and sensor hardware of both the master manipulator and the slave robot. It also includes a description of the PC-Bus interface cards. These cards were developed by the researchers in the KAT Laboratory, specifically for interfacing to the master manipulator and slave robot. Finally, a few different versions of the low level telerobotic control software are presented. This software incorporates shared control by supervisory systems and the human operator and traded control between supervisory systems and the human operator.

  2. The Human Factors and Ergonomics of P300-Based Brain-Computer Interfaces

    PubMed Central

    Powers, J. Clark; Bieliaieva, Kateryna; Wu, Shuohao; Nam, Chang S.

    2015-01-01

    Individuals with severe neuromuscular impairments face many challenges in communication and manipulation of the environment. Brain-computer interfaces (BCIs) show promise in presenting real-world applications that can provide such individuals with the means to interact with the world using only brain waves. Although there has been a growing body of research in recent years, much relates only to technology, and not to technology in use—i.e., real-world assistive technology employed by users. This review examined the literature to highlight studies that implicate the human factors and ergonomics (HFE) of P300-based BCIs. We assessed 21 studies on three topics to speak directly to improving the HFE of these systems: (1) alternative signal evocation methods within the oddball paradigm; (2) environmental interventions to improve user performance and satisfaction within the constraints of current BCI systems; and (3) measures and methods of measuring user acceptance. We found that HFE is central to the performance of P300-based BCI systems, although researchers do not often make explicit this connection. Incorporation of measures of user acceptance and rigorous usability evaluations, increased engagement of disabled users as test participants, and greater realism in testing will help progress the advancement of P300-based BCI systems in assistive applications. PMID:26266424

  3. How should Fitts' Law be applied to human-computer interaction?

    NASA Technical Reports Server (NTRS)

    Gillan, D. J.; Holden, K.; Adam, S.; Rudisill, M.; Magee, L.

    1992-01-01

    The paper challenges the notion that any Fitts' Law model can be applied generally to human-computer interaction, and proposes instead that applying Fitts' Law requires knowledge of the users' sequence of movements, direction of movement, and typical movement amplitudes as well as target sizes. Two experiments examined a text selection task with sequences of controlled movements (point-click and point-drag). For the point-click sequence, a Fitts' Law model that used the diagonal across the text object in the direction of pointing (rather than the horizontal extent of the text object) as the target size provided the best fit for the pointing time data, whereas for the point-drag sequence, a Fitts' Law model that used the vertical size of the text object as the target size gave the best fit. Dragging times were fitted well by Fitts' Law models that used either the vertical or horizontal size of the terminal character in the text object. Additional results of note were that pointing in the point-click sequence was consistently faster than in the point-drag sequence, and that pointing in either sequence was consistently faster than dragging. The discussion centres around the need to define task characteristics before applying Fitts' Law to an interface design or analysis, analyses of pointing and of dragging, and implications for interface design.

  4. Videodisc-Computer Interfaces.

    ERIC Educational Resources Information Center

    Zollman, Dean

    1984-01-01

    Lists microcomputer-videodisc interfaces currently available from 26 sources, including home use systems connected through remote control jack and industrial/educational systems utilizing computer ports and new laser reflective and stylus technology. Information provided includes computer and videodisc type, language, authoring system, educational…

  5. RUBE: an XML-based architecture for 3D process modeling and model fusion

    NASA Astrophysics Data System (ADS)

    Fishwick, Paul A.

    2002-07-01

    Information fusion is a critical problem for science and engineering. There is a need to fuse information content specified as either data or model. We frame our work in terms of fusing dynamic and geometric models, to create an immersive environment where these models can be juxtaposed in 3D, within the same interface. The method by which this is accomplished fits well into other eXtensible Markup Language (XML) approaches to fusion in general. The task of modeling lies at the heart of the human-computer interface, joining the human to the system under study through a variety of sensory modalities. I overview modeling as a key concern for the Defense Department and the Air Force, and then follow with a discussion of past, current, and future work. Past work began with a package with C and has progressed, in current work, to an implementation in XML. Our current work is defined within the RUBE architecture, which is detailed in subsequent papers devoted to key components. We have built RUBE as a next generation modeling framework using our prior software, with research opportunities in immersive 3D and tangible user interfaces.

  6. An online brain-machine interface using decoding of movement direction from the human electrocorticogram

    NASA Astrophysics Data System (ADS)

    Milekovic, Tomislav; Fischer, Jörg; Pistohl, Tobias; Ruescher, Johanna; Schulze-Bonhage, Andreas; Aertsen, Ad; Rickert, Jörn; Ball, Tonio; Mehring, Carsten

    2012-08-01

    A brain-machine interface (BMI) can be used to control movements of an artificial effector, e.g. movements of an arm prosthesis, by motor cortical signals that control the equivalent movements of the corresponding body part, e.g. arm movements. This approach has been successfully applied in monkeys and humans by accurately extracting parameters of movements from the spiking activity of multiple single neurons. We show that the same approach can be realized using brain activity measured directly from the surface of the human cortex using electrocorticography (ECoG). Five subjects, implanted with ECoG implants for the purpose of epilepsy assessment, took part in our study. Subjects used directionally dependent ECoG signals, recorded during active movements of a single arm, to control a computer cursor in one out of two directions. Significant BMI control was achieved in four out of five subjects with correct directional decoding in 69%-86% of the trials (75% on average). Our results demonstrate the feasibility of an online BMI using decoding of movement direction from human ECoG signals. Thus, to achieve such BMIs, ECoG signals might be used in conjunction with or as an alternative to intracortical neural signals.

  7. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.

    PubMed

    Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J

    2009-03-01

    Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.

  8. Simulated Breeding

    NASA Astrophysics Data System (ADS)

    Unemi, Tatsuo

    This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.

  9. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus

    NASA Astrophysics Data System (ADS)

    Krusienski, D. J.; Shih, J. J.

    2011-04-01

    A brain-computer interface (BCI) is a device that enables severely disabled people to communicate and interact with their environments using their brain waves. Most research investigating BCI in humans has used scalp-recorded electroencephalography or intracranial electrocorticography. The use of brain signals obtained directly from stereotactic depth electrodes to control a BCI has not previously been explored. In this study, event-related potentials (ERPs) recorded from bilateral stereotactic depth electrodes implanted in and adjacent to the hippocampus were used to control a P300 Speller paradigm. The ERPs were preprocessed and used to train a linear classifier to subsequently predict the intended target letters. The classifier was able to predict the intended target character at or near 100% accuracy using fewer than 15 stimulation sequences in the two subjects tested. Our results demonstrate that ERPs from hippocampal and hippocampal adjacent depth electrodes can be used to reliably control the P300 Speller BCI paradigm.

  10. The brain-computer interface cycle.

    PubMed

    van Gerven, Marcel; Farquhar, Jason; Schaefer, Rebecca; Vlek, Rutger; Geuze, Jeroen; Nijholt, Anton; Ramsey, Nick; Haselager, Pim; Vuurpijl, Louis; Gielen, Stan; Desain, Peter

    2009-08-01

    Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the subject and the effect of feedback on brain activity. In this article we will review the critical steps of the BCI cycle, the present issues and state-of-the-art results. Moreover, we will develop a vision on how recently obtained results may contribute to new insights in neurocognition and, in particular, in the neural representation of perceived stimuli, intended actions and emotions. Now is the right time to explore what can be gained by embracing real-time, online BCI and by adding it to the set of experimental tools already available to the cognitive neuroscientist. We close by pointing out some unresolved issues and present our view on how BCI could become an important new tool for probing human cognition.

  11. Toward a Model-Based Predictive Controller Design in Brain–Computer Interfaces

    PubMed Central

    Kamrunnahar, M.; Dias, N. S.; Schiff, S. J.

    2013-01-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain–computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8–23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications. PMID:21267657

  12. Toward a model-based predictive controller design in brain-computer interfaces.

    PubMed

    Kamrunnahar, M; Dias, N S; Schiff, S J

    2011-05-01

    A first step in designing a robust and optimal model-based predictive controller (MPC) for brain-computer interface (BCI) applications is presented in this article. An MPC has the potential to achieve improved BCI performance compared to the performance achieved by current ad hoc, nonmodel-based filter applications. The parameters in designing the controller were extracted as model-based features from motor imagery task-related human scalp electroencephalography. Although the parameters can be generated from any model-linear or non-linear, we here adopted a simple autoregressive model that has well-established applications in BCI task discriminations. It was shown that the parameters generated for the controller design can as well be used for motor imagery task discriminations with performance (with 8-23% task discrimination errors) comparable to the discrimination performance of the commonly used features such as frequency specific band powers and the AR model parameters directly used. An optimal MPC has significant implications for high performance BCI applications.

  13. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor.

    PubMed

    Alonso-Valerdi, Luz María

    2016-01-01

    A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application.

  14. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor

    PubMed Central

    Alonso-Valerdi, Luz María

    2016-01-01

    A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application. PMID:27445783

  15. Engineering brain-computer interfaces: past, present and future.

    PubMed

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.

  16. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  17. Computer Series, 62: Bits and Pieces, 25.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1985-01-01

    Describes: (1) a FORTH-language, computer-controlled potentiometric titration; (2) coulometric titrations using computer-interfaced potentiometric endpoint detection; (3) interfacing a scanning infrared spectrophotometer to a microcomputer; (4) demonstrations of signal-to-noise enhancement (digital filtering); (5) and an inexpensive Apple…

  18. A New Continent of Ideas

    NASA Technical Reports Server (NTRS)

    1990-01-01

    While a new technology called 'virtual reality' is still at the 'ground floor' level, one of its basic components, 3D computer graphics is already in wide commercial use and expanding. Other components that permit a human operator to 'virtually' explore an artificial environment and to interact with it are being demonstrated routinely at Ames and elsewhere. Virtual reality might be defined as an environment capable of being virtually entered - telepresence, it is called - or interacted with by a human. The Virtual Interface Environment Workstation (VIEW) is a head-mounted stereoscopic display system in which the display may be an artificial computer-generated environment or a real environment relayed from remote video cameras. Operator can 'step into' this environment and interact with it. The DataGlove has a series of fiber optic cables and sensors that detect any movement of the wearer's fingers and transmit the information to a host computer; a computer generated image of the hand will move exactly as the operator is moving his gloved hand. With appropriate software, the operator can use the glove to interact with the computer scene by grasping an object. The DataSuit is a sensor equipped full body garment that greatly increases the sphere of performance for virtual reality simulations.

  19. Computer Assistance in Information Work. Part I: Conceptual Framework for Improving the Computer/User Interface in Information Work. Part II: Catalog of Acceleration, Augmentation, and Delegation Functions in Information Work.

    ERIC Educational Resources Information Center

    Paisley, William; Butler, Matilda

    This study of the computer/user interface investigated the role of the computer in performing information tasks that users now perform without computer assistance. Users' perceptual/cognitive processes are to be accelerated or augmented by the computer; a long term goal is to delegate information tasks entirely to the computer. Cybernetic and…

  20. Triple redundant computer system/display and keyboard subsystem interface

    NASA Technical Reports Server (NTRS)

    Gulde, F. J.

    1973-01-01

    Interfacing of the redundant display and keyboard subsystem with the triple redundant computer system is defined according to space shuttle design. The study is performed in three phases: (1) TRCS configuration and characteristics identification; (2) display and keyboard subsystem configuration and characteristics identification, and (3) interface approach definition.

  1. Employing a Structured Interface to Advance Primary Students' Communicative Competence in a Text-Based Computer Mediated Environment

    ERIC Educational Resources Information Center

    Chiu, Chiung-Hui; Wu, Chiu-Yi; Hsieh, Sheng-Jieh; Cheng, Hsiao-Wei; Huang, Chung-Kai

    2013-01-01

    This study investigated whether a structured communication interface fosters primary students' communicative competence in a synchronous typewritten computer-mediated collaborative learning environment. The structured interface provided a set of predetermined utterance patterns for elementary students to use or imitate to develop communicative…

  2. Real-World Neuroimaging Technologies

    DTIC Science & Technology

    2013-05-10

    system enables long-term wear of up to 10 consecutive hours of operation time. The system’s wireless technologies, light weight (200g), and dry sensor ...biomarkers, body sensor networks , brain computer interactionbrain, computer interfaces, data acquisition, electroencephalography monitoring, translational...brain activity in real-world scenarios. INDEX TERMS Behavioral science, biomarkers, body sensor networks , brain computer interfaces, brain computer

  3. Aircraft Alerting Systems Standardization Study. Phase IV. Accident Implications on Systems Design.

    DTIC Science & Technology

    1982-06-01

    computing and processing to assimilate and process status informa- 5 tion using...provided with capabilities in computing and processing , sensing, interfacing, and controlling and displaying. 17 o Computing and Processing - Algorithms...alerting system to perform a flight status monitor function would require additional sensinq, computing and processing , interfacing, and controlling

  4. Benchmarking Brain-Computer Interfaces Outside the Laboratory: The Cybathlon 2016

    PubMed Central

    Novak, Domen; Sigrist, Roland; Gerig, Nicolas J.; Wyss, Dario; Bauer, René; Götz, Ulrich; Riener, Robert

    2018-01-01

    This paper presents a new approach to benchmarking brain-computer interfaces (BCIs) outside the lab. A computer game was created that mimics a real-world application of assistive BCIs, with the main outcome metric being the time needed to complete the game. This approach was used at the Cybathlon 2016, a competition for people with disabilities who use assistive technology to achieve tasks. The paper summarizes the technical challenges of BCIs, describes the design of the benchmarking game, then describes the rules for acceptable hardware, software and inclusion of human pilots in the BCI competition at the Cybathlon. The 11 participating teams, their approaches, and their results at the Cybathlon are presented. Though the benchmarking procedure has some limitations (for instance, we were unable to identify any factors that clearly contribute to BCI performance), it can be successfully used to analyze BCI performance in realistic, less structured conditions. In the future, the parameters of the benchmarking game could be modified to better mimic different applications (e.g., the need to use some commands more frequently than others). Furthermore, the Cybathlon has the potential to showcase such devices to the general public. PMID:29375294

  5. A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.

    PubMed

    Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L

    2003-01-01

    Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.

  6. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    PubMed

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  7. [A cyborg is only human].

    PubMed

    Schermer, Maartje H N

    2013-01-01

    New biomedical technologies make it possible to replace parts of the human body or to substitute its functions. Examples include artificial joints, eye lenses and arterial stents. Newer technologies use electronics and software, for example in brain-computer interfaces such as retinal implants and the exoskeleton MindWalker. Gradually we are creating cyborgs: hybrids of man and machine. This raises the question: are cyborgs still humans? It is argued that they are. First, because employing technology is a typically human characteristic. Second, because in western thought the human mind, and not the body, is considered to be the seat of personhood. However, it has been argued by phenomenological philosophers that the body is more than just an object but is also a subject, important for human identity. From this perspective, we can appreciate that a bionic body does not make one less human, but it does influence the experience of being human.

  8. Flash drive memory apparatus and method

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor)

    2010-01-01

    A memory apparatus includes a non-volatile computer memory, a USB mass storage controller connected to the non-volatile computer memory, the USB mass storage controller including a daisy chain component, a male USB interface connected to the USB mass storage controller, and at least one other interface for a memory device, other than a USB interface, the at least one other interface being connected to the USB mass storage controller.

  9. Controller/Computer Interface with an Air-Ground Data Link

    DOT National Transportation Integrated Search

    1976-06-01

    This report describes the results of an experiment for evaluating the controller/computer interface in an ARTS III/M&S system modified for use with a simulated digital data link and a voice link utilizing a computer-generated voice system. A modified...

  10. Save medical personnel's time by improved user interfaces.

    PubMed

    Kindler, H

    1997-01-01

    Common objectives in the industrial countries are the improvement of quality of care, clinical effectiveness, and cost control. Cost control, in particular, has been addressed through the introduction of case mix systems for reimbursement by social-security institutions. More data is required to enable quality improvement, increases in clinical effectiveness and for juridical reasons. At first glance, this documentation effort is contradictory to cost reduction. However, integrated services for resource management based on better documentation should help to reduce costs. The clerical effort for documentation should be decreased by providing a co-operative working environment for healthcare professionals applying sophisticated human-computer interface technology. Additional services, e.g., automatic report generation, increase the efficiency of healthcare personnel. Modelling the medical work flow forms an essential prerequisite for integrated resource management services and for co-operative user interfaces. A user interface aware of the work flow provides intelligent assistance by offering the appropriate tools at the right moment. Nowadays there is a trend to client/server systems with relational databases or object-oriented databases as repository. The work flows used for controlling purposes and to steer the user interfaces must be represented in the repository.

  11. Robust Real-Time Musculoskeletal Modeling Driven by Electromyograms.

    PubMed

    Durandau, Guillaume; Farina, Dario; Sartori, Massimo

    2018-03-01

    Current clinical biomechanics involves lengthy data acquisition and time-consuming offline analyses with biomechanical models not operating in real-time for man-machine interfacing. We developed a method that enables online analysis of neuromusculoskeletal function in vivo in the intact human. We used electromyography (EMG)-driven musculoskeletal modeling to simulate all transformations from muscle excitation onset (EMGs) to mechanical moment production around multiple lower-limb degrees of freedom (DOFs). We developed a calibration algorithm that enables adjusting musculoskeletal model parameters specifically to an individual's anthropometry and force-generating capacity. We incorporated the modeling paradigm into a computationally efficient, generic framework that can be interfaced in real-time with any movement data collection system. The framework demonstrated the ability of computing forces in 13 lower-limb muscle-tendon units and resulting moments about three joint DOFs simultaneously in real-time. Remarkably, it was capable of extrapolating beyond calibration conditions, i.e., predicting accurate joint moments during six unseen tasks and one unseen DOF. The proposed framework can dramatically reduce evaluation latency in current clinical biomechanics and open up new avenues for establishing prompt and personalized treatments, as well as for establishing natural interfaces between patients and rehabilitation systems. The integration of EMG with numerical modeling will enable simulating realistic neuromuscular strategies in conditions including muscular/orthopedic deficit, which could not be robustly simulated via pure modeling formulations. This will enable translation to clinical settings and development of healthcare technologies including real-time bio-feedback of internal mechanical forces and direct patient-machine interfacing.

  12. Program Predicts Time Courses of Human/Computer Interactions

    NASA Technical Reports Server (NTRS)

    Vera, Alonso; Howes, Andrew

    2005-01-01

    CPM X is a computer program that predicts sequences of, and amounts of time taken by, routine actions performed by a skilled person performing a task. Unlike programs that simulate the interaction of the person with the task environment, CPM X predicts the time course of events as consequences of encoded constraints on human behavior. The constraints determine which cognitive and environmental processes can occur simultaneously and which have sequential dependencies. The input to CPM X comprises (1) a description of a task and strategy in a hierarchical description language and (2) a description of architectural constraints in the form of rules governing interactions of fundamental cognitive, perceptual, and motor operations. The output of CPM X is a Program Evaluation Review Technique (PERT) chart that presents a schedule of predicted cognitive, motor, and perceptual operators interacting with a task environment. The CPM X program allows direct, a priori prediction of skilled user performance on complex human-machine systems, providing a way to assess critical interfaces before they are deployed in mission contexts.

  13. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks

    NASA Astrophysics Data System (ADS)

    Meng, Jianjun; Zhang, Shuying; Bekyo, Angeliki; Olsoe, Jaron; Baxter, Bryan; He, Bin

    2016-12-01

    Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology.

  14. Human agency beliefs influence behaviour during virtual social interactions.

    PubMed

    Caruana, Nathan; Spirou, Dean; Brock, Jon

    2017-01-01

    In recent years, with the emergence of relatively inexpensive and accessible virtual reality technologies, it is now possible to deliver compelling and realistic simulations of human-to-human interaction. Neuroimaging studies have shown that, when participants believe they are interacting via a virtual interface with another human agent, they show different patterns of brain activity compared to when they know that their virtual partner is computer-controlled. The suggestion is that users adopt an "intentional stance" by attributing mental states to their virtual partner. However, it remains unclear how beliefs in the agency of a virtual partner influence participants' behaviour and subjective experience of the interaction. We investigated this issue in the context of a cooperative "joint attention" game in which participants interacted via an eye tracker with a virtual onscreen partner, directing each other's eye gaze to different screen locations. Half of the participants were correctly informed that their partner was controlled by a computer algorithm ("Computer" condition). The other half were misled into believing that the virtual character was controlled by a second participant in another room ("Human" condition). Those in the "Human" condition were slower to make eye contact with their partner and more likely to try and guide their partner before they had established mutual eye contact than participants in the "Computer" condition. They also responded more rapidly when their partner was guiding them, although the same effect was also found for a control condition in which they responded to an arrow cue. Results confirm the influence of human agency beliefs on behaviour in this virtual social interaction context. They further suggest that researchers and developers attempting to simulate social interactions should consider the impact of agency beliefs on user experience in other social contexts, and their effect on the achievement of the application's goals.

  15. TMS communications hardware. Volume 1: Computer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, J. S.; Weinrich, S. S.

    1979-01-01

    A prototpye coaxial cable bus communications system was designed to be used in the Trend Monitoring System (TMS) to connect intelligent graphics terminals (based around a Data General NOVA/3 computer) to a MODCOMP IV host minicomputer. The direct memory access (DMA) interfaces which were utilized for each of these computers are identified. It is shown that for the MODCOMP, an off-the-shell board was suitable, while for the NOVAs, custon interface circuitry was designed and implemented.

  16. Input data requirements for special processors in the computation system containing the VENTURE neutronics code. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1979-07-01

    User input data requirements are presented for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated.

  17. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  18. Program For Generating Interactive Displays

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; hide

    1991-01-01

    Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute

  19. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  20. Characterization of the interface of the bone marrow stromal cell antigen 2-Vpu protein complex via computational chemistry.

    PubMed

    Zhou, Jinming; Zhang, Zhixin; Mi, Zeyun; Wang, Xin; Zhang, Quan; Li, Xiaoyu; Liang, Chen; Cen, Shan

    2012-02-14

    Bone marrow stromal cell antigen 2 (BST-2) inhibits the release of enveloped viruses from the cell surface. Various viral counter measures have been discovered, which allow viruses to escape BST-2 restriction. Human immunodeficiency virus type 1 (HIV-1) encodes viral protein U (Vpu) that interacts with BST-2 through their transmembrane domains and causes the downregulation of cell surface BST-2. In this study, we used a computer modeling method to establish a molecular model to investigate the binding interface of the transmembrane domains of BST-2 and Vpu. The model predicts that the interface is composed of Vpu residues I6, A10, A14, A18, V25, and W22 and BST-2 residues L23, I26, V30, I34, V35, L41, I42, and T45. Introduction of mutations that have been previously reported to disrupt the Vpu-BST-2 interaction led to a calculated higher binding free energy (MMGBSA), which supports our molecular model. A pharmacophore was also generated on the basis of this model. Our results provide a precise model that predicts the detailed interaction occurring between the transmembrane domains of Vpu and BST-2 and should facilitate the design of anti-HIV agents that are able to disrupt this interaction.

Top