Sample records for human corneal epithelium

  1. Diadenosine polyphosphates release by human corneal epithelium.

    PubMed

    Carracedo, Gonzalo; Guzman-Aranguez, Ana; Loma, Patricia; Pintor, Jesús

    2013-08-01

    Diadenosine polyphosphates are a type of dinucleotides that have been detected in rabbit and human tears. However, their origin and their mechanism of release have not been fully elucidated. In this work we investigated whether the dinucleotides Ap4A and Ap5A can be released from human corneal epithelia as a consequence of shear stress stimuli. In in vitro experiments, concentrations of Ap4A and Ap5A before mechanical stimulus of stratified human corneal epithelial cells were 3.18 ± 0.43 nM and 0.81 ± 0.13 nM, respectively. After shear stimulation, concentrations significantly increased to 12.01 ± 2.19 nM for Ap4A and 2.83 ± 0.41 nM for Ap5A. No significant differences in lactate dehydrogenase activity were detected between non-stimulated stratified human corneal epithelial cells and cells exposed to mechanical shear-stress, indicating that the rise of dinucleotide levels was not due to cell lysis. In in vivo experiments, individuals subjected to a rise in blinking frequency showed a significant increase of Ap4A (∼25-fold when experiment was performed without anaesthetic and 75-fold with anaesthetic) and Ap5A concentration in tears (∼50-fold when experiment was performed without anaesthetic and 125-fold with anaesthetic). Shear-stress stimuli induces Ap4A and Ap5A release from human corneal epithelium, thus explaining the origin of these relevant compounds for the ocular surface biochemistry and physiology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Reconstruction of corneal epithelium with cryopreserved corneal limbal stem cells in a goat model.

    PubMed

    Mi, Shengli; Yang, Xueyi; Zhao, Qingmei; Qu, Lei; Chen, Shuming; M Meek, Keith; Dou, Zhongying

    2008-11-01

    We describe a procedure to construct an artificial corneal epithelium from cryopreserved limbal stem cells (LSCs) for corneal transplantation. The LSCs were separated from limbal tissue of male goats. The primary LSCs were identified by flow cytometry and were expanded. They were examined for stem cell-relevant properties and cryopreserved in liquid nitrogen. Cryopreserved LSCs were thawed and then transplanted onto human amniotic membrane, framed on a nitrocellulose sheet, to construct corneal epithelium sheets. The artificial corneal epithelium was transplanted into the right eye of pathological models of total limbal stem cell deficiency (LSCD). Then, the effects of reconstruction were evaluated by clinical observation and histological examination. Polymerase chain reaction analysis was used to detect the SRY gene. The data showed that transplantation of cryopreserved LSCs, like fresh LSCs, successfully reconstructed damaged goat corneal surface gradually, but the SRY gene expression from male goat cells could only be detected in the first 2 months after transplantation. The therapeutic effect of the transplantation may be associated with the inhibition of inflammation-related angiogenesis after transplantation of cryopreserved LSCs. This study provides the first line of evidence that cryopreserved LSCs can be used for reconstruction of damaged corneas, presenting a remarkable potential source for transplantation in the treatment of corneal disorders.

  3. Corneal epithelium and UV-protection of the eye.

    PubMed

    Ringvold, A

    1998-04-01

    To study UV-absorption and UV-induced fluorescence in the bovine corneal epithelium. Spectrophotometry and spectrofluorimetry. The corneal epithelium absorbs UV-B radiation mainly owing to its content of protein, RNA, and ascorbate. Some of the absorbed energy is transformed to the less biotoxic UV-A radiation by fluorescence. RNA and ascorbate reduce tissue fluorescence. The corneal epithelium acts as a UV-filter, protecting internal eye structures through three different mechanisms: (1) Absorption of UV-B roughly below 310 nm wavelength. (2) Fluorescence-mediated ray transformation to longer wavelengths. (3) Fluorescence reduction. The extremely high ascorbate concentration in the corneal epithelium has a key role in two of these processes.

  4. The Effect of Corneal Epithelium on Corneal Curvature in Patients with Keratoconus.

    PubMed

    Akcay, Emine Kalkan; Uysal, Betul Seher; Sarac, Ozge; Ugurlu, Nagehan; Yulek, Fatma; Cagil, Nurullah; Aslan, Nabi

    2015-01-01

    To investigate the effects of corneal epithelium on corneal curvature in patients with keratoconus. This is a prospective, nonrandomized study. Fifty-nine eyes of 47 patients diagnosed as keratoconus and for whom corneal collagen crosslinking (CXL) was recruited in this study. This study is a single-center clinical trial. Pregnancy, lactation, connective tissue disease, corneal thickness below 350 μm, severe dry eyes, or scar of corneal surgery were exclusion criteria. Before and during CXL procedure after removing the corneal epithelium, maximum values of corneal apical curvature, simulated keratometry 1 (Sim-K1), simulated keratometry 2 (Sim-K2), temporal and inferior curvature values, all of which are 1.5 mm from the corneal center, were calculated. These values before and after removal of epithelium were compared statistically. Mean age of patients was 23.30 ± 5.5 (12-38) years. Twenty-eight (59%) were male while 19 (41%) were female. Mean values measured before and after removing the corneal epithelium were: apical curvature; 59.19 ± 7.2 (47.06-82.40) diopter (D) and 61.70 ± 8.8 (49.19-92.66) D (p = 0.001), SimK1; 47.57 ± 4.3 (39.14-64.57) D and 48.23 ± 4.3 (41.89-66.70) D (p = 0.001), SimK2; 52.04 ± 5.3 (43.56-69.34) D and 53.34 ± 5.6 (43.73-70.89) D (p = 0.001), inferior curvature; 53,85 ± 5.2 (43.47-76.56) D and 55.05 ± 5.8 (44.56-81.93) D (p = 0.002), temporal curvature 49.49 ± 5.1 (41.50-71.03) D and 51.53 ± 5.4 (41.58-73.34) D (p = 0.001), respectively. In keratoconus patients during CXL treatment, after removing the corneal epithelium, more steepness is detected in the curvature of the steeper area of the cornea. When evaluating patients with keratoconus, the masking effect of corneal epithelium on values of curvature should be taken into consideration.

  5. Instillation of Sericin Enhances Corneal Wound Healing through the ERK Pathway in Rat Debrided Corneal Epithelium

    PubMed Central

    Nagai, Noriaki; Fukuoka, Yuya; Ishii, Miyu; Otake, Hiroko; Yamamoto, Tetsushi; Taga, Atsushi; Okamoto, Norio; Shimomura, Yoshikazu

    2018-01-01

    Sericin is a major constituent of silk produced by silkworms. We previously found that the instillation of sericin enhanced the proliferation of corneal epithelial cells, and acted to promote corneal wound healing in both normal and diabetic model rats. However, the mechanisms by which sericin promotes the proliferation of corneal cells have not been established. In this study, we investigated the effects of sericin on Akt and ERK activation in a human corneal epithelial cell line (HCE-T cells) and rat debrided corneal epithelium. Although Akt phosphorylation was not detected following the treatment of HCE-T cells with sericin, ERK1/2 phosphorylation was enhanced. The growth of HCE-T cells treated with sericin was significantly increased, with the cell growth of sericin-treated HCE-T cells being 1.7-fold higher in comparison with vehicle-treated HCE-T cells. On the other hand, both of an ERK inhibitor U0126 (non-specific specific inhibitor) and SCH772984 (specific inhibitor) attenuated the enhanced cell growth by sericin, and the growth level in the case of co-treatment with sericin and ERK1/2 inhibitor was similar to that of cells treated with ERK1/2 inhibitor alone. In an in vivo study using rat debrided corneal epithelium, the corneal wound healing rate was enhanced by the instillation of sericin, and this enhancement was also attenuated by the instillation of U0126. In addition, the corneal wound healing rate in rats co-instilled with sericin and U0126 was similar to that following the instillation of U0126 alone. In conclusion, we found that the instillation of sericin enhanced cell proliferation via the activation of the MAPK/ERK pathway, resulting in the promotion of corneal wound healing in rat eyes. These findings provide significant information for designing further studies to develop potent corneal wound-healing drugs. PMID:29642540

  6. Regeneration of Corneal Epithelium With Dental Pulp Stem Cells Using a Contact Lens Delivery System.

    PubMed

    Kushnerev, Evgeny; Shawcross, Susan G; Sothirachagan, Shankari; Carley, Fiona; Brahma, Arun; Yates, Julian M; Hillarby, M Chantal

    2016-10-01

    The corneal epithelium is sloughed off surface of the eye by the action of blinking and is continually replaced by division and maturation of the limbal stem cells (LSCs). In the case of injury or disease, LSCs can be lost or damaged to a point at which the corneal epithelial layer is no longer maintained. leading to LSC deficiencies (LSCDs). When this occurs, the opaque conjunctiva overgrows the anterior surface of the eye, leading to vision impairment or loss. Dental pulp stem cells (DPSCs) are promising candidates as autologous LSC substitutes. In this study, contact lenses (CLs) are used as a novel medical device to deliver DPSCs onto corneal surface to enhance corneal epithelium regeneration. Dental pulp stem cells labeled with green fluorescent Qtracker 525 were seeded onto the pretreated CLs, allowed to adhere, then delivered to debrided human corneas. Expression of KRT3, 12, 13, and 19 was investigated by immunostaining, then standard and confocal microscopy. Dental pulp stem cells were successfully isolated, labeled, and delivered to the corneal surface using CLs. Following removal of CLs, confocal microscopy showed that the DPSCs had migrated onto the cornea. Coexpression of KRT12 and green fluorescent Qtracker 525 confirmed that the DPSCs had transdifferentiated into corneal epithelial progenitors. Delimitation of KRT 19 and green fluorescence provides evidence that Qtracker 525-labeled DPSCs establish a barrier to the invasion of the cornea by conjunctiva. In this study we show that DPSCs, delivered using CLs, can be used to enhance repair and regeneration of the human corneal epithelium.

  7. Xenogeneic Acellular Conjunctiva Matrix as a Scaffold of Tissue-Engineered Corneal Epithelium

    PubMed Central

    Zhao, Haifeng; Qu, Mingli; Wang, Yao; Wang, Zhenyu; Shi, Weiyun

    2014-01-01

    Amniotic membrane-based tissue-engineered corneal epithelium has been widely used in the reconstruction of the ocular surface. However, it often degrades too early to ensure the success of the transplanted corneal epithelium when treating patients with severe ocular surface disorders. In the present study, we investigated the preparation of xenogeneic acellular conjunctiva matrix (aCM) and evaluated its efficacy and safety as a scaffold of tissue-engineered corneal epithelium. Native porcine conjunctiva was decellularized with 0.1% sodium dodecyl sulfate (SDS) for 12 h at 37°C and sterilized via γ-irradiation. Compared with native conjunctiva, more than 92% of the DNA was removed, and more than 90% of the extracellular matrix components (glycosaminoglycan and collagen) remained after the decellularization treatment. Compared with denuded amniotic membrane (dAM), the aCM possessed favorable optical transmittance, tensile strength, stability and biocompatibility as well as stronger resistance to degradation both in vitro and in vivo. The corneal epithelial cells seeded on aCM formed a multilayered epithelial structure and endured longer than did those on dAM. The aCM-based tissue-engineered corneal epithelium was more effective in the reconstruction of the ocular surface in rabbits with limbal stem cell deficiency. These findings support the application of xenogeneic acellular conjunctiva matrix as a scaffold for reconstructing the ocular surface. PMID:25375996

  8. Expression of heat shock protein in the atrophic corneal epithelium of the Royal College of Surgeons dystrophic rat.

    PubMed

    Yamaguchi, K; Yamaguchi, K; Sheedlo, H J; Turner, J E

    1991-03-01

    We report atrophic changes in the corneal epithelium of Royal College of Surgeons (RCS) dystrophic rats. The thickness of the corneal epithelium of 180-day-old RCS dystrophic rats was significantly decreased compared to that of 26-day-old RCS dystrophic and age-matched Sprague-Dawley (SD) rats. Immunostaining for (Na+ + K+) ATPase in the corneal epithelium of 180-day-old RCS dystrophic rats was dramatically reduced when compared to that of 26-day-old RCS dystrophic and age-matched SD rats. In contrast, heat shock protein immunostaining in the corneal epithelium was dense in all of the basal cells, wing cells, and superficial cells of 180-day-old RCS dystrophic rats but was minimally observed in some of the basal cells and in fewer wing and superficial cells of the corneal epithelium of 26-day-old RCS dystrophic and age-matched SD rats. We speculate that toxic products from the degenerating rod outer segments in the course of retinal dystrophy may affect the corneal epithelium, resulting in its atrophy. It is also possible that heat shock proteins appear in the atrophic corneal epithelium due to its degenerative condition.

  9. In vitro 3D corneal tissue model with epithelium, stroma, and innervation.

    PubMed

    Wang, Siran; Ghezzi, Chiara E; Gomes, Rachel; Pollard, Rachel E; Funderburgh, James L; Kaplan, David L

    2017-01-01

    The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Regulatory analysis of hypoxia on innate immunity of human corneal epithelium].

    PubMed

    Pang, K P; Pan, H; Wu, X Y

    2016-11-15

    Objective: To investigate the role of hypoxia on the regulation of innate immunity of human corneal epithelium. Methods: Telomerase-immortalized human epithelial cells (THCEs) were incubated under normoxia (21% O 2 ) or hypoxic (1% O 2 ) conditions respectively. After 6, 12, 24, 48 h culture, the mRNA and protein levels of toll like receptor 4 (TLR4) were measured by real-time polymerase chain reaction (RT-PCR) and Western blot analysis. After 24 h culture, THCEs of each group were challenged respectively with TLR4 ligand lipopolysaccharide (LPS) (1 μg/ml) for 6 h. RT-PCR was used to assess the mRNA level of myeloid differentiation factor 88 (MyD88), interleukin(IL)6, IL-8 and tumor necrosis factor α (TNF-α). Western blot was used to examine the protein level of inhibitor of nuclear factor kappa-B α (IκBα) and phosphorylated IκBα (p-IκBα). Enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory cytokines IL-6, IL-8 and TNF-α. Results: The results of RT-PCR and Western blot analysis showed that the expression of TLR4 downregulated 90% and 55% respectively after hypoxic exposure for 48 h. Hypoxia also inhibited LPS-induced secretion of IL-6, IL-8, TNF-α, expression of MyD88 and activation of NF-κB. The mRNA level of MyD88 was diminished 63%, and the protein expression of p-IκBα was also lowered. Meanwhile, the secretions of IL-6, IL-8 and TNF-α under hypoxia were reduced (31%, 55% and 50% respectively). Conclusion: Hypoxia attenuated immune and inflammatory response of the cornea epithelium by suppressing TLR4 signaling, and could enhance cell susceptibility to microorganism infection.

  11. Spatial and spectral analysis of corneal epithelium injury using hyperspectral images

    NASA Astrophysics Data System (ADS)

    Md Noor, Siti Salwa; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang

    2017-12-01

    Eye assessment is essential in preventing blindness. Currently, the existing methods to assess corneal epithelium injury are complex and require expert knowledge. Hence, we have introduced a non-invasive technique using hyperspectral imaging (HSI) and an image analysis algorithm of corneal epithelium injury. Three groups of images were compared and analyzed, namely healthy eyes, injured eyes, and injured eyes with stain. Dimensionality reduction using principal component analysis (PCA) was applied to reduce massive data and redundancies. The first 10 principal components (PCs) were selected for further processing. The mean vector of 10 PCs with 45 pairs of all combinations was computed and sent to two classifiers. A quadratic Bayes normal classifier (QDC) and a support vector classifier (SVC) were used in this study to discriminate the eleven eyes into three groups. As a result, the combined classifier of QDC and SVC showed optimal performance with 2D PCA features (2DPCA-QDSVC) and was utilized to classify normal and abnormal tissues, using color image segmentation. The result was compared with human segmentation. The outcome showed that the proposed algorithm produced extremely promising results to assist the clinician in quantifying a cornea injury.

  12. Effects of the Loss of Conjunctival Muc16 on Corneal Epithelium and Stroma in Mice

    PubMed Central

    Shirai, Kumi; Okada, Yuka; Cheon, Dong-Joo; Miyajima, Masayasu; Behringer, Richard R.; Yamanaka, Osamu; Saika, Shizuya

    2014-01-01

    Purpose. To examine the role of conjunctival Muc16 in the homeostasis of the ocular surface epithelium and stroma using Muc16-null knockout (KO) mice. Methods. We used KO mice (n = 58) and C57/BL6 (WT) mice (n = 58). Histology and immunohistochemistry were employed to analyze the phenotypes in the ocular surface epithelium. The expression of phospho-Stat3, AP-1 components, interleukin 6 (IL-6), and tumor necrosis factor-α (TNFα) in the cornea and conjunctiva was examined. The shape of the nuclei of corneal epithelial cells was examined to evaluate intraepithelial cell differentiation. Epithelial cell proliferation was studied using bromo-deoxyuridine labeling. Finally, the wound healing of a round defect (2-mm diameter) in the corneal epithelium was measured. The keratocyte phenotype and macrophage invasion in the stroma were evaluated after epithelial repair. Results. The loss of Muc16 activated Stat3 signal, affected JunB signal, and upregulated the expression of IL-6 in the conjunctiva. Basal-like cells were observed in the suprabasal layer of the corneal epithelium with an increase in proliferation. The loss of Muc16 accelerated the wound healing of the corneal epithelium. The incidence of myofibroblast appearance and macrophage invasion were more marked in KO stroma than in WT stroma after epithelial repair. Conclusions. The loss of Muc16 in the conjunctiva affected the homeostasis of the corneal epithelium and stroma. The mechanism might include the upregulation of the inflammatory signaling cascade (i.e., Stat3 signal, and IL-6 expression in the KO conjunctiva). Current data provides insight into the research of the pathophysiology of dry eye syndrome. PMID:24812549

  13. The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns.

    PubMed

    Cejka, Cestmir; Holan, Vladimir; Trosan, Peter; Zajicova, Alena; Javorkova, Eliska; Cejkova, Jitka

    2016-01-01

    The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.

  14. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries

    PubMed Central

    Md Noor, Siti Salwa; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang

    2017-01-01

    In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability. PMID:29144388

  15. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries.

    PubMed

    Noor, Siti Salwa Md; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang

    2017-11-16

    In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability.

  16. Time-lapse recordings of human corneal epithelial healing.

    PubMed

    Hardarson, Thorir; Hanson, Charles; Claesson, Margareta; Stenevi, Ulf

    2004-04-01

    The aim of this study was to design an experimental set-up for the study of human corneal epithelial wound healing in a controlled in vitro situation. A time-lapse set-up was used. This allowed for pictures to be captured with a magnification ranging from x 80 to x 1800. Pictures were captured at 1-min intervals during the observation period, which lasted up to 4 days. Human corneal tissue was obtained from the Eye Bank or from surgery. A small, rounded lesion was produced in the corneal epithelium with a miniature drill. The specimens were placed in a mini-incubator; the camera focused on the epithelial lesion and continuously observed using the time-lapse set-up. The healing process of human corneal epithelium could be followed for several days. The initial healing response could be divided into a slow, a rapid and a consolidating phase. The first two phases lasted about 12 hours, and by then, epithelial cells covered the lesion. Depending on the origin of the tissue and the placement of the lesion, variations in the healing response could be seen. The time-lapse technique makes it possible to study epithelial wound healing over time at the cellular level. Data collected in this way can fill the gap between in vivo studies, where, by nature, human wound healing studies are restricted, and cell culture techniques, where cellular responses in many cases differ from the in vivo situation.

  17. The Effects of Silicone Hydrogel Lens Wear on the Corneal Epithelium and Risk for Microbial Keratitis

    PubMed Central

    Robertson, Danielle M.

    2012-01-01

    Previous studies using animal models and human clinical trials have demonstrated that the use of low oxygen transmissible contact lens materials produce corneal epithelial surface damage resulting in increased Pseudomonas aeruginosa (PA) adhesion and raft-mediated internalization into surface corneal epithelial cells. These findings led to the testable clinical predictions that: (1) microbial keratitis (MK) risk is expected to be greatest during the first 6 months of wear; (2) there is no difference between 6 and 30 night extended wear; and (3) that wear of hyper-oxygen transmissible lenses would reduce the reported incidence of infection. Subsequent epidemiological studies have confirmed the first two predictions; however, increased oxygen transmissibility with silicone hydrogel (SiHy) lens wear has not altered the overall incidence of MK. In this review, more recent clinical and basic studies that investigate epithelial alterations and bacterial adhesion to corneal epithelial cells following wear of SiHy lenses with and without concomitant exposure to chemically preserved multipurpose solutions (MPS) will be examined. The collective results of these studies demonstrate that even in the absence of lens-related hypoxia, MPS induce ocular surface changes during SiHy lens wear which are associated with a pathophysiological increase in PA adherence and internalization in the corneal epithelium, and therefore, predict an increased risk for PA-MK. In addition, new data supporting an interactive role for inflammation in facilitating PA adherence and internalization in the corneal epithelium will also be discussed. PMID:23266590

  18. Corneal epithelium, visual acuity, and laser refractive keratectomy

    NASA Astrophysics Data System (ADS)

    Simon, Gabriel; Parel, Jean-Marie A.; Kervick, Gerard N.; Rol, Pascal O.; Hanna, Khalil; Thompson, Keith P.

    1991-06-01

    Photorefractive keratectomy (PRK) using an argon fluoride excimer laser for photoablation of the cornea shows potential for the precise correction of refractive errors in patients. Usually, the epithelium is mechanically removed, and Bowman's layer and stromal tissue are photoablated to precomputed depths and shapes that are based on known ablation rates for these tissues. After four day's time, the epithelium has regrown. Assuming the epithelium to be preoperatively uniform in thickness across the central optical zone, and assuming that it regrows to the same thickness, a theoretical precision of +/- 0.05 diopters is achievable with PRK. Keratometric measurements of the epithelium and of Bowman's layer were made at the 2.0 and 3.6 mm optical zones on 10 fresh cadaver eyes (<21 hours postmortem). In the eyes studied, the epithelium thickness was found to vary across the central optical zone, accounting for the measured refractive differences of 0.5 to 1.8 diopters. Bowman's layer was found to be more prolated than the epithelial surface (ratios: 1.005 compared to 1.033). In addition, the surface of Bowman's layer had a larger degree of astigmatism. Other studies have shown that the epithelium regrowth is a function of the newly exposed corneal topography as the wing cells compensate for irregularities in Bowman's surface. As the preoperative topography of the epithelium cannot be used as a reference surface when computing photoablation depth, intraoperative keratometry of Bowman's surface becomes a necessity in PRK.

  19. The tissue-engineered human cornea as a model to study expression of matrix metalloproteinases during corneal wound healing.

    PubMed

    Couture, Camille; Zaniolo, Karine; Carrier, Patrick; Lake, Jennifer; Patenaude, Julien; Germain, Lucie; Guérin, Sylvain L

    2016-02-01

    Corneal injuries remain a major cause of consultation in the ophthalmology clinics worldwide. Repair of corneal wounds is a complex mechanism that involves cell death, migration, proliferation, differentiation, and extracellular matrix (ECM) remodeling. In the present study, we used a tissue-engineered, two-layers (epithelium and stroma) human cornea as a biomaterial to study both the cellular and molecular mechanisms of wound healing. Gene profiling on microarrays revealed important alterations in the pattern of genes expressed by tissue-engineered corneas in response to wound healing. Expression of many MMPs-encoding genes was shown by microarray and qPCR analyses to increase in the migrating epithelium of wounded corneas. Many of these enzymes were converted into their enzymatically active form as wound closure proceeded. In addition, expression of MMPs by human corneal epithelial cells (HCECs) was affected both by the stromal fibroblasts and the collagen-enriched ECM they produce. Most of all, results from mass spectrometry analyses provided evidence that a fully stratified epithelium is required for proper synthesis and organization of the ECM on which the epithelial cells adhere. In conclusion, and because of the many characteristics it shares with the native cornea, this human two layers corneal substitute may prove particularly useful to decipher the mechanistic details of corneal wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid.

    PubMed

    Pflugfelder, S C; Liu, Z; Monroy, D; Li, D Q; Carvajal, M E; Price-Schiavi, S A; Idris, N; Solomon, A; Perez, A; Carraway, K L

    2000-05-01

    To evaluate human ocular surface epithelium and tear fluid for the presence of sialomucin complex (MUC4), a high-molecular-weight heterodimeric glycoprotein composed of mucin (ASGP-1) and transmembrane (ASGP-2) subunits. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis assays were used to identify sialomucin complex RNA in ocular surface epithelia. Immunoprecipitation and immunoblot analysis were used to identify immunoreactive species in human tears and in the corneal and conjunctival epithelia using antibodies specific for carbohydrate and peptide epitopes on the sialomucin complex subunits. Immunofluorescence staining was used to detect sialomucin complex in frozen sections and impression cytology specimens of human cornea and conjunctival epithelia. ASGP-1- and ASGP-2-specific sequences were amplified from RNA extracted from both conjunctival and corneal epithelial biopsies by RT-PCR. Sialomucin complex transcripts were also detected in these tissues by Northern blot analysis, with a greater level of RNA detected in the peripheral than the central corneal epithelium. Sialomucin complex was immunoprecipitated from tear fluid samples and both corneal and conjunctival epithelia and detected by immunoblot analysis with specific anti-ASGP-1 and anti-ASGP-2 antibodies. The ASGP-1 peptide antibody HA-1 stained the full thickness of the corneal and conjunctival epithelia. In contrast, antibody 15H10, which reacts against a carbohydrate epitope on ASGP-1, stained only the superficial epithelial layers of these tissues. No staining was observed in the conjunctival goblet cells. Sialomucin complex was originally identified in rat mammary adenocarcinoma cells and has recently been shown to be produced by the ocular surface epithelia of rats. Furthermore, it has been identified as the rat homologue of human MUC4 mucin. The present studies show that it is expressed in the stratified epithelium covering the surface of the human eye and is

  1. The effect of the corneal epithelium on the intraocular penetration of fluoroquinolone ophthalmic solution.

    PubMed

    Fukuda, Masamichi; Inoue, Amane; Sasaki, Kazuyuki; Takahashi, Nobuo

    2004-01-01

    Pharmacokinetic studies of antibacterial agents for infectious eye diseases have usually been performed on normal rabbit eyes. In this study, the intraocular penetration of fluoroquinolone ophthalmic solutions was determined in normal rabbit eyes and in rabbit eyes that had the corneal epithelium intentionally removed. We determined the intraocular penetration of ofloxacin (OFLX), levofloxacin (LVFX), and norfloxacin (NFLX), fluoroquinolone ophthalmic solutions that are already on the market and undergoing clinical studies, by injecting 50 microl of each solution into the cul-de-sacs of rabbit eyes three times at 15-min intervals. The drug concentration at 10, 30, 60, 120, and 240 min after final instillation was determined by high-performance liquid chromatography. The maximum concentration in the aqueous humor of normal rabbit eyes was 2.09 +/- 1.56 microg/ml (60 min, OFLX), 2.57 +/- 1.00 microg/ml (30 min, LVFX), and 0.42 +/- 0.12 microg/ml (120 min, NFLX). The drug concentration in the aqueous humor of eyes with intentionally removed corneal epithelium was 12.50 +/- 5.62 microg/ml (30 min, OFLX), 9.02 +/- 2.45 microg/ml (60 min, LVFX), and 8.54 +/- 5.17 microg/ml (30 min, NFLX). The drug penetration of the eye drops into eyes with removed corneal epithelium was around 6 times (OFLX), 3.5 times (LVFX), and 20 times (NFLX) higher than the penetration into the eye with normal cornea. Among the pharmacokinetic parameters of the three ophthalmic solutions according to the one-compartment model, the maximum concentration in the aqueous and the area under the concentration-time curve in the aqueous tended to be higher in the eyes with intentionally removed corneal epithelia than in those with normal corneas.

  2. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.

    PubMed

    Sorkio, Anni; Koch, Lothar; Koivusalo, Laura; Deiwick, Andrea; Miettinen, Susanna; Chichkov, Boris; Skottman, Heli

    2018-07-01

    There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted

  3. The core planar cell polarity gene, Vangl2, maintains apical-basal organisation of the corneal epithelium.

    PubMed

    Panzica, D Alessio; Findlay, Amy S; van Ladesteijn, Rianne; Collinson, J Martin

    2017-08-17

    The role of the core planar cell polarity (PCP) pathway protein, Vangl2, was investigated in the corneal epithelium of the mammalian eye, a paradigm anatomical model of planar cell migration. The gene was conditionally knocked out in vivo and knocked down by siRNA, followed by immunohistochemical, behavioural and morphological analysis of corneal epithelial cells. The primary defects observed in vivo were of apical-basal organisation of the corneal epithelium, with abnormal stratification throughout life, mislocalisation of the cell membrane protein, Scribble, to the basal side of cells, and partial loss of the epithelial basement membrane. Planar defects in migration after wounding and in the presence of an applied electric field were noted. However, knockdown of Vangl2 also retarded cell migration in individual cells that had no contact with their neighbours, which precluded a classic PCP mechanism. It is concluded that some of the planar polarity phenotypes in PCP mutants may arise from disruption of apical-basal polarity. © 2017 Anatomical Society.

  4. The effects of the topical administration of non-steroidal anti-inflammatory drugs on corneal epithelium and corneal sensitivity in normal subjects.

    PubMed

    Aragona, P; Tripodi, G; Spinella, R; Laganà, E; Ferreri, G

    2000-04-01

    To study the changes in the corneal epithelium and corneal sensitivity of healthy subjects after the topical administration of non-steroidal anti-inflammatory drugs (NSAIDs; diclofenac, indomethacin, flurbiprofen and ketorolac) frequently used in ocular therapy. A double-masked parallel clinical study was undertaken on 90 subjects (45 men, 45 women; Caucasian; age 21-46 years, mean +/- SD 27.1 +/- 5 years). The subjects were divided into six groups: group 1 was treated with placebo, group 2 with 0.1% diclofenac, group 3 with 0.1% indomethacin, group 4 with 0.03% flurbiprofen, group 5 with 0.5% ketorolac and group 6 with 0.4% oxybuprocaine. One eye was randomly treated with the study drug and the fellow eye was treated with placebo. The medications were instilled four times, at 5 min intervals. Assessment of the corneal epithelium was carried out by vital fluorescein stain before instillation and 5, 15, 30 and 60 min after instillation of the last drop. Subjective burning sensation was assessed by asking participants to rate burning on a scale from 0 (none) to 3 (severe). After 1 week, assessment of corneal sensitivity was carried out by the Cochet-Bonnet method, repeating the above scheme of instillation and measurement times. None of the study drugs, with the exception of oxybuprocaine, produced evident epithelial damage. All the drugs caused a mean burning sensation greater than the placebo. The diclofenac-treated group showed a statistically significant decrease in corneal sensitivity (p < 0.001) at the measurement carried out 15 min after instillation of the last drop and lasting up to the end of the study, when the corneal anaesthesia was similar to that induced by the topical anaesthetic treatment. No significant changes were demonstrated for the other NSAIDs when compared either with the placebo-treated eyes or with the fellow eyes. Despite a similar mechanism of action and analgesic activity to the other NSAIDs tested, diclofenac was able to induce a

  5. The eicosanoid, 15-(S)-HETE, stimulates secretion of mucin-like glycoprotein by the corneal epithelium.

    PubMed

    Jackson , R S; Van Dyken, S J; McCartney, M D; Ubels, J L

    2001-07-01

    The eicosanoid, 15-(S)-hydroxyeicosa-5Z, 8Z-11Z, 13E-tetraenoic acid (15-(S)-HETE), is known to stimulate production of mucin glycoprotein by airway epithelium. This study investigated the effect of 15-(S)-HETE on the mucin glycoprotein secretion by the corneal epithelium. To determine the effect of dose, corneas of anesthetized New Zealand White rabbits were treated with 50, 500, or 5,000 nM 15-(S)-HETE in artificial tears for 120 minutes. To determine the time to onset of the response, corneas were treated with 500 or 1,000 nM 15-(S)-HETE in balanced salt solution for periods ranging from 5 to 120 minutes. Corneas were fixed for electron microscopy in fixative containing 0.5% cetylpyridinium chloride (CPC) to stabilize the layer of mucin-like glycoprotein on the corneal surface. The mucin layer thickness was measured by image analysis of electron micrographs. The layer of CPC-fixed mucin-like glycoprotein on the surface of control corneas was 0.46 +/- 0.04 microm thick. After treatment with 15-(S)-HETE, the thickness of the mucin layer increased to 0.64 +/- 0.1 microm at 50 or 5,000 nM HETE and as much as 1.02 +/- 0.2 microm in response to 500 nM HETE. Mucin thickness reached a statistical maximum of 0.59 +/- 0.1 microm after only 5 minutes of exposure to 500 or 1,000 nM HETE. Exposure of the cornea to 15-(S)-HETE causes a rapid-onset increase in the thickness of a layer of mucin-like glycoprotein on the surface of the corneal epithelium. This supports previous reports that corneal epithelial cells produce mucin and suggests that treatment with topical 15-(S)-HETE may be effective in treating ocular surface mucin deficiency in dry eye syndrome.

  6. Stem cells and corneal epithelial maintenance – insights from the mouse and other animal models

    PubMed Central

    Mort, Richard L.; Douvaras, Panagiotis; Morley, Steven D.; Dorà, Natalie; Hill, Robert E.; Collinson, J. Martin; West, John D.

    2012-01-01

    Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is coordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium. PMID:22918816

  7. Effect of Systemically Used Anti-Tumor Necrosis Factor-α Medication on the Corneal Epithelium and Stroma of Patients with Ankylosing Spondylitis.

    PubMed

    Arikan, Sedat; Gokmen, Ferhat; Ersan, Ismail; Akbal, Ayla; Resorlu, Hatice; Gencer, Baran; Ali Tufan, Hasan; Kara, Selcuk

    2017-04-01

    To evaluate the effect of systemically used anti-tumor necrosis factor alpha (TNF-α) medication on the thickness of corneal epithelium and stroma in patients with ankylosing spondylitis (AS). A total of 125 eyes of 69 participants were included in this retrospective study of three groups: healthy participants (Group 1), AS patients receiving anti-TNF-α medication (Group 2), and AS patients receiving a nonsteroidal anti-inflammatory medication (Group 3). According to anterior segment optical coherence tomography, the mean thickness of the corneal epithelium was significantly thicker in Group 2 than in Group 3 (51.6 ± 3.2 µm versus 50.4 ± 3 µm, p = 0.01), as was that of the stroma (475 ± 33 µm versus 443 ± 29 µm, p = 0.002). Anti-TNF-α medication and/or avoidance of nonsteroidal anti-inflammatory drugs could improve the thickness of both the corneal epithelium and stroma in AS patients.

  8. Monocarboxylate Transporters Mediate Fluorescein Uptake in Corneal Epithelial Cells.

    PubMed

    Sun, Yi-Chen; Liou, Hau-Min; Yeh, Po-Ting; Chen, Wei-Li; Hu, Fung-Rong

    2017-07-01

    To determine the presence of monocarboxylate transporter (MCT) in human and rabbit corneal epithelium and its role in transcellular fluorescein transportation in the cornea. The presence of MCTs in human and rabbit corneal epithelium was determined by RT-PCR and immunohistochemistry. Intracellular fluorescein uptake experiment was performed using cultured human corneal epithelial cells (HCECs). The involvement of MCT in fluorescein uptake was determined by addition of MCT inhibitors to HCECs and acute dry eye model on New Zealand albino rabbits by spectrophotometry, corneal impression cytology, and external eye photographs. MCT-1 and MCT-4 were identified in both human and rabbit corneal epithelia. A longer treatment period and a lower pH value in culture medium increased fluorescein uptake in HCECs. Fluorescein uptake in HCECs was decreased following addition of MCT inhibitors in a concentration-dependent manner. Impression cytology under fluorescent microscopy showed intracellular fluorescein staining in the rabbit cornea with acute dry eye treatment that was decreased following topical treatment of MCT inhibitors. Fluorescein ingress in corneal epithelial cells is mediated by the MCT family. Further study of MCT-mediated transport on HCECs may potentially benefit differential diagnosis and contribute better understandings of ocular surface disorders.

  9. Co-ordinated ocular development from human iPS cells and recovery of corneal function.

    PubMed

    Hayashi, Ryuhei; Ishikawa, Yuki; Sasamoto, Yuzuru; Katori, Ryosuke; Nomura, Naoki; Ichikawa, Tatsuya; Araki, Saori; Soma, Takeshi; Kawasaki, Satoshi; Sekiguchi, Kiyotoshi; Quantock, Andrew J; Tsujikawa, Motokazu; Nishida, Kohji

    2016-03-17

    The eye is a complex organ with highly specialized constituent tissues derived from different primordial cell lineages. The retina, for example, develops from neuroectoderm via the optic vesicle, the corneal epithelium is descended from surface ectoderm, while the iris and collagen-rich stroma of the cornea have a neural crest origin. Recent work with pluripotent stem cells in culture has revealed a previously under-appreciated level of intrinsic cellular self-organization, with a focus on the retina and retinal cells. Moreover, we and others have demonstrated the in vitro induction of a corneal epithelial cell phenotype from pluripotent stem cells. These studies, however, have a single, tissue-specific focus and fail to reflect the complexity of whole eye development. Here we demonstrate the generation from human induced pluripotent stem cells of a self-formed ectodermal autonomous multi-zone (SEAM) of ocular cells. In some respects the concentric SEAM mimics whole-eye development because cell location within different zones is indicative of lineage, spanning the ocular surface ectoderm, lens, neuro-retina, and retinal pigment epithelium. It thus represents a promising resource for new and ongoing studies of ocular morphogenesis. The approach also has translational potential and to illustrate this we show that cells isolated from the ocular surface ectodermal zone of the SEAM can be sorted and expanded ex vivo to form a corneal epithelium that recovers function in an experimentally induced animal model of corneal blindness.

  10. [Recurrent Corneal Erosions in Epithelial Corneal Dystrophies].

    PubMed

    Geerling, Gerd; Lisch, Walter; Finis, David

    2018-06-01

    The corneal epithelium is the most important structure of the ocular optical system. Recurrent corneal erosions can result from inflammation, trauma, degeneration and dystrophies. Epithelial basement membrane dystrophy (EBMD), epithelial recurrent erosion dystrophy (ERED) and Francheschetti and Meesmann's epithelial corneal dystrophy (MECD) can all - besides other signs and symptoms - result in more or less frequent corneal erosions. The pathomechanisms involved however are different. In EBMD, corneal erosions are facultative and clinical signs are often subtle. Aberrant basement membrane structures are associated with thinning of the epithelium and can be clinically identified as maps or fingerprints. In ERED, recurrent corneal erosions are - predominantly in the first decades of life - always present. A defect in the COL17A1 gene results in a dysfunctional hemidesmosome. In MECD, punctate corneal erosions are less frequent and result from intraepithelial microcysts which open spontaneously onto the ocular surface. Usually lubricants, therapeutic contact lenses and sometimes epithelial debridement and phototherapeutic keratectomy are the mainstay for treating corneal erosions in these three dystrophies. Georg Thieme Verlag KG Stuttgart · New York.

  11. Low humidity environmental challenge causes barrier disruption and cornification of the mouse corneal epithelium via a c-jun N-terminal kinase 2 (JNK2) pathway.

    PubMed

    Pelegrino, F S A; Pflugfelder, S C; De Paiva, C S

    2012-01-01

    Patients with tear dysfunction often experience increased irritation symptoms when subjected to drafty and/or low humidity environmental conditions. The purpose of this study was to investigate the effects of low humidity stress (LHS) on corneal barrier function and expression of cornified envelope (CE) precursor proteins in the epithelium of C57BL/6 and c-jun N-terminal kinase 2 (JNK2) knockout (KO) mice. LHS was induced in both strains by exposure to an air draft for 15 (LHS15D) or 30 days (LHS30D) at a relative humidity <30%RH. Nonstressed (NS) mice were used as controls. Oregon-green-dextran uptake was used to measure corneal barrier function. Levels of small proline-rich protein (SPRR)-2, involucrin, occludin, and MMP-9 were evaluated by immunofluorescent staining in cornea sections. Wholemount corneas immunostained for occludin were used to measure mean apical cell area. Gelatinase activity was evaluated by in situ zymography. Expression of MMP, CE and inflammatory cytokine genes was evaluated by qPCR. C57BL/6 mice exposed to LHS15D showed corneal barrier dysfunction, decreased apical corneal epithelial cell area, higher MMP-9 expression and gelatinase activity and increased involucrin and SPRR-2 immunoreactivity in the corneal epithelium compared to NS mice. JNK2KO mice were resistant to LHS-induced corneal barrier disruption. MMP-3,-9,-13, IL-1α, IL-1β, involucrin and SPRR-2a RNA transcripts were significantly increased in C57BL/6 mice at LHS15D, while no change was noted in JNK2KO mice. LHS is capable of altering corneal barrier function, promoting pathologic alteration of the TJ complex and stimulating production of CE proteins by the corneal epithelium. Activation of the JNK2 signaling pathway contributes to corneal epithelial barrier disruption in LHS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model

    PubMed Central

    Khoh-Reiter, Su; Jessen, Bart A

    2009-01-01

    Background Benzalkonium chloride (BAC) is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D) corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. Methods The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC) and olopatadine (0.01% BAC) was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T) cell cultures, expression levels (mRNA and protein) of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 μL drops twice daily in 1 eye for 1 year) in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. Results In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC) and untreated eyes. Conclusion The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC contained in ophthalmic

  13. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  14. LRIG1 inhibits STAT3-dependent inflammation to maintain corneal homeostasis

    PubMed Central

    Nakamura, Takahiro; Hamuro, Junji; Takaishi, Mikiro; Simmons, Szandor; Maruyama, Kazuichi; Zaffalon, Andrea; Bentley, Adam J.; Kawasaki, Satoshi; Nagata-Takaoka, Maho; Fullwood, Nigel J.; Itami, Satoshi; Sano, Shigetoshi; Ishii, Masaru; Barrandon, Yann; Kinoshita, Shigeru

    2013-01-01

    Corneal integrity and transparency are indispensable for good vision. Cornea homeostasis is entirely dependent upon corneal stem cells, which are required for complex wound-healing processes that restore corneal integrity following epithelial damage. Here, we found that leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is highly expressed in the human holoclone-type corneal epithelial stem cell population and sporadically expressed in the basal cells of ocular-surface epithelium. In murine models, LRIG1 regulated corneal epithelial cell fate during wound repair. Deletion of Lrig1 resulted in impaired stem cell recruitment following injury and promoted a cell-fate switch from transparent epithelium to keratinized skin-like epidermis, which led to corneal blindness. In addition, we determined that LRIG1 is a negative regulator of the STAT3-dependent inflammatory pathway. Inhibition of STAT3 in corneas of Lrig1–/– mice rescued pathological phenotypes and prevented corneal opacity. Additionally, transgenic mice that expressed a constitutively active form of STAT3 in the corneal epithelium had abnormal features, including corneal plaques and neovascularization similar to that found in Lrig1–/– mice. Bone marrow chimera experiments indicated that LRIG1 also coordinates the function of bone marrow–derived inflammatory cells. Together, our data indicate that LRIG1 orchestrates corneal-tissue transparency and cell fate during repair, and identify LRIG1 as a key regulator of tissue homeostasis. PMID:24316976

  15. Effect of Topically Applied Azithromycin on Corneal Epithelial and Endothelial Apoptosis in a Rat Model of Corneal Alkali Burn.

    PubMed

    Arikan, Sedat; Karaca, Turan; Ertekin, Yusuf Haydar; Comez, Arzu Taskiran; Ersan, Ismail; Demirtas, Selim; Elmas, Sait; Tufan, Hasan Ali; Turkon, Hakan

    2016-04-01

    To investigate the antiapoptotic effect of topically administered azithromycin (AZM) on corneal epithelial and endothelial cells in a rat model of corneal alkali burn. Twenty-four Wistar albino rats were divided into 4 equal groups as pseudovehicle (group 1), control (group 2), alkali burned (group 3), and treatment (group 4) groups. Alkali injury was induced only in the right corneas of rats belonging to groups 3 and 4 using 1N NaOH. The rats in group 3 and the rats in group 4 were respectively treated either with an artificial tear gel or with 1.5% AZM eye drops for 5 days. At the fifth day of the experiment, the apoptosis in the corneal epithelium and endothelium of all rats was assessed using a terminal dUTP nick-end labeling (TUNEL) assay. In addition, tumor necrosis factor-alpha (TNF-α) density in the corneal epithelium was measured in all rats. The mean numbers of TUNEL+ cells in the corneal epithelium and endothelium of rats in group 3 were 117.1 ± 23.8 and 34.6.± 11.3, respectively, whereas in group 4, they were 75.8 ± 15.7 and 14.7 ± 3.5, respectively. Also the mean TNF-α densities in the corneal epithelium in group 3 and group 4 were 2.65 ± 1.3 and 1.65 ± 1.1, respectively. There was a significant decrease in the mean number of TUNEL+ cells in the corneal epithelium and endothelium and in the mean TNF-α density in the corneal epithelium of rats in group 4, when compared with group 3. Topically applied AZM can decrease TNF-α-induced apoptosis in corneal alkali burn.

  16. Biomechanical and Histopathologic Effects of Pulsed-Light Accelerated Epithelium-On/-Off Corneal Collagen Cross-Linking.

    PubMed

    Zhang, Xiaoyu; Sun, Ling; Shen, Yang; Tian, Mi; Zhao, Jing; Zhao, Yu; Li, Meiyan; Zhou, Xingtao

    2017-07-01

    This study aimed to compare the biomechanical and histopathologic effects of transepithelial and accelerated epithelium-off pulsed-light accelerated corneal collagen cross-linking (CXL). A total of 24 New Zealand rabbits were analyzed after sham operation (control) or transepithelial or epithelium-off operation (45 mW/cm for both). The transepithelial group was treated with pulsed-light ultraviolet A for 5 minutes 20 seconds, and the epithelium-off group was treated for 90 seconds. Biomechanical testing, including ultimate stress, Young modulus, and the physiological modulus, was analyzed. Histological changes were evaluated by light microscopy and transmission electron microscopy. The stress-strain curve was nonlinear in both accelerated transepithelial and epithelium-off CXL groups. The stress and elastic moduli were all significantly higher in both experimental groups compared with the control group (P < 0.05), whereas there were no significant differences between the 2 treatment groups (P > 0.05). Six months after the operation, hematoxylin and eosin staining and transmission electron microscopy showed that the subcutaneous collagen fibers were arranged in a regular pattern, and the fiber density was higher in the experimental groups. Both transepithelial and accelerated epithelium-off CXL produced biomechanical and histopathologic improvements, which were not significantly different between the 2 pulsed-light accelerated CXL treatments.

  17. Modulating endogenous electric currents in human corneal wounds--a novel approach of bioelectric stimulation without electrodes.

    PubMed

    Reid, Brian; Graue-Hernandez, Enrique O; Mannis, Mark J; Zhao, Min

    2011-03-01

    To measure electric current in human corneal wounds and test the feasibility of pharmacologically enhancing the current to promote corneal wound healing. Using a noninvasive vibrating probe, corneal electric current was measured before and after wounding of the epithelium of donated postmortem human corneas. The effects of drug aminophylline and chloride-free solution on wound current were also tested. Unwounded cornea had small outward currents (0.07 μA/cm²). Wounding increased the current more than 5 fold (0.41 μA/cm²). Monitoring the wound current over time showed that it seemed to be actively regulated and maintained above normal unwounded levels for at least 6 hours. The time course was similar to that previously measured in rat cornea. Drug treatment or chloride-free solution more than doubled the size of wound currents. Electric current at human corneal wounds can be significantly increased with aminophylline or chloride-free solution. Because corneal wound current directly correlates with wound healing rate, our results suggest a role for chloride-free and/or aminophylline eyedrops to enhance healing of damaged cornea in patients with reduced wound healing such as the elderly or diabetic patient. This novel approach offers bioelectric stimulation without electrodes and can be readily tested in patients.

  18. Roles of cyclic AMP and Ca in epithelial ion transport across corneal epithelium: a review.

    PubMed

    Reinach, P S

    1985-04-01

    The messenger roles of cyclic AMP and the calcium ion in stimulus-secretion coupling are considered in the frog and bovine corneal epithelium, respectively. In the frog cornea, epinephrine stimulates net C1 transport by increasing cyclic AMP content. This stimulation is associated with a larger apical membrane C1 conductance and basolateral membrane ionic conductance. The response of the apical membrane conductance is thought to result from an increase in cyclic AMP content whereas the basolateral membrane ionic conductance increase is unrelated based on measurements of the effects of the calcium channel antagonist, diltiazem, and the beta agonist, isoproterenol, on the electrical parameters and cyclic AMP content. The basolateral membrane is essentially K permselective since the K channel blocker, Ba, depolarized the intracellular potential difference and increased the basolateral membrane resistance. Diltiazem had even larger effects on these parameters suggesting that this compound is a more effective inhibitor of K channel activity than barium. In broken cell preparations of bovine corneal epithelium, a high affinity form of Ca + Mg activated ATPase is present (Km = .06 microM for Ca) and is essentially of plasma membrane origin. This ATPase activation is at a Ca activity similar to the expected intracellular value and suggests that this activity is the enzymatic basis for net Ca transport.

  19. The clinical and cellular basis of contact lens-related corneal infections

    PubMed Central

    Robertson, Danielle M; Cavanagh, H Dwight

    2008-01-01

    Microbial keratitis (MK) is the most visually devastating complication associated with contact lens wear. Pseudomonas aeruginosa (PA) is highly invasive in the corneal epithelium and is responsible for more than half of the reported cases of contact lens-related MK. To protect against Pseudomonas-mediated MK, the corneal epithelium has evolved overlapping defense mechanisms that function to protect the ocular surface from microbial invasion. Research has shown that contact lens wear disrupts these protective mechanisms through breakdown of normal homeostatic surface renewal as well as damaging the corneal surface, exposing underlying cell membrane receptors that bind and internalize PA through the formation of lipid rafts. Human clinical trials have shown that initial adherence of PA with resulting increased risk for microbial infection is mediated in part by contact lens oxygen transmissibility. Recently, chemical preserved multipurpose solutions (MPS) have been implicated in increasing PA adherence to corneal epithelial cells, in addition to inducing significant levels of toxic staining when used in conjunction with specific silicone hydrogel lenses. This review summarizes what is currently known about the relationship between contact lenses, the corneal epithelium, MPS, and infection. PMID:19277209

  20. Molecular Evidence and Functional Expression of a Novel Drug Efflux pump (ABCC2) in Human Corneal Epithelium and Rabbit Cornea and its role in Ocular drug efflux

    PubMed Central

    Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.

    2007-01-01

    Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953

  1. In vitro evidence for UV-protection of the eye by the corneal epithelium mediated by the cytoplasmic protein, RNA, and ascorbate.

    PubMed

    Ringvold, A

    1997-10-01

    (1) To evaluate the effect of ribonucleic acid (RNA) and ascorbate on UV-absorption and their impact on ultraviolet-induced (UV) fluorescence from various proteins, and (2) to compare RNA and DNA reduction of protein fluorescence. These informations will be useful for later work on the UV-filtering effect of the corneal epithelium. Spectrophotometry and spectrofluorimetry. (1) RNA and ascorbate caused a significant UV-absorption and reduced the fluorescence from various water-soluble proteins, the degree of reduction varying independently from one protein to the other. (2) RNA and DNA showed protein fluorescence reduction of roughly the same order. The results are discussed both in the context of UV-protection of the cell nucleus in general, and the possible UV-filtering effect for the eye of bovine corneal epithelium.

  2. Thermodynamic analysis of active sodium and potassium transport in the frog corneal epithelium.

    PubMed

    Candia, O A; Reinach, P S

    1982-06-01

    The formalism of linear nonequilibrium thermodynamics for a three-flow system was applied to the isolated frog corneal epithelium to study the coupling between metabolism and the Na-K transport system across this layer. There is little or no net ion transport across the isolated frog corneal epithelium bathed in Na2SO4 Ringer. Addition of amphotericin B to the tear side solution increases apical membrane permeability, which results in a net Na transport (from tear to stroma) and a net K transport in the opposite direction. Corneas were mounted in a modified Ussing chamber that permitted the simultaneous measurements of electrical parameters and O2 consumption by means of Clark-type oxygen electrodes. The overall degree of coupling, q, of the Na-K transport system to metabolism was calculated from measuring the suprabasal O2 consumption rate at "static head" and "level flow" conditions and by a second independent technique. Measurements of electrical conductance used in conjunction with other previously measured parameters allowed the calculation of the affinity, A, of the metabolic reaction driving transport, all phenomenological coefficients, and the electromotive forces of sodium (ENa) and potassium transport (EK). Values of q determined by the two techniques agreed (q = 0.80 and 0.84, respectively). This indicates incomplete coupling and a variable stoichiometric relationship among O2 consumption rate, net Na transport, and net K transport. The value calculated for A was 70.5 kcal.mol-1, for ENa 142.5 mV, and for EK -34.9 mV.

  3. Short-term effects of overnight orthokeratology on corneal cell morphology and corneal thickness.

    PubMed

    Nieto-Bona, Amelia; González-Mesa, Ana; Nieto-Bona, Ma Paz; Villa-Collar, César; Lorente-Velázquez, Amalia

    2011-06-01

    To examine the morphological and biometric corneal changes produced over periods of 15 days and 1 month after overnight orthokeratology (OK). Prospective, single-center, longitudinal trial. Twenty-seven right eyes of 27 subjects (group 1) with low to moderate myopia wore OK lenses for 1 month. Ten right eyes of 10 subjects (group 2) with emmetropia to low myopia who did not wear any type of contact lens served as controls. Corneal morphometric measurements were obtained in vivo using a confocal microscope to examine the central and midperipheral cornea. Thickness measurements in the peripheral cornea were obtained by optical coherence tomography. Changes in visual acuity, refractive error, and corneal topography were also analyzed. No significant changes in either endothelial cell or stromal cell density were observed after 1 month of OK. Basal epithelial cells were, however, significantly reduced (P < 0.01), and epithelial wing and superficial cells showed enhanced visibility (P < 0.05). Superficial cells increased in height and width, the width increase after 1 month being significant (P < 0.01). Epithelial thickness was significantly reduced in the central cornea and 2 mm around the center. Corneal pachymetry increased significantly in the band from 5 to 10 mm from the corneal apex (P < 0.01). OK lenses for myopia induce significant structural and optical changes particularly in the central epithelium after 15 days or 1 month of wear. The central corneal epithelium responds to OK wear by undergoing significant epithelial cell shape and size alterations with no effects, however, on the cells of the corneal endothelium or the corneal stroma. Peripheral corneal thickness increased with respect to baseline values. These findings suggest that the corneal epithelium is the principal structure affected by the mechanical forces exerted by the OK lenses.

  4. Proteomic features of delayed ocular symptoms caused by exposure to sulfur mustard: As studied by protein profiling of corneal epithelium.

    PubMed

    Pajoohesh, Maryam; Naderi, Mostafa; Naderi-Manesh, Hossein

    2017-11-01

    Exposure to mustard gas can lead to variations in the proteome of corneal epithelium cells and after a latency period produces delayed symptoms in the eyes of chemical victims. Hence, a comparative proteome analysis was conducted between the corneal epithelial cells of chemical victims from Iran-Iraq war (1980-1988) and healthy donors. To this end, corneal epithelium samples from victims and healthy individuals were collected, and the proteome of these samples were prepared for two-dimensional electrophoresis and the analysis of spots by statistical software. Selected spots were further analyzed by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Twenty four proteins were identified of which eighteen proteins showed downregulation while six proteins were upregulated in the victims in comparison to the normal individuals. Also, six protein spots were confirmed by western-blot analysis. In conclusion, all the twenty-four identified proteins are involved in pathways which their up- or down-regulation leads to the accumulation of undesired substrates, cell death and apoptosis. Bioinformatics' tools indicated that these identified proteins were involved in various metabolic processes, DNA damage response, immune response and etc. The present study provides a suitable platform for further clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Changes in corneal epithelial layer inflammatory cells in aqueous tear-deficient dry eye.

    PubMed

    Lin, Hui; Li, Wei; Dong, Nuo; Chen, Wensheng; Liu, Jing; Chen, Lelei; Yuan, Hongxia; Geng, Zhixin; Liu, Zuguo

    2010-01-01

    To investigate the morphology, distribution, and density of inflammatory cells in the corneal epithelium of aqueous tear-deficient dry eye. Thirty-two patients with non-Sjögren's syndrome (NSS) dry eye, 14 patients with Sjögren's syndrome (SS) dry eye, and 33 healthy volunteers were studied. In vivo laser scanning confocal microscopy was used to investigate both Langerhans cell (LCs) and leukocyte distribution and density in the peripheral and central corneal epithelium. LC morphology was also evaluated. Multifactor regression analysis assessed whether there is a correlation between clinical manifestations and inflammatory cell densities. LCs were present in both central (34.9 +/- 5.7 cells/mm(2)) and peripheral (90.7 +/- 8.2 cells/mm(2)) parts of the normal corneal epithelium. Moreover, LC density increased dramatically in the central corneal epithelium in patients with NSS (89.8 +/- 10.8 cells/mm(2)) and SS (127.9 +/- 23.7 cells/mm(2)). The ratio of LCs with obvious processes was much higher in patients with dry eye than in healthy volunteers. LC density also increased in peripheral corneal epithelium in patients with SS, but not in those with NSS. Leukocyte density in normal corneal epithelium was very low, whereas it increased in the central corneal epithelium (4.6 +/- 1.0 cells/mm(2)) in NSS and in both central (49.0 +/- 12.9 cells/mm(2)) and peripheral (84.2 +/- 36.8 cells/mm(2)) corneal epithelium in SS. Densities of LCs and leukocytes showed significant correlation with the severity found in clinical evaluation. The LC and leukocyte changes in the corneal epithelium suggest their involvement in aqueous tear-deficient dry eye pathophysiology. In vivo dynamic assessment of central corneal inflammatory cell density may serve as an indicator of dry eye severity and provide new insight for dry eye treatment.

  6. Effects of Ag+ on ion transport by the corneal epithelium of the rabbit.

    PubMed

    Klyce, S D; Marshall, W S

    1982-01-01

    Exposure of the in vitro rabbit corneal epithelium to Ag+ by the addition of AgNO3 (10(-7)-10(-5) M) to the apical surface or by the use of imperfectly chlorided Ag/AgCl half-cells in Ussing-style membrane chambers, greatly increases short-circuit current and transepithelial potential. The early phase (the first 30 min) of the short-circuit current stimulation by Ag+ is linearly dependent on tear-side sodium concentration, is largely a result of a tenfold increase in net Na+ uptake and is incompletely inhibited by ouabain, suggesting that Ag+ increases cation (primarily Na+) conductance of the apical membrane. This mechanism for the Ag+ effect is supported by microelectrode experiments, wherein Ag+ depolarizes specifically the apical barrier potential and increases apical barrier conductance. A later phase in the effect (0.5-3 hr) is characterized by a gradual increase in 36Cl- and 14C-mannitol unidirectional fluxes, by a decline in epithelial resting potential and short-circuit current, by complete ouabain inhibition and by fit to saturation kinetics with respect to Na+ concentration in the bathing media. This phase of the effect apparently reflects a nonselective opening of the paracellular pathway in the epithelium and is rate-limited by Na+ pump activity at the basolateral membrane. Both phases are associated with swelling of the corneal stroma and may be rapidly reversed using thiol agents (reduced glutathione and dithiothreitol). The results suggest that Ag+ may be useful in the study of cation transport by epithelia and the work provides basic physiological information that is pertinent to the prophylactic use of AgNO3 in clinical ophthalmology.

  7. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata.

    PubMed

    Diao, Jin-Mei; Pang, Xin; Qiu, Yue; Miao, Ying; Yu, Miao-Miao; Fan, Ting-Jun

    2015-03-01

    A tissue-engineered human corneal stroma (TE-HCS) has been developed as a promising equivalent to the native corneal stroma for replacement therapy. However, there is still a crucial need to improve the current approaches to render the TE-HCS equivalent more favorable for clinical applications. At the present study, we constructed a TE-HCS by incubating non-transfected human corneal stromal (HCS) cells in an acellular porcine corneal stromata (aPCS) scaffold in 20% fetal bovine serum supplemented DMEM/F12 (1:1) medium at 37 °C with 5% CO2in vitro. After 3 days of incubation, the constructed TE-HCS had a suitable tensile strength for transplantation, and a transparency that is comparable to native cornea. The TE-HCS had a normal histological structure which contained regularly aligned collagen fibers and differentiated HCS cells with positive expression of marker and functional proteins, mimicking a native HCS. After transplantation into rabbit models, the TE-HCS reconstructed normal corneal stroma in vivo and function well in maintaining corneal clarity and thickness, indicating that the completely biological TE-HCS could be used as a HCS equivalent. The constructed TE-HCS has promising potentials in regenerative medicine and treatment of diseases caused by corneal stromal disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Oxidative stress gradient in a medium during human corneal organ culture

    PubMed Central

    Johnsen-Soriano, Siv; Haug, Kristiane; Arnal, Emma; Peris-Martinez, Cristina; Moe, Morten C.

    2012-01-01

    Purpose Lipid peroxidation content was measured in an organ culture medium after one-week storage of human donor corneas. Moreover, the effects of the medium on oxidative stress, antioxidant capacity, and the proliferation of cultured human corneal cells were studied. Methods The medium was sampled from the upper and lower halves of storage vials and from controls (n=42). Malondialdehyde (MDA) was measured by high pressure liquid chromatography (HPLC). Cultured human corneal epithelium (CRL-11515) was exposed to different medium samples and monitored for changes in MDA (enzyme-linked immunosorbent assay [ELISA]), total antioxidant capacity (antioxidant assay kit), and proliferation (Ki-67). Results A significant increase in MDA was observed in the organ culture medium in the lower level of storage vials. The addition of this fraction to cultured cells increased MDA significantly after 3 days, and the medium from both levels significantly increased MDA after 7 days. The medium from both levels significantly decreased the total antioxidant capacity of the cells but did not affect proliferative activity. Conclusions An oxidative gradient with an evident biologic effect is established in the medium in vials during organ culture of human donor corneas. Donor tissue stored at the bottom or in lower levels of such vials is exposed to a significant amount of oxidative stress. PMID:22736949

  9. Fabrication of a corneal model composed of corneal epithelial and endothelial cells via a collagen vitrigel membrane functioned as an acellular stroma and its application to the corneal permeability test of chemicals.

    PubMed

    Yamaguchi, Hiroyuki; Takezawa, Toshiaki

    2018-05-29

    A collagen vitrigel membrane (CVM) we developed can function as both a scaffold for cells and a pathway for chemicals. To extrapolate the corneal permeability of chemicals in vivo, we proposed six corneal models using the CVM. Thin and thick CVMs were utilized as models for Bowman's membrane (BM) and an acellular-stroma (AS), respectively. Models for a corneal epithelium (CEpi), a corneal epithelium-acellular stroma (CEpi-AS), a corneal epithelium-endothelium (CEpi-Endo) and a corneal epithelium-acellular stroma-endothelium (CEpi-AS-Endo) were fabricated by culturing corneal epithelial cells and/or corneal endothelial cells on the surface of CVMs. Subsequently, the permeability coefficient (P app ) value of each model was calculated using five chemicals with different molecular radii; cyanocobalamin and four FITC-dextrans (FD-4, FD-10, FD-20 and FD-40). The slopes of P app versus molecular radii of those chemicals in the both BM and AS models were almost similar to data using an excised rabbit corneal stroma. The ratios of P app values in models for BM, CEpi and CEpi-Endo against those in data using an excised rabbit cornea were calculated as 75.4, 6.4 and 4.5-folds for FD-4 and 38.7, 10.0 and 4.2-folds for FD-10, respectively. Similarly, those in models for AS, CEpi-AS and CEpi-AS-Endo were calculated as 26.1, 2.5 and 0.6-folds for FD-4 and 26.1, 1.5 and 0.6-folds for FD-10, respectively. These results suggest that the CEpi-AS-Endo model with both the barrier function of corneal cell layers and the diffusion capacity of chemicals in thick CVM is most appropriate for extrapolating the corneal permeability of chemicals in vivo . The American Society for Pharmacology and Experimental Therapeutics.

  10. Corneal Regeneration After Photorefractive Keratectomy: A Review☆

    PubMed Central

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2014-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. PMID:25444646

  11. Establishment of a new immortalized human corneal epithelial cell line (iHCE-NY1) for use in evaluating eye irritancy by in vitro test methods.

    PubMed

    Yamamoto, Naoki; Kato, Yoshinao; Sato, Atsushi; Hiramatsu, Noriko; Yamashita, Hiromi; Ohkuma, Mahito; Miyachi, Ei-Ichi; Horiguchi, Masayuki; Hirano, Koji; Kojima, Hajime

    2016-08-01

    In vitro test methods that use human corneal epithelial cells to evaluate the eye irritation potency of chemical substances do not use human corneal epithelium because it has been difficult to maintain more than four passages. In this study, we make a new cell line comprising immortalized human corneal epithelial cells (iHCE-NY1). The IC50 of iHCE-NY1 cells is slightly higher than that of Statens Seruminstitut Rabbit Cornea (SIRC) cells, which are currently used in some in vitro test methods. CDKN1A in iHCE-NY1 cells was used as a marker of gene expression to indicate cell cycle activity. This enabled us to evaluate cell recovery characteristics at concentrations lower than the IC50 of cytotoxic tests.

  12. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  13. Corneal Regeneration After Photorefractive Keratectomy: A Review.

    PubMed

    Tomás-Juan, Javier; Murueta-Goyena Larrañaga, Ane; Hanneken, Ludger

    2015-01-01

    Photorefractive keratectomy (PRK) remodels corneal stroma to compensate refractive errors. The removal of epithelium and the ablation of stroma provoke the disruption of corneal nerves and a release of several peptides from tears, epithelium, stroma and nerves. A myriad of cytokines, growth factors, and matrix metalloproteases participate in the process of corneal wound healing. Their balance will determine if reepithelization and stromal remodeling are appropriate. The final aim is to achieve corneal transparency for restoring corneal function, and a proper visual quality. Therefore, wound-healing response is critical for a successful refractive surgery. Our goal is to provide an overview into how corneal wounding develops following PRK. We will also review the influence of intraoperative application of mitomycin C, bandage contact lenses, anti-inflammatory and other drugs in preventing corneal haze and post-PRK pain. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  14. Corneal Equilibrium Flux as a Function of Corneal Surface Oxygen Tension.

    PubMed

    Compañ, Vicente; Aguilella-Arzo, Marcel; Weissman, Barry A

    2017-06-01

    Oxygen is essential for aerobic mammalian cell physiology. Oxygen tension (PO2) should reach a minimum at some position within the corneal stroma, and oxygen flux should be zero, by definition, at this point as well. We found the locations and magnitudes of this "corneal equilibrium flux" (xmin) and explored its physiological implications. We used an application of the Monod kinetic model to calculate xmin for normal human cornea as anterior surface PO2 changes from 155 to 20 mmHg. We find that xmin deepens, broadens, and advances from 1.25 μm above the endothelial-aqueous humor surface toward the epithelium (reaching a position 320 μm above the endothelial-aqueous humor surface) as anterior corneal surface PO2 decreases from 155 to 20 mmHg. Our model supports an anterior corneal oxygen flux of 9 μL O2 · cm · h and an epithelial oxygen consumption of approximately 4 μL O2 · cm · h. Only at the highest anterior corneal PO2 does our model predict that oxygen diffuses all the way through the cornea to perhaps reach the anterior chamber. Of most interest, corneal oxygen consumption should be supported down to a corneal surface PO2 of 60 to 80 mmHg but declines below this range. We conclude that the critical oxygen tension for hypoxia induced corneal swelling is more likely this range rather than a fixed value.

  15. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health.

    PubMed

    Xiang, Ping; Liu, Rong-Yan; Li, Chao; Gao, Peng; Cui, Xin-Yi; Ma, Lena Q

    2017-11-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is one of the most detected organophosphorus flame retardants (OPFRs) in the environment, especially in indoor dust. Continuous daily exposure to TDCPP-containing dust may adversely impact human cornea. However, its detrimental effects on human corneal epithelium are largely unknown. In this study, we investigated the cell apoptosis in normal human corneal epithelial cells (HCECs) after TDCPP exposure and elucidated the underlying molecular mechanisms. Our data indicated a dose-dependent decrease of cell viability after TDCPP exposure with LC 50 at 202 μg/mL. A concentration-dependent apoptotic sign was observed in HCECs after exposing to ≥2 μg/mL TDCPP. Endoplasmic reticulum stress induction was evidenced by up-regulation of its biomarker genes (ATF-4, CHOP, BiP, and XBP1). Furthermore, alternation of Bcl-2/Bax expression, mitochondrial membrane potential loss, cellular ATP content decrease, and caspase-3 and -9 activity increase were observed after exposing to 2 or 20 μg/mL TDCPP. Taken together, the data implicated the involvement of endoplasmic reticulum stress in TDCPP-induced HCEC apoptosis, probably mediated by mitochondrial apoptotic pathway. Our findings showed TDCPP exposure induced toxicity to human cornea. Due to TDCPP's presence at high levels in indoor dust, further study is warranted to evaluate its health risk on human corneas. Published by Elsevier Ltd.

  16. Regional variation in the refractive-index of the bovine and human cornea.

    PubMed

    Vasudevan, Balamurali; Simpson, Trefford L; Sivak, Jacob G

    2008-10-01

    Given the refractive importance of the human cornea, surprisingly little attention has been directed to the study of local variation in corneal refractive-index. This in vitro and in vivo study measures the refractive-index of different portions of the bovine and human cornea. Fifty fresh bovine corneas (obtained from an abattoir) and 10 human subjects were used for the study. The refractive-index of the central, nasal, and temporal corneal epithelium was measured with a bench-top Abbe refractometer in the case of bovine corneas and with a hand-held refractometer with humans. The mean (+/-standard deviation) refractive-indices of the central, nasal, and temporal bovine corneal epithelium were 1.3760 (+/-0.003), 1.3757 (+/-0.002), and 1.3746 (+/-0.002), respectively. Refractive-indices of the anterior and posterior bovine corneal stroma were 1.3731 (+/-0.002) and 1.3708 (+/-0.004), respectively. The mean (+/-standard deviation) refractive-index in the central, nasal, and temporal periphery of the human cornea epithelium were 1.3970 (+/-0.001), 1.3946 (+/-0.001), and 1.3940 (+/-0.001), respectively. There are small local differences in the refractive-index of the bovine and human corneal epithelium and the refractive-index of the epithelium is higher than that of the anterior and posterior stroma of the bovine cornea.

  17. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  18. Human Adenovirus Type 37 Uses αVβ1 and α3β1 Integrins for Infection of Human Corneal Cells

    PubMed Central

    Storm, Rickard J.; Persson, B. David; Skalman, Lars Nygård; Frängsmyr, Lars; Lindström, Mona; Rankin, Greg; Lundmark, Richard; Domellöf, Fatima Pedrosa

    2016-01-01

    ABSTRACT Epidemic keratoconjunctivitis (EKC) is a severe, contagious ocular disease that affects 20 to 40 million individuals worldwide every year. EKC is mainly caused by six types of human adenovirus (HAdV): HAdV-8, -19, -37, -53, -54, and -56. Of these, HAdV-8, -19, and -37 use sialic acid-containing glycans as cellular receptors. αVβ3, αVβ5, and a few additional integrins facilitate entry and endosomal release of other HAdVs. With the exception of a few biochemical analyses indicating that HAdV-37 can interact physically with αVβ5, little is known about the integrins used by EKC-causing HAdVs. Here, we investigated the overall integrin expression on human corneal cells and found expression of α2, α3, α6, αV, β1, and β4 subunits in human corneal in situ epithelium and/or in a human corneal epithelial (HCE) cell line but no or less accessible expression of α4, α5, β3, or β5. We also identified the integrins used by HAdV-37 through a series of binding and infection competition experiments and different biochemical approaches. Together, our data suggest that HAdV-37 uses αVβ1 and α3β1 integrins for infection of human corneal epithelial cells. Furthermore, to confirm the relevance of these integrins in the HAdV-37 life cycle, we developed a corneal multilayer tissue system and found that HAdV-37 infection correlated well with the patterns of αV, α3, and β1 integrin expression. These results provide further insight into the tropism and pathogenesis of EKC-causing HAdVs and may be of importance for future development of new antiviral drugs. IMPORTANCE Keratitis is a hallmark of EKC, which is caused by six HAdV types (HAdV-8, -19, -37, -53, -54, and -56). HAdV-37 and some other HAdV types interact with integrin αVβ5 in order to enter nonocular human cells. In this study, we found that αVβ5 is not expressed on human corneal epithelial cells, thus proposing other host factors mediate corneal infection. Here, we first characterized integrin

  19. Mitochondrial DNA common deletion in the human eye: a relation with corneal aging.

    PubMed

    Gendron, Sébastien P; Mallet, Justin D; Bastien, Nathalie; Rochette, Patrick J

    2012-01-01

    The most frequent mitochondrial DNA (mtDNA) mutation is a 4977 bp deletion known as the common deletion (mtDNA(CD4977)). mtDNA(CD4977) is related to skin photo-aging and to chronological aging of cells with high-energy demands such as neurons and muscle cells. The human eye contains both sun-exposed (cornea, iris) and high-energy demand structures (retina). In this study, we employed a highly sensitive quantitative PCR technique to determine mtDNA(CD4977) occurrence in different structures of the human eye. We found that the cornea, the most anterior structure of the eye, contains the highest amount of mtDNA(CD4977) (2.6%, 0.25% and 0.06% for the cornea, iris and retina, respectively). Within the cornea, mtDNA(CD4977) is almost exclusively found in the stroma, the cellular layer conferring transparency and rigidity to the human cornea (8.59%, 0.13% and 0.05% in the stroma, endothelium and epithelium, respectively). Moreover, we show that mtDNA(CD4977) accumulates with age in the corneal stroma. Taken together, our results suggest that mtDNA(CD4977) is related to photo-aging rather than chronological aging in the human eye. Similar to the involvement of mtDNA(CD4977) in skin photo-aging phenotypes, we believe that the clinical manifestations of corneal aging, including clouding and stiffening, are associated with the accumulation of mtDNA(CD4977) in the corneal stroma. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel.

    PubMed

    Chien, Yueh; Liao, Yi-Wen; Liu, Dean-Mo; Lin, Heng-Liang; Chen, Shih-Jen; Chen, Hen-Li; Peng, Chi-Hsien; Liang, Chang-Min; Mou, Chung-Yuan; Chiou, Shih-Hwa

    2012-11-01

    Induced pluripotent stem cells (iPSCs) have promising potential in regenerative medicine, but whether iPSCs can promote corneal reconstruction remains undetermined. In this study, we successfully reprogrammed human corneal keratocytes into iPSCs. To prevent feeder cell contamination, these iPSCs were cultured onto a serum- and feeder-free system in which they remained stable through 30 passages and showed ESC-like pluripotent property. To investigate the availability of iPSCs as bioengineered substitutes in corneal repair, we developed a thermo-gelling injectable amphiphatic carboxymethyl-hexanoyl chitosan (CHC) nanoscale hydrogel and found that such gel increased the viability and CD44+proportion of iPSCs, and maintained their stem-cell like gene expression, in the presence of culture media. Combined treatment of iPSC with CHC hydrogel (iPSC/CHC hydrogel) facilitated wound healing in surgical abrasion-injured corneas. In severe corneal damage induced by alkaline, iPSC/CHC hydrogel enhanced corneal reconstruction by downregulating oxidative stress and recruiting endogenous epithelial cells to restore corneal epithelial thickness. Therefore, we demonstrated that these human keratocyte-reprogrammed iPSCs, when combined with CHC hydrogel, can be used as a rapid delivery system to efficiently enhance corneal wound healing. In addition, iPSCs reprogrammed from corneal surgical residues may serve as an alternative cell source for personalized therapies for human corneal damage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [Pay attention to the corneal epithelial cell dysfunction after cataract surgery].

    PubMed

    Sun, Xuguang; Wang, Sen

    2015-03-01

    Corneal epithelial dysfunction ( CED ) is the abnormality of the regeneration, conjunction, adhesion and immigration of the corneal epithelium cells without the decompensation of the corneal limbal cells. Due to the affection resulting from the systemic problems of patients and the management in the preoperative period, some of the patients at one to two weeks after cataract surgery will present the edema and fluorescein staining of the corneal epithelium. Without correct therapy, the defect of the epithelium, or even persisting ulceration of the cornea will occur. The key points of the management for CED are the early diagnosis and reasonable therapy. We suggest paying special attention to CED in the patients with metabolism diseases, abnormality of the tear film and long-term blepharitis.

  2. Cosmetics Europe multi-laboratory pre-validation of the SkinEthic™ reconstituted human corneal epithelium test method for the prediction of eye irritation.

    PubMed

    Alépée, N; Bessou-Touya, S; Cotovio, J; de Smedt, A; de Wever, B; Faller, C; Jones, P; Le Varlet, B; Marrec-Fairley, M; Pfannenbecker, U; Tailhardat, M; van Goethem, F; McNamee, P

    2013-08-01

    Cosmetics Europe, The Personal Care Association, known as Colipa before 2012, conducted a program of technology transfer and assessment of Within/Between Laboratory (WLV/BLV) reproducibility of the SkinEthic™ Reconstituted Human Corneal Epithelium (HCE) as one of two human reconstructed tissue eye irritation test methods. The SkinEthic™ HCE test method involves two exposure time treatment procedures - one for short time exposure (10 min - SE) and the other for long time exposure (60 min - LE) of tissues to test substance. This paper describes pre-validation studies of the SkinEthic™ HCE test method (SE and LE protocols) as well as the Eye Peptide Reactivity Assay (EPRA). In the SE WLV study, 30 substances were evaluated. A consistent outcome with respect to viability measurement across all runs was observed with all substances showing an SD of less than 18%. In the LE WLV study, 44 out of 45 substances were consistently classified. These data demonstrated a high level of reproducibility within laboratory for both the SE and LE treatment procedures. For the LE BLV, 19 out of 20 substances were consistently classified between the three laboratories, again demonstrating a high level of reproducibility between laboratories. The results for EPRA WLV and BLV studies demonstrated that all substances analysed were categorised similarly and that the method is reproducible. The SkinEthic™ HCE test method entered into the experimental phase of a formal ECVAM validation program in 2010. Copyright © 2013. Published by Elsevier Ltd.

  3. Defining a mechanistic link between pigment epithelium-derived factor, docosahexaenoic acid, and corneal nerve regeneration.

    PubMed

    Pham, Thang Luong; He, Jiucheng; Kakazu, Azucena H; Jun, Bokkyoo; Bazan, Nicolas G; Bazan, Haydee E P

    2017-11-10

    The cornea is densely innervated to sustain the integrity of the ocular surface. Corneal nerve damage produced by aging, diabetes, refractive surgeries, and viral or bacterial infections impairs tear production, the blinking reflex, and epithelial wound healing, resulting in loss of transparency and vision. A combination of the known neuroprotective molecule, pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA), has been shown to stimulate corneal nerve regeneration, but the mechanisms involved are unclear. Here, we sought to define the molecular events of this effect in an in vivo mouse injury model. We first confirmed that PEDF + DHA increased nerve regeneration in the mouse cornea. Treatment with PEDF activates the phospholipase A 2 activity of the PEDF-receptor (PEDF-R) leading to the release of DHA; this free DHA led to enhanced docosanoid synthesis and induction of bdnf, ngf , and the axon growth promoter semaphorin 7a ( sema7a ), and as a consequence, their products appeared in the mouse tears. Surprisingly, corneal injury and treatment with PEDF + DHA induced transcription of neuropeptide y ( npy ), small proline-rich protein 1a ( sprr1a ), and vasoactive intestinal peptide ( vip ) in the trigeminal ganglia (TG). The PEDF-R inhibitor, atglistatin, blocked all of these changes in the cornea and TG. In conclusion, we uncovered here an active cornea-TG axis, driven by PEDF-R activation, that fosters axon outgrowth in the cornea. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells.

    PubMed

    Chen, D; Qu, Y; Hua, X; Zhang, L; Liu, Z; Pflugfelder, S C; Li, D-Q

    2017-06-01

    PurposeTo develop a hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo cultivation of human corneal epithelial stem cells (CESCs).Patients and MethodsCESCs were cultivated from donor limbal explants on the HyStem-C Hydrogel bio-scaffold in 12-well plates for 3 weeks. Group A used the traditional supplemented hormonal epidermal medium (SHEM) and group B used the defined SHEM (without fetal bovine serum and toxin A, adding 20% serum replacement). The growth and morphology of the cultured cells were assessed by phase contrast microscope. The expressions of specific cell markers were assessed by immunofluorescence staining and quantitative real-time PCR (qRT-PCR).ResultsSuccessful cultures of CESCs were obtained in both groups, resulting in multilayered stratified epithelia. Comparing to group A, the cells in group B was grown slightly slower and formed less cellular layers at the end of culture. The corneal specific cytokeratin (K) 12 and differentiation markers, involucrin, and connexin 43, were mainly expressed in the superficial cellular layers in both groups. Interestingly, certain basal cells were immune-positive to proposed stem cell markers such as K19, ABCG2, and integrin β1 in both groups. There was no significant difference between the two groups with regard to the gene expression levels of all these selected corneal markers (all P>0.05).ConclusionsThe hyaluronan hydrogel scaffold-based xeno-free culture system may support the expansion of regenerative CESCs without the risk of xeno component contamination. The regenerated epithelium maintains similar characteristics of native corneal epithelium.

  5. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.

    PubMed

    Labate, Cristina; Lombardo, Marco; Lombardo, Giuseppe; De Santo, Maria Penelope

    2017-01-01

    The purpose of this study was to investigate the biomechanical stiffening effect induced by nanoplatform-based transepithelial riboflavin/UV-A cross-linking protocol using atomic force microscopy (AFM). Twelve eye bank donor human sclerocorneal tissues were investigated using a commercial atomic force microscope operated in force spectroscopy mode. Four specimens underwent transepithelial corneal cross-linking using a hypotonic solution of 0.1% riboflavin with biodegradable polymeric nanoparticles of 2-hydroxypropyl-β-cyclodextrin plus enhancers (trometamol and ethylenediaminetetraacetic acid) and UV-A irradiation with a 10 mW/cm2 device for 9 minutes. After treatment, the corneal epithelium was removed using the Amoils brush, and the Young's modulus of the most anterior stroma was quantified as a function of scan rate by AFM. The results were compared with those collected from four specimens that underwent conventional riboflavin/UV-A corneal cross-linking and four untreated specimens. The average Young's modulus of the most anterior stroma after the nanoplatform-based transepithelial and conventional riboflavin/UV-A corneal cross-linking treatments was 2.5 times (P < 0.001) and 1.7 times (P < 0.001) greater than untreated controls respectively. The anterior stromal stiffness was significantly different between the two corneal cross-linking procedures (P < 0.001). The indentation depth decreased after corneal cross-linking treatments, ranging from an average of 2.4 ± 0.3 μm in untreated samples to an average of 1.2 ± 0.1 μm and 1.8 ± 0.1 μm after nanoplatform-based transepithelial and conventional cross-linking, respectively. The present nanotechnology-based transepithelial riboflavin/UV-A corneal cross-linking was effective to improve the biomechanical strength of the most anterior stroma of the human cornea.

  6. A new 3D reconstituted human corneal epithelium model as an alternative method for the eye irritation test.

    PubMed

    Jung, Kyoung-Mi; Lee, Su-Hyon; Ryu, Yang-Hwan; Jang, Won-Hee; Jung, Haeng-Sun; Han, Ju-Hee; Seok, Seung-Hyeok; Park, Jae-Hak; Son, Youngsook; Park, Young-Ho; Lim, Kyung-Min

    2011-02-01

    Many efforts are being made to develop new alternative in vitro test methods for the eye irritation test. Here we report a new reconstructed human corneal epithelial model (MCTT HCE model) prepared from primary-cultured human limbal epithelial cells as a new alternative in vitro eye irritation test method. In histological and immunohistochemical observation, MCTT HCE model displayed a morphology and biomarker expressions similar to intact human cornea. Moreover, the barrier function was well preserved as measured by high transepithelial electrical resistance, effective time-50 for Triton X-100, and corneal thickness. To employ the model as a new alternative method for eye irritation test, protocol refinement was performed and optimum assay condition was determined including treatment time, treatment volume, post-incubation time and rinsing method. Using the refined protocol, 25 reference chemicals with known eye irritation potentials were tested. With the viability cut-off value at 50%, chemicals were classified to irritant or non-irritant. When compared with GHS classification, the MCTT HCE model showed the accuracy of 88%, sensitivity of 100% and specificity of 77%. These results suggest that the MCTT HCE model might be useful as a new alternative eye irritation test method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Slug is upregulated during wound healing and regulates cellular phenotypes in corneal epithelial cells.

    PubMed

    Aomatsu, Keiichi; Arao, Tokuzo; Abe, Kosuke; Kodama, Aya; Sugioka, Koji; Matsumoto, Kazuko; Kudo, Kanae; Kimura, Hideharu; Fujita, Yoshihiko; Hayashi, Hidetoshi; Nagai, Tomoyuki; Shimomura, Yoshikazu; Nishio, Kazuto

    2012-02-16

    The involvement of the epithelial mesenchymal transition (EMT) in the process of corneal wound healing remains largely unclear. The purpose of the present study was to gain insight into Slug expression and corneal wound healing. Slug expression during wound healing in the murine cornea was evaluated using fluorescence staining in vivo. Slug or Snail was stably introduced into human corneal epithelial cells (HCECs). These stable transfectants were evaluated for the induction of the EMT, cellular growth, migration activity, and expression changes in differentiation-related molecules. Slug, but not Snail, was clearly expressed in the nuclei of corneal epithelial cells in basal lesion of the corneal epithelium during wound healing in vivo. The overexpression of Slug or Snail induced an EMT-like cellular morphology and cadherin switching in HCECs, indicating that these transcription factors were able to mediate the typical EMT in HCECs. The overexpression of Slug or Snail suppressed cellular proliferation but enhanced the migration activity. Furthermore, ABCG2, TP63, and keratin 19, which are known as stemness-related molecules, were downregulated in these transfectants. It was found that Slug is upregulated during corneal wound healing in vivo. The overexpression of Slug mediated a change in the cellular phenotype affecting proliferation, migration, and expression levels of differentiation-related molecules. This is the first evidence that Slug is regulated during the process of corneal wound healing in the corneal epithelium in vivo, providing a novel insight into the EMT and Slug expression in corneal wound healing.

  8. Oxygen-deficient metabolism and corneal edema

    PubMed Central

    Leung, B.K.; Bonanno, J.A.; Radke, C.J.

    2014-01-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem–Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  9. Oxygen-deficient metabolism and corneal edema.

    PubMed

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. Copyright © 2011 Elsevier Ltd. All rights

  10. Expression Analysis of the Transmembrane Mucin MUC20 in Human Corneal and Conjunctival Epithelia

    PubMed Central

    Woodward, Ashley M.; Argüeso, Pablo

    2014-01-01

    Purpose. Cell surface mucins are a group of highly O-glycosylated transmembrane glycoproteins responsible for the protection of epithelial cells on mucosal surfaces. The aim of this study was to investigate the localization and regulation of mucin 20 (MUC20) at the ocular surface. Methods. Localization of MUC20 in human corneal and conjunctival epithelia was evaluated by immunofluorescence microscopy. Immortalized corneal (HCLE) and conjunctival (HCjE) cell lines were grown at different stages of differentiation and subjected to quantitative PCR and Western blot analyses. Cell surface proteins on apical cell membranes were biotinylated and isolated by neutravidin chromatography. Results. The MUC20 was detected throughout the entire human ocular surface epithelia, predominantly in cell membranes within intermediate cell layers. In conjunctiva, MUC20 also was observed in the cytoplasm of apical cells within the stratified squamous epithelium, but not in goblet cells. Quantitative PCR and immunoblotting demonstrated expression of MUC20 in HCLE and HCjE cells. Induction of differentiation with serum-containing medium resulted in upregulation of MUC20 mRNA and protein. Biotin labeling of the surface of stratified cultures revealed low levels of MUC20 protein on apical glycocalyces. Further, MUC20 was not detected in the cell culture media or in human tears, suggesting that the extracellular domain of MUC20 is not released from the ocular surface as described previously for other cell surface mucins. Conclusions. Our results indicate that MUC20 is a novel transmembrane mucin expressed by the human corneal and conjunctival epithelia, and suggest that differential expression of MUC20 during differentiation has a role in maintaining ocular surface homeostasis. PMID:25168902

  11. Toxicological effects and recovery of the corneal epithelium in Cyprinus carpio communis Linn. exposed to monocrotophos: an scanning electron microscope study.

    PubMed

    Uppal, Ravneet Kaur; Johal, Mohinder Singh; Sharma, Madan Lal

    2015-05-01

    This study was conducted based on the evidence of fish habitats in North India being affected by organophosphate pesticides draining from agricultural fields into bodies of water, especially during the rainy season. Various tissues of fish such as scales, gills ovaries, kidney, and liver have been studied from the toxicological point of view, but the toxicological effects of aquatic pollutants on fish cornea have not been investigated to date. We conducted comparative toxicological studies on the cornea of Cyprinus carpio communis using two sublethal (0.038 and 0.126 ppm) concentrations of monocrotophos pesticide for 30 days. Corneas from all the groups were evaluated by a scanning electron microscope. The fish exposed to the monocrotophos pesticide developed corneal necrosis due to the formation of crystalloid-like structures, thinning and shrinkage of microridges on the corneal epithelium. After 30 days, fish from the monocrotophos-treated tank were transferred to normal environmental conditions. After 60 days under natural condition, epithelial cells did not fully recover. In conclusion, exposure to monocrotophos induces irreversible changes in the cornea of C. carpio communis. As fish and mammalian visual systems share many similarities, the reported finding may offer useful insights for further toxicological and ophthalmological studies in humans. © 2013 American College of Veterinary Ophthalmologists.

  12. A minimal model of epithelial tissue dynamics and its application to the corneal epithelium

    NASA Astrophysics Data System (ADS)

    Henkes, Silke; Matoz-Fernandez, Daniel; Kostanjevec, Kaja; Coburn, Luke; Sknepnek, Rastko; Collinson, J. Martin; Martens, Kirsten

    Epithelial cell sheets are characterized by a complex interplay of active drivers, including cell motility, cell division and extrusion. Here we construct a particle-based minimal model tissue with only division/death dynamics and show that it always corresponds to a liquid state with a single dynamic time scale set by the division rate, and that no glassy phase is possible. Building on this, we construct an in-silico model of the mammalian corneal epithelium as such a tissue confined to a hemisphere bordered by the limbal stem cell zone. With added cell motility dynamics we are able to explain the steady-state spiral migration on the cornea, including the central vortex defect, and quantitatively compare it to eyes obtained from mice that are X-inactivation mosaic for LacZ.

  13. Stromal Tissue Rigidity Promotes Mesenchymal Stem Cell-Mediated Corneal Wound Healing Through the Transforming Growth Factor β Signaling Pathway.

    PubMed

    Yang, Yun-Hsiang; Hsieh, Ting-Lieh; Ji, Andrea Tung-Qian; Hsu, Wei-Tse; Liu, Chia-Yu; Lee, Oscar Kuang-Sheng; Ho, Jennifer Hui-Chun

    2016-10-01

    The healing of a corneal epithelial defect is essential for preventing infectious corneal ulcers and subsequent blindness. We previously demonstrated that mesenchymal stem cells (MSCs) in the corneal stroma, through a paracrine mechanism, yield a more favorable therapeutic benefit for corneal wound re-epithelialization than do MSCs in the corneal epithelium. In this study, MSCs were grown on a matrix with the rigidity of the physiological human vitreous (1 kPa), corneal epithelium (8 kPa), or corneal stroma (25 kPa) for investigating the role of corneal tissue rigidity in MSC functions regarding re-epithelialization promotion. MSC growth on a 25-kPa dish significantly promoted the wound healing of human corneal epithelial (HCE-T) cells. Among growth factors contributing to corneal epithelial wound healing, corneal stromal rigidity selectively enhanced transforming growth factor-beta (TGF-β) secretion from MSCs. Inhibitors of TGF-β pan receptor, TGF-β receptor 1, and Smad2 dose dependently abrogated MSC-mediated HCE-T wound healing. Furthermore, MSCs growth on a matrix with corneal stromal rigidity enhanced the ability of themselves to promote corneal re-epithelialization by activating matrix metalloproteinase (MMP) expression and integrin β1 production in HCE-T cells through TGF-β signaling pathway activation. Smad2 activation resulted in the upregulation of MMP-2 and -13 expression in HCE-T cells, whereas integrin β1 production favored a Smad2-independent TGF-β pathway. Altogether, we conclude that corneal stromal rigidity is a critical factor for MSC-induced promotion of corneal re-epithelialization. The activation of the TGF-β signaling pathway, which maintains the balance between integrin and MMP expression, in HCE-T cells is the major pathway responsible for MSC-mediated wound healing. Stem Cells 2016;34:2525-2535. © 2016 AlphaMed Press.

  14. Human tears reveal insights into corneal neovascularization.

    PubMed

    Zakaria, Nadia; Van Grasdorff, Sigi; Wouters, Kristien; Rozema, Jos; Koppen, Carina; Lion, Eva; Cools, Nathalie; Berneman, Zwi; Tassignon, Marie-José

    2012-01-01

    Corneal neovascularization results from the encroachment of blood vessels from the surrounding conjunctiva onto the normally avascular cornea. The aim of this study is to identify factors in human tears that are involved in development and/or maintenance of corneal neovascularization in humans. This could allow development of diagnostic tools for monitoring corneal neovascularization and combination monoclonal antibody therapies for its treatment. In an observational case-control study we enrolled a total of 12 patients with corneal neovascularization and 10 healthy volunteers. Basal tears along with reflex tears from the inferior fornix, superior fornix and using a corneal bath were collected along with blood serum samples. From all patients, ocular surface photographs were taken. Concentrations of the pro-angiogenic cytokines interleukin (IL)-6, IL-8, Vascular Endothelial Growth Factor (VEGF), Monocyte Chemoattractant Protein 1 (MCP-1) and Fas Ligand (FasL) were determined in blood and tear samples using a flow cytometric multiplex assay. Our results show that the concentration of pro-angiogenic cytokines in human tears are significantly higher compared to their concentrations in serum, with highest levels found in basal tears. Interestingly, we could detect a significantly higher concentration of IL- 6, IL-8 and VEGF in localized corneal tears of patients with neovascularized corneas when compared to the control group. This is the first study of its kind demonstrating a significant difference of defined factors in tears from patients with neovascularized corneas as compared to healthy controls. These results provide the basis for future research using animal models to further substantiate the role of these cytokines in the establishment and maintenance of corneal neovascularization.

  15. Human Tears Reveal Insights into Corneal Neovascularization

    PubMed Central

    Wouters, Kristien; Rozema, Jos; Koppen, Carina; Lion, Eva; Cools, Nathalie; Berneman, Zwi; Tassignon, Marie-José

    2012-01-01

    Corneal neovascularization results from the encroachment of blood vessels from the surrounding conjunctiva onto the normally avascular cornea. The aim of this study is to identify factors in human tears that are involved in development and/or maintenance of corneal neovascularization in humans. This could allow development of diagnostic tools for monitoring corneal neovascularization and combination monoclonal antibody therapies for its treatment. In an observational case-control study we enrolled a total of 12 patients with corneal neovascularization and 10 healthy volunteers. Basal tears along with reflex tears from the inferior fornix, superior fornix and using a corneal bath were collected along with blood serum samples. From all patients, ocular surface photographs were taken. Concentrations of the pro-angiogenic cytokines interleukin (IL)-6, IL-8, Vascular Endothelial Growth Factor (VEGF), Monocyte Chemoattractant Protein 1 (MCP-1) and Fas Ligand (FasL) were determined in blood and tear samples using a flow cytometric multiplex assay. Our results show that the concentration of pro-angiogenic cytokines in human tears are significantly higher compared to their concentrations in serum, with highest levels found in basal tears. Interestingly, we could detect a significantly higher concentration of IL- 6, IL-8 and VEGF in localized corneal tears of patients with neovascularized corneas when compared to the control group. This is the first study of its kind demonstrating a significant difference of defined factors in tears from patients with neovascularized corneas as compared to healthy controls. These results provide the basis for future research using animal models to further substantiate the role of these cytokines in the establishment and maintenance of corneal neovascularization. PMID:22590547

  16. Corneal iron ring after conductive keratoplasty.

    PubMed

    Kymionis, George D; Naoumidi, Tatiana L; Aslanides, Ioannis M; Pallikaris, Ioannis G

    2003-08-01

    To report formation of corneal iron ring deposits after conductive keratoplasty. Observational case report. Case report. A 54-year-old woman underwent conductive keratoplasty for hyperopia. One year after conductive keratoplasty, iron ring pattern pigmentation was detected at the corneal epithelium of both eyes. This is the first report of the appearance of corneal iron ring deposits following conductive keratoplasty treatment in a patient. It is suggested that alterations in tear film stability, resulting from conductive keratoplasty-induced changes in corneal curvature, constitute the contributory factor for these deposits.

  17. Alteration of corneal epithelial ion transport by sympathectomy.

    PubMed

    Klyce, S D; Beuerman, R W; Crosson, C E

    1985-04-01

    The cornea is dually innervated, receiving afferent nerves from the trigeminal ganglion and efferent nerves from the superior cervical ganglion. This study examines the specific effects of superior cervical ganglionectomy (SCGX) on the in vitro ion transport characteristics of the rabbit corneal epithelium. Two weeks after SCGX, epithelial Cl--dependent transport and total ionic conductance were increased in comparison to values obtained in paired control eyes. This increased transport level appeared to be independent of membrane receptor activity as demonstrated by lack of responsiveness to alpha-adrenergic, beta-adrenergic, serotonergic, dopaminergic, nicotinic cholinergic, or muscarinic cholinergic blockade. Nevertheless, SCGX produced a supersensitivity to epinephrine-stimulated transport as measured by the responsiveness of the ion transport current. Furthermore, SCGX abolished the responsiveness of the epithelium to serotonin. On the basis of these and earlier findings, the authors conclude that corneal sympathetic innervation influences membrane and receptor properties. Autonomic neurotrophic effects in the corneal epithelium include suppression of apical membrane Cl- permeability and of beta-adrenoreceptor sensitivity to biogenic amines. It is proposed that the corneal serotonergic receptors that activate Cl- transport lie on the sympathetic nerve terminals and stimulate this transport process by causing the neural release of a catecholamine.

  18. Corneal Epithelium Thickness Profile in 614 Normal Chinese Children Aged 7-15 Years Old.

    PubMed

    Ma, Yingyan; He, Xiangui; Zhu, Xiaofeng; Lu, Lina; Zhu, Jianfeng; Zou, Haidong

    2016-03-23

    The purpose of the study is to describe the values and distribution of corneal epithelium thickness (CET) in normal Chinese school-aged children, and to explore associated factors with CET. CET maps were measured by Fourier-domain optical coherence tomography (FD-OCT) in normal Chinese children aged 7 to 15 years old from two randomly selected schools in Shanghai, China. Children with normal intraocular pressure were further examined for cycloplegic autorefraction, corneal curvature radius (CCR) and axial length. Central (2-mm diameter area), para-central (2- to 5-mm diameter area), and peripheral (5- to 6-mm diameter area) CET in the superior, superotemporal, temporal, inferotemporal, inferior, inferonasal, nasal, superonasal cornea; minimum, maximum, range, and standard deviation of CET within the 5-mm diameter area were recorded. The CET was thinner in the superior than in the inferior and was thinner in the temporal than in the nasal. The maximum CET was located in the inferior zone, and the minimum CET was in the superior zone. A thicker central CET was associated with male gender (p = 0.009) and older age (p = 0.037) but not with CCR (p = 0.061), axial length (p = 0.253), or refraction (p = 0.351) in the multiple regression analyses. CCR, age, and gender were correlated with para-central and peripheral CET.

  19. Corneal collagen cross-linking and liposomal amphotericin B combination therapy for fungal keratitis in rabbits

    PubMed Central

    Hao, Zhao-Qin; Song, Jin-Xin; Pan, Shi-Yin; Zhang, Lin; Cheng, Yan; Liu, Xian-Ning; Wu, Jie; Xiao, Xiang-Hua; Gao, Wei; Zhu, Hai-Feng

    2016-01-01

    AIM To observe the therapeutic effect of corneal collagen cross-linking (CXL) in combination with liposomal amphotericin B in fungal corneal ulcers. METHODS New Zealand rabbits were induced fungal corneal ulcers by scratching and randomly divided into 3 groups, i.e. control, treated with CXL, and combined therapy of CXL with 0.25% liposomal amphotericin B (n=5 each). The corneal lesions were documented with slit-lamp and confocal microscopy on 3, 7, 14, 21 and 28d after treatment. The corneas were examined with transmission electron microscopy (TEM) at 4wk. RESULTS A rabbit corneal ulcer model of Fusarium was successfully established. The corneal epithelium defect areas in the two treatment groups were smaller than that in the control group on 3, 7, 14 and 21d (P<0.05). The corneal epithelium defect areas of the combined group was smaller than that of the CXL group (P<0.05) on 7 and 14d, but there were no statistical differences on 3, 21 and 28d. The corneal epithelium defects of the two treatment groups have been healed by day 21. The corneal epithelium defects of the control group were healed on 28d. The diameters of the corneal collagen fiber bundles (42.960±7.383 nm in the CXL group and 37.040±4.160 nm in the combined group) were thicker than that of the control group (24.900±1.868 nm), but there was no difference between the two treatment groups. Some corneal collagen fiber bundles were distorted and with irregular arrangement, a large number of fibroblasts could be seen among them but no inflammatory cells in both treatment groups. CONCLUSION CXL combined with liposomal amphotericin B have beneficial effects on fungal corneal ulcers. The combined therapy could alleviate corneal inflammattions, accelerate corneal repair, and shorten the course of disease. PMID:27990355

  20. Assessment of corneal epithelial thickness in dry eye patients.

    PubMed

    Cui, Xinhan; Hong, Jiaxu; Wang, Fei; Deng, Sophie X; Yang, Yujing; Zhu, Xiaoyu; Wu, Dan; Zhao, Yujin; Xu, Jianjiang

    2014-12-01

    To investigate the features of corneal epithelial thickness topography with Fourier-domain optical coherence tomography (OCT) in dry eye patients. In this cross-sectional study, 100 symptomatic dry eye patients and 35 normal subjects were enrolled. All participants answered the ocular surface disease index questionnaire and were subjected to OCT, corneal fluorescein staining, tear breakup time, Schirmer 1 test without anesthetic (S1t), and meibomian morphology. Several epithelium statistics for each eye, including central, superior, inferior, minimum, maximum, minimum - maximum, and map standard deviation, were averaged. Correlations of epithelial thickness with the symptoms of dry eye were calculated. The mean (±SD) central, superior, and inferior corneal epithelial thickness was 53.57 (±3.31) μm, 52.00 (±3.39) μm, and 53.03 (±3.67) μm in normal eyes and 52.71 (±2.83) μm, 50.58 (±3.44) μm, and 52.53 (±3.36) μm in dry eyes, respectively. The superior corneal epithelium was thinner in dry eye patients compared with normal subjects (p = 0.037), whereas central and inferior epithelium were not statistically different. In the dry eye group, patients with higher severity grades had thinner superior (p = 0.017) and minimum (p < 0.001) epithelial thickness, more wide range (p = 0.032), and greater deviation (p = 0.003). The average central epithelial thickness had no correlation with tear breakup time, S1t, or the severity of meibomian glands, whereas average superior epithelial thickness positively correlated with S1t (r = 0.238, p = 0.017). Fourier-domain OCT demonstrated that the thickness map of the dry eye corneal epithelium was thinner than normal eyes in the superior region. In more severe dry eye disease patients, the superior and minimum epithelium was much thinner, with a greater range of map standard deviation.

  1. Influence of corneal hydration on optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Twa, Michael D.; Vantipalli, Srilatha; Singh, Manmohan; Li, Jiasong; Larin, Kirill V.

    2016-03-01

    Corneal biomechanical properties are influenced by several factors, including intraocular pressure, corneal thickness, and viscoelastic responses. Corneal thickness is directly proportional to tissue hydration and can influence corneal stiffness, but there is no consensus on the magnitude or direction of this effect. We evaluated the influence of corneal hydration on dynamic surface deformation responses using optical coherence elastography (OCE). Fresh rabbit eyes (n=10) were prepared by removing the corneal epithelium and dropping with 0.9% saline every 5 minutes for 1 hour, followed by 20% dextran solution every 5 minutes for one hour. Corneal thickness was determined from structural OCT imaging and OCE measurements were performed at baseline and every 20 minutes thereafter. Micron-scale deformations were induced at the apex of the corneal tissue using a spatially-focused (150μm) short-duration (<1ms) air-pulse delivery system. These dynamic tissue responses were measured non-invasively with a phase-stabilized swept source OCT system. The tissue surface deformation response (Relaxation Rate: RR) was quantified as the time constant, over which stimulated tissue recovered from the maximum deformation amplitude. Elastic wave group velocity (GV) was also quantified and correlated with change in corneal thickness due to hydration process. Corneal thickness rapidly increased and remained constant following epithelium removal and changed little thereafter. Likewise, corneal stiffness changed little over the first hour and then decreased sharply after Dextran application (thickness: -46% [-315/682 μm] RR: - 24% [-0.7/2.88 ms-1]; GV: -19% [-0.6/3.2 m/s]). Corneal thickness and corneal stiffness (RR) were well correlated (R2 = .66). Corneal biomechanical properties are highly correlated with tissue hydration over a wide range of corneal thickness and these changes in corneal stiffness are quantifiable using OCE.

  2. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice.

    PubMed

    Zhang, Zhenzhen; Hu, Xiaoli; Qi, Xia; Di, Guohu; Zhang, Yangyang; Wang, Qian; Zhou, Qingjun

    2018-01-01

    To investigate the effect and mechanism of proresolving lipid mediator resolvin D1 (RvD1) on the corneal epithelium and the restoration of mechanical sensation in diabetic mice. Type 1 diabetes was induced in mice with intraperitoneal streptozocin injections. The healthy and diabetic mice underwent removal of the central corneal epithelium, and then 100 ng/ml RvD1 or its formyl peptide receptor 2 (FPR2) antagonist WRW4 was used to treat the diabetic mice. Regeneration of the corneal epithelium and nerves was observed with sodium fluorescein staining and whole-mount anti-β3-tubulin fluorescence staining. The inflammatory response level was measured with hematoxylin and eosin staining (inflammatory cell infiltration), enzyme-linked immunosorbent assay (tumor necrosis factor alpha and interleukin-1 beta content), myeloperoxidase activity, and fluorescence staining (macrophage content). The reactive oxygen species (ROS) and glutathione (GSH) levels were examined with incubation with fluorescent probes, and oxidative stress-related protein expression levels were evaluated with fluorescence staining and western blotting. Topical application of RvD1 promoted regeneration of the corneal epithelium in diabetic mice, accompanied by the reactivation of signaling and inflammation resolution related to regeneration of the epithelium. Furthermore, RvD1 directly attenuated the accumulation of ROS and nicotinamide adenine dinucleotide phosphate oxidase 2/4 expression, while RvD1 enhanced GSH synthesis and reactivated the Nrf2-ARE signaling pathway that was impaired in the corneal epithelium in the diabetic mice. More interestingly, topical application of RvD1 promoted regeneration of corneal nerves and completely restored impaired mechanical sensitivity of the cornea in diabetic mice. In addition, the promotion of corneal epithelial wound healing by RvD1 in diabetic mice was abolished by its FPR2 antagonist WRW4. Topical application of RvD1 promotes corneal epithelial wound

  3. [CYSTEAMINE-INDUCED MODIFICATION OF CYTOGENETIC DAMAGES TO THE CORNEAL EPITHELIUM OF MICE EXPOSED TO CORPUSCULAR RADIATION WITH VARYING LINEAR TRANSFER ENERGIES].

    PubMed

    Vorozhtsova, S V; Bulynina, T M; Molokanov, A G; Ivanov, A A

    2015-01-01

    Cytogenetic damages to cells of the corneal epithelium were studied in mice exposed to protons (10, 25, 50 and 645 MeV), ions of boron, carbon and neon, and X-rays (180 keV) within the dose range from 25 to 750 cGy and injected with a radioprotector. Animals were subjected to a single exposure. The protective effect of β-mercaptoethylamine was tested in the experiment. The radioprotector (0.2 ml) was introduced intraperitoneally 30 minutes before exposure in 350 mI/kg dose. Control animals received the same amount of sodium chloride solution. The animals were sacrificed by cervical dislocation in 24 and 72 hrs. after exposure. It was shown that cysteamine effectively protects in vivo corneal epithelium cells of mice exposed to electromagnetic radiation or protons in a broad energy spectrum (10 to 645 MeV), and to a broad range of radiation doses (25 to 750 cGy), as judged from levels of aberrant mitosis and mitotic activity. The radioprotector exhibited the highest effectiveness in animals exposed to the doses of 50 to 300 cGy. These findings prove that cysteamine may potentially be used for pharmacological protection from protons. The radioprotector failed to prevent chromosomal aberrations after exposure to heavy charged particles of boron, carbon and neon, which implies the need to design radioprotectors against this type of corpuscular radiation specifically.

  4. Reconstituted human corneal epithelium: a new alternative to the Draize eye test for the assessment of the eye irritation potential of chemicals and cosmetic products.

    PubMed

    Doucet, O; Lanvin, M; Thillou, C; Linossier, C; Pupat, C; Merlin, B; Zastrow, L

    2006-06-01

    The aim of this study was to evaluate the interest of a new three-dimensional epithelial model cultivated from human corneal cells to replace animal testing in the assessment of eye tolerance. To this end, 65 formulated cosmetic products and 36 chemicals were tested by means of this in vitro model using a simplified toxicokinetic approach. The chemicals were selected from the ECETOC data bank and the EC/HO International validation study list. Very satisfactory results were obtained in terms of concordance with the Draize test data for the formulated cosmetic products. Moreover, the response of the corneal model appeared predictive of human ocular response clinically observed by ophthalmologists. The in vitro scores for the chemicals tested strongly correlated with their respective scores in vivo. For all the compounds tested, the response of the corneal model to irritants was similar regardless of their chemical structure, suggesting a good robustness of the prediction model proposed. We concluded that this new three-dimensional epithelial model, developed from human corneal cells, could be promising for the prediction of eye irritation induced by chemicals and complex formulated products, and that these two types of materials should be tested using a similar protocol. A simple shortening of the exposure period was required for the chemicals assumed to be more aggressively irritant to the epithelial tissues than the cosmetic formulae.

  5. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration.

    PubMed

    Lin, Ko-Jo; Loi, Mei-Xue; Lien, Gi-Shih; Cheng, Chieh-Feng; Pao, Hsiang-Yin; Chang, Yun-Chuang; Ji, Andrea Tung-Qian; Ho, Jennifer Hui-Chun

    2013-06-14

    Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 10(5)) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The therapeutic effect of the

  6. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration

    PubMed Central

    2013-01-01

    Introduction Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Methods Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 105) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Results Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The

  7. Corneal dystrophies

    PubMed Central

    Klintworth, Gordon K

    2009-01-01

    The term corneal dystrophy embraces a heterogenous group of bilateral genetically determined non-inflammatory corneal diseases that are restricted to the cornea. The designation is imprecise but remains in vogue because of its clinical value. Clinically, the corneal dystrophies can be divided into three groups based on the sole or predominant anatomical location of the abnormalities. Some affect primarily the corneal epithelium and its basement membrane or Bowman layer and the superficial corneal stroma (anterior corneal dystrophies), the corneal stroma (stromal corneal dystrophies), or Descemet membrane and the corneal endothelium (posterior corneal dystrophies). Most corneal dystrophies have no systemic manifestations and present with variable shaped corneal opacities in a clear or cloudy cornea and they affect visual acuity to different degrees. Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or X-linked recessive Mendelian mode of inheritance. Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Knowledge about the responsible genetic mutations responsible for these disorders has led to a better understanding of their basic defect and to molecular tests for their precise diagnosis. Genes for other corneal dystrophies have been mapped to specific chromosomal loci, but have not yet been identified. As clinical manifestations widely vary with the different entities, corneal dystrophies should be suspected when corneal transparency is lost or corneal opacities occur spontaneously, particularly in both corneas, and especially in the presence of a positive family history or in the offspring of consanguineous parents. Main differential diagnoses include various causes of monoclonal gammopathy, lecithin-cholesterol-acyltransferase deficiency, Fabry disease, cystinosis, tyrosine transaminase deficiency, systemic lysosomal storage diseases (mucopolysaccharidoses

  8. Pathogenesis of Acute and Delayed Corneal Lesions after Ocular Exposure to Sulfur Mustard Vapor

    DTIC Science & Technology

    2012-01-01

    mechanistic understanding and therapeutic development. Here we evaluate the histopathologic, biochemical and ultrastructural expressions of...were identified, including destabilization of the basal corneal epithelium , basement membrane zone abnormalities and stromal deformation. Clinical...pathology of MGK, in part resulting from persistent necrosis of the basal corneal epithelium and deterioration of the basement membrane. The findings

  9. [Alterations in the metabolism of cornmeal epithelium during medium-term storage (author's transl)].

    PubMed

    Schmidt-Martens, F W; Hennighausen, U; Wirz, K; Teping, C

    1977-08-08

    Freshly prepared bovine corneas were stored in medium TC 199 with penicillin and fetal calf serum at +4 degrees C over a storage period of 168h. Every 24h, the levels of glucose, lactate, and pyruvate in the corneal epithelium were estimated. Also the glucose levels in the corneal epithelium and stroma were compared at the same time intervals. Furthermore, alterations in the enzyme pattern of the epithelial cells during storage were observed.

  10. Changes in corneal biometry and the associated histology in rhesus monkeys wearing orthokeratology contact lenses.

    PubMed

    Ding, Hui; Pu, Aijun; He, Hong; Xie, Ruo Zhong; Yang, Jun; Liao, Aiping; Gao, Shaohui; Zhong, Xingwu

    2012-08-01

    This study compared the effect of orthokeratology (OK) lens wear on corneal topography and microstructure between the 1-night and 30-night wearers to predict any adverse responses of the eyes to long-term OK lens wear. Nine rhesus monkeys with one eye wearing an OK lens and the fellow eye wearing a rigid gas permeable (RGP) lens were used in this study. The lenses were worn for 11 hours, with the measurement of corneal curvature and thickness and axial components of the eye at 0 night (n = 9), 1 night (n = 9), and 30 nights (n = 6). Histology was performed at 1 and 30 nights of lens wear. Corneal surface power in the 3-mm central region was reduced in the OK eye when compared with the RGP eye (P < 0.05). Central corneal thickness was only reduced in 30 nights of OK lens wear (P < 0.05). Under light microscopy, the 1-night OK or RGP eyes showed normal morphology in all layers of the cornea. The 30-night OK eyes showed a thinned central corneal epithelium and a thickened but less stratified paracentral corneal epithelium when compared with the 30-night RGP eyes. Under electron microscopy, intercellular junctions of corneal epithelium in the 30-night OK eyes were much looser than those in the 1-night OK eyes. However, the density and morphology of hemidesmosomes were similar between the OK and RGP eyes at 30 nights of lens wear. Overnight OK can change the corneal curvature through anterior corneal remodeling, resulting in an effective correction of myopia. However, a decrease in intercellular junctions during long-term wear may compromise the functions of the corneal epithelium as a border mechanical barrier.

  11. In vivo confocal microscopy of human cornea covered with human amniotic membrane.

    PubMed

    Mimura, Tatsuya; Yamagami, Satoru; Usui, Tomohiko; Honda, Norihiko; Araki, Fumiyuki; Amano, Shiro

    2008-01-01

    Amniotic membrane transplantation has been widely performed to reconstruct the surface of the eye and treat chemical burns or epithelial defects. However, we have difficulty observing the cornea through the opaque transplanted amniotic membrane by slit-lamp biomicroscopy. We investigated the use of confocal microscopy for observation of human corneas covered with amniotic membrane. Human amniotic membrane was placed onto the normal corneas of five volunteers aged 22-24 years. Then, all layers of the covered corneas were observed by in vivo confocal microscopy. Confocal microscopy displayed the epithelium, basement membrane, and stroma of the amniotic membrane. It also displayed the corneal epithelium. Furthermore, corneal stromal keratocytes and the corneal endothelium were clearly observed through the amniotic membrane by confocal microscopy. We demonstrated that in vivo confocal microscopy enabled us to observe all layers of corneas covered with amniotic membrane in normal human eyes. Our findings suggest that confocal microscopy may have advantages for clinical examination of the ocular surface, including all layers of the cornea.

  12. Drug-induced corneal damage.

    PubMed

    2014-04-01

    Corneal damage can have a variety of causes, including infections, chemical splashes, environmental factors (radiation, trauma, contact lenses, etc.), and systemic diseases (genetic, autoimmune, inflammatory, metabolic, etc.). A wide range of drugs can also damage the cornea. The severity of drug-induced corneal changes can range from simple asymptomatic deposits to irreversible, sight-threatening damage. Several factors can influence the onset of corneal lesions. Some factors, such as the dose, are treatment-related, while others such as contact lenses, are patient-related. A variety of mechanisms may be involved, including corneal dryness, changes in the corneal epithelium, impaired wound healing and deposits. Many drugs can damage the cornea through direct contact, after intraocular injection or instillation, including VEGF inhibitors, anti-inflammatory drugs, local anaesthetics, glaucoma drugs, fluoroquinolones, and preservatives. Some systemically administered drugs can also damage the cornea, notably cancer drugs, amiodarone and isotretinoin. Vulnerable patients should be informed of this risk if they are prescribed a drug with the potential to damage the cornea so that they can identify problems in a timely manner. It may be necessary to discontinue the suspect drug when signs and symptoms of corneal damage occur.

  13. Corneal collagen cross-linking: a confocal, electron, and light microscopy study of eye bank corneas.

    PubMed

    Dhaliwal, Jasmeet S; Kaufman, Stephen C

    2009-01-01

    The purpose of this study was to evaluate morphological changes induced by corneal collagen cross-linking in a human ex vivo cornea, using confocal, electron, and light microscopy. The central epithelium was partially removed from ex vivo human corneal buttons. Riboflavin 0.1% solution was applied before ultraviolet A light treatment and then for every 2 minutes for 30 minutes while the corneas were exposed to ultraviolet A light at a wavelength of 370 nm and intensity of 3 mW/cm(2). Each cornea was evaluated using confocal, electron, and light microscopy. Confocal microscopy demonstrated normal-appearing corneas on their initial pretreatment examination, with reduced stromal detail. After treatment, a superficial layer of highly reflective spherical structures (4-10 microm) was observed. Many of these hyperreflective structures appeared up to a depth of 300 microm. The remainder of the corneal stroma and endothelium appeared normal. Electron microscopy showed keratocyte apoptotic changes to a depth of 300 microm. No observable pathologic changes were seen on histology. Based on clinical studies, corneal cross-linking is a promising treatment that appears to be safe and to halt ectatic corneal disease progression. Initial European studies used animal models to extrapolate human protocols. In conjunction with clinical studies, we believe that human ex vivo corneal studies provide a means to evaluate the structural and morphological changes associated with this procedure, within human corneas, in a manner that cannot be accomplished in vivo.

  14. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635).

  15. EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling

    PubMed Central

    Kaplan, Nihal; Ventrella, Rosa; Peng, Han; Pal-Ghosh, Sonali; Arvanitis, Constadina; Rappoport, Joshua Z.; Mitchell, Brian J.; Stepp, Mary Ann; Lavker, Robert M.

    2018-01-01

    Purpose Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal–corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal–corneal epithelial boundary organization. Methods EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell–cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results Ephrin-A1–expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1–expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin–mediated adhesion at heterotypic boundaries. Conclusions Ephrin-A1/EphA2 signaling complexes play a key role in limbal–corneal epithelial compartmentalization and the response of these tissues to injury. PMID:29351356

  16. EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling.

    PubMed

    Kaplan, Nihal; Ventrella, Rosa; Peng, Han; Pal-Ghosh, Sonali; Arvanitis, Constadina; Rappoport, Joshua Z; Mitchell, Brian J; Stepp, Mary Ann; Lavker, Robert M; Getsios, Spiro

    2018-01-01

    Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal-corneal epithelial boundary organization. EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell-cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Ephrin-A1-expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1-expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin-mediated adhesion at heterotypic boundaries. Ephrin-A1/EphA2 signaling complexes play a key role in limbal-corneal epithelial compartmentalization and the response of these tissues to injury.

  17. Metaherpetic corneal disease in a dog associated with partial limbal stem cell deficiency and neurotrophic keratitis.

    PubMed

    Ledbetter, Eric C; Marfurt, Carl F; Dubielzig, Richard R

    2013-07-01

    To describe clinical, in vivo confocal microscopic, histopathologic, and immunohistochemical features of a dog with metaherpetic corneal disease that developed subsequent to a protracted episode of canine herpesvirus-1 (CHV-1) dendritic ulcerative keratitis. A 7-year-old, spayed-female, Miniature Schnauzer was treated for bilateral CHV-1 dendritic ulcerative keratitis. Following resolution of ulcerative keratitis, sectoral peripheral superficial corneal gray opacification, vascularization, and pigmentation slowly migrated centripetally to the axial cornea of both eyes. Corneal sensitivity measured with a Cochet-Bonnet esthesiometer was dramatically and persistently reduced. In vivo corneal confocal microscopic examination revealed regions of epithelium with a conjunctival phenotype. In these areas, the surface epithelium was thin, disorganized, and composed of hyper-reflective epithelial cells. Goblet cells and Langerhans cells were frequent, and the subbasal nerve plexus was completely absent or markedly diminished. Histopathologic abnormalities in the globes were restricted to the superficial cornea and included sectoral corneal conjunctivalization, increased anterior stromal spindle cells, and vascularization. Immunohistochemical evaluation of the corneas with anti-neurotublin antibody demonstrated attenuation of the epithelial and subbasal nerve plexuses with marked stromal hyperinnervation and increased numbers of morphologically abnormal neurites. Similar to herpes simplex virus keratitis in humans, CHV-1 ulcerative keratitis may be associated with the development of chronic degenerative corneal disease in dogs. In the described dog, this chronic corneal disease included progressive corneal opacification because of partial limbal stem cell deficiency and neurotrophic keratitis. Long-term monitoring of dogs following resolution of active CHV-1 keratitis may be indicated, particularly when ulcerations persist for an extended period. © 2012 American College of

  18. Activation of checkpoint kinase 2 is critical for herpes simplex virus type 1 replication in corneal epithelium.

    PubMed

    Alekseev, Oleg; Limonnik, Vladimir; Donovan, Kelly; Azizkhan-Clifford, Jane

    2015-01-01

    Herpes simplex virus (HSV) type I keratitis remains a leading cause of corneal morbidity, despite the availability of effective antiviral drugs. Improved understanding of virus-host interactions at the level of the host DNA damage response (DDR), a known factor in the development of HSV-1 keratitis, may shed light on potential new therapeutic targets. This report examines the role of checkpoint kinase 2 (Chk2), a DDR mediator protein, in corneal epithelial HSV-1 infection. A small-molecule inhibitor of Chk2 (Chk2 inhibitor II) was applied to HSV-1-infected cultured human corneal epithelial cells (hTCEpi and HCE) as well as to explanted and organotypically cultured human and rabbit corneas. Infection levels were assessed by plaque assay and real-time PCR. RNAi-mediated depletion of Chk2 was performed to confirm the effect of the inhibitor. Inhibition of the Chk2 kinase activity greatly suppresses the cytopathic effect, genome replication and infectious progeny production in vitro and ex vivo. This report demonstrates the critical role of Chk2 kinase in the establishment of HSV-1 corneal epithelial infection. These data contribute to our understanding of herpesvirus-host interactions and underscore the significance of DDR activation in HSV-1 keratitis.

  19. Protective effects of trehalose on the corneal epithelial cells.

    PubMed

    Aragona, Pasquale; Colosi, Pietro; Rania, Laura; Colosi, Francesca; Pisani, Antonina; Puzzolo, Domenico; Micali, Antonio

    2014-01-01

    Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Twelve patients undergoing laser subepithelial keratomileusis (LASEK) were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. In both trehalose-untreated eyes (TUE) and trehalose-treated eyes (TTE), the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  20. Corneal reepithelialization and anti-inflammatory agents.

    PubMed Central

    Srinivasan, B D

    1982-01-01

    These studies have demonstrated that nonsteroidal anti-inflammatory agents (cyclooxygenase and lipoxygenase inhibitors) can inhibit PMN arrival in the tear fluid following corneal injury but do not inhibit the reepithelialization either by corneal epithelial cells or by conjunctival epithelial cells. Therefore, they can be used safely in ocular inflammatory conditions even when corneal epithelial defects are present. Corticosteroids, on the other hand, inhibit reepithelialization by conjunctival epithelial cells and not by corneal epithelial cells in the doses tested. This inhibition does not occur with pretreatment prior to injury, suggesting that corticosteroids can be used clinically in conditions that have intact corneal epithelium without fear of slowing down wound healing should epithelial defects occur when not on steroid therapy. Furthermore, the steroid inhibition is temporary since there is a breakthrough in steroid inhibition with time, and occurs only if the steroids have been used shortly after deepithelialization. The steroid inhibition can be reversed by specific steroid antagonist, indicating that the steroid effect is mediated through specific receptors. An exciting and new hypothesis proposes that corticosteroids induce the formation of an inhibitory protein that inhibits the phospholipase enzyme to cause a block in arachidonic acid release from cell membranes. This mechanism of action may also be prevalent in the steroid effect on corneal reepithelialization, and experiments are under way to isolate this inhibitory protein from steroid-treated conjunctival epithelium. This isolation and pharmacologic characterization of this inhibitory protein is of obvious advantage to the field of ophthalmic therapeutics since this protein may have the anti-inflammatory potential of the steroids without their steroid sideeffects. Images FIGURE 3 a FIGURE 3 b PMID:6763806

  1. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage.

    PubMed

    Galindo, Sara; Herreras, José M; López-Paniagua, Marina; Rey, Esther; de la Mata, Ana; Plata-Cordero, María; Calonge, Margarita; Nieto-Miguel, Teresa

    2017-10-01

    Limbal stem cells are responsible for the continuous renewal of the corneal epithelium. The destruction or dysfunction of these stem cells or their niche induces limbal stem cell deficiency (LSCD) leading to visual loss, chronic pain, and inflammation of the ocular surface. To restore the ocular surface in cases of bilateral LSCD, an extraocular source of stem cells is needed to avoid dependence on allogeneic limbal stem cells that are difficult to obtain, isolate, and culture. The aim of this work was to test the tolerance and the efficacy of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) to regenerate the ocular surface in two experimental models of LSCD that closely resemble different severity grades of the human pathology. hAT-MSCs transplanted to the ocular surface of the partial and total LSCD models developed in rabbits were well tolerated, migrated to inflamed tissues, reduced inflammation, and restrained the evolution of corneal neovascularization and corneal opacity. The expression profile of the corneal epithelial cell markers CK3 and E-cadherin, and the limbal epithelial cell markers CK15 and p63 was lost in the LSCD models, but was partially recovered after hAT-MSC transplantation. For the first time, we demonstrated that hAT-MSCs improve corneal and limbal epithelial phenotypes in animal LSCD models. These results support the potential use of hAT-MSCs as a novel treatment of ocular surface failure due to LSCD. hAT-MSCs represent an available, non-immunogenic source of stem cells that may provide therapeutic benefits in addition to reduce health care expenses. Stem Cells 2017;35:2160-2174. © 2017 AlphaMed Press.

  2. ROCK Inhibitor Enhances Adhesion and Wound Healing of Human Corneal Endothelial Cells

    PubMed Central

    Pipparelli, Aurélien; Arsenijevic, Yvan; Thuret, Gilles; Gain, Philippe

    2013-01-01

    Maintenance of corneal transparency is crucial for vision and depends mainly on the endothelium, a non-proliferative monolayer of cells covering the inner part of the cornea. When endothelial cell density falls below a critical threshold, the barrier and “pump” functions of the endothelium are compromised which results in corneal oedema and loss of visual acuity. The conventional treatment for such severe disorder is corneal graft. Unfortunately, there is a worldwide shortage of donor corneas, necessitating amelioration of tissue survival and storage after harvesting. Recently it was reported that the ROCK inhibitor Y-27632 promotes adhesion, inhibits apoptosis, increases the number of proliferating monkey corneal endothelial cells in vitro and enhance corneal endothelial wound healing both in vitro and in vivo in animal models. Using organ culture human cornea (N = 34), the effect of ROCK inhibitor was evaluated in vitro and ex vivo. Toxicity, corneal endothelial cell density, cell proliferation, apoptosis, cell morphometry, adhesion and wound healing process were evaluated by live/dead assay standard cell counting method, EdU labelling, Ki67, Caspase3, Zo-1 and Actin immunostaining. We demonstrated for the first time in human corneal endothelial cells ex vivo and in vitro, that ROCK inhibitor did not induce any toxicity effect and did not alter cell viability. ROCK inhibitor treatment did not induce human corneal endothelial cells proliferation. However, ROCK inhibitor significantly enhanced adhesion and wound healing. The present study shows that the selective ROCK inhibitor Y-27632 has no effect on human corneal endothelial cells proliferative capacities, but alters cellular behaviours. It induces changes in cell shape, increases cell adhesion and enhances wound healing ex vivo and in vitro. Its absence of toxicity, as demonstrated herein, is relevant for its use in human therapy. PMID:23626771

  3. Pathophysiology of Corneal Scarring in Persistent Epithelial Defects After PRK and Other Corneal Injuries.

    PubMed

    Wilson, Steven E; Medeiros, Carla S; Santhiago, Marcony R

    2018-01-01

    To analyze corneal persistent epithelial defects that occurred at 3 to 4 weeks after -4.50 diopter (D) photorefractive keratectomy (PRK) in rabbits and apply this pathophysiology to the treatment of persistent epithelial defects that occur after any corneal manipulations or diseases. Two of 168 corneas that had -4.50 D PRK to study epithelial basement membrane regeneration developed spontaneous persistent epithelial defects that did not heal at 3 weeks after PRK. These were studied with slit-lamp photographs, immunohistochemistry for the myofibroblast marker alpha-smooth muscle actin (α-SMA), and transmission electron microscopy. Myofibroblasts developed at the stromal surface within the persistent epithelial defect and for a short distance peripheral to the leading edge of the epithelium. No normal epithelial basement membrane was detectable within the persistent epithelial defect or for up to 0.3 mm behind the leading edge of the epithelium, although epithelial basement membrane had normally regenerated in other areas of the zone ablated by an excimer laser where the epithelium healed promptly. A persistent epithelial defect in the cornea results in the development of myofibroblasts and disordered extracellular matrix produced by these cells that together cause opacity within, and a short distance beyond, the persistent epithelial defect. Clinicians should treat persistent epithelial defects within 10 days of non-closure of the epithelium to facilitate epithelial healing to prevent long-term stromal scarring (fibrosis). [J Refract Surg. 2018;34(1):59-64.]. Copyright 2018, SLACK Incorporated.

  4. Investigations of the corneal epithelium in Veterinary Medicine: State of the art on corneal stem cells found in different mammalian species and their putative application.

    PubMed

    Patruno, M; Perazzi, A; Martinello, T; Gomiero, C; Maccatrozzo, L; Iacopetti, I

    2018-05-08

    The existence of progenitor cells that can readily differentiate into a specific cell type is a common cellular strategy for physiological tissue growth and repair mechanisms. In the mammalian cornea, many aspects regarding the nature and location of these cells are still unclear. In the human limbus (peripheral area of the cornea) progenitor cells have been found and characterized but in non-human mammals, the picture is not so clear. In this review, we examine current knowledge about the morphology of limbus and the localization of corneal epithelial stem cells in all species studied so far, comparing data with humans. We have also explored different research directions in the veterinary field in order to discuss the: i) currently used protocols and ii) best range of treatments for ocular pathologies in which corneal stem cells are involved. Copyright © 2018. Published by Elsevier Ltd.

  5. Healing of corneal epithelial wounds in marine and freshwater fish.

    PubMed

    Ubels, J L; Edelhauser, H F

    The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.

  6. Intraocular lens bioactivity tested using rabbit corneal tissue cultures.

    PubMed

    Linnola, R J; Salonen, J I; Happonen, R P

    1999-11-01

    To evaluate the effects of different intraocular lens (IOL) materials on epithelial cell growth to test the sandwich theory; i.e., a bioactivity-based explanation of posterior capsule opacification (PCO) after cataract surgery. Central Hospital, Vaasa, and Institute of Dentistry and Turku Center for Biomaterials, University of Turku, Finland. Rabbit corneal tissue cultures were set up on poly(methyl methacrylate) (PMMA), heparin-surface-modified (HSM) PMMA, silicone, acrylate, and hydrogel IOLs for 1 week. The tissue consisted of intact epithelium and half the thickness of the corneal stroma, which was placed against the IOL. The growth of the epithelium was examined by light microscopy to evaluate the attachment of the corneal explant to the IOL surface. All tissue samples grew well under the culture conditions. When grown on PMMA, HSM PMMA, silicone, and hydrogel, the tissue did not attach to the IOL or the epithelium grew around the explant, suggesting that the attachment of the stroma to the IOL was poor or nonexistent. Some explants on acrylate IOLs attached directly to the IOL surface with no epithelial ingrowth between the stroma and the IOL. This tissue culture method can be used to examine the behavior of corneal tissue in contact with different IOL materials. The results suggest that the acrylate IOL may have bioactive properties. This, with the lens optic's square edge, may hinder lens epithelial cell proliferation and thus prevent PCO.

  7. Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting.

    PubMed

    Ban, Yuriko; Cooper, Leanne J; Fullwood, Nigel J; Nakamura, Takahiro; Tsuzuki, Masakatsu; Koizumi, Noriko; Dota, Atsuyoshi; Mochida, Chikako; Kinoshita, Shigeru

    2003-06-01

    To evaluate the usefulness of the air-lifting technique for culturing corneal limbal epithelial cells on amniotic membrane (AM) for use in ocular surface reconstruction. A cultured sheet that has a good barrier function should be better for this purpose. In corneal epithelium, tight junctions (TJ) play a vital role in the barrier function. The TJ complex includes the integral transmembrane proteins occludin and the claudins, and some membrane-associated proteins such as ZO-1. In this paper, we investigated the barrier function and the expression of TJ related proteins. Corneal limbal epithelium obtained from donor corneas and cultivated on acellular AM was divided into two groups. These were the non-air-lifting (Non-AL) group, which was continuously submerged in medium, and the air-lifting (AL) group, which was submerged in medium for 3 weeks, then exposed to air by lowering the medium level. Morphology and the permeability to horseradish peroxidase (HRP) were determined by electron microscopy. Tight junction (TJ)-related protein and mRNA expression changes were assessed by immunoblotting and reverse transcription-polymerase chain reaction. The cultures of both groups formed 4-5-layer-thick, well-stratified epithelium. The AL cultures had tightly packed epithelial cells with all the HRP/diaminobenzidine (DAB) reaction product accumulated on the apical surface of the superficial cells. The Non-AL culture, by contrast, had more loosely packed epithelial cells with larger intercellular spaces. The HRP/DAB reaction product penetrated the intercellular space to a depth of 3-4 cell layers. Statistically, there was a significant difference in intercellular spaces and desmosome count in the superficial cells between the groups. With AL, TJ-related proteins localized at the apical portion of the lateral membrane. TJ-related protein and mRNA amounts were not changed by AL while claudin subtype expression became more consistent and closer to that of in vivo corneal epithelium

  8. The absorption characteristics of the human cornea in ultraviolet-a crosslinking.

    PubMed

    Koppen, Carina; Gobin, Laure; Tassignon, Marie-José

    2010-03-01

    With respect to the safety of ultraviolet-A (UVA) crosslinking for the corneal endothelium, an absorption coefficient is used that has been calculated in riboflavin soaked porcine corneas. We aim to validate this value for clinical use by measuring the absorption coefficient for UVA 365 nm in postmortem human corneas after instilling riboflavin on the corneal surface. Corneal thickness was measured in nine pairs of human donor eyes of which one eye was subjected to manual removal of the epithelium, whereas the epithelium of the fellow eye was left intact. Both eyes were instilled with riboflavin 0.1% in dextran 20% on the intact globe. After 20 min, the corneas were rinsed, and a corneoscleral button was trephined. The transmission of the cornea for UVA 365 nm was measured by transillumination, which allows calculation of the absorption coefficient. Measurement of average corneal thickness was 658.5 +/- 51.5 microm when the epithelium was removed, and 758.3 +/- 98.8 microm without epithelial removal. The average transmittance for UVA 365 nm was 12.89 +/- 4.10% with epithelial debridement and 28.52 +/- 4.39% without (P<0.05). The resultant average absorption coefficient is 32 +/- 5 cm when the epithelium is removed and 17 +/- 2 cm when it is left intact (P<0.05). Our results show an absorption coefficient for human corneas that is much lower than the values reported in the literature. This finding may be relevant when considering endothelial safety of the clinical crosslinking treatment.

  9. The structural and optical properties of type III human collagen biosynthetic corneal substitutes

    PubMed Central

    Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.

    2015-01-01

    The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106

  10. Corneal complications of vernal keratoconjunctivitis.

    PubMed

    Solomon, Abraham

    2015-10-01

    Vernal keratoconjunctivitis (VKC) is a severe bilateral chronic allergic inflammatory disease of the ocular surface. In most of the cases, the disease is limited to the tarsal conjunctiva and to the limbus. However, in the more severe cases, the cornea may be involved, leading to potentially sight threatening complications. Prompt recognition of these complications is crucial in the management of VKC, which is one of the most severe ocular allergic diseases. A vicious cycle of inflammation occurs as a result of a set of reciprocal interactions between the conjunctiva and the cornea, which results in damage to the corneal epithelium and corneal stoma, and to the formation of shield ulcers and plaques, infectious keratitis, keratoconus, scarring, and limbal stem cell deficiency. These corneal complications can cause permanent decrease or loss of vision in children suffering from VKC. Corneal complications in VKC are the result of an on-going process of uncontrolled inflammation. Proper recognition of the corneal complications in VKC is crucial, as most of these can be managed or prevented by a combination of medical and surgical measures.

  11. Protective Effects of Trehalose on the Corneal Epithelial Cells

    PubMed Central

    Aragona, Pasquale; Colosi, Pietro; Colosi, Francesca; Pisani, Antonina; Puzzolo, Domenico; Micali, Antonio

    2014-01-01

    Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK) were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE) and trehalose-treated eyes (TTE), the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls. PMID:25045743

  12. The Effect of Anterior Stromal Puncture Using Q-Switched Nd:YAG Laser on Corneal Wound Healing

    PubMed Central

    Hamdy Abdelaziz, Mohamed; Fouad Ghoneim, Dina; Abdelkawi Ahmed, Salwa; Taher, Ibraheim Mohyeldin; Abdel- Salam, Ahmed Medhat

    2014-01-01

    Introduction: Recurrent corneal erosion occurs when the wounded corneal epithelium failed to adhere to the underlying stroma. Therefore, this work aimed to assess the effect of treatment of corneal injury using Q- switched Nd:YAG laser. Method: Twenty one New Zealand male rabbits weighing 2-2.5 kg and 3 months old were classified into three main groups. The control group: did not received any treatment (n=3 rabbits). The rest of the animals (n= 18 rabbits), corneal epithelium was injured by syringe needle and blade 15 and divided into:(A) Normal healing group: which was divided into three subgroups (n=3 rabbits each), and the animals were left for normal healing for1 day, 1 week, and 4 weeks respectively, (B) Laser treated group: divided into three subgroups (n=3 rabbit seach) and subjected to anterior stromal puncture using Q-switched Nd: YAG laser on corneal sub-epithelium or superficial stroma, and the animals were left for 1 day, 1 week, and 4 weeksrespectively. After the demonstrated periods, the corneas were isolated for estimation of total protein content, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), total antioxidative capacity (TAC), total oxidative capacity (TOC) and oxidative stress index (OSI). Results: The present results of corneal total protein showed increment in the percentage change in normal healed groups after 1 day, 1 week and 4 weeks by values of 93%, 68% and 39%. In Q-switched Nd: YAG laser treated group the results showed better improvement in corneal protein than normal healed group with percentage changes of 58%, 29%, and 7.5% respectively. In SDS- PAGE, a protein band at 110 KD appeared in the migrating epithelium for both normal healed group and Q-switched Nd:YAG laser treated group with changes in the peaks intensities at middle and low molecular weight regions. Moreover, after 4 weeks the peak at 110 KD disappeared in the wounded epithelium treated with Q-switched Nd:YAG. After four weeks, the OSI in laser

  13. Corneal Staining and Hot Black Tea Compresses.

    PubMed

    Achiron, Asaf; Birger, Yael; Karmona, Lily; Avizemer, Haggay; Bartov, Elisha; Rahamim, Yocheved; Burgansky-Eliash, Zvia

    2017-03-01

    Warm compresses are widely touted as an effective treatment for ocular surface disorders. Black tea compresses are a common household remedy, although there is no evidence in the medical literature proving their effect and their use may lead to harmful side effects. To describe a case in which the application of black tea to an eye with a corneal epithelial defect led to anterior stromal discoloration; evaluate the prevalence of hot tea compress use; and analyze, in vitro, the discoloring effect of tea compresses on a model of a porcine eye. We assessed the prevalence of hot tea compresses in our community and explored the effect of warm tea compresses on the cornea when the corneal epithelium's integrity is disrupted. An in vitro experiment in which warm compresses were applied to 18 fresh porcine eyes was performed. In half the eyes a corneal epithelial defect was created and in the other half the epithelium was intact. Both groups were divided into subgroups of three eyes each and treated experimentally with warm black tea compresses, pure water, or chamomile tea compresses. We also performed a study in patients with a history of tea compress use. Brown discoloration of the anterior stroma appeared only in the porcine corneas that had an epithelial defect and were treated with black tea compresses. No other eyes from any group showed discoloration. Of the patients included in our survey, approximately 50% had applied some sort of tea ingredient as a solid compressor or as the hot liquid. An intact corneal epithelium serves as an effective barrier against tea-stain discoloration. Only when this layer is disrupted does the damage occur. Therefore, direct application of black tea (Camellia sinensis) to a cornea with an epithelial defect should be avoided.

  14. Morphological studies of the developing human esophageal epithelium.

    PubMed

    Ménard, D

    1995-06-15

    This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.

  15. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    USDA-ARS?s Scientific Manuscript database

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  16. Mechanism of induction of fibroblast to corneal endothelial cell.

    PubMed

    Jiang, Yan; Fu, Wei-Cai; Zhang, Lin

    2014-08-01

    To explore mechanism of nduction of fibroblast to corneal endothelial cell. Rabbit conjunctiva fibroblasts were used as feeder cells, rabbit oral mucosa epithelial cells were used as seed cells, and human denuded amniotic membrane was used as carrier to establish tissue engineering corneal endothelium. The transformation effect was observed. As concentration of mitomycin C increased, cell survival rate gradually decreased, cell proliferation was obviously inhibited when concentration≥25 μg/mL; 5 days after being treated by 5 μg/mL mitomycin C, cell body was enlarged and extended without cell fusion, however after being treated by 0.5 μg/mL mitomycin C, cell body was significantly proliferated and gradually fused; after 3 weeks of culture, stratified epithelium appeared on rabbit oral mucosa epithelial cells, differentiation layers were 4-5 and were well differentiated, the morphology was similar to corneal endothelial cells; Under electron microscope, surface layer of cells were polygonal, tightly connected to another with microvilli on the border, there was hemidesmosome between basal cells and human denuded amniotic membrane. Fibroblast cells have the potential of multi-directional differentiation, effective induction can promote emergence of intercellular desmosomes between seed cells and emergence of epithelial surface microvilli, and differentiate to the corneal endothelial cell. However, clinical application still needs more research and safety evaluation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  17. Effects of artificial tear treatment on corneal epithelial thickness and corneal topography findings in dry eye patients.

    PubMed

    Çakır, B; Doğan, E; Çelik, E; Babashli, T; Uçak, T; Alagöz, G

    2018-05-01

    To investigate the effects of artificial tear treatment on central corneal epithelial thickness, and central, mid-peripheral and peripheral corneal thicknesses in patients with dry eye disease (DED). Patients with DED underwent ocular examinations, including Schirmer-2 test, slit lamp examination for tear break-up time (BUT), corneal topography (CT) for measuring mean central, mid-peripheral and peripheral corneal thickness values and anterior segment optic coherence tomography (AS-OCT) for obtaining central corneal epithelial thickness. After artificial tear treatment (carboxymethylcellulose and sodium hyaluronate formulations) for one month, patients were examined again at a second visit and the results were compared. Sixty-one eyes of 33 female dry eye patients (mean age: 38.3±5.7 years) were enrolled. The mean follow-up time was 36.4±3.3 days. The mean tear BUT and Schirmer-1 tests revealed significant improvement after treatment (P=0.000, P=0.000, respectively). Central corneal epithelium and mean mid-peripheral corneal thicknesses measured significantly higher after treatment (P=0.001, P=0.02). Changes in central and peripheral corneal thicknesses were not statistically significant. Artificial tear treatment in dry eye patients seems to increase central corneal epithelial and mid-peripheral corneal thicknesses. Measurement of corneal epithelial thickness can be a useful tool for evaluation of treatment response in dry eye patients. Further long-term prospective studies are needed to investigate this item. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. A Comparative Immunohistochemical Study of Anal Canal Epithelium in Humans and Swine, Focusing on the Anal Transitional Zone Epithelium and the Anal Glands.

    PubMed

    Muranaka, Futoshi; Nakajima, Tomoyuki; Iwaya, Mai; Ishii, Keiko; Higuchi, Kayoko; Ogiwara, Naoko; Miyagawa, Shinichi; Ota, Hiroyoshi

    2018-05-01

    To better understand the cellular origins and differentiation of anal canal epithelial neoplasms, the immunohistochemical profiles of the anal canal epithelium in humans and swine were evaluated. Formalin-fixed tissue sections were immunostained for mucin (MUC: MUC2, MUC5AC, MUC5B), desmoglein 3 (DGS3), p63, CDX2, SOX2, and α-smooth muscle actin (α-SMA). The anal transitional zone (ATZ) epithelium covered the anal sinus and consisted of a stratified epithelium with mucous cells interspersed within the surface lining. Anal glands opened into the anal sinus. Ducts and acini of intraepithelial or periepithelial mucous type were the main structures of human anal glands, whereas those of swine were compound tubuloacinar mixed glands. Distal to the ATZ epithelium, non-keratinized stratified squamous epithelium merged with the keratinized stratified squamous epithelium of the perianal skin. MUC5AC expression predominated over MUC5B expression in the ATZ epithelium, while MUC5B expression was higher in the anal glands. SOX2 was positive in the ATZ epithelium, anal glands, and squamous epithelium except in the perianal skin. In humans, DGS3 was expressed in the ATZ epithelium, anal gland ducts, and squamous epithelium. p63 was detected in the ATZ epithelium, anal glands, and squamous epithelium. Myoepithelial cells positive for α-SMA and p63 were present in the anal glands of swine. Colorectal columnar cells were MUC5B + /MUC2 + /CDX2 + /MUC5AC - /SOX2 - . The ATZ epithelium seems to be a distinctive epithelium, with morphological and functional features allowing smooth defecation. The MUC5AC + /SOX2 + /MUC2 - /CDX2 - profile of the ATZ epithelium and anal glands is a useful feature for diagnosing adenocarcinoma arising from these regions. Anat Rec, 301:796-805, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Corneal cell culture models: a tool to study corneal drug absorption.

    PubMed

    Dey, Surajit

    2011-05-01

    In recent times, there has been an ever increasing demand for ocular drugs to treat sight threatening diseases such as glaucoma, age-related macular degeneration and diabetic retinopathy. As more drugs are developed, there is a great need to test in vitro permeability of these drugs to predict their efficacy and bioavailability in vivo. Corneal cell culture models are the only tool that can predict drug absorption across ocular layers accurately and rapidly. Cell culture studies are also valuable in reducing the number of animals needed for in vivo studies which can increase the cost of the drug developmental process. Currently, rabbit corneal cell culture models are used to predict human corneal absorption due to the difficulty in human corneal studies. More recently, a three dimensional human corneal equivalent has been developed using three different cell types to mimic the human cornea. In the future, human corneal cell culture systems need to be developed to be used as a standardized model for drug permeation.

  20. Automated boundary segmentation and wound analysis for longitudinal corneal OCT images

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Shi, Fei; Zhu, Weifang; Pan, Lingjiao; Chen, Haoyu; Huang, Haifan; Zheng, Kangkeng; Chen, Xinjian

    2017-03-01

    Optical coherence tomography (OCT) has been widely applied in the examination and diagnosis of corneal diseases, but the information directly achieved from the OCT images by manual inspection is limited. We propose an automatic processing method to assist ophthalmologists in locating the boundaries in corneal OCT images and analyzing the recovery of corneal wounds after treatment from longitudinal OCT images. It includes the following steps: preprocessing, epithelium and endothelium boundary segmentation and correction, wound detection, corneal boundary fitting and wound analysis. The method was tested on a data set with longitudinal corneal OCT images from 20 subjects. Each subject has five images acquired after corneal operation over a period of time. The segmentation and classification accuracy of the proposed algorithm is high and can be used for analyzing wound recovery after corneal surgery.

  1. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea.

    PubMed

    Almubrad, Turki; Akhtar, Saeed

    2011-01-01

    The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The 'iTEM Olympus Soft Imaging Solutions GmbH' program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. The tree shrew cornea consists of 5 layers: the epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman's layer was 5.5±1.0 µm thick and very similar to a normal human Bowman's layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm(2). The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser-assisted in situ keratomileusis).

  2. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea

    PubMed Central

    Almubrad, Turki

    2011-01-01

    Purpose The stroma is the major part of the cornea, in which collagen fibrils and proteoglycans are distributed uniformly. We describe the ultrastructure of corneal layers, collagen fibrils (CF), and proteoglycans (PGs) in the tree shrew cornea. Methods Tree shrew corneas (5, 6, and 10 week old animals) and normal human corneas (24, 25, and 54 years old) were fixed in 2.5% glutaraldehyde containing cuprolinic blue in a sodium acetate buffer. The tissue was processed for electron microscopy. The ‘iTEM Olympus Soft Imaging Solutions GmbH’ program was used to measure the corneal layers, collagen fibril diameters and proteoglycan areas. Results The tree shrew cornea consists of 5 layers: the epithelium, Bowman’s layer, stroma, Descemet’s membrane, and endothelium. The epithelium was composed of squamous cells, wing cells and basal cells. The Bowman’s layer was 5.5±1.0 µm thick and very similar to a normal human Bowman’s layer. The stroma was 258±7.00 µm thick and consisted of collagen fibril lamellae. The lamellae were interlaced with one another in the anterior stroma, but ran parallel to one another in the middle and posterior stroma. Collagen fibrils were decorated with proteoglycan filaments with an area size of 390 ±438 nm2. The collagen fibril had a minimum diameter of 39±4.25 nm. The interfibrillar spacing was 52.91±6.07 nm. Within the collagen fibrils, very small electron-dense particles were present. Conclusions The structure of the tree shrew cornea is very similar to that of the normal human cornea. As is the case with the human cornea, the tree shrew cornea had a Bowman's layer, lamellar interlacing in the anterior stroma and electron-dense particles within the collagen fibrils. The similarities of the tree shrew cornea with the human cornea suggest that it could be a good structural model to use when studying changes in collagen fibrils and proteoglycans in non-genetic corneal diseases, such as ectasia caused after LASIK (laser

  3. Methylene blue-related corneal edema and iris discoloration.

    PubMed

    Timucin, Ozgur Bulent; Karadag, Mehmet Fatih; Aslanci, Mehmet Emin; Baykara, Mehmet

    2016-04-01

    We report the case of a 70-year-old female patient who developed corneal edema and iris discoloration following the inadvertent use of 1% methylene blue instead of 0.025% trypan blue to stain the anterior capsule during cataract phacoemulsification surgery. Copious irrigation was performed upon realization of incorrect dye use. Corneal edema and iris discoloration developed during the early postoperative period and persisted at 24-months follow-up. However, keratoplasty was not required. The intracameral use of 1% methylene blue has a cytotoxic effect on the corneal endothelium and iris epithelium. Copious irrigation for at least 30 min using an anterior chamber maintainer may improve outcomes.

  4. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  5. CON4EI: SkinEthic™ Human Corneal Epithelium Eye Irritation Test (SkinEthic™ HCE EIT) for hazard identification and labelling of eye irritating chemicals.

    PubMed

    Van Rompay, A R; Alépée, N; Nardelli, L; Hollanders, K; Leblanc, V; Drzewiecka, A; Gruszka, K; Guest, R; Kandarova, H; Willoughby, J A; Verstraelen, S; Adriaens, E

    2018-06-01

    Assessment of ocular irritancy is an international regulatory requirement and a necessary step in the safety evaluation of industrial and consumer products. Although a number of in vitro ocular irritation assays exist, none are capable of fully categorizing chemicals as a stand-alone assay. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was developed with the goal of assessing the reliability of eight in vitro/alternative test methods as well as establishing an optimal tiered-testing strategy. One of the in vitro assays selected was the validated SkinEthic™ Human Corneal Epithelium Eye Irritation Test method (SkinEthic™ HCE EIT). The SkinEthic™ HCE EIT has already demonstrated its capacity to correctly identify chemicals (both substances and mixtures) not requiring classification and labelling for eye irritation or serious eye damage (No Category). The goal of this study was to evaluate the performance of the SkinEthic™ HCE EIT test method in terms of the important in vivo drivers of classification. For the performance with respect to the drivers all in vivo Cat 1 and No Cat chemicals were 100% correctly identified. For Cat 2 chemicals the liquids and the solids had a sensitivity of 100% and 85.7%, respectively. For the SkinEthic™ HCE EIT test method, 100% concordance in predictions (No Cat versus No prediction can be made) between the two participating laboratories was obtained. The accuracy of the SkinEthic™ HCE EIT was 97.5% with 100% sensitivity and 96.9% specificity. The SkinEthic™ HCE EIT confirms its excellent results of the validation studies. Copyright © 2017. Published by Elsevier Ltd.

  6. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    PubMed Central

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  7. Isolated corneal papilloma-like lesion associated with human papilloma virus type 6.

    PubMed

    Park, Choul Yong; Kim, Eo-Jin; Choi, Jong Sun; Chuck, Roy S

    2011-05-01

    To report a case of a corneal papilloma-like lesion associated with human papilloma virus type 6. A 48-year-old woman presented with a 2-year history of ocular discomfort and gradual visual deterioration in her right eye. Ophthalmic examination revealed an elevated, semitranslucent, well-defined vascularized mass approximately 4 × 2.5 mm in size localized to the right cornea. The surface of the mass appeared smooth and many small, shallow, and irregular elevations were noted. An excisional biopsy was performed. The underlying cornea was markedly thinned, and fine ramifying vasculature was also noted on the exposed corneal stroma. Typical koilocytic change was observed on the histopathologic examination. Polymerase chain reaction revealed the existence of human papilloma virus type 6 DNA. Here we describe a case of an isolated corneal papilloma-like lesion. Although the corneal extension of the limbal or the conjunctival papillomas has been commonly observed, an isolated corneal papilloma-like lesion with underlying stromal destruction has only rarely been reported.

  8. Coefficient of Friction of Human Corneal Tissue.

    PubMed

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  9. Expansion and cryopreservation of porcine and human corneal endothelial cells.

    PubMed

    Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W

    2017-08-01

    Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.

    PubMed

    Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F

    2017-01-01

    Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  11. Effects of vitamin D receptor knockout on cornea epithelium gap junctions.

    PubMed

    Lu, Xiaowen; Watsky, Mitchell A

    2014-05-06

    Gap junctions are present in all corneal cell types and have been shown to have a critical role in cell phenotype determination. Vitamin D has been shown to influence cell differentiation, and recent work demonstrates the presence of vitamin D in the ocular anterior segment. This study measured and compared gap junction diffusion coefficients among different cornea epithelium phenotypes and in keratocytes using a noninvasive technique, fluorescence recovery after photobleaching (FRAP), and examined the influence of vitamin D receptor (VDR) knockout on epithelial gap junction communication in intact corneas. Previous gap junction studies in cornea epithelium and keratocytes were performed using cultured cells or ex vivo invasive techniques. These invasive techniques were unable to measure diffusion coefficients and likely were disruptive to normal cell physiology. Corneas from VDR knockout and control mice were stained with 5(6)-carboxyfluorescein diacetate (CFDA). Gap junction diffusion coefficients of the corneal epithelium phenotypes and of keratocytes, residing in intact corneas, were detected using FRAP. Diffusion coefficients equaled 18.7, 9.8, 5.6, and 4.2 μm(2)/s for superficial squamous cells, middle wing cells, basal cells, and keratocytes, respectively. Corneal thickness, superficial cell size, and the superficial squamous cell diffusion coefficient of 10-week-old VDR knockout mice were significantly lower than those of control mice (P < 0.01). The superficial cell diffusion coefficient of heterozygous mice was significantly lower than control mice (P < 0.05). Our results demonstrate differences in gap junction dye spread among the epithelial cell phenotypes, mirroring the epithelial developmental axis. The VDR knockout influences previously unreported cell-to-cell communication in superficial epithelium.

  12. Gastric pentadecapeptide BPC 157 promotes corneal epithelial defects healing in rats.

    PubMed

    Lazić, Ratimir; Gabrić, Nikica; Dekaris, Iva; Bosnar, Damir; Boban-Blagaić, Alenka; Sikirić, Predrag

    2005-06-01

    We evaluated the role of human gastric pentadecapeptide BPC 157 in corneal epithelial defects healing in rats. 48 rats, in 4 groups (N=12). Total debridement of corneal epithelium preformed unilaterally and lesions stained and photographed. Animals medicated as follows: distilled water (control group) or BPC 157 2 pg/ml, 2 ng/ml, 2 microg/ml, 2 drops/rat eye started immediately after injury induction, every 8 hours up to 40 hours (i.e., at 0, 8, 16, 24, 32, 40 h). Lesions were photographed before application or sacrifice (at 48 h). Defect area was analyzed using a special program. Through 48 hour period a steady recovery is noted in controls. Recovery was markedly accelerated in eyes on microg- or ng-topical regimen of BPC 157 (p < 0.05). Of note, unlike control lesion present also after 48 h, these lesions disappeared already following 40 h (microg) or 48 h (ng) post-injury. BPC 157 was shown to be effective in promoting corneal defects healing in rats. Results were dose dependent.

  13. Keratoconus corneal architecture after riboflavin/ultraviolet A cross-linking: Ultrastructural studies

    PubMed Central

    Almubrad, Turki; Paladini, Iacopo; Mencucci, Rita

    2013-01-01

    Purpose Study to investigate the effects of collagen cross-linking on the ultrastructural organization of the corneal stroma in the human keratoconus cornea (KC). Methods Three normal, three keratoconus (KC1, KC2, KC3), and three cross-linked keratoconus (CXL1, CXL2, CXL3) corneas were analyzed. The KC corneas were treated with a riboflavin-ultraviolet A (UVA) treatment (CXL) method described by Wollensak et al. Penetrating keratoplasty (PKP) was performed 6 months after treatment. All samples were processed for electron microscopy. Results The riboflavin-UVA-treated CXL corneal stroma showed interlacing lamellae in the anterior stroma followed by well-organized parallel running lamellae. The lamellae contained uniformly distributed collagen fibrils (CFs) decorated with normal proteoglycans (PGs). The CF diameter and interfibrillar spacing in the CXL cornea were significantly increased compared to those in the KC cornea. The PG area in the CXL corneas were significantly smaller than the PGs in the KC cornea. The epithelium and Bowman’s layer were also normal. On rare occasions, a thick basement membrane and collagenous pannus were also observed. Conclusions Corneal cross-linking leads to modifications of the cornea stroma. The KC corneal structure showed a modification in the CF diameter, interfibrillar spacing, and PG area. This resulted in a more uniform distribution of collagen fibrils, a key feature for corneal transparency. PMID:23878503

  14. Morphological and functional characteristics of human gingival junctional epithelium.

    PubMed

    Jiang, Qian; Yu, Youcheng; Ruan, Hong; Luo, Yin; Guo, Xuehua

    2014-04-03

    This study aims to observe the morphological characteristics and identify the function characteristics of junctional epithelium (JE) tissues and cultured JE cells. Paraffin sections of human molar or premolar on the gingival buccolingual side were prepared from 6 subjects. HE staining and image analysis were performed to measure and compare the morphological difference among JE, oral gingival epithelium (OGE) and sulcular epithelium (SE). Immunohistochemistry was applied to detect the expression pattern of cytokeratin 5/6, 7, 8/18, 10/13, 16, 17, 19, and 20 in JE, OGE and SE. On the other hand, primary human JE and OGE cells were cultured in vitro. Cell identify was confirmed by histology and immunohistochemistry. In a co-culture model, TEM was used to observe the attachment formation between JE cells and tooth surface. Human JE was a unique tissue which was different from SE and OGE in morphology. Similarly, morphology of JE cells was also particular compared with OGE cells cultured in vitro. In addition, JE cells had a longer incubation period than OGE cells. Different expression of several CKs illustrated JE was in a characteristic of low differentiation and high regeneration. After being co-cultured for 14 d, multiple cell layers, basement membrane-like and hemidesmosome-like structures were appeared at the junction of JE cell membrane and tooth surface. JE is a specially stratified epithelium with low differentiation and high regeneration ability in gingival tissue both in vivo and in vitro. In co-culture model, human JE cells can form basement membrane-like and hemidesmosome-like structures in about 2 weeks.

  15. Subepithelial corneal fibrosis partially due to epithelial-mesenchymal transition of ocular surface epithelium

    PubMed Central

    Kawashima, Motoko; Higa, Kazunari; Satake, Yoshiyuki; Omoto, Masahiro; Tsubota, Kazuo; Shimmura, Shigeto; Shimazaki, Jun

    2010-01-01

    Purpose To determine whether epithelial-mesenchymal transition is involved in the development of corneal subepithelial fibrosis (pannus). Methods Frozen samples of pannus tissue removed from human corneas with a diagnosis of total limbal stem cell deficiency were characterized by immunostaining for both epithelial and mesenchymal markers. We selected transformation-related protein 63 (p63) and pancytokeratin as epithelial markers and vimentin and α-smooth muscle actin (α-SMA) as mesenchymal markers. Immunostaining for β-catenin and E-cadherin was performed to determine wingless-Int (Wnt)-pathway activation. RT–PCR analysis was also performed on epithelial tissue obtained from pannus samples after dispase digestion. Results Immunohistochemistry revealed strong nuclear expression of p63 and weak intercellular expression of E-cadherin in epithelial basal cells of pannus tissue. Furthermore, translocation of β-catenin from intercellular junctions to the nucleus and cytoplasm was also observed. Double-positive cells for both p63 and α-SMA were observed in the subepithelial stroma of pannus tissue, which was supported by RT–PCR and cytospin analysis. Conclusions Epithelial-mesenchymal transition may be partially involved in the development of subepithelial corneal fibrosis due to total limbal stem cell deficiency. PMID:21179238

  16. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    NASA Astrophysics Data System (ADS)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  17. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium

    PubMed Central

    Hill, David R; Huang, Sha; Nagy, Melinda S; Yadagiri, Veda K; Fields, Courtney; Mukherjee, Dishari; Bons, Brooke; Dedhia, Priya H; Chin, Alana M; Tsai, Yu-Hwai; Thodla, Shrikar; Schmidt, Thomas M; Walk, Seth

    2017-01-01

    The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is difficult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem-cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine. PMID:29110754

  18. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    PubMed

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial

  19. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.

    PubMed

    Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W

    2015-01-01

    Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.

  20. Retinal pigment epithelium, age-related macular degeneration and neurotrophic keratouveitis.

    PubMed

    Bianchi, Enrica; Scarinci, Fabio; Ripandelli, Guido; Feher, Janos; Pacella, Elena; Magliulo, Giuseppe; Gabrieli, Corrado Balacco; Plateroti, Rocco; Plateroti, Pasquale; Mignini, Fiorenzo; Artico, Marco

    2013-01-01

    Age-related macular degeneration (AMD) is the leading cause of impaired vision and blindness in the aging population. The aims of our studies were to identify qualitative and quantitative alterations in mitochondria in human retinal pigment epithelium (RPE) from AMD patients and controls and to test the protective effects of pigment epithelium-derived factor (PEDF), a known neurotrophic and antiangiogenic substance, against neurotrophic keratouveitis. Histopathological alterations were studied by means of morphometry, light and electron microscopy. Unexpectedly, morphometric data showed that the RPE alterations noted in AMD may also develop in normal aging, 10-15 years later than appearing in AMD patients. Reduced tear secretion, corneal ulceration and leukocytic infiltration were found in capsaicin (CAP)-treated rats, but this effect was significantly attenuated by PEDF. These findings suggest that PEDF accelerated the recovery of tear secretion and also prevented neurotrophic keratouveitis and vitreoretinal inflammation. PEDF may have a clinical application in inflammatory and neovascular diseases of the eye.

  1. Corneal biomechanical properties from air-puff corneal deformation imaging

    NASA Astrophysics Data System (ADS)

    Marcos, Susana; Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos

    2014-02-01

    The combination of air-puff systems with real-time corneal imaging (i.e. Optical Coherence Tomography (OCT), or Scheimpflug) is a promising approach to assess the dynamic biomechanical properties of the corneal tissue in vivo. In this study we present an experimental system which, together with finite element modeling, allows measurements of corneal biomechanical properties from corneal deformation imaging, both ex vivo and in vivo. A spectral OCT instrument combined with an air puff from a non-contact tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal deformation of the corneal apex. Quantitative analysis allows direct extraction of several deformation parameters, such as apex indentation across time, maximal indentation depth, temporal symmetry and peak distance at maximal deformation. The potential of the technique is demonstrated and compared to air-puff imaging with Scheimpflug. Measurements ex vivo were performed on 14 freshly enucleated porcine eyes and five human donor eyes. Measurements in vivo were performed on nine human eyes. Corneal deformation was studied as a function of Intraocular Pressure (IOP, 15-45 mmHg), dehydration, changes in corneal rigidity (produced by UV corneal cross-linking, CXL), and different boundary conditions (sclera, ocular muscles). Geometrical deformation parameters were used as input for inverse finite element simulation to retrieve the corneal dynamic elastic and viscoelastic parameters. Temporal and spatial deformation profiles were very sensitive to the IOP. CXL produced a significant reduction of the cornea indentation (1.41x), and a change in the temporal symmetry of the corneal deformation profile (1.65x), indicating a change in the viscoelastic properties with treatment. Combining air-puff with dynamic imaging and finite element modeling allows characterizing the corneal biomechanics in-vivo.

  2. Adipose Derived Stem Cells for Corneal Wound Healing after Laser Induced Corneal Lesions in Mice.

    PubMed

    Zeppieri, Marco; Salvetat, Maria Letizia; Beltrami, Antonio; Cesselli, Daniela; Russo, Rossella; Alcalde, Ignacio; Merayo-Lloves, Jesús; Brusini, Paolo; Parodi, Pier Camillo

    2017-12-05

    The aim of our study was to assess the clinical effectiveness of topical adipose derived stem cell (ADSC) treatment in laser induced corneal wounds in mice by comparing epithelial repair, inflammation, and histological analysis between treatment arms. Corneal lesions were performed on both eyes of 40 mice by laser induced photorefractive keratectomy. All eyes were treated with topical azythromycin bid for three days. Mice were divided in three treatment groups ( n = 20), which included: control, stem cells and basic serum; which received topical treatment three times daily for five consecutive days. Biomicroscope assessments and digital imaging were performed by two masked graders at 30, 54, 78, 100, and 172 h to analyze extent of fluorescein positive epithelial defect, corneal inflammation, etc. Immunohistochemical techniques were used in fixed eyes to assess corneal repair markers Ki67, α Smooth Muscle Actin (α-SMA) and E-Cadherin. The fluorescein positive corneal lesion areas were significantly smaller in the stem cells group on days 1 ( p < 0.05), 2 ( p < 0.02) and 3. The stem cell treated group had slightly better and faster re-epithelization than the serum treated group in the initial phases. Comparative histological data showed signs of earlier and better corneal repair in epithelium and stromal layers in stem cell treated eyes, which showed more epithelial layers and enhanced wound healing performance of Ki67, E-Cadherin, and α-SMA. Our study shows the potential clinical and histological advantages in the topical ADSC treatment for corneal lesions in mice.

  3. Adipose Derived Stem Cells for Corneal Wound Healing after Laser Induced Corneal Lesions in Mice

    PubMed Central

    Salvetat, Maria Letizia; Beltrami, Antonio; Cesselli, Daniela; Russo, Rossella; Merayo-Lloves, Jesús; Brusini, Paolo; Parodi, Pier Camillo

    2017-01-01

    The aim of our study was to assess the clinical effectiveness of topical adipose derived stem cell (ADSC) treatment in laser induced corneal wounds in mice by comparing epithelial repair, inflammation, and histological analysis between treatment arms. Corneal lesions were performed on both eyes of 40 mice by laser induced photorefractive keratectomy. All eyes were treated with topical azythromycin bid for three days. Mice were divided in three treatment groups (n = 20), which included: control, stem cells and basic serum; which received topical treatment three times daily for five consecutive days. Biomicroscope assessments and digital imaging were performed by two masked graders at 30, 54, 78, 100, and 172 h to analyze extent of fluorescein positive epithelial defect, corneal inflammation, etc. Immunohistochemical techniques were used in fixed eyes to assess corneal repair markers Ki67, α Smooth Muscle Actin (α-SMA) and E-Cadherin. The fluorescein positive corneal lesion areas were significantly smaller in the stem cells group on days 1 (p < 0.05), 2 (p < 0.02) and 3. The stem cell treated group had slightly better and faster re-epithelization than the serum treated group in the initial phases. Comparative histological data showed signs of earlier and better corneal repair in epithelium and stromal layers in stem cell treated eyes, which showed more epithelial layers and enhanced wound healing performance of Ki67, E-Cadherin, and α-SMA. Our study shows the potential clinical and histological advantages in the topical ADSC treatment for corneal lesions in mice. PMID:29206194

  4. Aloe vera extract activity on human corneal cells.

    PubMed

    Woźniak, Anna; Paduch, Roman

    2012-02-01

    Ocular diseases are currently an important problem in modern societies. Patients suffer from various ophthalmologic ailments namely, conjunctivitis, dry eye, dacryocystitis or degenerative diseases. Therefore, there is a need to introduce new treatment methods, including medicinal plants usage. Aloe vera [Aloe barbadensis Miller (Liliaceae)] possesses wound-healing properties and shows immunomodulatory, anti-inflammatory or antioxidant activities. NR uptake, MTT, DPPH• reduction, Griess reaction, ELISA and rhodamine-phalloidin staining were used to test toxicity, antiproliferative activity, reactive oxygen species (ROS) reduction, nitric oxide (NO) and cytokine level, and distribution of F-actin in cells, respectively. The present study analyzes the effect of Aloe vera extracts obtained with different solvents on in vitro culture of human 10.014 pRSV-T corneal cells. We found no toxicity of ethanol, ethyl acetate and heptane extracts of Aloe vera on human corneal cells. No ROS reducing activity by heptane extract and trace action by ethanol (only at high concentration 125 µg/ml) extract of Aloe vera was observed. Only ethyl acetate extract expressed distinct free radical scavenging effect. Plant extracts decreased NO production by human corneal cells as compared to untreated controls. The cytokine (IL-1β, IL-6, TNF-α and IL-10) production decreased after the addition of Aloe vera extracts to the culture media. Aloe vera contains multiple pharmacologically active substances which are capable of modulating cellular phenotypes and functions. Aloe vera ethanol and ethyl acetate extracts may be used in eye drops to treat inflammations and other ailments of external parts of the eye such as the cornea.

  5. Outcomes of Corneal Cross-Linking Correlate With Cone-Specific Lysyl Oxidase Expression in Patients With Keratoconus.

    PubMed

    Shetty, Rohit; Rajiv Kumar, Nimisha; Pahuja, Natasha; Deshmukh, Rashmi; Vunnava, KrishnaPoojita; Abilash, Valsala Gopalakrishnan; Sinha Roy, Abhijit; Ghosh, Arkasubhra

    2018-03-01

    To evaluate the correlation of visual and keratometry outcomes after corneal cross-linking (CXL) in patients with keratoconus with cone epithelium-specific gene expression levels. Corneal epithelium was obtained from 35 eyes that underwent accelerated CXL (KXLII, 9 mW/cm for 10 min). Using corneal topography, epithelium over the cone and periphery was obtained separately from each subject. The ratio of gene expression for lysyl oxidase (LOX), matrix metalloproteinase 9 (MMP9), bone morphogenic protein 7, tissue inhibitor of metalloproteinase 1, collagen, type I, alpha 1, and collagen, type IV, alpha 1 (COL IVA1) from the cone and peripheral cornea was correlated with the outcome of cross-linking surgery. Patients were assessed for visual acuity, keratometry, refraction, and corneal densitometry before and 6 months after surgery. Based on the change in corneal flattening indicated by ΔKmax, the outcomes were classified as a higher response or lower response. Reduction in keratometric indices correlated with improved spherical equivalent after CXL. Preoperative levels of cone-specific LOX expression in cases with a higher response were significant (P = 0.001). COL IVA1, bone morphogenic protein 7, and tissue inhibitor of metalloproteinase 1 gene expressions were reduced in the cones of the subjects with a lower response. MMP9 levels were relatively lower in cases with a higher response compared with those with a lower response. Our study demonstrates that preoperative levels of molecular factors such as LOX, MMP9, and COL IVA1 aid in understanding CXL outcomes at the tissue level.

  6. [Expression of matrix metalloproteinase-19 in the human cornea. Wound healing in the MMP-19 knock-out mouse model].

    PubMed

    Treumer, F; Flöhr, C; Klettner, A; Nölle, B; Roider, J

    2010-07-01

    At present there are no data in the literature on the expression of matrix metalloprotein-19 in the human cornea. The aim of this study was to analyze the expression of matrix metalloproteinase-19 in the human cornea and to investigate its potential role in corneal wound healing using a MMP-19 knock-out mouse model. A method with Western blotting and immunohistological staining for MMP-19 was performed using paraffin embedded human corneas. Excimer laser keratectomy was performed in wild type (wt) and MMP-19 knock-out (ko) mice and the rate of re-epithelialization was analyzed after 8 h and 18 h. MMP-19 was strongly expressed in the human corneal epithelium mainly in the basal cell layer. MMP-19 was not expressed in the corneal stroma. In the mouse model the size of the corneal lesion after 8 h was 83% (wt) and 89.9% (ko) of the initial area (p=0.09). After 18 h the lesion was 17% (wt) and 13.3% (ko) of the initial area (p=0.01). Laminin-5 was expressed in the migrating epithelial cells with no differences between wild type and knock-out mouse. MMP-19 showed a strong expression in the basal cells of the human corneal epithelium. Corneal re-epithelialization was slightly faster in the MMP-19 knock-out mouse. No differences in the expression of laminin-5 could be detected.

  7. Establishment and Characterization of an Air-Liquid Canine Corneal Organ Culture Model To Study Acute Herpes Keratitis

    PubMed Central

    Harman, Rebecca M.; Bussche, Leen; Ledbetter, Eric C.

    2014-01-01

    ABSTRACT Despite the clinical importance of herpes simplex virus (HSV)-induced ocular disease, the underlying pathophysiology of the disease remains poorly understood, in part due to the lack of adequate virus–natural-host models in which to study the cellular and viral factors involved in acute corneal infection. We developed an air-liquid canine corneal organ culture model and evaluated its susceptibility to canine herpesvirus type 1 (CHV-1) in order to study ocular herpes in a physiologically relevant natural host model. Canine corneas were maintained in culture at an air-liquid interface for up to 25 days, and no degenerative changes were observed in the corneal epithelium during cultivation using histology for morphometric analyses, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assays, and transmission electron microscopy (TEM). Next, canine corneas were inoculated with CHV-1 for 48 h, and at that time point postinfection, viral plaques could be visualized in the corneal epithelium and viral DNA copies were detected in both the infected corneas and culture supernatants. In addition, we found that canine corneas produced proinflammatory cytokines in response to CHV-1 infection similarly to what has been described for HSV-1. This emphasizes the value of our model as a virus–natural-host model to study ocular herpesvirus infections. IMPORTANCE This study is the first to describe the establishment of an air-liquid canine corneal organ culture model as a useful model to study ocular herpesvirus infections. The advantages of this physiologically relevant model include the fact that (i) it provides a system in which ocular herpes can be studied in a virus–natural-host setting and (ii) it reduces the number of experimental animals needed. In addition, this long-term explant culture model may also facilitate research in other fields where noninfectious and infectious ocular diseases of dogs and humans are being studied. PMID

  8. The cytotoxic effect of oxybuprocaine on human corneal epithelial cells by inducing cell cycle arrest and mitochondria-dependent apoptosis.

    PubMed

    Fan, W-Y; Wang, D-P; Wen, Q; Fan, T-J

    2017-08-01

    Oxybuprocaine (OBPC) is a widely used topical anesthetic in eye clinic, and prolonged and repeated usage of OBPC might be cytotoxic to the cornea, especially to the outmost corneal epithelium. In this study, we characterized the cytotoxic effect of OBPC on human corneal epithelial (HCEP) cells and investigated its possible cellular and molecular mechanisms using an in vitro model of non-transfected HCEP cells. Our results showed that OBPC at concentrations ranging from 0.025% to 0.4% had a dose- and time-dependent cytotoxicity to HCEP cells. Moreover, OBPC arrested the cells at S phase and induced apoptosis of these cells by inducing plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation. Furthermore, OBPC could trigger the activation of caspase-2, -3, and -9, downregulate the expression of Bcl-xL, upregulate the expression of Bax along with the cytoplasmic amount of mitochondria-released apoptosis-inducing factor, and disrupt mitochondrial transmembrane potential. Our results suggest that OBPC has a dose- and time-dependent cytotoxicity to HCEP cells by inducing cell cycle arrest and cell apoptosis via a death receptor-mediated mitochondria-dependent proapoptotic pathway, and this novel finding provides new insights into the acute cytotoxicity and its toxic mechanisms of OBPC on HCEP cells.

  9. Self-organized centripetal movement of corneal epithelium in the absence of external cues

    NASA Astrophysics Data System (ADS)

    Lobo, Erwin P.; Delic, Naomi C.; Richardson, Alex; Raviraj, Vanisri; Halliday, Gary M.; di Girolamo, Nick; Myerscough, Mary R.; Lyons, J. Guy

    2016-08-01

    Maintaining the structure of the cornea is essential for high-quality vision. In adult mammals, corneal epithelial cells emanate from stem cells in the limbus, driven by an unknown mechanism towards the centre of the cornea as cohesive clonal groups. Here we use complementary mathematical and biological models to show that corneal epithelial cells can self-organize into a cohesive, centripetal growth pattern in the absence of external physiological cues. Three conditions are required: a circumferential location of stem cells, a limited number of cell divisions and mobility in response to population pressure. We have used these complementary models to provide explanations for the increased rate of centripetal migration caused by wounding and the potential for stem cell leakage to account for stable transplants derived from central corneal tissue, despite the predominantly limbal location of stem cells.

  10. Morphology of the epithelium of the lower rectum and the anal canal in the adult human.

    PubMed

    Tanaka, Eiichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Akashi, Yuichi; Kawahara, Katsunobu; Shimada, Tatsuo

    2012-06-01

    The anal canal is an important body part clinically. However, there is no agreement about the epithelium of the anal canal, the anal transitional zone (ATZ) epithelium in particular. The aim of this study is to clarify the structure of the epithelium of the human lower rectum and anal canal. Intact rectum and anus obtained from patients who underwent surgery for rectal carcinoma were examined by light and scanning electron microscopy (LM and SEM). By LM, three types of epithelium were observed in the anal canal: simple columnar epithelium, stratified squamous epithelium, and stratified columnar epithelium. The lower rectum was composed of simple columnar epithelium. SEM findings showed stratified squamous epithelium that consisted of squamous cells with microridges, changing to simple columnar epithelium consisting of columnar cells with short microvilli at the anorectal line. LM and SEM observations in a one-to-one ratio revealed that the area of stratified columnar epithelium based on LM corresponded to the anal crypt and sinus. In conclusion, the epithelium of the human anal canal was fundamentally composed of simple columnar epithelium and stratified squamous epithelium. We found no evidence of the ATZ.

  11. Mucin characteristics of human corneal-limbal epithelial cells that exclude the rose bengal anionic dye.

    PubMed

    Argüeso, Pablo; Tisdale, Ann; Spurr-Michaud, Sandra; Sumiyoshi, Mika; Gipson, Ilene K

    2006-01-01

    Rose bengal is an organic anionic dye used to assess damage of the ocular surface epithelium in ocular surface disease. It has been proposed that mucins have a protective role, preventing rose bengal staining of normal ocular surface epithelial cells. The current study was undertaken to evaluate rose bengal staining in a human corneal-limbal epithelial (HCLE) cell line known to produce and glycosylate membrane-associated mucins. HCLE cells were grown to confluence in serum-free medium and switched to DMEM/F12 with 10% serum to promote differentiation. Immunolocalization of the membrane-associated mucins MUC1 and MUC16 and the T-antigen carbohydrate epitope was performed with the monoclonal antibodies HMFG-2 and OC125 and jacalin lectin, respectively. To assess dye uptake, cultures were incubated for 5 minutes with 0.1% rose bengal and photographed. To determine whether exclusion of negatively charged rose bengal requires a negative charge at the cell surface, cells were incubated with fluoresceinated cationized ferritin. The effect of hyperosmotic stress on rose bengal staining in vitro was evaluated by increasing the ion concentration (Ca+2 and Mg+2) in the rose bengal uptake assay. The cytoplasm and nucleus of confluent HCLE cells cultured in media without serum, lacking the expression of MUC16 but not MUC1, as well as human corneal fibroblasts, which do not express mucins, stained with rose bengal. Culture of HCLE cells in medium containing serum resulted in the formation of islands of stratified cells that excluded rose bengal. Apical cells of the stratified islands produced MUC16 and the T-antigen carbohydrate epitope on their apical surfaces. Colocalization experiments demonstrated that fluoresceinated cationized ferritin did not bind to these stratified cells, indicating that rose bengal is excluded from cells that lack negative charges. Increasing the amounts of divalent cations in the media reduced the cellular area protected against rose bengal uptake

  12. Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue.

    PubMed

    Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo

    2016-09-21

    The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations.

  13. Function of the tryptophan metabolite, L-kynurenine, in human corneal endothelial cells

    PubMed Central

    Lahdou, Imad; Scheuerle, Alexander; Höftberger, Romana; Aboul-Enein, Fahmy

    2009-01-01

    Purpose Penetrating keratoplasty has been the mainstay for the treatment of blindness and is the most common form of tissue transplantation worldwide. Due to significant rates of rejection, treatment of immunological transplant reactions is of wide interest. Recently in a mouse model, the overexpression of indoeleamine 2,3 dioxigenase (IDO) was led to an extension in corneal allograft survival. L-kynurenine is a tryptophan metabolite, which may render activated T-cells apoptotic and therefore might modulate an allogenous transplant reaction. The function of L-kynurenine in the human cornea remains unclear. We analyzed the expression levels of IDO in human corneal endothelial cells (HCECs) and downstream tryptophan/kynurenine mechanisms in cell culture. Methods An immunological activation profile was determined in proliferation assays of monocytes from healthy donors. Reversed-phase high pressure liquid chromatography (HPLC), western blot, real time polymerase chain reaction (PCR), and microarray analyses were used. The expression of IDO and immunological infiltration of rejected human corneal allografts (n=12) were analyzed by immunohistochemistry. Results We found IDO and an associated tryptophan/kynurenine transporter protein exchange mechanism upregulated by inflammatory cytokines in HCECs. The inhibition of T-cell proliferation might depend on rapid delivery of the tryptophan metabolite, L-kynurenine, to the local corneal environment. Microarray analysis gives evidence that the large amino acid transporter 1 (LAT1) transporter protein is responsible for this mechanism. Conclusions Our data support that adequate levels of functional L-kynurenine might contribute to the maintenance of a relative immune privilege in the ocular anterior chamber, thereby contributing to the preservation of corneal allogeneic cells. PMID:19597571

  14. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.

    PubMed

    Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T

    2013-11-01

    Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Acute corneal hydrops mimicking full thickness perforation.

    PubMed

    Ch'ng, S W; Pillai, M B; Aazeem, S; Tu, K L

    2012-05-11

    A 26-year-old Caucasian female with keratoconus presented with an acutely painful and red left eye. Visual acuity on presentation was 3/60. Slit lamp examination revealed localised Descemet's membrane break with iris partially plugging it. There was a bulging stromal cyst which would intermittently flatten and reform. The appearance when the cyst was flattened mimicked a full thickness corneal perforation. However, no obvious overlying epithelial defect was detected and an intermittent leakage through micro-perforations in the corneal epithelium was the probable cause of the variable appearance. The anterior chamber reformed and iris plug freed following an insertion of a bandage contact lens and taped eyelid. On follow-up, the Descement's membrane had healed with visual acuity improving to 6/18. Our case illustrates the importance of identifying corneal hydrops mimicking a full thickness perforation as conservative management has a greater chance of recovery.

  16. Cellular structure of the healthy and keratoconic human cornea imaged in-vivo with sub-micrometer axial resolution OCT(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka; Tan, Bingyao; Mason, Erik; Carter, Kirsten; Haines, Lacey; Sorbara, Luigina

    2017-02-01

    Keratoconus causes progressive morphological changes in the corneal epithelium (EPI), Bowman's membrane (BM) and anterior stroma. However, it is still not well understood if KC originates in the corneal epithelium and propagates to the anterior stroma through disruptions of the BM, or vice versa. In this study we used a sub-micrometer axial resolution OCT system to image in-vivo the cellular structure of the EPI layer and the fibrous structure of the BM and the anterior stroma in mild to advanced keratoconics, as well as healthy subjects. The imaging study was approved by the University of Waterloo Human Research Ethics Committee. The OCT system operates in the 800 nm spectral region at 34 kHz image acquisition rate and provides 0.95 um axial and < 2 um lateral resolution in corneal tissue, which is sufficient to visualize the cellular structure of the corneal epithelium and the fibrous structure of the BM. In some subjects, localized thinning and thickening of the EPI layer was observed, while there was no visible damage to the BM or anterior stroma. In other subjects, localized breakage of the stromal collagen fibrils was observed with no significant morphological changes of the corneal EPI.

  17. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation

    NASA Astrophysics Data System (ADS)

    Li, Fengfu; Carlsson, David; Lohmann, Chris; Suuronen, Erik; Vascotto, Sandy; Kobuch, Karin; Sheardown, Heather; Munger, Rejean; Nakamura, Masatsugu; Griffith, May

    2003-12-01

    Our objective was to determine whether key properties of extracellular matrix (ECM) macromolecules can be replicated within tissue-engineered biosynthetic matrices to influence cellular properties and behavior. To achieve this, hydrated collagen and N-isopropylacrylamide copolymer-based ECMs were fabricated and tested on a corneal model. The structural and immunological simplicity of the cornea and importance of its extensive innervation for optimal functioning makes it an ideal test model. In addition, corneal failure is a clinically significant problem. Matrices were therefore designed to have the optical clarity and the proper dimensions, curvature, and biomechanical properties for use as corneal tissue replacements in transplantation. In vitro studies demonstrated that grafting of the laminin adhesion pentapeptide motif, YIGSR, to the hydrogels promoted epithelial stratification and neurite in-growth. Implants into pigs' corneas demonstrated successful in vivo regeneration of host corneal epithelium, stroma, and nerves. In particular, functional nerves were observed to rapidly regenerate in implants. By comparison, nerve regeneration in allograft controls was too slow to be observed during the experimental period, consistent with the behavior of human cornea transplants. Other corneal substitutes have been produced and tested, but here we report an implantable matrix that performs as a physiologically functional tissue substitute and not simply as a prosthetic device. These biosynthetic ECM replacements should have applicability to many areas of tissue engineering and regenerative medicine, especially where nerve function is required. regenerative medicine | tissue engineering | cornea | implantation | innervation

  18. Mouse genetic corneal disease resulting from transgenic insertional mutagenesis

    PubMed Central

    Ramalho, J S; Gregory-Evans, K; Huxley, C; Seabra, M C

    2004-01-01

    Background/aims: To report the generation of a new mouse model for a genetically determined corneal abnormality that occurred in transgenesis experiments. Methods: Transgenic mice expressing mutant forms of Rab27a, a GTPase that has been implicated in the pathogenesis of choroideremia, were generated. Results: Only one transgenic line (T27aT15) exhibited an unexpected eye phenotype. T27aT15 mice developed corneal opacities, usually unilateral, and cataracts, resulting in some cases in phthisical eyes. Histologically, the corneal stroma was thickened and vacuolated, and both epithelium and endothelium were thinned. The posterior segment of the eye was also affected with abnormal pigmentation, vessel narrowing, and abnormal leakage of dye upon angiography but was histologically normal. Conclusion: Eye abnormality in T27aT15 mice results from random insertional mutagenesis of the transgene as it was only observed in one line. The corneal lesion observed in T27aT15 mice most closely resembles posterior polymorphous corneal dystrophy and might result from the disruption of the equivalent mouse locus. PMID:14977782

  19. Corneal wound healing promoted by 3 blood derivatives: an in vitro and in vivo comparative study.

    PubMed

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Hernáez-Moya, Raquel; Durán, Juan A; Morales, María-Celia

    2014-06-01

    The aim of this study was to compare the effect on corneal wound healing of 3 differently manufactured blood derivatives [autologous serum (AS), platelet-rich plasma, and serum derived from plasma rich in growth factors (s-PRGF)]. Scratch wound-healing assays were performed on rabbit primary corneal epithelial cultures and human corneal epithelial cells. Additionally, mechanical debridement of rabbit corneal epithelium was performed. Wound-healing progression was assessed by measuring the denuded areas remaining over time after treatment with each of the 3 blood derivatives or a control treatment. In vitro data show statistically significant differences in the healing process with all the derivatives compared with the control, but 2 of them (AS and s-PRGF) induced markedly faster wound healing. In contrast, although the mean time required to complete in vivo reepithelization was similar to that of AS and s-PRGF treatment, only wounds treated with s-PRGF were significantly smaller in size from 2.5 days onward with respect to the control treatment. All 3 blood derivatives studied are promoters of corneal reepithelization. However, the corneal wound-healing progresses differently with each derivative, being faster in vitro under AS and s-PRGF treatment and producing in vivo the greatest decrease in wound size under s-PRGF treatment. These findings highlight that the manufacturing process of the blood derivatives may modulate the efficacy of the final product.

  20. Extended Latanoprost Release from Commercial Contact Lenses: In Vitro Studies Using Corneal Models

    PubMed Central

    Mohammadi, Saman; Jones, Lyndon; Gorbet, Maud

    2014-01-01

    In this study, we compared, for the first time, the release of a 432 kDa prostaglandin analogue drug, Latanoprost, from commercially available contact lenses using in vitro models with corneal epithelial cells. Conventional polyHEMA-based and silicone hydrogel soft contact lenses were soaked in drug solution ( solution in phosphate buffered saline). The drug release from the contact lens material and its diffusion through three in vitro models was studied. The three in vitro models consisted of a polyethylene terephthalate (PET) membrane without corneal epithelial cells, a PET membrane with a monolayer of human corneal epithelial cells (HCEC), and a PET membrane with stratified HCEC. In the cell-based in vitro corneal epithelium models, a zero order release was obtained with the silicone hydrogel materials (linear for the duration of the experiment) whereby, after 48 hours, between 4 to 6 of latanoprost (an amount well within the range of the prescribed daily dose for glaucoma patients) was released. In the absence of cells, a significantly lower amount of drug, between 0.3 to 0.5 , was released, (). The difference observed in release from the hydrogel lens materials in the presence and absence of cells emphasizes the importance of using an in vitro corneal model that is more representative of the physiological conditions in the eye to more adequately characterize ophthalmic drug delivery materials. Our results demonstrate how in vitro models with corneal epithelial cells may allow better prediction of in vivo release. It also highlights the potential of drug-soaked silicone hydrogel contact lens materials for drug delivery purposes. PMID:25207851

  1. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus.

    PubMed

    Patel, Dipika V; Sherwin, Trevor; McGhee, Charles N J

    2006-07-01

    To elucidate the structure of the human corneoscleral limbus by in vivo laser scanning confocal microscopy and to correlate limbal epithelial dimensions and density with the central epithelium and in relation to age. Fifty adult subjects were recruited into one of two age groups: younger (age<45 years) and older (age>or=45 years). Fifty left eyes of these 50 healthy subjects were examined by laser scanning in vivo confocal microscopy, to assess the basal epithelium of the central cornea and inferior limbus. Mean epithelial cell diameter, area, and density were calculated for the central basal epithelium, limbus-corneal basal epithelium, and limbus-palisade epithelium. Data were analyzed in relation to the two age groups, group A, 30+/-6 years (n=25; mean+/-SD), and group B, 60+/-11 years (n=25; P<0.01). Mean epithelial density in the limbus-cornea and limbus-palisade regions decreased significantly with age: limbus-cornea group A=7253+/-1077 cells/mm2 group B=6614+/-987 cells/mm2, P=0.03; limbus palisade group A=5409+/-799 cells/mm2, group B=5055+/-722 cells/mm2, P=0.03). Central corneal epithelial density did not change with age: group A=6162+/-503 cells/mm2, group B=6362+/-614 cells/mm2, P=0.08. Mean epithelial density was greatest at the limbus-cornea (7010+/-1081 cells/mm2) and lowest at the limbus-palisades (5289+/-847 cells/mm2). The mean width of palisade ridges was 25.0+/-6.3 microm. This is the first study to image clearly the living human corneal limbus by laser scanning in vivo confocal microscopy and to demonstrate quantitative changes in the basal epithelium with age.

  2. Recent Innovations in Collagen Corneal Cross-linking; a Mini Review.

    PubMed

    Vastardis, Iraklis; Pajic-Eggspuehler, Brigitte; Nichorlis, Charis; Mueller, Jörg; Pajic, Bojan

    2017-01-01

    The introduction of corneal cross-linking (CXL) with ultraviolet-A (UVA) and Riboflavin photosensitizer (Vit B 2 ) from Seiler et al. , revolutionized the treatment of Keratoconus and other corneal ectatic diseases. Today, the commonly known epithelium off Dresden protocol is in clinical use for the last 15 years with great success and regarded by many as the golden standard. With several studies demonstrating its simplicity, efficacy and safety this revolutionary method, paved the way for new therapies and strategies in the treatment of corneal ectatic diseases and changed our understanding in corneal biomechanics. Recent scientific and technological advances enabled the creation of various modifications of the initial CXL protocol and the formation of new ones. This work highlights the recent advances of CXL, such as the role of oxygen, higher fluence and shorter irradiation times as well as the various clinical applications and updates of this method.

  3. Efficient and safe gene delivery to human corneal endothelium using magnetic nanoparticles.

    PubMed

    Czugala, Marta; Mykhaylyk, Olga; Böhler, Philip; Onderka, Jasmine; Stork, Björn; Wesselborg, Sebastian; Kruse, Friedrich E; Plank, Christian; Singer, Bernhard B; Fuchsluger, Thomas A

    2016-07-01

    To develop a safe and efficient method for targeted, anti-apoptotic gene therapy of corneal endothelial cells (CECs). Magnetofection (MF), a combination of lipofection with magnetic nanoparticles (MNPs; PEI-Mag2, SO-Mag5, PalD1-Mag1), was tested in human CECs and in explanted human corneas. Effects on cell viability and function were investigated. Immunocompatibility was assessed in human peripheral blood mononuclear cells. Silica iron-oxide MNPs (SO-Mag5) combined with X-tremeGENE-HP achieved high transfection efficiency in human CECs and explanted human corneas, without altering cell viability or function. Magnetofection caused no immunomodulatory effects in human peripheral blood mononuclear cells. Magnetofection with anti-apoptotic P35 gene effectively blocked apoptosis in CECs. Magnetofection is a promising tool for gene therapy of corneal endothelial cells with potential for targeted on-site delivery.

  4. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium.

    PubMed

    Wu, Yu-Chieh; Buckner, Benjamin R; Zhu, Meifang; Cavanagh, H Dwight; Robertson, Danielle M

    2012-04-01

    To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real-time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Elevated IGFBP3 levels in diabetic tears: a negative regulator of IGF-1 signaling in the corneal epithelium

    PubMed Central

    Wu, Yu-Chieh; Buckner, Benjamin R.; Zhu, Meifang; Cavanagh, H. Dwight; Robertson, Danielle M.

    2012-01-01

    Purpose To determine the ratio of IGFBP3:IGF-1 in normal and diabetic human tears, and in telomerase-immortalized human corneal epithelial cells (hTCEpi) cultured under elevated glucose conditions and to correlate these changes with total and phosphorylated levels of IGF-1R. Methods Tear samples were collected noninvasively from diabetic subjects and non-diabetic controls; corneal sensitivity was assessed using a Cochet-Bonnet Aesthesiometer. Conditioned media were collected following culture of hTCEpi cells in normal (5 mM) and elevated (25 mM) glucose conditions; mannitol was used as an osmotic control. IGFBP3, IGF-1, and phosphorylated IGF-1R levels were assessed by ELISA. IGFBP3 and IGF-1R mRNA were assessed by real time polymerase chain reaction (PCR). Total and phosphorylated IGF-1R expression in whole cell lysates was assessed by western blot. Results There was a 2.8-fold increase in IGFBP3 in diabetic tears compared to non-diabetic controls (P=0.006); IGF-1 levels were not significantly altered. No difference in corneal sensitivity was detected between groups. The concentration of IGFBP3 in tears was independent of IGF-1. Consistent with human tear measurements in vivo, IGFBP3 secretion was increased 2.2 fold (P<0.001) following culture of hTCEpi cells under elevated glucose conditions in vitro. Treatment with glucose and the mannitol control reduced IGFBP3 mRNA (P<0.001). Total IGF-1R levels were unchanged. The increase in the IGFBP3:IGF-1 ratio detected in diabetic tears compared to normal controls blocked phosphorylation of the IGF-1R by IGF-1 (P<0.001) when tested in vitro. Conclusions Taken together, these in vivo and confirmatory in vitro findings suggest that the observed increase in IGFBP3 found in human tears may attenuate IGF-1R signaling in the diabetic cornea. A long-term increase in IGFBP3 may contribute to epithelial compromise and the pathogenesis of ocular surface complications reported in diabetes. PMID:22482470

  6. Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue

    PubMed Central

    Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo

    2016-01-01

    The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations. PMID:27651001

  7. Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor.

    PubMed

    Chandrasekher, Gudiseva; Ma, Xiang; Lallier, Thomas E; Bazan, Haydee E P

    2002-05-01

    To examine the role of the lipid mediator platelet-activating factor (PAF) in epithelial wound healing. A 7-mm central de-epithelializing wound was produced in rabbit corneas, and the tissue was incubated with 125 nM carbamyl PAF (cPAF), an analogue of PAF. Rabbit corneal epithelial and stromal cells were also cultured in the presence of cPAF. Cell adhesion, proliferation, and migration assays were conducted. Apoptosis was assayed by TUNEL staining on preparations of corneal tissue sections and in cells in culture. Twenty-four hours after injury, 50% of the wounded area was covered by new epithelium, whereas only 30% was covered in the presence of cPAF. At 48 hours, the epithelium completely closed the wound, but only 45% of the original wound was covered in corneas treated with cPAF. Similar inhibition of epithelial wound closure was found with human corneas incubated with PAF in organ culture. Moreover, addition of several growth factors involved in corneal wound healing, such as epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, could not overcome the inhibitory action of PAF in wound closure. Three PAF antagonists, BN50727, BN50730, and BN50739, abolished the effect of PAF. A significant increase in TUNEL-positive staining occurred in corneal stromal cells (keratocytes), which was inhibited by preincubating the corneas with PAF antagonists. However, no TUNEL-positive staining was found in epithelial cells. TUNEL-staining results in cultured stromal cells (keratocytes) and epithelial cells in first-passage cell culture were similar to those in organ-cultured corneas. In addition, PAF caused 35% to 56% inhibition of adhesion of epithelial cells to proteins of the extracellular matrix: collagen I and IV, fibronectin, and laminin. There were no significant changes in proliferation or migration of epithelial cells induced by the lipid mediator. The results suggest PAF plays an important role in preventing corneal wound healing by

  8. Confocal microscopy evaluation of stromal fluorescence intensity after standard and accelerated iontophoresis-assisted corneal cross-linking.

    PubMed

    Lanzini, Manuela; Curcio, Claudia; Spoerl, Eberhard; Calienno, Roberta; Mastropasqua, Alessandra; Colasante, Martina; Mastropasqua, Rodolfo; Nubile, Mario; Mastropasqua, Leonardo

    2017-02-01

    The aim of this study is to determine modifications in stromal fluorescence intensity after different corneal cross-linking (CXL) procedures and to correlate stromal fluorescence to corneal biomechanical resistance. For confocal microscopy study, 15 human cadaver corneas were examined. Three served as control (group 1), three were just soaked with iontophoresis procedure (group 2), three were treated with standard epi-off technique (group 3), and six underwent iontophoresis imbibition. Three of later six were irradiated for 30 min with 3 mW/cm 2 UVA (group 4) and three for 9 min at 10 mW/cm 2 UVA (group 5). Confocal microscopy was performed to quantify the fluorescence intensity in the cornea at different stromal depths. For biomechanical study, 30 human cadaver corneas were randomly divided into five groups and treated as previously described. Static stress-strain measurements of the corneas were performed. Iontophoresis imbibition followed by 10mW/cm 2 irradiation proved to increase stromal fluorescence into the corneal stroma and significant differences were revealed between group 3 and 5 both at 100 (p = 0.0171) and 250 µm (p = 0.0024), respectively. Biomechanical analysis showed an improvement of corneal resistance in group 5. Iontophoresis imbibition followed by accelerated irradiation increased the stromal fluorescence and is related to an improvement of biomechanical resistance. This approach may represent a new strategy to achieve greater concentrations of riboflavin without removing corneal epithelium and improve clinical results while reducing the side effects of CXL.

  9. Effect of Viscous Agents on Corneal Density in Dry Eye Disease.

    PubMed

    Wegener, Alfred R; Meyer, Linda M; Schönfeld, Carl-Ludwig

    2015-10-01

    To investigate the effect of the viscous agents, hydroxypropyl methylcellulose (HPMC), carbomer, povidone, and a combination of HPMC and povidone on corneal density in patients with dry eye disease. In total, 98 eyes of 49 patients suffering from dry eye and 65 eyes of 33 healthy age-matched individuals were included in this prospective, randomized study. Corneal morphology was documented with Scheimpflug photography and corneal density was analyzed in 5 anatomical layers (epithelium, bowman membrane, stroma, descemet's membrane, and endothelium). Corneal density was evaluated for the active ingredients HPMC, carbomer, povidone, and a combination of HPMC and povidone as the viscous agents contained in the artificial tear formulations used by the dry eye patients. Data were compared to the age-matched healthy control group without medication. Corneal density in dry eye patients was reduced in all 5 anatomical layers compared to controls. Corneal density was highest and very close to control in patients treated with HPMC containing ocular lubricants. Patients treated with lubricants, including carbomer as the viscous agent displayed a significant reduction of corneal density in layers 1 and 2 compared to control. HPMC containing ocular lubricants can help to maintain physiological corneal density and may be beneficial in the treatment of dry eye disease.

  10. Interference figures of polarimetric interferometry analysis of the human corneal stroma

    PubMed Central

    Mastropasqua, Rodolfo; Nubile, Mario; Salgari, Niccolò; Lanzini, Manuela; Calienno, Roberta; Mattei, Peter A.; Sborgia, Alessandra; Agnifili, Luca

    2017-01-01

    A rotating polarimetric 90°-cross linear-filter interferometry system was used to detect the morphological characteristics and features of interference patterns produced in in-vivo corneal stroma in healthy human corneas of 23 subjects. The characteristic corneal isogyres presenting with an evident cross-shaped pattern, grossly aligned with the fixation axis, were observed in all patients with centers within the pupillary dark area, impeding the exact determination of the center point. During the rotational scan in 78.3% of the eyes the cross-shaped pattern of the isogyre gradually separated to form two distinct hyperbolic arcs in opposite quadrants, reaching their maximal separation at 45 degrees with respect to angle of cross-shaped pattern formation. The corneal cross and hyperbolic-pattern repeated every 90° throughout the 360° rotational scan. While the interpretation of the isogyres presents particular difficulties, two summary parameters can be extracted for each cornea: the presence/orientation of a single or two dark areas in post-processed images and isochromes. However, the development of dedicated software for semi-quantitative analysis of these parameters and enantiomorphism may become available in the near future. The possible application of polarimetric interferometry in the field of both corneal pathologies and corneal surgery may be of great interest for clinical purposes. PMID:28570631

  11. Interference figures of polarimetric interferometry analysis of the human corneal stroma.

    PubMed

    Mastropasqua, Rodolfo; Nubile, Mario; Salgari, Niccolò; Lanzini, Manuela; Calienno, Roberta; Mattei, Peter A; Sborgia, Alessandra; Agnifili, Luca

    2017-01-01

    A rotating polarimetric 90°-cross linear-filter interferometry system was used to detect the morphological characteristics and features of interference patterns produced in in-vivo corneal stroma in healthy human corneas of 23 subjects. The characteristic corneal isogyres presenting with an evident cross-shaped pattern, grossly aligned with the fixation axis, were observed in all patients with centers within the pupillary dark area, impeding the exact determination of the center point. During the rotational scan in 78.3% of the eyes the cross-shaped pattern of the isogyre gradually separated to form two distinct hyperbolic arcs in opposite quadrants, reaching their maximal separation at 45 degrees with respect to angle of cross-shaped pattern formation. The corneal cross and hyperbolic-pattern repeated every 90° throughout the 360° rotational scan. While the interpretation of the isogyres presents particular difficulties, two summary parameters can be extracted for each cornea: the presence/orientation of a single or two dark areas in post-processed images and isochromes. However, the development of dedicated software for semi-quantitative analysis of these parameters and enantiomorphism may become available in the near future. The possible application of polarimetric interferometry in the field of both corneal pathologies and corneal surgery may be of great interest for clinical purposes.

  12. IL-17 and VEGF are necessary for efficient corneal nerve regeneration

    USDA-ARS?s Scientific Manuscript database

    The contribution of acute inflammation to sensory nerve regeneration was investigated in the murine cornea using a model of corneal abrasion that removes the stratified epithelium and subbasal nerve plexus. Abrasion induced accumulation of IL-17(+) CCR6(+) yo T cells, neutrophils, and platelets in t...

  13. Response of human corneal fibroblasts on silk film surface patterns.

    PubMed

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  14. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  15. [The relationship between corneal lymphangiogenesis and inflammation index after corneal alkali injury].

    PubMed

    Ling, Shi-qi; Li, Wei-hua; Xu, Jian-gang; Kuang, Wen-hui; Li, Chao-yang

    2010-11-01

    To discuss the relationship between corneal lymphangiogenesis and inflammation index (IF) in alkali burned corneas. Experimental research. Rat corneal hemangiogenesis and lymphangiogenesis were examined by 5'-nase-alkaline phosphatase (5'-NA-ALP) double enzyme-histochemistry and whole mount immunofluorescence at 1 day, 3 days, and 1, 2, 3, 4, 5, 6, 7, 8 weeks after alkaline burns, and the blood vessel counting (BVC) and the lymphatic vessel counting (LVC) were recorded. The state of corneal inflammation was observed under the slit lamp and evaluated by inflammation index (IF) grading at the same time. Then, the association of LVC with IF was examined. In addition, eleven human alkali burned corneas were obtained from 11 patients undergoing corneal transplantation in Zhongshan Ophthalmic Center from January 2005 to June 2008. Corneal lymphangiogenesis was examined by lymphatic vessel endothelial receptor (LYVE-1) immunohistochemistry. The significance of the differences in IF, inflammatory cells counting, burn history, and age between two groups was analyzed by using paired student's t-test. New lymphatic vessels were present in rat alkali burned corneas. Corneal lymphangiogenesis developed 3 days after alkaline burns, reached the top 2 weeks after the injury, then decreased gradually, and disappeared at the end of the 5th week. Corneal lymphatics occurred behind corneal inflammation, but disappeared before corneal inflammation and hemangiogenesis. LVC was strongly and positively correlated with IF (r = 0.572, P < 0.01) after corneal alkaline burns. Among eleven human alkali burned corneas, corneal lymphatic vessels were present in 3 corneas. Compared with the other 8 cases without corneal lymphangiogenesis, the scores of IF was significantly higher (t = 3.28, P < 0.05), the inflammatory cells counting dramatically increased (t = 2.42, P < 0.05), but the age decreased significantly (t = 2.62, P < 0.05). However, the difference in burn history between two groups was

  16. Effect of Schizandra chinensis lignans on cell division in the corneal epithelium and tongue of albino rats exposed to chronic cold stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mel'nik, E.I.; Lupandin, A.V.; Timoshin, S.S.

    The authors study the possibility of correcting cellular manifestations of disadaptation following chronic exposure to cold stress by means of preparations of Sch. chinensis. The model of chronic stress was cooling male albino rats daily for 1.5 h to a temperature of 28-30 C for 28 days. Since differences between levels of proliferation in intact animals and in the rats receiving 1.9% ethanol solution were absent, values obtained in the group of intact animals are presented in a table as the control. The animals underwent euthanasia 48 hours after the final exposure to the cold. The rats received an injectionmore » of tritium-thymidine one hour before sacrifice. It is shown that the results confirm those in previous studies of stimulation of DNA synthesis and mitotic activity in the corneal and lingual epithelium of albino rats during chronic exposure to stress.« less

  17. Mucin Characteristics of Human Corneal-Limbal Epithelial Cells that Exclude the Rose Bengal Anionic Dye

    PubMed Central

    Argüeso, Pablo; Tisdale, Ann; Spurr-Michaud, Sandra; Sumiyoshi, Mika; Gipson, Ilene K.

    2005-01-01

    Purpose Rose bengal is an organic anionic dye used to assess damage of the ocular surface epithelium in ocular surface disease. It has been proposed that mucins have a protective role, preventing rose bengal staining of normal ocular surface epithelial cells. The current study was undertaken to evaluate rose bengal staining in a human corneal-limbal epithelial (HCLE) cell line known to produce and glycosylate membrane-associated mucins. Methods HCLE cells were grown to confluence in serum-free medium and switched to DMEM/F12 with 10% serum to promote differentiation. Immunolocalization of the membrane-associated mucins MUC1 and MUC16 and the T-antigen carbohydrate epitope was performed with the monoclonal antibodies HMFG-2 and OC125 and jacalin lectin, respectively. To assess dye uptake, cultures were incubated for 5 minutes with 0.1% rose bengal and photographed. To determine whether exclusion of negatively charged rose bengal requires a negative charge at the cell surface, cells were incubated with fluoresceinated cationized ferritin. The effect of hyperosmotic stress on rose bengal staining in vitro was evaluated by increasing the ion concentration (Ca+2 and Mg+2) in the rose bengal uptake assay. Results The cytoplasm and nucleus of confluent HCLE cells cultured in media without serum, lacking the expression of MUC16 but not MUC1, as well as human corneal fibroblasts, which do not express mucins, stained with rose bengal. Culture of HCLE cells in medium containing serum resulted in the formation of islands of stratified cells that excluded rose bengal. Apical cells of the stratified islands produced MUC16 and the T-antigen carbohydrate epitope on their apical surfaces. Colocalization experiments demonstrated that fluoresceinated cationized ferritin did not bind to these stratified cells, indicating that rose bengal is excluded from cells that lack negative charges. Increasing the amounts of divalent cations in the media reduced the cellular area protected

  18. Platelet recruitment promotes keratocyte repopulation following corneal epithelial abrasion in the mouse

    USDA-ARS?s Scientific Manuscript database

    Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and ne...

  19. Megalin and cubilin in the human gallbladder epithelium.

    PubMed

    Tsaroucha, Alexandra K; Chatzaki, Ekaterini; Lambropoulou, Maria; Despoudi, Kaliopi; Laftsidis, Prodromos; Charsou, Chara; Polychronidis, Alexandros; Papadopoulos, Nikolaos; Simopoulos, Constantinos E

    2008-09-01

    Although the role of cholesterol absorption by the gallbladder epithelium in gallstone formation is well established, the exact process is poorly understood. Potential candidates for regulation of transepithelial cholesterol transport are suggested to be two large membrane multiple ligand receptors, megalin and cubilin. We studied the expression of these two proteins in both acalculous and calculous human gallbladder epithelia. Adult human gallbladder tissues were received from 21 patients (9 men, 12 women) who had undergone cholecystectomy. The patients were divided into two groups: group A (calculous gallbladder group; 5 men, 6 women; mean age 64.4 +/- 11.1 years) with cholelithiasis, and group B (acalculous gallbladder group; 4 men, 6 women; mean age 55.3 +/- 16.1 years). In the gallbladder tissues megalin and cubilin expression was studied by immunohistochemistry and conventional RT-PCR, and gene expression levels were estimated by real-time RT-PCR. Both megalin and cubilin gene transcripts were found in total RNA preparations from acalculous gallbladder. In contrast, in preparations from calculous gallbladder, none or only one of the proteins was detected. Immunoreactive proteins were detected in the simple columnar acalculous gallbladder epithelium but not in the calculous gallbladder epithelium. Our results show different expression patterns of the two proteins in calculous gallbladders and acalculous gallbladders. In the latter both proteins are expressed, suggesting an association with gallstone formation and implying a putative role of the two proteins in cholesterol endocytosis. In other words, the presence of both proteins may be essential for the prevention of stone formation.

  20. Reactivation of Herpes Zoster Keratitis With Corneal Perforation After Zoster Vaccination.

    PubMed

    Jastrzebski, Andre; Brownstein, Seymour; Ziai, Setareh; Saleh, Solin; Lam, Kay; Jackson, W Bruce

    2017-06-01

    We present a case of reactivated herpes zoster keratouveitis of 6 years duration with corneal perforation requiring penetrating keratoplasty shortly after inoculation with herpes zoster vaccine (Zostavax, Merck, Quebec, Canada). Retrospective case report. A 67-year-old woman with a 5-year history of recurrent unilateral herpes zoster keratouveitis in her right eye presented with another recurrence 2 weeks after Zostavax vaccination. Three months later, she developed descemetocele and 2 months afterward, corneal perforation, which was managed by penetrating keratoplasty. Immunohistopathological examination disclosed positive staining for varicella zoster virus in most of the keratocytes adjacent to the descemetocele and perforation, most vividly in the deeper two-thirds of the stroma where the keratocytes were most dense, but not in corneal epithelium or endothelium. Electron microscopic examination showed universally severely degenerated corneal keratocytes in the corneal stroma adjacent to the perforation with variable numbers of herpes virus capsids present in half of these cells. Only a rare normal-appearing keratocyte was identified in the more peripheral corneal stroma. We present a case of reactivation of herpes keratouveitis shortly after vaccination with Zostavax in a patient with previous herpes zoster ophthalmicus. We demonstrate, for the first time, ultrastructural evidence consistent with inactive virus capsids in diffusely degenerated keratocytes in the extracted corneal tissue.

  1. Propagation of human corneal endothelial cells: a novel dual media approach.

    PubMed

    Peh, Gary S L; Chng, Zhenzhi; Ang, Heng-Pei; Cheng, Terence Y D; Adnan, Khadijah; Seah, Xin-Yi; George, Benjamin L; Toh, Kah-Peng; Tan, Donald T; Yam, Gary H F; Colman, Alan; Mehta, Jodhbir S

    2015-01-01

    Corneal endothelium-associated corneal blindness is the most common indication for corneal transplantation. Restorative corneal transplant surgery is the only option to reverse the blindness, but a global shortage of donor material remains an issue. There are immense clinical interests in the development of alternative treatment strategies to alleviate current reliance on donor materials. For such endeavors, ex vivo propagation of human corneal endothelial cells (hCECs) is required, but current methodology lacks consistency, with expanded hCECs losing cellular morphology to a mesenchymal-like transformation. In this study, we describe a novel dual media culture approach for the in vitro expansion of primary hCECs. Initial characterization included analysis of growth dynamics of hCECs grown in either proliferative (M4) or maintenance (M5) medium. Subsequent comparisons were performed on isolated hCECs cultured in M4 alone against cells expanded using the dual media approach. Further characterizations were performed using immunocytochemistry, quantitative real-time PCR, and gene expression microarray. At the third passage, results showed that hCECs propagated using the dual media approach were homogeneous in appearance, retained their unique polygonal cellular morphology, and expressed higher levels of corneal endothelium-associated markers in comparison to hCECs cultured in M4 alone, which were heterogeneous and fibroblastic in appearance. Finally, for hCECs cultured using the dual media approach, global gene expression and pathway analysis between confluent hCECs before and after 7-day exposure to M5 exhibited differential gene expression associated predominately with cell proliferation and wound healing. These findings showed that the propagation of primary hCECs using the novel dual media approach presented in this study is a consistent method to obtain bona fide hCECs. This, in turn, will elicit greater confidence in facilitating downstream development of

  2. Microspectroscopy of spectral biomarkers associated with human corneal stem cells

    PubMed Central

    Nakamura, Takahiro; Kelly, Jemma G.; Trevisan, Júlio; Cooper, Leanne J.; Bentley, Adam J.; Carmichael, Paul L.; Scott, Andrew D.; Cotte, Marine; Susini, Jean; Martin-Hirsch, Pierre L.; Kinoshita, Shigeru; Martin, Francis L.

    2010-01-01

    Purpose Synchrotron-based radiation (SRS) Fourier-transform infrared (FTIR) microspectroscopy potentially provides novel biomarkers of the cell differentiation process. Because such imaging gives a “biochemical-cell fingerprint” through a cell-sized aperture, we set out to determine whether distinguishing chemical entities associated with putative stem cells (SCs), transit-amplifying (TA) cells, or terminally-differentiated (TD) cells could be identified in human corneal epithelium. Methods Desiccated cryosections (10 μm thick) of cornea on barium fluoride infrared transparent windows were interrogated using SRS FTIR microspectroscopy. Infrared analysis was performed through the acquisition of point spectra or image maps. Results Point spectra were subjected to principal component analysis (PCA) to identify distinguishing chemical entities. Spectral image maps to highlight SCs, TA cells, and TD cells of the cornea were then generated. Point spectrum analysis using PCA highlighted remarkable segregation between the three cell classes. Discriminating chemical entities were associated with several spectral differences over the DNA/RNA (1,425–900 cm−1) and protein/lipid (1,800–1480 cm−1) regions. Prominent biomarkers of SCs compared to TA cells and/or TD cells were 1,040 cm−1, 1,080 cm−1, 1,107 cm−1, 1,225 cm−1, 1,400 cm−1, 1,525 cm−1, 1,558 cm−1, and 1,728 cm−1. Chemical entities associated with DNA/RNA conformation (1,080 cm−1 and 1,225 cm−1) were associated with SCs, whereas protein/lipid biochemicals (1,558 cm−1 and 1,728 cm−1) most distinguished TA cells and TD cells. Conclusions SRS FTIR microspectroscopy can be employed to identify differential spectral biomarkers of SCs, TA cells, and/or TD cells in human cornea. This nondestructive imaging technology is a novel approach to characterizing SCs in situ. PMID:20520745

  3. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    PubMed

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  4. Analysis of the Viscoelastic Properties of the Human Cornea Using Scheimpflug Imaging in Inflation Experiment of Eye Globes

    PubMed Central

    Lombardo, Giuseppe; Serrao, Sebastiano; Rosati, Marianna; Lombardo, Marco

    2014-01-01

    Purpose To demonstrate a Scheimpflug-based imaging procedure for investigating the depth- and time-dependent strain response of the human cornea to inflation testing of whole eye globes. Methods Six specimens, three of which with intact corneal epithelium, were mounted in a customized apparatus within a humidity and temperature-monitored wet chamber. Each specimen was subjected to two mechanical tests in order to measure corneal strain resulting from application of cyclic (cyclic regimen) and constant (creep regimen) stress by changing the intra-ocular pressure (IOP) within physiological ranges (18–42 mmHg). Corneal shape changes were analyzed as a function of IOP and both corneal stress-strain curves and creep curves were generated. Results The procedure was highly accurate and repeatable. Upon cyclic stress application, a biomechanical corneal elasticity gradient was found in the front-back direction. The average Young's modulus of the anterior cornea ranged between 2.28±0.87 MPa and 3.30±0.90 MPa in specimens with and without intact epithelium (P = 0.05) respectively. The Young's modulus of the posterior cornea was on average 0.21±0.09 MPa and 0.17±0.06 MPa (P>0.05) respectively. The time-dependent strain response of the cornea to creep testing was quantified by fitting data to a modified Zener model for extracting both the relaxation time and compliance function. Conclusion Cyclic and creep mechanical tests are valuable for investigating the strain response of the intact human cornea within physiological IOP ranges, providing meaningful results that can be translated to clinic. The presence of epithelium influences the results of anterior corneal shape changes when monitoring deformation via Scheimpflug imaging in inflation experiments of whole eye globes. PMID:25397674

  5. Vortex pattern of corneal deposits in granular corneal dystrophy associated with the p. (ArgR555WTrp) mutation in TGFBI

    PubMed Central

    Kattan, Jaffer M.; Serna-Ojeda, Juan Carlos; Sharma, Anushree; Kim, Eung K.; Ramirez-Miranda, Arturo; Cruz-Aguilar, Marisa; Cervantes, Aleck E.; Frausto, Ricardo F.; Zenteno, Juan Carlos; Graue-Hernandez, Enrique O.; Aldave, Anthony J.

    2016-01-01

    Purpose To describe two unrelated families with multiple members demonstrating a less commonly recognized vortex pattern of corneal deposits confirmed to be granular corneal dystrophy type 1(GCD1) following identification of the p.(Arg555Trp) mutation in the transforming growth factor β-induced gene (TGFBI). Methods A slit lamp examination was performed on individuals from two families, one of Mexican descent and a second of Italian descent. Following DNA extraction from affected individuals and their unaffected relatives, TGFBI screening was performed. Results Eight of 20 individuals in the Mexican family and 20 of 55 in the Italian family demonstrated corneal stromal opacities. Seven of the eight affected individuals in the Mexican family and four of the 20 affected individuals in the Italian family demonstrated a phenotype characterized by a “sea fan” or vortex pattern of superficial stromal corneal deposits originating from the inferior aspect of the cornea. Screening of TGFBI in both families revealed a heterozygous missense mutation (p.(Arg555Trp)) in exon 12, confirming the diagnosis of GCD1. Conclusion Our findings demonstrate that GCD1 may present with a vortex pattern of anterior stromal deposits. Although this pattern of dystrophic deposits is not recognized by clinicians as a typical phenotype of GCD1, it is consistent with the production of the majority of the TGFBI protein by the corneal epithelium. PMID:28060069

  6. Progress in corneal wound healing

    PubMed Central

    Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh

    2015-01-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and

  7. Progress in corneal wound healing.

    PubMed

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Different alpha crystallin expression in human age-related and congenital cataract lens epithelium.

    PubMed

    Yang, Jing; Zhou, Sheng; Guo, Minfei; Li, Yuting; Gu, Jianjun

    2016-05-28

    The purpose of this study was to investigate the different expressions of αA-crystallin and αB-crystallin in human lens epithelium of age-related and congenital cataracts. The central part of the human anterior lens capsule approximately 5 mm in diameter together with the adhering epithelial cells, were harvested and processed within 6 hours after cataract surgery from age-related and congenital cataract patients or from normal eyes of fresh cadavers. The mRNA and soluble protein levels of αA-crystallin and αB-crystallin in the human lens epithelium were detected by real-time PCR and western blots, respectively. The mRNA and soluble protein expressions of αA-crystallin and αB-crystallin in the lens epithelium were both reduced in age-related and congenital cataract groups when compared with the normal control group. However, the degree of α-crystallin loss in the lens epithelium was highly correlated with different cataract types. The α-crystallin expression of the lens epithelium was greatly reduced in the congenital cataract group but only moderately decreased in the age-related cataract group. The reduction of αA-crystallin soluble protein levels in the congenital cataract group was approximately 2.4 fold decrease compared with that of the age-related cataract group, while an mRNA fold change of 1.67 decrease was observed for the age-related cataract group. Similarly, the reduction of soluble protein levels of αB-crystallin in the congenital cataract group was approximately a 1.57 fold change compared with that of the age-related cataract group. A 1.75 fold change for mRNA levels compared with that of the age-related cataract group was observed. The results suggest that the differential loss of α-crystallin in the human lens epithelium could be associated with the different mechanisms of cataractogenesis in age-related versus congenital cataracts, subsequently resulting in different clinical presentations.

  9. Molecular expression in transfected corneal endothelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong

    2017-10-01

    To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.

  10. Identification of Distinct Layers Within the Stratified Squamous Epithelium of the Adult Human True Vocal Fold

    PubMed Central

    Dowdall, Jayme R.; Sadow, Peter M.; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C.; Franco, Ramon A.; Rajagopal, Jayaraj

    2016-01-01

    Objectives/Hypothesis A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Study Design Qualitative study with adult human larynges. Methods Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). Results We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. Conclusion We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. Level of Evidence N/A. PMID:25988619

  11. Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold.

    PubMed

    Dowdall, Jayme R; Sadow, Peter M; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C; Franco, Ramon A; Rajagopal, Jayaraj

    2015-09-01

    A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Qualitative study with adult human larynges. Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  12. New Details of the Human Corneal Limbus Revealed With Second Harmonic Generation Imaging.

    PubMed

    Park, Choul Yong; Lee, Jimmy K; Zhang, Cheng; Chuck, Roy S

    2015-09-01

    To report novel findings of the human corneal limbus by using second harmonic generation (SHG) imaging. Corneal limbus was imaged by using an inverted two-photon excitation fluorescence microscope. Laser (Ti:Sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of SHG and autofluorescence (AF) were collected through a 425/30-nm emission filter and a 525/45-emission filter, respectively. Multiple, consecutive, and overlapping image stacks (z-stack) were acquired for the corneal limbal area. Two novel collagen structures were revealed by SHG imaging at the limbus: an anterior limbal cribriform layer and presumed anchoring fibers. Anterior limbal cribriform layer is an intertwined reticular collagen architecture just beneath the limbal epithelial niche and is located between the peripheral cornea and Tenon's/scleral tissue. Autofluorescence imaging revealed high vascularity in this structure. Central to the anterior limbal cribriform layer, radial strands of collagen were found to connect the peripheral cornea to the limbus. These presumed anchoring fibers have both collagen and elastin and were found more extensively in the superficial layers than deep layer and were absent in very deep limbus near Schlemm's canal. By using SHG imaging, new details of the collagen architecture of human corneal limbal area were elucidated. High resolution images with volumetric analysis revealed two novel collagen structures.

  13. Subconjunctival Bevacizumab Injection Impairs Corneal Innervations and Epithelial Wound Healing in Mice.

    PubMed

    Dong, Muchen; Di, Guohu; Zhang, Xiaoping; Zhou, Qingjun; Shi, Weiyun

    2017-03-01

    To investigate the effects of subconjunctival bevacizumab injection on the corneal nerve, sensitivity, and epithelial wound healing in mice. Adult C57BL/6 mice were treated with subconjunctival injection of 1, 2, 5, or 25 mg/mL bevacizumab. The corneal nerve was observed with whole-mount anti-β3-tubulin fluorescence staining. Corneal sensitivity was measured with a Cochet-Bonnet esthesiometer. The protein levels of pigment epithelium-derived factor (PEDF), nerve growth factor (NGF), glial-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) were measured by ELISA. The corneal epithelial wound-healing rate was evaluated by fluorescein staining. The recovery of impaired mouse corneal innervations and epithelial wound-healing rate following bevacizumab injection was evaluated with the co-injection of PEDF, NGF, or CNTF. Subconjunctival bevacizumab injection caused apparent corneal nerve degeneration, attenuated corneal sensitivity, and delayed corneal epithelial wound healing and nerve regeneration in normal mice, which was more significant with increased concentration and times of the bevacizumab injection. However, the corneal nerve and sensitivity gradually improved and recovered in mice with a single injection of 1 to 5 mg/mL bevacizumab. Moreover, the bevacizumab injection significantly decreased the corneal PEDF, NGF, and CNTF content, whereas exogenous PEDF, NGF, or CNTF supplement attenuated impairment of the corneal nerve, sensitivity, and epithelial wound healing after subconjunctival bevacizumab injection. Subconjunctival bevacizumab injection impairs corneal innervations, epithelial wound healing, and nerve regeneration in normal mice, which may be caused by the reduction of neurotrophic factor content in the cornea.

  14. Decrease in corneal damage due to benzalkonium chloride by the addition of sericin into timolol maleate eye drops.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2013-01-01

    We investigated the protective effects of sericin on corneal damage due to benzalkonium chloride (BAC) used as a preservative in commercially available timolol maleate eye drops using rat debrided corneal epithelium and a human cornea epithelial cell line (HCE-T). Corneal wounds were monitored using a fundus camera TRC-50X equipped with a digital camera; eye drops were instilled into the rat eyes five times a day after corneal epithelial abrasion. The viability of HCE-T cells was calculated by TetraColor One; and Escherichia coli (ATCC 8739) were used to measure antimicrobial activity. The reducing effects on transcorneal penetration and intraocular pressure (IOP) of the eye drops were determined using rabbits. The corneal wound healing rate and rate constants (kH) as well as cell viability were higher following treatment with 0.005% BAC solution containing 0.1% sericin than in the case of treatment with BAC solution alone; the antimicrobial activity was approximately the same for BAC solutions with and without sericin. In addition, the kH for rat eyes instilled with commercially available timolol maleate eye drops containing 0.1% sericin was significantly higher than that of eyes instilled with timolol maleate eye drops without sericin, and the addition of sericin did not affect the corneal penetration or IOP reducing effect of commercially available timolol maleate eye drops. A preservative system comprising BAC and sericin may provide effective therapy for glaucoma patients requiring long-term anti-glaucoma agents.

  15. Segmentation of 830- and 1310-nm LASIK corneal optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Li, Yan; Shekhar, Raj; Huang, David

    2002-05-01

    Optical coherence tomography (OCT) provides a non-contact and non-invasive means to visualize the corneal anatomy at micron scale resolution. We obtained corneal images from an arc-scanning (converging) OCT system operating at a wavelength of 830nm and a fan-shaped-scanning high-speed OCT system with an operating wavelength of 1310nm. Different scan protocols (arc/fan) and data acquisition rates, as well as wavelength dependent bio-tissue backscatter contrast and optical absorption, make the images acquired using the two systems different. We developed image-processing algorithms to automatically detect the air-tear interface, epithelium-Bowman's layer interface, laser in-situ keratomileusis (LASIK) flap interface, and the cornea-aqueous interface in both kinds of images. The overall segmentation scheme for 830nm and 1310nm OCT images was similar, although different strategies were adopted for specific processing approaches. Ultrasound pachymetry measurements of the corneal thickness and Placido-ring based corneal topography measurements of the corneal curvature were made on the same day as the OCT examination. Anterior/posterior corneal surface curvature measurement with OCT was also investigated. Results showed that automated segmentation of OCT images could evaluate anatomic outcome of LASIK surgery.

  16. Identification of cytomegalovirus and human herpesvirus-6 DNA in a patient with corneal endotheliitis.

    PubMed

    Yokogawa, Hideaki; Kobayashi, Akira; Yamazaki, Natsuko; Sugiyama, Kazuhisa

    2013-03-01

    To report the case of a patient with unilateral corneal endotheliitis in which both cytomegalovirus (CMV) and human herpesvirus-6 (HHV6) DNA was identified in the aqueous humor. A 67-year-old man with corneal endotheliitis OD was referred to us for decreased visual acuity. Local corneal stromal edema, pigmented keratic precipitates, a coin-shaped lesion and minimal anterior chamber reaction were observed by slit-lamp biomicroscopy. Cells with owl's eye appearance in the endothelial cell layer were observed by in vivo laser confocal microscopy. The patient had rheumatoid arthritis, which was treated by oral prednisolone and intravenous abatacept. Polymerase chain reaction analysis of aqueous humor samples detected both CMV and HHV6 DNA, but not other HHVs. Treatment with topical ganciclovir and systemic valganciclovir resulted in a clear cornea. A patient with corneal endotheliitis had both CMV and HHV6 DNA identified in the aqueous humor. Although both viruses were identified in this case, clinical manifestations resembled CMV corneal endotheliitis, and it was unclear whether HHV6 could affect the clinical course. Systemic abatacept and corticosteroid therapy might play a positive role in cases with both CMV and HHV6 DNA in this corneal endotheliitis.

  17. Corneal Ring Infiltrates Caused by Serratia marcescens in a Patient with Human Immunodeficiency Virus.

    PubMed

    Chaidaroon, Winai; Supalaset, Sumet

    2016-01-01

    To describe corneal ring infiltrates caused by Serratia marcescens in a patient with human immunodeficiency virus (HIV-1) who wore contact lenses. A case study of a patient with keratitis due to an infection caused by S. marcescens and exhibiting corneal ring infiltrates was reviewed for history, clinical manifestation, microscopic study, and management. A 29-year-old man who had a history of contact lens wear and HIV-1 infection was admitted to hospital because of blurred vision, redness, and corneal infiltrates in the shape of a ring in the left eye. The visual acuity (VA) in both eyes was hand movement (uncorrected). Corneal scrapings were performed. The culture results of the corneal specimens revealed S. marcescens . The culture results of the contact lens disclosed the same organism. The corneal ulcer responded well to treatment with topical gentamycin sulfate 14 mg/ml. The final VA remained hand movement. S. marcescens can cause ring infiltrates in a HIV-1 patient who wears contact lenses. The treatment result for S. marcescens keratitis in a HIV-1 patient who wore contact lenses was favorable after intensive use of fortified topical antibiotics.

  18. Bietti's tapetoretinal degeneration with marginal corneal dystrophy crystalline retinopathy.

    PubMed Central

    Welch, R B

    1977-01-01

    In 1937 Bietti reported a tapetoretinal degeneration with associated corneal deposits at the limbus. The hallmark of the disease was the crystalline characteristics of the retinal spots as well as those at the corneal limbus. Bagolini and Ioli-Spade in 1968 presented a 30 year follow-up on Bietti's cases and presented six additional cases. The present report delas with this entity in Orientals, a Chinese woman and a Japanese man. Corneal and conjunctival biopsy from the female patient revelaed a lipid deposition in both fibroblasts and epithelium. The term "crystalline retinopathy" has been added to the description of this entity since it defines the most characteristic feature of the syndrome. Images FIGURE 7 A FIGURE 7 B FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 2 A FIGURE 2 B FIGURE 2 C FIGURE 3 FIGURE 4 A FIGURE 4 B FIGURE 5 FIGURE 6 A FIGURE 6 B FIGURE 6 C FIGURE 8 PMID:306693

  19. Effect of the Regenerative Agent Poly(Carboxymethylglucose Sulfate) on Corneal Wound Healing After Corneal Cross-Linking for Keratoconus.

    PubMed

    Kymionis, George D; Liakopoulos, Dimitrios A; Grentzelos, Michael A; Tsoulnaras, Konstantinos I; Detorakis, Efstathios T; Cochener, Béatrice; Tsilimbaris, Miltiadis K

    2015-08-01

    To evaluate the effect of a regenerative agent (RGTA) [Cacicol20-poly(carboxymethyl glucose sulfate); OTR3, Paris, France] on corneal reepithelialization and pain after corneal cross-linking (CXL) for keratoconus. In this prospective comparative (contralateral) clinical study, patients with bilateral progressive keratoconus underwent CXL treatment. The corneal epithelium during CXL was removed using transepithelial phototherapeutic keratectomy (Cretan protocol). One eye of each patient was randomly instilled with an RGTA (Cacicol20) once a day (study group), whereas the fellow eye was instilled with artificial tears (control group). Patients were examined daily until complete reepithelialization. Postoperative examinations included slit-lamp biomicroscopy to assess the epithelial defect size and subjective evaluation of pain. The study enrolled 18 patients (36 eyes). The mean epithelial defect size for study and control groups was 19.6 ± 4.2 mm versus 21.5 ± 2.8 mm, respectively, at day 1 (P = 0.019) and 6.4 ± 3.4 mm versus 7.9 ± 4.3 mm, respectively, at day 2 (P = 0.014). At day 3 postoperatively, 61.1% of study eyes were fully reepithelialized, compared with 11.1% of control eyes (P = 0.002). RGTA (Cacicol20) instillation seems to result in faster corneal reepithelialization after CXL in this study. However, there was no significant effect in subjective pain/discomfort.

  20. Impact of Hydration Media on Ex Vivo Corneal Elasticity Measurements

    PubMed Central

    Dias, Janice; Ziebarth, Noël M.

    2014-01-01

    Objectives To determine the effect of hydration media on ex vivo corneal elasticity. Methods Experiments were conducted on forty porcine eyes retrieved from an abattoir (10 eyes each for PBS, BSS, Optisol, 15% Dextran). The epithelium was removed and the cornea was excised with an intact scleral rim and placed in 20% Dextran overnight to restore its physiological thickness. For each hydration media, corneas were evenly divided into two groups: one with an intact scleral rim and the other without. Corneas were mounted onto a custom chamber and immersed in a hydration medium for elasticity testing. While in each medium, corneal elasticity measurements were performed for 2 hours: at 5-minute intervals for the first 30 minutes and then 15-minute intervals for the remaining 90 minutes. Elasticity testing was performed using nanoindentation with spherical indenters and Young’s modulus was calculated using the Hertz model. Thickness measurements were taken before and after elasticity testing. Results The percentage change in corneal thickness and elasticity was calculated for each hydration media group. BSS, PBS, and Optisol showed an increase in thickness and Young’s moduli for corneas with and without an intact scleral rim. 15% Dextran exhibited a dehydrating effect on corneal thickness and provided stable maintenance of corneal elasticity for both groups. Conclusions Hydration media affects the stability of corneal thickness and elasticity measurements over time. 15% Dextran was most effective in maintaining corneal hydration and elasticity, followed by Optisol. PMID:25603443

  1. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boadi, Joseph; Matcher, Stephen; MacNeil, Sheila; Sangwan, Virender S.

    2016-04-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells are continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. In the event that the cornea is damaged and the limbal stem cell population is severely reduced, this condition known as Limbal Stem Cell Deficiency and can lead to blindness. There are numerous treatments but most have high long term failure rates. Most treatment methods include the transplantation of limbal stem cells into damaged limbus with hope of repopulating the region and regenerating at healthy corneal epithelium. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images. A bespoke OCT has been built to investigate the trajectories of these limbal stem cells after transplantation to see whether if they do repopulate the damaged limbus or not. In the experimentation magneto-labelling was used to track the limbal stem cells. For the magneto-labelling a mixture of limbal stem cells and cornea epithelium are cultured with super paramagnetic iron (Fe3O4) nanoparticles (20-30nm in size) for 24hours, to allow for uptake. The cells are then transplanted onto the denuded cornea. The transplanted cell mixture with the encapsulated magnetic nanoparticles is actuated with an external magnetic field 0.08T leading to a phase modulation on the signal. A Phase sensitive Magneto-motive OCT is used to locate the transplanted cells. The location of the cells with embed SPIOs were located both in 2D and 3D.

  2. Regulation of the membrane mucin Muc4 in corneal epithelial cells by proteosomal degradation and TGF-beta.

    PubMed

    Lomako, Joseph; Lomako, Wieslawa M; Carothers Carraway, Coralie A; Carraway, Kermit L

    2010-04-01

    MUC4 is a heterodimeric membrane mucin, composed of a mucin subunit ASGP-1 (MUC4alpha) and a transmembrane subunit ASGP-2 (MUC4beta), which has been implicated in the protection of epithelial cell surfaces. In the rat stratified corneal epithelium Muc4 is found predominantly in the most superficial cell layers. Since previous studies in other tissues have shown that Muc4 is regulated by TGF-beta via a proteosomal degradation mechanism, we investigated the regulation of corneal Muc4 in stratified cultures of corneal epithelial cells. Application of proteosome or processing inhibitors led to increases in levels of Muc4, particularly in the basal and intermediate levels of the stratified cultures. These changes were accompanied by increases in Muc4 ubiquitination, chaperone association and incorporation into intracellular aggresomes. In contrast, treatment with TGF-beta resulted in reduced levels of Muc4, which were reversed by proteosome inhibition. The results support a model in which Muc4 precursor is synthesized in all layers of the corneal epithelium, but Muc4 is degraded in basal and intermediate layers by a proteosomal mechanism at least partly dependent on TGF-beta inhibition of Muc4 processing. J. Cell. Physiol. 223: 209-214, 2010. (c) 2009 Wiley-Liss, Inc.

  3. Peroxynitrite Upregulates Angiogenic Factors VEGF-A, BFGF, and HIF-1α in Human Corneal Limbal Epithelial Cells

    PubMed Central

    Ashki, Negin; Chan, Ann M.; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K.

    2014-01-01

    Purpose. Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2−), which react together to form the highly toxic molecule peroxynitrite (ONOO−). The role of ONOO− in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Methods. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO− donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO−-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Results. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO−. HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO− exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO− (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO− treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Conclusions. Exposure to elevated extracellular concentrations of ONOO− results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO− could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV. PMID:24398102

  4. Peroxynitrite upregulates angiogenic factors VEGF-A, BFGF, and HIF-1α in human corneal limbal epithelial cells.

    PubMed

    Ashki, Negin; Chan, Ann M; Qin, Yu; Wang, Wei; Kiyohara, Meagan; Lin, Lin; Braun, Jonathan; Wadehra, Madhuri; Gordon, Lynn K

    2014-03-19

    Corneal neovascularization (NV) is a sight-threatening condition often associated with infection, inflammation, prolonged contact lens use, corneal burns, and acute corneal graft rejection. Macrophages recruited to the cornea release nitric oxide (NO) and superoxide anion (O2(-)), which react together to form the highly toxic molecule peroxynitrite (ONOO(-)). The role of ONOO(-) in upregulating multiple angiogenic factors in cultured human corneal limbal epithelial (HCLE) cells was investigated. Human corneal limbal epithelial cells were incubated with 500 μM of ONOO(-) donor for various times. VEGF-A, BFGF, and hypoxic-inducible factor-alpha (HIF-1α) were investigated via Western blot and RT-PCR was performed for VEGF. Functional assays using human umbilical vein endothelial cells (HUVEC) used conditioned media from ONOO(-)-exposed HCLE cells. Secreted VEGF from conditioned media was detected and analyzed using ELISA. Increased angiogenic factors were observed as early as 4 hours after HCLE exposure to ONOO(-). HIF-1 expression was seen at 4, 6, and 8 hours post-ONOO(-) exposure (P < 0.05). BFGF expression was elevated at 4 hours and peaked at 8 hours after treatment with ONOO(-) (P < 0.005). Increased VEGF-A gene expression was observed at 6 and 8 hours post-ONOO(-) treatment. Functional assays using conditioned media showed increased HUVEC migration and tube formation. Exposure to elevated extracellular concentrations of ONOO(-) results in upregulation of angiogenic factors in HCLE cells. It is possible that, in the setting of inflammation or infection, that exposure to ONOO(-) could be one contributor to the complex initiators of corneal NV. Validation in vivo would identify an additional potential control point for corneal NV.

  5. Epifluorescence Intravital Microscopy of Murine Corneal Dendritic Cells

    PubMed Central

    Rosenbaum, James T.; Planck, Stephen R.

    2010-01-01

    Purpose. Dendritic cells (DCs) are antigen-presenting cells vital for initiating immune responses. In this study the authors examined the in vivo migratory capability of resident corneal DCs to various stimuli. Methods. The authors used mice expressing enhanced yellow fluorescent protein (eYFP) under control of the CD11c promoter to visualize corneal DCs. To assess the distribution and mobility of DCs, normal corneas were imaged in vivo and ex vivo with fluorescence microscopy. Intravital microscopy was used to examine the responses of resident central and peripheral corneal DCs to silver nitrate injury, lipopolysaccharide, microspheres, and tumor necrosis factor (TNF-α). In some experiments, TNF-α injection was used to first induce centripetal migration of DCs to the central cornea, which was subsequently reinjected with microspheres. Results. In normal corneas, DCs were sparsely distributed centrally and were denser in the periphery, with epithelial-level DCs extending into the epithelium. Videomicroscopy showed that though cell processes were in continuous movement, cells generally did not migrate. Within the first 6 hours after stimulation, neither central nor peripheral corneal DCs exhibited significant lateral migration, but central corneal DCs assumed extreme morphologic changes. An increased number of DCs in the TNF-α–stimulated central cornea were responsive to subsequent microsphere injection by adopting a migratory behavior, but not with increased speed. Conclusions. In vivo imaging reveals minimal lateral migration of corneal DCs after various stimuli. In contrast, DCs within the central cornea after initial TNF-α injection are more likely to respond to a secondary insult with lateral migration. PMID:20007837

  6. Regulation of membrane-associated mucins in the human corneal epithelial cells by dexamethasone.

    PubMed

    Seo, Kyoung Yul; Chung, So-Hyang; Lee, Joon H; Park, Mi Young; Kim, Eung Kweon

    2007-07-01

    To study the influence of dexamethasone on membrane-associated mucins produced by human corneal epithelial cells. Human corneal epithelial cells were cultured in medium supplemented with various concentrations of dexamethasone (ranging from 10 to 10 M). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis using monoclonal antibodies specific for human MUC1 (HMFG-1), MUC4 (1G8), and MUC16 (OC125) were performed to evaluate the effect of dexamethasone on membrane-associated mucin expression. The effect of glucocorticoid receptor antagonist (RU38486) on dexamethasone-induced mucin expression was estimated. RT-PCR revealed that MUC1 and MUC16 gene expression were upregulated 48 hours after addition of dexamethasone and that MUC4 gene expression was downregulated in the same condition. Western blot analysis showed that MUC1 and MUC16 proteins were increased after addition of dexamethasone. However, MUC4 was not detected by anti-MUC4 monoclonal antibody (1G8) for ASGP-2 under our conditions. Treatment with RU38486 inhibited the changes of MUC1, MUC4, and MUC16 by dexamethasone; thus, the effect of dexamethasone on mucin expression is mediated by glucocorticoid receptors. This study shows that MUC1, MUC4, and MUC16 are regulated differently by dexamethasone in human corneal epithelial cells. External application of dexamethasone might affect the precorneal mucin.

  7. In vitro reconstruction of human junctional and sulcular epithelium

    PubMed Central

    Dabija-Wolter, G; Bakken, V; Cimpan, M R; Johannessen, A C; Costea, D E

    2013-01-01

    BACKGROUND The aim of this study was to develop and characterize standardized in vitro three-dimensional organotypic models of human junctional epithelium (JE) and sulcular epithelium (SE). METHODS Organotypic models were constructed by growing human normal gingival keratinocytes on top of collagen matrices populated with gingival fibroblasts (GF) or periodontal ligament fibroblasts (PLF). Tissues obtained were harvested at different time points and assessed for epithelial morphology, proliferation (Ki67), expression of JE-specific markers (ODAM and FDC-SP), cytokeratins (CK), transglutaminase, filaggrin, and basement membrane proteins (collagen IV and laminin1). RESULTS The epithelial component in 3- and 5-day organotypics showed limited differentiation and expressed Ki-67, ODAM, FDC-SP, CK 8, 13, 16, 19, and transglutaminase in a similar fashion to control JE samples. PLF supported better than GF expression of CK19 and suprabasal proliferation, although statistically significant only at day 5. Basement membrane proteins started to be deposited only from day 5. The rate of proliferating cells as well as the percentage of CK19-expressing cells decreased significantly in 7- and 9-day cultures. Day 7 organotypics presented higher number of epithelial cell layers, proliferating cells in suprabasal layers, and CK expression pattern similar to SE. CONCLUSION Both time in culture and fibroblast type had impact on epithelial phenotype. Five-day cultures with PLF are suggested as JE models, 7-day cultures with PLF or GF as SE models, while 9-day cultures with GF as gingival epithelium (GE) models. Such standard, reproducible models represent useful tools to study periodontal bacteria–host interactions in vitro. PMID:22947066

  8. The differentiation profile of the epithelium of the human lip.

    PubMed

    Barrett, A W; Morgan, M; Nwaeze, G; Kramer, G; Berkovitz, B K B

    2005-04-01

    The aim of this study was to analyse the immunohistochemical differentiation profile of the stratified squamous epithelium of the adult human lip. Full-thickness lower lips taken from 31 cadavers were analysed. Sections were stained with haematoxylin and eosin, periodic acid-Schiff (PAS), cytokeratins (CK), loricrin, involucrin, profilaggrin and filaggrin. The stratified squamous epithelium covering the lip could be divided into: (i) appendage-bearing, orthokeratinised epidermis; (ii) orthokeratinised vermilion which had a more prominent rete pattern than the epidermis; (iii) parakeratinised, PAS-positive intermediate zone; and (iv) non- or parakeratinised labial mucosal epithelium. Epithelial thickness increased gradually from the skin to the mucosal aspect. The CK pattern changed across the intermediate zone, with gradual loss of CK 1 and 10 from the skin, and CK 4, 13 and 19 from the mucosal, aspect. CK 5 and 14 were consistently expressed basally, and variably expressed suprabasally. Apart from labelling Merkel cells, CK 8, 18 and 20 were negative. Involucrin, which was present at all sites, was restricted to the stratum granulosum in skin, but extended into the stratum spinosum, and gradually into parabasal keratinocytes, across the vermilion and mucosa. Loricrin, profilaggrin and filaggrin were present in the stratum granulosum of orthokeratinised sites, but expression was abruptly lost at the junction between the vermilion and the intermediate zone. In conclusion, the phenotype of the stratified squamous epithelium covering the lip changes at, or across, the intermediate zone of the adult vermilion. It is possible that changes in the composition of the stratified squamous epithelium affect the colour of the vermilion.

  9. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors.

    PubMed

    Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  10. Characterization of corneal damage from Pseudomonas aeruginosa infection by the use of multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Chen, Wei-Liang; Lo, Wen; Chen, Shean-Jen; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2010-11-01

    Using multiphoton autofluorescence (MAF) and second harmonic generation (SHG) microscopy, we investigate the morphology and the structure of the corneal epithelium and stroma collagen of bovine cornea following injection of Pseudomonas aeruginosa. We found that corneal epithelial cells are damaged and stromal collagen becoming increasingly autofluorescent with time. We also characterized infected cornea cultured for 0, 6, 12, and 24 h by quantitative ratiometric MAF to SHG index (MAFSI) analysis. MAFSI results show that the destruction of the stromal collagen corresponds to a decrease in SHG intensity and increase of MAF signal with time.

  11. Regulation of human corneal epithelial mucins by rebamipide.

    PubMed

    Itoh, Shinsaku; Itoh, Kuni; Shinohara, Hisashi

    2014-02-01

    Membrane-associated mucins (MAMs) play important roles in barrier function and tear stability, and their expression on the ocular surface is altered in dry eye disease. Rebamipide is a mucin secretagogue that promotes the production of mucin-like glycoproteins in human corneal epithelial (HCE) cells. However, the expression of MAMs on the corneal epithelia (MUC1, MUC4, MUC16), which is induced by rebamipide, is poorly understood. In this study, we investigated the effect of rebamipide on the regulation of MAM expression in HCE cells. MUC16, Ki67 and PCNA expression levels in HCE cells isolated at confluence and at 24 hours after confluence were examined by Western blotting to assess cell proliferation. HCE cells isolated at 24 hours after confluence were cultured in medium supplemented with 1-10 µM rebamipide or 0.3-30 nM of epidermal growth factor (EGF). Real-time PCR (RT-PCR) and Western blot analysis of MAMs were performed to evaluate the effect of rebamipide. Western blot analysis of cells treated with an EGF receptor inhibitor (AG1478) or MEK1/2 inhibitor (U0126) was performed to reveal the relationship between EGF receptor activation and rebamipide-induced MAM expression. HCE cells isolated at 24 hours after confluence had lower cell proliferation activity and increased MUC16 expression compared with cells isolated at confluence. RT-PCR and Western blot analysis revealed that rebamipide increased MAM gene expression for 2 hours and protein expression for 24 hours in HCE cells. EGF inhibitor treatment led to reduced levels of all three MAMs that are normally induced by rebamipide, whereas EGF induced the expression of all three MAMs. We suggested that rebamipide increased MUC1, MUC4 and MUC16 expression levels through signals involved in EGF receptor activation in the human corneal epithelia. These data suggest that rebamipide may improve subjective symptoms of dry eye disease by upregulating MAM expression.

  12. Innate Immune Regulation of Serratia marcescens–Induced Corneal Inflammation and Infection

    PubMed Central

    Zhou, Rong; Zhang, Rui; Sun, Yan; Platt, Sean; Szczotka-Flynn, Loretta; Pearlman, Eric

    2012-01-01

    Purpose. Serratia marcescens is frequently isolated from lenses of patients with contact lens-associated corneal infiltrates. In the current study, we examined the role of toll-like receptors (TLRs) and interleukin-1 receptor type 1 (IL-1R1) in S. marcescens–induced corneal inflammation and infection. Methods. The central corneal epithelium of C57BL/6 and gene knockout mice was abraded, and 1 × 107 S. marcescens were added in the presence of a silicone hydrogel contact lens, and we examined corneal inflammation by confocal microscopy and neutrophil enumeration. Viable bacteria were quantified by colony-forming units (CFU). Results. S. marcescens induced neutrophil recruitment to the corneal stroma, and increased corneal thickness and haze in C57BL/6 mice. Conversely, CFU was significantly lower by 48 hours post infection. In contrast, MyD88−/−, IL-1R−/−, TLR4−/−, and TLR4/5−/− corneas infected with S. marcescens had significantly increased CFU, indicating impaired clearance. However, there was no significant difference in CFU among C57BL/6, TIRAP−/−, and TRIF−/− mice. Tobramycin-killed S. marcescens induced corneal inflammation in C57BL/6 mice, which was impaired significantly in MD-2−/− mice and in C57BL/6 mice pretreated topically with the MD-2 antagonist eritoran tetrasodium. Conclusions. S. marcescens induces corneal inflammation by activation of TLR4/MD-2/MyD88 and the IL-1R1/MyD88 pathways, which are potential therapeutic targets for inhibition of S. marcescens-induced corneal inflammation. PMID:23033384

  13. The effect of standard and high-fluence corneal cross-linking (CXL) on cornea and limbus.

    PubMed

    Richoz, Olivier; Tabibian, David; Hammer, Arthur; Majo, François; Nicolas, Michael; Hafezi, Farhad

    2014-07-22

    When treating peripheral ectatic disease-like pellucid marginal degeneration (PMD), corneal cross-linking with UV-A and riboflavin (CXL) must be applied eccentrically to the periphery of the lower cornea, partly irradiating the corneal limbus. Here, we investigated the effect of standard and double-standard fluence corneal cross-linking with riboflavin and UV-A (CXL) on cornea and corneal limbus in the rabbit eye in vivo. Epithelium-off CXL was performed in male New Zealand White rabbits with two irradiation diameters (7 mm central cornea, 13 mm cornea and limbus), using standard fluence (5.4 J/cm(2)) and double-standard fluence (10.8 J/cm(2)) settings. Controls were subjected to epithelial removal and riboflavin instillation, but were not irradiated with UV-A. Following CXL, animals were examined daily until complete closure of the epithelium, and at 7, 14, 21, and 28 days. Animals were killed and a corneoscleral button was excised and processed for light microscopy and immunohistochemistry. For both irradiation diameters and fluences tested, no signs of endothelial damage or limbal vessel thrombosis were observed, and time to re-epithelialization was similar to untreated controls. Histological and immunohistochemical analysis revealed no differences in the p63 putative stem cell marker expression pattern. Even when using fluence twice as high as the one used in current clinical CXL settings, circumferential UV-A irradiation of the corneal limbus does not alter the regenerative capacity of the limbal epithelial cells, and the expression pattern of the putative stem cell marker p63 remains unchanged. This suggests that eccentric CXL may be performed safely in PMD. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. Transient receptor potential vanilloid 4 (TRPV4) silencing in Helicobacter pylori-infected human gastric epithelium.

    PubMed

    Mihara, Hiroshi; Suzuki, Nobuhiro; Muhammad, Jibran Sualeh; Nanjo, Sohachi; Ando, Takayuki; Fujinami, Haruka; Kajiura, Shinya; Hosokawa, Ayumu; Sugiyama, Toshiro

    2017-04-01

    Helicobacter pylori (HP) infection induces methylation silencing of specific genes in gastric epithelium. Various stimuli activate the nonselective cation channel TRPV4, which is expressed in gastric epithelium where it detects mechanical stimuli and promotes ATP release. As CpG islands in TRPV4 are methylated in HP-infected gastric epithelium, we evaluated HP infection-dependent changes in TRPV4 expression in gastric epithelium. Human gastric biopsy samples, a human gastric cancer cell line (AGS), and a normal gastric epithelial cell line (GES-1) were used to detect TRPV4 mRNA and protein expression by RT-PCR and Western blotting, respectively. Ca 2+ imaging was used to evaluate TRPV4 ion channel activity. TRPV4 methylation status was assessed by methylation-specific PCR (MSP). ATP release was measured by a luciferin-luciferase assay. TRPV4 mRNA and protein were detected in human gastric biopsy samples and in GES-1 cells. MSP and demethylation assays showed TRPV4 methylation silencing in AGS cells. HP coculture directly induced methylation silencing of TRPV4 in GES-1 cells. In human samples, HP infection was associated with TRPV4 methylation silencing that recovered after HP eradication in a time-dependent manner. HP infection-dependent DNA methylation suppressed TRPV4 expression in human gastric epithelia, suggesting that TRPV4 methylation may be involved in HP-associated dyspepsia. © 2016 The Authors. Helicobacter Published by John Wiley & Sons Ltd.

  15. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    PubMed Central

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  16. [To Protect Corneal Transparency against Diseases].

    PubMed

    Usui, Tomohiko

    2016-03-01

    To protect corneal transparency, we tried to develop a new therapeutic strategy for corneal neovascularization, corneal scar, and TGFBI-related corneal dystrophy using nucleic acid drug. 1. The expression of angiopietin-like protein 2 (Angptl2) markedly increased in the neovascularized corneas compared to the normal cornea, and Angtpl2 was(a potent inducer of inflammatory corneal neovascularization. We have produced a single-stranded proline-modified short hairpin anti-Angptl2 ribonucleric acid interference (RNAi) molecule that is carried in a lipid nanoparticle for topical application. We have found this agent can penetrate all layers of the cornea. Angptl2 mRNA expression and corneal neovascularization were inhibited in a mouse alkari injury model by topical application of this agent. Thus, this modified RNAi agent is a new topical formulation for use against corneal neovascularization and scar. 2. Human umbilical vein endothelial cells (HUVECs) were cultured with human corneal keratocytes under serum-free conditions. We performed microarray gene-expression analysis in the coculture system and selected angiopoietin-like protein 7 (Angptl7). In vivo, intrastromal injections of an anti-Angptl7 RNAi agent into the avascular corneal stroma of mice resulted in the growth of blood vessels. Further, we examined the effects of Angptl7 on corneal nerves using culture rat trigeminal cells and this molecule had neurotrophic property on the cornea. Thus, Angpt17 is a unique molecule, which contain its bilateral character (anti-angiogenic and neurotrophic) in the cornea; an agonistic nucleic acid drug for Angptl7 may be a new therapeutic tool for protecting corneal transparency. 3. We examined local gene editing for TGFBI-related corneal dystrophy using CRISPR-Cas9 mediated homology directed repair (HDR). Cultured corneal keratocytes were obtained from a patient of R124H granular dystrophy. The R124H gene arrangement was corrected by a tranfection of guide RNA and HDR repair

  17. Diffusion of naltrexone across reconstituted human oral epithelium and histomorphological features.

    PubMed

    Giannola, Libero Italo; De Caro, Viviana; Giandalia, Giulia; Siragusa, Maria Gabriella; Campisi, Giuseppina; Florena, Ada Maria; Ciach, Tomasz

    2007-02-01

    In transbuccal absorption a major limitation could be the low permeability of the mucosa which implies low drug bioavailability. The ability of naltrexone hydrochloride (NLX) to penetrate a resembling histologically human buccal mucosa was assessed and the occurrence of any histomorphological changes observed. We used reconstituted human oral (RHO) non-keratinised epithelium as mucosal section and a Transwell diffusion cells system as bicompartmental model. Buccal permeation was expressed in terms of drug flux (J(s)) and permeability coefficients (K(p)). Data were collected using both artificial and natural human saliva. The main finding was that RHO does not restrain NLX permeation. Drug transport across the epithelium was observed also in presence of various concentrations of penetration enhancers, without any significant differences. On the contrary, the flux throughout the mucosa was extensively affected by iontophoresis. Histologically, no sign of flogosis was observed in any specimen under experiment without iontophoresis, whereas cytoarchitectural changes, up to nuclear pycnosis or cellular swelling, were determined as a consequence of the application of electric fields.

  18. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

    PubMed

    Gomi, Kazunori; Staudt, Michelle R; Salit, Jacqueline; Kaner, Robert J; Heldrich, Jonna; Rogalski, Allison M; Arbelaez, Vanessa; Crystal, Ronald G; Walters, Matthew S

    2016-08-01

    Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

  19. Alarmins from corneal epithelial cells upregulate CCL11 and VCAM-1 in corneal fibroblasts.

    PubMed

    Fukuda, Ken; Ishida, Waka; Tanaka, Hiroshi; Harada, Yosuke; Matsuda, Akira; Ebihara, Nobuyuki; Fukushima, Atsuki

    2013-08-27

    Severe ocular allergic diseases are characterized by pronounced conjunctival inflammation triggered by T helper 2 (Th2) cells and corneal epithelial damage induced by eosinophils. To examine the role of alarmins released by damaged corneal epithelial cells in tissue eosinophilia, we investigated the effects of a supernatant derived from necrotic human corneal epithelial (HCE) cells on expression of the chemokine CCL11 (eotaxin) and the adhesion molecule VCAM-1 in human corneal fibroblasts. An alarmin preparation was obtained as the material released from HCE cells after three cycles of freezing and thawing. CCL11 released into culture medium and cell surface expression of VCAM-1 were measured with enzyme-linked immunosorbent assays, and the amounts of CCL11 and VCAM-1 mRNAs were quantitated by reverse transcription and real-time polymerase chain reaction analysis. Signaling by the transcription factor NF-κB was evaluated by immunoblot and immunofluorescence analyses. The combination of the necrotic HCE cell supernatant and either interleukin (IL)-4 or IL-13 induced synergistic increases in CCL11 release, VCAM-1 expression, and the abundance of CCL11 and VCAM-1 mRNAs in corneal fibroblasts. The necrotic HCE cell supernatant also induced NF-κB activation in corneal fibroblasts, whereas an inhibitor of NF-κB and IL-1 receptor antagonist each attenuated CCL11 release induced by the alarmin preparation and either IL-4 or IL-13. Alarmins including IL-1 released from necrotic corneal epithelial cells cooperate with Th2 cytokines to induce CCL11 production and VCAM-1 expression in corneal fibroblasts, and may thereby play an important role in tissue eosinophilia associated with ocular allergic diseases.

  20. Corneal and conjunctival epithelial staining in hydrogel contact lens wearers.

    PubMed

    Brautaset, Rune L; Nilsson, Maria; Leach, Norman; Miller, William L; Gire, Anisa; Quintero, Sam; Bergmanson, Jan P G

    2008-11-01

    The purpose of this study was to investigate the prevalence of conjunctival and corneal epithelial staining in soft contact lens wearers and to see if staining could be associated with factors such as type of lens worn, wearing time, care system, age, and sex. The records of 338 adapted hydrogel contact lens wearers were examined retrospectively. Conjunctival staining was found to be present in 32.5% of the subjects and corneal staining was found to be present in 19.5% of subjects. None of the subjects had staining above grade 2 using the Cornea and Contact Lens Research Unit scale. Because of the low prevalence of staining, the low grading of staining found and the large variation in refractive power, lens type worn, wearing modality, and solution used statistical analysis for association between staining and different factors could only be performed for the association between sex and staining and between corneal and conjunctival staining. However, no statistical significant association could be demonstrated. Despite the low prevalence of staining the conjunctiva and cornea should be examined carefully in contact lens wearers and prospective wearers because the conjunctival and corneal epithelium serve as protective barriers for the underlying layers of the cornea and conjunctiva. To allow comparison of data obtained in different studies assessing corneal staining, it is recommended that clinicians develop and adopt a universal standard protocol for this measure.

  1. Fungal corneal ulcer and bacterial orbital cellulitis occur as complications of bacterial endophthalmitis after cataract surgery in an immunocompetent patient.

    PubMed

    Kim, Eun Chul; Kim, Man Soo; Kang, Nam Yeo

    2013-03-01

    To report a case of fungal corneal ulcer and bacterial orbital cellulitis as complications of bacterial endophthalmitis following cataract surgery. A 51-year-old man underwent anterior chamber irrigation and aspiration in the left eye one day after cataract surgery because of bacterial endophthalmitis. Marked lid swelling with purulent discharge was developed after 5 days. Slit lamp examination showed generalized corneal ulcer and pus in the total anterior chamber. A computerized tomography scan showed left retrobulbar fat stranding with thickened optic disc. Streptococcus pneumonia was cultured from corneal scraping, vireous, and subconjunctival pus. The patient improved gradually with antibiotics treatments, but the corneal ulcer did not fully recover 2 months after cataract surgery. Candida albicans was detected in repetitive corneal culture. After antifungal and antibacterial therapy, the corneal epithelium had healed, but phthisis bulbi had developed. Fungal corneal ulcer and bacterial orbital cellulitis can occur as complications of endophthalmitis in an immunocompetent patient.

  2. In vivo three-dimensional imaging of human corneal nerves using Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Hwang, Ho Sik; Eom, Tae Joong; Lee, Byeong Ha

    2017-01-01

    We have employed Fourier-domain optical coherence tomography (FD-OCT) to achieve corneal nerve imaging, which could be useful in surgical planning and refractive surgery. Because the three-dimensional (3-D) images of the corneal nerves were acquired in vivo, unintentional movement of the subject during the measurement led to imaging artifacts. These artifacts were compensated for with a series of signal processing techniques, namely realigning A-scan images to flatten the boundary and cross-correlating adjacent B-scan images. To overcome the undesirably large signal from scattering at the corneal surface and iris, volume rendering and maximum intensity projections were performed with only the data taken in the stromal region of the cornea, which is located between 200 and 500 μm from the corneal surface. The 3-D volume imaging of a 10×10 mm2 area took 9.8 s, which is slightly shorter than the normal tear breakup time. This allowed us to image the branched and threadlike corneal nerve bundles within the human eye. The experimental results show that FD-OCT systems have the potential to be useful in clinical investigations of corneal nerves and by minimizing nerve injury during clinical or surgical procedures.

  3. Toxic corneal epitheliopathy after intravitreal methotrexate and its treatment with oral folic acid.

    PubMed

    Gorovoy, Ian; Prechanond, Tidarat; Abia, Maravillas; Afshar, Armin R; Stewart, Jay M

    2013-08-01

    To determine whether oral folic acid can ameliorate an iatrogenic, visually significant corneal epitheliopathy, which commonly occurs with intravitreal injections of methotrexate for the treatment of intraocular lymphoma. We report 2 cases of visually significant corneal epitheliopathy occurring after intravitreal injections of methotrexate for intraocular lymphoma. The first patient did not receive any treatment for the corneal disease, and the second patient with bilateral intraocular lymphoma received 1 mg of oral folic acid daily, a commonly used dosage for patients on systemic methotrexate. In the first patient without treatment, there was a complete regression of the corneal epithelial disease only when the frequency of intravitreal methotrexate was reduced from weekly to monthly as per a commonly used dosage regimen for methotrexate. In the second patient, the corneal disease improved 80% within 1 week of initiating oral folic acid for her eye already experiencing severe epitheliopathy during her weekly dosing regimen of methotrexate and also had significantly decreased epithelial disease in her second eye that started weekly intravitreal methotrexate several weeks after beginning oral folic acid. Currently, oral folic acid supplements are recommended for patients using systemic methotrexate to minimize drug toxicity. We suggest a similar use in patients undergoing intravitreal methotrexate injections to decrease toxic effects on the corneal epithelium.

  4. Unscheduled DNA synthesis in human bronchial epithelium treated with various chemical carcinogens in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, T.; Ide, F.; Kodama, K.

    1984-07-01

    A system was developed in which organ culture of human bronchial epithelium was used in combination with autoradiography for quantitative measurement of unscheduled DNA synthesis (UDS) in bronchial epithelial cells. Human bronchi obtained at surgery were cut into small sections and treated with various carcinogens plus (methyl-/sup 3/H)thymidine in short-term organ culture. Significant numbers of silver grains, indicating UDS, were detected on the nuclei of epithelial cells of human bronchi treated with carcinogens, and the numbers were proportional to the concentrations of carcinogens. In this system seven representative carcinogens induced UDS. Four active metabolites of benzo(a)pyrene, and benz(a)anthracene also weremore » found to induce very active UDS in human bronchial epithelium. These findings suggest that human bronchial epithelial cells can repair different types of DNA modification induced by chemical carcinogens.« less

  5. Comparative quantitative assessment of the human corneal sub-basal nerve plexus by in vivo confocal microscopy and histological staining.

    PubMed

    Kowtharapu, B S; Winter, K; Marfurt, C; Allgeier, S; Köhler, B; Hovakimyan, M; Stahnke, T; Wree, A; Stachs, O; Guthoff, R F

    2017-03-01

    PurposeThis study was designed to compare and contrast quantitative data of the human corneal sub-basal nerve plexus (SBP) evaluated by two different methods: in vivo confocal microscopy (IVCM), and immunohistochemical staining of ex vivo donor corneas.MethodsSeven parameters of the SBP in large-scale IVCM mosaicking images from healthy subjects were compared with the identical parameters in ex vivo donor corneas stained by β-III-tubulin immunohistochemistry. Corneal nerve fiber length (CNFL), corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), average weighted corneal nerve fiber tortuosity (CNFTo), corneal nerve connection points (CNCP), average corneal nerve single-fiber length (CNSFL), and average weighted corneal nerve fiber thickness (CNFTh) were calculated using a dedicated, published algorithm and compared.ResultsOur experiments showed significantly higher values for CNFL (50.2 vs 21.4 mm/mm 2 ), CNFD (1358.8 vs 277.3 nerve fibers/mm 2 ), CNBD (847.6 vs 163.5 branches/mm 2 ), CNFTo (0.095 vs 0.081 μm -1 ), and CNCP (49.4 vs 21.6 connections/mm 2 ) in histologically staining specimens compared with IVCM images. In contrast, CNSFL values were higher in IVCM images than in histological specimens (32.1 vs 74.1 μm). No significant difference was observed in CNFTh (2.22 vs 2.20 μm) between the two groups.ConclusionsThe results of this study have shown that IVCM has an inherently lower resolution compared with ex vivo immunohistochemical staining of the corneal SBP and that this limitation leads to a systematic underestimation of several SBP parameters. Despite this shortcoming, IVCM is a vital clinical tool for in vivo characterization, quantitative clinical imaging, and evaluation of the human corneal SBP.

  6. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization

    PubMed Central

    Yang, Lingling; Wang, Yao; Zhou, Qingjun; Chen, Peng; Wang, Yiqiang; Wang, Ye; Liu, Ting

    2009-01-01

    Purpose To assess the effects of polysaccharide extract from Spirulina platensis (PSP) on corneal neovascularization (CNV) in vivo and in vitro. Methods PSP was extracted from dry powder of Spirulina platensis. Its anti-angiogenic activity was evaluated in the mouse corneal alkali burn model after topical administration of PSP four times daily for up to seven days. Corneal samples were processed for histochemical, immunohistochemical, and gene expression analyses. The effects of PSP on proliferation, migration, tube formation, and serine threonine kinase (AKT) and extracellular regulated kinase1/2 (ERK1/2) signaling levels in vascular endothelial cells were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) and carboxyfluorescein succinimidyl ester (CFSE) labeling assays, wound healing assay, Matrigel tube formation assay, and western blot. Results Topical application of PSP significantly inhibited CNV caused by alkali burn. Corneas treated with PSP showed reduced levels of platelet endothelial cell adhesion molecule (CD31) and stromal cell-derived factor 1 (SDF1) proteins, reduced levels of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), SDF1, and tumor necrosis factor-alpha (TNF-α) mRNAs, and an increased level of pigment epithelium-derived factor (PEDF) mRNA. These are parameters that have all been related to CNV and/or inflammation. In human vascular endothelial cells, PSP significantly inhibited proliferation, migration, and tube formation in a dose-dependent manner. Furthermore, PSP also decreased the levels of activated AKT and ERK 1/2. Conclusions These data suggest that polysaccharide extract from Spirulina platensis is a potent inhibitor of CNV and that it may be of benefit in the therapy of corneal diseases involving neovascularization and inflammation. PMID:19784394

  7. Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-ichiro

    2013-12-01

    Finding in vitro eye irritation testing alternatives to animal testing such as the Draize eye test, which uses rabbits, is essential from the standpoint of animal welfare. It has been developed a reconstructed human corneal epithelial model, the LabCyte CORNEA-MODEL, which has a representative corneal epithelium-like structure. Protocol optimization (pre-validation study) was examined in order to establish a new alternative method for eye irritancy evaluation with this model. From the results of the optimization experiments, the application periods for chemicals were set at 1min for liquid chemicals or 24h for solid chemicals, and the post-exposure incubation periods were set at 24h for liquids or zero for solids. If the viability was less than 50%, the chemical was judged to be an eye irritant. Sixty-one chemicals were applied in the optimized protocol using the LabCyte CORNEA-MODEL and these results were evaluated in correlation with in vivo results. The predictions of the optimized LabCyte CORNEA-MODEL eye irritation test methods were highly correlated with in vivo eye irritation (sensitivity 100%, specificity 80.0%, and accuracy 91.8%). These results suggest that the LabCyte CORNEA-MODEL eye irritation test could be useful as an alternative method to the Draize eye test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Multilayered epithelium in a rat model and human Barrett's esophagus: Similar expression patterns of transcription factors and differentiation markers

    PubMed Central

    Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J

    2008-01-01

    Background In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753–765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Methods Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. Results We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1α, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. Conclusion These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE. PMID:18190713

  9. Multilayered epithelium in a rat model and human Barrett's esophagus: similar expression patterns of transcription factors and differentiation markers.

    PubMed

    Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J

    2008-01-11

    In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753-765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1alpha, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE.

  10. Revisiting the human seminiferous epithelium cycle.

    PubMed

    Nihi, F; Gomes, M L M; Carvalho, F A R; Reis, A B; Martello, R; Melo, R C N; Almeida, F R C L; Chiarini-Garcia, H

    2017-06-01

    Can all types of testicular germ cells be accurately identified by microscopy techniques and unambiguously distributed in stages of the human seminiferous epithelium cycle (SEC)? By using a high-resolution light microscopy (HRLM) method, which enables an improved visualization of germ cell morphological features, we identified all testicular germ cells in the seminiferous epithelium and precisely grouped them in six well-delimitated SEC stages, thus providing a reliable reference source for staging in man. Morphological characterization of germ cells in human has been done decades ago with the use of conventional histological methods (formaldehyde-based fixative -Zenker-formal- and paraffin embedding). These early studies proposed a classification of the SEC in six stages. However, the use of stages as baseline for morphofunctional evaluations of testicular parenchyma has been difficult because of incomplete morphological identification of germ cells and their random distribution in the human SEC. Testicular tissue from adult and elderly donors with normal spermatogenesis according to Levin's, Johnsen's and Bergmann's scores were used to evaluate germ cell morphology and validate their distribution and frequency in stages throughout human spermatogenesis. Testicular tissue from patients diagnosed with congenital bilateral agenesis of vas deferens (n = 3 adults) or prostate cancer (n = 3 elderly) were fixed in glutaraldehyde and embedded in araldite epoxy resin. Morphological analyses were performed by both light and transmission electron microscopy. HRLM method enabled a reliable morphological identification of all germ cells (spermatogonia, spermatocytes and spermatids) based on high-resolution aspects of euchromatin, heterochromatin and nucleolus. Moreover, acrosomal development of spermatids was clearly revealed. Altogether, our data redefined the limits of each stage leading to a more reliable determination of the SEC in man. Occasionally, germ cells can be

  11. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  12. Bilateral congenital corneal keloids and anterior segment mesenchymal dysgenesis in a case of Rubinstein-Taybi syndrome.

    PubMed

    Rao, Srinivas K; Fan, Dorothy S P; Pang, C P; Li, Winnie W Y; Ng, Joan S K; Good, William V; Lam, Dennis S C

    2002-01-01

    To report the unusual association of bilateral corneal keloids and anterior segment mesenchymal dysgenesis in a child with Rubinstein-Taybi syndrome. Case report of a 2-year-old boy. Excision of the epicorneal mass in the right eye was followed by recurrence of the lesion. Multiple penetrating keratoplasties were unsuccessful in reconstructing the anterior segment because of recurrent corneal epithelial breakdown, suggesting limbal stem cell insufficiency. Histopathology and electron microscopy of the excised mass lesion showed features typical of a corneal keloid: thickened keratinized epithelium, absent Bowman's layer, and fibrovascular hyperplasia, with haphazard orientation of the collagen lamellae. Ultrasound biomicroscopy and intraoperative findings suggested a diagnosis of Peter anomaly, but genetic analysis did not show a PAX6 mutation. The findings in our patient add to the spectrum of ocular changes described in Rubinstein-Taybi syndrome and confirm earlier reports of poor ocular prognosis in corneal keloids and Rubinstein-Taybi syndrome.

  13. Corneal densitometry and its correlation with age, pachymetry, corneal curvature, and refraction.

    PubMed

    Garzón, Nuria; Poyales, Francisco; Illarramendi, Igor; Mendicute, Javier; Jáñez, Óscar; Caro, Pedro; López, Alfredo; Argüeso, Francisco

    2017-12-01

    To determine normative corneal densitometry values in relation to age, sex, refractive error, corneal thickness, and keratometry, measured using the Oculus Pentacam system. Three hundred and thirty-eight healthy subjects (185 men; 153 women) with no corneal disease underwent an exhaustive ocular examination. Corneal densitometry was expressed in standardized grayscale units (GSU). The mean corneal densitometry over the total area was 16.46 ± 1.85 GSU. The Pearson correlation coefficient for total densitometry was r = 0.542 (p < 0.001). Statistically significant differences were found between men and women for the total area (p = 0.006), with readings of 16.22 ± 1.54 GSU and 16.60 ± 1.83 GSU, respectively. When the cornea was divided into layers of different depths, a significant correlation was found for all layers and age: r = 0.447 (p < 0.001), r = 0.563 (p < 0.001), and r = 0.520 (p < 0.001) for the anterior, central, and posterior layers, respectively. However, when the cornea was divided into concentric annuli starting from the center of the cornea, densitometry was strongly correlated only with age in the 6-10-mm annulus (p < 0.001). Neither mean keratometry nor spherical equivalent was correlated with corneal densitometry in any zone of the cornea (p > 0.05). This is the first report of normative corneal densitometry values in relation to keratometry, corneal thickness, and spherical equivalent measured with the latest Oculus Pentacam software. Corneal densitometry increases with age, but corneal keratometry and refractive parameters do not affect light scattering in the human cornea.

  14. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  15. Mucin Production Dynamics at the Surface of Corneal Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Hormel, Tristan; Bhattacharjee, Tapomoy; Pitenis, Angela; Urueã+/-A, Juan; Sawyer, Gregory; Angelini, Thomas

    Mucous layers form at the apical surface of many epithelia, protecting tissues from pathogens and environmental wear and damage. Although these layers contain many materials they are primarily composed of mucin glycoproteins, the concentration of which may be physiologically controlled to maintain specific rheological properties and to provide proper lubrication. Nowhere is this truer than at the surface of the eye's corneal epithelium, where the mucous layer must additionally achieve structural integrity to withstand the stresses created by blinking, and remain transparent in order to enable vision. I will present results on the growth dynamics, concentration, and rheology of a model corneal epithelial mucous layer, all of which can be viewed as important parameters at this interface. I will also discuss modulation of the mucous layer's dynamics with variation in environmental conditions. Alcon.

  16. Corneal endothelium: developmental strategies for regeneration

    PubMed Central

    Zavala, J; López Jaime, G R; Rodríguez Barrientos, C A; Valdez-Garcia, J

    2013-01-01

    The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: ‘cornea AND embryology AND transcription factors', ‘human endothelial keratoplasty AND risk factors', ‘(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', ‘mesenchymal stem cells AND cell therapy', ‘mesenchymal stem cells AND cornea', and ‘stem cells AND

  17. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-01-01

    To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.

  18. Merkel-like cell distribution in the epithelium of the human vagina. An immunohistochemical and TEM study.

    PubMed

    Polakovičová, Simona; Csöbönyeiová, Mária; Filova, Barbora; Borovský, Miroslav; Maršík, Ladislav; Kvasilová, Alena; Polák, Štefan

    2018-02-16

    Human Merkel cells (MCs) were first described by Friedrich S. Merkel in 1875 and named "Tastzellen" (touch cells). Merkel cells are primarily localized in the basal layer of the epidermis and concentrated in touch-sensitive areas. In our previous work, we reported on the distribution of MCs in the human esophagus, so therefore we chose other parts of the human body to study them. We selected the human vagina, because it has a similar epithelium as the esophagus and plays very important roles in reproduction and sexual pleasure. Due to the fact that there are very few research studies focusing on the innervation of this region, we decided to investigate the occurrence of MCs in the anterior wall of the vagina. The aim of our research was to identify MCs in the stratified squamous non-keratinized epithelium of the human vagina in 20 patients. For the identification of Merkel cells by light microscopy, we used antibodies against simple-epithelial cytokeratins (especially anti-cytokeratin 20). We also tried to identify them using transmission electron microscopy. Our investigation confirmed that 10 (50 %) of 20 patients had increased number of predominantly intraepithelial CK20 positive "Merkel-like" cells (MLCs) in the human vaginal epithelium. Subepithelial CK20 positive MLCs were observed in only one patient (5%). We tried to identify them also using transmission electron microscopy. Our investigation detected some unique cells that may be MCs. The purpose of vaginal innervation is still unclear. There are no data available concerning the distribution of MCs in the human vagina, so it would be interesting to study the role of MCs in the vaginal epithelium, in the context of innervation and epithelial biology.

  19. Multiscale Investigation of the Depth-Dependent Mechanical Anisotropy of the Human Corneal Stroma

    PubMed Central

    Labate, Cristina; Lombardo, Marco; De Santo, Maria P.; Dias, Janice; Ziebarth, Noel M.; Lombardo, Giuseppe

    2015-01-01

    Purpose. To investigate the depth-dependent mechanical anisotropy of the human corneal stroma at the tissue (stroma) and molecular (collagen) level by using atomic force microscopy (AFM). Methods. Eleven human donor corneas were dissected at different stromal depths by using a microkeratome. Mechanical measurements were performed in 15% dextran on the surface of the exposed stroma of each sample by using a custom-built AFM in force spectroscopy mode using both microspherical (38-μm diameter) and nanoconical (10-nm radius of curvature) indenters at 2-μm/s and 15-μm/s indentation rates. Young's modulus was determined by fitting force curve data using the Hertz and Hertz-Sneddon models for a spherical and a conical indenter, respectively. The depth-dependent anisotropy of stromal elasticity was correlated with images of the corneal stroma acquired by two-photon microscopy. Results. The force curves were obtained at stromal depths ranging from 59 to 218 μm. At the tissue level, Young's modulus (ES) showed a steep decrease at approximately 140-μm stromal depth (from 0.8 MPa to 0.3 MPa; P = 0.03) and then was stable in the posterior stroma. At the molecular level, Young's modulus (EC) was significantly greater than at the tissue level; EC decreased nonlinearly with increasing stromal depth from 3.9 to 2.6 MPa (P = 0.04). The variation of microstructure through the thickness correlated highly with a nonconstant profile of the mechanical properties in the stroma. Conclusions. The corneal stroma exhibits unique anisotropic elastic behavior at the tissue and molecular levels. This knowledge may benefit modeling of corneal behavior and help in the development of biomimetic materials. PMID:26098472

  20. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Eiro, Noemi; Treviño, Mercedes; Gonzalez, Francisco; Yebra-Pimentel, Eva; Giraldez, Maria Jesus; Macia, Manuel; Lamelas, Maria Luz; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2015-01-22

    To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment

  1. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses.

    PubMed

    Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L

    2017-01-01

    There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.

  2. The utilization of an ocular wound chamber on corneal epithelial wounds

    PubMed Central

    McDaniel, Jennifer S; Holt, Andrew W; Por, Elaine D; Eriksson, Elof; Johnson, Anthony J; Griffith, Gina L

    2018-01-01

    Purpose Currently available ocular moisture chambers are not adequate to manage the treatment of periocular burns, corneal injuries, and infection. The purpose of these studies was to demonstrate that a flexible, semi-transparent ocular wound chamber device adapted from technology currently used on dermal wounds is safe for use on corneal epithelial injuries. Materials and methods A depilatory cream (Nair™, 30 seconds) was utilized to remove the excess hair surrounding the left eyes of anesthetized Institute Armand Frappier (IAF) hairless, female guinea pigs (Crl:HA-Hrhr). A 4 mm corneal epithelium defect was created using a corneal rust ring remover (Algerbrush®II). Epithelial defects were either left untreated or the eyes were fitted with an ocular wound chamber and 0.5 mL of hydroxypropyl methylcellulose (HPMC) gel (GenTeal®) or HPMC liquid (GenTeal®) was injected into each chamber (N=5 per group). At 0, 24, 48, and 72 hours fluorescein and optical coherence tomography imaging was collected and the intraocular pressure (IOP) was measured. H&E staining was performed on corneal and eyelid skin samples and evaluated by a veterinary pathologist. Results Corneal epithelial wounds demonstrated 100% closure rates when left untreated or treated with an ocular wound chamber containing HPMC gel at 72 hours while wounds treated with an ocular wound chamber containing HPMC liquid were 98% healed. No significant differences were found in corneal thickness and wound healing, IOP, or eyelid skin pathology in any treatment group when compared to controls. Conclusions This study indicates that adapted wound chamber technology can be safely used on sterile, corneal epithelial wounds without adverse effects on periocular or ocular tissue when filled with a liquid or gel. PMID:29785086

  3. Novel Lutein Loaded Lipid Nanoparticles on Porcine Corneal Distribution

    PubMed Central

    Liu, Chi-Hsien; Chiu, Hao-Che; Wu, Wei-Chi; Sahoo, Soubhagya Laxmi; Hsu, Ching-Yun

    2014-01-01

    Topical delivery has the advantages including being user friendly and cost effective. Development of topical delivery carriers for lutein is becoming an important issue for the ocular drug delivery. Quantification of the partition coefficient of drug in the ocular tissue is the first step for the evaluation of delivery efficacy. The objectives of this study were to evaluate the effects of lipid nanoparticles and cyclodextrin (CD) on the corneal lutein accumulation and to measure the partition coefficients in the porcine cornea. Lipid nanoparticles combined with 2% HPβCD could enhance lutein accumulation up to 209.2 ± 18 (μg/g) which is 4.9-fold higher than that of the nanoparticles. CD combined nanoparticles have 68% of drug loading efficiency and lower cytotoxicity in the bovine cornea cells. From the confocal images, this improvement is due to the increased partitioning of lutein to the corneal epithelium by CD in the lipid nanoparticles. The novel lipid nanoparticles could not only improve the stability and entrapment efficacy of lutein but also enhance the lutein accumulation and partition in the cornea. Additionally the corneal accumulation of lutein was further enhanced by increasing the lutein payload in the vehicles. PMID:25101172

  4. Improved High-Frequency Ultrasound Corneal Biometric Accuracy by Micrometer-Resolution Acoustic-Property Maps of the Cornea.

    PubMed

    Rohrbach, Daniel; Silverman, Ronald H; Chun, Dan; Lloyd, Harriet O; Urs, Raksha; Mamou, Jonathan

    2018-04-01

    Mapping of epithelial thickness (ET) is useful for detection of keratoconus, a disease characterized by corneal thinning and bulging in which epithelial thinning occurs over the apex. In prior clinical studies, optical coherence tomography (OCT) measurements of ET were systematically thinner than those obtained by 40-MHz high-frequency ultrasound (HFU) where a constant speed of sound ( c ) of 1636 m/s was used for all corneal layers. The purpose of this work was to study the acoustic properties, that is, c , acoustic impedance ( Z ), and attenuation ( α ) of the corneal epithelium and stroma independently using a scanning acoustic microscope (SAM) to investigate the discrepancy between OCT and HFU estimates of ET. Twelve unfixed pig corneas were snap-frozen and 6-μm sections were scanned using a custom-built SAM with an F-1.08, 500-MHz transducer and a 264-MHz bandwidth. Two-dimensional maps of c , Z , and α with a spatial resolution of 4 μm were derived. SAM showed that the value of c in the epithelium (i.e., 1548 ± 18 m/s) is substantially lower than the value of c in the stroma (i.e., 1686 ± 33 m/s). SAM results demonstrated that the assumption of a constant value of c for all corneal layers is incorrect and explains the prior discrepancy between OCT and HFU ET determinations. The findings of this study have important implications for HFU-based ET measurements and will improve future keratoconus diagnosis by providing more-accurate ET estimates.

  5. A brief history of corneal transplantation: From ancient to modern.

    PubMed

    Crawford, Alexandra Z; Patel, Dipika V; McGhee, Charles Nj

    2013-09-01

    This review highlights many of the fundamental concepts and events in the development of corneal transplantation - from ancient times to modern. Tales of eye, limb, and even heart transplantation appear in ancient and medieval texts; however, in the scientific sense, the original concepts of corneal surgery date back to the Greek physician Galen (130-200 AD). Although proposals to provide improved corneal clarity by surgical interventions, including keratoprostheses, were better developed by the 17(th) and 18(th) centuries, true scientific and surgical experimentation in this field did not begin until the 19(th) century. Indeed, the success of contemporary corneal transplantation is largely the result of a culmination of pivotal ideas, experimentation, and perseverance by inspired individuals over the last 200 years. Franz Reisinger initiated experimental animal corneal transplantation in 1818, coining the term "keratoplasty". Subsequently, Wilhelmus Thorne created the term corneal transplant and 3 years later Samuel Bigger, 1837, reported successful corneal transplantation in a gazelle. The first recorded therapeutic corneal xenograft on a human was reported shortly thereafter in 1838-unsurprisingly this was unsuccessful. Further progress in corneal transplantation was significantly hindered by limited understanding of antiseptic principles, anesthesiology, surgical technique, and immunology. There ensued an extremely prolonged period of debate and experimentation upon the utility of animal compared to human tissue, and lamellar versus penetrating keratoplasty. Indeed, the first successful human corneal transplant was not performed by Eduard Zirm until 1905. Since that first successful corneal transplant, innumerable ophthalmologists have contributed to the development and refinement of corneal transplantation aided by the development of surgical microscopes, refined suture materials, the development of eye banks, and the introduction of corticosteroids. Recent

  6. Corneal endothelial autocrine trophic factor VIP in a mechanism-based strategy to enhance human donor cornea preservation for transplantation.

    PubMed

    Koh, Shay-Whey Margaret

    2012-02-01

    Vasoactive intestinal peptide (VIP) and ciliary neurotrophic factor (CNTF) are identified as autocrines of human corneal endothelial (CE) cells working in concert to maintain the differentiated state and promote the survival of the corneal endothelium. From VIP gene knockdown study, endogenous VIP is shown to maintain the level of the differentiation marker, the adhesion molecule N-cadherin, CE cell size, shape, and retention, in situ in the human donor corneoscleral explants. Exogenous VIP protects the corneal endothelium against the killing effect of oxidative stress, in part by upholding ATP levels in CE cells dying of oxidative stress-induced injury, allowing them to die of an apoptotic death instead of an acute necrotic one. The switch from the acute necrosis to the programmed cell death (apoptosis) may have allowed the injured CE cell to be rescued by the VIP-upregulated pathways, including those of Bcl-2 and N-cadherin, and resulted in long-term CE cell survival. The endogenous VIP in CE cells is upregulated by CNTF, which is released by CE cells surviving the oxidative stress. The CNTF receptor (CNTFRα) is expressed in CE cells in human donor corneoscleral explant and gradually becomes lost during corneal storage. VIP treatment (10(-8) M, 37 °C, 30 min) prior to storage of freshly dissected human donor corneoscleral explants increases their CE cell CNTFRα level and responsiveness to CNTF in upregulating the gap junctional protein connexin-43 expression. VIP treatment of both fresh and preserved corneoscleral explants reduces CE damage in the corneoscleral explants and in the corneal buttons trephined from them. CE cell loss is a critical risk factor in corneal graft failure at any time in the life of the graft, which can be as late as 5-10 years after an initially successful transplant. A new procedure, Descemet's stripping automated endothelial keratoplasty (DSAEK), which is superior to the traditional full thickness transplantation in many aspects

  7. Tissue Engineering of the Corneal Endothelium: A Review of Carrier Materials

    PubMed Central

    Teichmann, Juliane; Valtink, Monika; Nitschke, Mirko; Gramm, Stefan; Funk, Richard H.W.; Engelmann, Katrin; Werner, Carsten

    2013-01-01

    Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings. PMID:24956190

  8. Human corneal endothelial cell transplantation using nanocomposite gel sheet in bullous keratopathy.

    PubMed

    Parikumar, Periasamy; Haraguchi, Kazutoshi; Senthilkumar, Rajappa; Abraham, Samuel Jk

    2018-01-01

    Transplantation of in vitro expanded human corneal endothelial precursors (HCEP) cells using a nanocomposite (D25-NC) gel sheet as supporting material in bovine's cornea has been earlier reported. Herein we report the transplantation of HCEP cells derived from a cadaver donor cornea to three patients using the NC gel sheet. In three patients with bullous keratopathy, one after cataract surgery, one after trauma and another in the corneal graft, earlier performed for congenital corneal dystrophy, not amenable to medical management HCEP cells isolated from a human cadaver donor cornea in vitro expanded using a thermoreversible gelation polymer (TGP) for 26 days were divided into three equal portions and 1.6 × 10 5 HCEP cells were injected on to the endothelium of the affected eye in each patient using the D25-NC gel sheet as a supporting material. The sheets were removed after three days. The bullae in the cornea disappeared by the 3 rd -11 th post-operative day in all the three patients. Visual acuity improved from Perception of light (PL)+/Projection of rays (PR)+ to Hand movements (HM)+ in one of the patients by post-operative day 3 which was maintained at 18 months follow-up. At 18 months follow-up, in another patient the visual acuity had improved from HM+ to 6/60 while in the third patient, visual acuity remained HM+ as it was prior to HCEP transplantation. There were no adverse effects during the follow-up in any of the patients.

  9. Corneal critical barrier against the penetration of dexamethasone and lomefloxacin hydrochloride: evaluation by the activation energy for drug partition and diffusion in cornea.

    PubMed

    Yasueda, Shin-ichi; Higashiyama, Masayo; Yamaguchi, Masazumi; Isowaki, Akiharu; Ohtori, Akira

    2007-08-01

    The cornea is a solid barrier against drug permeation. We searched the critical barrier of corneal drug permeation using a hydrophobic drug, dexamethasone (DM), and a hydrophilic drug, lomefloxacin hydrochloride (LFLX). The activation energies for permeability of DM and LFLX across the intact cornea were 88.0 and 42.1 kJ/mol, respectively. Their activation energies for permeability across the cornea without epithelium decreased to 33.1 and 16.6 kJ/mol, respectively. The results show that epithelium is the critical barrier on the cornea against the permeation of a hydrophobic drug of DM as well as a hydrophilic drug of LFLX. The activation energy of partition for DM (66.8 kJ/mol) was approximately 3-fold larger than that of diffusion (21.2 kJ/mol). The results indicate that the partition for the hydrophobic drug of DM to the corneal epithelium is the primary barrier. Thermodynamic evaluation of activation energy for the drug permeation parameters is a good approach to investigate the mechanism of drug permeability.

  10. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH.

    PubMed

    Ferreira, Carina; Gonçalves, Bruna; Vilas Boas, Diana; Oliveira, Hugo; Henriques, Mariana; Azeredo, Joana; Silva, Sónia

    2016-11-01

    The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH. © Crown copyright 2016.

  11. Complete Metabolome and Lipidome Analysis Reveals Novel Biomarkers in the Human Diabetic Corneal Stroma

    PubMed Central

    Priyadarsini, Shrestha; McKay, Tina B; Sarker-Nag, Akhee; Allegood, Jeremy; Chalfant, Charles; Ma, Jian-Xing; Karamichos, Dimitrios

    2016-01-01

    Prolonged hyperglycemia during diabetes mellitus can cause severe ophthalmic complications affecting both the anterior and posterior ocular segments leading to impaired vision or blindness. Diabetes-induced corneal pathologies are associated with decreased wound healing capacity, corneal edema, and altered epithelial basement membrane. The mechanism by which diabetes modulates structure and function within the corneal stroma are unknown. In our study, we characterized the effects of diabetes on extracellular matrix, lipid transport, and cellular metabolism by defining the entire metabolome and lipidome of Type 1 and Type 2 human diabetic corneal stroma. Significant increases in Collagen I and III were found in diabetic corneas suggesting that diabetes promotes defects in matrix structure leading to scarring. Furthermore, increased lipid content, including sphingosine-1-phosphate and dihydrosphingosine, in diabetic corneas compared to healthy controls were measured suggesting altered lipid retention. Metabolomics analysis identified elevated tryptophan metabolites, independent of glucose metabolism, which correlated with upregulation of the Kynurenine pathway in diabetic corneas. We also found significant upregulation of novel biomarkers aminoadipic acid, D,L-pipecolic acid, and dihydroorotate. Our study links aberrant tryptophan metabolism to end-stage pathologies associated with diabetes indicating the potential of the Kynurenine pathway as a therapeutic target for inhibiting diabetes-associated defects in the eye. PMID:27742548

  12. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes

    PubMed Central

    Mallet, Justin D.; Bastien, Nathalie; Gendron, Sébastien P.; Rochette, Patrick J.

    2016-01-01

    Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced. PMID:27611318

  13. Unilateral congenital corneal keloid with anterior segment mesenchymal dysgenesis and subluxated lens: case report and review of literature.

    PubMed

    Vanathi, M; Sen, Seema; Panda, Anita; Dada, Tanuj; Behera, Geeta; Khokhar, Sudharshan

    2007-01-01

    To report the unusual association of unilateral congenital corneal keloid with anterior-segment mesenchymal dysgenesis and bilateral subluxated lens. A 20-year old man presented with a mass lesion involving the left cornea. The corneal lesion had been present since birth. On biomicroscopic examination, a well-defined vascularized, grayish-white mass occupying the whole of the left cornea was seen. The right eye showed multiple peripheral corneal opacities with iridocorneal adhesions, a poorly defined supranasal limbus, and a subluxated lens. Excision biopsy of the mass was done for histopathologic examination. Histopathologic examination of the excised corneal mass showed features consistent with that of a corneal keloid: thickened keratinized epithelium, absent Bowman membrane layer, and fibrovascular hyperplasia composed of hyalinized collagen fibers with irregular orientation of the collagen lamellae. During penetrating keratoplasty of the left eye, an anomalous iris pattern with poorly defined angle and a supranasal subluxated lens was also observed. Extraction of the subluxated lens was also done. The graft failed subsequent to a nonhealing persistent epithelial defect. Our case report highlights the rare association of a unilateral congenital corneal keloid with anterior-segment mesenchymal dysgenesis and bilateral subluxated lens.

  14. Polysaccharide Hydrogel Combined with Mesenchymal Stem Cells Promotes the Healing of Corneal Alkali Burn in Rats

    PubMed Central

    Liu, Xun; Yu, Min; Yang, Chunbo; Li, Xiaorong

    2015-01-01

    Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs) have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs) were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β), antiangiogenic cytokine (TSP-1) and decrease those promoting inflammation (TNF-α), chemotaxis (MIP-1α and MCP-1) and angiogenesis (VEGF and MMP-2). This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder. PMID:25789487

  15. A comparison of Fluoracaine and Fluorox on corneal epithelial cell desquamation after Goldmann Applanation Tonometry.

    PubMed

    Yeung, K K; Kageyama, J Y; Carnevali, T

    2000-01-01

    The purpose of this study was to quality the frequency and amount of corneal desquamation from a sodium fluorescein/proparacaine combination (Fluoracaine) as compared with sodium fluorescein/benoxinate combination ophthalmic solution (Fluorox) after Goldmann Applanation Tonometry. One drop of Fluoracaine was randomly instilled into one eye and one drop of Fluorox was instilled into the opposite eye of the same patient. Intraocular pressures (IOPs) by GAT and tear break-up times (TBUTs) were taken. Corneal stinging was compared. Corneal integrity by Cornea and Contact Lens Research Unit (CCLRU) standards was evaluated at 0, 3, 7, 10, 15, and 20 minutes after instillation of the ophthalmic solutions. Sixty eyes of 30 patients were observed Forty-seven percent of the patients reported Fluorox to string more than Fluoracaine; 23% of the patients reported that Fluoracaine stings more than Fluorox; and 30% the patients reported no difference. Average TBUTs were 6.87 and 7.17 seconds with Fluoracaine and Fluorox, respectively. Fluoracaine produced micro- and macropunctate keratitis of the superficial epithelium in 31% to 45% of the cornea. Fluorox caused superficial micropunctate keratitis in about 16% to 30% of the cornea. At 20 minutes, all eyes with Fluoracaine and all eyes but one with Fluorox had corneal desquamation. Fluoracaine causes marginally less stinging--however, clinically and statistically more corneal desquamation--than Fluorox after GAT. Corneal integrity after use of Fluoracaine should be evaluated even 20 minutes after GAT procedures for corneal disruption.

  16. The relationship between corneal biomechanics and anterior segment parameters in the early stage of orthokeratology: A pilot study.

    PubMed

    Chen, Renai; Mao, Xinjie; Jiang, Jun; Shen, Meixiao; Lian, Yan; Zhang, Bin; Lu, Fan

    2017-05-01

    To investigate the relationship between corneal biomechanics and anterior segment parameters in the early stage of overnight orthokeratology.Twenty-three eyes from 23 subjects were involved in the study. Corneal biomechanics, including corneal hysteresis (CH) and corneal resistance factor (CRF), and parameters of the anterior segment, including corneal curvature, central corneal thickness (CCT), and corneal sublayers' thickness, were measured at baseline and day 1 and 7 after wearing orthokeratology lens. One-way analysis of variance with repeated measures was used to compare the longitudinal changes and partial least squares linear regression was used to explore the relationship between corneal biomechanics and anterior segment parameters.At baseline, CH and CRF were positively correlated with CCT (r = 0.244, P = .008 for CH; r = 0.249, P < .001 for CRF), central stroma thickness (CST) (r = 0.241, P = .008 for CH; r = 0.244, P = .002 for CRF) and central Bowman layer thickness (CBT) (r = 0.138, P = .039 for CH; r = 0.171, P = .006 for CRF). Both CH and CRF significantly decreased from day 1 after orthokeratology. The corneal curvature and the epithelium thickness also significantly decreased, while the stromal layer thickened significantly from day 1 after orthokeratology. There was no correlation between the changes of corneal biomechanics and anterior segment parameters at day 1 and 7 after orthokeratology.While corneal biomechanics were positively correlated with CCT, CST, and CBT, the changes of CH and CRF were not correlated with the changes of corneal curvature, CCT, and corneal sublayers' thickness in the early stage of orthokeratology in our study.

  17. Extracellular Collagen Promotes Interleukin-1β-Induced Urokinase-Type Plasminogen Activator Production by Human Corneal Fibroblasts.

    PubMed

    Sugioka, Koji; Kodama-Takahashi, Aya; Yoshida, Koji; Aomatsu, Keiichi; Okada, Kiyotaka; Nishida, Teruo; Shimomura, Yoshikazu

    2017-03-01

    Keratocytes maintain homeostasis of the corneal stroma through synthesis, secretion, and degradation of collagen fibrils of the extracellular matrix. Given that these cells are essentially embedded in a collagen matrix, keratocyte-collagen interactions may play a key role in regulation of the expression or activation of enzymes responsible for matrix degradation including urokinase-type plasminogen activator (uPA), plasmin, and matrix metalloproteinases (MMPs). We examined the effect of extracellular collagen on the production of uPA by corneal fibroblasts (activated keratocytes) stimulated with the proinflammatory cytokine interleukin-1β (IL-1β). Human corneal fibroblasts were cultured either on plastic or in a three-dimensional gel of type I collagen. Plasminogen activators were detected by fibrin zymography, whereas the IL-1 receptor (IL-1R) and MMPs were detected by immunoblot analysis. Collagen degradation by corneal fibroblasts was assessed by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Collagen and IL-1β synergistically increased the synthesis and secretion of uPA in corneal fibroblasts. Collagen also upregulated IL-1R expression in the cells in a concentration-dependent manner. The conversion of extracellular plasminogen to plasmin, as well as the plasminogen-dependent activation of MMP-1 and MMP-3 and degradation of collagen apparent in three-dimensional cultures of corneal fibroblasts exposed to IL-1β, were all abolished by a selective uPA inhibitor. Collagen and IL-1β cooperate to upregulate uPA production by corneal fibroblasts. Furthermore, IL-1β-induced collagen degradation by these cells appears to be strictly dependent on uPA expression and mediated by a uPA-plasmin-MMP pathway.

  18. Effect of different culture media and deswelling agents on survival of human corneal endothelial and epithelial cells in vitro.

    PubMed

    Valtink, Monika; Donath, Patricia; Engelmann, Katrin; Knels, Lilla

    2016-02-01

    To examine the effects of media and deswelling agents on human corneal endothelial and epithelial cell viability using a previously developed screening system. The human corneal endothelial cell line HCEC-12 and the human corneal epithelial cell line HCE-T were cultured in four different corneal organ culture media (serum-supplemented: MEM +2 % FCS, CorneaMax®/CorneaJet®, serum-free: Human Endothelial-SFM, Stemalpha-2 and -3) with and without 6 % dextran T500 or 7 % HES 130/0.4. Standard growth media F99HCEC and DMEM/F12HCE-T served as controls. In additional controls, the stress inducers staurosporine or hydrogen peroxide were added. After 5 days in the test media, cell viability was assessed by flow cytometrically quantifying apoptotic and necrotic cells (sub-G1 DNA content, vital staining with YO-PRO-1® and propidium iodide) and intracellular reactive oxygen species (ROS). The MEM-based media were unable to support HCEC-12 and HCE-T survival under stress conditions, resulting in significantly increased numbers of apoptotic and necrotic cells. HCEC-12 survival was markedly improved in SFM-based media even under staurosporine or hydrogen peroxide. Likewise, HCE-T survival was improved in SFM with or without dextran. The media CorneaMax®, CorneaJet®, and CorneaMax® with HES supported HCEC-12 survival better than MEM-based media, but less well than SFM-based media. HCE-T viability was also supported by CorneaJet®, but not by CorneaMax® with or without HES. Stemalpha-based media were not suitable for maintaining viability of HCEC-12 or HCE-T in the applied cell culture system. The use of serum-supplemented MEM-based media for corneal organ culture should be discontinued in favour of serum-free media like SFM.

  19. Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium.

    PubMed

    Seery, J P; Watt, F M

    2000-11-16

    In spite of its clinical importance, little is known about the stem-cell compartment of the human oesophageal epithelium [1,2]. The epithelial basal layer consists of two distinct zones, one overlying the papillae of the supporting connective tissue (PBL) and the other covering the interpapillary zone (IBL) [3]. In examining the oesophageal basal layer, we found that proliferating cells were rare in the IBL and a high proportion of mitoses were asymmetrical, giving rise to one basal daughter and one suprabasal, differentiating daughter. In the PBL, mitoses were more frequent and predominantly symmetrical. The IBL was characterised by low expression of ?1 integrins and high expression of the beta2 laminin chain. By combining fluorescence-activated cell sorting (FACS) with in vitro clonal analysis, we obtained evidence that the IBL is enriched for stem cells. A normal oesophageal epithelium with asymmetric divisions was reconstituted on denuded oesophageal connective tissue. In contrast, asymmetric divisions were not sustained on skin connective tissue, and the epithelium formed resembled epidermis. We propose that stem cells located in the IBL give rise to differentiating daughters through asymmetric divisions in response to cues from the underlying basement membrane. Until now, stem-cell fate in stratified squamous epithelia was believed to be achieved largely through populational asymmetry [4-6].

  20. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  1. Inhibition by rebamipide of cytokine-induced or lipopolysaccharide-induced chemokine synthesis in human corneal fibroblasts.

    PubMed

    Fukuda, Ken; Ishida, Waka; Tanaka, Hiroshi; Harada, Yosuke; Fukushima, Atsuki

    2014-12-01

    The dry-eye drug rebamipide has mucin secretagogue activity in and anti-inflammatory effects on corneal epithelial cells. Corneal stromal fibroblasts (transdifferentiated keratocytes) function as immune modulators in the pathogenesis of chronic ocular allergic inflammation and in innate immune responses at the ocular surface. The possible anti-inflammatory effects of rebamipide on human corneal stromal fibroblasts were examined. Serum-deprived cells were incubated for 1 h with rebamipide and then for various times in the additional absence or presence of cytokines or bacterial lipopolysaccharide (LPS). The release of chemokines into culture supernatants was determined with ELISAs. The intracellular abundance of chemokine mRNAs was quantitated by reverse transcription and real-time PCR analysis. Degradation of the nuclear factor κB (NFκB) inhibitor IκBα was detected by immunoblot analysis. Rebamipide suppressed the release of interleukin (IL)-8 and the upregulation of IL-8 mRNA induced by tumour necrosis factor α (TNF-α) or LPS in corneal fibroblasts. It also inhibited eotaxin-1 (CCL-11) expression at the protein and mRNA levels induced by the combination of TNF-α and IL-4. In addition, rebamipide attenuated the degradation of IκBα induced by TNF-α or LPS. Rebamipide inhibited the synthesis of chemokines by corneal fibroblasts in association with suppression of NFκB signalling. Rebamipide may therefore prove effective for the treatment of corneal stromal inflammation associated with allergy or bacterial infection. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Corneal protection by the ocular mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced corneal defect.

    PubMed

    Gamache, Daniel A; Wei, Zhong-You; Weimer, Lori K; Miller, Steven T; Spellman, Joan M; Yanni, John M

    2002-08-01

    The mucin secretagogue 15(S)-HETE was found to stimulate glycoprotein secretion in human ocular tissue at submicromolar concentrations in the present studies. Therefore, the ability of topically applied 15(S)-HETE to preserve corneal integrity was investigated in a rabbit model of desiccation-induced corneal defect. Desiccation-induced corneal injury was elicited in anesthetized rabbits by maintaining one eye open with a speculum. Corneal staining and corneal thickness changes were determined immediately following desiccation. 15(S)-HETE dose-dependently reduced corneal damage (ED50 = 120 nM) during a two-hour desiccation. Corneal staining was unchanged relative to control using a 1 microM dose of 15(S)-HETE. Through four hours of desiccation, 15(S)-HETE (500 nM) decreased corneal staining by 71% and completely prevented corneal thinning. 15(S)-HETE (1 microM) was significantly more efficacious than an artificial tear product over the 4-hour desiccation period. There was no evidence of tachyphylaxis following repeated topical ocular dosing of 15(S)-HETE. These studies demonstrate that 15(S)-HETE stimulates ocular mucin secretion in vitro and effectively protects the cornea in a rabbit model of desiccation-induced injury. The results suggest that the ocular mucin secretagogue 15(S)-HETE may have therapeutic utility in dry eye patients, alleviating corneal injury and restoring corneal integrity.

  3. In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve structure in the human cornea.

    PubMed

    Stachs, Oliver; Zhivov, Andrey; Kraak, Robert; Stave, Joachim; Guthoff, Rudolf

    2007-04-01

    Evaluation of a new method for in vivo visualization of the distribution and morphology of human anterior corneal nerves. The anterior cornea was examined to a depth of 100 microm in four human volunteers with a confocal laser scanning microscope (CLSM) using a Rostock Cornea Module (developed in house) attached to a Heidelberg Retina Tomograph II (Heidelberg Engineering, Germany). Optical sections were digitally reconstructed in 3D using AMIRA (TGS Inc., USA). The scanned volumes had a greatest size of 300 x 300 x 40 microm and voxel size of 0.78 x 0.78 x 0.95 microm. The spatial arrangement of the epithelium, nerves and keratocytes was visualized by in vivo 3D-CLSM. The 3D-reconstruction of the volunteers' corneas in combination with the oblique sections gave a picture of the nerves in the central human cornea. Thin nerves run in the subepithelial plexus aligned parallel to Bowman's layer and are partially interconnected. The diameter of these fibres varied between 1.0 and 5 microm. Thick fibres rose out of the deeper stroma. The diameter of the main nerve trunks was 12+/-2 microm. Branches penetrating the anterior epithelial cell layer could not be visualized. 3D-CLSM allows analysis of the spatial arrangement of the anterior corneal nerves and visualization of the epithelium and keratocytes in the living human cornea. The developed method provides a basis for further studies of alterations of the cellular arrangement and epithelial innervation in corneal disease. This may help to clarify alterations of nerve fibre patterns under various clinical and experimental conditions.

  4. Matrix regeneration agents improve wound healing in non-stressed human corneal epithelial cells.

    PubMed

    Robciuc, A; Arvola, R P J; Jauhiainen, M; Holopainen, J M

    2018-04-01

    PurposeMatrix regenerating agents (RGTAs) emerged as promising in vivo wound-healing agents. These agents could prove beneficial for the treatment of dry eye disease-associated corneal micro-erosions; therefore, we aimed to evaluate the wound healing efficacy of regenerative agents (RGTAs or serum) in an in vitro model of hyperosmolarity (HO) stressed and non-stressed human corneal epithelial cells.Patients and methodsThe migration and proliferation induced by the regenerative agents was evaluated using an in vitro scratch wound assay and brome-deoxy-uridine incorporation. The inflammatory profile and effects of osmoregulators were also investigated. The two-tailed paired t-test calculated the statistical significance, with P-value<0.05 considered significant.ResultsThe most efficient inducer of re-epithelization was 2% serum, followed closely by 2% RGTA with an average improvement in cell migration of 1.8- and 1.4-fold, respectively, when compared with the non-treated control. Hyperosmolar stress significantly reduced the restorative effects of both serum and RGTAs; these effects were, however, neutralized by the osmoregulator betaine.ConclusionThese findings suggest that RGTAs could provide efficient treatment for dry-eye associated corneal micro-lesions if ocular surface HO is neutralized.

  5. Characterization of the corneal surface in limbal stem cell deficiency and after transplantation of cultured allogeneic limbal epithelial cells.

    PubMed

    Chen, Peng; Zhou, Qingjun; Wang, Junyi; Zhao, Xiaowen; Duan, Haoyun; Wang, Yao; Liu, Ting; Xie, Lixin

    2016-09-01

    The objective of this study was to characterize the changes that occur in the cornea during Limbal Stem Cell Deficiency (LSCD) and on the corneal surface after transplantation of ex vivo cultured allogeneic limbal epithelial transplantation (CALET). Forty-one pannus were analyzed to characterize the changes found in the cornea in LSCD. Nineteen impression cytology samples, including 14 pannus and five corneal buttons, obtained during subsequent procedures from patients who had undergone CALET were examined to assess the effect of CALET and to determine the long-term fate of donor cells. The presence of donor and recipient epithelial cells in each sample was determined by short tandem repeat (STR) amplification and fluorescent-multiplex polymerase chain reaction (PCR). Phenotypic analysis of the epithelium was performed by immunohistochemistry and real-time PCR. The expression of lineage markers was similar between pannus and conjunctivae, but not to corneas. Objective long-term benefits from the transplantation were recorded in most cases. After CALET, the lineage markers in the excised corneal buttons and pannus showed a limbus phenotype. DNA analysis of the 19 cases showed no donor cells present on the ocular surface beyond three months after CALET. LSCD was characterized by ingrowth of abnormal, inflamed tissue with a conjunctival phenotype. CALET was a useful technique for restoring the ocular surface in LSCD. However, such benefits did not necessarily correlate with survival of measurable numbers of donor cells on the ocular surface. The absence of donor DNA beyond three months raises questions regarding the period of ongoing immunosuppression and the origin of the regenerated corneal epithelium.

  6. Growing Three-Dimensional Corneal Tissue in a Bioreactor

    NASA Technical Reports Server (NTRS)

    Spaulding, Glen F.; Goodwin, Thomas J.; Aten, Laurie; Prewett, Tacey; Fitzgerald, Wendy S.; OConnor, Kim; Caldwell, Delmar; Francis, Karen M.

    2003-01-01

    Spheroids of corneal tissue about 5 mm in diameter have been grown in a bioreactor from an in vitro culture of primary rabbit corneal cells to illustrate the production of optic cells from aggregates and tissue. In comparison with corneal tissues previously grown in vitro by other techniques, this tissue approximates intact corneal tissue more closely in both size and structure. This novel three-dimensional tissue can be used to model cell structures and functions in normal and abnormal corneas. Efforts continue to refine the present in vitro method into one for producing human corneal tissue to overcome the chronic shortage of donors for corneal transplants: The method would be used to prepare corneal tissues, either from in vitro cultures of a patient s own cells or from a well-defined culture from another human donor known to be healthy. As explained in several articles in prior issues of NASA Tech Briefs, generally cylindrical horizontal rotating bioreactors have been developed to provide nutrient-solution environments conducive to the 30 NASA Tech Briefs, October 2003 growth of delicate animal cells, with gentle, low-shear flow conditions that keep the cells in suspension without damaging them. The horizontal rotating bioreactor used in this method, denoted by the acronym "HARV," was described in "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), NASA Tech Briefs, Vol. 16, No. 5 (May, 1992), page 150.

  7. A Rabbit Model of Acanthamoeba Keratitis: Use of Infected Soft Contact Lenses After Corneal Epithelium Debridement With a Diamond Burr.

    PubMed

    Ortillés, Ángel; Goñi, Pilar; Rubio, Encarnación; Sierra, Marta; Gámez, Ekaterina; Fernández, María T; Benito, María; Cristóbal, José Á; Calvo, Begoña

    2017-02-01

    To develop a rabbit model of Acanthamoeba keratitis (AK) as the best method to reproduce the natural course of this disease. To induce AK, infected contact lenses (1000 amoebae/mm2, 90% trophozoites) were placed over the previously debrided corneal surface, in combination with a temporary tarsorrhaphy. Environmental and clinical strains of Acanthamoeba spp. (genotype T4) were used. Three groups (1L, n = 32; 2L-21d, n = 5; 2L-3d, n = 23) were established according to the number of contact lenses used (1L, 1 lens; 2L-21d and 2L-3d, 2 lenses) and the placement day of these (1L, day 1; 2L-21d, days 1 and 21; 2L-3d, days 1 and 3). The infection was quantified by a clinical score system and confirmed using corneal cytology and culture, polymerase chain reaction and histopathologic analysis. The infection rate obtained was high (1L, 87.5%; 2L-21d, 100%; 2L-3d, 82.6%), although no clinical signs were observed in the 50% of the infected animals in group 1L. Among groups, group 2L-3d showed more cases of moderate and severe infection. Among strains, no statistically significant differences were found in the infection rate. In the control eyes, cross infection was confirmed when a sterile contact lens was placed in the previously debrided corneas but not if the eye remained intact. The combination of two infected contact lenses after corneal debridement seems to be an alternative model, clinically and histopathologically similar to its human counterpart, to induce the different AK stages and reproduce the course of the disease in rabbits.

  8. Administration of Menadione, Vitamin K3, Ameliorates Off-Target Effects on Corneal Epithelial Wound Healing Due to Receptor Tyrosine Kinase Inhibition.

    PubMed

    Rush, Jamie S; Bingaman, David P; Chaney, Paul G; Wax, Martin B; Ceresa, Brian P

    2016-11-01

    The antiangiogenic receptor tyrosine kinase inhibitor (RTKi), 3-[(4-bromo-2,6-difluorophenyl)methoxy]-5-[[[[4-(1-pyrrolidinyl) butyl] amino] carbonyl]amino]-4-isothiazolecarboxamide hydrochloride, targets VEGFR2 (half maximal inhibitory concentration [IC50] = 11 nM); however, off-target inhibition of epidermal growth factor receptor (EGFR) occurs at higher concentrations. (IC50 = 5.8 μM). This study was designed to determine the effect of topical RTKi treatment on EGF-mediated corneal epithelial wound healing and to develop new strategies to minimize off-target EGFR inhibition. In vitro corneal epithelial wound healing was measured in response to EGF using a transformed human cell line (hTCEpi cells). In vivo corneal wound healing was assessed using a murine model. In these complementary assays, wound healing was measured in the presence of varying RTKi concentrations. Immunoblot analysis was used to examine EGFR and VEGFR2 phosphorylation and the kinetics of EGFR degradation. An Alamar Blue assay measured VEGFR2-mediated cell biology. Receptor tyrosine kinase inhibitor exposure caused dose-dependent inhibition of EGFR-mediated corneal epithelial wound healing in vitro and in vivo. Nanomolar concentrations of menadione, a vitamin K3 analog, when coadministered with the RTKi, slowed EGFR degradation and ameliorated the inhibitory effects on epithelial wound healing both in vitro and in vivo. Menadione did not alter the RTKi's IC50 against VEGFR2 phosphorylation or its inhibition of VEGF-induced retinal endothelial cell proliferation. An antiangiogenic RTKi exhibited off-target effects on the corneal epithelium that can be minimized by menadione without deleteriously affecting its on-target VEGFR2 blockade. These data indicate that menadione has potential as a topical supplement for individuals suffering from perturbations in corneal epithelial homeostasis, especially as an untoward side effect of kinase inhibitors.

  9. "All-laser" endothelial corneal transplant in human patients

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Menabuoni, Luca; Malandrini, Alex; Canovetti, Annalisa; Lenzetti, Ivo; Pini, Roberto

    2012-03-01

    Femtosecond laser sculpturing of corneal tissue is commonly used for the preparation of endothelial flaps. Diode laser welding of ocular tissues is a procedure that enables minimally invasive suturing of tissues. The combination of these laser based techniques results in a new approach to minimally invasive ophthalmic surgery, such as in endothelial corneal transplant (or endothelial keratoplasty - EK). In this work we present the "all laser" EK performed in human subjects. 24 pseudophakic patients with bullous keratopathy underwent EK: the femtosecond laser was used to prepare the 100 ìm thick and 8.5 mm diameter donor Descemet endothelial flap. After staining the stromal layer of the donor flap with a liquid ICG solution, the donor flap was inserted in the recipient eye by the use of the Busin injector. Then, the endothelial layer was laser-welded to the recipient eye (10 laser spots around the periphery of the flap), in order to reduce the risk of postoperative dislocation of the transplanted flap. A transplanted flap engraftment was observed in all the treated eyes. The staining procedure used to perform laser welding also enabled to evidence the stromal side of the donor flap, so as the flap was always placed in the right side position. The endothelial cells counts in both the laserwelded flaps and in a control group were in good agreement. The proposed technique is easy to perform and enables the reduction of postoperative endothelial flap dislocations.

  10. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.

    PubMed

    Wang, Yuli; Gunasekara, Dulan B; Reed, Mark I; DiSalvo, Matthew; Bultman, Scott J; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L

    2017-06-01

    The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Assessment of Corneal and Tear Film Parameters in Rheumatoid Arthritis Patients Using Anterior Segment Spectral Domain Optical Coherence Tomography.

    PubMed

    El-Fayoumi, Dina; Youssef, Maha Mohamed; Khafagy, Mohamed Mahmoud; Badr El Dine, Nashwa; Gaber, Wafaa

    2018-01-01

    To study the corneal changes in rheumatoid arthritis (RA) patients in vivo, using spectral domain anterior segment optical coherence tomography (AS-OCT). A case-control study was done on 43 RA patients and 40 controls. The disease activity score (DAS28-ESR) was calculated and all participants had lower tear meniscus, corneal thickness, and epithelial thickness evaluation using AS-OCT. The lower tear meniscus height (LTMH) and the lower tear meniscus area (LTMA) were significantly lower in the RA patients than in controls (p < 0.001). RA patients also had a significantly thinner central corneal thickness (p = 0.02) and their epithelium was found to be thinner in the superotemporal peripheral sector. The LTMH and LTMA are significantly reduced in RA patients, despite the absence of clinical diagnosis of dry eye. RA patients have thinner corneal thickness and epithelial thickness than controls, which did not correlate with either disease duration or activity.

  12. Generation of Corneal Keratocytes from Human Embryonic Stem Cells.

    PubMed

    Hertsenberg, Andrew J; Funderburgh, James L

    2016-01-01

    Human Embryonic Stem Cells (hESC) offer an important resource as a limitless supply of any differentiated cell type of the human body. Keratocytes, cells from the corneal stroma, may have the potential for restoration of vision in cell therapy and biomedical engineering applications, but these specialized cells are not readily expanded in vitro. Here we describe a two-part method to produce keratocytes from the H1 hESC cell line. The hESC cells, maintained and expanded in feeder-free culture medium are first differentiated to neural crest cells using the stromal-derived inducing activity (SDIA) of the PA6 mouse embryonic fibroblast cell line. The resulting neural crest cells are selected by their expression of cell-surface CD271 and subsequently cultured as 3D pellets in a defined differentiation medium to induce a keratocyte phenotype.

  13. Electrogenic transport and K+ ion channel expression by the human endolymphatic sac epithelium

    PubMed Central

    Kim, Sung Huhn; Kim, Bo Gyung; Kim, Jin Young; Roh, Kyung Jin; Suh, Michelle J.; Jung, JinSei; Moon, In Seok; Moon, Sung K.; Choi, Jae Young

    2015-01-01

    The endolymphatic sac (ES) is a cystic organ that is a part of the inner ear and is connected to the cochlea and vestibule. The ES is thought to be involved in inner ear ion homeostasis and fluid volume regulation for the maintenance of hearing and balance function. Many ion channels, transporters, and exchangers have been identified in the ES luminal epithelium, mainly in animal studies, but there has been no functional study investigating ion transport using human ES tissue. We designed the first functional experiments on electrogenic transport in human ES and investigated the contribution of K+ channels in the electrogenic transport, which has been rarely identified, even in animal studies, using electrophysiological/pharmacological and molecular biological methods. As a result, we identified functional and molecular evidence for the essential participation of K+ channels in the electrogenic transport of human ES epithelium. The identified K+ channels involved in the electrogenic transport were KCNN2, KCNJ14, KCNK2, and KCNK6, and the K+ transports via those channels are thought to play an important role in the maintenance of the unique ionic milieu of the inner ear fluid. PMID:26655723

  14. Size effect of rebamipide ophthalmic nanodispersions on its therapeutic efficacy for corneal wound healing.

    PubMed

    Nagai, Noriaki; Ito, Yoshimasa; Okamoto, Norio; Shimomura, Yoshikazu

    2016-10-01

    In a variety of tissues including gastrointestinal mucosa, rebamipide (REB) provides cytoprotection, prevents inflammation, and promotes wound healing. Clinically, REB ophthalmic dispersions are used to treat diabetic keratopathy. In this study, we investigated the optimal particle size of REB to promote corneal wound healing using a model of diabetic keratopathy, the debrided corneal epithelium from Otsuka Long-Evans Tokushima Fatty (OLETF) rats. First, we prepared three dispersions with different REB particle sizes (REB735, REB150, REB45) by treatment with zirconia beads and Bead Smash 12 (a bead mill). The mean particle sizes of the REB735, REB150, REB45 dispersions were approximately 735 nm, 150 nm and 45 nm, respectively. Next, we measured the amounts of REB in the corneal and conjunctival tissues of rats following the instillation of the REB dispersions. The amounts of REB in the corneal and conjunctival tissues following the instillation of REB dispersions was increased by using the mill method, and the amount of REB in rats instilled with the REB150 dispersion was significantly higher than in rats instilled with the REB45 dispersion. Moreover, the corneal wound healing rate for rats instilled with the REB150 dispersion was significantly higher than for rats instilled with the REB735 or REB45 dispersions. In addition, these REB dispersions enhanced corneal epithelial cell growth, resulting an enhancement of corneal wound healing rate. Thus, we found that the ocular drug accumulation and therapeutic effect on corneal wound healing of REB dispersions is enhanced by preparing particles with a size of ca. 150 nm. These findings provide significant information that can be used to design further studies aimed at developing ophthalmic dispersions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cell Homogeneity Indispensable for Regenerative Medicine by Cultured Human Corneal Endothelial Cells.

    PubMed

    Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru

    2016-09-01

    To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.

  16. Spontaneous Corneal Hydrops in a Patient with a Corneal Ulcer

    PubMed Central

    Batawi, Hatim; Kothari, Nikisha; Camp, Andrew; Bernhard, Luis; Karp, Carol L.; Galor, Anat

    2016-01-01

    Purpose We report the case of a 77-year-old man with no history of keratoconus or other ectatic disorders who presented with corneal hydrops in the setting of a corneal ulcer. The risk factors, pathogenesis and treatment options of corneal hydrops are discussed. Method This is an observational case report study. Results A 77-year-old man presented with a 1-day history of severe pain, redness, mucous discharge and photophobia in the right eye. A slit-lamp examination of the right eye showed an area of focal corneal edema and protrusion. Within the area of edema and protrusion, there was an infiltrate with an overlying epithelial defect consistent with an infectious corneal ulcer. The Seidel test showed no leakage, so a clinical diagnosis of corneal hydrops associated with nonperforated corneal ulcer was made. With appropriate antibiotic treatment, the corneal ulcer and hydrops both resolved over a 1-month period. Conclusion Corneal hydrops can occur in the setting of corneal infections. PMID:26889160

  17. Spontaneous Corneal Hydrops in a Patient with a Corneal Ulcer.

    PubMed

    Batawi, Hatim; Kothari, Nikisha; Camp, Andrew; Bernhard, Luis; Karp, Carol L; Galor, Anat

    2016-01-01

    We report the case of a 77-year-old man with no history of keratoconus or other ectatic disorders who presented with corneal hydrops in the setting of a corneal ulcer. The risk factors, pathogenesis and treatment options of corneal hydrops are discussed. This is an observational case report study. A 77-year-old man presented with a 1-day history of severe pain, redness, mucous discharge and photophobia in the right eye. A slit-lamp examination of the right eye showed an area of focal corneal edema and protrusion. Within the area of edema and protrusion, there was an infiltrate with an overlying epithelial defect consistent with an infectious corneal ulcer. The Seidel test showed no leakage, so a clinical diagnosis of corneal hydrops associated with nonperforated corneal ulcer was made. With appropriate antibiotic treatment, the corneal ulcer and hydrops both resolved over a 1-month period. Corneal hydrops can occur in the setting of corneal infections.

  18. Alternatives to eye bank native tissue for corneal stromal replacement.

    PubMed

    Brunette, Isabelle; Roberts, Cynthia J; Vidal, François; Harissi-Dagher, Mona; Lachaine, Jean; Sheardown, Heather; Durr, Georges M; Proulx, Stéphanie; Griffith, May

    2017-07-01

    Corneal blindness is a major cause of blindness in the world and corneal transplantation is the only widely accepted treatment to restore sight in these eyes. However, it is becoming increasingly difficult for eye banks to meet the increasing demand for transplantable tissue, which is in part due to population aging. Donor tissue shortage is therefore a growing concern globally and there is a need for alternatives to human donor corneas. Biosynthetic corneal substitutes offer several significant advantages over native corneas: Large-scale production offers a powerful potential solution to the severe shortage of human donor corneas worldwide; Good manufacturing practices ensure sterility and quality control; Acellular corneal substitutes circumvent immune rejection induced by allogeneic cells; Optical and biomechanical properties of the implants can be adapted to the clinical need; and finally these corneal substitutes could benefit from new advances in biomaterials science, such as surface coating, functionalization and nanoparticles. This review highlights critical contributions from laboratories working on corneal stromal substitutes. It focuses on synthetic inert prostheses (keratoprostheses), acellular scaffolds with and without enhancement of endogenous regeneration, and cell-based replacements. Accent is put on the physical properties and biocompatibility of these biomaterials, on the functional and clinical outcome once transplanted in vivo in animal or human eyes, as well as on the main challenges of corneal stromal replacement. Regulatory and economic aspects are also discussed. All of these perspectives combined highlight the founding principles of the clinical application of corneal stromal replacement, a concept that has now become reality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Contributions of ocular surface components to matrix-metalloproteinases (MMP)-2 and MMP-9 in feline tears following corneal epithelial wounding.

    PubMed

    Petznick, Andrea; Madigan, Michele C; Garrett, Qian; Sweeney, Deborah F; Evans, Margaret D M

    2013-01-01

    This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding. Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs. The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining. Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9

  20. Demonstration of carboxylesterase in cytology samples of human nasal respiratory epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, D.A.; Nikula, K.J.; Avila, K.

    1995-12-01

    The epithelial lining of the nasal airways is a target for responses induced by a variety of toxicant exposures. The high metabolic capacity of this tissue has been suggested to play a role in both protection of the airways through detoxication of certain toxicants, as well as in activation of other compounds to more toxic metabolites. Specifically, nasal carboxylesterase (CE) has been shown to mediate the toxicity of inhaled esters and acrylates by converting them to more toxic acid and alcohol metabolites which can be cytotoxic and/or carcinogenic to the nasal mucosa. Due to difficulties in extrapolating rodent models tomore » human, new paradigms using human cells and tissues are essential to understanding and evaluating the metabolic processes in human nasal epithelium.« less

  1. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  2. Rapid, automated mosaicking of the human corneal subbasal nerve plexus.

    PubMed

    Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A

    2017-11-27

    Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.

  3. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential.

    PubMed

    Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Hamming, Ole J; Hartmann, Rune; Rodriguez, Regulo; Geffers, Robert; Fouchier, Ron A M; Drosten, Christian; Müller, Marcel A; Dijkman, Ronald; Thiel, Volker

    2013-02-19

    The recent emergence of a novel human coronavirus (HCoV-EMC) in the Middle East raised considerable concerns, as it is associated with severe acute pneumonia, renal failure, and fatal outcome and thus resembles the clinical presentation of severe acute respiratory syndrome (SARS) observed in 2002 and 2003. Like SARS-CoV, HCoV-EMC is of zoonotic origin and closely related to bat coronaviruses. The human airway epithelium (HAE) represents the entry point and primary target tissue for respiratory viruses and is highly relevant for assessing the zoonotic potential of emerging respiratory viruses, such as HCoV-EMC. Here, we show that pseudostratified HAE cultures derived from different donors are highly permissive to HCoV-EMC infection, and by using reverse transcription (RT)-PCR and RNAseq data, we experimentally determined the identity of seven HCoV-EMC subgenomic mRNAs. Although the HAE cells were readily responsive to type I and type III interferon (IFN), we observed neither a pronounced inflammatory cytokine nor any detectable IFN responses following HCoV-EMC, SARS-CoV, or HCoV-229E infection, suggesting that innate immune evasion mechanisms and putative IFN antagonists of HCoV-EMC are operational in the new host. Importantly, however, we demonstrate that both type I and type III IFN can efficiently reduce HCoV-EMC replication in HAE cultures, providing a possible treatment option in cases of suspected HCoV-EMC infection. IMPORTANCE A novel human coronavirus, HCoV-EMC, has recently been described to be associated with severe respiratory tract infection and fatalities, similar to severe acute respiratory syndrome (SARS) observed during the 2002-2003 epidemic. Closely related coronaviruses replicate in bats, suggesting that, like SARS-CoV, HCoV-EMC is of zoonotic origin. Since the animal reservoir and circumstances of zoonotic transmission are yet elusive, it is critically important to assess potential species barriers of HCoV-EMC infection. An important first

  4. Mitigating Scarring and Inflammation during Corneal Wound Healing using Nanofiber-Hydrogel Scaffolds

    NASA Astrophysics Data System (ADS)

    Fu, Amy

    Due to the universal lack of donor tissue, there has been emerging interest in engineering materials to stimulate living cells to restore the features and functions of injured organs. We are particularly interested in developing materials for corneal use, where the necessity to maintain the tissue's transparency presents an additional challenge. Every year, there are 1.5 -- 2 million new cases of monocular blindness due to irregular healing of corneal injuries, dwarfing the approximately 150,000 corneal transplants performed. The large gap between the need and availability of cornea transplantation motivates us to develop a wound-healing scaffold that can prevent corneal blindness. To develop such a scaffold, it is necessary to regulate the cells responsible for repairing the damaged cornea, namely myofibroblasts, which are responsible for the disordered and non-refractive index matched scar that leads to corneal blindness. Using in vitro assays, we identified that protein nanofibers of certain orientation can promote cell migration and modulate the myofibroblast phenotype. The nanofibers are also transparent, easy to handle and non-cytotoxic. To adhere the nanofibers to a wound bed, we examined the use of two different in situ forming hydrogels: an artificial extracellular matrix protein (aECM)-based gel and a photo-crosslinkable heparin-based gel. Both hydrogels can be formed within minutes, are transparent upon gelation and are easily tunable. Using an in vivo mouse model for epithelial defects, we show that our corneal scaffolds (nanofibers together with hydrogel) are well-tolerated (no inflammatory response or turbidity) and support epithelium regrowth. We developed an ex vivo corneal tissue culture model where corneas that are wounded and treated with our scaffold can be cultured while retaining their ability to repair wounds for up to 21 days. Using this technique, we found that the aECM-based treatment induced a more favorable wound response than the

  5. Optimized human platelet lysate as novel basis for a serum-, xeno-, and additive-free corneal endothelial cell and tissue culture.

    PubMed

    Thieme, Daniel; Reuland, Lynn; Lindl, Toni; Kruse, Friedrich; Fuchsluger, Thomas

    2018-02-01

    The expansion of donor-derived corneal endothelial cells (ECs) is a promising approach for regenerative therapies in corneal diseases. To achieve the best Good Manufacturing Practice standard the entire cultivation process should be devoid of nonhuman components. However, so far, there is no suitable xeno-free protocol for clinical applications. We therefore introduce a processed variant of a platelet lysate for the use in corneal cell and tissue culture based on a Good Manufacturing Practice-grade thrombocyte concentrate. This processed human platelet lysate (phPL), free of any animal components and of anticoagulants such as heparin with a physiological ionic composition, was used to cultivate corneal ECs in vitro and ex vivo in comparison to standard cultivation with fetal calf serum (FCS). Human donor corneas were cut in quarters while 2 quarters of each cornea were incubated with the respective medium supplement. Three fields of view per quarter were taken into account for the analysis. Evaluation of phPL as a medium supplement in cell culture of immortalized EC showed a superior viability compared with FCS control with reduced cell proliferation. Furthermore, the viability during the expansion of primary cells is significantly (3-fold ±0.5) increased with phPL compared with FCS standard medium. Quartering donor corneas was traumatic for the endothelium and therefore resulted in increased EC loss. Interestingly, however, cultivation of the quartered pieces for 2 weeks in 0.1-mg/ml pHPL in Biochrome I showed a 21 (±10) % EC loss compared with 67 (±12) % EC loss when cultivated in 2% FCS in Biochrome I. The cell culture protocol with pHPL as FCS replacement seems to be superior to the standard FCS protocols with respect to EC survival. It offers a xeno-free and physiological environment for corneal endothelial cells. This alternative cultivation protocol could facilitate the use of EC for human corneal cell therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Corneal nerve regeneration. Correlation between morphology and restoration of sensitivity.

    PubMed

    de Leeuw, A M; Chan, K Y

    1989-09-01

    Corneal nerve regeneration was determined in albino rabbits after deepithelialization of the cornea using heptanol. Regeneration was monitored up to 10 weeks by measuring corneal tactile sensitivity using an esthesiometer and by examining stromal and intraepithelial nerve patterns following gold chloride impregnation and acetylcholinesterase staining. Tactile sensitivity was much reduced, possibly absent, up to 2 weeks after wounding. From 2.5-4 weeks, sensitivity recovered rapidly to 60% of prewounding levels and remained unchanged thereafter. In control corneas, a distinct orientation of the basoepithelial leashes towards the nasal-most limbus was observed in the central two-thirds of the cornea. Three days after wounding, neurites that were oriented radially towards the wound center extended into the periphery of the wound area from just beyond the wound margin. At 1 week, regenerating axons were present as single neurites and in the form of modified leashes, mainly at the periphery of the wound area but also more towards the center. At 3 weeks, neurites, regenerated leashes and networks of terminals with terminal endings were found throughout the regenerated epithelium. Regional changes in the orientation of the regenerated leashes were observed also. No further change in the intraepithelial nerve pattern was detectable thereafter up to 10 weeks after wounding. It was concluded that partial restoration of tactile sensitivity following deepithelialization of the cornea is a function of the establishment of a near-normal nerve pattern in the regenerated epithelium and is correlated with the subnormal neural density observed in a previous study.

  7. Penetrating and Intrastromal Corneal Arcuate Incisions in Rabbit and Human Cadaver Eyes: Manual Diamond Blade and Femtosecond Laser-Created Incisions.

    PubMed

    Gray, Brad; Binder, Perry S; Huang, Ling C; Hill, Jim; Salvador-Silva, Mercedes; Gwon, Arlene

    2016-07-01

    To compare morphologic differences between freehand diamond or femtosecond laser-assisted penetrating and intrastromal arcuate incisions. Freehand diamond blade, corneal arcuate incisions (180° apart, 60° arc lengths) and 150 kHz femtosecond laser (80% scheimpflug pachymetry depth corneal thickness) arcuate incisions were performed in rabbits. Intrastromal arcuate incisions (100 μm above Descemet's membrane, 100 μm below epithelium) were performed in rabbit corneas (energy 1.2 μJ, spot line separation 3 × 3 μm, 90° side cut angle). Eyes were examined by slit lamp and light microscopy up to 47 days post-procedure. Freehand diamond blade penetrating incisions, and femtosecond laser penetrating and intrastromal arcuate incisions (energy 1.8 μJ, spot line separation 2 × 2 μm) were performed in cadaver eyes. Optical coherence tomography was performed immediately after surgery and the corneas were fixed for light scanning and transmission electron microscopy. The rabbit model showed anterior stromal inflammation with epithelial hyperplasia in penetrating blade and laser penetrating wounds. The laser intrastromal and penetrating incisions showed localized constriction of the stromal layers of the cornea near the wound. In cadaver eyes, penetrating wound morphology was similar between blade and laser whereas intrastromal wounds did not affect the cornea above or below incisions. Penetrating femtosecond laser arcuate incisions have more predictable and controlled outcomes shown by less post-operative scarring than incisions performed with a diamond blade. Intrastromal incisions do not affect uncut corneal layers as demonstrated by histopathology. The femtosecond laser has significant advantages in its ability to make intrastromal incisions which are not achievable by traditional freehand or mechanical diamond blades.

  8. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay

    PubMed Central

    Yilmaz, Özlem

    2009-01-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues. PMID:18832296

  9. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay.

    PubMed

    Yilmaz, Ozlem

    2008-10-01

    The microbiota of the human oral mucosa consists of a myriad of bacterial species that normally exist in commensal harmony with the host. Porphyromonas gingivalis, an aetiological agent in severe forms of periodontitis (a chronic inflammatory disease), is a prominent component of the oral microbiome and a successful colonizer of the oral epithelium. This Gram-negative anaerobe can also exist within the host epithelium without the existence of overt disease. Gingival epithelial cells, the outer lining of the gingival mucosa, which function as an important part of the innate immune system, are among the first host cells colonized by P. gingivalis. This review describes recent studies implicating the co-existence and intracellular adaptation of the organism in these target host cells. Specifically, recent findings on the putative mechanisms of persistence, intercellular dissemination and opportunism are highlighted. These new findings may also represent an original and valuable model for mechanistic characterization of other successful host-adapted, self-limiting, persistent intracellular bacteria in human epithelial tissues.

  10. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans.

    PubMed

    He, Zhiguo; Campolmi, Nelly; Gain, Philippe; Ha Thi, Binh Minh; Dumollard, Jean-Marc; Duband, Sébastien; Peoc'h, Michel; Piselli, Simone; Garraud, Olivier; Thuret, Gilles

    2012-11-01

    The control of corneal transparency depends on the integrity of its endothelial monolayer, which is considered nonregenerative in adult humans. In pathological situations, endothelial cell (EC) loss, not offset by mitosis, can lead to irreversible corneal edema and blindness. However, the hypothesis of a slow, clinically insufficient regeneration starting from the corneal periphery remains debatable. The authors have re-evaluated the microanatomy of the endothelium in order to identify structures likely to support this homeostasis model. Whole endothelia of 88 human corneas (not stored, and stored in organ culture) with mean donor age of 80 ± 12 years were analyzed using an original flat-mounting technique. In 61% of corneas, cells located at the extreme periphery (last 200 μm of the endothelium) were organized in small clusters with two to three cell layers around Hassall-Henle bodies. In 68% of corneas, peripheral ECs formed centripetal rows 830 ± 295 μm long, with Descemet membrane furrows visible by scanning electron microscopy. EC density was significantly higher in zones with cell rows. When immunostained, ECs in the extreme periphery exhibited lesser differentiation (ZO-1, Actin, Na/K ATPase, CoxIV) than ECs in the center of the cornea but preferentially expressed stem cell markers (Nestin, Telomerase, and occasionally breast cancer resistance protein) and, in rare cases, the proliferation marker Ki67. Stored corneas had fewer cell clusters but more Ki67-positive ECs. We identified a novel anatomic organization in the periphery of the human corneal endothelium, suggesting a continuous slow centripetal migration, throughout life, of ECs from specific niches. Copyright © 2012 AlphaMed Press.

  11. Highly concentrated collagen solutions leading to transparent scaffolds of controlled three-dimensional organizations for corneal epithelial cell colonization.

    PubMed

    Tidu, Aurélien; Ghoubay-Benallaoua, Djida; Teulon, Claire; Asnacios, Sophie; Grieve, Kate; Portier, François; Schanne-Klein, Marie-Claire; Borderie, Vincent; Mosser, Gervaise

    2018-05-29

    This study aimed at controlling both the organization and the transparency of dense collagen scaffolds making use of the lyotropic mesogen properties of collagen. Cholesteric or plywood-like liquid crystal phases were achieved using mixtures of acetic and hydrochloric acids as solvents. The critical pH at which the switch between the two phases occurred was around pH = 3. The use of the two acids led to fibrillated collagen I scaffolds, whose visual aspect ranged from opaque to transparent. Rheological investigations showed that viscoelastic properties of the plywood-like solutions were optimized for molding due to faster recovery. They also confirmed the correlation between the elastic modulus and the diameter of collagen fibrils obtained after fibrillogenesis under ammonia vapor. Human corneal epithelial cells, grown from donor limbal explants, were cultured both on transparent plywood-like matrices and on human amniotic membranes for 14 days. The development of corneal epithelium and the preservation of epithelial stem cells were checked by optical microscopy, colony formation assay, immuno-fluorescence and quantitative polymerase chain reaction. A higher level of amplification of limbal stem cells was obtained with collagen matrices compared with amniotic membranes, showing the high biocompatibility of our scaffolds. We therefore suggest that collagen solutions presenting both plywood-like organization and transparency might be of interest for biomedical applications in ophthalmology.

  12. In vitro effects of three blood derivatives on human corneal epithelial cells.

    PubMed

    Freire, Vanesa; Andollo, Noelia; Etxebarria, Jaime; Durán, Juan A; Morales, María-Celia

    2012-08-15

    We compared the effects of three blood derivatives, autologous serum (AS), platelet-rich plasma (PRP), and serum derived from plasma rich in growth factors (PRGF), on a human corneal epithelial (HCE) cell line to evaluate their potential as an effective treatment for corneal epithelial disorders. The concentrations of epidermal growth factor (EGF), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), and fibronectin were quantified by ELISA. The proliferation and viability of HCE cells were measured by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay. Cell morphology was assessed by phase-contrast microscopy. The patterns of expression of several connexin, involucrin, and integrin α6 genes were analyzed by real-time RT-PCR. We found significantly higher levels of EGF in PRGF compared to AS and PRP. However, AS and PRGF induced robust proliferation of HCE cells. In addition, PRGF cultured cells grew as heterogeneous colonies, exhibiting differentiated and non-differentiated cell phenotypes, whereas AS- and PRP-treated cultures exhibited quite homogeneous colonies. Finally, PRGF upregulated the expression of several genes associated with communication and cell differentiation, in comparison to AS or PRP. PRGF promotes biological processes required for corneal epithelialization, such as proliferation and differentiation. Since PRGF effects are similar to those associated with routinely used blood derivatives, the present findings warrant further research on PRGF as a novel alternative treatment for ocular surface diseases.

  13. Centennial review of corneal transplantation.

    PubMed

    Moffatt, S Louise; Cartwright, Victoria A; Stumpf, Thomas H

    2005-12-01

    Abstract One hundred years ago, on 7 December 1905, Dr Eduard Zirm performed the world's first successful human corneal transplant. This significant milestone was achieved only after many decades of unsuccessful trial and error; however, it did not lead to relatively 'routine' keratoplasty success for several more decades. The idea of replacing an opaque cornea had been suggested for centuries, and had stimulated theoretical approaches to the problem by many esteemed physicians throughout history. However, little practical progress was made in the ultimate realization of the dream until the 19th century when pioneering surgeons pursued extensive studies in relation to both animal and human 'keratoplasty'. Clinical progress and scientific insight developed slowly, and it was ultimately due to parallel advances in medicine such as anaesthesia and antisepsis that Zirm's success was finally achieved. Key concepts were enshrined such as the use of fresh tissue from the same species, careful placement and handling of tissue, and the development of specialized instrumentation such as the circular trephine. In the latter half of the 20th century, many 'masters' of corneal surgery evolved significant refinements in technique and instrumentation with the development of corticosteroids, antibiotics, surgical microscopes, improved trephines, viscoelastics and suture materials, that enable this delicate procedure to be routinely performed with the prospect of success. There are still limitations to corneal transplantation, and corneal allograft rejection still poses the greatest challenge to the modern corneal surgeon. In the foreseeable future it may be in the laboratory, rather than the theatre, that further milestones will be achieved. This review aims to highlight the significant milestones in the rich history of corneal transplantation, and to pay tribute to the many inspired and dedicated individuals involved in the development of keratoplasty to a point where the

  14. Cytotoxicity of lidocaine to human corneal endothelial cells in vitro.

    PubMed

    Yu, Hao-Ze; Li, Yi-Han; Wang, Rui-Xin; Zhou, Xin; Yu, Miao-Miao; Ge, Yuan; Zhao, Jun; Fan, Ting-Jun

    2014-04-01

    Lidocaine has been reported to induce apoptosis on rabbit corneal endothelial cells. However, the apoptotic effect and exact mechanism involved in cytotoxicity of lidocaine are not well-established in human corneal endothelial (HCE) cells. In this study, we investigated the apoptosis-inducing effect of lidocaine on HCE cells in vitro. After HCE cells were treated with lidocaine at concentrations of 0.15625-10.0 g/l, the morphology and ultrastructure of the cells were observed by inverted light microscope and transmission electron microscope (TEM). Cell viability was measured by MTT assay, and the apoptotic ratio was evaluated with flow cytometry and fluorescent microscopic counting after FITC-Annexin V/PI and AO/EB staining. DNA fragmentation was detected by electrophoresis, and the activation of caspases was evaluated by ELISA. In addition, changes in mitochondrial membrane potential were determined by JC-1 staining. Results suggest that lidocaine above 1.25 g/l reduced cellular viability and triggered apoptosis in HCE cells in a time- and dose-dependent manner. Diminishment of ΔΨm and the activation of caspases indicate that lidocaine-induced apoptosis was caspase dependent and may be related to mitochondrial pathway. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  15. Visualization of ex vivo human ciliated epithelium and induced flow using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Gamm, Uta A.; Yao, Xinwen; Arteaga-Solis, Emilio; Emala, Charles W.; Choma, Michael A.; Hendon, Christine P.

    2017-04-01

    The ciliated epithelium is important to the human respiratory system because it clears mucus that contains harmful microorganisms and particulate matter. We report the ex vivo visualization of human trachea/bronchi ciliated epithelium and induced flow characterized by using spectral-domain optical coherence tomography (SD-OCT). A total number of 17 samples from 7 patients were imaged. Samples were obtained from Columbia University Department of Anesthesiology's tissue bank. After excision, the samples were placed in Gibco Medium 199 solution with oxygen at 4°C until imaging. The samples were maintained at 36.7°C throughout the experiment. The imaging protocol included obtaining 3D volumes and 200 consecutive B-scans parallel to the head-to-feet direction (superior-inferior axis) of the airway, using Thorlabs Telesto system at 1300 nm at 28 kHz A-line rate and a custom built high resolution SDOCT system at 800nm at 32 kHz A-line rate. After imaging, samples were processed with H and E histology. Speckle variance of the time resolved datasets demonstrate significant contrast at the ciliated epithelium sites. Flow images were also obtained after injecting 10μm polyester beads into the solution, which shows beads traveling trajectories near the ciliated epithelium areas. In contrary, flow images taken in the orthogonal plane show no beads traveling trajectories. This observation is in line with our expectation that cilia drive flow predominantly along the superior-inferior axis. We also observed the protective function of the mucus, shielding the epithelium from the invasion of foreign objects such as microspheres. Further studies will be focused on the cilia's physiological response to environmental changes such as drug administration and physical injury.

  16. Normal and keratoconic corneal epithelial thickness mapping using Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Yan; Tan, Ou; Huang, David

    2011-03-01

    The detection of early-stage keratoconus is one of the most important safety issues in screening candidates for corneal refractive surgeries. We propose to use epithelial thickness maps to assist the diagnosis of keratoconus. The corneal epithelial thickness in normal and keratoconic eyes was mapped with optical coherence tomography (OCT). A Fourier-domain OCT system capable of acquiring 26,000 axial-scans per second was used. It has an axial resolution of 5μm in cornea. A pachymetry scan pattern (8 radials, 1024 axial-scans each, 6mm diameter, repeat 3 times) centered at the pupil center was used to image the cornea. The 3 repeated radial scans on each meridian were registered and averaged. Then the anterior corneal, posterior corneal and epithelial boundaries were segmented automatically with a computer algorithm by increased signal intensity at corresponding boundaries. The epithelial thickness map was generated by interpolating epithelial thickness profile calculated from each meridian. Normal and keratoconic eyes (24 eyes each) were scanned 3 times. The central epithelial thickness in normal eyes was thicker than those of keratoconic eyes (mean difference 2.1 μm, t-test p=0.05). The epithelium was thinner superiorly than inferiorly in normal eyes (mean difference -1.4+/-1.1μm, p<0.001) while thicker superiorly than inferiorly in keratoconic eyes (2.0+/-4.1 μm, p=0.02).

  17. Phototoxic Effect of Topical Fluoroquinolones Administered Before Corneal Crosslinking in a Murine Model.

    PubMed

    Reviglio, Victor E; Osaba, Matias; Sambuelli, Gabriela; Kuo, Irene C

    2017-03-01

    Corneal crosslinking by UV light (UV-CXL) has become a popular treatment for keratoconus and corneal ectasia. Fluoroquinolones (FQs), commonly administered topically before UV-CXL, are known to be phototoxic to the skin and lens. The purpose of this study was to investigate phototoxic effects of topical FQ treatment on murine corneas before UV-CXL, in which the corneal epithelium was kept intact. Murine corneas were treated with various antibiotics with or without riboflavin before UV-CXL. At 24 h, the animals were sacrificed, and the corneas were analyzed for histologic evidence of inflammation and apoptosis and for expression of apoptosis markers BAX and caspases 3 and 9 and for expression of matrix metalloproteinase 9 (MMP-9). Spectrofluorometric analysis was performed. Corneas treated with topical FQ with or without riboflavin before UV-CXL showed mild corneal stromal inflammation, apoptosis by both terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased expression of BAX gene and caspases 3 and 9 by densitometric analysis. Untreated corneas, corneas treated with azithromycin before UV-CXL, and corneas undergoing UV-CXL without any antibiotic or riboflavin pretreatment showed normal histology, no staining for apoptosis, and no increased production of apoptosis markers by polymerase chain reaction. The phototoxic effects of FQs on the cornea may lead surgeons to consider another antibiotic class for prophylaxis against infectious keratitis in UV-CXL. These effects, along with the known cytotoxic effects of FQs independent of UV radiation, may contribute to some of the complications of corneal UV-CXL. Dosage studies may be warranted.

  18. Anterior Corneal, Posterior Corneal, and Lenticular Contributions to Ocular Aberrations.

    PubMed

    Atchison, David A; Suheimat, Marwan; Mathur, Ankit; Lister, Lucas J; Rozema, Jos

    2016-10-01

    To determine the corneal surfaces and lens contributions to ocular aberrations. There were 61 healthy participants with ages ranging from 20 to 55 years and refractions -8.25 diopters (D) to +3.25 D. Anterior and posterior corneal topographies were obtained with an Oculus Pentacam, and ocular aberrations were obtained with an iTrace aberrometer. Raytracing through models of corneas provided total corneal and surface component aberrations for 5-mm-diameter pupils. Lenticular contributions were given as differences between ocular and corneal aberrations. Theoretical raytracing investigated influence of object distance on aberrations. Apart from defocus, the highest aberration coefficients were horizontal astigmatism, horizontal coma, and spherical aberration. Most correlations between lenticular and ocular parameters were positive and significant, with compensation of total corneal aberrations by lenticular aberrations for 5/12 coefficients. Anterior corneal aberrations were approximately three times higher than posterior corneal aberrations and usually had opposite signs. Corneal topographic centers were displaced from aberrometer pupil centers by 0.32 ± 0.19 mm nasally and 0.02 ± 0.16 mm inferiorly; disregarding corneal decentration relative to pupil center was significant for oblique astigmatism, horizontal coma, and horizontal trefoil. An object at infinity, rather than at the image in the anterior cornea, gave incorrect aberration estimates of the posterior cornea. Corneal and lenticular aberration magnitudes are similar, and aberrations of the anterior corneal surface are approximately three times those of the posterior surface. Corneal decentration relative to pupil center has significant effects on oblique astigmatism, horizontal coma, and horizontal trefoil. When estimating component aberrations, it is important to use correct object/image conjugates and heights at surfaces.

  19. Interferometer for measuring dynamic corneal topography

    NASA Astrophysics Data System (ADS)

    Micali, Jason Daniel

    The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an

  20. Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium.

    PubMed

    Fatima, A; Iftekhar, G; Sangwan, V S; Vemuganti, G K

    2008-09-01

    To report histopathologic changes of the ocular surface pannus in patients with severe limbal stem cell deficiency (LSCD). Corneal and conjunctival pannus tissues from 29 patients undergoing ocular reconstruction with cultured limbal cell transplantation were included. The medical records of these patients were reviewed for demographics, aetiologic diagnosis, type of injury, interval between the initial insult and excision of pannus, and medical history involving human amniotic membrane (HAM) or limbal transplantation. The paraffin-embedded tissues were reviewed for epithelial changes, type-degree of fibrosis, degenerative changes, vascular changes, conjunctivalization of corneal surface, and evidence of residual HAM. We attempted a clinicopathologic correlation to understand the pathogenesis of pannus formation in LSCD. The 29 tissues were from 29 eyes of patients with primary aetiology of chemical burn in 89.6% (undetermined in 10.4%) of cases. The pannus showed epithelial hyperplasia in 62%, active fibrosis in 66%, severe inflammation in 21%, giant cell reaction in 28%, and stromal calcification in 14% cases. Goblet cells were seen over the cornea in 64% cases; their absence was associated with squamous metaplasia of the conjunctiva and with long duration of insult. Evidence of residual HAM was noted in 42% cases. The commonest cause of severe LSCD is alkali-induced injury. Goblet cells over the cornea were seen in 60% of cases. HAM used for ocular surface reconstruction could persist for long periods within the corneal pannus, thus raising the need for further studies with long-term follow-up.

  1. Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium

    PubMed Central

    Peng, Shaomin; Rao, Veena S.; Adelman, Ron A.

    2011-01-01

    Purpose. The retinal pigment epithelium (RPE) separates photoreceptors from choroidal capillaries, but in age-related macular degeneration (AMD) capillaries breach the RPE barrier. Little is known about human RPE tight junctions or the effects of serum on the retinal side of the RPE. Methods. Cultured human fetal RPE (hfRPE) was assessed by the transepithelial electrical resistance (TER) and the transepithelial diffusion of methylated polyethylene glycol (mPEG). Claudins and occludin were monitored by quantitative RT-PCR, immunoblotting, and immunofluorescence. Results. Similar to freshly isolated hfRPE, claudin-19 mRNA was 25 times more abundant than claudin-3. Other detectable claudin mRNAs were found in even lesser amounts, as little as 3000 times less abundant than claudin-19. Claudin-1 and claudin-10b were detected only in subpopulations of cells, whereas others were undetectable. Knockdown of claudin-19 by small interfering RNA (siRNA) eliminated the TER. siRNAs for other claudins had minimal effects. Serum affected tight junctions only when presented to the retinal side of the RPE. The TER increased 2 times, and the conductance of K+ relative to Na+ decreased without affecting the permeability of mPEG. These effects correlated with increased steady-state levels of occludin. Conclusions. Fetal human RPE is a claudin-19–dominant epithelium that has regional variations in claudin-expression. Apical serum decreases RPE permeability, which might be a defense mechanism that would retard the spread of edema due to AMD. PMID:21071746

  2. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis

    PubMed Central

    Soler, Vincent José; Tran-Viet, Khanh-Nhat; Galiacy, Stéphane D; Limviphuvadh, Vachiranee; Klemm, Thomas Patrick; St Germain, Elizabeth; Fournié, Pierre R; Guillaud, Céline; Maurer-Stroh, Sebastian; Hawthorne, Felicia; Suarez, Cyrielle; Kantelip, Bernadette; Afshari, Natalie A; Creveaux, Isabelle; Luo, Xiaoyan; Meng, Weihua; Calvas, Patrick; Cassagne, Myriam; Arné, Jean-Louis; Rozen, Steven G; Malecaze, François; Young, Terri L

    2014-01-01

    Background Corneal intraepithelial dyskeratosis is an extremely rare condition. The classical form, affecting Native American Haliwa-Saponi tribe members, is called hereditary benign intraepithelial dyskeratosis (HBID). Herein, we present a new form of corneal intraepithelial dyskeratosis for which we identified the causative gene by using deep sequencing technology. Methods and results A seven member Caucasian French family with two corneal intraepithelial dyskeratosis affected individuals (6-year-old proband and his mother) was ascertained. The proband presented with bilateral complete corneal opacification and dyskeratosis. Palmoplantar hyperkeratosis and laryngeal dyskeratosis were associated with the phenotype. Histopathology studies of cornea and vocal cord biopsies showed dyskeratotic keratinisation. Quantitative PCR ruled out 4q35 duplication, classically described in HBID cases. Next generation sequencing with mean coverage of 50× using the Illumina Hi Seq and whole exome capture processing was performed. Sequence reads were aligned, and screened for single nucleotide variants and insertion/deletion calls. In-house pipeline filtering analyses and comparisons with available databases were performed. A novel missense mutation M77T was discovered for the gene NLRP1 which maps to chromosome 17p13.2. This was a de novo mutation in the proband’s mother, following segregation in the family, and not found in 738 control DNA samples. NLRP1 expression was determined in adult corneal epithelium. The amino acid change was found to destabilise significantly the protein structure. Conclusions We describe a new corneal intraepithelial dyskeratosis and how we identified its causative gene. The NLRP1 gene product is implicated in inflammation, autoimmune disorders, and caspase mediated apoptosis. NLRP1 polymorphisms are associated with various diseases. PMID:23349227

  3. [Simulation of corneal epithelial injuries by mechanical and corrosive damage : Influence of fetal bovine serum and dexpanthenol on epithelial regeneration in a cell culture model].

    PubMed

    Hahne, M; Reichl, S

    2010-06-01

    The present study describes simulation of corneal epithelial injury and its regeneration using an in-vitro model of immortalized human corneal epithelial cells (HCE-T) growing as monolayer cultures. The epithelial model was damaged using defined strengths by mechanical injury or partial damage using chemical detergents (SDS and acidified medium) and subsequently the epithelium was further cultivated using serum-containing and serum-free medium supplemented with varying concentrations of calcium pantothenat. After mechanical injury wound healing was evaluated using a photomicroscope over a period of up to 48 h whereas after chemical injury a cell viability assay was used to detect the course of ATP levels in the cell layers as an indicator for the metabolic activity. Depending on the kind of injury pantothenat showed a regeneration enhancing effect in the concentration range from 0.001% to 0.01%. However, a concentration of 0.1% pantothenat appeared to be regeneration inhibiting. The combination of pantothenat and serum was more beneficial for wound healing than pantothenat alone, whereas serum partly levelled the effect of pantothenat. The described model allowed simulation of corneal epithelial injury and its regeneration, whereby the influence of the serum content and the kind of injury could be determined.

  4. Expression of Inwardly Rectifying Potassium Channel Subunits in Native Human Retinal Pigment Epithelium

    PubMed Central

    Yang, Dongli; Zhang, Xiaoming; Hughes, Bret A.

    2008-01-01

    Previously, we demonstrated that the inwardly rectifying K+ (Kir) channel subunit Kir7.1 is highly expressed in bovine and human retinal pigment epithelium (RPE). The purpose of this study was to determine whether any of the 14 other members of the Kir gene family are expressed in native human RPE. Conventional reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that in addition to Kir7.1, 7 other Kir channel subunits (Kir1.1, Kir2.1, Kir2.2, Kir3.1, Kir3.4, Kir4.2 and Kir6.1) are expressed in the RPE, whereas in neural retina, all 14 of the Kir channel subunits examined are expressed. The identities of RT-PCR products in the RPE were confirmed by DNA sequencing. Real-time RT-PCR analysis showed, however, that transcripts of these channels are significantly less abundant than Kir7.1 in the RPE. Western blot analysis of the Kir channel subunits detected in the RPE by RT-PCR revealed the expression of Kir2.1, Kir3.1, Kir3.4, Kir4.2, Kir6.1, and possibly Kir2.2, but not Kir1.1, in both human RPE and neural retina. Our results indicate that human RPE expresses at least 5 other Kir channel subtypes in addition to Kir7.1, suggesting that multiple members of the Kir channel family may function in this epithelium. PMID:18653180

  5. The human TLR4 variant D299G mediates inflammation-associated cancer progression in the intestinal epithelium.

    PubMed

    Cario, Elke

    2013-07-01

    Homeostatic TLR4 signaling protects the intestinal epithelium in health. Evidence suggests that perturbed TLR4 signaling is linked to carcinogenesis. We have recently demonstrated that the common human TLR4 variant D299G exerts pro-inflammatory effects and drives malignant tumor progression in human colon cancer.

  6. The hierarchical response of human corneal collagen to load.

    PubMed

    Bell, J S; Hayes, S; Whitford, C; Sanchez-Weatherby, J; Shebanova, O; Vergari, C; Winlove, C P; Terrill, N; Sorensen, T; Elsheikh, A; Meek, K M

    2018-01-01

    Fibrillar collagen in the human cornea is integral to its function as a transparent lens of precise curvature, and its arrangement is now well-characterised in the literature. While there has been considerable effort to incorporate fibrillar architecture into mechanical models of the cornea, the mechanical response of corneal collagen to small applied loads is not well understood. In this study the fibrillar and molecular response to tensile load was quantified using small and wide angle X-ray scattering (SAXS/WAXS), and digital image correlation (DIC) photography was used to calculate the local strain field that gave rise to the hierarchical changes. A molecular scattering model was used to calculate the tropocollagen tilt relative to the fibril axis and changes associated with applied strain. Changes were measured in the D-period, molecular tilt and the orientation and spacing of the fibrillar and molecular networks. These measurements were summarised into hierarchical deformation mechanisms, which were found to contribute at varying strains. The change in molecular tilt is indicative of a sub-fibrillar "spring-like" deformation mechanism, which was found to account for most of the applied strain under physiological and near-physiological loads. This deformation mechanism may play an important functional role in tissues rich in fibrils of high helical tilt, such as skin and cartilage. Collagen is the primary mediator of soft tissue biomechanics, and variations in its hierarchical structure convey the varying amounts of structural support necessary for organs to function normally. Here we have examined the structural response of corneal collagen to tensile load using X-rays to probe hierarchies ranging from molecular to fibrillar. We found a previously unreported deformation mechanism whereby molecules, which are helically arranged relative to the axis of their fibril, change in tilt akin to the manner in which a spring stretches. This "spring-like" mechanism

  7. The human TLR4 variant D299G mediates inflammation-associated cancer progression in the intestinal epithelium

    PubMed Central

    2013-01-01

    Homeostatic TLR4 signaling protects the intestinal epithelium in health. Evidence suggests that perturbed TLR4 signaling is linked to carcinogenesis. We have recently demonstrated that the common human TLR4 variant D299G exerts pro-inflammatory effects and drives malignant tumor progression in human colon cancer. PMID:24073372

  8. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells.

    PubMed

    Karla, Pradeep K; Pal, Dananjay; Mitra, Ashim K

    2007-01-01

    Multidrug resistance associated protein (MRP) is a major family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify if the role of efflux transporters. MRP-2 is a major homologue of MRP family and found to express on the apical side of cell membrane. Cultured Rabbit Corneal Epithelial Cells (rCEC) were selected as an in vitro model for corneal epithelium. [14C]-erythromycin which is a proven substrate for MRP-2 was selected as a model drug for functional expression studies. MK-571, a known specific and potent inhibitor for MRP-2 was added to inhibit MRP mediated efflux. Membrane fraction of rCEC was used for western blot analysis. Polarized transport of [14C]-erythromycin was observed in rCEC and transport from B-->A was significantly high than from A-->B. Permeability's increased significantly from A-->B in the presence of MK-571 and ketoconozole. Uptake of [14C]-erythromycin in the presence of MK-571 was significantly higher than control in rCEC. RT-PCR analysis indicated a unique and distinct band at approximately 498 bp corresponding to MRP-2 in rCEC and MDCK11-MRP-2 cells. Immunoprecipitation followed by Western Blot analysis indicated a specific band at approximately 190 kDa in membrane fraction of rCEC and MDCK11-MRP-2 cells. For the first time we have demonstrated high expression of MRP-2 in rabbit corneal epithelium and its functional activity causing drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis further confirms the result.

  9. Eye drops preservative as the cause of corneal band keratopathy in long-term pilocarpine hydrochloride treatment.

    PubMed

    Pavicić-Astalos, Jasna; Lacmanović-Loncar, Valentina; Petric-Vicković, Ivanka; Sarić, Dean; Mandić, Zdravko; Csik, Tigrena; Susić, Nikola

    2012-03-01

    The aim is to present a patient with severe bilateral corneal complications after long-term antiglaucoma treatment with 1% pilocarpine hydrochloride (Pilokarpin, Pliva, Zagreb, Croatia) and its management. A patient with narrow-angle glaucoma treated with 1% topical pilocarpine hydrochloride eye drops for the last twenty years complained of impaired vision, intermittent visual haloes and eye redness. Ophthalmologic examination showed bilateral band keratopathy, peripheral laser iridotomy, medicamentous myosis, brown nuclear cataract, and synchysis scintillans of his right eye. Band keratopathy was thought to have resulted from the presence of the preservative phenylmercuric nitrate in the pilocarpine hydrochloride eye drops. Treatment of the patient consisted of two separate procedures for both eyes, i.e. phaco trabeculectomy and six months later corneal procedure including abrasion of corneal epithelium followed by removal of the superficial stromal calcium deposits by means of a 3.75% ethylenediaminetetraacetic (EDTA) solution. After phaco trabeculectomy, visual acuity was 0.8 on both eyes. Bilateral visual improvement with visual acuity 1.0 was recorded after corneal treatment with EDTA. In conclusion, one must be aware of preservative complications in long-term topical use, such as band keratopathy that can be visually incapacitating. Surgical treatment using EDTA is safe and effective treatment for band keratopathy.

  10. Corneal thickness: measurement and implications.

    PubMed

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  11. [Killing effects of PWZL plasmid-mediated double suicide gene on human lens epithelium cells].

    PubMed

    Yan, Xiao-ran; Wu, Hong; Yu, Hai-tao; Wang, Xiu; Zhang, Yu

    2008-04-01

    To investigate the killing efficiency of PWZL plasmid-mediated herpes simplex virus-thymidine kinase (TK) and E. coli cytosine deaminase (CD) on human lens epithelium cells followed by the treatment of prodrugs. PWZL plasmid was used as a vehicle, to transduce double suicide genes into the human lens epithelium in vitro, then the cells were treated with fluorocytosine (5-FC) and/or ganciclovir (GCV) at different concentrations. The cell growth of the lens epithelium cells was observed by light microscope. MTT analysis was used to estimate the cell survival rate and the bystander effect was analyzed simultaneously. The significance of difference between each group was treated by statistical tests. The CD and TK gene could be joined into PWZL plasmid successfully, and did not have any special effect on normal cells. There was no significant difference in cell viability between CD-TK transfected cells and control cells. Cell viability in cells treated with prodrugs was decreased in a time-dependent manner. At the end of the experiment, cell viability was lowest in GCV 10 mg/L +5-FC 60 mg/L group, GCV 10 mg/L + 5-FC 100 mg/L group and GCV 100 mg/L + 5-FC 100 mg/L group. There were no significant differences between these three groups (X2 = 1.25 , P > 0.01). Analysis of bystander effect indicated that the cell viability in GCV 100 mg/L + 5-FC 100 mg/L group and GCV 10 mg/L +5-FC 60 mg/L group was significantly lower than that in the controls (t = 10.26, 13.16; P < 0.01). PWZL plasmid can transfect the CD and TK genes into lens epithelium cells successfully and efficiently. CD and TK genes can be expressed steadily. Transfection of double suicide gene reduces the dosage of prodrugs required for killing cells. The combination of 5-FC with GCV shows the greatest killing effect and also has the bystander effect.

  12. Aniridia-related keratopathy: Structural changes in naïve and transplanted corneal buttons.

    PubMed

    Vicente, André; Byström, Berit; Lindström, Mona; Stenevi, Ulf; Pedrosa Domellöf, Fátima

    2018-01-01

    To study structural changes in naïve and surgically treated corneas of aniridia patients with advanced aniridia-related keratopathy (ARK). Two naïve corneal buttons from patients with advanced ARK submitted to penetrating keratoplasty for the first time, one corneal button from an ARK patient that had undergone a keratolimbal allograft (KLAL), two corneal buttons from ARK patients who had previously undergone centered or decentered transplantation and were now retransplanted and two adult healthy donor control corneas were processed for immunohistochemistry. Antibodies against extracellular matrix components in the stroma and in the epithelial basement membrane (collagen I and IV, collagen receptor α11 integrin and laminin α3 chain), markers of fibrosis, wound healing and vascularization (fibronectin, tenascin-C, vimentin, α-SMA and caveolin-1), cell division (Ki-67) and macrophages (CD68) were used. Naïve ARK, KLAL ARK corneas and transplanted corneal buttons presented similar histopathological changes with irregular epithelium and disruption or absence of epithelial basal membrane. There was a loss of the orderly pattern of collagen lamellae and absence of collagen I in all ARK corneas. Vascularization was revealed by the presence of caveolin-1 and collagen IV in the pannus of all ARK aniridia corneas. The changes observed in decentered and centered transplants were analogous. Given the similar pathological features of all cases, conditions inherent to the host seem to play an important role on the pathophysiology of the ARK in the long run.

  13. Repeatability and reproducibility of corneal thickness using SOCT Copernicus HR.

    PubMed

    Vidal, Silvia; Viqueira, Valentín; Mas, David; Domenech, Begoña

    2013-05-01

    The aim of this study is to determine the reliability of corneal thickness measurements derived from SOCT Copernicus HR (Fourier domain OCT). Thirty healthy eyes of 30 subjects were evaluated. One eye of each patient was chosen randomly. Images were obtained of the central (up to 2.0 mm from the corneal apex) and paracentral (2.0 to 4.0 mm) cornea. We assessed corneal thickness (central and paracentral) and epithelium thickness. The intra-observer repeatability data were analysed using the intra-class correlation coefficient (ICC) for a range of 95 per cent within-subject standard deviation (S(W)) and the within-subject coefficient of variation (C(W)). The level of agreement by Bland-Altman analysis was also represented for the study of the reproducibility between observers and agreement between methods of measurement (automatic versus manual). The mean value of the central corneal thickness (CCT) was 542.4 ± 30.1 μm (SD). There was a high intra-observer agreement, finding the best result in the central sector with an intra-class correlation coefficient of 0.99, 95 per cent CI (0.989 to 0.997) and the worst, in the minimum corneal thickness, with an intra-class correlation coefficient of 0.672, 95 per cent CI (0.417 to 0.829). Reproducibility between observers was very high. The best result was found in the central sector thickness obtained both manually and automatically with an intra-class correlation coefficient of 0.990 in both cases and the worst result in the maximum corneal thickness with an intra-class correlation coefficient of 0.827. The agreement between measurement methods was also very high with intra-class correlation coefficient greater than 0.91. On the other hand the repeatability and reproducibility for epithelial measurements was poor. Pachymetric mapping with SOCT Copernicus HR was found to be highly repeatable and reproducible. We found that the device lacks an appropriate ergonomic design as proper focusing of the laser beam onto the

  14. Corneal Confocal Microscopy Detects Corneal Nerve Damage in Patients Admitted With Acute Ischemic Stroke.

    PubMed

    Khan, Adnan; Akhtar, Naveed; Kamran, Saadat; Ponirakis, Georgios; Petropoulos, Ioannis N; Tunio, Nahel A; Dargham, Soha R; Imam, Yahia; Sartaj, Faheem; Parray, Aijaz; Bourke, Paula; Khan, Rabia; Santos, Mark; Joseph, Sujatha; Shuaib, Ashfaq; Malik, Rayaz A

    2017-11-01

    Corneal confocal microscopy can identify corneal nerve damage in patients with peripheral and central neurodegeneration. However, the use of corneal confocal microscopy in patients presenting with acute ischemic stroke is unknown. One hundred thirty patients (57 without diabetes mellitus [normal glucose tolerance], 32 with impaired glucose tolerance, and 41 with type 2 diabetes mellitus) admitted with acute ischemic stroke, and 28 age-matched healthy control participants underwent corneal confocal microscopy to quantify corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length. There was a significant reduction in corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length in stroke patients with normal glucose tolerance ( P <0.001, P <0.001, P <0.001), impaired glucose tolerance ( P =0.004, P <0.001, P =0.002), and type 2 diabetes mellitus ( P <0.001, P <0.001, P <0.001) compared with controls. HbA1c and triglycerides correlated with corneal nerve fiber density ( r =-0.187, P =0.03; r =-0.229 P =0.01), corneal nerve fiber length ( r =-0.228, P =0.009; r =-0.285; P =0.001), and corneal nerve branch density ( r =-0.187, P =0.033; r =-0.229, P =0.01). Multiple linear regression showed no independent associations between corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length and relevant risk factors for stroke. Corneal confocal microscopy is a rapid noninvasive ophthalmic imaging technique that identifies corneal nerve fiber loss in patients with acute ischemic stroke. © 2017 American Heart Association, Inc.

  15. Inhibition of UV-B induced apoptosis in corneal epithelial cells by potassium channel modulators.

    PubMed

    Ubels, John L; Schotanus, Mark P; Bardolph, Susan L; Haarsma, Loren D; Koetje, Leah R; Louters, Julienne R

    2010-02-01

    The goal of this study was to determine whether prevention of K(+) loss can protect human corneal-limbal epithelial (HCLE) cells from UV-B induced apoptosis. Immunostaining for activated caspase-3 of HCLE cells exposed to 150-200 mJ/cm(2) UV-B demonstrated induction of apoptosis 6 h after exposure. The number of apoptotic cells was decreased by incubation in medium with 25 or 100 mM K(+). If this protection is due to a reduction of UV-induced K(+) loss then K(+) channel blockers should also protect HCLE cells from UV-B. Caspase-8 activity induced by exposure to UV-B at 150 mJ/cm(2) was significantly reduced when the cells were incubated in 0.3 microM BDS-I or 0.05-1 mM quinidine. Caspase-3 was also activated by UV-B and a reduction in activity was observed after incubation in 0.1-0.3 microM BDS-I and 0.1-1 mM quinidine. Induction of DNA fragmentation, as measured by the TUNEL assay, was decreased by treatment with 0.3 microM BDS-I and 0.01-0.05 mM quinidine. Patch-clamp recording showed activation of K(+) channels after exposure to UV-B and a decrease in outward K(+) current was observed following application of BDS-I. Quinidine did not block K(+) currents in HCLE cells, suggesting that the protective effect of quinidine occurs by a mechanism other than via K(+) channels. The effect of the K(+) channel blocker BDS-1 on HCLE cells exposed to UV-B confirms that preventing K(+) efflux protects corneal epithelial cells from apoptosis. This suggests the elevated [K(+)] in tears may protect the corneal epithelium from effects of ambient UV-B. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Inhibition of UV-B Induced Apoptosis in Corneal Epithelial Cells by Potassium Channel Modulators

    PubMed Central

    Ubels, John L.; Schotanus, Mark P.; Bardolph, Susan L.; Haarsma, Loren D.; Koetje, Leah R.; Louters, Julienne R.

    2009-01-01

    The goal of this study was to determine whether prevention of K+ loss can protect human corneal-limbal epithelial (HCLE) cells from UV-B induced apoptosis. Immunostaining for activated caspase-3 of HCLE cells exposed to 150 – 200 mJ/cm2 UV-B demonstrated induction of apoptosis 6 hrs after exposure. The number of apoptotic cells was decreased by incubation in medium with 25 or 100 mM K+. If this protection is due to a reduction of UV induced K+ loss then K+ channel blockers should also protect HCLE cells from UV-B. Caspase-8 activity induced by exposure to UV-B at 150 mJ/cm2 was significantly reduced when the cells were incubated in 0.3 µM BDS-I or 0.05–1 mM quinidine. Caspase-3 was also activated by UV-B and a reduction in activity was observed after incubation in 0.1–0.3 µM BDS-I and 0.1–1mM quinidine. Induction of DNA fragmentation, as measured by the TUNEL assay, was decreased by treatment with 0.3 µM BDS-I and 0.01–0.05 mM quinidine. Patch-clamp recording showed activation of K+ channels after exposure to UV-B and a decrease in outward K+ current was observed following application of BDS-I. Quinidine did not block K+ currents in HCLE cells, suggesting that the protective effect of quinidine occurs by a mechanism other than via K+ channels. The effect of the K+ channel blocker BDS-1 on HCLE cells exposed to UV-B confirms that preventing K+ efflux protects corneal epithelial cells from apoptosis. This suggests the elevated [K+] in tears may protect the corneal epithelium from effects of ambient UV-B. PMID:19874821

  17. Effect of diet induced obesity or type 1 or type 2 diabetes on corneal nerves and peripheral neuropathy in C57Bl/6J mice

    PubMed Central

    Yorek, Matthew S.; Obrosov, Alexander; Shevalye, Hanna; Holmes, Amey; Harper, Matthew M.; Kardon, Randy H.; Yorek, Mark A.

    2015-01-01

    We determined the impact diet induced obesity (DIO) and types 1 and 2 diabetes has on peripheral neuropathy with emphasis on corneal nerve structural changes in C57Bl/6J mice. Endpoints examined included nerve conduction velocity, response to thermal and mechanical stimuli and innervation of the skin and cornea. DIO mice and to a greater extent type 2 diabetic mice were insulin resistant. DIO and both types 1 and 2 diabetic mice developed motor and sensory nerve conduction deficits. In the cornea of DIO and type 2 diabetic mice there was a decrease in sub-epithelial corneal nerves, innervation of the corneal epithelium and corneal sensitivity. Type 1 diabetic mice did not present with any significant changes in corneal nerve structure until after 20 weeks of hyperglycemia. DIO and type 2 diabetic mice developed corneal structural damage more rapidly than type 1 diabetic mice even though hemoglobin A1C values were significantly higher in type 1 diabetic mice. This suggests that DIO with or without hyperglycemia contributes to development and progression of peripheral neuropathy and nerve structural damage in the cornea. PMID:25858759

  18. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye.

    PubMed

    Chen, Vicki M; Shelke, Rajani; Nyström, Alexander; Laver, Nora; Sampson, James F; Zhiyi, Cao; Bhat, Najma; Panjwani, Noorjahan

    2018-06-16

    Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The immune-histologic and morphologic changes in the corneas of the mouse model for this disease have not been described in the literature. Our purpose is to characterize the eyes of these mice to determine if this is an appropriate model for study of human therapeutics. Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess the relative collagen VII protein levels and its location within the cornea. Additional IHC for inflammatory and fibrotic biomarkers alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting opacification of the corneas of animals of differing ages were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. IHC and WB confirmed that these mice are deficient in collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-β showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-β appear to be

  19. Intraoperative corneal thickness measurements during corneal collagen cross-linking with isotonic riboflavin solution without dextran in corneal ectasia.

    PubMed

    Cınar, Yasin; Cingü, Abdullah Kürşat; Sahin, Alparslan; Türkcü, Fatih Mehmet; Yüksel, Harun; Caca, Ihsan

    2014-03-01

    Abstract Objective: To monitor the changes in corneal thickness during the corneal collagen cross-linking procedure by using isotonic riboflavin solution without dextran in ectatic corneal diseases. The corneal thickness measurements were obtained before epithelial removal, after epithelial removal, following the instillation of isotonic riboflavin solution without dextran for 30 min, and after 10 min of ultraviolet A irradiation. Eleven eyes of eleven patients with progressive keratoconus (n = 10) and iatrogenic corneal ectasia (n = 1) were included in this study. The mean thinnest pachymetric measurements were 391.82 ± 30.34 µm (320-434 µm) after de-epithelialization of the cornea, 435 ± 21.17 µm (402-472 µm) following 30 min instillation of isotonic riboflavin solution without dextran and 431.73 ± 20.64 µm (387-461 µm) following 10 min of ultraviolet A irradiation to the cornea. Performing corneal cross-linking procedure with isotonic riboflavin solution without dextran might not induce corneal thinning but a little swelling throughout the procedure.

  20. Treatment with solubilized Silk-Derived Protein (SDP) enhances rabbit corneal epithelial wound healing.

    PubMed

    Abdel-Naby, Waleed; Cole, Brigette; Liu, Aihong; Liu, Jingbo; Wan, Pengxia; Schreiner, Ryan; Infanger, David W; Paulson, Nicholas B; Lawrence, Brian D; Rosenblatt, Mark I

    2017-01-01

    There is a significant clinical need to improve current therapeutic approaches to treat ocular surface injuries and disease, which affect hundreds of millions of people annually worldwide. The work presented here demonstrates that the presence of Silk-Derived Protein (SDP) on the healing rabbit corneal surface, administered in an eye drop formulation, corresponds with an enhanced epithelial wound healing profile. Rabbit corneas were denuded of their epithelial surface, and then treated for 72-hours with either PBS or PBS containing 5 or 20 mg/mL SDP in solution four times per day. Post-injury treatment with SDP formulations was found to accelerate the acute healing phase of the injured rabbit corneal epithelium. In addition, the use of SDP corresponded with an enhanced tissue healing profile through the formation of a multi-layered epithelial surface with increased tight junction formation. Additional biological effects were also revealed that included increased epithelial proliferation, and increased focal adhesion formation with a corresponding reduction in the presence of MMP-9 enzyme. These in vivo findings demonstrate for the first time that the presence of SDP on the injured ocular surface may aid to improve various steps of rabbit corneal wound healing, and provides evidence that SDP may have applicability as an ingredient in therapeutic ophthalmic formulations.

  1. Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients[S

    PubMed Central

    Qi, Hui; Priyadarsini, Shrestha; Nicholas, Sarah E.; Sarker-Nag, Akhee; Allegood, Jeremy; Chalfant, Charles E.; Mandal, Nawajes A.; Karamichos, Dimitrios

    2017-01-01

    The pathophysiology of human keratoconus (KC), a bilateral progressive corneal disease leading to protrusion of the cornea, stromal thinning, and scarring, is not well-understood. In this study, we investigated a novel sphingolipid (SPL) signaling pathway through which KC may be regulated. Using human corneal fibroblasts (HCFs) and human KC cells (HKCs), we examined the SPL pathway modulation. Both cell types were stimulated by the three transforming growth factor (TGF)-β isoforms: TGF-β1 (T1), TGF-β2 (T2), and TGF-β3 (T3). All samples were analyzed using lipidomics and real-time PCR. Our data showed that HKCs have increased levels of signaling SPLs, ceramide (Cer), and sphingosine 1-phosphate (S1P). Treatment with T1 reversed the increase in Cer in HKCs and treatment with T3 reversed the increase in S1P. S1P3 receptor mRNA levels were also significantly upregulated in HKCs, but were reduced to normal levels following T3 treatment. Furthermore, stimulation with Cer and S1P led to significant upregulation of fibrotic markers in HCFs, but not in HKCs. Additionally, stimulation with a Cer synthesis inhibitor (FTY720) led to significant downregulation of specific fibrotic markers in HKCs (TGF-β1, collagen type III, and α smooth muscle actin) without an effect on healthy HCFs, suggesting a causative role of Cer and S1P in fibrogenesis. Overall, this study suggests an association of the SPL signaling pathway in KC disease and its relation with the TGF-β pathway. PMID:28188148

  2. [Design and Realization of Personalized Corneal Analysis Software Based on Corneal Topography System].

    PubMed

    Huang, Xueping; Xie, Zhonghao; Cen, Qin; Zheng, Suilian

    2016-08-01

    As the most important refraction part in the optical system,cornea possesses characteristics which are important parameters in ophthalmology clinical surgery.During the measurement of the cornea in our study,we acquired the corneal data of Orbscan Ⅱ corneal topographer in real time using the Hook technology under Windows,and then took the data into the corneal analysis software.We then further analyzed and calculated the data to obtain individual Q-value of overall corneal 360semi-meridian.The corneal analysis software took Visual C++ 6.0as development environment,used OpenGL graphics technology to draw three-dimensional individual corneal morphological map and the distribution curve of the Q-value,and achieved real-time corneal data query.It could be concluded that the analysis would further extend the function of the corneal topography system,and provide a solid foundation for the further study of automatic screening of corneal diseases.

  3. Effect of Macrophage Migration Inhibitory Factor on Corneal Sensitivity after Laser In Situ Keratomileusis in Rabbit

    PubMed Central

    Hose, Stacey; Gongora, Celine; Sinha, Debasish; O'Brien, Terrence

    2014-01-01

    Purpose To investigate the effect of macrophage migration inhibitory factor (MIF) on corneal sensitivity after laser in situ keratomileusis (LASIK) surgery. Methods New Zealand white rabbits were used in this study. A hinged corneal flap (160-µm thick) was created with a microkeratome, and -3.0 diopter excimer laser ablation was performed. Expressions of MIF mRNA in the corneal epithelial cells and surrounding inflammatory cells were analyzed using reverse transcription polymerase chain reaction at 48 hours after LASIK. After LASIK surgery, the rabbits were topically given either 1) a balanced salt solution (BSS), 2) MIF (100 ng/mL) alone, or 3) a combination of nerve growth factor (NGF, 100 ug/mL), neurotrophine-3 (NT-3, 100 ng/mL), interleukin-6 (IL-6, 5 ng/mL), and leukemia inhibitory factor (LIF, 5 ng/mL) four times a day for three days. Preoperative and postoperative corneal sensitivity at two weeks and at 10 weeks were assessed using the Cochet-Bonnet esthesiometer. Results Expression of MIF mRNA was 2.5-fold upregulated in the corneal epithelium and 1.5-fold upregulated in the surrounding inflammatory cells as compared with the control eyes. Preoperative baseline corneal sensitivity was 40.56 ± 2.36 mm. At two weeks after LASIK, corneal sensitivity was 9.17 ± 5.57 mm in the BSS treated group, 21.92 ± 2.44 mm in the MIF treated group, and 22.42 ± 1.59 mm in the neuronal growth factors-treated group (MIF vs. BSS, p < 0.0001; neuronal growth factors vs. BSS, p < 0.0001; MIF vs. neuronal growth factors, p = 0.815). At 10 weeks after LASIK, corneal sensitivity was 15.00 ± 9.65, 35.00 ± 5.48, and 29.58 ± 4.31 mm respectively (MIF vs. BSS, p = 0.0001; neuronal growth factors vs. BSS, p = 0.002; MIF vs. neuronal growth factors, p = 0.192). Treatment with MIF alone could achieve as much of an effect on recovery of corneal sensation as treatment with combination of NGF, NT-3, IL-6, and LIF. Conclusions Topically administered MIF plays a significant role in the

  4. Effect of macrophage migration inhibitory factor on corneal sensitivity after laser in situ keratomileusis in rabbit.

    PubMed

    Hyon, Joon Young; Hose, Stacey; Gongora, Celine; Sinha, Debasish; O'Brien, Terrence

    2014-04-01

    To investigate the effect of macrophage migration inhibitory factor (MIF) on corneal sensitivity after laser in situ keratomileusis (LASIK) surgery. New Zealand white rabbits were used in this study. A hinged corneal flap (160-µm thick) was created with a microkeratome, and -3.0 diopter excimer laser ablation was performed. Expressions of MIF mRNA in the corneal epithelial cells and surrounding inflammatory cells were analyzed using reverse transcription polymerase chain reaction at 48 hours after LASIK. After LASIK surgery, the rabbits were topically given either 1) a balanced salt solution (BSS), 2) MIF (100 ng/mL) alone, or 3) a combination of nerve growth factor (NGF, 100 ug/mL), neurotrophine-3 (NT-3, 100 ng/mL), interleukin-6 (IL-6, 5 ng/mL), and leukemia inhibitory factor (LIF, 5 ng/mL) four times a day for three days. Preoperative and postoperative corneal sensitivity at two weeks and at 10 weeks were assessed using the Cochet-Bonnet esthesiometer. Expression of MIF mRNA was 2.5-fold upregulated in the corneal epithelium and 1.5-fold upregulated in the surrounding inflammatory cells as compared with the control eyes. Preoperative baseline corneal sensitivity was 40.56 ± 2.36 mm. At two weeks after LASIK, corneal sensitivity was 9.17 ± 5.57 mm in the BSS treated group, 21.92 ± 2.44 mm in the MIF treated group, and 22.42 ± 1.59 mm in the neuronal growth factors-treated group (MIF vs. BSS, p < 0.0001; neuronal growth factors vs. BSS, p < 0.0001; MIF vs. neuronal growth factors, p = 0.815). At 10 weeks after LASIK, corneal sensitivity was 15.00 ± 9.65, 35.00 ± 5.48, and 29.58 ± 4.31 mm respectively (MIF vs. BSS, p = 0.0001; neuronal growth factors vs. BSS, p = 0.002; MIF vs. neuronal growth factors, p = 0.192). Treatment with MIF alone could achieve as much of an effect on recovery of corneal sensation as treatment with combination of NGF, NT-3, IL-6, and LIF. Topically administered MIF plays a significant role in the early recovery of corneal

  5. APR-246/PRIMA-1Met Inhibits and Reverses Squamous Metaplasia in Human Conjunctival Epithelium.

    PubMed

    Li, Jing; Li, Cheng; Wang, Guoliang; Liu, Zhen; Chen, Pei; Yang, Qichen; Dong, Nuo; Wu, Huping; Liu, Zuguo; Li, Wei

    2016-02-01

    Squamous metaplasia is a common pathologic condition in ocular surface diseases for which there is no therapeutic medication in clinic. In this study, we investigated the effect of a small molecule, APR-246/PRIMA-1(Met), on squamous metaplasia in human conjunctival epithelium. Human conjunctival explants were cultured for up to 12 days under airlifting conditions. Epithelial cell differentiation and proliferation were assessed by Cytokeratin 10 (K10), K14, K19, Pax6, MUC5AC, and p63 immunostaining patterns. β-catenin and TCF-4 immunofluorescent staining and real-time PCR characterized Wnt signaling pathway involvement. Pterygium clinical samples were cultured under airlifting conditions with or without APR-246 for 4 days. p63, K10, β-catenin, and TCF-4 expression in pterygial epithelium was determined by immunofluorescent staining and real-time PCR. Airlift conjunctival explants resulted in increased stratification and intrastromal epithelial invagination. Such pathology was accompanied by increases in K10, K14, and p63 expression, whereas K19 and Pax6 levels declined when compared to those in freshly isolated tissue. On the other hand, APR-246 reversed all of these declines in K10, K14, and p63 expression. Furthermore, K19 and Pax6 increased along with rises in goblet cell density. These effects of APR-246 were accompanied by near restoration of normal conjunctival epithelial histology. APR-246 also reversed squamous metaplasia in pterygial epithelium that had developed after 4 days in ex vivo culture. Reductions in squamous metaplasia induced by APR-246 suggest it may provide a novel therapeutic approach in different squamous metaplasia-associated ocular surface diseases.

  6. Quantitative 3-D Corneal Imaging In Vivo Using a Modified HRT- RCM Confocal Microscope

    PubMed Central

    Petroll, W. Matthew.; Weaver, Matthew; Vaidya, Saurabh; McCulley, James P.; Cavanagh, H. Dwight

    2012-01-01

    Purpose The purpose of this study was to develop and test hardware and software modifications to allow quantitative full-thickness corneal imaging using the HRT Rostock Corneal Module. Methods A PC-controlled motor drive with positional feedback was integrated into the system to allow automated focusing through the entire cornea. The left eyes of ten New Zealand White rabbits were scanned from endothelium to epithelium. Image sequences were read into a custom-developed program for depth calculation and measurement of sub-layer thicknesses. 3-D visualizations were also generated using Imaris. In six rabbits, stack images were registered, and depth-dependent counts of keratocyte nuclei were made using Metamorph. Results The mean epithelial and corneal thicknesses measured in the rabbit were 47 ± 5 μm and 373 ± 25 μm, respectively (N = 10 corneas); coefficients of variation for repeated scans were 8.2% and 2.1%. Corneal thickness measured using ultrasonic pachymetry was 374 ± 17 μm. The mean overall keratocyte density measured in the rabbit was 43,246 ± 5,603 cells/mm3 in vivo (N = 6 corneas). There was a gradual decrease in keratocyte density from the anterior to posterior cornea (R = 0.99), consistent with previous data generated in vitro. Conclusions This modified system allows high resolution 3-D image stacks to be collected from the full thickness rabbit cornea in vivo. These datasets can be used for interactive visualization of corneal cell layers, measurement of sub-layer thickness, and depth-dependent keratocyte density measurements. Overall, the modifications significantly expand the potential quantitative research applications of the HRT-RCM microscope. PMID:23051907

  7. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium.

    PubMed

    Martínez-Rendón, Jacqueline; Sánchez-Guzmán, Erika; Rueda, Angélica; González, James; Gulias-Cañizo, Rosario; Aquino-Jarquín, Guillermo; Castro-Muñozledo, Federico; García-Villegas, Refugio

    2017-07-01

    TRPV4 (transient receptor potential vanilloid 4) is a cation channel activated by hypotonicity, moderate heat, or shear stress. We describe the expression of TRPV4 during the differentiation of a corneal epithelial cell model, RCE1(5T5) cells. TRPV4 is a late differentiation feature that is concentrated in the apical membrane of the outmost cell layer of the stratified epithelia. Ca 2+ imaging experiments showed that TRPV4 activation with GSK1016790A produced an influx of calcium that was blunted by the specific TRPV4 blocker RN-1734. We analyzed the involvement of TRPV4 in RCE1(5T5) epithelial differentiation by measuring the development of transepithelial electrical resistance (TER) as an indicator of the tight junction (TJ) assembly. We showed that TRPV4 activity was necessary to establish the TJ. In differentiated epithelia, activation of TRPV4 increases the TER and the accumulation of claudin-4 in cell-cell contacts. Epidermal Growth Factor (EGF) up-regulates the TER of corneal epithelial cultures, and we show here that TRPV4 activation mimicked this EGF effect. Conversely, TRPV4 inhibition or knock down by specific shRNA prevented the increase in TER. Moreover, TRPP2, an EGF-activated channel that forms heteromeric complexes with TRPV4, is also concentrated in the outmost cell layer of differentiated RCE1(5T5) sheets. This suggests that the EGF regulation of the TJ may involve a heterotetrameric TRPV4-TRPP2 channel. These results demonstrated TRPV4 activity was necessary for the correct establishment of TJ in corneal epithelia and as well as the regulation of both the barrier function of TJ and its ability to respond to EGF. J. Cell. Physiol. 232: 1794-1807, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The corneal fibrosis response to epithelial-stromal injury

    PubMed Central

    Torricelli, Andre A. M.; Santhanam, Abirami; Wu, Jiahui; Singh, Vivek; Wilson, Steven E.

    2014-01-01

    The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or “haze”. Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes on corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and

  9. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model

    PubMed Central

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304

  10. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF) Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    PubMed

    Rho, Chang Rae; Park, Mi-young; Kang, Seungbum

    2015-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  11. The effect of culture medium and carrier on explant culture of human limbal epithelium: A comparison of ultrastructure, keratin profile and gene expression.

    PubMed

    Pathak, Meeta; Olstad, O K; Drolsum, Liv; Moe, Morten C; Smorodinova, Natalia; Kalasova, Sarka; Jirsova, Katerina; Nicolaissen, Bjørn; Noer, Agate

    2016-12-01

    Patients with limbal stem cell deficiency (LSCD) often experience pain and photophobia due to recurrent epithelial defects and chronic inflammation of the cornea. Successfully restoring a healthy corneal surface in these patients by transplantation of ex vivo expanded human limbal epithelial cells (LECs) may alleviate these symptoms and significantly improve their quality of life. The clinical outcome of transplantation is known to be influenced by the quality of transplanted cells. Presently, several different protocols for cultivation and transplantation of LECs are in use. However, no consensus on an optimal protocol exists. The aim of this study was to examine the effect of culture medium and carrier on the morphology, staining of selected keratins and global gene expression in ex vivo cultured LECs. Limbal biopsies from cadaveric donors were cultured for three weeks on human amniotic membrane (HAM) or on tissue culture coated plastic (PL) in either a complex medium (COM), containing recombinant growth factors, hormones, cholera toxin and fetal bovine serum, or in medium supplemented only with human serum (HS). The expanded LECs were examined by light microscopy (LM), transmission electron microscopy (TEM), immunohistochemistry (IHC) for keratins K3, K7, K8, K12, K13, K14, K15 and K19, as well as microarray and qRT-PCR analysis. The cultured LECs exhibited similar morphology and keratin staining on LM, TEM and IHC examination, regardless of the culture condition. The epithelium was multilayered, with cuboidal basal cells and flattened superficial cells. Cells were attached to each other by desmosomes. Adhesion complexes were observed between basal cells and the underlying carrier in LECs cultured on HAM, but not in LECs cultured on PL. GeneChip Human Gene 2.0 ST microarray (Affymetrix) analysis revealed that 18,653 transcripts were ≥2 fold up or downregulated (p ≤ 0.05). Cells cultured in the same medium (COM or HS) showed more similarities in gene

  12. Circular flow patterns induced by ciliary activity in reconstituted human bronchial epithelium

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Khelloufi, Kamel; Gras, Delphine; Chanez, Pascal; Aix Marseille Univ., CNRS, CINaM, Marseille, France Team; Aix Marseille Univ., CNRS, Inserm, LAI, Marseille, France Team

    2016-11-01

    Mucociliary clearance is the transport at the surface of airways of a complex fluid layer, the mucus, moved by the beats of microscopic cilia present on epithelial ciliated cells. We explored the coupling between the spatial organisation and the activity of cilia and the transport of surface fluids on reconstituted cultures of human bronchial epithelium at air-liquid interface, obtained by human biopsies. We reveal the existence of stable local circular surface flow patterns of mucus or Newtonian fluid at the epithelium surface. We find a power law over more than 3 orders of magnitude showing that the average ciliated cell density controls the size of these flow patterns, and, therefore the distance over which mucus can be transported. We show that these circular flow patterns result from the radial linear increase of the local propelling forces (due to ciliary beats) on each flow domain. This linear increase of local forces is induced by a fine self-regulation of both cilia density and orientation of ciliary beats. Local flow domains grow and merge during ciliogenesis to provide macroscopic mucus transport. This is possible only when the viscoelastic mucus continuously exerts a shear stress on beating cilia, revealing a mechanosensitive function of cilia. M. K. Khelloufi thanks the society MedBioMed for financial support. This work was supported by the ANR MUCOCIL project, Grant ANR-13-BSV5-0015 of the French Agence Nationale de la Recherche.

  13. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both

  14. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (P<0.05). We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in

  15. Epithelium

    MedlinePlus

    The term "epithelium" refers to layers of cells that line hollow organs and glands. It is also those cells that make ... Kierszenbaum AL, Tres LL. Epithelium. In: Kierszenbaum AL, Tres LL, ... to Pathology . 4th ed. Philadelphia, PA: Elsevier Saunders; ...

  16. Aniridia-related keratopathy: Structural changes in naïve and transplanted corneal buttons

    PubMed Central

    Stenevi, Ulf; Pedrosa Domellöf, Fátima

    2018-01-01

    Background To study structural changes in naïve and surgically treated corneas of aniridia patients with advanced aniridia-related keratopathy (ARK). Methods and findings Two naïve corneal buttons from patients with advanced ARK submitted to penetrating keratoplasty for the first time, one corneal button from an ARK patient that had undergone a keratolimbal allograft (KLAL), two corneal buttons from ARK patients who had previously undergone centered or decentered transplantation and were now retransplanted and two adult healthy donor control corneas were processed for immunohistochemistry. Antibodies against extracellular matrix components in the stroma and in the epithelial basement membrane (collagen I and IV, collagen receptor α11 integrin and laminin α3 chain), markers of fibrosis, wound healing and vascularization (fibronectin, tenascin-C, vimentin, α-SMA and caveolin-1), cell division (Ki-67) and macrophages (CD68) were used. Naïve ARK, KLAL ARK corneas and transplanted corneal buttons presented similar histopathological changes with irregular epithelium and disruption or absence of epithelial basal membrane. There was a loss of the orderly pattern of collagen lamellae and absence of collagen I in all ARK corneas. Vascularization was revealed by the presence of caveolin-1 and collagen IV in the pannus of all ARK aniridia corneas. The changes observed in decentered and centered transplants were analogous. Conclusions Given the similar pathological features of all cases, conditions inherent to the host seem to play an important role on the pathophysiology of the ARK in the long run. PMID:29889891

  17. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells.

    PubMed

    Cereser, Biancastella; Jansen, Marnix; Austin, Emily; Elia, George; McFarlane, Taneisha; van Deurzen, Carolien Hm; Sieuwerts, Anieta M; Daidone, Maria G; Tadrous, Paul J; Wright, Nicholas A; Jones, Louise; McDonald, Stuart Ac

    2018-01-01

    It is widely accepted that the cell of origin of breast cancer is the adult mammary epithelial stem cell; however, demonstrating the presence and location of tissue stem cells in the human breast has proved difficult. Furthermore, we do not know the clonal architecture of the normal and premalignant mammary epithelium or its cellular hierarchy. Here, we use deficiency in the mitochondrial enzyme cytochrome c oxidase (CCO), typically caused by somatic mutations in the mitochondrial genome, as a means to perform lineage tracing in the human mammary epithelium. PCR sequencing of laser-capture microdissected cells in combination with immunohistochemistry for markers of lineage differentiation was performed to determine the clonal nature of the mammary epithelium. We have shown that in the normal human breast, clonal expansions (defined here by areas of CCO deficiency) are typically uncommon and of limited size, but can occur at any site within the adult mammary epithelium. The presence of a stem cell population was shown by demonstrating multi-lineage differentiation within CCO-deficient areas. Interestingly, we observed infrequent CCO deficiency that was restricted to luminal cells, suggesting that niche succession, and by inference stem cell location, is located within the luminal layer. CCO-deficient areas appeared large within areas of ductal carcinoma in situ, suggesting that the rate of clonal expansion was altered in the premalignant lesion. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  18. Corneal Tissue Engineering: Recent Advances and Future Perspectives

    PubMed Central

    Ghezzi, Chiara E.; Rnjak-Kovacina, Jelena

    2015-01-01

    To address the growing need for corneal transplants two main approaches are being pursued: allogenic and synthetic materials. Allogenic tissue from human donors is currently the preferred choice; however, there is a worldwide shortage in donated corneal tissue. In addition, tissue rejection often limits the long-term success of this approach. Alternatively, synthetic homologs to donor corneal grafts are primarily considered temporary replacements until suitable donor tissue becomes available, as they result in a high incidence of graft failure. Tissue engineered cornea analogs would provide effective cornea tissue substitutes and alternatives to address the need to reduce animal testing of commercial products. Recent progress toward these needs is reviewed here, along with future perspectives. PMID:25434371

  19. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate

  20. Isolation and functional studies of human fetal gastric epithelium in primary culture.

    PubMed

    Chailler, Pierre; Beaulieu, Jean-François; Ménard, Daniel

    2012-01-01

    Our understanding of gastric epithelial physiology in man is limited by the absence of normal or appropriate cancer cell lines that could serve as an in vitro model. Research mostly relied on primary culture of gastric epithelial cells of animal species, enriched with surface mucous cells, and devoid of glandular zymogenic chief cells. We successfully applied a new nonenzymatic procedure using Matrisperse Cell Recovery Solution to dissociate the entire epithelium from human fetal stomach. Cultures were generated by seeding multicellular aggregates prepared by mechanical fragmentation. We further demonstrate that this simple and convenient technique allows for the maintenance of heterogenous gastric epithelial primary cultures on plastic without a biological matrix as well as the persistence of viable chief cells able to synthesize and secrete gastric digestive enzymes, i.e., pepsinogen and gastric lipase. In wounding experiments, epithelial restitution occurred in serum-reduced conditions and was modulated by exogenous agents. This culture system is thus representative of the foveolus-gland axis and offers new perspectives to establish the influence of individual growth factors and extracellular matrix components as well as their combinatory effects on gastric epithelium homeostasis.

  1. A new method of detecting changes in corneal health in response to toxic insults.

    PubMed

    Khan, Mohammad Faisal Jamal; Nag, Tapas C; Igathinathane, C; Osuagwu, Uchechukwu L; Rubini, Michele

    2015-11-01

    The size and arrangement of stromal collagen fibrils (CFs) influence the optical properties of the cornea and hence its function. The spatial arrangement of the collagen is still questionable in relation to the diameter of collagen fibril. In the present study, we introduce a new parameter, edge-fibrillar distance (EFD) to measure how two collagen fibrils are spaced with respect to their closest edges and their spatial distribution through normalized standard deviation of EFD (NSDEFD) accessed through the application of two commercially available multipurpose solutions (MPS): ReNu and Hippia. The corneal buttons were soaked separately in ReNu and Hippia MPS for five hours, fixed overnight in 2.5% glutaraldehyde containing cuprolinic blue and processed for transmission electron microscopy. The electron micrographs were processed using ImageJ user-coded plugin. Statistical analysis was performed to compare the image processed equivalent diameter (ED), inter-fibrillar distance (IFD), and EFD of the CFs of treated versus normal corneas. The ReNu-soaked cornea resulted in partly degenerated epithelium with loose hemidesmosomes and Bowman's collagen. In contrast, the epithelium of the cornea soaked in Hippia was degenerated or lost but showed closely packed Bowman's collagen. Soaking the corneas in both MPS caused a statistically significant decrease in the anterior collagen fibril, ED and a significant change in IFD, and EFD than those of the untreated corneas (p<0.05, for all comparisons). The introduction of EFD measurement in the study directly provided a sense of gap between periphery of the collagen bundles, their spatial distribution; and in combination with ED, they showed how the corneal collagen bundles are spaced in relation to their diameters. The spatial distribution parameter NSDEFD indicated that ReNu treated cornea fibrils were uniformly distributed spatially, followed by normal and Hippia. The EFD measurement with relatively lower standard deviation and

  2. Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium.

    PubMed

    Wang, Guoqing; Zhou, Haixia; Strulovici-Barel, Yael; Al-Hijji, Mohammed; Ou, Xuemei; Salit, Jacqueline; Walters, Matthew S; Staudt, Michelle R; Kaner, Robert J; Crystal, Ronald G

    2017-07-03

    Enhanced macroautophagy/autophagy is recognized as a component of the pathogenesis of smoking-induced airway disease. Based on the knowledge that enhanced autophagy is linked to oxidative stress and the DNA damage response, both of which are linked to smoking, we used microarray analysis of the airway epithelium to identify smoking upregulated genes known to respond to oxidative stress and the DNA damage response. This analysis identified OSGIN1 (oxidative stress induced growth inhibitor 1) as significantly upregulated by smoking, in both the large and small airway epithelium, an observation confirmed by an independent small airway microarray cohort, TaqMan PCR of large and small airway samples and RNA-Seq of small airway samples. High and low OSGIN1 expressors have different autophagy gene expression patterns in vivo. Genome-wide correlation of RNAseq analysis of airway basal/progenitor cells showed a direct correlation of OSGIN1 mRNA levels to multiple classic autophagy genes. In vitro cigarette smoke extract exposure of primary airway basal/progenitor cells was accompanied by a dose-dependent upregulation of OSGIN1 and autophagy induction. Lentivirus-mediated expression of OSGIN1 in human primary basal/progenitor cells induced puncta-like staining of MAP1LC3B and upregulation of MAP1LC3B mRNA and protein and SQSTM1 mRNA expression level in a dose and time-dependent manner. OSGIN1-induction of autophagosome, amphisome and autolysosome formation was confirmed by colocalization of MAP1LC3B with SQSTM1 or CD63 (endosome marker) and LAMP1 (lysosome marker). Both OSGIN1 overexpression and knockdown enhanced the smoking-evoked autophagic response. Together, these observations support the concept that smoking-induced upregulation of OSGIN1 is one link between smoking-induced stress and enhanced-autophagy in the human airway epithelium.

  3. Anti-CD40 antibody-mediated costimulation blockade promotes long-term survival of deep-lamellar porcine corneal grafts in non-human primates.

    PubMed

    Kim, Jaeyoung; Kim, Dong Hyun; Choi, Hyuk Jin; Lee, Hyun Ju; Kang, Hee Jung; Park, Chung-Gyu; Hwang, Eung-Soo; Kim, Mee Kum; Wee, Won Ryang

    2017-05-01

    Corneal xenotransplantation is an effective solution for the shortage of human donor corneas, and the porcine cornea may be a suitable candidate for the donor cornea because of its optical similarity with humans. However, it is necessary to administer additional immunosuppressants to overcome antigenic differences. We aimed to investigate the feasibility of porcine corneas with anti-CD40 antibody-mediated costimulation blockade in a clinically applicable pig-to-non-human primate corneal xenotransplantation model. Five Chinese rhesus macaques underwent deep-lamellar corneal transplantation using clinically acceptable sized (7.5 mm diameter) porcine corneal grafts. The anti-CD40 antibody was intravenously administered on a programmed schedule. Graft survival, central corneal thickness, and intraocular pressure were evaluated. Changes in effector and memory T and B cell subsets and anti-αGal and donor-specific antibodies were investigated in the blood, and the changes in complement levels in the aqueous humor and blood were evaluated. Memory cell profiles in the anti-CD40 antibody-treated group were compared with those from the anti-CD154 antibody-treated group or rejected controls presented in our previous report. The changes in anti-αGal, non-αGal, and donor-specific antibodies after 6 months were compared with baseline values. Anti-CD40 antibody-mediated costimulation blockade resulted in the successful survival of xenocorneal grafts (>389, >382, >236, >201, and >61 days), with 80% reaching 6 months of survival. Injection of anti-CD40 antibody considerably reduced the infiltration of inflammatory cells into the grafts and significantly blocked the complement response in the aqueous humor (P=.0159, Mann-Whitney U test). Systemic expansion of central or effector memory T cells was abrogated in the anti-CD40 antibody-treated primates compared with those in the rejected controls (P<.05, Mann-Whitney U test) or those in the anti-CD154 antibody-treated primates (P

  4. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering.

    PubMed

    Gil, Eun Seok; Mandal, Biman B; Park, Sang-Hyug; Marchant, Jeffrey K; Omenetto, Fiorenzo G; Kaplan, David L

    2010-12-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Component corneal surgery: An update

    PubMed Central

    Maharana, Prafulla K.; Sahay, Pranita; Singhal, Deepali; Garg, Itika; Titiyal, Jeewan S.; Sharma, Namrata

    2017-01-01

    Several decades ago, penetrating keratoplasty was a challenge to corneal surgeons. Constant effort by the corneal surgeon to improve the outcomes as well as utilization of the available resources has led to a revolutionary change in the field of keratoplasty. All these efforts have led to the evolution of techniques that allow a corneal surgeon to disease-specific transplant of individual layers of corneal “so-called component corneal surgery” depending on the layer of cornea affected. This has led to an improvement in corneal graft survival as well as a better utilization of corneal tissues. This article reviews the currently available literature on component corneal surgeries and provides an update on the available techniques. PMID:28820150

  6. Apoptosis of Corneal Epithelial Cells Caused by Ultraviolet B-induced Loss of K+ is Inhibited by Ba2+

    PubMed Central

    Glupker, Courtney D.; Boersma, Peter M.; Schotanus, Mark P.; Haarsma, Loren D.; Ubels, John L.

    2017-01-01

    UVB exposure at ambient outdoor levels triggers rapid K+ loss and apoptosis in human corneal limbal epithelial (HCLE) cells cultured in medium containing 5.5 mM K+, but considerably less apoptosis occurs when the medium contains the high K+ concentration that is present in tears (25 mM). Since Ba2+ blocks several K+ channels, we tested whether Ba2+-sensitive K+ channels are responsible for some or all of the UVB-activated K+ loss and subsequent activation of the caspase cascade and apoptosis. Corneal epithelial cells in culture were exposed to UVB at 80 or 150 mJ/cm2. Patch-clamp recording was used to measure UVB-induced K+ currents. Caspase-activity and TUNEL assays were performed on HCLE cells exposed to UVB followed by incubation in the presence or absence of Ba2+. K+ currents were activated in HCLE cells following UVB-exposure. These currents were reversibly blocked by 5 mM Ba2+. When HCLE cells were incubated with 5 mM Ba2+ after exposure to UVB, activation of caspases-9, -8, and -3 and DNA fragmentation were significantly decreased. The data confirm that UVB-induced K+ current activation and loss of intracellular K+ leads to activation of the caspase cascade and apoptosis. Extracellular Ba2+ inhibits UVB-induced apoptosis by preventing loss of intracellular K+ when K+ channels are activated. Ba2+ therefore has effects similar to elevated extracellular K+ in protecting HCLE cells from UVB-induced apoptosis. This supports our overall hypothesis that elevated K+ in tears contributes to protection of the corneal epithelium from adverse effects of ambient outdoor UVB. PMID:27189864

  7. Apparent respiration rate of the human corneal epithelium with tetracaine HCl and benoxinate HCl.

    PubMed

    Bentley, C R; Larke, J R

    1983-12-01

    Local anesthetics may have a cytotoxic effect which causes a depression in the apparent epithelial oxygen uptake rate (AEOR) of the cornea. We measured the AEOR of human corneas in vivo before and after applying 1% tetracaine (amethocaine) HCl and 0.4% benoxinate HCl. These drugs had no effect on AEOR. In human corneas that had been subjected to a period of hypoxia, AEOR was slightly higher after administration of benoxinate, a result in the opposite direction to that expected on the grounds of toxicity. The increase was not statistically significant. We conclude that clinical doses of tetracaine HCl and benoxinate HCl normally have a minimal cytotoxic effect, and that this is similarly true when benoxinate is applied to the cornea after contact lens wear.

  8. Human milk hyaluronan enhances innate defense of the intestinal epithelium.

    PubMed

    Hill, David R; Rho, Hyunjin K; Kessler, Sean P; Amin, Ripal; Homer, Craig R; McDonald, Christine; Cowman, Mary K; de la Motte, Carol A

    2013-10-04

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.

  9. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    PubMed Central

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  10. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  11. High molecular weight hyaluronan decreases oxidative DNA damage induced by EDTA in human corneal epithelial cells

    PubMed Central

    Ye, J; Wu, H; Wu, Y; Wang, C; Zhang, H; Shi, X; Yang, J

    2012-01-01

    Purpose To investigate the toxic effects of ethylenediaminetetraacetic acid disodium salt (EDTA), a corneal penetration enhancer in topical ophthalmic formulations, on DNA in human corneal epithelial cells (HCEs), and to investigate whether the effect induced by EDTA can be inhibited by high molecular weight hyaluronan (HA). Methods Cells were exposed to EDTA in concentrations ranging from 0.00001 to 0.01% for 60 min, or 30 min high molecular weight HA pretreatment followed by EDTA treatment. The cell viability was measured by the MTT test. Cell apoptosis was determined with annexin V staining by flow cytometry. The DNA single- and double-strand breaks of HCEs were examined by alkaline comet assay and by immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci, respectively. Reactive oxygen species (ROS) production was assessed by the fluorescent probe, 2′, 7′-dichlorodihydrofluorescein diacetate. Results EDTA exhibited no adverse effect on cell viability and did not induce cell apoptosis in human corneal epithelial cells at concentrations lower than 0.01%. However, a significant increase of DNA single- and double-strand breaks was observed in a dose-dependent manner with all the concentrations of EDTA tested in HCEs. In addition, EDTA treatment led to elevated ROS generation. Moreover, 30 min preincubation with high molecular weight HA significantly decreased EDTA-induced ROS generation and DNA damage. Conclusions EDTA could induce DNA damage in HCEs, probably through oxidative stress. Furthermore, high molecular weight HA was an effective protective agent that had antioxidant properties and decreased DNA damage induced by EDTA. PMID:22595911

  12. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    PubMed

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  13. Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro

    PubMed Central

    Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.

    2012-01-01

    Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042

  14. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice.

    PubMed

    Zeng, Peng; Pi, Rong-biao; Li, Peng; Chen, Rong-xin; Lin, Li-mian; He, Hong; Zhou, Shi-you

    2015-01-01

    To investigate the effects and mechanisms of fasudil hydrochloride (fasudil) on and in alkali burn-induced corneal neovascularization (CNV) in mice. To observe the effect of fasudil, mice with alkali-burned corneas were treated with either fasudil eye drops or phosphate-buffered saline (PBS) four times per day for 14 consecutive days. After injury, CNV and corneal epithelial defects were measured. The production of reactive oxygen species (ROS) and heme oxygenase-1(HO-1) was measured. The infiltration of polymorphonuclear neutrophils (PMNs) and the mRNA expressions of CNV-related genes were analyzed on day 14. The incidence of CNV was significantly lower after treatment with 100 μM and 300 μM fasudil than with PBS, especially with 100 μM fasudil. Meanwhile, the incidences of corneal epithelial defects was lower (n=15, all p<0.01). After treatment with 100 μM fasudil, the intensity of DHE fluorescence was reduced in the corneal epithelium and stroma than with PBS treatment (n=5, all p<0.01), and the number of filtrated PMNs decreased. There were significant differences between the expressions of VEGF, TNF-a, MMP-8, and MMP-9 in the 100 μM fasudil group and the PBS group (n=8, all p<0.05). The production of HO-1 protein in the 100 μM fasudil group was 1.52±0.34 times more than in the PBS group (n=5 sample, p<0.05). 100 μM fasudil eye drops administered four times daily can significantly inhibit alkali burn-induced CNV and promote the healing of corneal epithelial defects in mice. These effects are attributed to a decrease in inflammatory cell infiltration, reduction of ROS, and upregulation of HO-1 protein after fasudil treatment.

  15. Recurrent Corneal Erosions in Corneal Dystrophies: a Review of the Pathogenesis, Differential Diagnosis, and Therapy.

    PubMed

    Omari, Amro A; Mian, Shahzad I

    2018-06-01

    Recurrent corneal erosions in corneal dystrophies are visually significant and bothersome to patients. The goal of this article is to review the pathogenesis, differential diagnosis, and management of recurrent corneal erosions in corneal dystrophies. Forty-eight articles and 1 textbook recently published on corneal erosions in corneal dystrophies were reviewed. The findings on the pathogenesis and clinical characteristics of erosions in each dystrophy were summarized. Any contradicting opinions for which the literature was unclear were either omitted or recorded as lacking strong evidence. The epithelial-stromal complex plays an important role in the pathogenesis of erosions in corneal dystrophies. The clinical features of each corneal dystrophy guide their diagnosis and management. A better understanding of the pathogenesis and clinical features of erosions in corneal dystrophies can lead to better clinical outcomes. Georg Thieme Verlag KG Stuttgart · New York.

  16. Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring

    PubMed Central

    Shojaati, Golnar; Khandaker, Irona; Sylakowski, Kyle; Funderburgh, Martha L.; Du, Yiqin

    2018-01-01

    Abstract Stem cells from human corneal stroma (CSSC) suppress corneal stromal scarring in a mouse wound‐healing model and promote regeneration of native transparent tissue (PMID:25504883). This study investigated efficacy of compressed collagen gel (CCG) as a vehicle to deliver CSSC for corneal therapy. CSSC isolated from limbal stroma of human donor corneas were embedded in soluble rat‐tendon collagen, gelled at 37°C, and partially dehydrated to a thickness of 100 µm by passive absorption. The CCG disks were dimensionally stable, easy to handle, and could be adhered securely to de‐epithelialized mouse cornea with fibrin‐based adhesive. CSSC in CCG maintained >80% viability for >1 week in culture media and could be cryopreserved in 20% fetal bovine serum‐10%DMSO in liquid nitrogen. CCG containing as few as 500 CSSC effectively prevented visible scarring and suppressed expression of fibrotic Col3a1 mRNA. CSSC in CCG were more effective at blocking scarring on a per‐cell basis than CSSC delivered directly in a fibrin gel as previously described. Collagen‐embedded cells retained the ability to suppress corneal scarring after conventional cryopreservation. This study demonstrates use of a common biomaterial that can facilitate storage and handling of stem cells in a manner that may provide off‐the‐shelf delivery of stem cells as a therapy for corneal scarring. stem cells translational medicine 2018;7:487–494 PMID:29654654

  17. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  18. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage.

    PubMed

    Jiang, Dan; Gao, Fei; Zhang, Yuelin; Wong, David Sai Hung; Li, Qing; Tse, Hung-Fat; Xu, Goufeng; Yu, Zhendong; Lian, Qizhou

    2016-11-10

    Recent studies have demonstrated that mesenchymal stem cells (MSCs) can donate mitochondria to airway epithelial cells and rescue mitochondrial damage in lung injury. We sought to determine whether MSCs could donate mitochondria and protect against oxidative stress-induced mitochondrial dysfunction in the cornea. Co-culturing of MSCs and corneal epithelial cells (CECs) indicated that the efficiency of mitochondrial transfer from MSCs to CECs was enhanced by Rotenone (Rot)-induced oxidative stress. The efficient mitochondrial transfer was associated with increased formation of tunneling nanotubes (TNTs) between MSCs and CECs, tubular connections that allowed direct intercellular communication. Separation of MSCs and CECs by a transwell culture system revealed no mitochiondrial transfer from MSCs to CECs and mitochondrial function was impaired when CECs were exposed to Rot challenge. CECs with or without mitochondrial transfer from MSCs displayed a distinct survival capacity and mitochondrial oxygen consumption rate. Mechanistically, increased filopodia outgrowth in CECs for TNT formation was associated with oxidative inflammation-activated NFκB/TNFαip2 signaling pathways that could be attenuated by reactive oxygen species scavenger N-acetylcysteine (NAC) treatment. Furthermore, MSCs grown on a decellularized porcine corneal scaffold were transplanted onto an alkali-injured eye in a rabbit model. Enhanced corneal wound healing was evident following healthy MSC scaffold transplantation. And transferred mitochondria was detected in corneal epithelium. In conclusion, mitochondrial transfer from MSCs provides novel protection for the cornea against oxidative stress-induced mitochondrial damage. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.

  19. Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk in the reproductive cycle.

    PubMed

    Zhu, Jie; Xu, Yuanming; Rashedi, Alexandra S; Pavone, Mary Ellen; Kim, J Julie; Woodruff, Teresa K; Burdette, Joanna E

    2016-11-01

    Do interactions between human fallopian tube epithelium and murine follicles occur during an artificial reproductive cycle in a co-culture system in vitro? In a co-culture system, human fallopian tissues responded to the menstrual cycle mimetic by changes in morphology and levels of secreted factors, and increasing murine corpus luteum progesterone secretion. The entire fallopian tube epithelium, including ciliated and secretory cells, can be regulated in the reproductive cycle. Currently, there are no in vitro culture models that can monitor fallopian tissues in real time in response to factors produced by the ovary. In addition, there are no reports on the impact of fallopian tissue on ovarian function during the menstrual cycle. Human fallopian tissue (n = 24) was obtained by routine hysterectomies from women (aged 26-50 years, mean age = 43.6) who had not undergone exogenous hormonal treatment for at least 3 months prior to surgery. CD1 female mice were used for ovarian follicle isolation. The human fallopian epithelium layers were either co-cultured with five murine multilayer secondary follicles (150-180 μm follicles, encapsulated in one alginate gel bead) for 15 days or received stepwise steroid hormone additions for 13 days. The fallopian tissue morphology and cilia beating rate, as measured by an Andor Spinning Disk Confocal, were investigated. Oviduct-specific glycoprotein 1 (OVGP1), human insulin-like growth factor 1 (hIGF1), vascular endothelial growth factor A (VEGF-A) and interleukin 8 (IL8) as biological functional markers were measured either by ELISA or western blot to indicate dynamic changes in the fallopian epithelium during the reproductive cycle generated by mouse follicles or by stepwise steroid hormone induction. Three or four patients in each experiment were recruited for replicates. Data were presented as mean ± SD and further analyzed using one-way ANOVA followed by Tukey's multiple comparisons test. The cultured fallopian tube

  20. The effect of riboflavin-UV-A treatment on corneal limbal epithelial cells--a study on human cadaver eyes.

    PubMed

    Vimalin, Jeyalatha; Gupta, Nidhi; Jambulingam, Malathi; Padmanabhan, Prema; Madhavan, Hajib N

    2012-09-01

    To determine the effect of riboflavin-UV-A treatment on the corneal limbal epithelial cells during a corneal collagen cross-linking (CXL) procedure. Thirty freshly enucleated human cadaveric eyeballs were subjected to a CXL procedure, mimicking the clinical protocol. During the UV-A exposure, one half of the limbus (sector A) was left unprotected, whereas the other half (sector B) was covered by a metal shield. Limbal biopsies from both sectors before and after the procedure were analyzed. Each strip of tissue was divided into 3 segments, for cell count of viable cells, for cultivation on human amniotic membrane (HAM), and for stem cell and differentiated corneal epithelial cell marker studies using reverse transcriptase-polymerase chain reaction. Compared with the cell count before CXL, there was a statistically significant drop in the mean number of viable cells after CXL in sector A but not in sector B. Biopsies from both sectors before CXL and from sector B after CXL showed good growth on HAM. Biopsies from sector A after CXL showed no growth on HAM. The putative stem cell marker ABCG2 was absent in all samples and p63 was absent in 3 of 10 samples taken from sector A after CXL. All markers were present in all samples from sector B after CXL. Riboflavin-UV-A treatment can result in damage to limbal epithelial cells, particularly the stem cells. Covering the limbal region with a metal shield effectively prevents this damage.

  1. Ocular dimensions, corneal thickness, and corneal curvature in quarter horses with hereditary equine regional dermal asthenia.

    PubMed

    Badial, Peres R; Cisneros-Àlvarez, Luis Emiliano; Brandão, Cláudia Valéria S; Ranzani, José Joaquim T; Tomaz, Mayana A R V; Machado, Vania M; Borges, Alexandre S

    2015-09-01

    The aim of this study was to compare ocular dimensions, corneal curvature, and corneal thickness between horses affected with hereditary equine regional dermal asthenia (HERDA) and unaffected horses. Five HERDA-affected quarter horses and five healthy control quarter horses were used. Schirmer's tear test, tonometry, and corneal diameter measurements were performed in both eyes of all horses prior to ophthalmologic examinations. Ultrasonic pachymetry was performed to measure the central, temporal, nasal, dorsal, and ventral corneal thicknesses in all horses. B-mode ultrasound scanning was performed on both eyes of each horse to determine the dimensions of the ocular structures and to calculate the corneal curvature. Each corneal region examined in this study was thinner in the affected group compared with the healthy control group. However, significant differences in corneal thickness were only observed for the central and dorsal regions. HERDA-affected horses exhibited significant increases in corneal curvature and corneal diameter compared with unaffected animals. The ophthalmologic examinations revealed mild corneal opacity in one eye of one affected horse and in both eyes of three affected horses. No significant between-group differences were observed for Schirmer's tear test, intraocular pressure, or ocular dimensions. Hereditary equine regional dermal asthenia-affected horses exhibit decreased corneal thickness in several regions of the cornea, increased corneal curvature, increased corneal diameter, and mild corneal opacity. Additional research is required to determine whether the increased corneal curvature significantly impacts the visual accuracy of horses with HERDA. © 2014 American College of Veterinary Ophthalmologists.

  2. Protocol for vital dye staining of corneal endothelial cells.

    PubMed

    Park, Sunju; Fong, Alan G; Cho, Hyung; Zhang, Cheng; Gritz, David C; Mian, Gibran; Herzlich, Alexandra A; Gore, Patrick; Morganti, Ashley; Chuck, Roy S

    2012-12-01

    To describe a step-by-step methodology to establish a reproducible staining protocol for the evaluation of human corneal endothelial cells. Four procedures were performed to determine the best protocol. (1) To determine the optimal trypan blue staining method, goat corneas were stained with 4 dilutions of trypan blue (0.4%, 0.2%, 0.1%, and 0.05%) and 1% alizarin red. (2) To determine the optimal alizarin red staining method, goat corneas were stained with 2 dilutions of alizarin red (1% and 0.5%) and 0.2% trypan blue. (3) To ensure that trypan blue truly stains damaged cells, goat corneas were exposed to either 3% hydrogen peroxide or to balanced salt solution, and then stained with 0.2% trypan blue and 0.5% alizarin red. (4) Finally, fresh human corneal buttons were examined; 1 group was stained with 0.2% trypan blue and another group with 0.4% trypan blue. For the 4 procedures performed, the results are as follows: (1) trypan blue staining was not observed in any of the normal corneal samples; (2) 0.5% alizarin red demonstrated sharper cell borders than 1% alizarin red; (3) positive trypan blue staining was observed in the hydrogen peroxide exposed tissue in damaged areas; (4) 0.4% trypan blue showed more distinct positive staining than 0.2% trypan blue. We were able to determine the optimal vital dye staining conditions for human corneal endothelial cells using 0.4% trypan blue and 0.5% alizarin red.

  3. A novel quantitative methodology for age evaluation of the human corneal endothelium

    NASA Astrophysics Data System (ADS)

    Rannou, Klervi; Thuret, Gilles; Gain, Philippe; Pinoli, Jean-Charles; Gavet, Yann

    2017-03-01

    The human corneal endothelium regulates the cornea transparency. Its cells, that cannot regenerate after birth, form a tesselated mosaic with almost perfect hexagonal cells during childhood, becoming progressively bigger and less ordered during aging. This study included 50 patients (in 10 decades groups) and 10 specular microscopy observations per patient. Five different criteria were measured on the manually segmented cells: area and perimeter of the cells as well as reduced Minkowski functionals. All these criteria were used to assess the probability of age group membership. We demonstrated that the age evaluation is near the reality, although a high variability was observed for patients between 30 and 70 years old.

  4. A Cell Culture Approach to Optimized Human Corneal Endothelial Cell Function

    PubMed Central

    Bartakova, Alena; Kuzmenko, Olga; Alvarez-Delfin, Karen; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2018-01-01

    Purpose Cell-based therapies to replace corneal endothelium depend on culture methods to optimize human corneal endothelial cell (HCEC) function and minimize endothelial-mesenchymal transition (EnMT). Here we explore contribution of low-mitogenic media on stabilization of phenotypes in vitro that mimic those of HCECs in vivo. Methods HCECs were isolated from cadaveric donor corneas and expanded in vitro, comparing continuous presence of exogenous growth factors (“proliferative media”) to media without those factors (“stabilizing media”). Identity based on canonical morphology and expression of surface marker CD56, and function based on formation of tight junction barriers measured by trans-endothelial electrical resistance assays (TEER) were assessed. Results Primary HCECs cultured in proliferative media underwent EnMT after three to four passages, becoming increasingly fibroblastic. Stabilizing the cells before each passage by switching them to a media low in mitogenic growth factors and serum preserved canonical morphology and yielded a higher number of cells. HCECs cultured in stabilizing media increased both expression of the identity marker CD56 and also tight junction monolayer integrity compared to cells cultured without stabilization. Conclusions HCECs isolated from donor corneas and expanded in vitro with a low-mitogenic media stabilizing step before each passage demonstrate more canonical structural and functional features and defer EnMT, increasing the number of passages and total canonical cell yield. This approach may facilitate development of HCEC-based cell therapies. PMID:29625488

  5. Corneal fibrosarcoma in a cat.

    PubMed

    Strong, Travis D; Tangeman, Sarah; Ben-Shlomo, Gil; Haynes, Joseph; Allbaugh, Rachel A

    2016-07-01

    To present the clinicopathologic features of a Domestic Short-haired cat with spontaneous, intermediate-grade corneal fibrosarcoma, possibly secondary to chronic corneal irritation associated with a corneal sequestrum. A 12-year-old, spayed female Domestic Short-haired cat was evaluated for a slowly growing, pink, exophytic mass affecting the left cornea. The cat had presented 6 years previously for bilateral brown corneal sequestra, as well as 3 years previously for a small pale growth on the left cornea hypothesized to be an epithelial inclusion cyst and a corneal ulcer affecting the right eye. Incisional biopsy of the corneal mass indicated intermediate-grade corneal fibrosarcoma within the corneal stroma. Owing to the potential for malignant behavior, the left globe was enucleated. Routine systemic staging was performed prior to surgery with no evidence of metastasis. Definitive diagnosis of corneal fibrosarcoma was made through histopathologic examination of the incisional biopsy. There was an elevated mitotic index, indicating an intermediate-grade phenotype. Histopathology of the enucleated globe substantiated the initial findings, and complete tumor resection was confirmed. Subjacent to the corneal fibrosarcoma, there was a region of necrotic tissue suggestive of a corneal sequestrum. Six months after diagnosis and enucleation, the patient remained healthy with no signs of local spread or distant metastasis. To the authors' knowledge, this is the first documented case of a corneal fibrosarcoma in a cat. © 2016 American College of Veterinary Ophthalmologists.

  6. Electrolysis for corneal opacities in a young patient with superficial variant of granular corneal dystrophy (Reis-Bücklers corneal dystrophy).

    PubMed

    Kamoi, Mizuka; Mashima, Yukihiko; Kawashima, Motoko; Tsubota, Kazuo

    2005-06-01

    To report the efficacy of electrolysis as a treatment of corneal opacities in a young patient with the superficial variant of granular corneal dystrophy. Interventional case report. An 11-year-old boy presented with subepithelial opacities in both eyes. His visual acuity was 0.2 in the left eye; he received corneal electrolysis under topical anesthesia. The electrolysis, which required only 5 minutes, resulted in the disappearance of the subepithelial opacities. His visual acuity improved to 0.4 on the next day and was 1.0 eight months later. The corneal curvature and thickness were not altered by the electrolysis. Corneal electrolysis proved to be an effective treatment for subepithelial opacities, and we recommend electrolysis as an effective and simple treatment for young patients with SGCD.

  7. Corneal imaging by second and third harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Brocas, Arnaud; Jay, Louis; Mottay, Eric; Brunette, Isabelle; Ozaki, Tsuneyuki

    2008-02-01

    Advanced imaging methods are essential tools for improved outcome of refractive surgery. Second harmonic generation (SHG) and third harmonic generation (THG) microscopy are noninvasive high-resolution imaging methods, which can discriminate the different layers of the cornea, thus having strong impact on the outcome of laser surgery. In this work, we use an Ytterbium femtosecond laser as the laser source, the longer wavelength of which reduces scattering, and allows simultaneous SHG and THG imaging. We present SHG and THG images and profiles of pig corneas that clearly show the anterior surface of the cornea, the entry in the stroma and its end, and the posterior surface of the cornea. These observations allow localizing the epithelium, the stroma and the endothelium. Other experiments give information about the structure and cytology of the corneal layers.

  8. [Defense mechanisms of the surface epithelium of the human esophageal mucosa].

    PubMed

    Bykov, V L; Iseeva, E A

    2006-01-01

    This review, which is based on the literature data and the results of personal research, contains an analysis of the current concepts on the tissue, cellular and molecular mechanisms, protecting human esophageal epithelium (EE) from gastric juice, bile, hot and rough food, microorganisms, alcohol, carcinogens, drugs and oxidizing agents. The response of EE to concrete environmental factors includes both specific and non-specific components, which depend on the nature of injurious agent. EE is damaged structurally and functionally only when it is exposed to the injurious factors of high intensity and/or long duration, which result in the exhaustion of resources of defense mechanisms. The insufficiency of EE defense mechanisms may be based on various genetic defects.

  9. Generation and characterisation of decellularised human corneal limbus.

    PubMed

    Spaniol, Kristina; Witt, Joana; Mertsch, Sonja; Borrelli, Maria; Geerling, Gerd; Schrader, Stefan

    2018-03-01

    Limbal epithelial stem cells (LESC) reside in a niche in the corneo-scleral transition zone. Deficiency leads to pain, corneal opacity, and eventually blindness. LESC transplantation of ex-vivo expanded human LESC on a carrier such as human amniotic membrane is a current treatment option. We evaluated decellularised human limbus (DHL) as a potential carrier matrix for the transplantation of LESC. Human corneas were obtained from the local eye bank. The limbal tissue was decellularised by sodium desoxychelate and DNase solution and sterilised by γ-irradiation. Native limbus- and DHL-surface structures were assessed by scanning electron microscopy and collagen ultrastructure using transmission electron microscopy. Presence and preservation of limbal basement membrane proteins in native limbus and DHL were analysed immunohistochemically. Absence of DNA after decellularisation was assessed by Feulgen staining and DNA quantification. Presence of immune cells was explored by CD45 staining, and potential cytotoxicity was tested using a cell viability assay. In the DHL, the DNA content was reduced from 1.5 ± 0.3 μg/mg to 0.15 ± 0.01 μg/mg; the three-dimensional structure and the arrangement of the collagen fibrils were preserved. Main basement membrane proteins such as collagen IV, laminin, and fibronectin were still present after decellularisation and γ-irradiation. CD45-expressing cells were evident neither in the native limbus nor in the DHL. DHL did not convey cytotoxicity. The extracellular matrix (ECM) of the limbus provides a tissue specific morphology and three-dimensionality consisting of particular ECM proteins. It therefore represents a substantial component of the stem cell niche. The DHL provides a specific limbal niche surrounding, and might serve as an easily producible carrier matrix for LESC transplantation.

  10. Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography

    PubMed Central

    Li, Yan; Chamberlain, Winston; Tan, Ou; Brass, Robert; Weiss, Jack L.; Huang, David

    2016-01-01

    PURPOSE To screen for subclinical keratoconus by analyzing corneal, epithelial, and stromal thickness map patterns with Fourier-domain optical coherence tomography (OCT). SETTING Four centers in the United States. DESIGN Cross-sectional observational study. METHODS Eyes of normal subjects, subclinical keratoconus eyes, and the topographically normal eye of a unilateral keratoconus patient were studied. Corneas were scanned using a 26 000 Hz Fourier-domain OCT system (RTVue). Normal subjects were divided into training and evaluation groups. Corneal, epithelial, and stromal thickness maps and derived diagnostic indices, including pattern standard deviation (PSD) variables and pachymetric map–based keratoconus risk scores were calculated from the OCT data. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the diagnostic accuracy of the indices. RESULTS The study comprised 150 eyes of 83 normal subjects, 50 subclinical keratoconus eyes of 32 patients, and 1 topographically normal eye of a unilateral keratoconus patient. Subclinical keratoconus was characterized by inferotemporal thinning of the cornea, epithelium, and stroma. The PSD values for corneal (P < .001), epithelial (P < .001), and stromal (P = .049) thickness maps were all significantly higher in subclinical keratoconic eyes than in the normal group. The diagnostic accuracy was significantly higher for PSD variables (pachymetric PSD, AUC = 0.941; epithelial PSD, AUC = 0.985; stromal PSD, AUC = 0.924) than for the pachymetric map–based keratoconus risk score (AUC = 0.735). CONCLUSIONS High-resolution Fourier-domain OCT could map corneal, epithelial, and stromal thicknesses. Corneal and sublayer thickness changes in subclinical keratoconus could be detected with high accuracy using PSD variables. These new diagnostic variables might be useful in the detection of early keratoconus. PMID:27026454

  11. Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium.

    PubMed

    Minovi, Amir; Witt, Martin; Prescher, Andreas; Gudziol, Volker; Dazert, Stefan; Hatt, Hanns; Benecke, Heike

    2010-02-01

    The olfactory epithelium (OE) is unique in regenerating throughout life and thus is an attractive target for examining neurogenesis. The nestin protein was shown to be expressed in the OE of rodents and is suggested to be essentially involved in the process of regeneration. Here we report the expression and distribution of nestin in the human OE at RNA and protein level. Moreover, we analysed the expression profiles in dependence on age and olfactory capacity. After sinus surgery, biopsies were taken from the olfactory epithelium of 16 patients aged 20-80 years with documented differences in their olfactory function. Our studies revealed that nestin is constantly detectable in the apical protuberances of sustentacular cells within the human OE of healthy adults. Its expression is not dependent on age, but rather appears to be related to the olfactory function, as a comparison with specimens obtained from patients suffering either from persistent anosmia or hyposmia suggests. Particularly, in the course of dystrophy, often accompanied with impaired olfaction, nestin expression was occasionally decreased. Contrarily, the expression of the p75-NGFR protein, a marker for human OE basal cells, was not altered, indicating that at least in the tested samples olfactory impairment is not connected with abnormalities at the basal cell level. These observations emphasize an essential role of nestin for the process of regeneration, and also highlight this factor as a candidate marker for sustentacular cells in the human olfactory epithelium.

  12. Human fallopian tube epithelium co-culture with murine ovarian follicles reveals crosstalk in the reproductive cycle

    PubMed Central

    Zhu, Jie; Xu, Yuanming; Rashedi, Alexandra S.; Pavone, Mary Ellen; Kim, J. Julie; Woodruff, Teresa K.; Burdette, Joanna E.

    2016-01-01

    Study question Do interactions between human fallopian tube epithelium and murine follicles occur during an artificial reproductive cycle in a co-culture system in vitro? Summary answer In a co-culture system, human fallopian tissues responded to the menstrual cycle mimetic by changes in morphology and levels of secreted factors, and increasing murine corpus luteum progesterone secretion. What is known already The entire fallopian tube epithelium, including ciliated and secretory cells, can be regulated in the reproductive cycle. Currently, there are no in vitro culture models that can monitor fallopian tissues in real time in response to factors produced by the ovary. In addition, there are no reports on the impact of fallopian tissue on ovarian function during the menstrual cycle. Study design, samples/materials, methods Human fallopian tissue (n = 24) was obtained by routine hysterectomies from women (aged 26–50 years, mean age = 43.6) who had not undergone exogenous hormonal treatment for at least 3 months prior to surgery. CD1 female mice were used for ovarian follicle isolation. The human fallopian epithelium layers were either co-cultured with five murine multilayer secondary follicles (150–180 μm follicles, encapsulated in one alginate gel bead) for 15 days or received stepwise steroid hormone additions for 13 days. The fallopian tissue morphology and cilia beating rate, as measured by an Andor Spinning Disk Confocal, were investigated. Oviduct-specific glycoprotein 1 (OVGP1), human insulin-like growth factor 1 (hIGF1), vascular endothelial growth factor A (VEGF-A) and interleukin 8 (IL8) as biological functional markers were measured either by ELISA or western blot to indicate dynamic changes in the fallopian epithelium during the reproductive cycle generated by mouse follicles or by stepwise steroid hormone induction. Three or four patients in each experiment were recruited for replicates. Data were presented as mean ± SD and further analyzed

  13. Corneal toxicity induced by vesicating agents and effective treatment options

    PubMed Central

    Goswami, Dinesh G.; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-01-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial (HCE) cells and rabbit corneal organ culture models with the SM analog nitrogen mustard (NM), which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  14. Corneal Crosslinking With Rose Bengal and Green Light: Efficacy and Safety Evaluation.

    PubMed

    Zhu, Hong; Alt, Clemens; Webb, Robert H; Melki, Samir; Kochevar, Irene E

    2016-09-01

    To evaluate crosslinking of cornea in vivo using green light activation of Rose Bengal (RGX) and assess potential damaging effects of the green light on retina and iris. Corneas of Dutch belted rabbits were de-epithelialized, then stained with Rose Bengal and exposed to green light, or not further treated. Corneal stiffness was measured by uniaxial tensiometry. Re-epithelialization was assessed by fluorescein fluorescence. Keratocytes were counted on hematoxylin and eosin (H&E)-stained sections, and iris cell damage was assessed by lactate dehydrogenase staining. Thermal effects on the blood-retinal barrier (BRB) were assessed by fluorescein angiography and those on photoreceptors, retinal pigment epithelium (RPE), and choriocapillaris by light microscopy and transmission electron microscopy. RGX (10-min irradiation; 150 J/cm) increased corneal stiffness 1.9-fold on day 1 (1.25 ± 0.21 vs. 2.38 ± 0.59 N/mm; P = 0.036) and 2.8-fold compared with controls on day 28 (1.70 ± 0.74 vs. 4.95 ± 1.86 N/mm; P = 0.003). Keratocytes decreased only in the anterior stroma on day 1 (24.0 ± 3.0 vs. 3.67 ± 4.73, P = 0.003) and recovered by day 28 (37.7 ± 8.9 vs. 34.5 ± 2.4, P = 0.51). Iris cells were not thermally damaged. No evidence of BRB breakdown was detected on days 1 or 28. Retina from RGX-treated eyes seemed normal with RPE cells showing intact nuclei shielded apically by melanosomes, morphologically intact photoreceptor outer segments, normal outer nuclear layer thickness, and choriocapillaris containing intact erythrocytes. The substantial corneal stiffening produced by RGX together with the lack of significant effects on keratocytes and no evidence for retina or iris damage suggest that RGX-initiated corneal crosslinking may be a safe, rapid, and effective treatment.

  15. Correlation between corneal and ambient temperature with particular focus on polar conditions.

    PubMed

    Slettedal, Jon Klokk; Ringvold, Amund

    2015-08-01

    To examine the relationship between human corneal and environmental temperature. An infrared camera was used to measure the corneal surface temperature in a group of healthy volunteers as well as in an experimental setting with donor corneas and an artificial anterior chamber, employing circulating saline at +37°C. Liquid nitrogen was used to obtain a very low temperature in the experimental setting. High ambient temperature measurements were performed in a sauna. In healthy volunteers, the cornea required at least 20-30 min to adapt to change in ambient temperature. The relationship between corneal and external temperature was relatively linear. At the two extremes, +83°C and -40°C, the corneal temperature was +42°C and +25.1°C, respectively. In the experimental setting, corneal temperature was +24.3°C at air temperature -40°C. A rather stable aqueous humour temperature of +37°C and high thermal conductivity of the corneal tissue prevent corneal frostbite even at extremely low ambient temperatures. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Clonidine Induces Apoptosis of Human Corneal Epithelial Cells through Death Receptors-Mediated, Mitochondria-Dependent Signaling Pathway.

    PubMed

    Fan, Dan; Fan, Ting-Jun

    2017-03-01

    Clonidine, an α2-adrenoreceptor agonist, is an anti-glaucoma drug clinically used in many developing countries, and its abuse might damage the cornea and impair human vision. However, its cytotoxicity and precise mechanisms need to be elucidated. Herein, we investigated the cytotoxicity of clonidine and its underlying mechanisms, using an in vitro model of human corneal epithelial (HCEP) cells and an in vivo model of cat corneas, respectively. HCEP cells were treated with various doses of clonidine for 1-28 h, resulting in abnormal morphology, decline of cell viability and G1 phase arrest in a time- and/or dose-dependent manner. Moreover, clonidine treatment induced elevation of plasma membrane permeability, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation in HCEP cells. Furthermore, we found that clonidine treatment resulted in activated caspase-2, -3, -8, and -9, disruption of the mitochondrial transmembrane potential, downregulation of Bcl-2, and upregulation of Bad, cytoplasmic cytochrome c and apoptosis inducing factor, suggesting that clonidine-induced apoptosis is triggered through Fas/TNFR1 death receptors and Bcl-2 family proteins-mediated mitochondria-dependent pathways. Finally, our in vivo results displayed that 0.25% clonidine could induce DNA fragmentation of cat corneal epithelial cells. In summary, our findings suggest that clonidine above 1/32 of its clinical therapeutic dosage is cytotoxic to corneal epithelial cells by inducing cell apoptosis both in vitro and in vivo, and its pro-apoptotic effect on HCEP cells is triggered by a Fas/TNFR1 death receptors-mediated, mitochondria-dependent signaling pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Constitutive and UV-B modulated transcription of Nod-like receptors and their functional partners in human corneal epithelial cells.

    PubMed

    Benko, Szilvia; Tozser, Jozsef; Miklossy, Gabriella; Varga, Aliz; Kadas, Janos; Csutak, Adrienne; Berta, Andras; Rajnavolgyi, Eva

    2008-08-29

    To determine the transcription pattern of Nod-like receptors (NLRs) and inflammasome components (apoptosis-associated speck-like protein containing a CARD [ASC], CARD inhibitor of NFkB-activating ligands [Cardinal], and caspase-1) in human corneal epithelial cells obtained from healthy individuals undergoing photorefractive keratectomy and in immortalized human corneal epithelial cells (HCE-T). Human corneal epithelial cells were taken from the eyes of healthy individuals by epithelial ablation for photorefractive keratectomy (PRK). The SV-40 immortalized human corneal epithelial cell line (HCE-T) was cultured. mRNA obtained from the cells was reverse transcribed and subjected to quantitative real-time polymerase chain reaction (PCR) measurements. Protein obtained from HCE-T cells was studied using the western blot technique. HCE-T cells were irradiated by UV-B light or treated with ultrapure peptidoglycan, and the effects were studied at the mRNA and protein level while the supernatant of the cells was tested for the presence of various cytokines by using enzyme-linked immunosorbent assay (ELISA) methods. mRNA levels of the studied proteins in the primary cells of the donors were similar in most cases. The transcription of Nod1, Nod2, NLRX1, Nalp1, and Cardinal was similar in the two cell types. While the expression of Nalp3 and Nalp10 was higher in HCE-T cells, ASC and caspase-1 showed higher transcription levels in the primary cells. NLRC5 and Nalp7 were hardly detectable in the studied cells. Functionality of the Nod1/Nod2 system was demonstrated by increased phosphorylation of IkB upon Nod1/Nod2 agonist ultrapure peptidoglycan treatment in HCE-T cells. While UV-B irradiation exerted a downregulation of both Nalp and Nod mRNAs as well as those of inflammasome components in HCE-T cells, longer incubation of the cells after exposure resulted in recovery or upregulation only of the Nalp sensors. At the protein level, we detected a short isoform of Nalp1 and its

  18. Wavelength-dependent ultraviolet induction of cyclobutane pyrimidine dimers in the human cornea.

    PubMed

    Mallet, Justin D; Rochette, Patrick J

    2013-08-01

    Exposition to ultraviolet (UV) light is involved in the initiation and the progression of skin cancer. The genotoxicity of UV light is mainly attributed to the induction of cyclobutane pyrimidine dimers (CPDs), the most abundant DNA damage generated by all UV types (UVA, B and C). The human cornea is also exposed to the harmful UV radiations, but no UV-related neoplasm has been reported in this ocular structure. The probability that a specific DNA damage leads to a mutation and eventually to cellular transformation is influenced by its formation frequency. To shed light on the genotoxic effect of sunlight in the human eye, we have analyzed CPD induction in the cornea and the iris following irradiation of ex vivo human eyes with UVA, B or C. The extent of CPD induction was used to establish the penetrance of the different UV types in the human cornea. We show that UVB- and UVC-induced CPDs are concentrated in the corneal epithelium and do not penetrate deeply beyond this corneal layer. On the other hand, UVA wavelengths penetrate deeper and induce CPDs in the entire cornea and in the first layers of the iris. Taken together, our results are undoubtedly an important step towards better understanding the consequences of UV exposure to the human eye.

  19. Hyaluronan receptors in the human ocular surface: a descriptive and comparative study of RHAMM and CD44 in tissues, cell lines and freshly collected samples.

    PubMed

    García-Posadas, Laura; Contreras-Ruiz, Laura; López-García, Antonio; Villarón Álvarez, Sonia; Maldonado, Miguel J; Diebold, Yolanda

    2012-02-01

    The purpose of this study was to demonstrate the presence of the receptor for hyaluronan-mediated motility (RHAMM) in human conjunctival epithelium and in two widely used cell lines from human corneal (HCE) and conjunctival (IOBA-NHC) epithelia. We compared the distribution of RHAMM proteins and mRNAs in human ocular surface tissues (corneal, limbal and conjunctival), HCE and IOBA-NHC cell lines, and corneal and conjunctival epithelia primary samples from healthy donors with the previously identified hyaluronan receptor CD44. We also aimed to determine if soluble CD44 (sCD44) was present in human tears, as it could have a role in the interaction of the tear fluid with hyaluronan. Protein expression was evaluated by Western blots and immunofluorescence microscopy. mRNA expression was evaluated by RT-PCR and Q-PCR. sCD44 was analyzed by ELISA in culture supernatants and in human tears. We describe the expression of RHAMM in human healthy conjunctiva and in HCE and IOBA-NHC cells at both protein and mRNA levels, and the presence of sCD44 in human tears. Furthermore, we detected CD44 and sCD44 expression variations in in vitro inflammatory conditions. This study also focused on the necessary caution with which the conclusions extracted from cell lines should be made, and in the great value of using primary samples as often as possible.

  20. Age-Related Changes in Corneal Astigmatism.

    PubMed

    Shao, Xu; Zhou, Kai-Jing; Pan, An-Peng; Cheng, Xue-Ying; Cai, He-Xie; Huang, Jin-Hai; Yu, A-Yong

    2017-10-01

    To analyze the changes in corneal astigmatism as a function of age and develop a novel model to estimate corneal astigmatic change according to age. This was a cross-sectional study of right eyes of 3,769 individuals. Total corneal astigmatism, keratometric astigmatism, anterior corneal astigmatism, and posterior corneal astigmatism were measured by a Scheimpflug tomographer. Smoothing fitting curves of polar values of corneal astigmatism as a function of age were drawn and average changes in corneal astigmatism at different ages were calculated. Two turning points of age on total corneal astigmatism were 36 and 69 years. The average change of total corneal astigmatism toward against-the-rule astigmatism was 0.13 diopters (D)/10 years from 18 to 35 years, 0.45 D/10 years from 36 to 68 years, and decreased after 69 years, mainly caused by anterior corneal astigmatism. The mean magnitude of posterior corneal astigmatism was -0.33 D and exceeded 0.50 D in 14.27% of eyes. The vectorial difference between total corneal astigmatism and keratometric astigmatism was correlated with posterior corneal astigmatism, polar value of anterior corneal astigmatism, age, and corneal higher order aberrations (r = 0.636; standard partial regression coefficients were 0.479, -0.466, 0.282, and 0.196, respectively; all P < .001). Based on the non-linear model to estimate corneal astigmatic change with age, a formula was developed to calculate recommended correction of astigmatism according to age and astigmatic type. The rate of change of total corneal astigmatism showed a non-linear trend toward against-the-rule astigmatism, which was low at young and old age, high at middle age, and should be taken into account when performing surgery to correct astigmatism. [J Refract Surg. 2017;33(10):696-703.]. Copyright 2017, SLACK Incorporated.

  1. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture.

    PubMed

    Ghezzi, Chiara E; Marelli, Benedetto; Omenetto, Fiorenzo G; Funderburgh, James L; Kaplan, David L

    2017-01-01

    The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks.

  2. Penetration depth of corneal cross-linking with riboflavin and UV-A (CXL) in horses and rabbits.

    PubMed

    Gallhoefer, Nicolin S; Spiess, Bernhard M; Guscetti, Franco; Hilbe, Monika; Hartnack, Sonja; Hafezi, Farhad; Pot, Simon A

    2016-07-01

    CXL penetration depth is an important variable influencing clinical treatment effect and safety. The purposes of this study were to determine the penetration depth of CXL in rabbit and equine corneas in epithelium-on and epithelium-off procedures and to assess an ex vivo fluorescent biomarker staining assay for objective assessment of CXL penetration depth. CXL treatment was performed according to a standardized protocol on 21 and 17 rabbit eyes and on 12 and 10 equine eyes with and without debridement, respectively. Control corneas were treated similarly, but not exposed to CXL. Hemicorneas were stained with either phalloidin and DAPI to visualize intracellular F-actin and nuclei, or with hematoxylin and eosin. Loss of actin staining was measured and compared between groups. Epithelium-off CXL caused a median actin cytoskeleton loss with a demarcation at 274 μm in rabbits and 173 μm in horses. In non-CXL-treated controls, we observed a median actin cytoskeleton loss with a demarcation at 134 μm in rabbits and 149 μm in horses. No effect was detected in the epithelium-on procedure. CXL penetration depth, as determined by a novel ex vivo fluorescent assay, shows clear differences between species. A distinct effect was observed following epithelium-off CXL treatment in the anterior stroma of rabbits, but no different effect was observed in horses in comparison with nontreated controls. Different protocols need to be established to effectively treat equine patients with infectious corneal disease. © 2015 American College of Veterinary Ophthalmologists.

  3. Developmental origin of the posterior pigmented epithelium of iris.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  4. Human corneal epithelial cell shedding and fluorescein staining in response to silicone hydrogel lenses and contact lens disinfecting solutions.

    PubMed

    Gorbet, Maud; Peterson, Rachael; McCanna, David; Woods, Craig; Jones, Lyndon; Fonn, Desmond

    2014-03-01

    A pilot study was conducted to evaluate human corneal epithelial cell shedding in response to wearing a silicone hydrogel contact lens/solution combination inducing corneal staining. The nature of ex vivo collected cells staining with fluorescein was also examined. A contralateral eye study was conducted in which up to eight participants were unilaterally exposed to a multipurpose contact lens solution/silicone hydrogel lens combination previously shown to induce corneal staining (renu® fresh™ and balafilcon A; test eye), with the other eye using a combination of balafilcon A soaked in a hydrogen peroxide care system (Clear Care®; control eye). Lenses were worn for 2, 4 or 6 hours. Corneal staining was graded after lens removal. The Ocular Surface Cell Collection Apparatus was used to collect cells from the cornea and the contact lens. In the test eye, maximum solution-induced corneal staining (SICS) was observed after 2 hours of lens wear (reducing significantly by 4 hours; p < 0.001). There were significantly more cells collected from the test eye after 4 hours of lens wear when compared to the control eye and the collection from the test eye after 2 hours (for both; n = 5; p < 0.001). The total cell yield at 4 hours was 813 ± 333 and 455 ± 218 for the test and control eyes, respectively (N = 5, triplicate, p = 0.003). A number of cells were observed to have taken up the fluorescein dye from the initial fluorescein instillation. Confocal microscopy of fluorescein-stained cells revealed that fluorescein was present throughout the cell cytoplasm and was retained in the cells for many hours after recovery from the corneal surface. This pilot study indicates that increased epithelial cell shedding was associated with a lens-solution combination which induces SICS. Our data provides insight into the transient nature of the SICS reaction and the nature of fluorescein staining observed in SICS.

  5. Optical coherence tomography-based topography determination of corneal grafts in eye bank cultivation

    NASA Astrophysics Data System (ADS)

    Damian, Angela; Seitz, Berthold; Langenbucher, Achim; Eppig, Timo

    2017-01-01

    Vision loss due to corneal injuries or diseases can be treated by transplantation of human corneal grafts (keratoplasty). However, quality assurance in retrieving and cultivating the tissue transplants is confined to visual and microbiological testing. To identify previous refractive surgery or morphological alterations, an automatic, noncontact, sterile screening procedure is required. Twenty-three corneal grafts have been measured in organ culture with a clinical spectral-domain optical coherence tomographer. Employing a biconic surface fit with 10 degrees of freedom, the radii of curvature and conic constants could be estimated for the anterior and posterior corneal surfaces. Thereupon, central corneal thickness, refractive values, and astigmatism have been calculated. Clinical investigations are required to elaborate specific donor-host matching in the future.

  6. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed Central

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-01-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways. PMID:7543879

  7. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.

    PubMed

    Amitani, R; Taylor, G; Elezis, E N; Llewellyn-Jones, C; Mitchell, J; Kuze, F; Cole, P J; Wilson, R

    1995-09-01

    The mechanisms by which Aspergillus fumigatus colonizes the respiratory mucosa are unknown. Culture filtrates of eight of nine clinical isolates of A. fumigatus slowed ciliary beat frequency and damaged human respiratory epithelium in vitro. These changes appeared to occur concurrently. Culture filtrates of two clinical isolates of Candida albicans had no effect on ciliated epithelium. We have purified and characterized cilioinhibitory factors of a clinical isolate of A. fumigatus. The cilioinhibitory activity was heat labile, reduced by dialysis, and partially extractable into chloroform. The activity was associated with both high- and low-molecular-weight factors, as determined by gel filtration on Sephadex G-50. A low-molecular-weight cilioinhibitory factor was further purified by reverse-phase high-performance liquid chromatography and shown by mass spectrometry to be gliotoxin, a known metabolite of A. fumigatus. Gliotoxin significantly slowed ciliary beat frequency in association with epithelial damage at concentrations above 0.2 microgram/ml; other Aspergillus toxins, i.e., fumagillin and helvolic acid, were also cilioinhibitory but at much higher concentrations. High-molecular-weight (> or = 35,000 and 25,000) cilioinhibitory materials had neither elastolytic nor proteolytic activity and remain to be identified. Thus, A. fumigatus produces a number of biologically active substances which slow ciliary beating and damage epithelium and which may influence colonization of the airways.

  8. Corneal Astigmatism Stability in Descemet Membrane Endothelial Keratoplasty for Fuchs Corneal Dystrophy.

    PubMed

    Yokogawa, Hideaki; Sanchez, P James; Mayko, Zachary M; Straiko, Michael D; Terry, Mark A

    2016-07-01

    To calculate the magnitude and angle of the shift in corneal astigmatism associated with Descemet membrane endothelial keratoplasty (DMEK) surgery to determine the feasibility of concurrent astigmatism correction at the time of DMEK triple procedures. Retrospective study. Forty-seven eyes that previously underwent the DMEK procedure for Fuchs endothelial corneal dystrophy and that had more than 1.0 diopter (D) of front corneal astigmatism preoperatively were identified. All DMEK surgeries used a clear corneal temporal incision of 3.2 mm. Surgically induced astigmatism (SIA) was evaluated 6 months postsurgery with vector analysis using Scheimpflug image reading. We did not find a difference between pre- and postoperative magnitude of front astigmatism (P = 0.88; paired t test). The magnitude of the SIA front surface was 0.77 ± 0.63 D (range, 0.10-3.14 D). The centroid vector of the SIA front surface was 0.14 at 89.3°. A hyperopic corneal power shift was noted in both the front surface by 0.26 ± 0.74 D (range, 0.45-3.05 D) (P = 0.018; paired t test) and back surface by 0.56 ± 0.55 D (range, 0.25-2.40 D) (P < 0.01; paired t test). DMEK surgery induces minimal amounts of corneal astigmatism that is a with-the-rule shift associated with a temporal clear corneal incision. The stability of these data from preop to postop supports the plausibility of incorporating astigmatism correction with the cautious use of toric intraocular lenses for patients with Fuchs corneal dystrophy and cataract.

  9. Effect of corneal wetting solutions on corneal thickness during ophthalmic surgery.

    PubMed

    Emre, Sinan; Akkin, Cezmi; Afrashi, Filiz; Yağci, Ayşe

    2002-01-01

    To measure the changes in corneal thickness with wetting solutions used in ophthalmic surgery. Ege University, School of Medicine, Department of Ophthalmology, Izmir, Turkey. Thirty-one adult pigmented rabbits that weighed about 2.5 kg each were anesthetized with pentobarbital sodium. The rabbits were randomly divided into 3 groups to receive 3 wetting solutions: Group 1, Ringer's lactate; Group 2, balanced salt solution (BSS); and Group 3, BSS with glutation (BSS Plus). The solutions were dropped on the right cornea of the rabbits at a rate of 6.0 cc in 12 minutes using an intravenous infusion pump. Corneal thickness was measured by ultrasonic pachymetry before and after the procedure, and the between-group changes in corneal thickness were compared. The corneal thickness before and after the procedure was 361.27 microm +/- 19.3 (SD) and 380.00 +/- 25.0 microm, respectively, in Group 1 (P =.000); 372.10 +/- 18.8 microm and 388.60 +/- 24.1 microm, respectively, in Group 2 (P =.003); and 358.10 +/- 26.5 microm and 360.10 +/- 24.1 microm, respectively, in Group 3 (P =.316). As a corneal wetting solution, BSS Plus resulted in significantly fewer changes in corneal thickness than Ringer's lactate or BSS. This should be considered in cases involving long intraocular surgery.

  10. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases.

    PubMed

    Tankam, Patrice; He, Zhiguo; Chu, Ying-Ju; Won, Jungeun; Canavesi, Cristina; Lepine, Thierry; Hindman, Holly B; Topham, David J; Gain, Philippe; Thuret, Gilles; Rolland, Jannick P

    2015-03-15

    Gabor-domain optical coherence microscopy (GD-OCM) was applied ex vivo in the investigation of corneal cells and their surrounding microstructures with particular attention to the corneal endothelium. Experiments using fresh pig eyeballs, excised human corneal buttons from patients with Fuchs' endothelial dystrophy (FED), and healthy donor corneas were conducted. Results show in a large field of view (1  mm×1  mm) high definition images of the different cell types and their surrounding microstructures through the full corneal thickness at both the central and peripheral locations of porcine corneas. Particularly, an image of the endothelial cells lining the bottom of the cornea is highlighted. As compared to healthy human corneas, the corneas of individuals with FED show characteristic microstructural alterations of the Descemet's membrane and increased size and number of keratocytes. The GD-OCM-based imaging system developed may constitute a novel tool for corneal imaging and disease diagnosis. Also, importantly, it may provide insights into the mechanism of corneal physiology and pathology, particularly in diseases of the corneal endothelium.

  11. Corneal electrolysis for recurrence of corneal stromal dystrophy after keratoplasty

    PubMed Central

    Mashima, Y; Kawai, M; Yamada, M

    2002-01-01

    Aims: To evaluate corneal electrolysis as a treatment for recurrent diffuse corneal opacities at the host-graft interface of the stroma or at the subepithelial region in two types of granular corneal dystrophy (GCD). Methods: Recurrence developed at the host-graft interface of the stroma after lamellar keratoplasty in a patient with Avellino corneal dystrophy (ACD). At surgery, the deep aspect of the graft in this patient was partially separated from host tissue to expose the deposits, with one third of the host-graft junction left intact. The graft was everted, and electrolysis was applied directly to remove the deposits attached to both surfaces of the host and the graft. Then the graft was returned to its place and sutured. In two patients with homozygous ACD and one patient with the superficial variant of GCD, diffuse subepithelial opacities developed following penetrating keratoplasty. Electrolysis was applied directly to the corneal surface. Results: Deposits at the host-graft interface of the stroma and in the subepithelial region disappeared following treatment, and vision recovered in all patients. Conclusions: This method is a simple, easy, and inexpensive way to remove deposits that recur after lamellar or penetrating keratoplasty. PMID:11864880

  12. Corneal electrolysis for recurrence of corneal stromal dystrophy after keratoplasty.

    PubMed

    Mashima, Y; Kawai, M; Yamada, M

    2002-03-01

    To evaluate corneal electrolysis as a treatment for recurrent diffuse corneal opacities at the host-graft interface of the stroma or at the subepithelial region in two types of granular corneal dystrophy (GCD). Recurrence developed at the host-graft interface of the stroma after lamellar keratoplasty in a patient with Avellino corneal dystrophy (ACD). At surgery, the deep aspect of the graft in this patient was partially separated from host tissue to expose the deposits, with one third of the host-graft junction left intact. The graft was everted, and electrolysis was applied directly to remove the deposits attached to both surfaces of the host and the graft. Then the graft was returned to its place and sutured. In two patients with homozygous ACD and one patient with the superficial variant of GCD, diffuse subepithelial opacities developed following penetrating keratoplasty. Electrolysis was applied directly to the corneal surface. Deposits at the host-graft interface of the stroma and in the subepithelial region disappeared following treatment, and vision recovered in all patients. This method is a simple, easy, and inexpensive way to remove deposits that recur after lamellar or penetrating keratoplasty.

  13. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells

    PubMed Central

    Zhu, Xiao-Ming; Wang, Qin; Xing, Wei-Wei; Long, Min-Hui; Fu, Wen-Liang; Xia, Wen-Rong; Jin, Chen; Guo, Ning; Xu, Dong-Qun; Xu, Dong-Gang

    2018-01-01

    The biggest victim of ambient air pollution is the respiratory system. Mainly because of the harmful components, especially the particulate matters with an aerodynamic diameter of ≤ 2.5µm (PM2.5), can be directly inhaled and deeply penetrate into the lung alveoli, thus causing severe lung dysfunction, including chronic cough, bronchitis and asthma, even lung cancer. Unfortunately, the toxicological mechanisms of PM2.5 associations with these adverse respiratory outcomes have still not been clearly unveiled. Here, we found that PM2.5 rapidly induced inflammatory responses, oxidative injure and cell death in human bronchial epithelium cells through upregulation of IL-6 expression, ROS production and apoptosis. Furthermore, PM2.5 specifically induced nitric oxide synthase 2 (NOS2) expression and NO generation to elevate excessive autophagy. Finally, disruption of NOS2 signaling effectively blocked autophayosome formation and the subsequent cell death. Our novel findings systemically reveled the role of autophagy-mediated cell death in PM2.5-treated human bronchial epithelium cells and provided potential strategy for future clinic intervention.

  14. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.

    PubMed

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-05-02

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.

  15. Ocular surface epithelium induces expression of human mucosal lymphocyte antigen (HML-1) on peripheral blood lymphocytes

    PubMed Central

    Gomes, J A P; Dua, H S; Rizzo, L V; Nishi, M; Joseph, A; Donoso, L A

    2004-01-01

    Background/aims: Peripheral blood CD8+ lymphocytes that home to mucosal surfaces express the human mucosal lymphocyte antigen (HML-1). At mucosal surfaces, including the ocular surface, only intraepithelial CD8+ lymphocytes express HML-1. These lymphocytes are retained in the intraepithelial compartment by virtue of the interaction between HML-1 and its natural ligand, E-cadherin, which is expressed on epithelial cells. The purpose of this study was to determine whether ocular surface epithelial cells (ocular mucosa) could induce the expression of human mucosal lymphocyte antigen on peripheral blood lymphocytes. Methods: Human corneal and conjunctival epithelial cells were co-cultured with peripheral blood lymphocytes. Both non-activated and activated lymphocytes were used in the experiments. After 7 days of incubation, lymphocytes were recovered and analysed for the antigens CD8/HML-1, CD4/HML-1, CD3/CD8, CD3/CD4, CD3/CD25, CD8/CD25, and CD4/CD25 by flowcytometry. Results: Significant statistical differences were observed in the CD8/HML-1 expression when conjunctival epithelial cells were co-cultured with non-activated and activated lymphocytes (p = 0.04 for each) and when corneal epithelial cells were co-cultured with non-activated lymphocytes (p = 0.03). Significant statistical difference in CD4/HML-1 expression was observed only when conjunctival epithelial cells were co-cultured with activated lymphocytes (p = 0.02). Conclusion: Ocular surface epithelial cells can induce the expression of human mucosal lymphocyte antigen on CD8+ (and to some extent on CD4+) lymphocytes. This may allow the retention of CD8+ and CD4+ lymphocytes within the epithelial compartment of the conjunctiva and play a part in mucosal homing of lymphocytes. PMID:14736792

  16. Association between culture results of corneal scrapings and culture and histopathology results of corneal tissues in therapeutic keratoplasty.

    PubMed

    Das, Sujata; Sharma, Savitri; Priyadarshini, Omega; Sahu, Srikant K; Kar, Sarita; Vemuganti, Geeta K

    2011-09-01

    To correlate the culture results of corneal scrapings with culture and histopathology results of corneal tissues in therapeutic keratoplasty. A retrospective analysis of the culture results of corneal scrapings and corneal tissues of eyes that received therapeutic penetrating keratoplasty at a tertiary eye care center between December 2006 and November 2008 was conducted. As per the preferred practice, those cases that did not respond to appropriate antimicrobial therapy and/or presented with a large infiltrate/perforation received therapeutic keratoplasty. The microbiology and histopathology findings of the corneal tissues were compared. Thirty-eight therapeutic keratoplasties were performed on 36 patients. Although all cases had histopathology and culture of the corneal tissue, corneal scrapings were not performed in 4 cases. Corneal scrapings and corneal tissues were culture-positive in 76% (26 of 34) and 60% (23 of 38) of cases, respectively. In 8 cases, the corneal scrapings and corneal tissues yielded identical organisms, whereas different organisms grew in 4 cases. In 6 cases, the corneal tissues were culture-positive but the corneal scrapings were sterile. In 20 cases, the corneal tissues were culture-positive for fungus and also showed fungal filaments in their corresponding histopathology specimens. Corneal tissue culture can provide additional information in cases undergoing therapeutic keratoplasty. It helps to determine the management of patients after keratoplasty.

  17. Age Differences in Axial Length, Corneal Curvature, and Corneal Astigmatism in Marfan Syndrome with Ectopia Lentis

    PubMed Central

    Jing, Qinghe; Tang, Yating; Qian, Dongjin

    2018-01-01

    Purpose To investigate the differences in axial length, corneal curvature, and corneal astigmatism with age in patients with Marfan syndrome (MFS) and ectopia lentis. Methods A retrospective case series study was conducted. MFS patients with ectopia lentis were divided into groups according to age. Axial length, corneal curvature, and corneal astigmatism were measured. Results This study included 114 MFS patients (215 eyes) with a mean age of 19.0 ± 13.9 years. Axial length differed significantly across age groups in MFS patients (P < 0.001), whereas corneal curvature did not (P = 0.767). Corneal astigmatism was statistically significant throughout the MFS cohort (P = 0.009), but no significant difference was found in young MFS patients (P = 0.838). With increasing age, the orientation of the corneal astigmatism changed from with-the-rule astigmatism to against-the-rule or oblique astigmatism (P < 0.001). A linear correlation analysis showed weak correlations between age and axial length for both eyes and with corneal astigmatism for the left eye, but there was no correlation between age and corneal curvature. Conclusions In MFS, axial length varies with age, corneal curvature remains stable, and corneal astigmatism is higher in young patients and tends to shift toward against-the-rule or oblique astigmatism. Therefore, it is important to consider age when diagnosing MFS with ocular biometric data. PMID:29854424

  18. Human forniceal region is the stem cell-rich zone of the conjunctival epithelium.

    PubMed

    Harun, Mohd Hairul Nizam; Sepian, Siti Norzalehawati; Chua, Kien-Hui; Ropilah, Abd Rahman; Abd Ghafar, Norzana; Che-Hamzah, Jemaima; Bt Hj Idrus, Ruszymah; Annuar, Faridah Hanom

    2013-03-01

    The anterior surface of the eye is covered by several physically contiguous but histologically distinguishable epithelia overlying the cornea, limbus, bulbar conjunctiva, fornix conjunctiva, and palpebral conjunctiva. The self-renewing nature of the conjunctival epithelia makes their long-term survival ultimately dependent on small populations of stem cells. Hence, the objective of this study was to investigate the expression of the stem cell genes Sox2, OCT4, NANOG, Rex1, NES, and ABCG2 in cultured human conjunctival epithelium from different conjunctival zones, namely, the bulbar, palpebral and fornix zones. Three samples were taken from patients with primary pterygium and cataract (age range 56-66 years) who presented to our eye clinic at the UKM Medical Centre. The eye was examined with slit lamp to ensure there was no underlying ocular surface diseases and glaucoma. Conjunctival tissue was taken from patients who underwent a standard cataract or pterygium operation as a primary procedure. Tissues were digested, cultured, and propagated until an adequate number of cells was obtained. Total RNA was extracted and subjected to expression analysis of conjunctival epithelium genes (KRT4, KRT13, KRT19) and stem cell genes (Sox2, OCT4, NANOG, Rex1, NES, ABCG2) by reverse transcriptase-PCR and 2% agarose gel electrophoresis. The expression of Sox2, OCT4, and NANOG genes were detected in the fornical cells, while bulbar cells only expressed Sox2 and palpebral cells only expressed OCT4. Based on these results, the human forniceal region expresses a higher number of stem cell genes than the palpebral and bulbar conjunctiva.

  19. In vitro cell culture models to study the corneal drug absorption.

    PubMed

    Reichl, Stephan; Kölln, Christian; Hahne, Matthias; Verstraelen, Jessica

    2011-05-01

    Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.

  20. Reconstituted human gingival epithelium: nonsubmerged in vitro model.

    PubMed

    Delcourt-Huard, A; Corlu, A; Joffre, A; Magloire, H; Bonnaure-Mallet, M

    1997-01-01

    Many studies have shown that human gingival keratinocytes grown in submerged culture fail to attain optimal differentiation. This study reports an in vitro culture system for oral gingival epithelial cells, in which they are grown at the air-liquid interface, on polycarbonate inserts, in the presence of an NIH-3T3 feeder layer. This model was compared with two submerged culture methods for gingival keratinocytes, on type 1 collagen gel and on an NIH-3T3 feeder layer. Transmission electron microscopy showed an advanced level of stratification (over six layers of cells) for cultures grown at the air-liquid interface. Immunofluorescence and electrophoretic patterns showed the presence of cytokeratins 10 and 11 in cytoskeletal protein extracts of these cultured keratinocytes. In this air-liquid interface culture model, in the presence of NIH-3T3 feeder cells, keratinocytes can achieve an advanced level of stratification and differentiation and a resemblance to in vivo gingiva. The obtention of a highly differentiated epithelium will permit in vitro pharmacological studies and studies on the biocompatability of certain alloys with the superficial periodontium; it will also provide grafts for patients undergoing periodontal surgery.

  1. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth

    PubMed Central

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-01-01

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period. PMID:24785116

  2. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye.

    PubMed

    Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A

    2016-11-01

    Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.

  3. Isolation and culture of corneal cells and their interactions with dissociated trigeminal neurons.

    PubMed

    Chan, K Y; Haschke, R H

    1982-08-01

    The three cell types of rabbit cornea (epithelium, stromal fibroblasts and endothelium) were isolated by an improved method using both microdissection and selective enzyme treatment. This technique reproducibly resulted in an almost total recovery of each cell type from a given cornea. When maintained in culture, the three cell types showed different morphologic characteristics, each resembling the in vivo counterpart. The epithelial culture consisted of both attached and floating cells. The attached cells located at the marginal area of a colony were irregular in shape and possessed pseudopodia, while those in the confluent area were polygonal. Floating cells were typically vacuolated, curve-shaped and joined in groups of 2-4 cells as a spherical body enclosing a lucent interior. Comparison of mitotic rates, ultrastructure, keratin levels and other cytologic evidence suggested that the attached cells may correspond to the basal cells and less differentiated wing cells, while the floating cells may be analogous to the more differentiated wing cells and superficial cells. Neurons dissociated from neonatal rabbit trigeminal (Gasserian) ganglia were plated into multiwells partially covered with a given corneal cell type. The percentages of viable and neurite-bearing neurons were evaluated on the first three days. When neurons were grown in contact with each of the corneal cell types, neurites were extended in every case. However, when neurons were not in contact with the corneal cells in the coculture, only epithelial cells permitted neurite outgrowth. The data suggested two types of cellular interactions between corneal cells and sensory neurons, one of which may be the specific release of a neuronotrophic factor by epithelial cells. This culture system represents the first step towards developing an in vitro model for studying various cornea-trigeminal interactions.

  4. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    PubMed

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  5. Apatinib-loaded nanoparticles suppress vascular endothelial growth factor-induced angiogenesis and experimental corneal neovascularization.

    PubMed

    Lee, Jung Eun; Kim, Koung Li; Kim, Danbi; Yeo, Yeongju; Han, Hyounkoo; Kim, Myung Goo; Kim, Sun Hwa; Kim, Hyuncheol; Jeong, Ji Hoon; Suh, Wonhee

    2017-01-01

    Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders.

  6. Apatinib-loaded nanoparticles suppress vascular endothelial growth factor-induced angiogenesis and experimental corneal neovascularization

    PubMed Central

    Lee, Jung Eun; Kim, Koung Li; Kim, Danbi; Yeo, Yeongju; Han, Hyounkoo; Kim, Myung Goo; Kim, Sun Hwa; Kim, Hyuncheol; Jeong, Ji Hoon; Suh, Wonhee

    2017-01-01

    Pathological angiogenesis is one of the major symptoms of severe ocular diseases, including corneal neovascularization. The blockade of vascular endothelial growth factor (VEGF) action has been recognized as an efficient strategy for treating corneal neovascularization. In this study, we aimed to investigate whether nanoparticle-based delivery of apatinib, a novel and selective inhibitor of VEGF receptor 2, inhibits VEGF-mediated angiogenesis and suppresses experimental corneal neovascularization. Water-insoluble apatinib was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro angiogenesis assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles potently inhibited VEGF-induced tube formation, scratch wounding migration, and proliferation of human endothelial cells. In a rat model of alkali burn injury-induced corneal neovascularization, a subconjunctival injection of Apa-HSA-PEG nanoparticles induced a significant decrease in neovascularization compared to that observed with an injection of free apatinib solution or phosphate-buffered saline. An in vivo distribution study using HSA-PEG nanoparticles loaded with fluorescent hydrophobic model drugs revealed the presence of a substantial number of nanoparticles in the corneal stroma within 24 h after injection. These in vitro and in vivo results demonstrate that apatinib-loaded nanoparticles may be promising for the prevention and treatment of corneal neovascularization-related ocular disorders. PMID:28740387

  7. Nerve growth factor effect on human primary fibroblastic-keratocytes: possible mechanism during corneal healing.

    PubMed

    Micera, Alessandra; Lambiase, Alessandro; Puxeddu, Ilaria; Aloe, Luigi; Stampachiacchiere, Barbara; Levi-Schaffer, Francesca; Bonini, Sergio; Bonini, Stefano

    2006-10-01

    In response to corneal injury, cytokines and growth factors play a crucial role by influencing epithelial-stromal interaction during the healing and reparative processes which may resolve in tissue remodeling and fibrosis. While transforming growth factor-beta1 (TGF-beta1) is considered the main profibrogenic modulator of these process, recently the nerve growth factor (NGF) appears as a pleiotropic modulator of wound-healing and inflammatory responses. Interestingly in the cornea, where NGF, trkA(NGFR) and p75(NTR) are expressed by epithelial cells and keratocytes, the NGF eye-drop induces the healing of neurotrophic or autoimmune corneal ulcers. During corneal healing, quiescent keratocytes are replaced by active fibroblast-like keratocytes/myofibroblasts. While the NGF effect on epithelial cells has been investigated, no data are reported for NGF effects on fibroblastic-keratocytes, during corneal healing. NGF, trkA(NGFR) and p75(NTR) were found expressed by fibroblastic-keratocytes. NGF was able to induce fibroblastic-keratocyte differentiation into myofibroblasts, migration, Metalloproteinase-9 expression/activity and contraction of a 3D collagen gel, without affecting their proliferation and collagen production. These data also show a two-directional control of fibroblastic-keratocytes by NGF and TGF-beta1. To sum up, the findings of this study indicate that NGF can modulate some functional activities of fibroblastic-keratocytes, thus substantiating the healing effects of NGF on corneal wound-healing.

  8. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  9. Corneal tissue welding with infrared laser irradiation after clear corneal incision.

    PubMed

    Rasier, Rfat; Ozeren, Mediha; Artunay, Ozgür; Bahçecioğlu, Halil; Seçkin, Ismail; Kalaycoğlu, Hamit; Kurt, Adnan; Sennaroğlu, Alphan; Gülsoy, Murat

    2010-09-01

    The aim of this study was to investigate the potential of infrared lasers for corneal welding to seal corneal cuts done in an experimental animal model. Full-thickness corneal cuts on freshly enucleated bovine eyes were irradiated with infrared (809-nm diode, 980-nm diode, 1070-nm YLF, and 1980-nm Tm:YAP) lasers to get immediate laser welding. An 809-nm laser was used with the topical application of indocyanine green to enhance the photothermal interaction at the weld site. In total, 60 bovine eyes were used in this study; 40 eyes were used in the first part of the study for the determination of optimal welding parameters (15 eyes were excluded because of macroscopic carbonization, opacification, or corneal shrinkage; 2 eyes were used for control), and 20 eyes were used for further investigation of more promising lasers (YLF and Tm:YAP). Laser wavelength, irradiating power, exposure time, and spot size were the dose parameters, and optimal dose for immediate closure with minimal thermal damage was estimated through histological examination of welded samples. In the first part of the study, results showed that none of the applications was satisfactory. Full-thickness success rates were 28% (2 of 7) for 809-nm and for 980-nm diode lasers and 67% (2 of 3) for 1070-nm YLF and (4 of 6) for 1980-nm Tm:YAP lasers. In the second part of the study, YLF and Tm:YAP lasers were investigated with bigger sample size. Results were not conclusive but promising again. Five corneal incisions were full-thickness welded out of 10 corneas with 1070-nm laser, and 4 corneal incisions were partially welded out of 10 corneas with 1980-nm laser in the second part of the study. Results showed that noteworthy corneal welding could be obtained with 1070-nm YLF laser and 1980-nm Tm:YAP laser wavelengths. Furthermore, in vitro and in vivo studies will shed light on the potential usage of corneal laser welding technique.

  10. A mouse dry eye model induced by topical administration of benzalkonium chloride.

    PubMed

    Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui; Liu, Zuguo

    2011-01-25

    To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompaniment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye.

  11. A mouse dry eye model induced by topical administration of benzalkonium chloride

    PubMed Central

    Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui

    2011-01-01

    Purpose To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. Methods BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. Results BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompanyment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Conclusions Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye. PMID:21283525

  12. 21 CFR 886.1220 - Corneal electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Corneal electrode. 886.1220 Section 886.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... to the cornea to provide data showing the changes in electrical potential in the retina after...

  13. A fully-automatic fast segmentation of the sub-basal layer nerves in corneal images.

    PubMed

    Guimarães, Pedro; Wigdahl, Jeff; Poletti, Enea; Ruggeri, Alfredo

    2014-01-01

    Corneal nerves changes have been linked to damage caused by surgical interventions or prolonged contact lens wear. Furthermore nerve tortuosity has been shown to correlate with the severity of diabetic neuropathy. For these reasons there has been an increasing interest on the analysis of these structures. In this work we propose a novel, robust, and fast fully automatic algorithm capable of tracing the sub-basal plexus nerves from human corneal confocal images. We resort to logGabor filters and support vector machines to trace the corneal nerves. The proposed algorithm traced most of the corneal nerves correctly (sensitivity of 0.88 ± 0.06 and false discovery rate of 0.08 ± 0.06). The displayed performance is comparable to a human grader. We believe that the achieved processing time (0.661 ± 0.07 s) and tracing quality are major advantages for the daily clinical practice.

  14. Prevalence of ciliated epithelium in apical periodontitis lesions.

    PubMed

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Electrophysiologic and morphologic effects of ophthalmic preparations on rabbit cornea epithelium.

    PubMed

    Burstein, N L; Klyce, S D

    1977-10-01

    The effects of several components of ophthalmic preparations on isolated rabbit cornea were studied by continuous electrophysiologic monitoring followed by fixation for scanning electron microscopy (SEM). Benzalkonium chloride (0.001 percent), thimerosal (0.0004 percent), and amphotericin B (0.0025 percent) all briefly increased ion transport, then greatly decreased epithelial resistance. Severe disruption of surface cell layers occurred simultaneously with resistance decrease. Silver nitrate (0.00017 percent) stimulated transport with less accompanying morphologic damage. Tetracaine (0.05 percent) disrupted epithelial function and caused exfoliation of several cell layers. Chlorobutanol (0.1 percent) produced a nearly complete loss of the squamous cell layer. Chloramphenicol, epinephrine, and pilocarpine produced minor changes in structure and electrophysiology at full clinical concentration. It was concluded that low concentrations of preservatives in ophthalmic preparations disrupt the barrier and transport properties of the corneal epithelium.

  16. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium

    PubMed Central

    Faris, Andrea N.; Ganesan, Shyamala; Chattoraj, Asamanja; Chattoraj, Sangbrita S.; Comstock, Adam T.; Unger, Benjamin L.; Hershenson, Marc B.

    2016-01-01

    Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia. PMID:27119973

  17. Slit-lamp photography and videography with high magnifications

    PubMed Central

    Yuan, Jin; Jiang, Hong; Mao, Xinjie; Ke, Bilian; Yan, Wentao; Liu, Che; Cintrón-Colón, Hector R; Perez, Victor L; Wang, Jianhua

    2015-01-01

    Purpose To demonstrate the use of the slit-lamp photography and videography with extremely high magnifications for visualizing structures of the anterior segment of the eye. Methods A Canon 60D digital camera with Movie Crop Function was adapted into a Nikon FS-2 slit-lamp to capture still images and video clips of the structures of the anterior segment of the eye. Images obtained using the slit-lamp were tested for spatial resolution. The cornea of human eyes was imaged with the slit-lamp and the structures were compared with the pictures captured using the ultra-high resolution optical coherence tomography (UHR-OCT). The central thickness of the corneal epithelium and total cornea was obtained using the slit-lamp and the results were compared with the thickness obtained using UHR-OCT. Results High-quality ocular images and higher spatial resolutions were obtained by using the slit-lamp with extremely high magnifications and Movie Crop Function, rather than the traditional slit-lamp. The structures and characteristics of the cornea, such as the normal epithelium, abnormal epithelium of corneal intraepithelial neoplasia, LASIK interface, and contact lenses, were clearly visualized using this device. These features were confirmed by comparing the obtained images with those acquired using UHR-OCT. Moreover, the tear film debris on the ocular surface and the corneal nerve in the anterior corneal stroma were also visualized. The thicknesses of the corneal epithelium and total cornea were similar to that measured using UHR-OCT (P < 0.05). Conclusions We demonstrated that the slit-lamp photography and videography with extremely high magnifications allows better visualization of the anterior segment structures of the eye, especially of the epithelium, when compared with the traditional slit-lamp. PMID:26020484

  18. Rapid and Efficient Directed Differentiation of Human Pluripotent Stem Cells Into Retinal Pigmented Epithelium

    PubMed Central

    Buchholz, David E.; Pennington, Britney O.; Croze, Roxanne H.; Hinman, Cassidy R.

    2013-01-01

    Controlling the differentiation of human pluripotent stem cells is the goal of many laboratories, both to study normal human development and to generate cells for transplantation. One important cell type under investigation is the retinal pigmented epithelium (RPE). Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is caused by dysfunction and death of the RPE. Currently, RPE derived from human embryonic stem cells are in clinical trials for the treatment of AMD. Although protocols to generate RPE from human pluripotent stem cells have become more efficient since the first report in 2004, they are still time-consuming and relatively inefficient. We have found that the addition of defined factors at specific times leads to conversion of approximately 80% of the cells to an RPE phenotype in only 14 days. This protocol should be useful for rapidly generating RPE for transplantation as well as for studying RPE development in vitro. PMID:23599499

  19. Corneal clouding in Alport syndrome.

    PubMed

    Herwig, Martina C; Eter, Nicole; Holz, Frank G; Loeffler, Karin U

    2011-03-01

    Alport syndrome is a hereditary basement membrane disease that typically involves the kidney, the cochlea, and the eyes. Characteristic ocular problems include posterior polymorphous corneal dystrophy, lenticonus, and dot-and-fleck retinopathy. A 48-year-old male patient with Alport syndrome presented with corneal and retinal changes. In 2003, he was diagnosed with posterior polymorphous corneal dystrophy and received a corneal transplant in his left eye in 2007 because of progressive deterioration in visual acuity. At this time, a lamellar macular hole was diagnosed in his right eye. The removed corneal button was examined by light and electron microscopy and by immunohistochemistry. Histology revealed not only endothelial changes but also a marked irregular thickening of the epithelial basement membrane and of Bowman layer. Alcian blue staining demonstrated an accumulation of mucopolysaccharides in the Bowman layer. The presented changes underline the great variation of ocular disorders related to Alport syndrome. To our knowledge, this is one of the first reports describing histologic corneal findings in Alport syndrome. Only a few cases with accumulation of mucopolysaccharides in the Bowman layer have been described previously, none of them being associated with Alport syndrome. Besides, anterior corneal alterations and corneal clouding seem to be uncommon in patients suffering from Alport syndrome.

  20. Corneal topography measurements for biometric applications

    NASA Astrophysics Data System (ADS)

    Lewis, Nathan D.

    The term biometrics is used to describe the process of analyzing biological and behavioral traits that are unique to an individual in order to confirm or determine his or her identity. Many biometric modalities are currently being researched and implemented including, fingerprints, hand and facial geometry, iris recognition, vein structure recognition, gait, voice recognition, etc... This project explores the possibility of using corneal topography measurements as a trait for biometric identification. Two new corneal topographers were developed for this study. The first was designed to function as an operator-free device that will allow a user to approach the device and have his or her corneal topography measured. Human subject topography data were collected with this device and compared to measurements made with the commercially available Keratron Piccolo topographer (Optikon, Rome, Italy). A third topographer that departs from the standard Placido disk technology allows for arbitrary pattern illumination through the use of LCD monitors. This topographer was built and tested to be used in future research studies. Topography data was collected from 59 subjects and modeled using Zernike polynomials, which provide for a simple method of compressing topography data and comparing one topographical measurement with a database for biometric identification. The data were analyzed to determine the biometric error rates associated with corneal topography measurements. Reasonably accurate results, between three to eight percent simultaneous false match and false non-match rates, were achieved.

  1. Corneal markers of diabetic neuropathy.

    PubMed

    Pritchard, Nicola; Edwards, Katie; Shahidi, Ayda M; Sampson, Geoff P; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2011-01-01

    Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies. This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new noninvasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and noncontact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

  2. Neurotrophic factors and corneal nerve regeneration

    PubMed Central

    Sacchetti, Marta; Lambiase, Alessandro

    2017-01-01

    The cornea has unique features that make it a useful model for regenerative medicine studies. It is an avascular, transparent, densely innervated tissue and any pathological changes can be easily detected by slit lamp examination. Corneal sensitivity is provided by the ophthalmic branch of the trigeminal nerve that elicits protective reflexes such as blinking and tearing and exerts trophic support by releasing neuromediators and growth factors. Corneal nerves are easily evaluated for both function and morphology using standard instruments such as corneal esthesiometer and in vivo confocal microscope. All local and systemic conditions that are associated with damage of the trigeminal nerve cause the development of neurotrophic keratitis, a rare degenerative disease. Neurotrophic keratitis is characterized by impairment of corneal sensitivity associated with development of persistent epithelial defects that may progress to corneal ulcer, melting and perforation. Current neurotrophic keratitis treatments aim at supporting corneal healing and preventing progression of corneal damage. Novel compounds able to stimulate corneal nerve recovery are in advanced development stage. Among them, nerve growth factor eye drops showed to be safe and effective in stimulating corneal healing and improving corneal sensitivity in patients with neurotrophic keratitis. Neurotrophic keratitis represents an useful model to evaluate in clinical practice novel neuro-regenerative drugs. PMID:28966630

  3. Phospholipid transfer protein is present in human tear fluid.

    PubMed

    Jauhiainen, Matti; Setälä, Niko L; Ehnholm, Christian; Metso, Jari; Tervo, Timo M T; Eriksson, Ove; Holopainen, Juha M

    2005-06-07

    The human tear fluid film consists of a superficial lipid layer, an aqueous middle layer, and a hydrated mucin layer located next to the corneal epithelium. The superficial lipid layer protects the eye from drying and is composed of polar and neutral lipids provided by the meibomian glands. Excess accumulation of lipids in the tear film may lead to drying of the corneal epithelium. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. To gain insight into the formation of tear film, we investigated whether PLTP and CETP are present in human tear fluid. Tear fluid samples were collected with microcapillaries. The presence of PLTP and CETP was studied in tear fluid by Western blotting, and the PLTP concentration was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. Size-exclusion and heparin-affinity chromatography assessed the molecular form of PLTP. PLTP is present in tear fluid, whereas CETP is not. Quantitative assessment of PLTP by ELISA indicated that the PLTP concentration in tear fluid, 10.9 +/- 2.4 microg/mL, is about 2-fold higher than that in human plasma. PLTP-facilitated phospholipid transfer activity in tears, 15.1 +/- 1.8 micromol mL(-)(1) h(-)(1), was also significantly higher than that measured in plasma. Inactivation of PLTP by heat treatment (+58 degrees C, 60 min) or immunoinhibition abolished the phospholipid transfer activity in tear fluid. Size-exclusion chromatography of tear fluid indicated that PLTP eluted in a position corresponding to a size of 160-170 kDa. Tear fluid PLTP was quantitatively bound to Heparin-Sepharose and could be eluted as a single peak by 0.5 M NaCl. These data indicate that human tear fluid contains catalytically active PLTP protein, which resembles the active form of PLTP present in plasma. The results suggest that PLTP may play a role in the formation of the tear film by supporting phospholipid

  4. Recovery of the sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice.

    PubMed

    Downie, Laura E; Naranjo Golborne, Cecilia; Chen, Merry; Ho, Ngoc; Hoac, Cam; Liyanapathirana, Dasun; Luo, Carol; Wu, Ruo Bing; Chinnery, Holly R

    2018-06-01

    Our aim was to compare regeneration of the sub-basal nerve plexus (SBNP) and superficial nerve terminals (SNT) following corneal epithelial injury. We also sought to compare agreement when quantifying nerve parameters using different image analysis techniques. Anesthetized, female C57BL/6 mice received central 1-mm corneal epithelial abrasions. Four-weeks post-injury, eyes were enucleated and processed for PGP9.5 to visualize the corneal nerves using wholemount immunofluorescence staining and confocal microscopy. The percentage area of the SBNP and SNT were quantified using: ImageJ automated thresholds, ImageJ manual thresholds and manual tracings in NeuronJ. Nerve sum length was quantified using NeuronJ and Imaris. Agreement between methods was considered with Bland-Altman analyses. Four-weeks post-injury, the sum length of nerve fibers in the SBNP, but not the SNT, was reduced compared with naïve eyes. In the periphery, but not central cornea, of both naïve and injured eyes, nerve fiber lengths in the SBNP and SNT were strongly correlated. For quantifying SBNP nerve axon area, all image analysis methods were highly correlated. In the SNT, there was poor correlation between manual methods and auto-thresholding, with a trend towards underestimating nerve fiber area using auto-thresholding when higher proportions of nerve fibers were present. In conclusion, four weeks after superficial corneal injury, there is differential recovery of epithelial nerve axons; SBNP sum length is reduced, however the sum length of SNTs is similar to naïve eyes. Care should be taken when selecting image analysis methods to compare nerve parameters in different depths of the corneal epithelium due to differences in background autofluorescence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation

    PubMed Central

    Thapa, Dinesh; Cairns, Elizabeth A.; Szczesniak, Anna-Maria; Toguri, James T.; Caldwell, Meggie D.; Kelly, Melanie E. M.

    2018-01-01

    Abstract Background and Purpose: Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization. Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory. The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia. Methods: Corneal hyperalgesia (increased pain response) was generated using chemical cauterization of the corneal epithelium in wild-type (WT) and CB2R knockout (CB2R−/−) mice. Cauterized eyes were treated topically with the phytocannabinoids Δ8-tetrahydrocannabinol (Δ8THC) or cannabidiol (CBD), or the CBD derivative HU-308, in the presence or absence of the CB1R antagonist AM251 (2.0 mg/kg i.p.), or the 5-HT1A receptor antagonist WAY100635 (1 mg/kg i.p.). Behavioral pain responses to a topical capsaicin challenge at 6 h postinjury were quantified from video recordings. Mice were euthanized at 6 and 12 h postcorneal injury for immunohistochemical analysis to quantify corneal neutrophil infiltration. Results: Corneal cauterization resulted in hyperalgesia to capsaicin at 6 h postinjury compared to sham control eyes. Neutrophil infiltration, indicative of inflammation, was apparent at 6 and 12 h postinjury in WT mice. Application of Δ8THC, CBD, and HU-308 reduced the pain score and neutrophil infiltration in WT mice. The antinociceptive and anti-inflammatory actions of Δ8THC, but not CBD, were blocked by the CB1R antagonist AM251, but were still apparent, for both cannabinoids, in CB2R−/− mice. However, the antinociceptive and anti-inflammatory actions of HU-308 were absent in the CB2R−/− mice. The antinociceptive and anti-inflammatory effects of CBD were blocked by the 5-HT1A antagonist WAY100635. Conclusion: Topical cannabinoids reduce

  6. The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation.

    PubMed

    Thapa, Dinesh; Cairns, Elizabeth A; Szczesniak, Anna-Maria; Toguri, James T; Caldwell, Meggie D; Kelly, Melanie E M

    2018-01-01

    Background and Purpose: Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization. Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory. The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB 1 R) and cannabinoid 2 (CB 2 R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia. Methods: Corneal hyperalgesia (increased pain response) was generated using chemical cauterization of the corneal epithelium in wild-type (WT) and CB 2 R knockout (CB 2 R -/- ) mice. Cauterized eyes were treated topically with the phytocannabinoids Δ 8 -tetrahydrocannabinol (Δ 8 THC) or cannabidiol (CBD), or the CBD derivative HU-308, in the presence or absence of the CB 1 R antagonist AM251 (2.0 mg/kg i.p.), or the 5-HT 1A receptor antagonist WAY100635 (1 mg/kg i.p.). Behavioral pain responses to a topical capsaicin challenge at 6 h postinjury were quantified from video recordings. Mice were euthanized at 6 and 12 h postcorneal injury for immunohistochemical analysis to quantify corneal neutrophil infiltration. Results: Corneal cauterization resulted in hyperalgesia to capsaicin at 6 h postinjury compared to sham control eyes. Neutrophil infiltration, indicative of inflammation, was apparent at 6 and 12 h postinjury in WT mice. Application of Δ 8 THC, CBD, and HU-308 reduced the pain score and neutrophil infiltration in WT mice. The antinociceptive and anti-inflammatory actions of Δ 8 THC, but not CBD, were blocked by the CB 1 R antagonist AM251, but were still apparent, for both cannabinoids, in CB 2 R -/- mice. However, the antinociceptive and anti-inflammatory actions of HU-308 were absent in the CB 2 R -/- mice. The antinociceptive and anti-inflammatory effects of CBD were blocked by the 5-HT 1A antagonist WAY100635. Conclusion: Topical cannabinoids

  7. Applications of corneal topography and tomography: a review.

    PubMed

    Fan, Rachel; Chan, Tommy Cy; Prakash, Gaurav; Jhanji, Vishal

    2018-03-01

    Corneal imaging is essential for diagnosing and management of a wide variety of ocular diseases. Corneal topography is used to characterize the shape of the cornea, specifically, the anterior surface of the cornea. Most corneal topographical systems are based on Placido disc that analyse rings that are reflected off the corneal surface. The posterior corneal surface cannot be characterized using Placido disc technology. Imaging of the posterior corneal surface is useful for diagnosis of corneal ectasia. Unlike corneal topographers, tomographers generate a three-dimensional recreation of the anterior segment and provide information about the corneal thickness. Scheimpflug imaging is one of the most commonly used techniques for corneal tomography. The cross-sectional images generated by a rotating Scheimpflug camera are used to locate the anterior and posterior corneal surfaces. The clinical uses of corneal topography include, diagnosis of corneal ectasia, assessment of corneal astigmatism, and refractive surgery planning. This review will discuss the applications of corneal topography and tomography in clinical practice. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  8. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells.

    PubMed

    Takeji, Yasuhiro; Urashima, Hiroki; Aoki, Akihiro; Shinohara, Hisashi

    2012-06-01

    Dry eye is a multifactorial disease of tears and the ocular surface due to tear deficiency or excessive tear evaporation. Tear film instability is due to a disturbance in ocular surface mucin leading to a dysfunction of mucin, resulting in dry eye. In this study, we examined the effect of rebamipide, an anti-ulcer agent, on glycoconjugate production, as an indicator of mucin-like glycoprotein in cultured corneal epithelial cells. Further, we investigated the effect of rebamipide on the gene expression of membrane-associated mucins. Confluent cultured human corneal epithelial cells were incubated with rebamipide for 24 h. The glycoconjugate content in the supernatant and the cell extracts was measured by wheat germ agglutinin-enzyme-linked lectin assay combined gel-filtration method. In the experiment on mucin gene expression, cultured human corneal epithelial cells were collected at 0, 3, 6, and 12 h after administration of rebamipide. Real-time quantitative polymerase chain reaction was used to analyze the quantity of MUC1, MUC 4, and MUC16 gene expression. Rebamipide significantly increased the glycoconjugate contents in the supernatant and cell extract. In the mucin gene expression in the cells, rebamipide increased MUC1 and MUC4 gene expression, but did not increase MUC16 gene expression. Rebamipide promoted glycoconjugate, which has a property as a mucin-like glycoprotein, in human corneal epithelial cells. The increased production was mediated by MUC1 and MUC4 gene expression.

  9. Corneal blindness: a global perspective.

    PubMed Central

    Whitcher, J. P.; Srinivasan, M.; Upadhyay, M. P.

    2001-01-01

    Diseases affecting the cornea are a major cause of blindness worldwide, second only to cataract in overall importance. The epidemiology of corneal blindness is complicated and encompasses a wide variety of infectious and inflammatory eye diseses that cause corneal scarring, which ultimately leads to functional blindness. In addition, the prevalence of corneal disease varies from country to country and even from one population to another. While cataract is responsible for nearly 20 million of the 45 million blind people in the world, the next major cause is trachoma which blinds 4.9 million individuals, mainly as a result of corneal scarring and vascularization. Ocular trauma and corneal ulceration are significant causes of corneal blindness that are often underreported but may be responsible for 1.5-2.0 million new cases of monocular blindness every year. Causes of childhood blindness (about 1.5 million worldwide with 5 million visually disabled) include xerophthalmia (350,000 cases annually), ophthalmia neonatorum, and less frequently seen ocular diseases such as herpes simplex virus infections and vernal keratoconjunctivitis. Even though the control of onchocerciasis and leprosy are public health success stories, these diseases are still significant causes of blindness--affecting a quarter of a million individuals each. Traditional eye medicines have also been implicated as a major risk factor in the current epidemic of corneal ulceration in developing countries. Because of the difficulty of treating corneal blindness once it has occurred, public health prevention programmes are the most cost-effective means of decreasing the global burden of corneal blindness. PMID:11285665

  10. Topical Drug Formulations for Prolonged Corneal Anesthesia

    PubMed Central

    Wang, Liqiang; Shankarappa, Sahadev A.; Tong, Rong; Ciolino, Joseph B.; Tsui, Jonathan H.; Chiang, Homer H.; Kohane, Daniel S.

    2013-01-01

    Purpose Ocular local anesthetics (OLA’s) currently used in routine clinical practice for corneal anesthesia are short acting and their ability to delay corneal healing makes them unsuitable for long-term use. In this study, we examined the effect on the duration of corneal anesthesia of the site-1 sodium channel blocker tetrodotoxin (TTX), applied with either proparacaine or the chemical permeation enhancer OTAB. The effect of test solutions on corneal healing was also studied. Methods Solutions of TTX, proparacaine, and OTAB, singly or in combination were applied topically to the rat cornea. The blink response, an indirect measure of corneal sensitivity, was recorded using a Cochet-Bonnet esthesiometer, and the duration of corneal anesthesia calculated. The effect of test compounds on the rate of corneal epithelialization was studied in vivo following corneal debridement. Results Combination of TTX and proparacaine resulted in corneal anesthesia that was 8–10 times longer in duration than that from either drug administered alone, while OTAB did not prolong anesthesia. The rate of corneal healing was moderately delayed following co-administration of TTX and proparacaine. Conclusion Co-administration of TTX and proparacaine significantly prolonged corneal anesthesia but in view of delayed corneal re-epithelialization, caution is suggested in use of the combination. PMID:23615270

  11. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    PubMed

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  12. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    NASA Astrophysics Data System (ADS)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  13. Comparison of corneal thickness after the instillation of topical anesthetics: proparacaine versus oxybuprocaine.

    PubMed

    Nam, Sang Min; Lee, Hyung Keun; Kim, Eung Kweon; Seo, Kyoung Yul

    2006-01-01

    To compare changes in human corneal thickness after the instillation of proparacaine with those after oxybuprocaine instillation with time over a period of 10 minutes. Eighteen healthy young participants were recruited. Proparacaine was used in the right eye and oxybuprocaine in the left. Right and left baseline corneal thicknesses were measured every 30 seconds for 10 minutes using a noncontact specular microscope by 1 observer. Baseline corneal thickness was defined as the average of all values taken over 10 minutes. Changes in corneal thickness were measured every 20 seconds for 10 minutes after the administration of 1 drop of 0.5% proparacaine onto the right cornea and 1 drop of 0.4% oxybuprocaine onto the left cornea. Mean baseline right cornea thickness was 531 +/- 45 microm, and that of the left cornea was 531 +/- 42 microm. The corneal thickness after proparacaine increased by 8.6 microm ( approximately 4.5-12.6 microm, 95% CI) and then returned to baseline within 80 seconds. Corneal thickness after applying oxybuprocaine increased by 7.7 microm (3.6-11.2 microm, 95% CI) and then returned to baseline within 80 seconds. There was a second transient increase about 5 minutes later after proparacaine instillation but no additional transient increase after oxybuprocaine instillation. Oxybuprocaine is similar to proparacaine in terms of the severity of its effect on corneal thickness. Corneal thickness instability may occur for 5 minutes after proparacaine administration. Changes in corneal thickness after topical anesthetic instillation should be considered when performing measurements for refractive surgery or central corneal thickness in glaucoma patients.

  14. In vivo confocal microscopic analysis of normal human anterior limbal stroma

    PubMed Central

    Mathews, Saumi; Chidambaram, Jaya Devi; Lanjewar, Shruti; Mascarenhas, Jeena; Prajna, Namperumalsamy Venkatesh; Muthukkaruppan, Veerappan; Chidambaranathan, Gowri Priya

    2015-01-01

    Purpose To characterize the microarchitecture of the anterior limbal stroma in healthy individuals using in vivo confocal microscopy (IVCM) and to correlate it with mesenchymal stem cells (MSCs), a component of the limbal-niche. Methods The corneal side of the superior limbus was scanned in 30 eyes of 17 normal subjects beyond the basal epithelium, deep into the stroma using a HRT III laser scanning microscope. The IVCM findings were correlated with the immunohistochemical features of MSCs in the anterior limbal stroma. Results Clusters of hyperreflective structures were observed in the anterior limbal stroma, subjacent to the basal epithelium (depth: 50.2±8.7 - 98±12.8 μm), but not in the corneal stroma. The structures showed unique morphology compared to epithelial cells, keratocytes, neurons and dendritic cells. In parallel, confocal analysis of immunostained sections showed clusters of cells, double positive for MSC specific markers (CD90 and CD105) in the anterior limbal stroma at a depth of 55.3±12.7 μm to 72±37.6 μm. The organization and distribution of the MSC clusters locates them within the hyperreflective region in the anterior limbal stroma. Conclusions The hyperreflective structures, demonstrated for the first time in the human anterior limbal stroma, probably represent an important component of the limbal-niche. Our approach of in vivo imaging may pave the way for assessing the limbal stromal health. PMID:25742388

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seomun, Young; Joo, Choun-Ki

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence thatmore » lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.« less

  16. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection

    PubMed Central

    Irsch, Kristina; Gramatikov, Boris; Wu, Yi-Kai; Guyton, David

    2011-01-01

    Utilizing the measured corneal birefringence from a data set of 150 eyes of 75 human subjects, an algorithm and related computer program, based on Müller-Stokes matrix calculus, were developed in MATLAB for assessing the influence of corneal birefringence on retinal birefringence scanning (RBS) and for converging upon an optical/mechanical design using wave plates (“wave-plate-enhanced RBS”) that allows foveal fixation detection essentially independently of corneal birefringence. The RBS computer model, and in particular the optimization algorithm, were verified with experimental human data using an available monocular RBS-based eye fixation monitor. Fixation detection using wave-plate-enhanced RBS is adaptable to less cooperative subjects, including young children at risk for developing amblyopia. PMID:21750772

  17. A new nanosecond UV laser at 355 nm: early results of corneal flap cutting in a rabbit model.

    PubMed

    Trost, Andrea; Schrödl, Falk; Strohmaier, Clemens; Bogner, Barbara; Runge, Christian; Kaser-Eichberger, Alexandra; Krefft, Karolina; Vogel, Alfred; Linz, Norbert; Freidank, Sebastian; Hilpert, Andrea; Zimmermann, Inge; Grabner, Günther; Reitsamer, Herbert A

    2013-12-03

    A new 355 nm UV laser was used for corneal flap cutting in an animal model and tested for clinical and morphologic alterations. Corneal flaps were created (Chinchilla Bastards; n = 25) with an UV nanosecond laser at 355 nm (150 kHz, pulse duration 850 ps, spot-size 1 μm, spot spacing 6 × 6 μm, side cut Δz 1 μm; cutting depth 130 μm) and pulse energies of 2.2 or 2.5 μJ, respectively. Following slit-lamp examination, animals were killed at 6, 12, and 24 hours after treatment. Corneas were prepared for histology (hematoxylin and eosin [HE], TUNEL-assay) and evaluated statistically, followed by ultrastructural investigations. Laser treatment was tolerated well, flap lift was easier at 2.5 μJ compared with 2.2 μJ. Standard HE at 24 hours revealed intact epithelium in the horizontal cut, with similar increase in corneal thickness at both energies. Irrespective of energy levels, TUNEL assay revealed comparable numbers of apoptotic cells in the horizontal and vertical cut at 6, 12, and 24 hours, becoming detectable in the horizontal cut as an acellular stromal band at 24 hours. Ultrastructural analysis revealed regular morphology in the epi- and endothelium, while in the stroma, disorganized collagen lamellae were detectable representing the horizontal cut, again irrespective of energy levels applied. This new UV laser revealed no epi- nor endothelial damage at energies feasible for corneal flap cutting. Observed corneal swelling was lower compared with existing UV laser studies, albeit total energy applied here was much higher. Observed loss of stromal keratinocytes is comparable with available laser systems. Therefore, this new laser is suitable for refractive surgery, awaiting its test in a chronic environment.

  18. Corneal Toxicity Following Exposure to Asclepias Tuberosa

    PubMed Central

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; Gül, Cigdem Altuntas; Heegaard, Steffen

    2017-01-01

    Purpose: To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa. Methods: A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa. Clinical examination revealed a corneal stromal oedema with small epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine. Results: The corneal oedema had appeared after corneal exposure to the plant, Asclepias tuberosa, whose latex contains cardenolides that inhibit the Na+/ K+-ATPase in the corneal endothelium. The oedema resolved after 96 hours. After nine months the best corrected visual acuity was 20/20. Conclusion: Corneal toxicity has previously been reported for plants of the Asclepias family. This is a rare case describing severe corneal toxicity caused by exposure to latex from Asclepias tuberosa. Handling of plants of the Asclepias family should be kept as a differential diagnosis in cases of acute corneal toxicity. PMID:28400886

  19. Corneal Toxicity Following Exposure to Asclepias Tuberosa.

    PubMed

    Mikkelsen, Lauge Hjorth; Hamoudi, Hassan; Gül, Cigdem Altuntas; Heegaard, Steffen

    2017-01-01

    To present a case of corneal toxicity following exposure to milky plant latex from Asclepias tuberosa. A 70-year-old female presented with blurred vision and pain in her left eye after handling an Ascepias tuberosa . Clinical examination revealed a corneal stromal oedema with small epithelial defects. The corneal endothelium was intact and folds in Descemets membrane were observed. The oedema was treated with chloramphenicol, dexamethasone and scopolamine. The corneal oedema had appeared after corneal exposure to the plant, Asclepias tuberosa , whose latex contains cardenolides that inhibit the Na + / K + -ATPase in the corneal endothelium. The oedema resolved after 96 hours. After nine months the best corrected visual acuity was 20/20. Corneal toxicity has previously been reported for plants of the Asclepias family. This is a rare case describing severe corneal toxicity caused by exposure to latex from Asclepias tuberosa . Handling of plants of the Asclepias family should be kept as a differential diagnosis in cases of acute corneal toxicity.

  20. History of corneal transplantation in Australia.

    PubMed

    Coster, Douglas J

    2015-04-01

    Corneal transplantation is a triumph of modern ophthalmology. The possibility of corneal transplantation was first raised in 1797 but a century passed before Zirm achieved the first successful penetrating graft in 1905. Gibson reported the first corneal graft in Australia from Brisbane in 1940 and English established the first eye bank there a few years later. Corneal transplantation evolved steadily over the twentieth century. In the second half of the century, developments in microsurgery, including surgical materials such as monofilament nylon and strong topical steroid drops, accounted for improvements in outcomes. In 2013, approximately 1500 corneal transplants were done in Australia. Eye banking has evolved to cope with the rising demands for donor corneas. Australian corneal surgeons collaborated to establish and support the Australian Corneal Graft Registry in 1985. It follows the outcomes of their surgery and has become an important international resource for surgeons seeking further improvement with the procedure. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  1. Corneal Nerves in Health and Disease

    PubMed Central

    Shaheen, Brittany; Bakir, May; Jain, Sandeep

    2013-01-01

    Corneal nerves are responsible for the sensations of touch, pain, and temperature and play an important role in the blink reflex, wound healing, and tear production and secretion. Corneal nerve dysfunction is a frequent feature of diseases that cause opacities and result in corneal blindness. Corneal opacities rank as the second most frequent cause of blindness. Technological advances in in vivo corneal nerve imaging, such as optical coherence tomography and confocal scanning, have generated new knowledge regarding the phenomenological events that occur during reinnervation of the cornea following disease, injury, or surgery. The recent availability of transgenic neurofluorescent murine models has stimulated the search for molecular modulators of corneal nerve regeneration. New evidence suggests that neuro-regenerative and inflammatory pathways in the cornea are intertwined. Evidence-based treatment of neurotrophic corneal diseases includes using neuro-regenerative (blood component-based and neurotrophic factors), neuroprotective, and ensconcing (bandage contact lens and amniotic membrane) strategies and avoiding anti-inflammatory therapies, such as cyclosporine and corticosteroids. PMID:24461367

  2. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet.

    PubMed

    Parikumar, Periyasamy; Haraguchi, Kazutoshi; Ohbayashi, Akira; Senthilkumar, Rajappa; Abraham, Samuel J K

    2014-05-01

    In vitro expansion of human corneal endothelial precursor (HCEP) cells has been reported via production of cell aggregated spheres. However, to translate this procedure in human patients warrants maintaining the position of the eyeballs facing down for 36 h, which is not feasible. In this study, we report a method using a nanocomposite (NC) gel sheet to accomplish the integration of HCEP cells to the endothelium of cadaver bovine's eyes. HCEP cells were isolated from the corneal endothelium of a cadaver human eye and then expanded using a thermoreversible gelation polymer (TGP) as reported earlier. For the study, three cadaver bovine eyes were used. The NC gel sheets were inserted into the bovine eyes', aligned and suture-fixed in position under the host endothelium. HCEP cells previously expanded in the TGP were harvested and injected using a 26-gauge syringe between the endothelium and the NC gel sheet. The eyes were left undisturbed for three hours following which the NC gel sheets were gently removed. The corneas were harvested and subjected to histopathological studies. Histopathological studies showed that all the three corneas used for NC gel sheet implantation showed the presence of engrafted HCEP cells, seen as multi-layered cells over the native endothelium of the bovine cornea. Examination of the NC gel sheets used for implantation showed that only very few corneal endothelial cells remained on the sheets amounting to what could be considered negligible. The use of the NC gel sheet makes HCEP cell transplantation feasible for human patients. Further in vitro basic studies followed by translational studies are necessary to bring this method for clinical application in appropriate indications.

  3. THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis

    PubMed Central

    Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James; Hubschman, Jean-Pierre; Deng, Sophie; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    Terahertz (THz) spectral properties of human cornea are explored as a function of central corneal thickness (CCT) and corneal water content, and the clinical utility of THz-based corneal water content sensing is discussed. Three candidate corneal tissue water content (CTWC) perturbations, based on corneal physiology, are investigated that affect the axial water distribution and total thickness. The THz frequency reflectivity properties of the three CTWC perturbations were simulated and explored with varying system center frequency and bandwidths (Q-factors). The modeling showed that at effective optical path lengths on the order of a wavelength the cornea presents a lossy etalon bordered by air at the anterior and the aqueous humor at the posterior. The simulated standing wave peak-to-valley ratio is pronounced at lower frequencies and its effect on acquired data can be modulated by adjusting the bandwidth of the sensing system. These observations are supported with experimental spectroscopic data. The results suggest that a priori knowledge of corneal thickness can be utilized for accurate assessments of corneal tissue water content. The physiologic variation of corneal thickness with respect to the wavelengths spanned by the THz band is extremely limited compared to all other structures in the body making CTWC sensing unique amongst all proposed applications of THz medical imaging. PMID:26322247

  4. Ability of Mn2+ to Permeate the Eye and Availability of Manganese-enhanced Magnetic Resonance Imaging for Visual Pathway Imaging via Topical Administration

    PubMed Central

    Chen, Yao; Shi, Chun-Yan; Li, Ying; Hu, Yun-Tao; Han, Hong-Bin; Sun, Xiao-Dong; Salvi, Satyajeet S; Ma, Zhi-Zhong

    2016-01-01

    Background: Manganese-enhanced magnetic resonance imaging (MEMRI) for visual pathway imaging via topical administration requires further research. This study investigated the permeability of the corneal epithelium and corneal toxicity after topical administration of Mn2+ to understand the applicability of MEMRI. Methods: Forty New Zealand rabbits were divided into 0.05 mol/L, 0.10 mol/L, and 0.20 mol/L groups as well as a control group (n = 10 in each group). Each group was further subdivided into epithelium-removed and epithelium-intact subgroups (n = 5 in each subgroup). Rabbits were given 8 drops of MnCl2 in 5 min intervals. The Mn2+ concentrations in the aqueous and vitreous humors were analyzed using inductively coupled plasma-mass spectrometry at different time points. MEMRI scanning was carried out to image the visual pathway after 24 h. The corneal toxicity of Mn2+ was evaluated with corneal imaging and pathology slices. Results: Between the aqueous and vitreous humors, there was a 10 h lag for the peak Mn2+ concentration times. The intraocular Mn2+ concentration increased with the concentration gradients of Mn2+ and was higher in the epithelium-removed subgroup than that in the epithelium-intact subgroup. The enhancement of the visual pathway was achieved in the 0.10 mol/L and 0.20 mol/L epithelium-removed subgroups. The corresponding peak concentrations of Mn2+ were 5087 ± 666 ng/ml, 22920 ± 1188 ng/ml in the aqueous humor and 884 ± 78 ng/ml, 2556 ± 492 ng/ml in the vitreous body, respectively. Corneal injury was evident in the epithelium-removed and 0.20 mol/L epithelium-intact subgroups. Conclusions: The corneal epithelium is a barrier to Mn2+, and the iris and lens septum might be another intraocular barrier to the permeation of Mn2+. An elevated Mn2+ concentration contributes to the increased permeation of Mn2+, higher MEMRI signal, and corneal toxicity. The enhancement of the visual pathway requires an effective Mn2+ concentration in the vitreous

  5. Spatially correlated phenotyping reveals K5-positive luminal progenitor cells and p63-K5/14-positive stem cell-like cells in human breast epithelium.

    PubMed

    Boecker, Werner; van Horn, Laura; Stenman, Göran; Stürken, Christine; Schumacher, Udo; Loening, Thomas; Liesenfeld, Lukas; Korsching, Eberhard; Gläser, Doreen; Tiemann, Katharina; Buchwalow, Igor

    2018-05-09

    Understanding the mechanisms regulating human mammary epithelium requires knowledge of the cellular constituents of this tissue. Different and partially contradictory definitions and concepts describing the cellular hierarchy of mammary epithelium have been proposed, including our studies of keratins K5 and/or K14 as markers of progenitor cells. Furthermore, we and others have suggested that the p53 homolog p63 is a marker of human breast epithelial stem cells. In this investigation, we expand our previous studies by testing whether immunohistochemical staining with monospecific anti-keratin antibodies in combination with an antibody against the stem cell marker p63 might help refine the different morphologic phenotypes in normal breast epithelium. We used in situ multilabel staining for p63, different keratins, the myoepithelial marker smooth muscle actin (SMA), the estrogen receptor (ER), and Ki67 to dissect and quantify the cellular components of 16 normal pre- and postmenopausal human breast epithelial tissue samples at the single-cell level. Importantly, we confirm the existence of K5+ only cells and suggest that they, in contrast to the current view, are key luminal precursor cells from which K8/18+ progeny cells evolve. These cells are further modified by the expression of ER and Ki67. We have also identified a population of p63+K5+ cells that are only found in nipple ducts. Based on our findings, we propose a new concept of the cellular hierarchy of human breast epithelium, including K5 luminal lineage progenitors throughout the ductal-lobular axis and p63+K5+ progenitors confined to the nipple ducts.

  6. Glaucoma after corneal replacement.

    PubMed

    Baltaziak, Monika; Chew, Hall F; Podbielski, Dominik W; Ahmed, Iqbal Ike K

    Glaucoma is a well-known complication after corneal transplantation surgery. Traditional corneal transplantation surgery, specifically penetrating keratoplasty, has been slowly replaced by the advent of new corneal transplantation procedures: primarily lamellar keratoplasties. There has also been an emergence of keratoprosthesis implants for eyes that are high risk of failure with penetrating keratoplasty. Consequently, there are different rates of glaucoma, pathogenesis, and potential treatment in the form of medical, laser, or surgical therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Prospective Study of Pterygium Excision and Conjunctival Autograft With Human Fibrin Tissue Adhesive: Effects on Vision, Refraction, and Corneal Topography.

    PubMed

    Misra, Stuti; Craig, Jennifer P; McGhee, Charles N J; Patel, Dipika V

    2014-01-01

    This study aimed to investigate changes in visual acuity, corneal parameters, and topographic parameters after pterygium surgery. A prospective observational study was conducted. Twenty eyes of 20 participants undergoing pterygium excision with conjunctival autograft secured using human fibrin tissue adhesive were included in the study. All the participants were assessed preoperatively and 1 and 3 months postoperatively. The parameters included subjective refraction, visual acuity, and pterygium size (pterygium horizontal corneal length [PHCL]) and corneal tomography by Pentacam rotating Scheimpflug tomographer (OCULUS Optikgeräte GmbH, Wetzlar, Germany). The astigmatic changes were calculated using vector analysis. The mean age of participants was 49.3 ± 12.1 years. Mean PHCL was 2.68 ± 0.30 mm. The mean best corrected visual acuity preoperatively was 6/7.5, improving significantly to 6/6 at 1 month (P = 0.001) with this improvement remaining stable at 3 months postoperatively (P = 0.34). There was no significant change in subjective astigmatism, however, mean topographic astigmatism decreased significantly at 1 month (4.36 diopter, P < 0.01) and remained unchanged at 3 months (P < 0.01). Greater PHCL was associated with greater changes in corneal astigmatism. Significant improvements and early stabilization of visual acuity and topographic astigmatism confirm the optical benefits of pterygium excision. These data also suggest a significant advantage of performing pterygium before rather than simultaneously with or after cataract surgery by enabling the most accurate biometry.

  8. Molecular characterization and differential gene induction of the neuroendocrine-specific genes neurotensin, neurotensin receptor, PC1, PC2, and 7B2 in the human ocular ciliary epithelium.

    PubMed

    Ortego, J; Coca-Prados, M

    1997-11-01

    The ocular ciliary epithelium is a bilayer of neuroepithelial cells specialized in the secretion of aqueous humor fluid and the regulation of intraocular pressure. In this study, we report on the expression of the regulatory peptide neurotensin (NT) and a set of differentiated neuroendocrine markers including neurotensin receptors (NTrs), the prohormone convertases furin, PC1, and PC2, and the neuroendocrine polypeptide 7B2 in the ciliary epithelium. Using a human cell line, ODM-2, derived from the nonpigmented ciliary epithelium, we demonstrate that (1) NT expression is highly activated by nerve growth factor, glucocorticoid, and activators of adenylate cyclase; (2) NTr expression is up-regulated by selective ligand-activated beta2-adrenergic receptor; and (3) PC1 and PC2 expression are up-regulated via distinct signaling transduction pathways. PC1 gene expression is activated by phorbol ester, and PC2 by the same inducers as those of NT expression. A radioimmunoassay for NT detected an NT-like immunoreactivity in human ciliary epithelium and ODM-2 cell extracts, in aqueous humor, and in conditioned culture medium. The results support the view that the entire ciliary epithelium functions as a neuroendocrine tissue, synthesizing, processing, and releasing NT into the aqueous humor where it may exert important physiological functions through autocrine and/or paracrine mechanisms.

  9. Antibodies against Escherichia coli O24 and O56 O-Specific Polysaccharides Recognize Epitopes in Human Glandular Epithelium and Nervous Tissue

    PubMed Central

    Korzeniowska-Kowal, Agnieszka; Kochman, Agata; Gamian, Elżbieta; Lis-Nawara, Anna; Lipiński, Tomasz; Seweryn, Ewa; Ziółkowski, Piotr; Gamian, Andrzej

    2015-01-01

    Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, contains the O-polysaccharide, which is important to classify bacteria into different O-serological types within species. The O-polysaccharides of serotypes O24 and O56 of E. coli contain sialic acid in their structures, already established in our previous studies. Here, we report the isolation of specific antibodies with affinity chromatography using immobilized lipopolysaccharides. Next, we evaluated the reactivity of anti-O24 and anti-O56 antibody on human tissues histologically. The study was conducted under the assumption that the sialic acid based molecular identity of bacterial and tissue structures provides not only an understanding of the mimicry-based bacterial pathogenicity. Cross-reacting antibodies could be used to recognize specific human tissues depending on their histogenesis and differentiation, which might be useful for diagnostic purposes. The results indicate that various human tissues are recognized by anti-O24 and anti-O56 antibodies. Interestingly, only a single specific reactivity could be found in the anti-O56 antibody preparation. Several tissues studied were not reactive with either antibody, thus proving that the presence of cross-reactive antigens was tissue specific. In general, O56 antibody performed better than O24 in staining epithelial and nervous tissues. Positive staining was observed for both normal (ganglia) and tumor tissue (ganglioneuroma). Epithelial tissue showed positive staining, but an epitope recognized by O56 antibody should be considered as a marker of glandular epithelium. The reason is that malignant glandular tumor and its metastasis are stained, and also epithelium of renal tubules and glandular structures of the thyroid gland are stained. Stratified epithelium such as that of skin is definitely not stained. Therefore, the most relevant observation is that the epitope recognized by anti-O56 antibodies is a new marker

  10. Organ transplantation scandal influencing corneal donation rate.

    PubMed

    Röck, Tobias; Bramkamp, Matthias; Bartz-Schmidt, Karl Ulrich; Röck, Daniel

    2017-01-01

    In the majority of countries, there is a shortage of donor corneas for corneal transplantations. This study investigated the impact of organ transplantation scandals on corneal donation rate at the University Hospital Tübingen. Each deceased patient was considered as a potential corneal donor. An ophthalmic resident handled with stable methods of procedures the corneal donor procurement from 2009 to 2015. The rates of corneal donation were examined and analyzed. Among the 5712 hospital deaths, consent for corneal donation was obtained in 711 cases. The mean annual corneal donation rate was 12.4%. Since 2009, the donation rate per year could be increased with exception of 2013 and 2015. In the end of 2012 and 2014 two huge organ donation scandals were known in Germany. In the following years 2013 and 2015 corneal donation rate decreased significantly ( P =0.0181 and P =0.0006). We concluded that transplantation scandals have a significant impact on corneal donation rate. Improving professional's performance through full transparency and honesty is very important to earn trust of potential donors and their families.

  11. Organ transplantation scandal influencing corneal donation rate

    PubMed Central

    Röck, Tobias; Bramkamp, Matthias; Bartz-Schmidt, Karl Ulrich; Röck, Daniel

    2017-01-01

    In the majority of countries, there is a shortage of donor corneas for corneal transplantations. This study investigated the impact of organ transplantation scandals on corneal donation rate at the University Hospital Tübingen. Each deceased patient was considered as a potential corneal donor. An ophthalmic resident handled with stable methods of procedures the corneal donor procurement from 2009 to 2015. The rates of corneal donation were examined and analyzed. Among the 5712 hospital deaths, consent for corneal donation was obtained in 711 cases. The mean annual corneal donation rate was 12.4%. Since 2009, the donation rate per year could be increased with exception of 2013 and 2015. In the end of 2012 and 2014 two huge organ donation scandals were known in Germany. In the following years 2013 and 2015 corneal donation rate decreased significantly (P=0.0181 and P=0.0006). We concluded that transplantation scandals have a significant impact on corneal donation rate. Improving professional's performance through full transparency and honesty is very important to earn trust of potential donors and their families. PMID:28730094

  12. Measurement of In Vivo Three-Dimensional Corneal Cell Density and Size Using Two-Photon Imaging in C57BL/6 Mice.

    PubMed

    Zhang, Hongmin; He, Siyu; Liu, Susu; Xie, Yanting; Chen, Guoming; Zhang, Junjie; Sun, Shengtao; Liang, David; Wang, Liya

    2016-04-01

    To measure the cell size and cell density in five layers of the central cornea in the widely used inbred C57BL/6 mouse strain using in vivo three-dimensional (3D) two-photon (2PH) imaging. Corneas were scanned using a 2PH laser scanning fluorescence microscope after staining with plasma membrane stain and Hoechst 33342. Good quality 3D images were selected for the cell density and cell size analysis. Cell density was determined by counting the cell nuclei in a predefined cube of 3D images. Cell size measurements, including cell surface area, cell volume, nuclear surface area and nuclear volume, were automatically quantified using the Imaris software. The cell and nuclear surface-area-to-volume ratio (S:V ratio) and the cell nuclear-cytoplasmic ratio (N:C ratio) were calculated. The highest cell density was observed in the basal epithelium and the lowest in the posterior stroma. The highest cell surface area was found in the anterior stroma, and the highest cell volume was observed in the superficial epithelium. The lowest cell surface area and cell volume were both found in the basal epithelium. The highest S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest cell nuclear surface area and volume were both observed in the superficial epithelium and the lowest in the basal epithelium. The highest cell nuclear S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest N:C ratio was found in the basal epithelial cells and the lowest in the posterior keratocytes. We are the first to quantify the cell density and size parameters, including cell surface area and volume, cell nuclear surface area and volume, and the S:V ratio, in the five layers of the central cornea. These data provide important cell morphology features for the study of corneal physiology, pathology and disease in mice, particularly in C57BL/6 mice.

  13. Topical treatment of corneal alkali burns with Gly-thymosin β4 solutions and in situ hydrogels via inhibiting corneal neovascularization and improving corneal epidermal recovery in experimental rabbits.

    PubMed

    Zhang, Weili; Nie, Liya; Du, Lina; Chen, Wenyang; Wu, Zhihong; Jin, Yiguang

    2017-12-01

    Corneal alkali burns are a severe disease and commonly encountered in the emergent clinic. A rapid medical treatment for the burn is very important. Gly-thymosin β 4 (Gly-Tβ 4 ) is a biomimic derivative of natural thymosin β 4 . The aim of this study is to evaluate the corneal recovery effects of Gly-Tβ 4 topical therapy on alkali burns in rabbit corneas. Rabbit alkali burns were induced with NaOH-contained filter paper. Phosphate-buffered solutions at pH 7.0, Gly-Tβ 4 solutions, blank in situ hydrogels, and Gly-Tβ 4 in situ hydrogels were dropped on the burned corneas. The treatments were continued for 14 days. Conjunctiva hyperemia, corneal edema, intraeye extravasation, hemorrhaging, corneal neovascularization (CNV), and corneal opacity were observed. Corneal immunohistochemistry and histopathology were performed. Gly-Tβ 4 solutions led to a lower corneal burn index than the other regimens. Hydrogels may stimulate the burned corneas due to the direct contact of them, and prevent the rapid release of Gly-Tβ 4 . Gly-Tβ 4 significantly inhibited CNV according to the images of the corneas, CNV areas, and CD31 expression. Furthermore, Gly-Tβ 4 improved corneal epidermal recovery according to the histopathological result. Gly-Tβ 4 solutions are a promising formulation for topical treatment of corneal alkali burns. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  14. Customized Corneal Cross-Linking-A Mathematical Model.

    PubMed

    Caruso, Ciro; Epstein, Robert L; Ostacolo, Carmine; Pacente, Luigi; Troisi, Salvatore; Barbaro, Gaetano

    2017-05-01

    To improve the safety, reproducibility, and depth of effect of corneal cross-linking with the ultraviolet A (UV-A) exposure time and fluence customized according to the corneal thickness. Twelve human corneas were used for the experimental protocol. They were soaked using a transepithelial (EPI-ON) technique using riboflavin with the permeation enhancer vitamin E-tocopheryl polyethylene glycol succinate. The corneas were then placed on microscope slides and irradiated at 3 mW/cm for 30 minutes. The UV-A output parameters were measured to build a new equation describing the time-dependent loss of endothelial protection induced by riboflavin during cross-linking, as well as a pachymetry-dependent and exposure time-dependent prescription for input UV-A fluence. The proposed equation was used to establish graphs prescribing the maximum UV-A fluence input versus exposure time that always maintains corneal endothelium exposure below toxicity limits. Analysis modifying the Lambert-Beer law for riboflavin oxidation leads to graphs of the maximum safe level of UV-A radiation fluence versus the time applied and thickness of the treated cornea. These graphs prescribe UV-A fluence levels below 1.8 mW/cm for corneas of thickness 540 μm down to 1.2 mW/cm for corneas of thickness 350 μm. Irradiation times are typically below 15 minutes. The experimental and mathematical analyses establish the basis for graphs that prescribe maximum safe fluence and UV-A exposure time for corneas of different thicknesses. Because this clinically tested protocol specifies a corneal surface clear of shielding riboflavin on the corneal surface during UV-A irradiation, it allows for shorter UV-A irradiation time and lower fluence than in the Dresden protocol.

  15. Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells.

    PubMed

    Kobayashi, Yuki; Hayashi, Ryuhei; Quantock, Andrew J; Nishida, Kohji

    2017-12-01

    The expression of p63 in surface ectodermal cells during development of the cornea, skin, oral mucosa and olfactory placodes is integral to the process of cellular self-renewal and the maintenance of the epithelial stem cell status. Here, we used TALEN technology to generate a p63 knock-in (KI) human induced pluripotent stem (hiPS) cell line in which p63 expression can be visualized via enhanced green fluorescent protein (EGFP) expression. The KI-hiPS cells maintained pluripotency and expressed the stem cell marker gene, ΔNp63α. They were also able to successfully differentiate into functional corneal epithelial cells as assessed by p63 expression in reconstructed corneal epithelium. This approach enables the tracing of p63-expressing cell lineages throughout epithelial development, and represents a promising application in the field of stem cell research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Corneal tissue water content mapping with THz imaging: preliminary clinical results (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Deng, Sophie X.; Taylor, Zachary; Grundfest, Warren

    2016-03-01

    Well-regulated corneal water content is critical for ocular health and function and can be adversely affected by a number of diseases and injuries. Current clinical practice limits detection of unhealthy corneal water content levels to central corneal thickness measurements performed by ultrasound or optical coherence tomography. Trends revealing increasing or decreasing corneal thickness are fair indicators of corneal water content by individual measurements are highly inaccurate due to the poorly understood relationship between corneal thickness and natural physiologic variation. Recently the utility of THz imaging to accuarately measure corneal water content has been explored on with rabbit models. Preliminary experiments revealed that contact with dielectric windows confounded imaging data and made it nearly impossible to deconvolve thickness variations due to contact from thickness variations due to water content variation. A follow up study with a new optical design allowed the acquisition of rabbit data and the results suggest that the observed, time varying contrast was due entirely to the water dynamics of the cornea. This paper presents the first ever in vivo images of human cornea. Five volunteers with healthy cornea were recruited and their eyes were imaged three times over the course of a few minutes with our novel imaging system. Noticeable changes in corneal reflectivity were observed and attributed to the drying of the tear film. The results suggest that clinically compatible, non-contact corneal imaging is feasible and indicate that signal acquired from non-contact imaging of the cornea is a complicated coupling of stromal water content and tear film.

  17. Multimodal Assessment of Corneal Thinning Using Optical Coherence Tomography, Scheimpflug Imaging, Pachymetry, and Slit-Lamp Examination.

    PubMed

    Oatts, Julius T; Keenan, Jeremy D; Mannis, Tova; Lietman, Tom M; Rose-Nussbaumer, Jennifer

    2017-04-01

    To assess the relationship between corneal thinning measured by clinician-graded slit-lamp examination compared with ultrasound pachymetry (USP), anterior segment optical coherence tomography (AS-OCT), and the Pentacam. Patients with corneal thinning underwent USP, AS-OCT, Pentacam measurements and standardized clinical grading by 2 cornea specialists estimating thinning on slit-lamp examination. Reproducibility of each testing modality was assessed using the intraclass correlation coefficient. Bland-Altman plots were used to determine precision and limits of agreement (LOA) between imaging modalities and clinical grading. We included 22 patients with corneal thinning secondary to infectious or inflammatory keratitis. Mean percent stromal thinning estimated by grader 1 was 51% (SD 31) and grader 2 was 49% (SD 33). The intraclass correlation coefficient between the masked examiners was 0.95 (95% confidence interval, 0.88-0.98). Graders were more similar to each other than to any other modality with 2% difference and 4.6% of measurements outside the LOA. When measuring the area of maximum thinning, AS-OCT measured approximately 10% thicker than human graders while the Pentacam measured approximately 10% thinner than human graders with 16.7% outside the LOA. USP measured approximately 20% thinner than human graders with 5.6% outside the LOA. Trained corneal specialists have a high degree of agreement in location and degree of corneal thinning when measured in a standardized fashion on the same day. Other testing modalities had acceptable reproducibility and agreement with clinical examination and each other, although Scheimpflug imaging fared worse for corneal thinning, particularly in the periphery, than the other modalities.

  18. [Effect of flavin adenine dinucleotide on ultraviolet B induced damage in cultured human corneal epithelial cells].

    PubMed

    Sakamoto, Asuka; Nakamura, Masatsugu

    2012-01-01

    This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.

  19. Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway

    PubMed Central

    Grisanti, Laura; Revenkova, Ekaterina; Gordon, Ronald E.

    2016-01-01

    Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling. PMID:27122169

  20. Contact lens-induced peripheral ulcers with extended wear of disposable hydrogel lenses: histopathologic observations on the nature and type of corneal infiltrate.

    PubMed

    Holden, B A; Reddy, M K; Sankaridurg, P R; Buddi, R; Sharma, S; Willcox, M D; Sweeney, D F; Rao, G N

    1999-09-01

    Contact lens-induced peripheral ulcer (CLPU), a sudden-onset adverse event observed with extended wear of hydrogel lenses, is characterized by a single, small, circular, focal anterior stromal infiltrate in the corneal periphery or midperiphery. The condition is always associated with a significant overlying epithelial loss and resolves in a scar. The aim was to determine, by using histopathologic techniques, the nature and type of the corneal infiltrate of these events. Three CLPUs observed in three patients using disposable hydrogel lenses on an extended-wear schedule were examined. The eye was topically anesthetized, and a corneal section including all of the infiltrate was taken. A small triangular piece of conjunctiva immediately adjacent to the infiltrate was sectioned. The tissue was immediately fixed, processed, stained using hematoxylin and eosin and periodic acid-Schiff stains, and examined by using light microscopy. The diameter of these three corneal infiltrates varied from 0.3 to 0.6 mm. Histopathology of the corneal sections revealed a focal epithelial loss corresponding to the infiltrated stroma in all three patients. The adjacent epithelium was thinned. Bowman's layer was intact in two patients and had a localized area of loss in the remaining patient. The anterior stroma was densely infiltrated with polymorphonuclear leukocytes and had focal areas of necrosis. The infiltration was most dense in the region immediately underlying Bowman's layer. No other infiltrative cell type was seen in any of the sections. Histopathology of the conjunctiva revealed features consistent with normal conjunctival tissue. On histopathology of CLPU, distinctive features (i.e., focal corneal epithelial loss, an intact Bowman's membrane, and a localized infiltration of the anterior stroma with polymorphonuclear leukocytes) were seen. These features suggest that the event is an acute inflammatory process and probably noninfective in nature.

  1. Microfabricated instruments and methods to treat recurrent corneal erosion

    DOEpatents

    Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J

    2013-11-26

    In one embodiment, the present invention provides a device and method for treating recurrent corneal erosion. In one embodiment, the method includes the steps of contacting an epithelium layer of a cornea with an array of glass micro-rods including a plurality of sharp features having a length that penetrates a Bowman's layer of the eye, wherein the plurality of sharp features of the array of glass micro-rods produces a plurality of punctures in the Bowman's layer of the eye that are of micro-scale or less. In another embodiment, the present invention provides a method and device for drug delivery. In one embodiment, the device includes an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods, wherein the sharp feature includes a treated surface for delivering a chemical compound to the eye.

  2. Microfabricated instruments and methods to treat recurrent corneal erosions

    DOEpatents

    Britton, Jr., Charles L.; D'urso, Brian R.; Chaum, Edward; Simpson, John T.; Baba, Justin S.; Ericson, M. Nance; Warmack, Robert J.

    2015-06-02

    In one embodiment, the present invention provides a device and method for treating recurrent corneal erosion. In one embodiment, the method includes the steps of contacting an epithelium layer of a cornea with an array of glass micro-rods including a plurality of sharp features having a length that penetrates a Bowman's layer of the eye, wherein the plurality of sharp features of the array of glass micro-rods produces a plurality of punctures in the Bowman's layer of the eye that are of micro-scale or less. In another embodiment, the present invention provides a method and device for drug delivery. In one embodiment, the device includes an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods, wherein the sharp feature includes a treated surface for delivering a chemical compound to the eye.

  3. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    PubMed

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  4. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium.

    PubMed

    Zhang, Wenlin; Li, Hongde; Ogando, Diego G; Li, Shimin; Feng, Matthew; Price, Francis W; Tennessen, Jason M; Bonanno, Joseph A

    2017-02-01

    Corneal endothelium (CE) is among the most metabolically active tissues in the body. This elevated metabolic rate helps the CE maintain corneal transparency by its ion and fluid transport properties, which when disrupted, leads to visual impairment. Here we demonstrate that glutamine catabolism (glutaminolysis) through TCA cycle generates a large fraction of the ATP needed to maintain CE function, and this glutaminolysis is severely disrupted in cells deficient in NH 3 :H + cotransporter Solute Carrier Family 4 Member 11 (SLC4A11). Considering SLC4A11 mutations leads to corneal endothelial dystrophy and sensorineural deafness, our results indicate that SLC4A11-associated developmental and degenerative disorders result from altered glutamine catabolism. Overall, our results describe an important metabolic mechanism that provides CE cells with the energy required to maintain high level transport activity, reveal a direct link between glutamine metabolism and developmental and degenerative neuronal diseases, and suggest an approach for protecting the CE during ophthalmic surgeries. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Influence of Extracellular Matrix Proteins and Substratum Topography on Corneal Epithelial Cell Alignment and Migration

    PubMed Central

    Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul

    2013-01-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816

  6. Occurrence of viral DNA in paired samples of corneal rim and cornea preservation fluid.

    PubMed

    Broniek, G; Langwińska-Wośko, E; Sybilska, M; Szaflik, J P; Przybylski, M; Wróblewska, M

    2017-04-01

    Corneal transplants have one of the highest success rates among all transplantological procedures. Corneas intended for transplantation are stored in a preservation fluid, which is then tested for bacterial and fungal infections. Among all analyses of infectious complications following corneal transplants, infections caused by bacteria or fungi are the most prominent. Surprisingly, however, apart from a few publications, there is a lack of data regarding the occurrence of viruses in donor corneas and the risk of transmitting these to their recipients. The intention of this research was therefore to determine the frequency with which human herpesvirus 1 (HHV-1), human herpesvirus 2 (HHV-2), and human adenovirus (HAdV) occur in transplanted corneal tissue, as well as in samples of preservation fluid. The study comprised 57 paired samples, with each pair consisting of a fragment of the corneal tissue remaining after its trepanation for transplantation surgery and a sample of corneal preservation fluid. Sample pairs were all tested for the presence of the DNA of three viruses (HHV-1, HHV-2, and HAdV) using real time PCR technique. Viral DNA was found in three of the tested corneas-HHV-1 DNA in one paired sample (1.8%) and adenovirus DNA in two single samples (3.5%). We postulate that virological testing of corneas for transplantation should be considered, particularly in the case of donors with increased risk factors for herpesvirus and adenovirus reactivation. J. Med. Virol. 89:732-736, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. [Architectural ultrastructure of the human urinary transitional epithelium].

    PubMed

    Takayama, H; Konishi, T

    1984-07-01

    Human urinary bladder mucosa, confirmed to be normal by cystoscopic, histologic and bacteriologic examination, were obtained from four patients at prostatectomy and from two patients at an anti-VUR procedure. The luminal surface and the three dimensional architecture of the bladder mucosa were observed by scanning electron microscopy (SEM) after cryofracture of specimen and by transmission electron microscopy (TEM). The epithelium consists of superficial, intermediate and basal cells, and SEM and TEM showed that it was stratified. Intermediate cells reached the basal lamina by slender cytoplasmic processes but superficial cells were not directly in contact with the basal lamina. No pleomorphic or long microvilli were observed but short microvilli or granular protrusions were sparsely seen on the luminal surface of superficial cells. SEM of cryofractured surfaces revealed that cells from each cell layer were in contact with cellular junctions such as ridges, plicated projections and septum-like walls. Their junctions were more complicated with increasing depth of the cell layer. No pleomorphic or long microvilli were observed on any cell surface of the intermediate or basal cell layer. Under TEM, however, these junctional structures of ridges, plicated projections and septal walls appeared to be microvilli under TEM. Microvilli-like structures on TEM, therefore, have to be carefully distinguished from real microvilli. Careful observation is required when the presence of cells covered with microvilli is described as a sign of malignancy.

  8. Corneal collagen crosslinking and pigment dispersion syndrome.

    PubMed

    LaHood, Benjamin R; Moore, Sacha

    2017-03-01

    We describe the case of a keratoconus patient with pigment dispersion syndrome (PDS) who was treated for progressive corneal ectasia with corneal collagen crosslinking (CXL). Pigment dispersion syndrome has been shown to have associated morphologic changes of the corneal endothelium. Corneal CXL has the potential to cause toxicity to the corneal endothelium, and adjacent pigment might increase the likelihood of damage. In this case, the presence of PDS had no detrimental effect on the outcome of treatment, and no complications were observed at 12 months follow-up, indicating that it may be safe to perform corneal CXL in the setting of PDS. This is an important observation as the number of indications for corneal CXL grows. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures.

    PubMed

    Vrana, N Engin; Builles, Nicolas; Justin, Virginie; Bednarz, Jurgen; Pellegrini, Graziella; Ferrari, Barbara; Damour, Odile; Hulmes, David J S; Hasirci, Vasif

    2008-12-01

    To develop an artificial cornea, the ability to coculture the different cell types present in the cornea is essential. Here the goal was to develop a full-thickness artificial cornea using an optimized collagen-chondroitin sulfate foam, with a thickness close to that of human cornea, by coculturing human corneal epithelial and stromal cells and transfected human endothelial cells. Corneal extracellular matrix was simulated by a porous collagen/glycosaminoglycan-based scaffold seeded with stromal keratocytes and then, successively, epithelial and endothelial cells. Scaffolds were characterized for bulk porosity and pore size distribution. The performance of the three-dimensional construct was studied by histology, immunofluorescence, and immunohistochemistry. The scaffold had 85% porosity and an average pore size of 62.1 microm. Keratocytes populated the scaffold and produced a newly synthesized extracellular matrix as characterized by immunohistochemistry. Even though the keratocytes lost their CD34 phenotype marker, the absence of smooth muscle actin fibers showed that these cells had not differentiated into myofibroblasts. The epithelial cells formed a stratified epithelium and began basement membrane deposition. An endothelial cell monolayer beneath the foam was also apparent. These results demonstrate that collagen-chondroitin sulfate scaffolds are good substrates for artificial cornea construction with good resilience, long-term culture capability, and handling properties.

  10. Prototheca wickerhamii infection of a corneal graft.

    PubMed

    Solky, Ana C; Laver, Nora M V; Williams, Joseph; Fraire, Armando

    2011-10-01

    Algae are generally noninfectious agents in mammals, with few known pathogenic algae. Prototheca is an achlorophylic nonphotosynthetic algae, globally ubiquitous, and readily isolated from rivers, lakes, ponds, and soil. Although canine and bovine protothecosis have been reported more widely, infections in humans are rare, particularly in patients with an intact immune system. The majority of protothecal infections in humans is associated with Prototheca wickerhamii. We report an unusual case of P. wickerhamii infection in an immunocompetent corneal transplant patient.

  11. Involvement of NADPH oxidases in alkali burn-induced corneal injury.

    PubMed

    Gu, Xue-Jun; Liu, Xian; Chen, Ying-Ying; Zhao, Yao; Xu, Man; Han, Xiao-Jian; Liu, Qiu-Ping; Yi, Jing-Lin; Li, Jing-Ming

    2016-07-01

    Chemical burns are a major cause of corneal injury. Oxidative stress, inflammatory responses and neovascularization after the chemical burn aggravate corneal damage, and lead to loss of vision. Although NADPH oxidases (Noxs) play a crucial role in the production of reactive oxygen species (ROS), the role of Noxs in chemical burn-induced corneal injury remains to be elucidated. In the present study, the transcription and expression of Noxs in corneas were examined by RT-qPCR, western blot analysis and immunofluorescence staining. It was found that alkali burns markedly upregulated the transcription and expression of Nox2 and Nox4 in human or mouse corneas. The inhibition of Noxs by diphenyleneiodonium (DPI) or apocynin (Apo) effectively attenuated alkali burn-induced ROS production and decreased 3-nitrotyrosine (3-NT) protein levels in the corneas. In addition, Noxs/CD11b double‑immunofluorescence staining indicated that Nox2 and Nox4 were partially co-localized with CD11b. DPI or Apo prevented the infiltration of CD11b-positive inflammatory cells, and inhibited the transcription of inflammatory cytokines following alkali burn-induced corneal injury. In our mouse model of alkali burn-induced corneal injury, corneal neovascularization (CNV) occurred on day 3, and it affected 50% of the whole area of the cornea on day 7, and on day 14, CNV coverage of the cornea reached maximum levels. DPI or Apo effectively attenuated alkali burn‑induced CNV and decreased the mRNA levels of angiogenic factors, including vascular endothelial growth factor (VEGF), VEGF receptors and matrix metalloproteinases (MMPs). Taken together, our data indicate that Noxs play a role in alkali burn-induced corneal injury by regulating oxidative stress, inflammatory responses and CNV, and we thus suggest that Noxs are a potential therapeutic target in the future treatment of chemical-induced corneal injury.

  12. Epithelial-stromal interface in normal and neoplastic human bladder epithelium.

    PubMed

    Alroy, J; Gould, V E

    1980-01-01

    The ultrastructure of the epithelial-stromal interface of the human urinary bladder was studied in biopsy specimens that included 7 normal controls, 1 inverted papilloma, 18 noninvasive papillary carcinomas, and 19 invasive transitional cell carcinomas. In the invasive foci of the transitional cell carcinomas, the underlying basal lamina was attenuated or absent and the number of hemidesmosomes was decreased. These neoplastic cells displayed notably increased numbers of lysosomes, some of which appeared to be in the process of exocytosis. Increased numbers of cytoplasmic filaments adjacent to the plasma membranes at the invading pole of these cells were also observed. Tight junctions and junctional complexes were noticed adjacent to the tumor-stromal interface. None of the aforementioned features was observed in normal transitional epithelium, in inverted papilloma, in noninvasive papillary carcinomas, or in the noninvasive portions of invasive transitional cell carcinomas. Alterations of the epithelial-stromal interface deserve additional studies for they may constitute important parameters in the evaluation of actual or potential invasiveness in the various types of carcinoma of the bladder.

  13. Heterogeneity in macular corneal dystrophy.

    PubMed

    Edward, D P; Yue, B Y; Sugar, J; Thonar, E J; SunderRaj, N; Stock, E L; Tso, M O

    1988-11-01

    Macular corneal dystrophy is an autosomal recessive disorder in which abnormal deposits in the corneal stroma have been identified. We examined the corneal buttons of 12 patients, who had clinical features of macular dystrophy, by histochemical staining, transmission electron microscopy, and immunohistochemical techniques. All corneas exhibited positive staining with Muller Mowry's colloidal iron. Using monoclonal antibodies 1/20/5-D-4, J-10, J-19, and J-36 that recognize specific sites on the sulfated keratan sulfate molecule, we stained corneal sections by an avidin-biotin-peroxidase complex method and identified two groups of macular corneal dystrophy. One group consisting of four corneas reacted positively with all four antibodies, and the other group consisting of eight corneas did not react with any of the antibodies used. These results confirmed those recently presented by Yang et al that there may be subgroups of macular dystrophy that can be identified by immunohistochemical methods. Also, serum levels of sulfated keratan sulfate were determined in seven patients. One patient who displayed a normal level of serum keratan sulfate had positive corneal immunoreactivity. Of the six patients who lacked serum keratan sulfate, four showed negative and two had positive corneal immunostaining, suggesting at least three subgroups in the disease. An attempt was made to correlate the clinical features, histochemical-staining characteristics, and ultrastructural morphology with the immunoreactivity to keratan sulfate antibodies, but no correlations could be made.

  14. The Evolution of Corneal Transplantation.

    PubMed

    Röck, Tobias; Landenberger, Johanna; Bramkamp, Matthias; Bartz-Schmidt, Karl Ulrich; Röck, Daniel

    2017-12-15

    BACKGROUND The aim of this study was to investigate the evolution of surgical methods in and leading indications for corneal transplantation from 2005 to 2016. MATERIAL AND METHODS Data from the corneal graft waiting list and from all keratoplasties carried out between 2005 and 2016 at the University Eye Hospital Tübingen were retrospectively evaluated. RESULTS A total of 1259 keratoplasties were performed between 2005 and 2016 at the University Eye Hospital Tübingen. The most common surgical indications for corneal transplantation were Fuchs endothelial corneal dystrophy (45.5%) and keratoconus (14.2%). The mean rate of corneal transplantations almost doubled from 71 keratoplasties per year in the first 6-year period to 139 keratoplasties per year in the second 6-year period (P=0.005). The number of penetrating keratoplasties remained similar. The number of Descemet membrane endothelial keratoplasties (DMEK) increased significantly from 2008 to 2016 (P<0.0001). One DMEK procedure was performed in 2008 (representing 1.4% of all transplantations), while 75 DMEK procedures were performed in 2016 (representing 60.5% of all transplantations) (P<0.0001). DMEK became the favored surgical method for endothelial disorders, exceeding penetrating keratoplasty in 2013. CONCLUSIONS Our study shows evolutionary changes in preferred corneal transplantation techniques and leading indications for keratoplasty from 2005 to 2016. Since its introduction a decade ago, DMEK is currently the golden standard in the management of corneal endothelial dysfunction.

  15. Healed corneal ulcer with keloid formation.

    PubMed

    Alkatan, Hind M; Al-Arfaj, Khalid M; Hantera, Mohammed; Al-Kharashi, Soliman

    2012-04-01

    We are reporting a 34-year-old Arabic white female patient who presented with a white mass covering her left cornea following multiple ocular surgeries and healed corneal ulcer. The lesion obscured further view of the iris, pupil and lens. The patient underwent penetrating keratoplasty and the histopathologic study of the left corneal button showed epithelial hyperplasia, absent Bowman's layer and subepithelial fibrovascular proliferation. The histopathologic appearance was suggestive of a corneal keloid which was supported by further ultrastructural study. The corneal graft remained clear 6 months after surgery and the patient was satisfied with the visual outcome. Penetrating keratoplasty may be an effective surgical option for corneal keloids in young adult patients.

  16. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    PubMed

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to

  17. Understanding of the Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UV-A Cross-Linking at the Nano Level

    PubMed Central

    Labate, Cristina; De Santo, Maria Penelope; Lombardo, Giuseppe; Lombardo, Marco

    2015-01-01

    Purpose To investigate the viscoelastic changes of the human cornea induced by riboflavin/UV-A cross-linking using Atomic Force Microscopy (AFM) at the nano level. Methods Seven eye bank donor corneas were investigated, after gently removing the epithelium, using a commercial AFM in the force spectroscopy mode. Silicon cantilevers with tip radius of 10 nm and spring elastic constants between 26- and 86-N/m were used to probe the viscoelastic properties of the anterior stroma up to 3 µm indentation depth. Five specimens were tested before and after riboflavin/UV-A cross-linking; the other two specimens were chemically cross-linked using glutaraldehyde 2.5% solution and used as controls. The Young’s modulus (E) and the hysteresis (H) of the corneal stroma were quantified as a function of the application load and scan rate. Results The Young’s modulus increased by a mean of 1.1-1.5 times after riboflavin/UV-A cross-linking (P<0.05). A higher increase of E, by a mean of 1.5-2.6 times, was found in chemically cross-linked specimens using glutaraldehyde 2.5% (P<0.05). The hysteresis decreased, by a mean of 0.9-1.5 times, in all specimens after riboflavin/UV-A cross-linking (P<0.05). A substantial decrease of H, ranging between 2.6 and 3.5 times with respect to baseline values, was observed in glutaraldehyde-treated corneas (P<0.05). Conclusions The present study provides the first evidence that riboflavin/UV-A cross-linking induces changes of the viscoelastic properties of the cornea at the scale of stromal molecular interactions. PMID:25830534

  18. Prevalence and causes of corneal blindness.

    PubMed

    Wang, Haijing; Zhang, Yaoguang; Li, Zhijian; Wang, Tiebin; Liu, Ping

    2014-04-01

    The study aimed to assess the prevalence and causes of corneal blindness in a rural northern Chinese population. Cross-sectional study. The cluster random sampling method was used to select the sample. This population-based study included 11 787 participants of all ages in rural Heilongjiang Province, China. These participants underwent a detailed interview and eye examination that included the measurement of visual acuity, slit-lamp biomicroscopy and direct ophthalmoscopy. An eye was considered to have corneal blindness if the visual acuity was <9/18 because of corneal diseases. The main outcome measure was prevalence rates of corneal blindness and low vision. Among the 10 384 people enrolled in the study, the prevalence of corneal blindness is 0.3% (95% confidence interval 0.2-0.4%). The leading cause was keratitis in childhood (40.0%), followed by ocular trauma (33.3%) and keratitis in adulthood (20.0%). Age and illiteracy were found to be associated with an increased prevalence of corneal blindness. Blindness because of corneal diseases in rural areas of Northern China is a significant public health problem that needs to be given more attention. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  19. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    NASA Astrophysics Data System (ADS)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  20. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants.

    PubMed

    Liu, Zhao; Zhou, Qiang; Zhu, Jixiang; Xiao, Jianhui; Wan, Pengxia; Zhou, Chenjing; Huang, Zheqian; Qiang, Na; Zhang, Wei; Wu, Zheng; Quan, Daping; Wang, Zhichong

    2012-10-01

    Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effects of nicotine on corneal wound healing following acute alkali burn.

    PubMed

    Kim, Jong Won; Lim, Chae Woong; Kim, Bumseok

    2017-01-01

    Epidemiological studies have indicated that smoking is a pivotal risk factor for the progression of several chronic diseases. Nicotine, the addictive component of cigarettes, has powerful pathophysiological properties in the body. Although the effects of cigarette smoking on corneal re-epithelialization have been studied, the effects of nicotine on corneal wound healing-related neovascularization and fibrosis have not been fully demonstrated. The aim of this study was to evaluate the effects of chronic administration of nicotine on corneal wound healing following acute insult induced by an alkali burn. BALB/C female mice randomly received either vehicle (2% saccharin) or nicotine (100 or 200 μg/ml in 2% saccharin) in drinking water ad libitum. After 1 week, animals were re-randomized and the experimental group was subjected to a corneal alkali burn, and then nicotine was administered until day 14 after the alkali burn. A corneal alkali burn model was generated by placing a piece of 2 mm-diameter filter paper soaked in 1N NaOH on the right eye. Histopathological analysis and the expression level of the pro-angiogenic genes vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP9) revealed that chronic nicotine administration enhanced alkali burn-induced corneal neovascularization. Furthermore, the mRNA expression of the pro-fibrogenic factors α-smooth muscle actin (αSMA), transforming growth factor-β (TGF-β), and collagen α1 (Col1) was enhanced in the high-concentration nicotine-treated group compared with the vehicle group after corneal injury. Immunohistochemical analysis also showed that the αSMA-positive area was increased in chronic nicotine-treated mice after corneal alkali burn. An in vitro assay found that expression of the α3, α7, and β1 nicotinic acetylcholine receptor (nAChR) subunits was significantly increased by chemical injury in human corneal fibroblast cells. Moreover, alkali-induced fibrogenic gene expression and

  2. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study

    PubMed Central

    Okumura, Naoki; Suganami, Hideki; Kinoshita, Shigeru

    2015-01-01

    Purpose To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects. Design Prospective, interventional case series. Methods In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7. Results By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period. Conclusion Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration. Trial Registration JAPIC Clinical Trials Information 142705 PMID:26367375

  3. Barrier properties of cultured retinal pigment epithelium.

    PubMed

    Rizzolo, Lawrence J

    2014-09-01

    The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Characterization of corneal pannus removed from patients with total limbal stem cell deficiency.

    PubMed

    Espana, Edgar M; Di Pascuale, Mario A; He, Hua; Kawakita, Tetsuya; Raju, Vadrevu K; Liu, Chia-Yang; Tseng, Scheffer C G

    2004-09-01

    To determine the epithelial lineage of origin in corneal pannus tissue surgically removed from patients with total limbal stem cell (SC) deficiency. The lineage of origin of the entire conjunctivalized pannus removed from eight corneas with a diagnosis of total limbal SC deficiency was characterized by anti-keratin (K)-3 and anti-K19 monoclonal antibodies. The protein and mRNA of epithelial outgrowth from segments of five such pannus specimens were analyzed by Western blot and reverse transcription-polymerase chain reaction, respectively. Cross sections of all eight specimens showed a stratified epithelium with goblet cells expressing mucin (MUC)-5AC, and a stroma showing blood vessels and inflammatory cell infiltrates. Immunostaining showed full-thickness expression of K19 in the entire pannus of all eight specimens. Expression of K3 was negative in seven patients, but was sporadically positive in a patient with Stevens-Johnson syndrome. In culture, all five pannus specimens generated a compact, small epithelial cell outgrowth, and except for one, reached confluence in 2 to 3 weeks. The K3/K12 pair was expressed by extracts of cell outgrowth from the control limbal epithelial explant, but not in all five pannus specimens. A 60-kDa band of DeltaNp63 was expressed in the control specimen and in all five pannus specimens. Cell outgrowth expressed K3 transcript in three, but none showed K12 transcript. The resultant epithelial phenotype of the pannus tissue was not corneal, as evidenced by the negative staining to cornea-specific K12 mRNA and protein, but was conjunctival, as evidenced by the presence of goblet cells, the weak expression of K3, and the strong expression of K19. The abundant expression of DeltaNp63 in such conjunctiva-derived epithelium in eyes with total limbal SC deficiency raises doubts as to its validity as a limbal SC marker. Copyright Association for Research in Vision and Ophthalmology

  5. Corneal donor tissue preparation for endothelial keratoplasty.

    PubMed

    Woodward, Maria A; Titus, Michael; Mavin, Kyle; Shtein, Roni M

    2012-06-12

    Over the past ten years, corneal transplantation surgical techniques have undergone revolutionary changes. Since its inception, traditional full thickness corneal transplantation has been the treatment to restore sight in those limited by corneal disease. Some disadvantages to this approach include a high degree of post-operative astigmatism, lack of predictable refractive outcome, and disturbance to the ocular surface. The development of Descemet's stripping endothelial keratoplasty (DSEK), transplanting only the posterior corneal stroma, Descemet's membrane, and endothelium, has dramatically changed treatment of corneal endothelial disease. DSEK is performed through a smaller incision; this technique avoids 'open sky' surgery with its risk of hemorrhage or expulsion, decreases the incidence of postoperative wound dehiscence, reduces unpredictable refractive outcomes, and may decrease the rate of transplant rejection. Initially, cornea donor posterior lamellar dissection for DSEK was performed manually resulting in variable graft thickness and damage to the delicate corneal endothelial tissue during tissue processing. Automated lamellar dissection (Descemet's stripping automated endothelial keratoplasty, DSAEK) was developed to address these issues. Automated dissection utilizes the same technology as LASIK corneal flap creation with a mechanical microkeratome blade that helps to create uniform and thin tissue grafts for DSAEK surgery with minimal corneal endothelial cell loss in tissue processing. Eye banks have been providing full thickness corneas for surgical transplantation for many years. In 2006, eye banks began to develop methodologies for supplying precut corneal tissue for endothelial keratoplasty. With the input of corneal surgeons, eye banks have developed thorough protocols to safely and effectively prepare posterior lamellar tissue for DSAEK surgery. This can be performed preoperatively at the eye bank. Research shows no significant difference in

  6. Global Survey of Corneal Transplantation and Eye Banking.

    PubMed

    Gain, Philippe; Jullienne, Rémy; He, Zhiguo; Aldossary, Mansour; Acquart, Sophie; Cognasse, Fabrice; Thuret, Gilles

    2016-02-01

    Corneal transplantation restores visual function when visual impairment caused by a corneal disease becomes too severe. It is considered the world's most frequent type of transplantation, but, to our knowledge, there are no exhaustive data allowing measurement of supply and demand, although such data are essential in defining local, national, and global strategies to fight corneal blindness. To describe the worldwide situation of corneal transplantation supply and demand. Data were collected between August 2012 and August 2013 from a systematic review of published literature in parallel with national and international reports on corneal transplantation and eye banking. In a second step, eye bank staff and/or corneal surgeons were interviewed on their local activities. Interviews were performed during international ophthalmology or eye-banking congresses or by telephone or email. Countries' national supply/demand status was classified using a 7-grade system. Data were collected from 148 countries. Corneal transplantation and corneal procurements per capita in each country. In 2012, we identified 184,576 corneal transplants performed in 116 countries. These were procured from 283,530 corneas and stored in 742 eye banks. The top indications were Fuchs dystrophy (39% of all corneal transplants performed), a primary corneal edema mostly affecting elderly individuals; keratoconus (27%), a corneal disease that slowly deforms the cornea in young people; and sequellae of infectious keratitis (20%). The United States, with 199.10-6 corneal transplants per capita, had the highest transplantation rate, followed by Lebanon (122.10-6) and Canada (117.10-6), while the median of the 116 transplanting countries was 19.10-6. Corneas were procured in only 82 countries. Only the United States and Sri Lanka exported large numbers of donor corneas. About 53% of the world's population had no access to corneal transplantation. Our survey globally quantified the considerable shortage of

  7. Methods Development for the Isolation and Culture of Primary Corneal Endothelial Cells

    DTIC Science & Technology

    2017-02-01

    1989 Yue et al. described methods that reached a 59% success rate in supporting human CEC growth using corneal tissue obtained from donors over 20...delayed-onset mustard gas keratitis: report of 48 patients and review of literature. Ophthalmology 2005; 112(4): 617-25. 6. Kadar T, Dachir S, Cohen L...toxicity following corneal exposure to sulfur mustard vapor. Invest Ophthalmol Vis Sci 2013; 54(10): 6735-44. 9. Kadar T, Cohen M, Cohen L, et al

  8. A STUDY OF THE COMPONENTS OF THE CORNIFIED EPITHELIUM OF HUMAN SKIN

    PubMed Central

    Matoltsy, A. Gedeon; Balsamo, Constance A.

    1955-01-01

    Pulverized cornified epithelium of human skin was divided into a "soluble fraction" and a "residue." About half of the "soluble fraction" proved to be soluble epidermal keratin (keratin A); the remainder, dialyzable substances of low molecular weight. The "residue" contained epidermal keratin and resistant cell membranes of cornified cells. Epidermal keratin was found to form an oriented and dense submicroscopic structure in the cornified cells. It showed high resistance toward strong acid and moderately strong alkali solutions as well as concentrated urea. In strong alkali, reducing substances, alkaline urea, and mixtures of reducing substance with alkali, epidermal keratin dissociated and yielded a non-dialyzable derivative of high molecular weight (keratin B) which resembled true proteins. The cell membranes of cornified cells showed higher resistance toward strong alkali and reducing substance than did epidermal keratin. PMID:13242598

  9. Interventions for recurrent corneal erosions.

    PubMed

    Watson, Stephanie L; Lee, Ming-Han H; Barker, Nigel H

    2012-09-12

    Recurrent corneal erosion is a common cause of disabling ocular symptoms and predisposes the cornea to infection. It may follow corneal trauma. Measures to prevent the development of recurrent corneal erosion following corneal trauma have not been firmly established. Once recurrent corneal erosion develops simple medical therapy (standard treatment) may lead to resolution of the episode. However, some patients continue to suffer when such therapy fails and once resolved further episodes of recurrent erosion may occur. A number of treatment and prophylactic options are then available but there is no agreement as to the best option. To assess the effectiveness and safety of prophylactic and treatment regimens for recurrent corneal erosion. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 6), MEDLINE (January 1946 to June 2012), EMBASE (January 1980 to June 2012), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to June 2012), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 13 June 2012. We also contacted researchers in the field. We included randomised and quasi-randomised trials that compared a prophylactic or treatment regimen with another prophylaxis/treatment or no prophylaxis/treatment for patients with recurrent corneal erosion. Two authors independently extracted data and assessed trial quality. We contacted study authors for additional information. Seven randomised and one quasi-randomised controlled trial were included in the review. The trials were heterogenous and of poor quality. Safety data presented were incomplete. For the treatment of recurrent

  10. Corneal Thickness in Highlanders.

    PubMed

    Patyal, Sagarika; Arora, Amit; Yadav, Arun; Sharma, Vijay K

    2017-03-01

    Patyal, Sagarika, Amit Arora, Arun Yadav, and Vijay K. Sharma. Corneal thickness in highlanders. High Alt Med Biol. 18:56-60, 2017. Corneal thickness is an important parameter with diagnostic and therapeutic implications. Various studies have highlighted increase in corneal thickness in lowlanders on ascending to high altitude. However, there are no studies in the published literature pertaining to corneal thickness of the highlanders who are inhabitants of such altitudes. Hence, study was carried out with objective to determine the corneal thickness of highlanders living at heights of more than 11,000 feet and compare it with corneal thickness of lowlanders. The highlander participants of the study consisted of inhabitants of Ladakh region of India at an altitude of 11,000 feet or more and lowlander participants consisted of inhabitants at an altitude of 1500 feet. A total of 254 highlanders and 212 lowlanders participated. A mean of 25 measurements of central corneal thickness (CCT) of every participant was obtained for each eye using ultrasonic pachymeter. The mean age of the participants was 41.8 (15.9) and 47.7 (17.7) years among lowlanders and highlanders, respectively. The highlanders had 11.95 μm lower mean CCT reading compared to lowlanders after adjusting for age and sex (p value <0.001). There was no statistically significant difference in mean CCT readings of right eye and left eye in either lowlanders or highlanders. Age also had a significant effect after adjustment for location and gender (p = 0.001). CCT decreased by 0.31 μm with every year increase in the age. Gender had no statistically significant effect. This study found statistically significant difference in CCT measurements between highlanders and lowlanders. The thinner corneas of highlanders may have a bearing on diagnosis and treatment of glaucoma, refractive surgery, contact lens fitting implantation of Intacs, and astigmatic keratectomy done on such patients. The study also

  11. Noninvasive spectroscopic diagnosis of superficial ocular lesions and corneal infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourant, J.R.; Bigio, I.J.; Johnson, T.

    The potential of a rapid noninvasive diagnostic system to detect tissue abnormalities on the surface of the eye has been investigated. The optical scatter signal from lesions and normal areas on the conjunctival sclera of the human eye were measured in vivo. It is possible to distinguish nonpigmented pingueculas from other lesions. The ability of the system to detect malignancies could not be tested because none of the measured and biopsied lesions were malignant. Optical scatter and fluorescence spectra of bacterial and fungal suspensions, and corneal irritations were also collected. Both scattering and fluorescence show potential for diagnosing corneal infections.

  12. C-terminal cleavage of DeltaNp63alpha is associated with TSA-induced apoptosis in immortalized corneal epithelial cells.

    PubMed

    Robertson, Danielle M; Ho, Su-Inn; Cavanagh, H Dwight

    2010-08-01

    In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.

  13. Non-contact full-field optical coherence tomography: a novel tool for in vivo imaging of the human cornea (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mazlin, Viacheslav; Dalimier, Eugénie; Grieve, Katharine F.; Irsch, Kristina; Sahel, José-Alain; Fink, Mathias; Boccara, A. Claude

    2017-02-01

    According to the World Health Organization (WHO), corneal diseases alongside with cataract and retinal diseases are major causes of blindness worldwide. For the 95.5% of corneal blindness cases, prevention or rehabilitation could have been possible without negative consequences for vision, provided that disease is diagnosed early. However, diagnostics at the early stage requires cellular-level resolution, which is not achieved with routinely used Slit-lamp and OCT instruments. Confocal microscopy allows examination of the cornea at a resolution approaching histological detail, however requires contact with a patient's eye. The recently developed full-field OCT technique, in which 2D en face tangential optical slices are directly recorded on a camera, was successfully applied for ex vivo eye imaging. However, in vivo human eye imaging has not been demonstrated yet. Here we present a novel non-contact full-field OCT system, which is capable of imaging in air and, therefore, shows potential for in vivo cornea imaging in patients. The first cellular-level resolution ex vivo images of cornea, obtained in a completely non-contact way, were demonstrated. We were able to scan through the entire cornea (400 µm) and resolve epithelium, Bowman's layer, stroma and endothelium. FFOCT images of the human cornea in vivo were obtained for the first time. The epithelium structures and stromal keratocyte cells were distinguishable. Both ex vivo and in vivo images were acquired with a large (1.26 mm x 1.26 mm) field of view. Cellular details in obtained images make this device a promising candidate for realization of high-resolution in vivo cornea imaging.

  14. Novel aspects of corneal angiogenic and lymphangiogenic privilege

    PubMed Central

    Ellenberg, David; Azar, Dimitri T.; Hallak, Joelle A.; Tobaigy, Faisal; Han, Kyu Yeon; Jain, Sandeep; Zhou, Zhongjun; Chang, Jin-Hong

    2013-01-01

    In this article, we provide the results of experimental studies demonstrating that corneal avascularity is an active process involving the production of anti-angiogenic factors, which counterbalance the proangiogenic/lymphangiogenic factors that are upregulated during wound healing. We also summarize pertinent published reports regarding corneal neovascularization (NV), corneal lymphangiogenesis and corneal angiogenic/lymphangiogenic privilege. We outline the clinical causes of corneal NV, and discuss the angiogenic proteins (VEGF and bFGF) and angiogenesis regulatory proteins. We also describe the role of matrix metalloproteinases MMP-2, -7, and MT1-MMP, anti-angiogenic factors, and lymphangiogenic regulatory proteins during corneal wound healing. Established and potential new therapies for the treatment of corneal neovascularization are also discussed. PMID:20100589

  15. Corneal erosion and Kindler syndrome.

    PubMed

    Signes-Soler, Isabel; Rodriguez-Prats, Jose Luis; Carbonell, Stella; Tañá-Rivero, Pedro

    2013-01-01

    To describe a very common corneal pathology in a patient with Kindler syndrome. We report the case of a 21-year-old woman, who presented to the Ophthalmology Department as an emergency presentation because of ocular pain in the left eye that radiated to other areas of the face and neck. After an exhaustive clinical interview, it was determined that the patient had a rare disease (Kindler syndrome). Ophthalmologic examination revealed corneal erosion on the left eye. No other significant conditions were found. After the application of conventional treatment, the corneal integrity was completely restored. We describe a very rare syndrome. Although conventional treatment restored corneal integrity, it is important to remember that ocular signs and symptoms are often associated with systemic pathologies.

  16. Development of the ovarian follicular epithelium.

    PubMed

    Rodgers, R J; Lavranos, T C; van Wezel, I L; Irving-Rodgers, H F

    1999-05-25

    A lot is known about the endocrine control of the development of ovarian follicles, but a key question now facing researchers is which molecular and cellular processes take part in control of follicular growth and development. The growth and development of ovarian follicles occurs postnatally and throughout adult life. In this review, we focus on the follicular epithelium (membrana granulosa) and its basal lamina. We discuss a model of how granulosa cells arise from a population of stem cells and then enter different lineages before differentiation. The structure of the epithelium at the antral stage of development is presented, and the effects that follicle growth has on the behavior of the granulosa cells are discussed. Finally, we discuss the evidence that during follicle development the follicular basal lamina changes in composition. This would be expected if the behavior of the granulosa cells changes, or if the permeability of the basal lamina changes. It will be evident that the follicular epithelium has similarities to other epithelia in the body, but that it is more dynamic, as gross changes occur during the course of follicle development. This basic information will be important for the development of future reproductive technologies in both humans and animals, and possibly for understanding polycystic ovarian syndrome in women.

  17. Corneal biomechanical properties in thyroid eye disease.

    PubMed

    Karabulut, Gamze Ozturk; Kaynak, Pelin; Altan, Cıgdem; Ozturker, Can; Aksoy, Ebru Funda; Demirok, Ahmet; Yılmaz, Omer Faruk

    2014-06-01

    The purpose of this study is to investigate the effect of thyroid eye disease (TED) on the measurement of corneal biomechanical properties and the relationship between these parameters and disease manifestations. A total of 54 eyes of 27 individuals with TED and 52 eyes of 30 healthy control participants were enrolled. Thyroid ophthalmopathy activity was defined using the VISA (vision, inflammation, strabismus, and appearance/exposure) classification for TED. The intraocular pressure (IOP) measurement with Goldmann applanation tonometer (GAT), axial length (AL), keratometry, and central corneal thickness (CCT) measurements were taken from each patient. Corneal biomechanical properties, including corneal hysteresis (CH) and corneal resistance factor (CRF) and noncontact IOP measurements, Goldmann-correlated IOP (IOPg) and corneal-compensated IOP (IOPcc) were measured with the Ocular Response Analyzer (ORA) using the standard technique. Parameters such as best corrected visual acuity, axial length, central corneal thickness, and corneal curvature were not statistically significant between the two groups (p > 0.05). IOP measured with GAT was higher in participants with TED (p < 0.001). The CH of TED patients was significantly lower than that of the control group. There was no significant difference in the corneal resistance factor between groups. However, IOPg and IOPcc were significantly higher in TED patients. CH and VISA grading of TED patients showed a negative correlation (p = 0.007). In conclusion, TED affects the corneal biomechanical properties by decreasing CH. IOP with GAT and IOPg is found to be increased in these patients. As the severity of TED increases, CH decreases in these patients. Copyright © 2014. Published by Elsevier B.V.

  18. Diabetic corneal neuropathy.

    PubMed Central

    Schultz, R O; Peters, M A; Sobocinski, K; Nassif, K; Schultz, K J

    1983-01-01

    Corneal epithelial lesions can be found in approximately one-half of asymptomatic patients with diabetes mellitus. These lesions are transient and clinically resemble the keratopathy seen in staphylococcal keratoconjunctivitis. Staphylococcal organisms, however, can be isolated in equal percentages from diabetic patients without keratopathy. Diabetic peripheral neuropathy was found to be related to the presence of diabetic keratopathy after adjusting for age with analysis of covariance. The strongest predictor of both keratopathy and corneal fluorescein staining was vibration perception threshold in the toes (P less than 0.01); and the severity of keratopathy was directly related to the degree of diminution of peripheral sensation. Other predictors of keratopathy were: reduced tear breakup time (P less than 0.03), type of diabetes (P less than 0.01), and metabolic status as indicated by c-peptide fasting (P less than 0.01). No significant relationships were found between the presence of keratopathy and tear glucose levels, endothelial cell densities, corneal thickness measurements, the presence of S epidermidis, or with duration of disease. It is our conclusion that asymptomatic epithelial lesions in the nontraumatized diabetic cornea can occur as a manifestation of generalized polyneuropathy and probably represent a specific form of corneal neuropathy. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6676964

  19. Existence of Normal Limbal Epithelium in Eyes with Clinical Signs of Total Limbal Stem Cell Deficiency

    PubMed Central

    Codriansky, Andres; Hong, Jiaxu; Xu, Jianjian; Deng, Sophie X.

    2016-01-01

    Purpose To report the presence of normal limbal epithelium detected by in vivo confocal laser scanning microscopy (IVCM) in three cases of clinically diagnosed total limbal stem cell deficiency (LSCD). Methods This is a retrospective case report consists of three patients who were diagnosed with total LSCD based on clinical exam and/or impression cytology. Clinical data including ocular history, presentation, slit-lamp examination, IVCM and impression cytology were reviewed. Results The etiology was chemical burn in three cases. One patient has two failed penetrating keratoplasty. Another had allogeneic keratolimbal transplantation but the graft failed one year after surgery. The third patient had failed amniotic membrane transplantation. These three patients presented with signs of total LSCD including the absence of normal Vogt palisades, complete superficial vascularization of the peripheral cornea, non-healing epithelial defects, and corneal scarring. Impression cytology was performed in two cases to confirm the presence of goblet cells in two cases. Each patient however still had distinct areas of corneal and/or limbal epithelial cells detected by IVCM. Conclusions Residual normal limbal epithelial cells could be present in eyes with clinical features of total LSCD. IVCM appears to be a more accurate method to evaluate the degree of LSCD. PMID:27362882

  20. Corneal edema after phacoemulsification

    PubMed Central

    Sharma, Namrata; Singhal, Deepali; Nair, Sreelakshmi P; Sahay, Pranita; Sreeshankar, SS; Maharana, Prafulla Kumar

    2017-01-01

    Phacoemulsification is the most commonly performed cataract surgery in this era. With all the recent advances in investigations and management of cataract through phacoemulsification, most of the patients are able to achieve excellent visual outcome. Corneal edema after phacoemulsification in the immediate postoperative period often leads to patient dissatisfaction and worsening of outcome. Delayed onset corneal edema often warrants endothelial keratoplasty. This review highlights the etiopathogenesis, risk factors, and management of corneal edema in the acute phase including descemet's membrane detachment (DMD) and toxic anterior segment syndrome. Various investigative modalities such as pachymetry, specular microscopy, anterior segment optical coherence tomography, and confocal microscopy have been discussed briefly. PMID:29208818