Science.gov

Sample records for human coronaviruses 229e

  1. Infectivity of human coronavirus strain 229E.

    PubMed

    Macnaughton, M R; Thomas, B J; Davies, H A; Patterson, S

    1980-09-01

    The replication of human coronavirus strain 229E was observed by using indirect immunofluorescence in infected monolayers of MRC continuous cells. By 8 h after infection, bright cytoplasmic fluorescence was detected in cells infected with human coronavirus 229E. Discrete foci of infection were observed from 8 to 16 h after infection in cells infected with high dilutions of human coronavirus 229E; each fluorescent focus corresponded to a single virus infection. A fluorescent focus assay is described, using indirect immunofluorescence, which is more sensitive than the established techniques of tube titration and plaque assay. Particle/infectivity ratios for unpurified and purified virus preparations revealed a considerable drop in infectivity on purification.

  2. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats

    PubMed Central

    Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco

    2015-01-01

    ABSTRACT We previously showed that close relatives of human coronavirus 229E (HCoV-229E) exist in African bats. The small sample and limited genomic characterizations have prevented further analyses so far. Here, we tested 2,087 fecal specimens from 11 bat species sampled in Ghana for HCoV-229E-related viruses by reverse transcription-PCR (RT-PCR). Only hipposiderid bats tested positive. To compare the genetic diversity of bat viruses and HCoV-229E, we tested historical isolates and diagnostic specimens sampled globally over 10 years. Bat viruses were 5- and 6-fold more diversified than HCoV-229E in the RNA-dependent RNA polymerase (RdRp) and spike genes. In phylogenetic analyses, HCoV-229E strains were monophyletic and not intermixed with animal viruses. Bat viruses formed three large clades in close and more distant sister relationships. A recently described 229E-related alpaca virus occupied an intermediate phylogenetic position between bat and human viruses. According to taxonomic criteria, human, alpaca, and bat viruses form a single CoV species showing evidence for multiple recombination events. HCoV-229E and the alpaca virus showed a major deletion in the spike S1 region compared to all bat viruses. Analyses of four full genomes from 229E-related bat CoVs revealed an eighth open reading frame (ORF8) located at the genomic 3′ end. ORF8 also existed in the 229E-related alpaca virus. Reanalysis of HCoV-229E sequences showed a conserved transcription regulatory sequence preceding remnants of this ORF, suggesting its loss after acquisition of a 229E-related CoV by humans. These data suggested an evolutionary origin of 229E-related CoVs in hipposiderid bats, hypothetically with camelids as intermediate hosts preceding the establishment of HCoV-229E. IMPORTANCE The ancestral origins of major human coronaviruses (HCoVs) likely involve bat hosts. Here, we provide conclusive genetic evidence for an evolutionary origin of the common cold virus HCoV-229E in

  3. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection.

    PubMed

    Wu, Yi-Hsuan; Tseng, Ching-Ping; Cheng, Mei-Ling; Ho, Hung-Yao; Shih, Shin-Ru; Chiu, Daniel Tsun-Yee

    2008-03-15

    The host cellular environment is a key determinant of pathogen infectivity. Viral gene expression and viral particle production of glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD-knockdown cells were much higher than their counterparts when human coronavirus (HCoV) 229E was applied at 0.1 multiplicity of infection. These phenomena were correlated with increased oxidant production. Accordingly, ectopic expression of G6PD in G6PD-deficient cells or addition of antioxidant (such as alpha-lipoic acid) to G6PD-knockdown cells attenuated the increased susceptibility to HCoV 229E infection. All experimental data indicated that oxidative stress in host cells is an important factor in HCoV 229E infectivity. PMID:18269318

  4. Antiseptic properties of two calix[4]arenes derivatives on the human coronavirus 229E.

    PubMed

    Geller, C; Fontanay, S; Mourer, M; Dibama, H Massimba; Regnouf-de-Vains, J-B; Finance, C; Duval, R E

    2010-12-01

    Facing the lack in specific antiviral treatment, it is necessary to develop new means of prevention. In the case of the Coronaviridae this family is now recognized as including potent human pathogens causing upper and lower respiratory tract infections as well as nosocomial ones. Within the purpose of developing new antiseptics molecules, the antiseptic virucidal activity of two calix[4]arene derivatives, the tetra-para-sulfonato-calix[4]arene (C[4]S) and the 1,3-bis(bithiazolyl)-tetra-para-sulfonato-calix[4]arene (C[4]S-BTZ) were evaluated toward the human coronavirus 229E (HCoV 229E). Comparing these results with some obtained previously with chlorhexidine and hexamidine, (i) these two calixarenes did not show any cytotoxicity contrary to chlorhexidine and hexamidine, (ii) C[4]S showed as did hexamidine, a very weak activity against HCoV 229E, and (iii) the C[4]S-BTZ showed a stronger activity than chlorhexidine, i.e. 2.7 and 1.4log₁₀ reduction in viral titer after 5min of contact with 10⁻³mol L⁻¹ solutions of C[4]S-BTZ and chlorhexidine, respectively. Thus, the C[4]S-BTZ appeared as a promising virucidal (antiseptic) molecule.

  5. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials

    PubMed Central

    Warnes, Sarah L.; Little, Zoë R.

    2015-01-01

    ABSTRACT The evolution of new and reemerging historic virulent strains of respiratory viruses from animal reservoirs is a significant threat to human health. Inefficient human-to-human transmission of zoonotic strains may initially limit the spread of transmission, but an infection may be contracted by touching contaminated surfaces. Enveloped viruses are often susceptible to environmental stresses, but the human coronaviruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have recently caused increasing concern of contact transmission during outbreaks. We report here that pathogenic human coronavirus 229E remained infectious in a human lung cell culture model following at least 5 days of persistence on a range of common nonbiocidal surface materials, including polytetrafluoroethylene (Teflon; PTFE), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. We have shown previously that noroviruses are destroyed on copper alloy surfaces. In this new study, human coronavirus 229E was rapidly inactivated on a range of copper alloys (within a few minutes for simulated fingertip contamination) and Cu/Zn brasses were very effective at lower copper concentration. Exposure to copper destroyed the viral genomes and irreversibly affected virus morphology, including disintegration of envelope and dispersal of surface spikes. Cu(I) and Cu(II) moieties were responsible for the inactivation, which was enhanced by reactive oxygen species generation on alloy surfaces, resulting in even faster inactivation than was seen with nonenveloped viruses on copper. Consequently, copper alloy surfaces could be employed in communal areas and at any mass gatherings to help reduce transmission of respiratory viruses from contaminated surfaces and protect the public health. PMID:26556276

  6. BST2/CD317 counteracts human coronavirus 229E productive infection by tethering virions at the cell surface

    SciTech Connect

    Wang, Shiu-Mei; Huang, Kuo-Jung; Wang, Chin-Tien

    2014-01-20

    Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments. - Highlights: • BST2 knockdown expression results in enhanced HCoV-229E egress. • HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. • HCoV-229E infection at high MOI can significantly downregulate HeLa BST2 and rescue HIV-1 egress.

  7. Titration of human coronaviruses, HcoV-229E and HCoV-OC43, by an indirect immunoperoxidase assay.

    PubMed

    Lambert, Francine; Jacomy, Hélène; Marceau, Gabriel; Talbot, Pierre J

    2008-01-01

    Calculation of infectious viral titers represents a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for strains 229E and OC43 of human coronavirus (HCoV). An alternative indirect immunoperoxidase assay (IPA) is herein described for the detection and titration of these viruses. Susceptible cells are inoculated with serial logarithmic dilutions of samples in a 96-well plate. After viral growth, viral detection by IPA yields the infectious virus titer, expressed as "Tissue Culture Infectious Dose" (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain replicating virus. This technique is a reliable method for the titration of HCoV in biological samples (cells, tissues, or fluids).

  8. Replication of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E is inhibited by the drug FK506.

    PubMed

    Carbajo-Lozoya, Javier; Müller, Marcel A; Kallies, Stephan; Thiel, Volker; Drosten, Christian; von Brunn, Albrecht

    2012-04-01

    Recent research has shown that Coronavirus (CoV) replication depends on active immunophilin pathways. Here we demonstrate that the drug FK506 (Tacrolimus) inhibited strongly the growth of human coronaviruses SARS-CoV, HCoV-NL63 and HCoV-229E at low, non-cytotoxic concentrations in cell culture. As shown by plaque titration, qPCR, Luciferase- and green fluorescent protein (GFP) reporter gene expression, replication was diminished by several orders of magnitude. Knockdown of the cellular FK506-binding proteins FKBP1A and FKBP1B in CaCo2 cells prevented replication of HCoV-NL63, suggesting the requirement of these members of the immunophilin family for virus growth.

  9. The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5'-to-3' polarity.

    PubMed Central

    Seybert, A; Hegyi, A; Siddell, S G; Ziebuhr, J

    2000-01-01

    The human coronavirus 229E replicase gene encodes a protein, p66HEL, that contains a putative zinc finger structure linked to a putative superfamily (SF) 1 helicase. A histidine-tagged form of this protein, HEL, was expressed using baculovirus vectors in insect cells. The purified recombinant protein had in vitro ATPase activity that was strongly stimulated by poly(U), poly(dT), poly(C), and poly(dA), but not by poly(G). The recombinant protein also had both RNA and DNA duplex-unwinding activities with 5'-to-3' polarity. The DNA helicase activity of the enzyme preferentially unwound 5'-oligopyrimidine-tailed, partial-duplex substrates and required a tail length of at least 10 nucleotides for effective unwinding. The combined data suggest that the coronaviral SF1 helicase functionally differs from the previously characterized RNA virus SF2 helicases. PMID:10917600

  10. Characterization of HCoV-229E fusion core: Implications for structure basis of coronavirus membrane fusion

    SciTech Connect

    Liu Cheng; Feng Youjun; Gao Feng; Zhang Qiangmin; Wang Ming . E-mail: vetdean@cau.edu.cn

    2006-07-07

    Human coronavirus 229E (HCoV-229E), a member of group I coronaviruses, has been identified as one of the major viral agents causing respiratory tract diseases in humans for nearly 40 years. However, the detailed molecular mechanism of the membrane fusion mediated by the spike (S) protein of HCoV-229E remains elusive. Here, we report, for the first time, a rationally designed fusion core of HCoV-229E (HR1-SGGRGG-HR2), which was in vitro produced in GST prokaryotic expression system. Multiple lines of experimental data including gel-filtration, chemical cross-linking, and circular diagram (CD) demonstrated that the HCoV-229E fusion core possesses the typical properties of the trimer of coiled-coil heterodimer (six {alpha}-helix bundle). 3D structure modeling presents its most-likely structure, similar to those of coronaviruses that have been well-documented. Collectively, HCoV-229E S protein belongs to the type I fusion protein, which is characterized by the existence of two heptad-repeat regions (HR1 and HR2), furthermore, the available knowledge concerning HCoV-229E fusion core may make it possible to design small molecule or polypeptide drugs targeting the membrane fusion, a crucial step of HCoV-229E infection.

  11. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia.

    PubMed

    Al-Khannaq, Maryam Nabiel; Ng, Kim Tien; Oong, Xiang Yong; Pang, Yong Kek; Takebe, Yutaka; Chook, Jack Bee; Hanafi, Nik Sherina; Kamarulzaman, Adeeba; Tee, Kok Keng

    2016-05-01

    The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respiratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population history, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia, between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus; HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8% of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clustered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was dated to 1955, before it diverged into groups 1-4 between the 1970s and 1990s. The study described the seasonality, molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region.

  12. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    PubMed

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru.

  13. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    PubMed

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru. PMID:26324726

  14. Link of a ubiquitous human coronavirus to dromedary camels

    PubMed Central

    Eckerle, Isabella; Memish, Ziad A.; Liljander, Anne M.; Dijkman, Ronald; Jonsdottir, Hulda; Juma Ngeiywa, Kisi J. Z.; Kamau, Esther; Younan, Mario; Al Masri, Malakita; Assiri, Abdullah; Gluecks, Ilona; Musa, Bakri E.; Meyer, Benjamin; Müller, Marcel A.; Hilali, Mosaad; Bornstein, Set; Wernery, Ulrich; Thiel, Volker; Jores, Joerg; Drexler, Jan Felix; Drosten, Christian

    2016-01-01

    The four human coronaviruses (HCoVs) are globally endemic respiratory pathogens. The Middle East respiratory syndrome (MERS) coronavirus (CoV) is an emerging CoV with a known zoonotic source in dromedary camels. Little is known about the origins of endemic HCoVs. Studying these viruses’ evolutionary history could provide important insight into CoV emergence. In tests of MERS-CoV–infected dromedaries, we found viruses related to an HCoV, known as HCoV-229E, in 5.6% of 1,033 animals. Human- and dromedary-derived viruses are each monophyletic, suggesting ecological isolation. One gene of dromedary viruses exists in two versions in camels, full length and deleted, whereas only the deleted version exists in humans. The deletion increased in size over a succession starting from camelid viruses via old human viruses to contemporary human viruses. Live isolates of dromedary 229E viruses were obtained and studied to assess human infection risks. The viruses used the human entry receptor aminopeptidase N and replicated in human hepatoma cells, suggesting a principal ability to cause human infections. However, inefficient replication in several mucosa-derived cell lines and airway epithelial cultures suggested lack of adaptation to the human host. Dromedary viruses were as sensitive to the human type I interferon response as HCoV-229E. Antibodies in human sera neutralized dromedary-derived viruses, suggesting population immunity against dromedary viruses. Although no current epidemic risk seems to emanate from these viruses, evolutionary inference suggests that the endemic human virus HCoV-229E may constitute a descendant of camelid-associated viruses. HCoV-229E evolution provides a scenario for MERS-CoV emergence. PMID:27528677

  15. Link of a ubiquitous human coronavirus to dromedary camels.

    PubMed

    Corman, Victor M; Eckerle, Isabella; Memish, Ziad A; Liljander, Anne M; Dijkman, Ronald; Jonsdottir, Hulda; Juma Ngeiywa, Kisi J Z; Kamau, Esther; Younan, Mario; Al Masri, Malakita; Assiri, Abdullah; Gluecks, Ilona; Musa, Bakri E; Meyer, Benjamin; Müller, Marcel A; Hilali, Mosaad; Bornstein, Set; Wernery, Ulrich; Thiel, Volker; Jores, Joerg; Drexler, Jan Felix; Drosten, Christian

    2016-08-30

    The four human coronaviruses (HCoVs) are globally endemic respiratory pathogens. The Middle East respiratory syndrome (MERS) coronavirus (CoV) is an emerging CoV with a known zoonotic source in dromedary camels. Little is known about the origins of endemic HCoVs. Studying these viruses' evolutionary history could provide important insight into CoV emergence. In tests of MERS-CoV-infected dromedaries, we found viruses related to an HCoV, known as HCoV-229E, in 5.6% of 1,033 animals. Human- and dromedary-derived viruses are each monophyletic, suggesting ecological isolation. One gene of dromedary viruses exists in two versions in camels, full length and deleted, whereas only the deleted version exists in humans. The deletion increased in size over a succession starting from camelid viruses via old human viruses to contemporary human viruses. Live isolates of dromedary 229E viruses were obtained and studied to assess human infection risks. The viruses used the human entry receptor aminopeptidase N and replicated in human hepatoma cells, suggesting a principal ability to cause human infections. However, inefficient replication in several mucosa-derived cell lines and airway epithelial cultures suggested lack of adaptation to the human host. Dromedary viruses were as sensitive to the human type I interferon response as HCoV-229E. Antibodies in human sera neutralized dromedary-derived viruses, suggesting population immunity against dromedary viruses. Although no current epidemic risk seems to emanate from these viruses, evolutionary inference suggests that the endemic human virus HCoV-229E may constitute a descendant of camelid-associated viruses. HCoV-229E evolution provides a scenario for MERS-CoV emergence. PMID:27528677

  16. The Nucleocapsid Protein of Human Coronavirus NL63

    PubMed Central

    Zuwała, Kaja; Golda, Anna; Kabala, Wojciech; Burmistrz, Michał; Zdzalik, Michal; Nowak, Paulina; Kedracka-Krok, Sylwia; Zarebski, Mirosław; Dobrucki, Jerzy; Florek, Dominik; Zeglen, Sławomir; Wojarski, Jacek; Potempa, Jan; Dubin, Grzegorz; Pyrc, Krzysztof

    2015-01-01

    Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV. PMID:25700263

  17. The nucleocapsid protein of human coronavirus NL63.

    PubMed

    Zuwała, Kaja; Golda, Anna; Kabala, Wojciech; Burmistrz, Michał; Zdzalik, Michal; Nowak, Paulina; Kedracka-Krok, Sylwia; Zarebski, Mirosław; Dobrucki, Jerzy; Florek, Dominik; Zeglen, Sławomir; Wojarski, Jacek; Potempa, Jan; Dubin, Grzegorz; Pyrc, Krzysztof

    2015-01-01

    Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.

  18. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes.

    PubMed

    Mesel-Lemoine, Mariana; Millet, Jean; Vidalain, Pierre-Olivier; Law, Helen; Vabret, Astrid; Lorin, Valérie; Escriou, Nicolas; Albert, Matthew L; Nal, Béatrice; Tangy, Frédéric

    2012-07-01

    Human coronaviruses are associated with upper respiratory tract infections that occasionally spread to the lungs and other organs. Although airway epithelial cells represent an important target for infection, the respiratory epithelium is also composed of an elaborate network of dendritic cells (DCs) that are essential sentinels of the immune system, sensing pathogens and presenting foreign antigens to T lymphocytes. In this report, we show that in vitro infection by human coronavirus 229E (HCoV-229E) induces massive cytopathic effects in DCs, including the formation of large syncytia and cell death within only few hours. In contrast, monocytes are much more resistant to infection and cytopathic effects despite similar expression levels of CD13, the membrane receptor for HCoV-229E. While the differentiation of monocytes into DCs in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 requires 5 days, only 24 h are sufficient for these cytokines to sensitize monocytes to cell death and cytopathic effects when infected by HCoV-229E. Cell death induced by HCoV-229E is independent of TRAIL, FasL, tumor necrosis factor alpha, and caspase activity, indicating that viral replication is directly responsible for the observed cytopathic effects. The consequence of DC death at the early stage of HCoV-229E infection may have an impact on the early control of viral dissemination and on the establishment of long-lasting immune memory, since people can be reinfected multiple times by HCoV-229E.

  19. [Nosocomial infections due to human coronaviruses in the newborn].

    PubMed

    Gagneur, A; Legrand, M C; Picard, B; Baron, R; Talbot, P J; de Parscau, L; Sizun, J

    2002-01-01

    Human coronaviruses, with two known serogroups named 229-E and OC-43, are enveloped positive-stranded RNA viruses. The large RNA is surrounded by a nucleoprotein (protein N). The envelop contains 2 or 3 glycoproteins: spike protein (or protein S), matrix protein (or protein M) and a hemagglutinin (or protein HE). Their pathogen role remains unclear because their isolation is difficult. Reliable and rapid methods as immunofluorescence with monoclonal antibodies and reverse transcription-polymerase chain reaction allow new researches on epidemiology. Human coronaviruses can survive for as long as 6 days in suspension and 3 hours after drying on surfaces, suggesting that they could be a source of hospital-acquired infections. Two prospective studies conducted in a neonatal and paediatric intensive care unit demonstrated a significant association of coronavirus-positive nasopharyngal samples with respiratory illness in hospitalised preterm neonates. Positive samples from staff suggested either a patient-to-staff or a staff-to-patient transmission. No cross-infection were observed from community-acquired respiratory-syncitial virus or influenza-infected children to neonates. Universal precautions with hand washing and surface desinfection could be proposed to prevent coronavirus transmission.

  20. From SARS coronavirus to novel animal and human coronaviruses

    PubMed Central

    To, Kelvin K. W.; Hung, Ivan F. N.; Chan, Jasper F. W.

    2013-01-01

    In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic. PMID:23977429

  1. A rare cause of acute flaccid paralysis: Human coronaviruses.

    PubMed

    Turgay, Cokyaman; Emine, Tekin; Ozlem, Koken; Muhammet, S Paksu; Haydar, A Tasdemir

    2015-01-01

    Acute flaccid paralysis (AFP) is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian-Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs) cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time.

  2. A rare cause of acute flaccid paralysis: Human coronaviruses.

    PubMed

    Turgay, Cokyaman; Emine, Tekin; Ozlem, Koken; Muhammet, S Paksu; Haydar, A Tasdemir

    2015-01-01

    Acute flaccid paralysis (AFP) is a life-threatening clinical entity characterized by weakness in the whole body muscles often accompanied by respiratory and bulbar paralysis. The most common cause is Gullian-Barre syndrome, but infections, spinal cord diseases, neuromuscular diseases such as myasthenia gravis, drugs and toxins, periodic hypokalemic paralysis, electrolyte disturbances, and botulism should be considered as in the differential diagnosis. Human coronaviruses (HCoVs) cause common cold, upper and lower respiratory tract disease, but in the literature presentation with the lower respiratory tract infection and AFP has not been reported previously. In this study, pediatric case admitted with lower respiratory tract infection and AFP, who detected for HCoV 229E and OC43 co-infection by the real-time polymerase chain reaction, has been reported for the first time. PMID:26557177

  3. Titration of human coronaviruses using an immunoperoxidase assay.

    PubMed

    Lambert, Francine; Jacomy, Helene; Marceau, Gabriel; Talbot, Pierre J

    2008-01-01

    Determination of infectious viral titers is a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for prototype strains 229E and OC43 of human coronavirus (HCoV).Therefore, an alternative indirect immunoperoxidase assay (IPA) was developed for the detection and titration of these viruses and is described herein. Susceptible cells are inoculated with serial logarithmic dilutions of virus-containing samples in a 96-well plate format. After viral growth,viral detection by IPA yields the infectious virus titer, expressed as 'Tissue Culture Infectious Dose 50 percent' (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain infectious replicating virus. This technique provides are liable method for the titration of HCoV-229E and HCoV-OC43 in biological samples such as cells, tissues and fluids [corrected].

  4. Genome structure and transcriptional regulation of human coronavirus NL63

    PubMed Central

    Pyrc, Krzysztof; Jebbink, Maarten F; Berkhout, Ben; van der Hoek, Lia

    2004-01-01

    Background Two human coronaviruses are known since the 1960s: HCoV-229E and HCoV-OC43. SARS-CoV was discovered in the early spring of 2003, followed by the identification of HCoV-NL63, the fourth member of the coronaviridae family that infects humans. In this study, we describe the genome structure and the transcription strategy of HCoV-NL63 by experimental analysis of the viral subgenomic mRNAs. Results The genome of HCoV-NL63 has the following gene order: 1a-1b-S-ORF3-E-M-N. The GC content of the HCoV-NL63 genome is extremely low (34%) compared to other coronaviruses, and we therefore performed additional analysis of the nucleotide composition. Overall, the RNA genome is very low in C and high in U, and this is also reflected in the codon usage. Inspection of the nucleotide composition along the genome indicates that the C-count increases significantly in the last one-third of the genome at the expense of U and G. We document the production of subgenomic (sg) mRNAs coding for the S, ORF3, E, M and N proteins. We did not detect any additional sg mRNA. Furthermore, we sequenced the 5' end of all sg mRNAs, confirming the presence of an identical leader sequence in each sg mRNA. Northern blot analysis indicated that the expression level among the sg mRNAs differs significantly, with the sg mRNA encoding nucleocapsid (N) being the most abundant. Conclusions The presented data give insight into the viral evolution and mutational patterns in coronaviral genome. Furthermore our data show that HCoV-NL63 employs the discontinuous replication strategy with generation of subgenomic mRNAs during the (-) strand synthesis. Because HCoV-NL63 has a low pathogenicity and is able to grow easily in cell culture, this virus can be a powerful tool to study SARS coronavirus pathogenesis. PMID:15548333

  5. Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation

    PubMed Central

    Wentworth, David E.; Holmes, Kathryn V.

    2001-01-01

    Aminopeptidase N (APN), a 150-kDa metalloprotease also called CD13, serves as a receptor for serologically related coronaviruses of humans (human coronavirus 229E [HCoV-229E]), pigs, and cats. These virus-receptor interactions can be highly species specific; for example, the human coronavirus can use human APN (hAPN) but not porcine APN (pAPN) as its cellular receptor, and porcine coronaviruses can use pAPN but not hAPN. Substitution of pAPN amino acids 283 to 290 into hAPN for the corresponding amino acids 288 to 295 introduced an N-glycosylation sequon at amino acids 291 to 293 that blocked HCoV-229E receptor activity of hAPN. Substitution of two amino acids that inserted an N-glycosylation site at amino acid 291 also resulted in a mutant hAPN that lacked receptor activity because it failed to bind HCoV-229E. Single amino acid revertants that removed this sequon at amino acids 291 to 293 but had one or five pAPN amino acid substitution(s) in this region all regained HCoV-229E binding and receptor activities. To determine if other N-linked glycosylation differences between hAPN, feline APN (fAPN), and pAPN account for receptor specificity of pig and cat coronaviruses, a mutant hAPN protein that, like fAPN and pAPN, lacked a glycosylation sequon at 818 to 820 was studied. This sequon is within the region that determines receptor activity for porcine and feline coronaviruses. Mutant hAPN lacking the sequon at amino acids 818 to 820 maintained HCoV-229E receptor activity but did not gain receptor activity for porcine or feline coronaviruses. Thus, certain differences in glycosylation between coronavirus receptors from different species are critical determinants in the species specificity of infection. PMID:11559807

  6. Human Coronaviruses Associated with Upper Respiratory Tract Infections in Three Rural Areas of Ghana

    PubMed Central

    Owusu, Michael; Annan, Augustina; Corman, Victor Max; Larbi, Richard; Anti, Priscilla; Drexler, Jan Felix; Agbenyega, Olivia; Adu-Sarkodie, Yaw; Drosten, Christian

    2014-01-01

    Background Acute respiratory tract infections (ARI) are the leading cause of morbidity and mortality in developing countries, especially in Africa. This study sought to determine whether human coronaviruses (HCoVs) are associated with upper respiratory tract infections among older children and adults in Ghana. Methods We conducted a case control study among older children and adults in three rural areas of Ghana using asymptomatic subjects as controls. Nasal/Nasopharyngeal swabs were tested for Middle East respiratory syndrome coronavirus (MERS-CoV), HCoV-22E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 using Reverse Transcriptase Real-Time Polymerase Chain Reaction. Results Out of 1,213 subjects recruited, 150 (12.4%) were positive for one or more viruses. Of these, single virus detections occurred in 146 subjects (12.0%) and multiple detections occurred in 4 (0.3%). Compared with control subjects, infections with HCoV-229E (OR = 5.15, 95%CI = 2.24–11.78), HCoV-OC43 (OR = 6.16, 95%CI = 1.77–21.65) and combine HCoVs (OR = 2.36, 95%CI = 1.5 = 3.72) were associated with upper respiratory tract infections. HCoVs were found to be seasonally dependent with significant detections in the harmattan season (mainly HCoV-229E) and wet season (mainly HCoV-NL63). A comparison of the obtained sequences resulted in no differences to sequences already published in GenBank. Conclusion HCoVs could play significant role in causing upper respiratory tract infections among adults and older children in rural areas of Ghana. PMID:25080241

  7. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies

    PubMed Central

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E.

    2012-01-01

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  8. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies.

    PubMed

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E

    2012-11-12

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002-2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  9. MERS: emergence of a novel human coronavirus

    PubMed Central

    Raj, V. Stalin; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.; Haagmans, Bart L.

    2014-01-01

    A novel coronavirus (CoV) that causes a severe lower respiratory tract infection in humans, emerged in the Middle East region in 2012. This virus, named Middle East respiratory syndrome (MERS)-CoV, is phylogenetically related to bat CoVs, but other animal species like dromedary camels may potentially act as intermediate hosts by spreading the virus to humans. Although human to human transmission has been demonstrated, analysis of human MERS clusters indicated that chains of transmission were not self-sustaining, especially when infection control was implemented. Thus, timely identification of new MERS cases followed by their quarantine, combined with measures to limit spread of the virus from the (intermediate) host to humans, may be crucial in controlling the outbreak of this emerging CoV. PMID:24584035

  10. Human Respiratory Coronaviruses Detected In Patients with Influenza-Like Illness in Arkansas, USA

    PubMed Central

    Silva, Camila S; Mullis, Lisa B; Pereira, Olavo; Saif, Linda J; Vlasova, Anastasia; Zhang, Xuming; Owens, Randall J; Paulson, Dale; Taylor, Deborah; Haynes, Lia M; Azevedo, Marli P

    2016-01-01

    Acute respiratory viruses often result in significant morbidity and mortality. The potential impact of human respiratory coronavirus (CoV) infections was underestimated until the severe acute respiratory syndrome (SARS-CoV) outbreak in 2003, which showed that new, highly pathogenic coronaviruses could be introduced to humans, highlighting the importance of monitoring the circulating coronaviruses. The use of sensitive molecular methods has contributed to the differential diagnosis of viruses circulating in humans. Our study aim was to investigate the molecular epidemiology of human CoV strains circulating in Arkansas, their genetic variability and their association with reported influenza-like symptoms. We analyzed 200 nasal swab samples, collected by the Arkansas Department of Health in 2010, for influenza diagnosis. All samples were from patients showing acute respiratory symptoms while testing negative for influenza. Samples were pre-screened, using a quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) multiprobe for coronavirus, and subjected to confirmatory pancoronavirus and/or strain-specific reverse transcriptase (RT)-PCR followed by sequence analysis. Seventy-nine samples (39.5%) were positive by qRT-PCR and 35 samples (17.5%) were confirmed by conventional RT-PCR. Twenty-three of the confirmed samples (59%) were sequenced. The most frequent strain detected was HCoV-OC43-like followed by NL63-like; only one sample was positive for HCoV-229E and one for HCoV-HKU1. Feline-like CoV strains were detected in three samples, representing possible evidence of interspecies transmission or a new human strain. Seventeen percent of the coronavirus positive samples were also positive for other respiratory viruses, such as Respiratory Syncytial Virus (RSV), Parainfluenza 2 and 3, and Rhinovirus. Thus, HCoV-OC43, NL63, HKU1 and new feline-like strains were circulating in Arkansas in 2010. HCoV was the sole respiratory virus detected in 16% of the

  11. Detection of four human coronaviruses in respiratory infections in children: a one-year study in Colorado.

    PubMed

    Dominguez, Samuel R; Robinson, Christine C; Holmes, Kathryn V

    2009-09-01

    Lower respiratory tract infections are the leading cause of death in children worldwide. Studies on the epidemiology and clinical associations of the four human non-SARS human coronaviruses (HCoVs) using sensitive polymerase chain reaction (PCR) assays are needed to evaluate the clinical significance of HCoV infections worldwide. Pediatric respiratory specimens (1,683) submitted to a diagnostic virology laboratory over a 1-year period (December 2004-November 2005) that were negative for seven respiratory viruses by conventional methods were tested for RNA of four HCoVs using sensitive RT-PCR assays. Coronavirus RNAs were detected in 84 (5.0%) specimens: HCoV-NL63 in 37 specimens, HCoV-OC43 in 34, HCoV-229E in 11, and HCoV-HKU1 in 2. The majority of HCoV infections occurred during winter months, and over 62% were in previously healthy children. Twenty-six (41%) coronavirus positive patients had evidence of a lower respiratory tract infection (LRTI), 17 (26%) presented with vomiting and/or diarrhea, and 5 (8%) presented with meningoencephalitis or seizures. Respiratory specimens from one immunocompromised patient were persistently positive for HCoV-229E RNA for 3 months. HCoV-NL63-positive patients were nearly twice as likely to be hospitalized (P = 0.02) and to have a LRTI (P = 0.04) than HCoV-OC43-positive patients. HCoVs are associated with a small, but significant number (at least 2.4% of total samples submitted), of both upper and lower respiratory tract illnesses in children in Colorado. Our data raise the possibility that HCoV may play a role in gastrointestinal and CNS disease. Additional studies are needed to investigate the potential roles of HCoVs in these diseases.

  12. Update on Human Rhinovirus and Coronavirus Infections.

    PubMed

    Greenberg, Stephen B

    2016-08-01

    Human rhinovirus (HRV) and coronavirus (HCoV) infections are associated with both upper respiratory tract illness ("the common cold") and lower respiratory tract illness (pneumonia). New species of HRVs and HCoVs have been diagnosed in the past decade. More sensitive diagnostic tests such as reverse transcription-polymerase chain reaction have expanded our understanding of the role these viruses play in both immunocompetent and immunosuppressed hosts. Recent identification of severe acute respiratory syndrome and Middle East respiratory syndrome viruses causing serious respiratory illnesses has led to renewed efforts for vaccine development. The role these viruses play in patients with chronic lung disease such as asthma makes the search for antiviral agents of increased importance. PMID:27486736

  13. HTCC: Broad Range Inhibitor of Coronavirus Entry

    PubMed Central

    Milewska, Aleksandra; Kaminski, Kamil; Ciejka, Justyna; Kosowicz, Katarzyna; Zeglen, Slawomir; Wojarski, Jacek; Nowakowska, Maria; Szczubiałka, Krzysztof; Pyrc, Krzysztof

    2016-01-01

    To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1) circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and its hydrophobically-modified derivative (HM-HTCC) as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses. PMID:27249425

  14. Coronaviruses: emerging and re-emerging pathogens in humans and animals.

    PubMed

    Lau, Susanna K P; Chan, Jasper F W

    2015-12-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals with huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.

  15. Prefusion structure of a human coronavirus spike protein

    PubMed Central

    Kirchdoerfer, Robert N.; Cottrell, Christopher A.; Wang, Nianshuang; Pallesen, Jesper; Yassine, Hadi M.; Turner, Hannah L.; Corbett, Kizzmekia S.; Graham, Barney S.; McLellan, Jason S.; Ward, Andrew B.

    2016-01-01

    HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease1 and is related to the zoonotic SARS2 and MERS3 betacoronaviruses that have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein4, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 Å resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the prefusion conformation, the receptor-binding subunits, S1, rest atop the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known to bind protein receptors in other coronaviruses. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. Additionally, these studies should serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens. PMID:26935699

  16. Cyclosporin A inhibits the replication of diverse coronaviruses.

    PubMed

    de Wilde, Adriaan H; Zevenhoven-Dobbe, Jessika C; van der Meer, Yvonne; Thiel, Volker; Narayanan, Krishna; Makino, Shinji; Snijder, Eric J; van Hemert, Martijn J

    2011-11-01

    Low micromolar, non-cytotoxic concentrations of cyclosporin A (CsA) strongly affected the replication of severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus 229E and mouse hepatitis virus in cell culture, as was evident from the strong inhibition of GFP reporter gene expression and a reduction of up to 4 logs in progeny titres. Upon high-multiplicity infection, CsA treatment rendered SARS-CoV RNA and protein synthesis almost undetectable, suggesting an early block in replication. siRNA-mediated knockdown of the expression of the prominent CsA targets cyclophilin A and B did not affect SARS-CoV replication, suggesting either that these specific cyclophilin family members are dispensable or that the reduced expression levels suffice to support replication. PMID:21752960

  17. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor

    SciTech Connect

    Wu, Kailang; Li, Weikai; Peng, Guiqing; Li, Fang

    2010-03-04

    NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We determined the crystal structure of NL63-CoV spike protein receptor-binding domain (RBD) complexed with human ACE2. NL63-CoV RBD has a novel {beta}-sandwich core structure consisting of 2 layers of {beta}-sheets, presenting 3 discontinuous receptor-binding motifs (RBMs) to bind ACE2. NL63-CoV and SARS-CoV have no structural homology in RBD cores or RBMs; yet the 2 viruses recognize common ACE2 regions, largely because of a 'virus-binding hotspot' on ACE2. Among group I coronaviruses, RBD cores are conserved but RBMs are variable, explaining how these viruses recognize different receptors. These results provide a structural basis for understanding viral evolution and virus-receptor interactions.

  18. Coronavirus diversity, phylogeny and interspecies jumping.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Huang, Yi; Yuen, Kwok-Yung

    2009-10-01

    The SARS epidemic has boosted interest in research on coronavirus biodiversity and genomics. Before 2003, there were only 10 coronaviruses with complete genomes available. After the SARS epidemic, up to December 2008, there was an addition of 16 coronaviruses with complete genomes sequenced. These include two human coronaviruses (human coronavirus NL63 and human coronavirus HKU1), 10 other mammalian coronaviruses [bat SARS coronavirus, bat coronavirus (bat-CoV) HKU2, bat-CoV HKU4, bat-CoV HKU5, bat-CoV HKU8, bat-CoV HKU9, bat-CoV 512/2005, bat-CoV 1A, equine coronavirus, and beluga whale coronavirus] and four avian coronaviruses (turkey coronavirus, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13). Two novel subgroups in group 2 coronavirus (groups 2c and 2d) and two novel subgroups in group 3 coronavirus (groups 3b and 3c) have been proposed. The diversity of coronaviruses is a result of the infidelity of RNA-dependent RNA polymerase, high frequency of homologous RNA recombination, and the large genomes of coronaviruses. Among all hosts, the diversity of coronaviruses is most evidenced in bats and birds, which may be a result of their species diversity, ability to fly, environmental pressures, and habits of roosting and flocking. The present evidence supports that bat coronaviruses are the gene pools of group 1 and 2 coronaviruses, whereas bird coronaviruses are the gene pools of group 3 coronaviruses. With the increasing number of coronaviruses, more and more closely related coronaviruses from distantly related animals have been observed, which were results of recent interspecies jumping and may be the cause of disastrous outbreaks of zoonotic diseases. PMID:19546349

  19. About Coronavirus

    MedlinePlus

    ... or surfaces then touching your mouth, nose, or eyes. Also see MERS-CoV Transmission and How SARS Spreads . Q: When can I get infected? A: In the United States, people usually get infected with common human coronaviruses in the fall and winter. However, you ...

  20. Lack of MERS Coronavirus Neutralizing Antibodies in Humans, Eastern Province, Saudi Arabia

    PubMed Central

    Gierer, Stefanie; Hofmann-Winkler, Heike; Albuali, Waleed H.; Bertram, Stephanie; Al-Rubaish, Abdullah M.; Yousef, Abdullah A.; Al-Nafaie, Awatif N.; Al-Ali, Amein K.; Obeid, Obeid E.; Alkharsah, Khaled R.

    2013-01-01

    We used a lentiviral vector bearing the viral spike protein to detect neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) in persons from the Eastern Province of Saudi Arabia. None of the 268 samples tested displayed neutralizing activity, which suggests that MERS-CoV infections in humans are infrequent in this province. PMID:24274664

  1. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis.

    PubMed

    Cheung, Chung Y; Poon, Leo L M; Ng, Iris H Y; Luk, Winsie; Sia, Sin-Fun; Wu, Mavis H S; Chan, Kwok-Hung; Yuen, Kwok-Yung; Gordon, Siamon; Guan, Yi; Peiris, Joseph S M

    2005-06-01

    The pathogenesis of severe acute respiratory syndrome (SARS) remains unclear. Macrophages are key sentinel cells in the respiratory system, and it is therefore relevant to compare the responses of human macrophages to infections with the SARS coronavirus (SARS-CoV) and other respiratory viruses. Primary human monocyte-derived macrophages were infected with SARS-CoV in vitro. Virus replication was monitored by measuring the levels of positive- and negative-strand RNA, by immunofluorescence detection of the SARS-CoV nucleoprotein, and by titration of the infectious virus. The gene expression profiles of macrophages infected with SARS-CoV, human coronavirus 229E, and influenza A (H1N1) virus were compared by using microarrays and real-time quantitative reverse transcriptase PCR. Secreted cytokines were measured with an enzyme-linked immunosorbent assay. SARS-CoV initiated viral gene transcription and protein synthesis in macrophages, but replication was abortive and no infectious virus was produced. In contrast to the case with human coronavirus 229E and influenza A virus, there was little or no induction of beta interferon (IFN-beta) in SARS-CoV-infected macrophages. Furthermore, SARS-CoV induced the expression of chemokines such as CXCL10/IFN-gamma-inducible protein 10 and CCL2/monocyte chemotactic protein 1. The poor induction of IFN-beta, a key component of innate immunity, and the ability of the virus to induce chemokines could explain aspects of the pathogenesis of SARS.

  2. Human Infection with MERS Coronavirus after Exposure to Infected Camels, Saudi Arabia, 2013

    PubMed Central

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Watson, Simon J.; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend-Jan; Beer, Martin; Müller, Marcel A.; Kellam, Paul

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection. PMID:24857749

  3. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design

    PubMed Central

    Wang, Fenghua; Chen, Cheng; Tan, Wenjie; Yang, Kailin; Yang, Haitao

    2016-01-01

    First identified in The Netherlands in 2004, human coronavirus NL63 (HCoV-NL63) was found to cause worldwide infections. Patients infected by HCoV-NL63 are typically young children with upper and lower respiratory tract infection, presenting with symptoms including croup, bronchiolitis, and pneumonia. Unfortunately, there are currently no effective antiviral therapy to contain HCoV-NL63 infection. CoV genomes encode an integral viral component, main protease (Mpro), which is essential for viral replication through proteolytic processing of RNA replicase machinery. Due to the sequence and structural conservation among all CoVs, Mpro has been recognized as an attractive molecular target for rational anti-CoV drug design. Here we present the crystal structure of HCoV-NL63 Mpro in complex with a Michael acceptor inhibitor N3. Structural analysis, consistent with biochemical inhibition results, reveals the molecular mechanism of enzyme inhibition at the highly conservative substrate-recognition pocket. We show such molecular target remains unchanged across 30 clinical isolates of HCoV-NL63 strains. Through comparative study with Mpros from other human CoVs (including the deadly SARS-CoV and MERS-CoV) and their related zoonotic CoVs, our structure of HCoV-NL63 Mpro provides critical insight into rational development of wide spectrum antiviral therapeutics to treat infections caused by human CoVs. PMID:26948040

  4. [Visual Detection of Human Coronavirus NL63 by Reverse Transcription Loop-Mediated Isothermal Amplification].

    PubMed

    Geng, Heyuan; Wang, Shengqiang; Xie, Xiaoqian; Xiao, Yu; Zhang, Ting; Tan, Wenjie; Su, Chuan

    2016-01-01

    A simple and sensitive assay for rapid detection of human coronavirus NL63 (HCoV-NL63) was developed by colorimetic reverse transcription loop-mediated isothermal amplification (RT-LAMP). The method employed six specially designed primers that recognized eight distinct regions of the HCoV-NL63 nucleocapsid protein gene for amplification of target sequences under isothermal conditions at 63 degrees C for 1 h Amplification of RT-LAMP was monitored by addition of calcein before amplification. A positive reaction was confirmed by change from light-brown to yellow-green under visual detection. Specificity of the RT-LAMP assay was validated by cross-reaction with different human coronaviruses, norovirus, influenza A virus, and influenza B virus. Sensitivity was evaluated by serial dilution of HCoV-NL63 RNA from 1.6 x 10(9) to 1.6 x 10(1) per reaction. The RT-LAMP assay could achieve 1,600 RNA copies per reaction with high specificity. Hence, our colorimetric RT-LAMP assay could be used for rapid detection of human coronavirus NL63. PMID:27295884

  5. Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture

    PubMed Central

    de Wilde, Adriaan H.; Jochmans, Dirk; Posthuma, Clara C.; Zevenhoven-Dobbe, Jessika C.; van Nieuwkoop, Stefan; Bestebroer, Theo M.; van den Hoogen, Bernadette G.

    2014-01-01

    Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ∼30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC50s], 3 to 8 μM). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response. PMID:24841269

  6. Core Structure of S2 from the Human Coronavirus NL63 Spike Glycoprotein

    SciTech Connect

    Zheng,Q.; Deng, Y.; Liu, J.; van der Hoek, L.; Berkhout, B.; Lu, M.

    2006-01-01

    Human coronavirus NL63 (HCoV-NL63) has recently been identified as a causative agent of acute respiratory tract illnesses in infants and young children. The HCoV-NL63 spike (S) protein mediates virion attachment to cells and subsequent fusion of the viral and cellular membranes. This viral entry process is a primary target for vaccine and drug development. HCoV-NL63 S is expressed as a single-chain glycoprotein and consists of an N-terminal receptor-binding domain (S1) and a C-terminal transmembrane fusion domain (S2). The latter contains two highly conserved heptad-repeat (HR) sequences that are each extended by 14 amino acids relative to those of the SARS coronavirus or the prototypic murine coronavirus, mouse hepatitis virus. Limited proteolysis studies of the HCoV-NL63 S2 fusion core identify an {alpha}-helical domain composed of a trimer of the HR segments N57 and C42. The crystal structure of this complex reveals three C42 helices entwined in an oblique and antiparallel manner around a central triple-stranded coiled coil formed by three N57 helices. The overall geometry comprises distinctive high-affinity conformations of interacting cross-sectional layers of the six helices. As a result, this structure is unusually stable, with an apparent melting temperature of 78 {sup o}C in the presence of the denaturant guanidine hydrochloride at 5 M concentration. The extended HR regions may therefore be required to prime the group 1 S glycoproteins for their fusion-activating conformational changes during viral entry. Our results provide an initial basis for understanding an intriguing interplay between the presence or absence of proteolytic maturation among the coronavirus groups and the membrane fusion activity of their S glycoproteins. This study also suggests a potential strategy for the development of improved HCoV-NL63 fusion inhibitors.

  7. Genetic drift of human coronavirus OC43 spike gene during adaptive evolution.

    PubMed

    Ren, Lili; Zhang, Yue; Li, Jianguo; Xiao, Yan; Zhang, Jing; Wang, Ying; Chen, Lan; Paranhos-Baccalà, Gláucia; Wang, Jianwei

    2015-06-22

    Coronaviruses (CoVs) continuously threaten human health. However, to date, the evolutionary mechanisms that govern CoV strain persistence in human populations have not been fully understood. In this study, we characterized the evolution of the major antigen-spike (S) gene in the most prevalent human coronavirus (HCoV) OC43 using phylogenetic and phylodynamic analysis. Among the five known HCoV-OC43 genotypes (A to E), higher substitution rates and dN/dS values as well as more positive selection sites were detected in the S gene of genotype D, corresponding to the most dominant HCoV epidemic in recent years. Further analysis showed that the majority of substitutions were located in the S1 subunit. Among them, seven positive selection sites were chronologically traced in the temporal evolution routes of genotype D, and six were located around the critical sugar binding region in the N-terminal domain (NTD) of S protein, an important sugar binding domain of CoV. These findings suggest that the genetic drift of the S gene may play an important role in genotype persistence in human populations, providing insights into the mechanisms of HCoV-OC43 adaptive evolution.

  8. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    PubMed Central

    Wrensch, Florian; Winkler, Michael; Pöhlmann, Stefan

    2014-01-01

    The interferon-inducible transmembrane (IFITM) proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs. PMID:25256397

  9. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    PubMed Central

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  10. Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014

    PubMed Central

    Alraddadi, Basem M.; Watson, John T.; Almarashi, Abdulatif; Abedi, Glen R.; Turkistani, Amal; Sadran, Musallam; Housa, Abeer; Almazroa, Mohammad A.; Alraihan, Naif; Banjar, Ayman; Albalawi, Eman; Alhindi, Hanan; Choudhry, Abdul Jamil; Meiman, Jonathan G.; Paczkowski, Magdalena; Curns, Aaron; Mounts, Anthony; Feikin, Daniel R.; Marano, Nina; Swerdlow, David L.; Gerber, Susan I.; Hajjeh, Rana

    2016-01-01

    Risk factors for primary Middle East respiratory syndrome coronavirus (MERS-CoV) illness in humans are incompletely understood. We identified all primary MERS-CoV cases reported in Saudi Arabia during March–November 2014 by excluding those with history of exposure to other cases of MERS-CoV or acute respiratory illness of unknown cause or exposure to healthcare settings within 14 days before illness onset. Using a case–control design, we assessed differences in underlying medical conditions and environmental exposures among primary case-patients and 2–4 controls matched by age, sex, and neighborhood. Using multivariable analysis, we found that direct exposure to dromedary camels during the 2 weeks before illness onset, as well as diabetes mellitus, heart disease, and smoking, were each independently associated with MERS-CoV illness. Further investigation is needed to better understand animal-to-human transmission of MERS-CoV. PMID:26692185

  11. Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014.

    PubMed

    Alraddadi, Basem M; Watson, John T; Almarashi, Abdulatif; Abedi, Glen R; Turkistani, Amal; Sadran, Musallam; Housa, Abeer; Almazroa, Mohammad A; Alraihan, Naif; Banjar, Ayman; Albalawi, Eman; Alhindi, Hanan; Choudhry, Abdul Jamil; Meiman, Jonathan G; Paczkowski, Magdalena; Curns, Aaron; Mounts, Anthony; Feikin, Daniel R; Marano, Nina; Swerdlow, David L; Gerber, Susan I; Hajjeh, Rana; Madani, Tariq A

    2016-01-01

    Risk factors for primary Middle East respiratory syndrome coronavirus (MERS-CoV) illness in humans are incompletely understood. We identified all primary MERS-CoV cases reported in Saudi Arabia during March-November 2014 by excluding those with history of exposure to other cases of MERS-CoV or acute respiratory illness of unknown cause or exposure to healthcare settings within 14 days before illness onset. Using a case-control design, we assessed differences in underlying medical conditions and environmental exposures among primary case-patients and 2-4 controls matched by age, sex, and neighborhood. Using multivariable analysis, we found that direct exposure to dromedary camels during the 2 weeks before illness onset, as well as diabetes mellitus, heart disease, and smoking, were each independently associated with MERS-CoV illness. Further investigation is needed to better understand animal-to-human transmission of MERS-CoV. PMID:26692185

  12. Coronaviruses and the human airway: a universal system for virus-host interaction studies.

    PubMed

    Jonsdottir, Hulda R; Dijkman, Ronald

    2016-02-06

    Human coronaviruses (HCoVs) are large RNA viruses that infect the human respiratory tract. The emergence of both Severe Acute Respiratory Syndrome and Middle East Respiratory syndrome CoVs as well as the yearly circulation of four common CoVs highlights the importance of elucidating the different mechanisms employed by these viruses to evade the host immune response, determine their tropism and identify antiviral compounds. Various animal models have been established to investigate HCoV infection, including mice and non-human primates. To establish a link between the research conducted in animal models and humans, an organotypic human airway culture system, that recapitulates the human airway epithelium, has been developed. Currently, different cell culture systems are available to recapitulate the human airways, including the Air-Liquid Interface (ALI) human airway epithelium (HAE) model. Tracheobronchial HAE cultures recapitulate the primary entry point of human respiratory viruses while the alveolar model allows for elucidation of mechanisms involved in viral infection and pathogenesis in the alveoli. These organotypic human airway cultures represent a universal platform to study respiratory virus-host interaction by offering more detailed insights compared to cell lines. Additionally, the epidemic potential of this virus family highlights the need for both vaccines and antivirals. No commercial vaccine is available but various effective antivirals have been identified, some with potential for human treatment. These morphological airway cultures are also well suited for the identification of antivirals, evaluation of compound toxicity and viral inhibition.

  13. Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels.

    PubMed

    Widagdo, W; Raj, V Stalin; Schipper, Debby; Kolijn, Kimberley; van Leenders, Geert J L H; Bosch, Berend J; Bensaid, Albert; Segalés, Joaquim; Baumgärtner, Wolfgang; Osterhaus, Albert D M E; Koopmans, Marion P; van den Brand, Judith M A; Haagmans, Bart L

    2016-05-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor--dipeptidyl peptidase 4 (DPP4)--is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission.

  14. Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1

    PubMed Central

    2014-01-01

    Background Whereas severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is associated with severe disease, human coronavirus HKU1 (HCoV-HKU1) commonly circulates in the human populations causing generally milder illness. Spike (S) protein of SARS-CoV activates the unfolded protein response (UPR). It is not understood whether HCoV-HKU1 S protein has similar activity. In addition, the UPR-activating domain in SARS-CoV S protein remains to be identified. Results In this study we compared S proteins of SARS-CoV and HCoV-HKU1 for their ability to activate the UPR. Both S proteins were found in the endoplasmic reticulum. Transmembrane serine protease TMPRSS2 catalyzed the cleavage of SARS-CoV S protein, but not the counterpart in HCoV-HKU1. Both S proteins showed a similar pattern of UPR-activating activity. Through PERK kinase they activated the transcription of UPR effector genes such as Grp78, Grp94 and CHOP. N-linked glycosylation was not required for the activation of the UPR by S proteins. S1 subunit of SARS-CoV but not its counterpart in HCoV-HKU1 was capable of activating the UPR. A central region (amino acids 201–400) of SARS-CoV S1 was required for this activity. Conclusions SARS-CoV and HCoV-HKU1 S proteins use distinct UPR-activating domains to exert the same modulatory effects on UPR signaling. PMID:24410900

  15. A highly conserved WDYPKCDRA epitope in the RNA directed RNA polymerase of human coronaviruses can be used as epitope-based universal vaccine design

    PubMed Central

    2014-01-01

    Background Coronaviruses are the diverse group of RNA virus. From 1960, six strains of human coronaviruses have emerged that includes SARS-CoV and the recent infection by deadly MERS-CoV which is now going to cause another outbreak. Prevention of these viruses is urgent and a universal vaccine for all strain could be a promising solution in this circumstance. In this study we aimed to design an epitope based vaccine against all strain of human coronavirus. Results Multiple sequence alignment (MSA) approach was employed among spike (S), membrane (M), enveloped (E) and nucleocapsid (N) protein and replicase polyprotein 1ab to identify which one is highly conserve in all coronaviruses strains. Next, we use various in silico tools to predict consensus immunogenic and conserved peptide. We found that conserved region is present only in the RNA directed RNA polymerase protein. In this protein we identified one epitope WDYPKCDRA is highly immunogenic and 100% conserved among all available human coronavirus strains. Conclusions Here we suggest in vivo study of our identified novel peptide antigen in RNA directed RNA polymerase protein for universal vaccine – which may be the way to prevent all human coronavirus disease. PMID:24884408

  16. Coronavirus Infections

    MedlinePlus

    ... may be able to reduce your risk of infection by washing your hands often with soap and ... sick. There is no vaccine to prevent coronavirus infection. There are no specific treatments. You can relieve ...

  17. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction.

    PubMed

    Omrani, Ali S; Al-Tawfiq, Jaffar A; Memish, Ziad A

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine. PMID:26924345

  18. Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels

    PubMed Central

    Widagdo, W.; Raj, V. Stalin; Schipper, Debby; Kolijn, Kimberley; van Leenders, Geert J. L. H.; Bosch, Berend J.; Bensaid, Albert; Segalés, Joaquim; Baumgärtner, Wolfgang; Osterhaus, Albert D. M. E.; Koopmans, Marion P.; van den Brand, Judith M. A.

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor—dipeptidyl peptidase 4 (DPP4)—is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission. PMID:26889022

  19. Evidence Supporting a Zoonotic Origin of Human Coronavirus Strain NL63

    PubMed Central

    Huynh, Jeremy; Li, Shimena; Yount, Boyd; Smith, Alexander; Sturges, Leslie; Olsen, John C.; Nagel, Juliet; Johnson, Joshua B.; Agnihothram, Sudhakar; Gates, J. Edward; Frieman, Matthew B.; Baric, Ralph S.

    2012-01-01

    The relationship between bats and coronaviruses (CoVs) has received considerable attention since the severe acute respiratory syndrome (SARS)-like CoV was identified in the Chinese horseshoe bat (Rhinolophidae) in 2005. Since then, several bats throughout the world have been shown to shed CoV sequences, and presumably CoVs, in the feces; however, no bat CoVs have been isolated from nature. Moreover, there are very few bat cell lines or reagents available for investigating CoV replication in bat cells or for isolating bat CoVs adapted to specific bat species. Here, we show by molecular clock analysis that alphacoronavirus (α-CoV) sequences derived from the North American tricolored bat (Perimyotis subflavus) are predicted to share common ancestry with human CoV (HCoV)-NL63, with the most recent common ancestor between these viruses occurring approximately 563 to 822 years ago. Further, we developed immortalized bat cell lines from the lungs of this bat species to determine if these cells were capable of supporting infection with HCoVs. While SARS-CoV, mouse-adapted SARS-CoV (MA15), and chimeric SARS-CoVs bearing the spike genes of early human strains replicated inefficiently, HCoV-NL63 replicated for multiple passages in the immortalized lung cells from this bat species. These observations support the hypothesis that human CoVs are capable of establishing zoonotic-reverse zoonotic transmission cycles that may allow some CoVs to readily circulate and exchange genetic material between strains found in bats and other mammals, including humans. PMID:22993147

  20. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  1. Bilateral Entry and Release of Middle East Respiratory Syndrome Coronavirus Induces Profound Apoptosis of Human Bronchial Epithelial Cells

    PubMed Central

    Tao, Xinrong; Hill, Terence E.; Morimoto, Chikao; Peters, Clarence J.; Ksiazek, Thomas G.

    2013-01-01

    The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) infects human bronchial epithelial Calu-3 cells. Unlike severe acute respiratory syndrome (SARS)-CoV, which exclusively infects and releases through the apical route, this virus can do so through either side of polarized Calu-3 cells. Infection results in profound apoptosis within 24 h irrespective of its production of titers that are lower than those of SARS-CoV. Together, our results provide new insights into the dissemination and pathogenesis of MERS-CoV and may indicate that the virus differs markedly from SARS-CoV. PMID:23824802

  2. Human Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target Cells

    PubMed Central

    Milewska, Aleksandra; Zarebski, Miroslaw; Nowak, Paulina; Stozek, Karol; Potempa, Jan

    2014-01-01

    ABSTRACT Human coronavirus NL63 (HCoV-NL63) is an alphacoronavirus that was first identified in 2004 in the nasopharyngeal aspirate from a 7-month-old patient with a respiratory tract infection. Previous studies showed that HCoV-NL63 and the genetically distant severe acute respiratory syndrome (SARS)-CoV employ the same receptor for host cell entry, angiotensin-converting enzyme 2 (ACE2), but it is largely unclear whether ACE2 interactions are sufficient to allow HCoV-NL63 binding to cells. The present study showed that directed expression of angiotensin-converting enzyme 2 (ACE2) on cells previously resistant to HCoV-NL63 renders them susceptible, showing that ACE2 protein acts as a functional receptor and that its expression is required for infection. However, comparative analysis showed that directed expression or selective scission of the ACE2 protein had no measurable effect on virus adhesion. In contrast, binding of HCoV-NL63 to heparan sulfates was required for viral attachment and infection of target cells, showing that these molecules serve as attachment receptors for HCoV-NL63. IMPORTANCE ACE2 protein was proposed as a receptor for HCoV-NL63 already in 2005, but an in-depth analysis of early events during virus infection had not been performed thus far. Here, we show that the ACE2 protein is required for viral entry but that it is not the primary binding site on the cell surface. Conducted research showed that heparan sulfate proteoglycans function as adhesion molecules, increasing the virus density on cell surface and possibly facilitating the interaction between HCoV-NL63 and its receptor. Obtained results show that the initial events during HCoV-NL63 infection are more complex than anticipated and that a newly described interaction may be essential for understanding the infection process and, possibly, also assist in drug design. PMID:25187545

  3. Characterization of a Novel Betacoronavirus Related to Middle East Respiratory Syndrome Coronavirus in European Hedgehogs

    PubMed Central

    Corman, Victor Max; Kallies, René; Philipps, Heike; Göpner, Gertraude; Müller, Marcel Alexander; Eckerle, Isabella; Brünink, Sebastian

    2014-01-01

    Bats are known to host viruses closely related to important human coronaviruses (HCoVs), such as HCoV-229E, severe-acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV). As RNA viruses may coevolve with their hosts, we sought to investigate the closest sister taxon to bats, the Eulipotyphla, and screened European hedgehogs (Erinaceus europaeus) from Germany for CoV by nested reverse transcriptase PCR. A novel betacoronavirus species in a phylogenetic sister relationship to MERS-CoV and clade c bat CoVs was detected and characterized on the whole-genome level. A total of 58.9% of hedgehog fecal specimens were positive for the novel CoV (EriCoV) at 7.9 log10 mean RNA copies per ml. EriCoV RNA concentrations were higher in the intestine than in other solid organs, blood, or urine. Detailed analyses of the full hedgehog intestine showed the highest EriCoV concentrations in lower gastrointestinal tract specimens, compatible with viral replication in the lower intestine and fecal-oral transmission. Thirteen of 27 (48.2%) hedgehog sera contained non-neutralizing antibodies against MERS-CoV. The animal origins of this betacoronavirus clade that includes MERS-CoV may thus include both bat and nonbat hosts. PMID:24131722

  4. Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants

    PubMed Central

    Poon, Leo L. M; Marissen, Wilfred E; Leung, Cynthia S. W; Cox, Freek; Cheung, Chung Y; Bakker, Arjen Q; Bogaards, Johannes A; van Deventer, Els; Preiser, Wolfgang; Doerr, Hans Wilhelm; Chow, Vincent T; de Kruif, John; Peiris, Joseph S. M; Goudsmit, Jaap

    2006-01-01

    Background Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. Methods and Findings Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. Conclusions The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time

  5. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates.

    PubMed

    Wang, Qidi; Zhang, Lianfeng; Kuwahara, Kazuhiko; Li, Li; Liu, Zijie; Li, Taisheng; Zhu, Hua; Liu, Jiangning; Xu, Yanfeng; Xie, Jing; Morioka, Hiroshi; Sakaguchi, Nobuo; Qin, Chuan; Liu, Gang

    2016-05-13

    Severe acute respiratory syndrome (SARS) is caused by a coronavirus (SARS-CoV) and has the potential to threaten global public health and socioeconomic stability. Evidence of antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro and in non-human primates clouds the prospects for a safe vaccine. Using antibodies from SARS patients, we identified and characterized SARS-CoV B-cell peptide epitopes with disparate functions. In rhesus macaques, the spike glycoprotein peptides S471-503, S604-625, and S1164-1191 elicited antibodies that efficiently prevented infection in non-human primates. In contrast, peptide S597-603 induced antibodies that enhanced infection both in vitro and in non-human primates by using an epitope sequence-dependent (ESD) mechanism. This peptide exhibited a high level of serological reactivity (64%), which resulted from the additive responses of two tandem epitopes (S597-603 and S604-625) and a long-term human B-cell memory response with antisera from convalescent SARS patients. Thus, peptide-based vaccines against SARS-CoV could be engineered to avoid ADE via elimination of the S597-603 epitope. We provide herein an alternative strategy to prepare a safe and effective vaccine for ADE of viral infection by identifying and eliminating epitope sequence-dependent enhancement of viral infection. PMID:27627203

  6. Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates.

    PubMed

    Wang, Qidi; Zhang, Lianfeng; Kuwahara, Kazuhiko; Li, Li; Liu, Zijie; Li, Taisheng; Zhu, Hua; Liu, Jiangning; Xu, Yanfeng; Xie, Jing; Morioka, Hiroshi; Sakaguchi, Nobuo; Qin, Chuan; Liu, Gang

    2016-05-13

    Severe acute respiratory syndrome (SARS) is caused by a coronavirus (SARS-CoV) and has the potential to threaten global public health and socioeconomic stability. Evidence of antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro and in non-human primates clouds the prospects for a safe vaccine. Using antibodies from SARS patients, we identified and characterized SARS-CoV B-cell peptide epitopes with disparate functions. In rhesus macaques, the spike glycoprotein peptides S471-503, S604-625, and S1164-1191 elicited antibodies that efficiently prevented infection in non-human primates. In contrast, peptide S597-603 induced antibodies that enhanced infection both in vitro and in non-human primates by using an epitope sequence-dependent (ESD) mechanism. This peptide exhibited a high level of serological reactivity (64%), which resulted from the additive responses of two tandem epitopes (S597-603 and S604-625) and a long-term human B-cell memory response with antisera from convalescent SARS patients. Thus, peptide-based vaccines against SARS-CoV could be engineered to avoid ADE via elimination of the S597-603 epitope. We provide herein an alternative strategy to prepare a safe and effective vaccine for ADE of viral infection by identifying and eliminating epitope sequence-dependent enhancement of viral infection.

  7. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Weiss, Susan R.; Navas-Martin, Sonia

    2005-01-01

    Coronaviruses are a family of enveloped, single-stranded, positive-strand RNA viruses classified within the Nidovirales order. This coronavirus family consists of pathogens of many animal species and of humans, including the recently isolated severe acute respiratory syndrome coronavirus (SARS-CoV). This review is divided into two main parts; the first concerns the animal coronaviruses and their pathogenesis, with an emphasis on the functions of individual viral genes, and the second discusses the newly described human emerging pathogen, SARS-CoV. The coronavirus part covers (i) a description of a group of coronaviruses and the diseases they cause, including the prototype coronavirus, murine hepatitis virus, which is one of the recognized animal models for multiple sclerosis, as well as viruses of veterinary importance that infect the pig, chicken, and cat and a summary of the human viruses; (ii) a short summary of the replication cycle of coronaviruses in cell culture; (iii) the development and application of reverse genetics systems; and (iv) the roles of individual coronavirus proteins in replication and pathogenesis. The SARS-CoV part covers the pathogenesis of SARS, the developing animal models for infection, and the progress in vaccine development and antiviral therapies. The data gathered on the animal coronaviruses continue to be helpful in understanding SARS-CoV. PMID:16339739

  8. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    PubMed Central

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  9. Structural Analysis of Major Species Barriers between Humans and Palm Civets for Severe Acute Respiratory Syndrome Coronavirus Infections

    SciTech Connect

    Li, Fang

    2008-09-23

    It is believed that a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), was passed from palm civets to humans and caused the epidemic of SARS in 2002 to 2003. The major species barriers between humans and civets for SARS-CoV infections are the specific interactions between a defined receptor-binding domain (RBD) on a viral spike protein and its host receptor, angiotensin-converting enzyme 2 (ACE2). In this study a chimeric ACE2 bearing the critical N-terminal helix from civet and the remaining peptidase domain from human was constructed, and it was shown that this construct has the same receptor activity as civet ACE2. In addition, crystal structures of the chimeric ACE2 complexed with RBDs from various human and civet SARS-CoV strains were determined. These structures, combined with a previously determined structure of human ACE2 complexed with the RBD from a human SARS-CoV strain, have revealed a structural basis for understanding the major species barriers between humans and civets for SARS-CoV infections. They show that the major species barriers are determined by interactions between four ACE2 residues (residues 31, 35, 38, and 353) and two RBD residues (residues 479 and 487), that early civet SARS-CoV isolates were prevented from infecting human cells due to imbalanced salt bridges at the hydrophobic virus/receptor interface, and that SARS-CoV has evolved to gain sustained infectivity for human cells by eliminating unfavorable free charges at the interface through stepwise mutations at positions 479 and 487. These results enhance our understanding of host adaptations and cross-species infections of SARS-CoV and other emerging animal viruses.

  10. Detection of group 1 coronaviruses in bats in North America

    USGS Publications Warehouse

    Dominguez, S.R.; O'Shea, T.J.; Oko, L.M.; Holmes, K.V.

    2007-01-01

    The epidemic of severe acute respiratory syndrome (SARS) was caused by a newly emerged coronavirus (SARS-CoV). Bats of several species in southern People's Republic of China harbor SARS-like CoVs and may be reservoir hosts for them. To determine whether bats in North America also harbor coronaviruses, we used reverse transcription-PCR to detect coronavirus RNA in bats. We found coronavirus RNA in 6 of 28 fecal specimens from bats of 2 of 7 species tested. The prevalence of viral RNA shedding was high: 17% in Eptesicus fuscus and 50% in Myotis occultus. Sequence analysis of a 440-bp amplicon in gene 1b showed that these Rocky Mountain bat coronaviruses formed 3 clusters in phylogenetic group 1 that were distinct from group 1 coronaviruses of Asian bats. Because of the potential for bat coronaviruses to cause disease in humans and animals, further surveillance and characterization of bat coronaviruses in North America are needed.

  11. Coronaviruses: An Overview of Their Replication and Pathogenesis

    PubMed Central

    Fehr, Anthony R.; Perlman, Stanley

    2015-01-01

    Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV). PMID:25720466

  12. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection

    PubMed Central

    Hajeer, Ali H.; Balkhy, Hanan; Johani, Sameera; Yousef, Mohammed Z.; Arabi, Yaseen

    2016-01-01

    BACKGROUND: Middle East Respiratory Syndrome (MERS) is a disease of the lower respiratory tract and is characterized by high mortality. It is caused by a beta coronavirus (CoV) referred to as MERS-CoV. Majority of MERS-CoV cases have been reported from Saudi Arabia. AIM: We investigated the human leukocyte antigen (HLA) Class II alleles in patients with severe MERS who were admitted in our Intensive Care Unit. METHODS: A total of 23 Saudi patients with severe MERS-CoV infection were typed for HLA class II, results were compared with those of 161 healthy controls. RESULTS: Two HLA class II alleles were associated with the disease; HLA-DRB1*11:01 and DQB1*02:02, but not with the disease outcome. CONCLUSIONS: Our results suggest that the HLA-DRB1*11:01 and DQB1*02:02 may be associated with susceptibility to MERS. PMID:27512511

  13. Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    PubMed Central

    Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.

    2013-01-01

    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422

  14. Severe Acute Respiratory Syndrome Coronavirus ORF7a Inhibits Bone Marrow Stromal Antigen 2 Virion Tethering through a Novel Mechanism of Glycosylation Interference

    PubMed Central

    Taylor, Justin K.; Coleman, Christopher M.; Postel, Sandra; Sisk, Jeanne M.; Bernbaum, John G.; Venkataraman, Thiagarajan; Sundberg, Eric J.

    2015-01-01

    ABSTRACT Severe acute respiratory syndrome (SARS) emerged in November 2002 as a case of atypical pneumonia in China, and the causative agent of SARS was identified to be a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV). Bone marrow stromal antigen 2 (BST-2; also known as CD317 or tetherin) was initially identified to be a pre-B-cell growth promoter, but it also inhibits the release of virions of the retrovirus human immunodeficiency virus type 1 (HIV-1) by tethering budding virions to the host cell membrane. Further work has shown that BST-2 restricts the release of many other viruses, including the human coronavirus 229E (hCoV-229E), and the genomes of many of these viruses encode BST-2 antagonists to overcome BST-2 restriction. Given the previous studies on BST-2, we aimed to determine if BST-2 has the ability to restrict SARS-CoV and if the SARS-CoV genome encodes any proteins that modulate BST-2's antiviral function. Through an in vitro screen, we identified four potential BST-2 modulators encoded by the SARS-CoV genome: the papain-like protease (PLPro), nonstructural protein 1 (nsp1), ORF6, and ORF7a. As the function of ORF7a in SARS-CoV replication was previously unknown, we focused our study on ORF7a. We found that BST-2 does restrict SARS-CoV, but the loss of ORF7a leads to a much greater restriction, confirming the role of ORF7a as an inhibitor of BST-2. We further characterized the mechanism of BST-2 inhibition by ORF7a and found that ORF7a localization changes when BST-2 is overexpressed and ORF7a binds directly to BST-2. Finally, we also show that SARS-CoV ORF7a blocks the restriction activity of BST-2 by blocking the glycosylation of BST-2. IMPORTANCE The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged from zoonotic sources in 2002 and caused over 8,000 infections and 800 deaths in 37 countries around the world. Identifying host factors that regulate SARS-CoV pathogenesis is critical to understanding how

  15. Synthetic Reconstruction of Zoonotic and Early Human Severe Acute Respiratory Syndrome Coronavirus Isolates That Produce Fatal Disease in Aged Mice▿

    PubMed Central

    Rockx, Barry; Sheahan, Timothy; Donaldson, Eric; Harkema, Jack; Sims, Amy; Heise, Mark; Pickles, Raymond; Cameron, Mark; Kelvin, David; Baric, Ralph

    2007-01-01

    The severe acute respiratory syndrome (SARS) epidemic was characterized by high mortality rates in the elderly. The molecular mechanisms that govern enhanced susceptibility of elderly populations are not known, and robust animal models are needed that recapitulate the increased pathogenic phenotype noted with increasing age. Using synthetic biology and reverse genetics, we describe the construction of a panel of isogenic SARS coronavirus (SARS-CoV) strains bearing variant spike glycoproteins that are representative of zoonotic strains found in palm civets and raccoon dogs, as well as isolates spanning the early, middle, and late phases of the SARS-CoV epidemic. The recombinant viruses replicated efficiently in cell culture and demonstrated variable sensitivities to neutralization with antibodies. The human but not the zoonotic variants replicated efficiently in human airway epithelial cultures, supporting earlier hypotheses that zoonotic isolates are less pathogenic in humans but can evolve into highly pathogenic strains. All viruses replicated efficiently, but none produced clinical disease or death in young animals. In contrast, severe clinical disease, diffuse alveolar damage, hyaline membrane formation, alveolitis, and death were noted in 12-month-old mice inoculated with the palm civet HC/SZ/61/03 strain or early-human-phase GZ02 variants but not with related middle- and late-phase epidemic or raccoon dog strains. This panel of SARS-CoV recombinants bearing zoonotic and human epidemic spike glycoproteins will provide heterologous challenge models for testing vaccine efficacy against zoonotic reintroductions as well as provide the appropriate model system for elucidating the complex virus-host interactions that contribute to more-severe and fatal SARS-CoV disease and acute respiratory distress in the elderly. PMID:17507479

  16. Multi-Organ Damage in Human Dipeptidyl Peptidase 4 Transgenic Mice Infected with Middle East Respiratory Syndrome-Coronavirus.

    PubMed

    Zhao, Guangyu; Jiang, Yuting; Qiu, Hongjie; Gao, Tongtong; Zeng, Yang; Guo, Yan; Yu, Hong; Li, Junfeng; Kou, Zhihua; Du, Lanying; Tan, Wenjie; Jiang, Shibo; Sun, Shihui; Zhou, Yusen

    2015-01-01

    The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe acute respiratory failure and considerable extrapumonary organ dysfuction with substantial high mortality. For the limited number of autopsy reports, small animal models are urgently needed to study the mechanisms of MERS-CoV infection and pathogenesis of the disease and to evaluate the efficacy of therapeutics against MERS-CoV infection. In this study, we developed a transgenic mouse model globally expressing codon-optimized human dipeptidyl peptidase 4 (hDPP4), the receptor for MERS-CoV. After intranasal inoculation with MERS-CoV, the mice rapidly developed severe pneumonia and multi-organ damage, with viral replication being detected in the lungs on day 5 and in the lungs, kidneys and brains on day 9 post-infection. In addition, the mice exhibited systemic inflammation with mild to severe pneumonia accompanied by the injury of liver, kidney and spleen with neutrophil and macrophage infiltration. Importantly, the mice exhibited symptoms of paralysis with high viral burden and viral positive neurons on day 9. Taken together, this study characterizes the tropism of MERS-CoV upon infection. Importantly, this hDPP4-expressing transgenic mouse model will be applicable for studying the pathogenesis of MERS-CoV infection and investigating the efficacy of vaccines and antiviral agents designed to combat MERS-CoV infection. PMID:26701103

  17. Structure-based virtual screening and experimental validation of the discovery of inhibitors targeted towards the human coronavirus nucleocapsid protein.

    PubMed

    Chang, Chung-ke; Jeyachandran, Sivakamavalli; Hu, Nien-Jen; Liu, Chia-Ling; Lin, Shing-Yen; Wang, Yong-Sheng; Chang, Yu-Ming; Hou, Ming-Hon

    2016-01-01

    Nucleocapsid protein (NP), an essential RNA-binding viral protein in human coronavirus (CoV)-infected cells, is required for the replication and transcription of viral RNA. Recent studies suggested that human CoV NP is a valid target for antiviral drug development. Based on this aspect, structure-based virtual screening targeting nucleocapsid protein (NP) was performed to identify good chemical starting points for medicinal chemistry. The present study utilized structure-based virtual screening against human CoV-OC43 using the Zinc database, which is performed through docking with varying precisions and computational intensities to identify eight potential compounds. The chosen potential leads were further validated experimentally using biophysical means. Surface plasmon resonance (SPR) analysis indicated that one among the potential leads, 6-chloro-7-(2-morpholin-4-yl-ethylamino) quinoxaline-5,8-dione (small-compound H3), exhibited a significant decrease of RNA-binding capacity of NP by more than 20%. The loss of binding activity was manifested as a 20% decrease in the minimum on-rate accompanied with a 70% increase in the maximum off-rate. Fluorescence titration and X-ray crystallography studies indicated that H3 antagonizes the binding between HCoV-OC43 NP and RNA by interacting with the N-terminal domain of the NP. Our findings provide insight into the development of new therapeutics that disrupt the interaction between RNA and viral NP in the HCoV. The discovery of the new compound would be an impetus to design novel NP inhibitors against human CoV.

  18. Inhibition of Endoplasmic Reticulum-Resident Glucosidases Impairs Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63 Spike Protein-Mediated Entry by Altering the Glycan Processing of Angiotensin I-Converting Enzyme 2

    PubMed Central

    Zhao, Xuesen; Guo, Fang; Comunale, Mary Ann; Mehta, Anand; Sehgal, Mohit; Jain, Pooja; Cuconati, Andrea; Lin, Hanxin; Block, Timothy M.; Chang, Jinhong

    2014-01-01

    Endoplasmic reticulum (ER)-resident glucosidases I and II sequentially trim the three terminal glucose moieties on the N-linked glycans attached to nascent glycoproteins. These reactions are the first steps of N-linked glycan processing and are essential for proper folding and function of many glycoproteins. Because most of the viral envelope glycoproteins contain N-linked glycans, inhibition of ER glucosidases with derivatives of 1-deoxynojirimycin, i.e., iminosugars, efficiently disrupts the morphogenesis of a broad spectrum of enveloped viruses. However, like viral envelope proteins, the cellular receptors of many viruses are also glycoproteins. It is therefore possible that inhibition of ER glucosidases not only compromises virion production but also disrupts expression and function of viral receptors and thus inhibits virus entry into host cells. Indeed, we demonstrate here that iminosugar treatment altered the N-linked glycan structure of angiotensin I-converting enzyme 2 (ACE2), which did not affect its expression on the cell surface or its binding of the severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein. However, alteration of N-linked glycans of ACE2 impaired its ability to support the transduction of SARS-CoV and human coronavirus NL63 (HCoV-NL63) spike glycoprotein-pseudotyped lentiviral particles by disruption of the viral envelope protein-triggered membrane fusion. Hence, in addition to reducing the production of infectious virions, inhibition of ER glucosidases also impairs the entry of selected viruses via a post-receptor-binding mechanism. PMID:25348530

  19. Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus

    SciTech Connect

    Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha; Brémond, Nicolas; Dalle, Karen; Tocque, Fabienne; Campanacci, Valérie; Lichière, Julie; Lantez, Violaine; Debarnot, Claire; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre

    2006-04-01

    Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purified to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4{sub 1}32 or P4{sub 3}32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å.

  20. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach

    PubMed Central

    Oany, Arafat Rahman; Emran, Abdullah-Al; Jyoti, Tahmina Pervin

    2014-01-01

    Human coronavirus (HCoV), a member of Coronaviridae family, is the causative agent of upper respiratory tract infections and “atypical pneumonia”. Despite severe epidemic outbreaks on several occasions and lack of antiviral drug, not much progress has been made with regard to an epitope-based vaccine designed for HCoV. In this study, a computational approach was adopted to identify a multiepitope vaccine candidate against this virus that could be suitable to trigger a significant immune response. Sequences of the spike proteins were collected from a protein database and analyzed with an in silico tool, to identify the most immunogenic protein. Both T cell immunity and B cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-mediated immunity. The peptide sequence from 88–94 amino acids and the sequence KSSTGFVYF were found as the most potential B cell and T cell epitopes, respectively. Furthermore, conservancy analysis was also done using in silico tools and showed a conservancy of 64.29% for all epitopes. The peptide sequence could interact with as many as 16 human leukocyte antigens (HLAs) and showed high cumulative population coverage, ranging from 75.68% to 90.73%. The epitope was further tested for binding against the HLA molecules, using in silico docking techniques, to verify the binding cleft epitope interaction. The allergenicity of the epitopes was also evaluated. This computational study of design of an epitope-based peptide vaccine against HCoVs allows us to determine novel peptide antigen targets in spike proteins on intuitive grounds, albeit the preliminary results thereof require validation by in vitro and in vivo experiments. PMID:25187696

  1. Receptor Recognition Mechanisms of Coronaviruses: a Decade of Structural Studies

    PubMed Central

    2014-01-01

    Receptor recognition by viruses is the first and essential step of viral infections of host cells. It is an important determinant of viral host range and cross-species infection and a primary target for antiviral intervention. Coronaviruses recognize a variety of host receptors, infect many hosts, and are health threats to humans and animals. The receptor-binding S1 subunit of coronavirus spike proteins contains two distinctive domains, the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD), both of which can function as receptor-binding domains (RBDs). S1-NTDs and S1-CTDs from three major coronavirus genera recognize at least four protein receptors and three sugar receptors and demonstrate a complex receptor recognition pattern. For example, highly similar coronavirus S1-CTDs within the same genus can recognize different receptors, whereas very different coronavirus S1-CTDs from different genera can recognize the same receptor. Moreover, coronavirus S1-NTDs can recognize either protein or sugar receptors. Structural studies in the past decade have elucidated many of the puzzles associated with coronavirus-receptor interactions. This article reviews the latest knowledge on the receptor recognition mechanisms of coronaviruses and discusses how coronaviruses have evolved their complex receptor recognition pattern. It also summarizes important principles that govern receptor recognition by viruses in general. PMID:25428871

  2. Genetic diversity of coronaviruses in Miniopterus fuliginosus bats.

    PubMed

    Du, Jiang; Yang, Li; Ren, Xianwen; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Zhu, Yafang; Yang, Fan; Zhang, Shuyi; Wu, Zhiqiang; Jin, Qi

    2016-06-01

    Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011-2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus (Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases. PMID:27125516

  3. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus. PMID:27076136

  4. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  5. Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles.

    PubMed

    Rüdiger, Anna-Theresa; Mayrhofer, Peter; Ma-Lauer, Yue; Pohlentz, Gottfried; Müthing, Johannes; von Brunn, Albrecht; Schwegmann-Weßels, Christel

    2016-10-01

    Coronavirus spike proteins mediate host-cell-attachment and virus entry. Virus replication takes place within the host cell cytosol, whereas assembly and budding occur at the endoplasmic reticulum-Golgi intermediate compartment. In this study we demonstrated that the last 39 amino acid stretches of Alphacoronavirus spike cytoplasmic domains of the human coronavirus 229E, NL63, and the porcine transmissible gastroenteritis virus TGEV interact with tubulin alpha and beta chains. In addition, a partial co-localization of TGEV spike proteins with authentic host cell β-tubulin was observed. Furthermore, drug-induced microtubule depolymerization led to changes in spike protein distribution, a reduction in the release of infectious virus particles and less amount of spike protein incorporated into virions. These data demonstrate that interaction of Alphacoronavirus spike proteins with tubulin supports S protein transport and incorporation into virus particles. PMID:27479465

  6. X-ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of Human Coronavirus Papain-like Proteases

    PubMed Central

    2015-01-01

    Structure-guided design was used to generate a series of noncovalent inhibitors with nanomolar potency against the papain-like protease (PLpro) from the SARS coronavirus (CoV). A number of inhibitors exhibit antiviral activity against SARS-CoV infected Vero E6 cells and broadened specificity toward the homologous PLP2 enzyme from the human coronavirus NL63. Selectivity and cytotoxicity studies established a more than 100-fold preference for the coronaviral enzyme over homologous human deubiquitinating enzymes (DUBs), and no significant cytotoxicity in Vero E6 and HEK293 cell lines is observed. X-ray structural analyses of inhibitor-bound crystal structures revealed subtle differences between binding modes of the initial benzodioxolane lead (15g) and the most potent analogues 3k and 3j, featuring a monofluoro substitution at para and meta positions of the benzyl ring, respectively. Finally, the less lipophilic bis(amide) 3e and methoxypyridine 5c exhibit significantly improved metabolic stability and are viable candidates for advancing to in vivo studies. PMID:24568342

  7. Tropism of human adenovirus type 5-based vectors in swine and their ability to protect against transmissible gastroenteritis coronavirus.

    PubMed Central

    Torres, J M; Alonso, C; Ortega, A; Mittal, S; Graham, F; Enjuanes, L

    1996-01-01

    The infection of epithelia] swine testicle and intestinal porcine epithelial (IPEC-1) cell lines by adenovirus type 5 (Ad5) has been studied in vitro by using an Ad5-luciferase recombinant containing the firefly luciferase gene as a reporter. Porcine cell lines supported Ad5 replication, showing virus titers, kinetics of virus production, and luciferase expression levels similar to those obtained in human 293 cells, which constitutively express the 5'-end 11% of the Ad5 genome. The tropism of Ad5-based vectors in swine and its ability to induce an efficient immune response against heterologous antigens expressed by foreign genes inserted in these vectors has been determined. Ad5 vectors replicate and express heterologous antigens in porcine lungs and mediastinal and mesenteric lymph nodes. Significant levels of heterologous antigen expression were also demonstrated in the small intestine (jejunum and ileum), but Ad5 replication in this organ was very poor, suggesting that Ad vectors undergo an abortive replication in the porcine small intestine. The tissues infected by Ad5 were dependent on the inoculation route. The oronasal route appeared to be best for inoculation of bronchus-associated lymphoid tissue infection, while the intraperitoneal route was best for gut-associated lymphoid tissue infection. Epithelial cells of bronchioles, macrophages, type II pneumocytes, and follicular dendritic cells were identified as targets for Ad5, while epithelial cells of the intestine were not infected by Ad5. Viruses with a deletion from 79.5 to 84.8 map units in the E3 region, with or without heterologous inserted genes, replicated to lower levels in porcine tissues than did wild-type Ad5. It was also shown that an Ad5 recombinant expressing the four antigenic sites (A, B, C, and D) of transmissible gastroenteritis coronavirus (TGEV) spike protein induced in swine immune responses which neutralized TGEV infectivity. In addition, porcine serum from Ad-TGEV-immune animals

  8. Inner structures of some coronaviruses.

    PubMed Central

    Lamontagne, L; Marois, P; Marsolais, G; Di Franco, E; Assaf, R

    1981-01-01

    When treated with formaldehyde, Tween 80, sodium oleate and Nonidet P-40, avian infectious bronchitis virus, porcine transmissible gastroenteritis virus, neonatal calf diarrhea coronavirus, porcine hemagglutinating encephalomyelitis virus as well as the human coronavirus show similar inner structures by negative staining. The first one is an inner membranous bag. This structure could be evaginated following treatments used and does not show the characteristic projections of coronaviruses. Subsequently, the inner fold could be separated from the outer membrane at the point of junction between these two membranes. Each virus does not react in the same way to the action of the different products. The transmissible gastroenteritis virus appears more sensitive to treatments than other viruses. On the other hand, the hemagglutinating encephalomyelitis virus is the most resistant. The variable sensitivities of these viruses are not related to the type of host-cells. Also, a second internal structure, which is more dense than the viral particle, encircles partially the aperture of the internal tongue-shaped structure and seems to emerge from the viral particle through the aperture of the inner bag. Images Fig. 1. Fig. 2. PMID:6266623

  9. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition

    PubMed Central

    Tang, Qin; Shi, Mijuan; Cheng, Yingyin; Zhang, Wanting; Xia, Xiao-Qin

    2015-01-01

    Many coronaviruses are capable of interspecies transmission. Some of them have caused worldwide panic as emerging human pathogens in recent years, e.g., severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In order to assess their threat to humans, we explored to infer the potential hosts of coronaviruses using a dual-model approach based on nineteen parameters computed from spike genes of coronaviruses. Both the support vector machine (SVM) model and the Mahalanobis distance (MD) discriminant model achieved high accuracies in leave-one-out cross-validation of training data consisting of 730 representative coronaviruses (99.86% and 98.08% respectively). Predictions on 47 additional coronaviruses precisely conformed to conclusions or speculations by other researchers. Our approach is implemented as a web server that can be accessed at http://bioinfo.ihb.ac.cn/seq2hosts. PMID:26607834

  10. Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection.

    PubMed

    Houser, Katherine V; Gretebeck, Lisa; Ying, Tianlei; Wang, Yanping; Vogel, Leatrice; Lamirande, Elaine W; Bock, Kevin W; Moore, Ian N; Dimitrov, Dimiter S; Subbarao, Kanta

    2016-05-15

    With >1600 documented human infections with Middle East respiratory syndrome coronavirus (MERS-CoV) and a case fatality rate of approximately 36%, medical countermeasures are needed to prevent and limit the disease. We examined the in vivo efficacy of the human monoclonal antibody m336, which has high neutralizing activity against MERS-CoV in vitro. m336 was administered to rabbits intravenously or intranasally before infection with MERS-CoV. Prophylaxis with m336 resulted in a reduction of pulmonary viral RNA titers by 40-9000-fold, compared with an irrelevant control antibody with little to no inflammation or viral antigen detected. This protection in rabbits supports further clinical development of m336.

  11. Genomic Analysis of 15 Human Coronaviruses OC43 (HCoV-OC43s) Circulating in France from 2001 to 2013 Reveals a High Intra-Specific Diversity with New Recombinant Genotypes

    PubMed Central

    Kin, Nathalie; Miszczak, Fabien; Lin, Wei; Ar Gouilh, Meriadeg; Vabret, Astrid

    2015-01-01

    Human coronavirus OC43 (HCoV-OC43) is one of five currently circulating human coronaviruses responsible for respiratory infections. Like all coronaviruses, it is characterized by its genome’s high plasticity. The objectives of the current study were to detect genetically distinct genotypes and eventually recombinant genotypes in samples collected in Lower Normandy between 2001 and 2013. To this end, we sequenced complete nsp12, S, and N genes of 15 molecular isolates of HCoV-OC43 from clinical samples and compared them to available data from the USA, Belgium, and Hong-Kong. A new cluster E was invariably detected from nsp12, S, and N data while the analysis of nsp12 and N genes revealed the existence of new F and G clusters respectively. The association of these different clusters of genes in our specimens led to the description of thirteen genetically distinct genotypes, among which eight recombinant viruses were discovered. Identification of these recombinant viruses, together with temporal analysis and tMRCA estimation, provides important information for understanding the dynamics of the evolution of these epidemic coronaviruses. PMID:26008694

  12. Isolation and Characterization of a Novel Bat Coronavirus Closely Related to the Direct Progenitor of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Yang, Xing-Lou; Hu, Ben; Wang, Bo; Wang, Mei-Niang; Zhang, Qian; Zhang, Wei; Wu, Li-Jun; Ge, Xing-Yi; Zhang, Yun-Zhi; Daszak, Peter; Wang, Lin-Fa

    2015-01-01

    We report the isolation and characterization of a novel bat coronavirus which is much closer to the severe acute respiratory syndrome coronavirus (SARS-CoV) in genomic sequence than others previously reported, particularly in its S gene. Cell entry and susceptibility studies indicated that this virus can use ACE2 as a receptor and infect animal and human cell lines. Our results provide further evidence of the bat origin of the SARS-CoV and highlight the likelihood of future bat coronavirus emergence in humans. PMID:26719272

  13. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    PubMed

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C; Weerasekara, Sahani; Hua, Duy H; Groutas, William C; Chang, Kyeong-Ok; Pedersen, Niels C

    2016-03-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  14. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor

    PubMed Central

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C.; Weerasekara, Sahani; Hua, Duy H.; Groutas, William C.; Chang, Kyeong-Ok; Pedersen, Niels C.

    2016-01-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  15. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    PubMed Central

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  16. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    PubMed Central

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2013-01-01

    Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS), feline infectious peritonitis (FIP), mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA), could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication. PMID:23698397

  17. Comparative Epidemiology of Human Infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among Healthcare Personnel.

    PubMed

    Liu, Shelan; Chan, Ta-Chien; Chu, Yu-Tseng; Wu, Joseph Tsung-Shu; Geng, Xingyi; Zhao, Na; Cheng, Wei; Chen, Enfu; King, Chwan-Chuen

    2016-01-01

    The largest nosocomial outbreak of Middle East respiratory syndrome (MERS) occurred in South Korea in 2015. Health Care Personnel (HCP) are at high risk of acquiring MERS-Coronavirus (MERS-CoV) infections, similar to the severe acute respiratory syndrome (SARS)-Coronavirus (SARS-CoV) infections first identified in 2003. This study described the similarities and differences in epidemiological and clinical characteristics of 183 confirmed global MERS cases and 98 SARS cases in Taiwan associated with HCP. The epidemiological findings showed that the mean age of MERS-HCP and total MERS cases were 40 (24~74) and 49 (2~90) years, respectively, much older than those in SARS [SARS-HCP: 35 (21~68) years, p = 0.006; total SARS: 42 (0~94) years, p = 0.0002]. The case fatality rates (CFR) was much lower in MERS-HCP [7.03% (9/128)] or SARS-HCP [12.24% (12/98)] than the MERS-non-HCP [36.96% (34/92), p<0.001] or SARS-non-HCP [24.50% (61/249), p<0.001], however, no difference was found between MERS-HCP and SARS-HCP [p = 0.181]. In terms of clinical period, the days from onset to death [13 (4~17) vs 14.5 (0~52), p = 0.045] and to discharge [11 (5~24) vs 24 (0~74), p = 0.010] and be hospitalized days [9.5 (3~22) vs 22 (0~69), p = 0.040] were much shorter in MERS-HCP than SARS-HCP. Similarly, days from onset to confirmation were shorter in MERS-HCP than MERS-non-HCP [6 (1~14) vs 10 (1~21), p = 0.044]. In conclusion, the severity of MERS-HCP and SARS-HCP was lower than that of MERS-non-HCP and SARS-non-HCP due to younger age and early confirmation in HCP groups. However, no statistical difference was found in MERS-HCP and SARS-HCP. Thus, prevention of nosocomial infections involving both novel Coronavirus is crucially important to protect HCP. PMID:26930074

  18. Comparative Epidemiology of Human Infections with Middle East Respiratory Syndrome and Severe Acute Respiratory Syndrome Coronaviruses among Healthcare Personnel

    PubMed Central

    Chu, Yu-Tseng; Wu, Joseph Tsung-Shu; Geng, Xingyi; Zhao, Na; Cheng, Wei; Chen, Enfu; King, Chwan-Chuen

    2016-01-01

    The largest nosocomial outbreak of Middle East respiratory syndrome (MERS) occurred in South Korea in 2015. Health Care Personnel (HCP) are at high risk of acquiring MERS-Coronavirus (MERS-CoV) infections, similar to the severe acute respiratory syndrome (SARS)-Coronavirus (SARS-CoV) infections first identified in 2003. This study described the similarities and differences in epidemiological and clinical characteristics of 183 confirmed global MERS cases and 98 SARS cases in Taiwan associated with HCP. The epidemiological findings showed that the mean age of MERS-HCP and total MERS cases were 40 (24~74) and 49 (2~90) years, respectively, much older than those in SARS [SARS-HCP: 35 (21~68) years, p = 0.006; total SARS: 42 (0~94) years, p = 0.0002]. The case fatality rates (CFR) was much lower in MERS-HCP [7.03% (9/128)] or SARS-HCP [12.24% (12/98)] than the MERS-non-HCP [36.96% (34/92), p<0.001] or SARS-non-HCP [24.50% (61/249), p<0.001], however, no difference was found between MERS-HCP and SARS-HCP [p = 0.181]. In terms of clinical period, the days from onset to death [13 (4~17) vs 14.5 (0~52), p = 0.045] and to discharge [11 (5~24) vs 24 (0~74), p = 0.010] and be hospitalized days [9.5 (3~22) vs 22 (0~69), p = 0.040] were much shorter in MERS-HCP than SARS-HCP. Similarly, days from onset to confirmation were shorter in MERS-HCP than MERS-non-HCP [6 (1~14) vs 10 (1~21), p = 0.044]. In conclusion, the severity of MERS-HCP and SARS-HCP was lower than that of MERS-non-HCP and SARS-non-HCP due to younger age and early confirmation in HCP groups. However, no statistical difference was found in MERS-HCP and SARS-HCP. Thus, prevention of nosocomial infections involving both novel Coronavirus is crucially important to protect HCP. PMID:26930074

  19. Synergistic Inhibitor Binding to the Papain-Like Protease of Human SARS Coronavirus – Mechanistic and Inhibitor Design Implications

    PubMed Central

    Lee, Hyun; Cao, Shuyi; Hevener, Kirk E.; Truong, Lena; Gatuz, Joseph L.; Patel, Kavankumar; Ghosh, Arun K.; Johnson, Michael E.

    2014-01-01

    We have previously developed two potent chemical classes that inhibit the essential papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus (SARS-CoV). In this study, we applied a novel approach to identify small fragments that act synergistically with these inhibitors. A fragment library was screened in combination with four previously developed lead inhibitors by fluorescence-based enzymatic assays. Several fragment compounds synergistically enhanced the inhibitory activity of the lead inhibitors by approximately an order of magnitude. Surface plasmon resonance (SPR) measurements showed that three fragments bind specifically to the PLpro enzyme. Mode of inhibition, computational solvent mapping, and molecular docking studies suggest that these fragments bind adjacent to the binding site of the lead inhibitors and further stabilize the inhibitor-bound state. We propose potential next generation compounds based upon a computational, fragment-merging approach. This approach provides an alternative strategy for lead optimization in cases where direct co-crystallization is difficult. PMID:23788528

  20. SARS coronavirus spike protein-induced innate immune response occurs via activation of the NF-kappaB pathway in human monocyte macrophages in vitro.

    PubMed

    Dosch, Susan F; Mahajan, Supriya D; Collins, Arlene R

    2009-06-01

    A purified recombinant spike (S) protein was studied for its effect on stimulating human peripheral blood monocyte macrophages (PBMC). We examined inflammatory gene mRNA abundances found in S protein-treated PBMC using gene arrays. We identified differential mRNA abundances of genes with functional properties associated with antiviral (CXCL10) and inflammatory (IL-6 and IL-8) responses. We confirmed cytokine mRNA increases by real-time quantitative(q) RT-PCR or ELISA. We further analyzed the sensitivity and specificity of the prominent IL-8 response. By real-time qRT-PCR, S protein was shown to stimulate IL-8 mRNA accumulation in a dose dependent manner while treatment with E protein did not. Also, titration of S protein-specific production and secretion of IL-8 by ELISA showed that the dose of 5.6nM of S produced a significant increase in IL-8 (p=0.003) compared to mock-treated controls. The increase in IL-8 stimulated by a concentration of 5.6nM of S was comparable to concentrations seen for S protein binding to ACE2 or to neutralizing monoclonal antibody suggesting a physiological relevance. An NF-kappaB inhibitor, TPCK (N-Tosyl-L-Phenylalanine Chloromethyl Ketone) could suppress IL-8 production and secretion in response to S protein in PBMC and THP-1 cells and in HCoV-229E virus-infected PBMC. Activation and translocation of NF-kappaB was shown to occur rapidly following exposure of PBMC or THP-1 cells to S protein using a highly sensitive assay for active nuclear NF-kappaB p65 transcription factor. The results further suggested that released or secreted S protein could activate blood monocytes through recognition by toll-like receptor (TLR)2 ligand.

  1. Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse.

    PubMed

    Coughlin, Melissa; Lou, Gin; Martinez, Osvaldo; Masterman, Stephanie K; Olsen, Ole A; Moksa, Angelica A; Farzan, Michael; Babcook, John S; Prabhakar, Bellur S

    2007-04-25

    Passive therapy with neutralizing human monoclonal antibodies (mAbs) could be an effective therapy against severe acute respiratory syndrome coronavirus (SARS-CoV). Utilizing the human immunoglobulin transgenic mouse, XenoMouse, we produced fully human SARS-CoV spike (S) protein specific antibodies. Antibodies were examined for reactivity against a recombinant S1 protein, to which 200 antibodies reacted. Twenty-seven antibodies neutralized 200TCID(50) SARS-CoV (Urbani). Additionally, 57 neutralizing antibodies were found that are likely specific to S2. Mapping of the binding region was achieved with several S1 recombinant proteins. Most S1 reactive neutralizing mAbs bound to the RBD, aa 318-510. However, two S1 specific mAbs reacted with a domain upstream of the RBD between aa 12 and 261. Immunoglobulin gene sequence analyses suggested at least 8 different binding specificities. Unique human mAbs could be used as a cocktail that would simultaneously target several neutralizing epitopes and prevent emergence of escape mutants. PMID:17161858

  2. Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection.

    PubMed

    Agrawal, Anurodh Shankar; Ying, Tianlei; Tao, Xinrong; Garron, Tania; Algaissi, Abdullah; Wang, Yanping; Wang, Lili; Peng, Bi-Hung; Jiang, Shibo; Dimitrov, Dimiter S; Tseng, Chien-Te K

    2016-01-01

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) has repeatedly caused outbreaks in the Arabian Peninsula. To date, no approved medical countermeasures (MCM) are available to combat MERS-CoV infections. Several neutralizing human monoclonal antibodies (mAbs), including m336, a germline-like human mAb, have been chosen as promising MCM for MERS-CoV. However, their clinical development has been hindered by the lack of a robust animal model that recapitulate the morbidity and mortality of human infections. We assessed the prophylactic and therapeutic efficacy of m336 by using well-characterized transgenic mice shown to be highly sensitive to MERS-CoV infection and disease. We found that mice treated with m336 prior to or post lethal MERS-CoV challenging were fully protected, compared to control mice which sufferered from profound weight loss and uniform death within days after infection. Taken together, these results support further development of m336 and other human monoclonal antibodies as potential therapeutics for MERS-CoV infection. PMID:27538452

  3. Passive Transfer of A Germline-like Neutralizing Human Monoclonal Antibody Protects Transgenic Mice Against Lethal Middle East Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Agrawal, Anurodh Shankar; Ying, Tianlei; Tao, Xinrong; Garron, Tania; Algaissi, Abdullah; Wang, Yanping; Wang, Lili; Peng, Bi-Hung; Jiang, Shibo; Dimitrov, Dimiter S.; Tseng, Chien-Te K.

    2016-01-01

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) has repeatedly caused outbreaks in the Arabian Peninsula. To date, no approved medical countermeasures (MCM) are available to combat MERS-CoV infections. Several neutralizing human monoclonal antibodies (mAbs), including m336, a germline-like human mAb, have been chosen as promising MCM for MERS-CoV. However, their clinical development has been hindered by the lack of a robust animal model that recapitulate the morbidity and mortality of human infections. We assessed the prophylactic and therapeutic efficacy of m336 by using well-characterized transgenic mice shown to be highly sensitive to MERS-CoV infection and disease. We found that mice treated with m336 prior to or post lethal MERS-CoV challenging were fully protected, compared to control mice which sufferered from profound weight loss and uniform death within days after infection. Taken together, these results support further development of m336 and other human monoclonal antibodies as potential therapeutics for MERS-CoV infection. PMID:27538452

  4. Genotyping bovine coronaviruses.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine coronaviruses (BoCV) are enveloped, single-stranded, positive-sense RNA viruses of the Coronaviridae family. Infection is associated with enteritis and pneumonia in calves and Winter Dysentery in adult cattle. Strains, isolated more than 50 years ago, are used in vaccines and as laboratory ...

  5. Discovery of novel human and animal cells infected by the severe acute respiratory syndrome coronavirus by replication-specific multiplex reverse transcription-PCR.

    PubMed

    Gillim-Ross, Laura; Taylor, Jill; Scholl, David R; Ridenour, Jared; Masters, Paul S; Wentworth, David E

    2004-07-01

    The severe acute respiratory syndrome coronavirus (SARS-CoV) is the causative agent of the recent outbreak of severe acute respiratory syndrome. VeroE6 cells, fetal rhesus monkey kidney cells, and human peripheral blood mononuclear cells were the only cells known to be susceptible to SARS-CoV. We developed a multiplex reverse transcription-PCR assay to analyze the susceptibility of cells derived from a variety of tissues and species to SARS-CoV. Additionally, productive infection was determined by titration of cellular supernatants. Cells derived from three species of monkey were susceptible to SARS-CoV. However, the levels of SARS-CoV produced differed by 4 log(10). Mink lung epithelial cells (Mv1Lu) and R-Mix, a mixed monolayer of human lung-derived cells (A549) and mink lung-derived cells (Mv1Lu), are used by diagnostic laboratories to detect respiratory viruses (e.g., influenza virus); they were also infected with SARS-CoV, indicating that the practices of diagnostic laboratories should be examined to ensure appropriate biosafety precautions. Mv1Lu cells produce little SARS-CoV compared to that produced by VeroE6 cells, which indicates that they are a safer alternative for SARS-CoV diagnostics. Evaluation of cells permissive to other coronaviruses indicated that these cell types are not infected by SARS-CoV, providing additional evidence that SARS-CoV binds an alternative receptor. Analysis of human cells derived from lung, kidney, liver, and intestine led to the discovery that human cell lines were productively infected by SARS-CoV. This study identifies new cell lines that may be used for SARS-CoV diagnostics and/or basic research. Our data and other in vivo studies indicate that SARS-CoV has a wide host range, suggesting that the cellular receptor(s) utilized by SARS-CoV is highly conserved and is expressed by a variety of tissues.

  6. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  7. The ns12.9 Accessory Protein of Human Coronavirus OC43 Is a Viroporin Involved in Virion Morphogenesis and Pathogenesis

    PubMed Central

    Zhang, Ronghua; Wang, Kai; Ping, Xianqiang; Yu, Wenjing

    2015-01-01

    ABSTRACT An accessory gene between the S and E gene loci is contained in all coronaviruses (CoVs), and its function has been studied in some coronaviruses. This gene locus in human coronavirus OC43 (HCoV-OC43) encodes the ns12.9 accessory protein; however, its function during viral infection remains unknown. Here, we engineered a recombinant mutant virus lacking the ns12.9 protein (HCoV-OC43-Δns12.9) to characterize the contributions of ns12.9 in HCoV-OC43 replication. The ns12.9 accessory protein is a transmembrane protein and forms ion channels in both Xenopus oocytes and yeast through homo-oligomerization, suggesting that ns12.9 is a newly recognized viroporin. HCoV-OC43-Δns12.9 presented at least 10-fold reduction of viral titer in vitro and in vivo. Intriguingly, exogenous ns12.9 and heterologous viroporins with ion channel activity could compensate for the production of HCoV-OC43-Δns12.9, indicating that the ion channel activity of ns12.9 plays a significant role in the production of infectious virions. Systematic dissection of single-cycle replication revealed that ns12.9 protein had no measurable effect on virus entry, subgenomic mRNA (sgmRNA) synthesis, and protein expression. Further characterization revealed that HCoV-OC43-Δns12.9 was less efficient in virion morphogenesis than recombinant wild-type virus (HCoV-OC43-WT). Moreover, reduced viral replication, inflammatory response, and virulence in HCoV-OC43-Δns12.9-infected mice were observed compared to the levels for HCoV-OC43-WT-infected mice. Taken together, our results demonstrated that the ns12.9 accessory protein functions as a viroporin and is involved in virion morphogenesis and the pathogenesis of HCoV-OC43 infection. IMPORTANCE HCoV-OC43 was isolated in the 1960s and is a major agent of the common cold. The functions of HCoV-OC43 structural proteins have been well studied, but few studies have focused on its accessory proteins. In the present study, we demonstrated that the ns12.9 protein

  8. Development of Animal Models Against Emerging Coronaviruses: From SARS to MERS coronavirus

    PubMed Central

    Sutton, Troy C; Subbarao, Kanta

    2016-01-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. PMID:25791336

  9. Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin.

    PubMed

    Lei, Jian; Hilgenfeld, Rolf

    2016-08-01

    The papain-like protease (PL(pro)) of Middle-East respiratory syndrome coronavirus (MERS-CoV) has proteolytic, deubiquitinating, and deISGylating activities. The latter two are involved in the suppression of the antiviral innate immune response of the host cell. To contribute to an understanding of this process, we present here the X-ray crystal structure of a complex between MERS-CoV PL(pro) and human ubiquitin (Ub) that is devoid of any covalent linkage between the two proteins. Five regions of the PL(pro) bind to two areas of the Ub. The C-terminal five residues of Ub, RLRGG, are similar to the P5-P1 residues of the polyprotein substrates of the PL(pro) and are responsible for the major part of the interaction between the two macromolecules. Through sitedirected mutagenesis, we demonstrate that conserved Asp165 and non-conserved Asp164 are important for the catalytic activities of MERS-CoV PL(pro). The enzyme appears not to be optimized for catalytic efficiency; thus, replacement of Phe269 by Tyr leads to increased peptidolytic and deubiquitinating activities. Ubiquitin binding by MERS-CoV PL(pro) involves remarkable differences compared to the corresponding complex with SARS-CoV PL(pro). The structure and the mutational study help understand common and unique features of the deubiquitinating activity of MERS-CoV PL(pro). PMID:27245450

  10. Bovine coronavirus hemagglutinin protein.

    PubMed

    King, B; Potts, B J; Brian, D A

    1985-02-01

    Treatment of purified bovine coronavirus (Mebus strain) with pronase destroyed the integrity of virion surface glycoproteins gp140, gp120, gp100, reduced the amount of gp26 and destroyed the hemagglutinating activity of the virus. Bromelain, on the other hand, destroyed the integrity of gp120, gp100 and gp26 but failed to remove gp140 and failed to destroy viral hemagglutinating activity. These experiments suggest that gp140 is the virion hemagglutinin. Immunoblotting studies using monospecific antiserum demonstrate that gp140 is a disulfide-linked dimeric structure reducible to monomers of 65 kDa.

  11. Molecular pathology of emerging coronavirus infections

    PubMed Central

    Gralinski, Lisa E; Baric, Ralph S

    2015-01-01

    Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection require activation of an effective host immune response; however, many immune effector cells may also cause injury to host tissues. Severe acute respiratory syndrome (SARS) coronavirus and Middle East respiratory syndrome (MERS) coronavirus cause severe infection of the lower respiratory tract, with 10% and 35% overall mortality rates, respectively; however, >50% mortality rates are seen in the aged and immunosuppressed populations. While these viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the importance of the innate immune response and the development of lung pathology following human coronavirus infection. PMID:25270030

  12. Engineering Coronaviruses to Evaluate Emergence and Pathogenic Potential.

    PubMed

    Lau, Susanna K P; Woo, Patrick C Y

    2016-06-01

    A recent study provides a platform for generating infectious coronavirus genomes using sequence data, examining their capabilities of replicating in human cells and causing diseases in animal models, and evaluating therapeutics and vaccines. Similar approaches could be used to assess the potential of human emergence and pathogenicity for other viruses. PMID:27095615

  13. Microarray and real-time RT-PCR analyses of differential human gene expression patterns induced by severe acute respiratory syndrome (SARS) coronavirus infection of Vero cells.

    PubMed

    Leong, W F; Tan, H C; Ooi, E E; Koh, D R; Chow, Vincent T K

    2005-02-01

    Vero E6 African green monkey kidney cells are highly susceptible to infection with the newly emerging severe acute respiratory syndrome coronavirus (SARS-CoV), and they are permissive for rapid viral replication, with resultant cytopathic effects. We employed cDNA microarray analysis to characterize the cellular transcriptional responses of homologous human genes at 12 h post-infection. Seventy mRNA transcripts belonging to various functional classes exhibited significant alterations in gene expression. There was considerable induction of heat shock proteins that are crucial to the immune response mechanism. Modified levels of several transcripts involved in pro-inflammatory and anti-inflammatory processes exemplified the balance between opposing forces during SARS pathogenesis. Other genes displaying altered transcription included those associated with host translation, cellular metabolism, cell cycle, signal transduction, transcriptional regulation, protein trafficking, protein modulators, and cytoskeletal proteins. Alterations in the levels of several novel transcripts encoding hypothetical proteins and expressed sequence tags were also identified. In addition, transcription of apoptosis-related genes DENN and hIAP1 was upregulated in contrast to FAIM. Elevated Mx1 expression signified a strong host response to mediate antiviral resistance. Also expressed in infected cells was the C-terminal alternative splice variant of the p53 tumor suppressor gene encoding a modified truncated protein that can influence the activity of wild-type p53. We observed the interplay between various mechanisms to favor virus multiplication before full-blown apoptosis and the triggering of several pathways in host cells in an attempt to eliminate the pathogen. Microarray analysis identifies the critical host-pathogen interactions during SARS-CoV infection and provides new insights into the pathophysiology of SARS.

  14. Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells

    PubMed Central

    2013-01-01

    Background Cryopreserved primary human renal proximal tubule epithelial cells (RPTEC) were obtained from a commercial supplier for studies of Simian virus 40 (SV40). Within twelve hrs after cell cultures were initiated, cytoplasmic vacuoles appeared in many of the RPTEC. The RPTEC henceforth deteriorated rapidly. Since SV40 induces the formation of cytoplasmic vacuoles, this batch of RPTEC was rejected for the SV40 study. Nevertheless, we sought the likely cause(s) of the deterioration of the RPTEC as part of our technology development efforts. Methods Adventitious viruses in the RPTEC were isolated and/or detected and identified by isolation in various indicator cell lines, observation of cytopathology, an immunoflurorescence assay, electron microscopy, PCR, and sequencing. Results Cytomegalovirus (CMV) was detected in some RPTEC by cytology, an immunofluorescence assay, and PCR. Human Herpesvirus 6B was detected by PCR of DNA extracted from the RPTEC, but was not isolated. Human coronavirus NL63 was isolated and identified by RT-PCR and sequencing, and its replication in a fresh batch of RPTEC and another type of primary human kidney cells was confirmed. Conclusions At least 3 different adventitious viruses were present in the batch of contaminated RPTEC. Whereas we are unable to determine whether the original RPTEC were pre-infected prior to their separation from other kidney cells, or had gotten contaminated with HCoV-NL63 from an ill laboratory worker during their preparation for commercial sale, our findings are a reminder that human-derived biologicals should always be considered as potential sources of infectious agents. Importantly, HCoV-NL63 replicates to high titers in some primary human kidney cells. PMID:23805916

  15. Development and application of an enzyme immunoassay for coronavirus OC43 antibody in acute respiratory illness.

    PubMed Central

    Gill, E P; Dominguez, E A; Greenberg, S B; Atmar, R L; Hogue, B G; Baxter, B D; Couch, R B

    1994-01-01

    Study of coronavirus OC43 infections has been limited because of the lack of sensitive cell culture systems and serologic assays. To improve this circumstance, we developed an indirect enzyme immunoassay (EIA) to detect serum antibody to OC43. Antigen (100 ng) prepared by polyethylene glycol precipitation provided optimal results without a postcoat procedure. Evaluation of intraplate variation indicated that a > or = 2.5-fold increase in serum titer was significant. Sixteen of 18 (89%) paired serum samples with previously identified, reproducible increases in the level of hemagglutination inhibition (HAI) antibody to OC43 also showed significant increases as detected by EIA. Specificity for the EIA was established with paired sera obtained from persons given influenza immunizations or experiencing a respiratory infection. No rise in antibody titers occurred among 33 persons with documented coronavirus 229E infection. EIA was then performed on each of 419 paired serum samples from ambulatory chronic obstructive pulmonary disease patients and healthy older adults, from asthmatic adults presenting for emergency room treatment, and from persons hospitalized with acute respiratory symptoms. Twenty-three antibody rises to OC43 were detected; only nine of these were detected by the HAI test, and the HAI test did not detect any increases in antibody titers that were not detected by EIA. Nineteen of 25 coronavirus OC43 infections for which a month of infection could be assigned occurred between November and February. Overall, 4.4% of acute respiratory illnesses in the studied populations were associated with a coronavirus OC43 infection. PMID:7814468

  16. The Role of Human Coronaviruses in Children Hospitalized for Acute Bronchiolitis, Acute Gastroenteritis, and Febrile Seizures: A 2-Year Prospective Study

    PubMed Central

    Jevšnik, Monika; Steyer, Andrej; Pokorn, Marko; Mrvič, Tatjana; Grosek, Štefan; Strle, Franc; Lusa, Lara; Petrovec, Miroslav

    2016-01-01

    Human coronaviruses (HCoVs) are associated with a variety of clinical presentations in children, but their role in disease remains uncertain. The objective of our prospective study was to investigate HCoVs associations with various clinical presentations in hospitalized children up to 6 years of age. Children hospitalized with acute bronchiolitis (AB), acute gastroenteritis (AGE), or febrile seizures (FS), and children admitted for elective surgical procedures (healthy controls) were included in the study. In patients with AB, AGE, and FS, a nasopharyngeal (NP) swab and blood sample were obtained upon admission and the follow-up visit 14 days later, whereas in children with AGE a stool sample was also acquired upon admission; in healthy controls a NP swab and stool sample were taken upon admission. Amplification of polymerase 1b gene was used to detect HCoVs in the specimens. HCoVs-positive specimens were also examined for the presence of several other viruses. HCoVs were most often detected in children with FS (19/192, 9.9%, 95% CI: 6–15%), followed by children with AGE (19/218, 8.7%, 95% CI: 5.3–13.3%) and AB (20/308, 6.5%, 95% CI: 4.0–9.8%). The presence of other viruses was a common finding, most frequent in the group of children with AB (19/20, 95%, 95% CI: 75.1–99.8%), followed by FS (10/19, 52.6%, 95% CI: 28.9–75.6%) and AGE (7/19, 36.8%, 95% CI: 16.3–61.6%). In healthy control children HCoVs were detected in 3/156 (1.9%, 95% CI: 0.4–5.5%) NP swabs and 1/150 (0.7%, 95% CI: 0.02–3.3%) stool samples. It seems that an etiological role of HCoVs is most likely in children with FS, considering that they had a higher proportion of positive HCoVs results than patients with AB and those with AGE, and had the highest viral load; however, the co-detection of other viruses was 52.6%. Trial Registration: ClinicalTrials.gov NCT00987519 PMID:27171141

  17. A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus

    SciTech Connect

    Favreau, Dominique J.; Desforges, Marc; St-Jean, Julien R.; Talbot, Pierre J.

    2009-12-20

    We have reported that human respiratory coronavirus OC43 (HCoV-OC43) is neurotropic and neuroinvasive in humans and mice, and that neurons are the primary target of infection in mice, leading to neurodegenerative disabilities. We now report that an HCoV-OC43 mutant harboring two persistence-associated S glycoprotein point mutations (H183R and Y241H), induced a stronger unfolded protein response (UPR) and translation attenuation in infected human neurons. There was a major contribution of the IRE1/XBP1 pathway, followed by caspase-3 activation and nuclear fragmentation, with no significant role of the ATF6 and eIF2-alpha/ATF4 pathways. Our results show the importance of discrete molecular viral S determinants in virus-neuronal cell interactions that lead to increased production of viral proteins and infectious particles, enhanced UPR activation, and increased cytotoxicity and cell death. As this mutant virus is more neurovirulent in mice, our results also suggest that two mutations in the S glycoprotein could eventually modulate viral neuropathogenesis.

  18. Coronaviruses in bats from Mexico

    PubMed Central

    Ojeda-Flores, R.; Rico-Chávez, O.; Navarrete-Macias, I.; Zambrana-Torrelio, C. M.; Rostal, M. K.; Epstein, J. H.; Tipps, T.; Liang, E.; Sanchez-Leon, M.; Sotomayor-Bonilla, J.; Aguirre, A. A.; Ávila-Flores, R.; Medellín, R. A.; Goldstein, T.; Suzán, G.; Daszak, P.

    2013-01-01

    Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (β)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (α)-CoVs; four were β-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A β-CoV with 96.5 % amino acid identity to the β-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health. PMID:23364191

  19. Neotropical Bats from Costa Rica harbour Diverse Coronaviruses.

    PubMed

    Moreira-Soto, A; Taylor-Castillo, L; Vargas-Vargas, N; Rodríguez-Herrera, B; Jiménez, C; Corrales-Aguilar, E

    2015-11-01

    Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host-species barrier. For analysing coronavirus diversity in a bat species-rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA-dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus-derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α-CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected.

  20. Coronavirus infection, ER stress, apoptosis and innate immunity

    PubMed Central

    Fung, To S.; Liu, Ding X.

    2014-01-01

    The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER). Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR), a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However, under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus–host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP) kinase activation, autophagy, apoptosis, and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize the current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling. PMID:24987391

  1. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin.

    PubMed

    Millet, Jean K; Séron, Karin; Labitt, Rachael N; Danneels, Adeline; Palmer, Kenneth E; Whittaker, Gary R; Dubuisson, Jean; Belouzard, Sandrine

    2016-09-01

    Highly pathogenic human coronaviruses associated with a severe respiratory syndrome, including Middle East respiratory syndrome coronavirus (MERS-CoV), have recently emerged. The MERS-CoV epidemic started in 2012 and is still ongoing, with a mortality rate of approximately 35%. No vaccine is available against MERS-CoV and therapeutic options for MERS-CoV infections are limited to palliative and supportive care. A search for specific antiviral treatments is urgently needed. Coronaviruses are enveloped viruses, with the spike proteins present on their surface responsible for virus entry into the target cell. Lectins are attractive anti-coronavirus candidates because of the highly glycosylated nature of the spike protein. We tested the antiviral effect of griffithsin (GRFT), a lectin isolated from the red marine alga Griffithsia sp. against MERS-CoV infection. Our results demonstrate that while displaying no significant cytotoxicity, griffithsin is a potent inhibitor of MERS-CoV infection. Griffithsin also inhibits entry into host cells of particles pseudotyped with the MERS-CoV spike protein, suggesting that griffithsin inhibits spike protein function during entry. Spike proteins have a dual function during entry, they mediate binding to the host cell surface and also the fusion of the viral envelope with host cell membrane. Time course experiments show that griffithsin inhibits MERS-CoV infection at the binding step. In conclusion, we identify griffithsin as a potent inhibitor of MERS-CoV infection at the entry step. PMID:27424494

  2. [Case report of the first world death due to a new strain of human influenza A H1N1 virus and behavior of human influenzae in pregnant women].

    PubMed

    Noguera Sánchez, Marcelo Fidias; Karchmer Krivitzky, Samuel; EsliRabadán, Martínez Cesar; Antonio Sánchez, Pedro

    2013-01-01

    Influenza A H1N1 is an acute respiratory illness caused by a new strain of H1N1. Human influenza is a subtype of influenza Avirus, from the family of Orthomyxoviridae. This strain is the cause of new influenza pandemic declared by the World Health Organization in June, 2009. This paper reports the first case occurred in Mexico: a 39-year-old woman with a history of diabetes mellitus type 2 and obesity grade II, which suffered atypical and aggressive pneumonia positive to coronavirus. Patient died 98 hours after her admission to the hospital unit. Due to the clinical presentation of the case, the doctors sent samples to the Instituto Nacional de Diagnóstico y Referencia Epidemiológica that sent an aliquot of the National Center for Immunization and Respiratory Diseases of theAgency of Public Health in Canada, that reported positivity to influenza virus, and catalogued it as a new global strain called influenza A virus H1N1. The notice of 229E/NL63 coronavirus and its relationship to the recent outbreaks of avian influenza in humans and the clinical presentation of the case were the epidemiological circumstances that prevented the nation epidemiology system to establish global containment strategies to prevent the spread of this emerging infection. The consequence was the declaration of WHO pandemic alert level 6. Its behavior in pregnancy, reported by Assistant General Direction of Epidemiology in Mexico, has placed this infection as a risk factor for women.

  3. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.

    PubMed

    Su, Shuo; Wong, Gary; Shi, Weifeng; Liu, Jun; Lai, Alexander C K; Zhou, Jiyong; Liu, Wenjun; Bi, Yuhai; Gao, George F

    2016-06-01

    Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans.

  4. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.

    PubMed

    Su, Shuo; Wong, Gary; Shi, Weifeng; Liu, Jun; Lai, Alexander C K; Zhou, Jiyong; Liu, Wenjun; Bi, Yuhai; Gao, George F

    2016-06-01

    Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans. PMID:27012512

  5. Rapid inactivation of SARS-like coronaviruses.

    SciTech Connect

    Kapil, Sanjay; Oberst, R. D.; Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  6. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus.

    PubMed

    Liu, Chang; Tang, Jian; Ma, Yuanmei; Liang, Xueya; Yang, Yang; Peng, Guiqing; Qi, Qianqian; Jiang, Shibo; Li, Jianrong; Du, Lanying; Li, Fang

    2015-06-01

    Porcine epidemic diarrhea coronavirus (PEDV) has significantly damaged America's pork industry. Here we investigate the receptor usage and cell entry of PEDV. PEDV recognizes protein receptor aminopeptidase N from pig and human and sugar coreceptor N-acetylneuraminic acid. Moreover, PEDV infects cells from pig, human, monkey, and bat. These results support the idea of bats as an evolutionary origin for PEDV, implicate PEDV as a potential threat to other species, and suggest antiviral strategies to control its spread. PMID:25787280

  7. Prevalence and phylogeny of coronaviruses in wild birds from the Bering Strait area (Beringia).

    PubMed

    Muradrasoli, Shaman; Bálint, Adám; Wahlgren, John; Waldenström, Jonas; Belák, Sándor; Blomberg, Jonas; Olsen, Björn

    2010-01-01

    Coronaviruses (CoVs) can cause mild to severe disease in humans and animals, their host range and environmental spread seem to have been largely underestimated, and they are currently being investigated for their potential medical relevance. Infectious bronchitis virus (IBV) belongs to gamma-coronaviruses and causes a costly respiratory viral disease in chickens. The role of wild birds in the epidemiology of IBV is poorly understood. In the present study, we examined 1,002 cloacal and faecal samples collected from 26 wild bird species in the Beringia area for the presence of CoVs, and then we performed statistical and phylogenetic analyses. We detected diverse CoVs by RT-PCR in wild birds in the Beringia area. Sequence analysis showed that the detected viruses are gamma-coronaviruses related to IBV. These findings suggest that wild birds are able to carry gamma-coronaviruses asymptomatically. We concluded that CoVs are widespread among wild birds in Beringia, and their geographic spread and frequency is higher than previously realised. Thus, Avian CoV can be efficiently disseminated over large distances and could be a genetic reservoir for future emerging pathogenic CoVs. Considering the great animal health and economic impact of IBV as well as the recent emergence of novel coronaviruses such as SARS-coronavirus, it is important to investigate the role of wildlife reservoirs in CoV infection biology and epidemiology. PMID:21060827

  8. Comparative properties of feline coronaviruses in vitro.

    PubMed

    McKeirnan, A J; Evermann, J F; Davis, E V; Ott, R L

    1987-04-01

    Two feline coronaviruses were characterized to determine their biological properties in vitro and their antigenic relatedness to a previously recognized feline infectious peritonitis virus and canine coronavirus. The viruses, designated WSU 79-1146 and WSU 79-1683, were shown to have comparable growth curves with the prototype feline infectious peritonitis virus. Treatment of the feline infectious peritonitis virus strains with 0.25% trypsin indicated that they were relatively resistant to proteolytic inactivation when compared with the feline enteric coronavirus strain. This observation may serve as a useful in vitro marker to distinguish closely related members of the feline coronavirus group. Plaque assay results indicated that the feline infectious peritonitis virus strains produced large homogeneous plaques in comparison to the feline enteric coronavirus strain and canine coronavirus, which showed a heterogenous plaque size distribution. No naturally temperature sensitive mutants were detected in either of the feline coronavirus populations. Both of the viruses were antigenically related to feline infectious peritonitis virus and to a lesser extent to canine coronavirus by virus neutralization.

  9. Coronaviruses in poultry and other birds.

    PubMed

    Cavanagh, Dave

    2005-12-01

    The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for

  10. Coronaviruses in poultry and other birds.

    PubMed

    Cavanagh, Dave

    2005-12-01

    The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for

  11. MERS coronavirus: diagnostics, epidemiology and transmission.

    PubMed

    Mackay, Ian M; Arden, Katherine E

    2015-01-01

    The first known cases of Middle East respiratory syndrome (MERS), associated with infection by a novel coronavirus (CoV), occurred in 2012 in Jordan but were reported retrospectively. The case first to be publicly reported was from Jeddah, in the Kingdom of Saudi Arabia (KSA). Since then, MERS-CoV sequences have been found in a bat and in many dromedary camels (DC). MERS-CoV is enzootic in DC across the Arabian Peninsula and in parts of Africa, causing mild upper respiratory tract illness in its camel reservoir and sporadic, but relatively rare human infections. Precisely how virus transmits to humans remains unknown but close and lengthy exposure appears to be a requirement. The KSA is the focal point of MERS, with the majority of human cases. In humans, MERS is mostly known as a lower respiratory tract (LRT) disease involving fever, cough, breathing difficulties and pneumonia that may progress to acute respiratory distress syndrome, multiorgan failure and death in 20% to 40% of those infected. However, MERS-CoV has also been detected in mild and influenza-like illnesses and in those with no signs or symptoms. Older males most obviously suffer severe disease and MERS patients often have comorbidities. Compared to severe acute respiratory syndrome (SARS), another sometimes- fatal zoonotic coronavirus disease that has since disappeared, MERS progresses more rapidly to respiratory failure and acute kidney injury (it also has an affinity for growth in kidney cells under laboratory conditions), is more frequently reported in patients with underlying disease and is more often fatal. Most human cases of MERS have been linked to lapses in infection prevention and control (IPC) in healthcare settings, with approximately 20% of all virus detections reported among healthcare workers (HCWs) and higher exposures in those with occupations that bring them into close contact with camels. Sero-surveys have found widespread evidence of past infection in adult camels and limited

  12. Collection and Testing of Respiratory Samples

    ClinicalTrials.gov

    2012-05-22

    QIAGEN ResPlex II Advanced Panel; Influenza A; Influenza B; Respiratory Syncytial Virus Infections; Infection Due to Human Parainfluenza Virus 1; Parainfluenza Type 2; Parainfluenza Type 3; Parainfluenza Type 4; Human Metapneumovirus A/B; Rhinovirus; Coxsackie Virus/Echovirus; Adenovirus Types B/C/E; Coronavirus Subtypes 229E; Coronavirus Subtype NL63; Coronavirus Subtype OC43; Coronavirus Subtype HKU1; Human Bocavirus; Artus Influenza A/B RT-PCR Test; Influenza A, Influenza B,

  13. Detection of Coronaviruses in Bats of Various Species in Italy

    PubMed Central

    Lelli, Davide; Papetti, Alice; Sabelli, Cristiano; Rosti, Enrica; Moreno, Ana; Boniotti, Maria B.

    2013-01-01

    Bats are natural reservoirs for many mammalian coronaviruses, which have received renewed interest after the discovery of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) CoV in humans. This study describes the identification and molecular characterization of alphacoronaviruses and betacoronaviruses in bats in Italy, from 2010 to 2012. Sixty-nine faecal samples and 126 carcasses were tested using pan-coronavirus RT-PCR. Coronavirus RNAs were detected in seven faecal samples and nine carcasses. A phylogenetic analysis of RNA-dependent RNA polymerase sequence fragments aided in identifying two alphacoronaviruses from Kuhl’s pipistrelle (Pipistrellus kuhlii), three clade 2b betacoronaviruses from lesser horseshoe bats (Rhinolophus hipposideros), and 10 clade 2c betacoronaviruses from Kuhl’s pipistrelle, common noctule (Nyctalus noctula), and Savi’s pipistrelle (Hypsugo savii). This study fills a substantive gap in the knowledge on bat-CoV ecology in Italy, and extends the current knowledge on clade 2c betacoronaviruses with new sequences obtained from bats that have not been previously described as hosts of these viruses. PMID:24184965

  14. Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection

    PubMed Central

    Cheng, Vincent C. C.; Lau, Susanna K. P.; Woo, Patrick C. Y.; Yuen, Kwok Yung

    2007-01-01

    Before the emergence of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) in 2003, only 12 other animal or human coronaviruses were known. The discovery of this virus was soon followed by the discovery of the civet and bat SARS-CoV and the human coronaviruses NL63 and HKU1. Surveillance of coronaviruses in many animal species has increased the number on the list of coronaviruses to at least 36. The explosive nature of the first SARS epidemic, the high mortality, its transient reemergence a year later, and economic disruptions led to a rush on research of the epidemiological, clinical, pathological, immunological, virological, and other basic scientific aspects of the virus and the disease. This research resulted in over 4,000 publications, only some of the most representative works of which could be reviewed in this article. The marked increase in the understanding of the virus and the disease within such a short time has allowed the development of diagnostic tests, animal models, antivirals, vaccines, and epidemiological and infection control measures, which could prove to be useful in randomized control trials if SARS should return. The findings that horseshoe bats are the natural reservoir for SARS-CoV-like virus and that civets are the amplification host highlight the importance of wildlife and biosecurity in farms and wet markets, which can serve as the source and amplification centers for emerging infections. PMID:17934078

  15. Development of a molecular-beacon-based multi-allelic real-time RT-PCR assay for the detection of human coronavirus causing severe acute respiratory syndrome (SARS-CoV): a general methodology for detecting rapidly mutating viruses.

    PubMed

    Hadjinicolaou, Andreas V; Farcas, Gabriella A; Demetriou, Victoria L; Mazzulli, Tony; Poutanen, Susan M; Willey, Barbara M; Low, Donald E; Butany, Jagdish; Asa, Sylvia L; Kain, Kevin C; Kostrikis, Leondios G

    2011-04-01

    Emerging infectious diseases have caused a global effort for development of fast and accurate detection techniques. The rapidly mutating nature of viruses presents a major difficulty, highlighting the need for specific detection of genetically diverse strains. One such infectious agent is SARS-associated coronavirus (SARS-CoV), which emerged in 2003. This study aimed to develop a real-time RT-PCR detection assay specific for SARS-CoV, taking into account its intrinsic polymorphic nature due to genetic drift and recombination and the possibility of continuous and multiple introductions of genetically non-identical strains into the human population, by using mismatch-tolerant molecular beacons designed to specifically detect the SARS-CoV S, E, M and N genes. These were applied in simple, reproducible duplex and multiplex real-time PCR assays on 25 post-mortem samples and constructed RNA controls, and they demonstrated high target detection ability and specificity. This assay can readily be adapted for detection of other emerging and rapidly mutating pathogens.

  16. Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase

    PubMed Central

    Lazarus, Hilary

    2016-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5′-to-3′ direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5′ loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5′ loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target.

  17. Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase

    PubMed Central

    Lazarus, Hilary

    2016-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5′-to-3′ direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5′ loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5′ loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target. PMID:27631026

  18. Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase.

    PubMed

    Adedeji, Adeyemi O; Lazarus, Hilary

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5'-to-3' direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5' loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5' loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target. PMID:27631026

  19. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer

    PubMed Central

    Frenz, Brandon; Rottier, Peter J.M.; DiMaio, Frank; Rey, Félix A.; Veesler, David

    2016-01-01

    The tremendous pandemic potential of coronaviruses was demonstrated twice in the last decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions1. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a murine coronavirus S trimer ectodomain determined at 4.0 Å resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins2,3, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains. PMID:26855426

  20. Structure of the C-terminal domain of nsp4 from feline coronavirus

    SciTech Connect

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  1. Human Coronavirus HKU1 Spike Protein Uses O-Acetylated Sialic Acid as an Attachment Receptor Determinant and Employs Hemagglutinin-Esterase Protein as a Receptor-Destroying Enzyme

    PubMed Central

    Huang, Xingchuan; Dong, Wenjuan; Milewska, Aleksandra; Golda, Anna; Qi, Yonghe; Zhu, Quan K.; Marasco, Wayne A.; Baric, Ralph S.; Sims, Amy C.; Pyrc, Krzysztof

    2015-01-01

    ABSTRACT Human coronavirus (hCoV) HKU1 is one of six hCoVs identified to date and the only one with an unidentified cellular receptor. hCoV-HKU1 encodes a hemagglutinin-esterase (HE) protein that is unique to the group a betacoronaviruses (group 2a). The function of HKU1-HE remains largely undetermined. In this study, we examined binding of the S1 domain of hCoV-HKU1 spike to a panel of cells and found that the S1 could specifically bind on the cell surface of a human rhabdomyosarcoma cell line, RD. Pretreatment of RD cells with neuraminidase (NA) and trypsin greatly reduced the binding, suggesting that the binding was mediated by sialic acids on glycoproteins. However, unlike other group 2a CoVs, e.g., hCoV-OC43, for which 9-O-acetylated sialic acid (9-O-Ac-Sia) serves as a receptor determinant, HKU1-S1 bound with neither 9-O-Ac-Sia-containing glycoprotein(s) nor rat and mouse erythrocytes. Nonetheless, the HKU1-HE was similar to OC43-HE, also possessed sialate-O-acetylesterase activity, and acted as a receptor-destroying enzyme (RDE) capable of eliminating the binding of HKU1-S1 to RD cells, whereas the O-acetylesterase-inactive HKU1-HE mutant lost this capacity. Using primary human ciliated airway epithelial (HAE) cell cultures, the only in vitro replication model for hCoV-HKU1 infection, we confirmed that pretreatment of HAE cells with HE but not the enzymatically inactive mutant blocked hCoV-HKU1 infection. These results demonstrate that hCoV-HKU1 exploits O-Ac-Sia as a cellular attachment receptor determinant to initiate the infection of host cells and that its HE protein possesses the corresponding sialate-O-acetylesterase RDE activity. IMPORTANCE Human coronaviruses (hCoV) are important human respiratory pathogens. Among the six hCoVs identified to date, only hCoV-HKU1 has no defined cellular receptor. It is also unclear whether hemagglutinin-esterase (HE) protein plays a role in viral entry. In this study, we found that, similarly to other members of the

  2. Cell-based antiviral screening against coronaviruses: Developing virus-specific and broad-spectrum inhibitors

    PubMed Central

    Kilianski, Andy; Baker, Susan C.

    2014-01-01

    To combat the public health threat from emerging coronaviruses (CoV), the development of antiviral therapies with either virus-specific or pan-CoV activities is necessary. An important step in antiviral drug development is the screening of potential inhibitors in cell-based systems. The recent emergence of the Middle East respiratory syndrome (MERS)-CoV necessitates adapting methods that have been used to identify antivirals against the severe, acute respiratory syndrome (SARS)-CoV and developing new approaches to more efficiently screen antiviral drugs. In this article we review cell-based assays using infectious virus (BSL-3) and surrogate assays (BSL-2) that can be implemented to accelerate antiviral development against MERS-CoV and future emergent coronaviruses. This paper forms part of a series of invited articles in Antiviral Research on “From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.” PMID:24269477

  3. Pathogenesis of Middle East respiratory syndrome coronavirus.

    PubMed

    van den Brand, Judith M A; Smits, Saskia L; Haagmans, Bart L

    2015-01-01

    Human coronaviruses (CoVs) mostly cause a common cold that is mild and self-limiting. Zoonotic transmission of CoVs such as the recently identified Middle East respiratory syndrome (MERS)-CoV and severe acute respiratory syndrome (SARS)-CoV, on the other hand, may be associated with severe lower respiratory tract infection. This article reviews the clinical and pathological data available on MERS and compares it to SARS. Most importantly, chest radiographs and imaging results of patients with MERS show features that resemble the findings of organizing pneumonia, different from the lesions in SARS patients, which show fibrocellular intra-alveolar organization with a bronchiolitis obliterans organizing pneumonia-like pattern. These findings are in line with differences in the induction of cytopathological changes, induction of host gene responses and sensitivity to the antiviral effect of interferons in vitro when comparing both MERS-CoV and SARS-CoV. The challenge will be to translate these findings into an integrated picture of MERS pathogenesis in humans and to develop intervention strategies that will eventually allow the effective control of this newly emerging infectious disease.

  4. Animal models of Middle East Respiratory Syndrome coronavirus infection

    PubMed Central

    van Doremalen, Neeltje; Munster, Vincent J.

    2015-01-01

    The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second time that a new, highly pathogenic coronavirus has emerged in the human population in the 21st century. In this review, we discuss the current state of knowledge of animal models of MERS-CoV infection. Commonly used laboratory animal species such as Syrian hamsters, mice and ferrets are not susceptible to MERS-CoV, due to differences in the MERS-CoV receptor dipeptyl peptidase 4 (DPP4). The initially developed animal models comprise two nonhuman primate species, the rhesus macaque and the common marmoset. Rhesus macaques develop a mild to moderate respiratory disease upon inoculation, reminiscent of milder MERS cases, whereas marmosets develop a moderate to severe respiratory disease, recapitulating the severe disease observed in some patients. Dromedary camels, considered to be the reservoir for MERS-CoV, develop a mild upper respiratory tract infection with abundant viral shedding. Although normal mice are not susceptible to MERS-CoV, expression of the human DPP4 (hDPP4) overcomes the lack of susceptibility. Transgenic hDPP4 mice develop severe and lethal respiratory disease upon inoculation with MERS-CoV. These hDPP4 transgenic mice are potentially the ideal first line animal model for efficacy testing of therapeutic and prophylactic countermeasures. Further characterization of identified countermeasures would ideally be performed in the common marmoset model, due to the more severe disease outcome. This article forms part of a symposium in Antiviral Research on “From SARS to MERS: research on highly pathogenic human coronaviruses.” PMID:26192750

  5. Antibodies against MERS Coronavirus in Dromedary Camels, Kenya, 1992–2013

    PubMed Central

    Corman, Victor M.; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Said, Mohammed Y.; Gluecks, Ilona; Lattwein, Erik; Bosch, Berend-Jan; Drexler, Jan Felix; Bornstein, Set; Müller, Marcel A.

    2014-01-01

    Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992–2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity and might be a factor in predicting long-term virus maintenance. PMID:25075637

  6. Acute middle East respiratory syndrome coronavirus infection in livestock Dromedaries, Dubai, 2014.

    PubMed

    Wernery, Ulrich; Corman, Victor M; Wong, Emily Y M; Tsang, Alan K L; Muth, Doreen; Lau, Susanna K P; Khazanehdari, Kamal; Zirkel, Florian; Ali, Mansoor; Nagy, Peter; Juhasz, Jutka; Wernery, Renate; Joseph, Sunitha; Syriac, Ginu; Elizabeth, Shyna K; Patteril, Nissy Annie Georgy; Woo, Patrick C Y; Drosten, Christian

    2015-06-01

    Camels carry Middle East respiratory syndrome coronavirus, but little is known about infection age or prevalence. We studied >800 dromedaries of all ages and 15 mother-calf pairs. This syndrome constitutes an acute, epidemic, and time-limited infection in camels <4 years of age, particularly calves. Delayed social separation of calves might reduce human infection risk.

  7. Plaque assay for titration of bovine enteric coronavirus.

    PubMed

    Vautherot, J F

    1981-10-01

    The plaquing ability of two isolates of bovine enteric coronavirus (BECV) was studied in HRT18 (human rectal adenocarcinoma) cell monolayers. Both isolates were able to induce plaque formation within 2 to 3 days; plaques appeared as round opalescent areas which remained colourless after neutral red or crystal violet staining. A good correlation was found between the titres as determined either by counting the plaques that were visible to the naked eye before and after neutral red staining, or by enumerating fluorescence or haemadsorption foci.

  8. Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Kumar, Mia; Mazur, Steven; Ork, Britini L.; Postnikova, Elena; Hensley, Lisa E.; Jahrling, Peter B.; Johnson, Reed; Holbrook, Michael R.

    2015-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30 minutes of contact time in a cell culture system while a mixture of methanol and acetone required 60 minutes to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities. PMID:26190637

  9. Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus.

    PubMed

    Kumar, Mia; Mazur, Steven; Ork, Britini L; Postnikova, Elena; Hensley, Lisa E; Jahrling, Peter B; Johnson, Reed; Holbrook, Michael R

    2015-10-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30 min of contact time in a cell culture system while a mixture of methanol and acetone required 60 min to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities. PMID:26190637

  10. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination

    PubMed Central

    Sims, Gregory E.; Wentworth, David E.; Halpin, Rebecca A.; Robinson, Christine C.; Town, Christopher D.; Holmes, Kathryn V.

    2012-01-01

    This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence. Phylogenetic analysis comparing the genome sequences of the 16 Colorado NL63 viruses with those of the prototypical hCoV-NL63 and three other NL63 viruses from the Netherlands demonstrated that there were three genotypes (A, B and C) circulating in Colorado from 2005 to 2010, and evidence of recombination between virus strains was found. Genotypes B and C co-circulated in Colorado in 2005, 2009 and 2010, but genotype A circulated only in 2005 when it was the predominant NL63 strain. Genotype C represents a new lineage that has not been described previously. The greatest variability in the NL63 virus genomes was found in the N-terminal domain (NTD) of the spike gene (nt 1–600, aa 1–200). Ten different amino acid sequences were found in the NTD of the spike protein among these NL63 strains and the 75 partial published sequences of NTDs from strains found at different times throughout the world. PMID:22837419

  11. Genomic analysis of 16 Colorado human NL63 coronaviruses identifies a new genotype, high sequence diversity in the N-terminal domain of the spike gene and evidence of recombination.

    PubMed

    Dominguez, Samuel R; Sims, Gregory E; Wentworth, David E; Halpin, Rebecca A; Robinson, Christine C; Town, Christopher D; Holmes, Kathryn V

    2012-11-01

    This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence. Phylogenetic analysis comparing the genome sequences of the 16 Colorado NL63 viruses with those of the prototypical hCoV-NL63 and three other NL63 viruses from the Netherlands demonstrated that there were three genotypes (A, B and C) circulating in Colorado from 2005 to 2010, and evidence of recombination between virus strains was found. Genotypes B and C co-circulated in Colorado in 2005, 2009 and 2010, but genotype A circulated only in 2005 when it was the predominant NL63 strain. Genotype C represents a new lineage that has not been described previously. The greatest variability in the NL63 virus genomes was found in the N-terminal domain (NTD) of the spike gene (nt 1-600, aa 1-200). Ten different amino acid sequences were found in the NTD of the spike protein among these NL63 strains and the 75 partial published sequences of NTDs from strains found at different times throughout the world.

  12. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease.

    PubMed

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C; Chang, Kyeong-Ok

    2013-02-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against a feline coronavirus in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC(50) in a nanomolar range) and, furthermore, combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in a cell culture system.

  13. Detection of feline coronavirus using microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Velanki, Sreepriya; Ji, Hai-Feng

    2006-11-01

    This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.

  14. DESC1 and MSPL Activate Influenza A Viruses and Emerging Coronaviruses for Host Cell Entry

    PubMed Central

    Zmora, Pawel; Blazejewska, Paulina; Moldenhauer, Anna-Sophie; Welsch, Kathrin; Nehlmeier, Inga; Wu, Qingyu; Schneider, Heike; Bertram, Stephanie

    2014-01-01

    ABSTRACT The type II transmembrane serine protease (TTSP) TMPRSS2 cleaves and activates the influenza virus and coronavirus surface proteins. Expression of TMPRSS2 is essential for the spread and pathogenesis of H1N1 influenza viruses in mice. In contrast, H3N2 viruses are less dependent on TMPRSS2 for viral amplification, suggesting that these viruses might employ other TTSPs for their activation. Here, we analyzed TTSPs, reported to be expressed in the respiratory system, for the ability to activate influenza viruses and coronaviruses. We found that MSPL and, to a lesser degree, DESC1 are expressed in human lung tissue and cleave and activate the spike proteins of the Middle East respiratory syndrome and severe acute respiratory syndrome coronaviruses for cell-cell and virus-cell fusion. In addition, we show that these proteases support the spread of all influenza virus subtypes previously pandemic in humans. In sum, we identified two host cell proteases that could promote the amplification of influenza viruses and emerging coronaviruses in humans and might constitute targets for antiviral intervention. IMPORTANCE Activation of influenza viruses by host cell proteases is essential for viral infectivity and the enzymes responsible are potential targets for antiviral intervention. The present study demonstrates that two cellular serine proteases, DESC1 and MSPL, activate influenza viruses and emerging coronaviruses in cell culture and, because of their expression in human lung tissue, might promote viral spread in the infected host. Antiviral strategies aiming to prevent viral activation might thus need to encompass inhibitors targeting MSPL and DESC1. PMID:25122802

  15. Use of a novel virus detection assay to identify coronavirus HKU1 in the lungs of a hematopoietic stem cell transplant recipient with fatal pneumonia

    PubMed Central

    Uhlenhaut, Christine; Cohen, Jeffrey I.; Pavletic, Steven; Illei, Gabor; Gea-Banacloche, Juan Carlos; Abu-Asab, Mones; Krogmann, Tammy; Gubareva, Larisa; McClenahan, Shasta; Krause, Philip R.

    2012-01-01

    A 38-year-old patient with systemic lupus erythematosus presented with pulmonary infiltrates and hypoxemia for several months following immunodepleting autologous hematopoietic stem cell transplantation. She was treated for influenza, which was isolated repeatedly from ororpharynx and bronchoalveolar lavage fluids, and later empirically for lupus pneumonitis, but expired 6 months after transplant. Autopsy findings failed to show influenza in the lungs or lupus pneumonitis. A novel generic PCR-based assay using degenerate primers identified human coronavirus HKU1 RNA in bronchoalveolar lavage fluid at autopsy. Coronavirus was confirmed by virus-specific PCRs of lung tissue at autopsy. Electron microscopy showed viral particles consistent with coronavirus HKU1 in lung tissue both at autopsy and from a previous biopsy. While human coronavirus HKU1 infection is not usually severe, in highly immunocompromised patients, it can be associated with fatal pneumonia. PMID:21749586

  16. Use of heliox delivered via high-flow nasal cannula to treat an infant with coronavirus-related respiratory infection and severe acute air-flow obstruction.

    PubMed

    Morgan, Sherwin E; Vukin, Kirissa; Mosakowski, Steve; Solano, Patti; Stanton, Lolita; Lester, Lucille; Lavani, Romeen; Hall, Jesse B; Tung, Avery

    2014-11-01

    Heliox, a helium-oxygen gas mixture, has been used for many decades to treat obstructive pulmonary disease. The lower density and higher viscosity of heliox relative to nitrogen-oxygen mixtures can significantly reduce airway resistance when an anatomic upper air-flow obstruction is present and gas flow is turbulent. Clinically, heliox can decrease airway resistance in acute asthma in adults and children and in COPD. Heliox may also enhance the bronchodilating effects of β-agonist administration for acute asthma. Respiratory syndromes caused by coronavirus infections in humans range in severity from the common cold to severe acute respiratory syndrome associated with human coronavirus OC43 and other viral strains. In infants, coronavirus infection can cause bronchitis, bronchiolitis, and pneumonia in variable combinations and can produce enough air-flow obstruction to cause respiratory failure. We describe a case of coronavirus OC43 infection in an infant with severe acute respiratory distress treated with heliox inhalation to avoid intubation.

  17. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    PubMed

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  18. Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation

    PubMed Central

    Thornbrough, Joshua M.; Jha, Babal K.; Yount, Boyd; Goldstein, Stephen A.; Li, Yize; Elliott, Ruth; Sims, Amy C.; Baric, Ralph S.; Silverman, Robert H.

    2016-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is the first highly pathogenic human coronavirus to emerge since severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. Like many coronaviruses, MERS-CoV carries genes that encode multiple accessory proteins that are not required for replication of the genome but are likely involved in pathogenesis. Evasion of host innate immunity through interferon (IFN) antagonism is a critical component of viral pathogenesis. The IFN-inducible oligoadenylate synthetase (OAS)-RNase L pathway activates upon sensing of viral double-stranded RNA (dsRNA). Activated RNase L cleaves viral and host single-stranded RNA (ssRNA), which leads to translational arrest and subsequent cell death, preventing viral replication and spread. Here we report that MERS-CoV, a lineage C Betacoronavirus, and related bat CoV NS4b accessory proteins have phosphodiesterase (PDE) activity and antagonize OAS-RNase L by enzymatically degrading 2′,5′-oligoadenylate (2-5A), activators of RNase L. This is a novel function for NS4b, which has previously been reported to antagonize IFN signaling. NS4b proteins are distinct from lineage A Betacoronavirus PDEs and rotavirus gene-encoded PDEs, in having an amino-terminal nuclear localization signal (NLS) and are localized mostly to the nucleus. However, the expression level of cytoplasmic MERS-CoV NS4b protein is sufficient to prevent activation of RNase L. Finally, this is the first report of an RNase L antagonist expressed by a human or bat coronavirus and provides a specific mechanism by which this occurs. Our findings provide a potential mechanism for evasion of innate immunity by MERS-CoV while also identifying a potential target for therapeutic intervention. PMID:27025250

  19. Discovery of a Novel Coronavirus, China Rattus Coronavirus HKU24, from Norway Rats Supports the Murine Origin of Betacoronavirus 1 and Has Implications for the Ancestor of Betacoronavirus Lineage A

    PubMed Central

    Lau, Susanna K. P.; Woo, Patrick C. Y.; Li, Kenneth S. M.; Tsang, Alan K. L.; Fan, Rachel Y. Y.; Luk, Hayes K. H.; Cai, Jian-Piao; Chan, Kwok-Hung; Zheng, Bo-Jian; Wang, Ming

    2014-01-01

    ABSTRACT We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCoV HKU24 as a separate species. ChRCoV HKU24 possessed genome features that resemble those of both Betacoronavirus 1 and murine coronavirus, being closer to Betacoronavirus 1 in most predicted proteins but closer to murine coronavirus by G+C content, the presence of a single nonstructural protein (NS4), and an absent transcription regulatory sequence for the envelope (E) protein. Its N-terminal domain (NTD) demonstrated higher sequence identity to the bovine coronavirus (BCoV) NTD than to the mouse hepatitis virus (MHV) NTD, with 3 of 4 critical sugar-binding residues in BCoV and 2 of 14 contact residues at the MHV NTD/murine CEACAM1a interface being conserved. Molecular clock analysis dated the time of the most recent common ancestor of ChRCoV HKU24, Betacoronavirus 1, and rabbit coronavirus HKU14 to about the year 1400. Cross-reactivities between other lineage A and B βCoVs and ChRCoV HKU24 nucleocapsid but not spike polypeptide were demonstrated. Using the spike polypeptide-based Western blot assay, we showed that only Norway rats and two oriental house rats from Guangzhou, China, were infected by ChRCoV HKU24. Other rats, including Norway rats from Hong Kong, possessed antibodies only against N protein and not against the spike polypeptide, suggesting infection by βCoVs different from ChRCoV HKU24. ChRCoV HKU24 may represent the murine origin of Betacoronavirus 1, and rodents are likely an important reservoir for ancestors of lineage A βCoVs. IMPORTANCE While

  20. Three men, a paint brush and a coronavirus.

    PubMed

    Macconnachie, A A; Collins, T C; Seaton, R A; Kennedy, D H

    2007-02-01

    Coronaviruses cause respiratory tract infection and a coryzal syndrome. Although described as a cause of gastroenteritis in HIV patients, with the exception of the severe acute respiratory syndrome (SARS), there is little in the literature about respiratory infection in HIV patients. We describe two patients with HIV, exacerbations of chronic obstructive pulmonary disease and proven coronavirus infection. A third patient presented with an upper respiratory tract infection but coronavirus was not isolated. All three men had spent a day decorating the first patient's flat four days prior to presentation. This is the first description of respiratory tract infection with coronavirus in HIV patients. Both patients with coronavirus required prolonged admission to hospital and extensive investigations because they were HIV infected. Coronavirus is often associated with less severe upper respiratory tract infection but can cause more severe disease and should be considered in patients with HIV and respiratory tract infection. PMID:17331291

  1. Middle East respiratory syndrome coronavirus: epidemiology and disease control measures

    PubMed Central

    Al-Tawfiq, Jaffar A; Memish, Ziad A

    2014-01-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in 2012 resulted in an increased concern of the spread of the infection globally. MERS-CoV infection had previously caused multiple health-care-associated outbreaks and resulted in transmission of the virus within families. Community onset MERS-CoV cases continue to occur. Dromedary camels are currently the most likely animal to be linked to human MERS-CoV cases. Serologic tests showed significant infection in adult camels compared to juvenile camels. The control of MERS-CoV infection relies on prompt identification of cases within health care facilities, with institutions applying appropriate infection control measures. In addition, determining the exact route of transmission from camels to humans would further add to the control measures of MERS-CoV infection. PMID:25395865

  2. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir.

    PubMed

    Mohd, Hamzah A; Al-Tawfiq, Jaffar A; Memish, Ziad A

    2016-01-01

    Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans. Though not confirmed yet, multiple surveillance and phylogenetic studies suggest a bat origin. The disease is heavily endemic in dromedary camel populations of East Africa and the Middle East. It is unclear as to when the virus was introduced to dromedary camels, but data from studies that investigated stored dromedary camel sera and geographical distribution of involved dromedary camel populations suggested that the virus was present in dromedary camels several decades ago. Though bats and alpacas can serve as potential reservoirs for MERS-CoV, dromedary camels seem to be the only animal host responsible for the spill over human infections. PMID:27255185

  3. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    PubMed

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health.

  4. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    PubMed

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. PMID:27473780

  5. Evolutionary Relationships between Bat Coronaviruses and Their Hosts

    PubMed Central

    Cui, Jie; Han, Naijian; Streicker, Daniel; Li, Gang; Tang, Xianchun; Shi, Zhengli; Hu, Zhihong; Zhao, Guoping; Fontanet, Arnaud; Guan, Yi; Wang, Linfa; Jones, Gareth; Field, Hume E.

    2007-01-01

    Recent studies have suggested that bats are the natural reservoir of a range of coronaviruses (CoVs), and that rhinolophid bats harbor viruses closely related to the severe acute respiratory syndrome (SARS) CoV, which caused an outbreak of respiratory illness in humans during 2002–2003. We examined the evolutionary relationships between bat CoVs and their hosts by using sequence data of the virus RNA-dependent RNA polymerase gene and the bat cytochrome b gene. Phylogenetic analyses showed multiple incongruent associations between the phylogenies of rhinolophid bats and their CoVs, which suggested that host shifts have occurred in the recent evolutionary history of this group. These shifts may be due to either virus biologic traits or host behavioral traits. This finding has implications for the emergence of SARS and for the potential future emergence of SARS-CoVs or related viruses. PMID:18258002

  6. Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus.

    PubMed

    Uyeki, Timothy M; Erlandson, Karl J; Korch, George; O'Hara, Michael; Wathen, Michael; Hu-Primmer, Jean; Hojvat, Sally; Stemmy, Erik J; Donabedian, Armen

    2016-07-01

    Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures. PMID:27191188

  7. Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Erlandson, Karl J.; Korch, George; O’Hara, Michael; Wathen, Michael; Hu-Primmer, Jean; Hojvat, Sally; Stemmy, Erik J.; Donabedian, Armen

    2016-01-01

    Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures. PMID:27191188

  8. A coronavirus detected in the vampire bat Desmodus rotundus.

    PubMed

    Brandão, Paulo Eduardo; Scheffer, Karin; Villarreal, Laura Yaneth; Achkar, Samira; Oliveira, Rafael de Novaes; Fahl, Willian de Oliveira; Castilho, Juliana Galera; Kotait, Ivanete; Richtzenhain, Leonardo José

    2008-12-01

    This article reports on the identification of a group 2 coronavirus (BatCoV DR/2007) in a Desmodus rotundus vampire bat in Brazil. Phylogenetic analysis of ORF1b revealed that BatCoV DR/2007 originates from a unique lineage in the archetypical group 2 coronaviruses, as described for bat species elsewhere with putative importance in Public Health.

  9. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    PubMed Central

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  10. Coronavirus infection of spotted hyenas in the Serengeti ecosystem.

    PubMed

    East, Marion L; Moestl, Karin; Benetka, Viviane; Pitra, Christian; Höner, Oliver P; Wachter, Bettina; Hofer, Heribert

    2004-08-19

    Sera from 38 free-ranging spotted hyenas (Crocuta crocuta) in the Serengeti ecosystem, Tanzania, were screened for exposure to coronavirus of antigenic group 1. An immunofluorescence assay indicated high levels of exposure to coronavirus among Serengeti hyenas: 95% when considering sera with titer levels of > or = 1:10 and 74% when considering sera with titer levels of > or = 1:40. Cubs had generally lower mean titer levels than adults. Exposure among Serengeti hyenas to coronavirus was also confirmed by a serum neutralisation assay and an ELISA. Application of RT-PCR to 27 fecal samples revealed viral RNA in three samples (11%). All three positive fecal samples were from the 15 juvenile animals (<24 months of age) sampled, and none from the 12 adults sampled. No viral RNA was detected in tissue samples (lymph node, intestine, lung) from 11 individuals. Sequencing of two amplified products from the S protein gene of a positive sample revealed the presence of coronavirus specific RNA with a sequence homology to canine coronavirus of 76 and 78% and to feline coronavirus type II of 80 and 84%, respectively. Estimation of the phylogenetic relationship among coronavirus isolates indicated considerable divergence of the hyena variant from those in European, American and Japanese domestic cats and dogs. From long-term observations of several hundred known individuals, the only clinical sign in hyenas consistent with those described for coronavirus infections in dogs and cats was diarrhea. There was no evidence that coronavirus infection in hyenas caused clinical signs similar to feline infectious peritonitis in domestic cats or was a direct cause of mortality in hyenas. To our knowledge, this is the first report of coronavirus infection in Hyaenidae.

  11. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    PubMed Central

    Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.

    2004-01-01

    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703

  12. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus.

    PubMed

    Abd El Wahed, Ahmed; Patel, Pranav; Heidenreich, Doris; Hufert, Frank T; Weidmann, Manfred

    2013-12-12

    The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV.

  13. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.

    PubMed

    Ng, Oi-Wing; Chia, Adeline; Tan, Anthony T; Jadi, Ramesh S; Leong, Hoe Nam; Bertoletti, Antonio; Tan, Yee-Joo

    2016-04-12

    Severe acute respiratory syndrome (SARS) is a highly contagious infectious disease which first emerged in late 2002, caused by a then novel human coronavirus, SARS coronavirus (SARS-CoV). The virus is believed to have originated from bats and transmitted to human through intermediate animals such as civet cats. The re-emergence of SARS-CoV remains a valid concern due to the continual persistence of zoonotic SARS-CoVs and SARS-like CoVs (SL-CoVs) in bat reservoirs. In this study, the screening for the presence of SARS-specific T cells in a cohort of three SARS-recovered individuals at 9 and 11 years post-infection was carried out, and all memory T cell responses detected target the SARS-CoV structural proteins. Two CD8(+) T cell responses targeting the SARS-CoV membrane (M) and nucleocapsid (N) proteins were characterized by determining their HLA restriction and minimal T cell epitope regions. Furthermore, these responses were found to persist up to 11 years post-infection. An absence of cross-reactivity of these CD8(+) T cell responses against the newly-emerged Middle East respiratory syndrome coronavirus (MERS-CoV) was also demonstrated. The knowledge of the persistence of SARS-specific celullar immunity targeting the viral structural proteins in SARS-recovered individuals is important in the design and development of SARS vaccines, which are currently unavailable. PMID:26954467

  14. Reverse Transcription Recombinase Polymerase Amplification Assay for the Detection of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Heidenreich, Doris; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV. PMID:24459611

  15. The Structure and Functions of Coronavirus Genomic 3’ and 5’ Ends

    PubMed Central

    Yang, Dong; Leibowitz, Julian L.

    2015-01-01

    Coronaviruses (CoVs) are an important cause of illness in humans and animals. Most human coronaviruses commonly cause relatively mild respiratory illnesses; however two zoonotic coronaviruses, SARS-CoV and MERS-CoV, can cause severe illness and death. Investigations over the past thirty-five years have illuminated many aspects of coronavirus replication. The focus of this review is the functional analysis of conserved RNA secondary structures in the 5’ and 3’ of the betacoronavirus genomes. The 5’ 350 nucleotides folds into a set of RNA secondary structures which are well conserved, and reverse genetic studies indicate that these structures play an important role in the discontinuous synthesis of subgenomic RNAs in the betacoronaviruses. These cis-acting elements extend 3’ of the 5’UTR into ORF1a. The 3’UTR is similarly conserved and contains all of the cis-acting sequences necessary for viral replication. Two competing conformations near the 5’ end of the 3’UTR have been shown to make up a potential molecular switch. There is some evidence that an association between the 3’ and 5’UTRs is necessary for subgenomic RNA synthesis, but the basis for this association is not yet clear. A number of host RNA proteins have been shown to bind to the 5’ and 3’ cis-acting regions, but the significance of these in viral replication is not clear. Two viral proteins have been identified as binding to the 5’ cis-acting region, nsp1 and N protein. A genetic interaction between nsp8 and nsp9 and the region of the 3’UTR that contains the putative molecular switch suggests that these two proteins bind to this region. PMID:25736566

  16. Coronavirus Infection and Diversity in Bats in the Australasian Region.

    PubMed

    Smith, C S; de Jong, C E; Meers, J; Henning, J; Wang, L- F; Field, H E

    2016-03-01

    Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift.

  17. Coronavirus Infection and Diversity in Bats in the Australasian Region.

    PubMed

    Smith, C S; de Jong, C E; Meers, J; Henning, J; Wang, L- F; Field, H E

    2016-03-01

    Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift. PMID:27048154

  18. Characterisation of bubaline coronavirus strains associated with gastroenteritis in water buffalo (Bubalus bubalis) calves.

    PubMed

    Decaro, Nicola; Cirone, Francesco; Mari, Viviana; Nava, Donatella; Tinelli, Antonella; Elia, Gabriella; Di Sarno, Alessandra; Martella, Vito; Colaianni, Maria Loredana; Aprea, Giuseppe; Tempesta, Maria; Buonavoglia, Canio

    2010-10-26

    Recently, a coronavirus strain (179/07-11) was isolated from water buffalo (Bubalus bubalis) and the virus which displayed a strict genetic and biological relatedness with bovine coronavirus (BCoV) was referred to as bubaline coronavirus (BuCoV). Here, we report the characterisation of four BuCoVs strains identified in the faeces or intestinal contents of water buffalo calves with acute gastroenteritis. Single BuCoV infections were detected in all but one cases from which two clostridia species were also isolated. Sequence and phylogenetic analyses of the 5' end of the spike-protein gene showed that three BuCoVs were closely related to the prototype strain 179/07-11, whereas the fourth isolate (339/08-C) displayed a higher genetic identity to recent BCoV reference strains. Three strains adapted to the in vitro grow on human rectal tumour cells were also evaluated for their ability to replicate in a bovine cell line (Madin Darby bovine kidney) and to cause haemagglutination of chicken erythrocytes and all displayed biological properties similar to those already described for the prototype BuCoV. The present report shows that albeit genetically heterogeneous, the different BuCoV strains possess a common biological pattern which is different from most BCoV and BCoV-like isolates.

  19. Differential Sensitivity of Bat Cells to Infection by Enveloped RNA Viruses: Coronaviruses, Paramyxoviruses, Filoviruses, and Influenza Viruses

    PubMed Central

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  20. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses.

    PubMed

    Hoffmann, Markus; Müller, Marcel Alexander; Drexler, Jan Felix; Glende, Jörg; Erdt, Meike; Gützkow, Tim; Losemann, Christoph; Binger, Tabea; Deng, Hongkui; Schwegmann-Weßels, Christel; Esser, Karl-Heinz; Drosten, Christian; Herrler, Georg

    2013-01-01

    Bats (Chiroptera) host major human pathogenic viruses including corona-, paramyxo, rhabdo- and filoviruses. We analyzed six different cell lines from either Yinpterochiroptera (including African flying foxes and a rhinolophid bat) or Yangochiroptera (genera Carollia and Tadarida) for susceptibility to infection by different enveloped RNA viruses. None of the cells were sensitive to infection by transmissible gastroenteritis virus (TGEV), a porcine coronavirus, or to infection mediated by the Spike (S) protein of SARS-coronavirus (SARS-CoV) incorporated into pseudotypes based on vesicular stomatitis virus (VSV). The resistance to infection was overcome if cells were transfected to express the respective cellular receptor, porcine aminopeptidase N for TGEV or angiotensin-converting enzyme 2 for SARS-CoV. VSV pseudotypes containing the S proteins of two bat SARS-related CoV (Bg08 and Rp3) were unable to infect any of the six tested bat cell lines. By contrast, viral pseudotypes containing the surface protein GP of Marburg virus from the family Filoviridae infected all six cell lines though at different efficiency. Notably, all cells were sensitive to infection by two paramyxoviruses (Sendai virus and bovine respiratory syncytial virus) and three influenza viruses from different subtypes. These results indicate that bat cells are more resistant to infection by coronaviruses than to infection by paramyxoviruses, filoviruses and influenza viruses. Furthermore, these results show a receptor-dependent restriction of the infection of bat cells by CoV. The implications for the isolation of coronaviruses from bats are discussed. PMID:24023659

  1. Use of an Innovative Web-Based Laboratory Surveillance Platform to Analyze Mixed Infections Between Human Metapneumovirus (hMPV) and Other Respiratory Viruses Circulating in Alberta (AB), Canada (2009–2012)

    PubMed Central

    Fathima, Sumana; Lee, Bonita E.; May-Hadford, Jennifer; Mukhi, Shamir; Drews, Steven J.

    2012-01-01

    We investigated the proportions of mono vs. mixed infections for human metapneumovirus (hMPV) as compared to adenovirus (ADV), four types of coronavirus (CRV), parainfluenza virus (PIV), RSV, and enterovirus/rhinovirus (ERV) in Alberta, Canada. Using the Data Integration for Alberta Laboratories (DIAL) platform, 26,226 respiratory specimens at ProvLab between 1 July 2009 and 30 June 2012 were selected and included in the study. Using the Respiratory Virus Panel these specimens tested positive for one or more respiratory virus and negative for influenza A and B. From our subset hMPV was the fourth most common virus (n=2,561) with 373 (15%) identified as mixed infection using DIAL. Mixed infection with hMPV was most commonly found in infants less than 6 months old and ERV was most commonly found in mixed infection with hMPV (230/373, 56%) across all age groups. The proportion of mixed-infection vs. mono-infection was highest for ADV (46%), followed by CRV 229E (32%), CRV HKU1 (31%), CRV NL63 (28%), CRV OC43 (23%), PIV (20%), RSV (17%), hMPV (15%) and ERV (13%). hMPV was significantly more likely to be identified in mono infection as compared with ADV, CRV, PIV, and RSV with the exception of ERV [p<0.05]. PMID:23202503

  2. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray.

    PubMed

    Zhu, Heng; Hu, Shaohui; Jona, Ghil; Zhu, Xiaowei; Kreiswirth, Nate; Willey, Barbara M; Mazzulli, Tony; Liu, Guozhen; Song, Qifeng; Chen, Peng; Cameron, Mark; Tyler, Andrea; Wang, Jian; Wen, Jie; Chen, Weijun; Compton, Susan; Snyder, Michael

    2006-03-14

    To monitor severe acute respiratory syndrome (SARS) infection, a coronavirus protein microarray that harbors proteins from SARS coronavirus (SARS-CoV) and five additional coronaviruses was constructed. These microarrays were used to screen approximately 400 Canadian sera from the SARS outbreak, including samples from confirmed SARS-CoV cases, respiratory illness patients, and healthcare professionals. A computer algorithm that uses multiple classifiers to predict samples from SARS patients was developed and used to predict 206 sera from Chinese fever patients. The test assigned patients into two distinct groups: those with antibodies to SARS-CoV and those without. The microarray also identified patients with sera reactive against other coronavirus proteins. Our results correlated well with an indirect immunofluorescence test and demonstrated that viral infection can be monitored for many months after infection. We show that protein microarrays can serve as a rapid, sensitive, and simple tool for large-scale identification of viral-specific antibodies in sera.

  3. Regulation of Stress Responses and Translational Control by Coronavirus

    PubMed Central

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  4. Impact of human bocavirus on children and their families.

    PubMed

    Esposito, Susanna; Bosis, Samantha; Niesters, Hubert G M; Tremolati, Elena; Sabatini, Caterina; Porta, Alessandro; Fossali, Emilio; Osterhaus, Albert D M E; Principi, Nicola

    2008-04-01

    This study was planned to investigate the prevalence and clinical features of the illnesses associated with human bocavirus (hBoV) in children with acute disease. We prospectively enrolled all subjects aged less than 15 years attending an emergency room in Milan, Italy, on Wednesdays and Sundays between 1 November 2004 and 31 March 2005 for any acute medical reason, excluding surgical diseases and trauma. Nasopharyngeal swabs were collected at admission to detect hBoV; influenza A and B viruses; respiratory syncytial virus; human metapneumovirus; parainfluenza viruses 1, 2, 3, and 4; rhinovirus; adenovirus; and coronaviruses 229E, OC43, NL63, and HKU1 by real-time PCR. Among the 1,332 enrolled children, hBoV was the fifth most frequently detected virus (7.4%). The rate of hBoV coinfections with other viruses was significantly higher than for the other viruses (50.5% versus 27.5%; P < 0.0001). Eighty-nine of the 99 hBoV-positive children (89.9%) had a respiratory tract infection, and 10 (10.1%) had gastroenteritis. hBoV coinfections had a significantly greater clinical and socioeconomic impact on the infected children and their households than hBoV infection alone. In conclusion, these findings show that the role of hBoV infection alone seems marginal in children attending an emergency room for acute disease; its clinical and socioeconomic importance becomes relevant only when it is associated with other viruses. PMID:18287315

  5. Detection of Severe Acute Respiratory Syndrome-Like, Middle East Respiratory Syndrome-Like Bat Coronaviruses and Group H Rotavirus in Faeces of Korean Bats.

    PubMed

    Kim, H K; Yoon, S-W; Kim, D-J; Koo, B-S; Noh, J Y; Kim, J H; Choi, Y G; Na, W; Chang, K-T; Song, D; Jeong, D G

    2016-08-01

    Bat species around the world have recently been recognized as major reservoirs of several zoonotic viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), Nipah virus and Hendra virus. In this study, consensus primer-based reverse transcriptase polymerase chain reactions (RT-PCRs) and high-throughput sequencing were performed to investigate viruses in bat faecal samples collected at 11 natural bat habitat sites from July to December 2015 in Korea. Diverse coronaviruses were first detected in Korean bat faeces, including alphacoronaviruses, SARS-CoV-like and MERS-CoV-like betacoronaviruses. In addition, we identified a novel bat rotavirus belonging to group H rotavirus which has only been described in human and pigs until now. Therefore, our results suggest the need for continuing surveillance and additional virological studies in domestic bat. PMID:27213718

  6. Characterization of pantropic canine coronavirus from Brazil.

    PubMed

    Pinto, Luciane D; Barros, Iracema N; Budaszewski, Renata F; Weber, Matheus N; Mata, Helena; Antunes, Jéssica R; Boabaid, Fabiana M; Wouters, Angélica T B; Driemeier, David; Brandão, Paulo E; Canal, Cláudio W

    2014-12-01

    Characterization of canine coronavirus (CCoV) strains currently in circulation is essential for understanding viral evolution. The aim of this study was to determine the presence of pantropic CCoV type IIa in tissue samples from five puppies that died in Southern Brazil as a result of severe gastroenteritis. Reverse-transcriptase PCR was used to generate amplicons for sequence analysis. Phylogenetic analysis of the CCoV-IIa strains indicated that they were similar to those found in other countries, suggesting a common ancestor of these Brazilian isolates. This is the first report of pantropic CCoV-II in puppies from Latin America and our findings highlight that CCoV should be included as a differential diagnosis when dogs present with clinical signs and lesions typically seen with canine parvovirus infection.

  7. [New coronavirus infection: new challenges, new legacies].

    PubMed

    Cabrera-Gaytán, David Alejandro; Vargas-Valerio, Alfredo; Grajales-Muñiz, Concepción

    2014-01-01

    Introducción: emergió una nueva enfermedad por coronavirus. Su historia natural y sus determinantes todavía se están investigando. Se carece de una publicación que estudie todos los casos identificados en el mundo, por lo que el objetivo de este artículo estriba en describir los casos y defunciones por el nuevo coronavirus. Métodos: se revisaron las publicaciones en línea de la Organización Mundial de la Salud, del Centro Europeo para el Control y Prevención de Enfermedades y de la Eurosurveillance. Se realizó un análisis descriptivo de los casos, se calcularon los límites para proporciones con un alfa del 0.05 por prueba de Wilson y una prueba t de Student para diferencia de medias. Resultados: son 17 casos confirmados y 11 defunciones en varios países de Asia y Europa; predominaron los pacientes masculinos. La tasa de letalidad fue de 64.70 %; los que fallecieron se hospitalizaron cinco días después de los primeros síntomas. Se carece de publicaciones que describan la historia natural de la enfermedad; sin embargo, lo descrito en las publicaciones de Europa coincide con los resultados de este estudio. Conclusión: es necesario continuar con la vigilancia epidemiológica y la realización de nuevos estudios para evaluar el impacto de esta enfermedad en la salud pública internacional.

  8. NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV).

    PubMed

    Huang, Yi-Ping; Cho, Chao-Cheng; Chang, Chi-Fon; Hsu, Chun-Hua

    2016-10-01

    The newly emerging human pathogen, Middle East respiratory syndrome coronavirus (MERS-CoV), contains a macro domain in the highly conserved N-terminal region of non-structural protein 3. Intense research has shown that macro domains bind ADP-ribose and other derivatives, but it still remains intangible about their exact function. In this study we report the preliminary structural analysis through solution NMR spectroscopy of the MERS-CoV macro domain. The near complete NMR assignments of MERS-CoV macro domain provide the basis for subsequent structural and biochemical investigation in the context of protein function.

  9. Coronavirus genotype diversity and prevalence of infection in wild carnivores in the Serengeti National Park, Tanzania.

    PubMed

    Goller, Katja V; Fickel, Jörns; Hofer, Heribert; Beier, Sandra; East, Marion L

    2013-04-01

    Knowledge of coronaviruses in wild carnivores is limited. This report describes coronavirus genetic diversity, species specificity and infection prevalence in three wild African carnivores. Coronavirus RNA was recovered from fresh feces from spotted hyena and silver-backed jackal, but not bat-eared fox. Analysis of sequences of membrane (M) and spike (S) gene fragments revealed strains in the genus Alphacoronavirus, including three distinct strains in hyenas and one distinct strain in a jackal. Coronavirus RNA prevalence was higher in feces from younger (17 %) than older (3 %) hyenas, highlighting the importance of young animals for coronavirus transmission in wild carnivores. PMID:23212740

  10. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence.

    PubMed

    Stoddart, C A; Scott, F W

    1989-01-01

    Cats infected with virulent feline coronavirus strains develop feline infectious peritonitis, an invariably fatal, immunologically mediated disease; avirulent strains cause either clinically inapparent infection or mild enteritis. Four virulent coronavirus isolates and five avirulent isolates were assessed by immunofluorescence and virus titration for their ability to infect and replicate in feline peritoneal macrophages in vitro. The avirulent coronaviruses infected fewer macrophages, produced lower virus titers, were less able to sustain viral replication, and spread less efficiently to other susceptible macrophages than the virulent coronaviruses. Thus, the intrinsic resistance of feline macrophages may play a pivotal role in the outcome of coronavirus infection in vivo.

  11. Coronavirus genotype diversity and prevalence of infection in wild carnivores in the Serengeti National Park, Tanzania.

    PubMed

    Goller, Katja V; Fickel, Jörns; Hofer, Heribert; Beier, Sandra; East, Marion L

    2013-04-01

    Knowledge of coronaviruses in wild carnivores is limited. This report describes coronavirus genetic diversity, species specificity and infection prevalence in three wild African carnivores. Coronavirus RNA was recovered from fresh feces from spotted hyena and silver-backed jackal, but not bat-eared fox. Analysis of sequences of membrane (M) and spike (S) gene fragments revealed strains in the genus Alphacoronavirus, including three distinct strains in hyenas and one distinct strain in a jackal. Coronavirus RNA prevalence was higher in feces from younger (17 %) than older (3 %) hyenas, highlighting the importance of young animals for coronavirus transmission in wild carnivores.

  12. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin.

    PubMed

    Ren, Wuze; Qu, Xiuxia; Li, Wendong; Han, Zhenggang; Yu, Meng; Zhou, Peng; Zhang, Shu-Yi; Wang, Lin-Fa; Deng, Hongkui; Shi, Zhengli

    2008-02-01

    Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.

  13. Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control

    PubMed Central

    Durai, Prasannavenkatesh; Batool, Maria; Shah, Masaud; Choi, Sangdun

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes high fever, cough, acute respiratory tract infection and multiorgan dysfunction that may eventually lead to the death of the infected individuals. MERS-CoV is thought to be transmitted to humans through dromedary camels. The occurrence of the virus was first reported in the Middle East and it subsequently spread to several parts of the world. Since 2012, about 1368 infections, including ~487 deaths, have been reported worldwide. Notably, the recent human-to-human ‘superspreading' of MERS-CoV in hospitals in South Korea has raised a major global health concern. The fatality rate in MERS-CoV infection is four times higher compared with that of the closely related severe acute respiratory syndrome coronavirus infection. Currently, no drug has been clinically approved to control MERS-CoV infection. In this study, we highlight the potential drug targets that can be used to develop anti-MERS-CoV therapeutics. PMID:26315600

  14. MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2.

    PubMed

    Yeung, Man-Lung; Yao, Yanfeng; Jia, Lilong; Chan, Jasper F W; Chan, Kwok-Hung; Cheung, Kwok-Fan; Chen, Honglin; Poon, Vincent K M; Tsang, Alan K L; To, Kelvin K W; Yiu, Ming-Kwong; Teng, Jade L L; Chu, Hin; Zhou, Jie; Zhang, Qing; Deng, Wei; Lau, Susanna K P; Lau, Johnson Y N; Woo, Patrick C Y; Chan, Tak-Mao; Yung, Susan; Zheng, Bo-Jian; Jin, Dong-Yan; Mathieson, Peter W; Qin, Chuan; Yuen, Kwok-Yung

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes sporadic zoonotic disease and healthcare-associated outbreaks in human. MERS is often complicated by acute respiratory distress syndrome (ARDS) and multi-organ failure(1,2). The high incidence of renal failure in MERS is a unique clinical feature not often found in other human coronavirus infections(3,4). Whether MERS-CoV infects the kidney and how it triggers renal failure are not understood(5,6). Here, we demonstrated renal infection and apoptotic induction by MERS-CoV in human ex vivo organ culture and a nonhuman primate model. High-throughput analysis revealed that the cellular genes most significantly perturbed by MERS-CoV have previously been implicated in renal diseases. Furthermore, MERS-CoV induced apoptosis through upregulation of Smad7 and fibroblast growth factor 2 (FGF2) expression in both kidney and lung cells. Conversely, knockdown of Smad7 effectively inhibited MERS-CoV replication and protected cells from virus-induced cytopathic effects. We further demonstrated that hyperexpression of Smad7 or FGF2 induced a strong apoptotic response in kidney cells. Common marmosets infected by MERS-CoV developed ARDS and disseminated infection in kidneys and other organs. Smad7 and FGF2 expression were elevated in the lungs and kidneys of the infected animals. Our results provide insights into the pathogenesis of MERS-CoV and host targets for treatment. PMID:27572168

  15. The nsp1, nsp13, and M Proteins Contribute to the Hepatotropism of Murine Coronavirus JHM.WU

    PubMed Central

    Zhang, Rong; Li, Yize; Cowley, Timothy J.; Steinbrenner, Adam D.; Phillips, Judith M.; Yount, Boyd L.; Baric, Ralph S.

    2015-01-01

    ABSTRACT Mouse hepatitis virus (MHV) isolates JHM.WU and JHM.SD promote severe central nervous system disease. However, while JHM.WU replicates robustly and induces hepatitis, JHM.SD fails to replicate or induce pathology in the liver. These two JHM variants encode homologous proteins with few polymorphisms, and little is known about which viral proteins(s) is responsible for the liver tropism of JHM.WU. We constructed reverse genetic systems for JHM.SD and JHM.WU and, utilizing these full-length cDNA clones, constructed chimeric viruses and mapped the virulence factors involved in liver tropism. Exchanging the spike proteins of the two viruses neither increased replication of JHM.SD in the liver nor attenuated JHM.WU. By further mapping, we found that polymorphisms in JHM.WU structural protein M and nonstructural replicase proteins nsp1 and nsp13 are essential for liver pathogenesis. M protein and nsp13, the helicase, of JHM.WU are required for efficient replication in vitro and in the liver in vivo. The JHM.SD nsp1 protein contains a K194R substitution of Lys194, a residue conserved among all other MHV strains. The K194R polymorphism has no effect on in vitro replication but influences hepatotropism, and introduction of R194K into JHM.SD promotes replication in the liver. Conversely, a K194R substitution in nsp1 of JHM.WU or A59, another hepatotropic strain, significantly attenuates replication of each strain in the liver and increases IFN-β expression in macrophages in culture. Our data indicate that both structural and nonstructural proteins contribute to MHV liver pathogenesis and support previous reports that nsp1 is a Betacoronavirus virulence factor. IMPORTANCE The Betacoronavirus genus includes human pathogens, some of which cause severe respiratory disease. The spread of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) into human populations demonstrates the zoonotic potential of

  16. Genotyping coronaviruses associated with feline infectious peritonitis

    PubMed Central

    Lewis, Catherine S.; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R.

    2015-01-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP. PMID:25667330

  17. Use of heliox delivered via high-flow nasal cannula to treat an infant with coronavirus-related respiratory infection and severe acute air-flow obstruction.

    PubMed

    Morgan, Sherwin E; Vukin, Kirissa; Mosakowski, Steve; Solano, Patti; Stanton, Lolita; Lester, Lucille; Lavani, Romeen; Hall, Jesse B; Tung, Avery

    2014-11-01

    Heliox, a helium-oxygen gas mixture, has been used for many decades to treat obstructive pulmonary disease. The lower density and higher viscosity of heliox relative to nitrogen-oxygen mixtures can significantly reduce airway resistance when an anatomic upper air-flow obstruction is present and gas flow is turbulent. Clinically, heliox can decrease airway resistance in acute asthma in adults and children and in COPD. Heliox may also enhance the bronchodilating effects of β-agonist administration for acute asthma. Respiratory syndromes caused by coronavirus infections in humans range in severity from the common cold to severe acute respiratory syndrome associated with human coronavirus OC43 and other viral strains. In infants, coronavirus infection can cause bronchitis, bronchiolitis, and pneumonia in variable combinations and can produce enough air-flow obstruction to cause respiratory failure. We describe a case of coronavirus OC43 infection in an infant with severe acute respiratory distress treated with heliox inhalation to avoid intubation. PMID:25118308

  18. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores.

    PubMed Central

    Bell, Diana; Roberton, Scott; Hunter, Paul R

    2004-01-01

    The search for animal host origins of severe acute respiratory syndrome (SARS) coronavirus has so far remained focused on wildlife markets, restaurants and farms within China. A significant proportion of this wildlife enters China through an expanding regional network of illegal, international wildlife trade. We present the case for extending the search for ancestral coronaviruses and their hosts across international borders into countries such as Vietnam and Lao People's Democratic Republic, where the same guilds of species are found on sale in similar wildlife markets or food outlets. The three species that have so far been implicated, a viverrid, a mustelid and a canid, are part of a large suite of small carnivores distributed across this region currently overexploited by this international wildlife trade. A major lesson from SARS is that the underlying roots of newly emergent zoonotic diseases may lie in the parallel biodiversity crisis of massive species loss as a result of overexploitation of wild animal populations and the destruction of their natural habitats by increasing human populations. To address these dual threats to the long-term future of biodiversity, including man, requires a less anthropocentric and more interdisciplinary approach to problems that require the combined research expertise of ecologists, conservation biologists, veterinarians, epidemiologists, virologists, as well as human health professionals. PMID:15306396

  19. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores.

    PubMed

    Bell, Diana; Roberton, Scott; Hunter, Paul R

    2004-07-29

    The search for animal host origins of severe acute respiratory syndrome (SARS) coronavirus has so far remained focused on wildlife markets, restaurants and farms within China. A significant proportion of this wildlife enters China through an expanding regional network of illegal, international wildlife trade. We present the case for extending the search for ancestral coronaviruses and their hosts across international borders into countries such as Vietnam and Lao People's Democratic Republic, where the same guilds of species are found on sale in similar wildlife markets or food outlets. The three species that have so far been implicated, a viverrid, a mustelid and a canid, are part of a large suite of small carnivores distributed across this region currently overexploited by this international wildlife trade. A major lesson from SARS is that the underlying roots of newly emergent zoonotic diseases may lie in the parallel biodiversity crisis of massive species loss as a result of overexploitation of wild animal populations and the destruction of their natural habitats by increasing human populations. To address these dual threats to the long-term future of biodiversity, including man, requires a less anthropocentric and more interdisciplinary approach to problems that require the combined research expertise of ecologists, conservation biologists, veterinarians, epidemiologists, virologists, as well as human health professionals.

  20. Identification of murine CD8 T cell epitopes in codon-optimized SARS-associated coronavirus spike protein.

    PubMed

    Zhi, Yan; Kobinger, Gary P; Jordan, Heather; Suchma, Katie; Weiss, Susan R; Shen, Hao; Schumer, Gregory; Gao, Guangping; Boyer, Julie L; Crystal, Ronald G; Wilson, James M

    2005-04-25

    The causative agent of severe acute respiratory syndrome (SARS) has been identified as a new type of coronavirus, SARS-associated coronavirus (SARS-CoV). CD8 T cells play an important role in controlling diseases caused by other coronaviruses and in mediating vaccine-induced protective immunity in corresponding animal models. The spike protein, a main surface antigen of SARS-CoV, is one of the most important antigen candidates for vaccine design. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding codon-optimized SARS-CoV spike protein. CD8 T-cell responses were mapped to two H-2(b)-restricted epitopes (S436-443 and S525-532) and one H-2(d)-restricted epitope (S366-374). The identification of these epitopes will facilitate the evaluation of vaccine strategies in murine models of SARS-CoV infection. Furthermore, codon and promoter optimizations can greatly enhance the overall immunogenicity of spike protein in the context of replication-defective human and simian adenoviral vaccine carriers. The optimized recombinant adenoviral vaccine vectors encoding spike can generate robust antigen-specific cellular immunity in mice and may potentially be useful for control of SARS-CoV infection.

  1. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis.

    PubMed

    Haijema, Bert Jan; Volders, Haukeline; Rottier, Peter J M

    2004-04-01

    Feline infectious peritonitis (FIP) is a fatal immunity-mediated disease caused by mutants of a ubiquitous coronavirus. Since previous attempts to protect cats under laboratory and field conditions have been largely unsuccessful, we used our recently developed system of reverse genetics (B. J. Haijema, H. Volders, and P. J. M. Rottier, J. Virol. 77:4528-4538, 2003) for the development of a modified live FIP vaccine. With this objective, we deleted the group-specific gene cluster open reading frame 3abc or 7ab and obtained deletion mutant viruses that not only multiplied well in cell culture but also showed an attenuated phenotype in the cat. At doses at which the wild-type virus would be fatal, the mutants with gene deletions did not cause any clinical symptoms. They still induced an immune response, however, as judged from the high levels of virus-neutralizing antibodies. The FIP virus (FIPV) mutant lacking the 3abc cluster and, to a lesser extent, the mutant missing the 7ab cluster, protected cats against a lethal homologous challenge; no protection was obtained with the mutant devoid of both gene clusters. Our studies show that the deletion of group-specific genes from the coronavirus genome results in live attenuated candidate vaccines against FIPV. More generally, our approach may allow the development of vaccines against infections with other pathogenic coronaviruses, including that causing severe acute respiratory syndrome in humans.

  2. Potential Broad Spectrum Inhibitors of the Coronavirus 3CLpro: A Virtual Screening and Structure-Based Drug Design Study

    PubMed Central

    Berry, Michael; Fielding, Burtram C.; Gamieldien, Junaid

    2015-01-01

    Human coronaviruses represent a significant disease burden; however, there is currently no antiviral strategy to combat infection. The outbreak of severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) less than 10 years later demonstrates the potential of coronaviruses to cross species boundaries and further highlights the importance of identifying novel lead compounds with broad spectrum activity. The coronavirus 3CLpro provides a highly validated drug target and as there is a high degree of sequence homology and conservation in main chain architecture the design of broad spectrum inhibitors is viable. The ZINC drugs-now library was screened in a consensus high-throughput pharmacophore modeling and molecular docking approach by Vina, Glide, GOLD and MM-GBSA. Molecular dynamics further confirmed results obtained from structure-based techniques. A highly defined hit-list of 19 compounds was identified by the structure-based drug design methodologies. As these compounds were extensively validated by a consensus approach and by molecular dynamics, the likelihood that at least one of these compounds is bioactive is excellent. Additionally, the compounds segregate into 15 significantly dissimilar (p < 0.05) clusters based on shape and features, which represent valuable scaffolds that can be used as a basis for future anti-coronaviral inhibitor discovery experiments. Importantly though, the enriched subset of 19 compounds identified from the larger library has to be validated experimentally. PMID:26694449

  3. Efficacy of various disinfectants against SARS coronavirus.

    PubMed

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  4. A Chimeric Virus-Mouse Model System for Evaluating the Function and Inhibition of Papain-Like Proteases of Emerging Coronaviruses

    PubMed Central

    Deng, Xufang; Agnihothram, Sudhakar; Mielech, Anna M.; Nichols, Daniel B.; Wilson, Michael W.; StJohn, Sarah E.; Larsen, Scott D.; Mesecar, Andrew D.; Lenschow, Deborah J.; Baric, Ralph S.

    2014-01-01

    system to facilitate evaluation of inhibitors directed against highly pathogenic coronaviruses. We used this system to demonstrate the in vivo efficacy of an inhibitor of the papain-like protease of severe acute respiratory syndrome coronavirus. Furthermore, we demonstrate that the chimeric-virus system can be adapted to study the proteases of emerging human pathogens, such as Middle East respiratory syndrome coronavirus. This system provides an important tool to rapidly assess the efficacy of protease inhibitors targeting existing and emerging human pathogens, as well as other enzymes capable of removing ISG15 from cellular proteins. PMID:25100850

  5. Middle East Respiratory Syndrome Coronavirus Intra-Host Populations Are Characterized by Numerous High Frequency Variants

    PubMed Central

    Borucki, Monica K.; Lao, Victoria; Hwang, Mona; Gardner, Shea; Adney, Danielle; Munster, Vincent; Bowen, Richard; Allen, Jonathan E.

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen related to SARS virus. In vitro studies indicate this virus may have a broad host range suggesting an increased pandemic potential. Genetic and epidemiological evidence indicate camels serve as a reservoir for MERS virus but the mechanism of cross species transmission is unclear and many questions remain regarding the susceptibility of humans to infection. Deep sequencing data was obtained from the nasal samples of three camels that had been experimentally infected with a human MERS-CoV isolate. A majority of the genome was covered and average coverage was greater than 12,000x depth. Although only 5 mutations were detected in the consensus sequences, 473 intrahost single nucleotide variants were identified. Many of these variants were present at high frequencies and could potentially influence viral phenotype and the sensitivity of detection assays that target these regions for primer or probe binding. PMID:26790002

  6. Coinfection of pigs with Porcine Respiratory Coronavirus and Bordetella bronchisphica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coinfection with two or more pathogens is a common occurrence in respiratory diseases of most species. The manner in which multiple pathogens interact is not always straightforward, however. Bordetella bronchiseptica and porcine respiratory coronavirus (PRCV) are respiratory pathogens of pigs whos...

  7. Construction of murine coronavirus mutants containing interspecies chimeric nucleocapsid proteins.

    PubMed Central

    Peng, D; Koetzner, C A; McMahon, T; Zhu, Y; Masters, P S

    1995-01-01

    Targeted RNA recombination was used to construct mouse hepatitis virus (MHV) mutants containing chimeric nucleocapsid (N) protein genes in which segments of the bovine coronavirus N gene were substituted in place of their corresponding MHV sequences. This defined portions of the two N proteins that, despite evolutionary divergence, have remained functionally equivalent. These regions included most of the centrally located RNA-binding domain and two putative spacers that link the three domains of the N protein. By contrast, the amino terminus of N, the acidic carboxy-terminal domain, and a serine- and arginine-rich segment of the central domain could not be transferred from bovine coronavirus to MHV, presumably because these parts of the molecule participate in protein-protein interactions that are specific for each virus (or, possibly, each host). Our results demonstrate that targeted recombination can be used to make extensive substitutions in the coronavirus genome and can generate recombinants that could not otherwise be made between two viruses separated by a species barrier. The implications of these findings for N protein structure and function as well as for coronavirus RNA recombination are discussed. PMID:7636993

  8. Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Iblan, Ibrahim; Rha, Brian; Alqasrawi, Sultan; Haddadin, Aktham; Al Nsour, Mohannad; Alsanouri, Tarek; Ali, Sami Sheikh; Harcourt, Jennifer; Miao, Congrong; Tamin, Azaibi; Gerber, Susan I.; Haynes, Lia M.; Al Abdallat, Mohammad Mousa

    2016-01-01

    To determine how long antibodies against Middle East respiratory syndrome coronavirus persist, we measured long-term antibody responses among persons serologically positive or indeterminate after a 2012 outbreak in Jordan. Antibodies, including neutralizing antibodies, were detectable in 6 (86%) of 7 persons for at least 34 months after the outbreak. PMID:27332149

  9. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets

    PubMed Central

    Yang, Yang; Ye, Fei; Zhu, Na; Wang, Wenling; Deng, Yao; Zhao, Zhengdong; Tan, Wenjie

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel and highly pathogenic human coronavirus and has quickly spread to other countries in the Middle East, Europe, North Africa and Asia since 2012. Previous studies have shown that MERS-CoV ORF4b antagonizes the early antiviral alpha/beta interferon (IFN-α/β) response, which may significantly contribute to MERS-CoV pathogenesis; however, the underlying mechanism is poorly understood. Here, we found that ORF4b in the cytoplasm could specifically bind to TANK binding kinase 1 (TBK1) and IκB kinase epsilon (IKKε), suppress the molecular interaction between mitochondrial antiviral signaling protein (MAVS) and IKKε, and inhibit IFN regulatory factor 3 (IRF3) phosphorylation and subsequent IFN-β production. Further analysis showed that ORF4b could also inhibit IRF3 and IRF7-induced production of IFN-β, whereas deletion of the nuclear localization signal of ORF4b abrogated its ability to inhibit IRF3 and IRF7-induced production of IFN-β, but not IFN-β production induced by RIG-I, MDA5, MAVS, IKKε, and TBK-1, suggesting that ORF4b could inhibit the induction of IFN-β in both the cytoplasm and nucleus. Collectively, these results indicate that MERS-CoV ORF4b inhibits the induction of type I IFN through a direct interaction with IKKε/TBK1 in the cytoplasm, and also in the nucleus with unknown mechanism. Viruses have evolved multiple strategies to evade or thwart a host’s antiviral responses. A novel human coronavirus (HCoV), Middle East respiratory syndrome coronavirus (MERS-CoV), is distinguished from other coronaviruses by its high pathogenicity and mortality. However, virulence determinants that distinguish MERS-CoV from other HCoVs have yet to be identified. MERS-CoV ORF4b antagonizes the early antiviral response, which may contribute to MERS-CoV pathogenesis. Here, we report the identification of the interferon (IFN) antagonism mechanism of MERS-CoV ORF4b. MERS-CoV ORF4b inhibits the production

  10. A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens.

    PubMed

    Sun, Lei; Zhang, Gui-Hong; Jiang, Jing-Wei; Fu, Jia-Dong; Ren, Tao; Cao, Wei-Sheng; Xin, Chao-An; Liao, Ming; Liu, Wen-Jun

    2007-12-01

    Coronavirus infection was investigated in apparently healthy wild peafowls in Guangdong province of China in 2003, while severe acute respiratory syndrome (SARS) broke out there. No SARS-like coronavirus had been isolated but a novel avian coronavirus strain, Peafowl/GD/KQ6/2003 (KQ6), was identified. Sequence analysis revealed that KQ6 was an avian coronavirus infectious bronchitis virus (IBV), a member of coronavirus in group 3. The genome sequence of KQ6 had extremely high degree of identity with that of a Massachusetts prototype IBV M41. KQ6 was pathogenic to chickens but non-pathogenic to peafowls under experimental conditions. Seventeen out of fifty-four (31.48%) peafowl serum samples were tested positive for specific antibodies against IBV. Present results indicate that the peafowl isolate KQ6 is a Massachusetts prototype like coronavirus strain which undergoes few genetic changes and peafowl might have acted as a natural reservoir of IBV for very long time.

  11. Trafficking motifs in the SARS-coronavirus nucleocapsid protein

    SciTech Connect

    You, Jae-Hwan; Reed, Mark L.; Hiscox, Julian A. . E-mail: j.a.hiscox@leeds.ac.uk

    2007-07-13

    The severe acute respiratory syndrome-coronavirus nucleocapsid (N) protein is involved in virus replication and modulation of cell processes. In this latter respect control may in part be achieved through the sub-cellular localisation of the protein. N protein predominately localises in the cytoplasm (the site of virus replication and assembly) but also in the nucleus/nucleolus. Using a combination of live-cell and confocal microscopy coupled to mutagenesis we identified a cryptic nucleolar localisation signal in the central part of the N protein. In addition, based on structural comparison to the avian coronavirus N protein, a nuclear export signal was identified in the C-terminal region of the protein.

  12. Coronavirus phylogeny based on triplets of nucleic acids bases

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Liu, Yanshu; Li, Renfa; Zhu, Wen

    2006-04-01

    We considered the fully overlapping triplets of nucleotide bases and proposed a 2D graphical representation of protein sequences consisting of 20 amino acids and a stop code. Based on this 2D graphical representation, we outlined a new approach to analyze the phylogenetic relationships of coronaviruses by constructing a covariance matrix. The evolutionary distances are obtained through measuring the differences among the two-dimensional curves.

  13. Adenosine Deaminase Acts as a Natural Antagonist for Dipeptidyl Peptidase 4-Mediated Entry of the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Raj, V. Stalin; Smits, Saskia L.; Provacia, Lisette B.; van den Brand, Judith M. A.; Wiersma, Lidewij; Ouwendijk, Werner J. D.; Bestebroer, Theo M.; Spronken, Monique I.; van Amerongen, Geert; Rottier, Peter J. M.; Fouchier, Ron A. M.; Bosch, Berend Jan; Osterhaus, Albert D.M.E.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection. PMID:24257613

  14. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus.

    PubMed

    Raj, V Stalin; Smits, Saskia L; Provacia, Lisette B; van den Brand, Judith M A; Wiersma, Lidewij; Ouwendijk, Werner J D; Bestebroer, Theo M; Spronken, Monique I; van Amerongen, Geert; Rottier, Peter J M; Fouchier, Ron A M; Bosch, Berend Jan; Osterhaus, Albert D M E; Haagmans, Bart L

    2014-02-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection. PMID:24257613

  15. NCI Researchers Discover Exceptionally Potent Antibodies with Potential for Prophylaxis and Therapy of MERS-Coronavirus Infections | Poster

    Cancer.gov

    By Andrea Frydl, Contributing Writer In a recent article published in the Journal of Virology, Tianlei Ying, Ph.D., Dimiter Dimitrov, Ph.D., and their colleagues in the Laboratory of Experimental Immunology (LEI), Cancer and Inflammation Program, NCI Center for Cancer Research, reported the identification of three human monoclonal antibodies (m336, m337, and m338) that target the part of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) that is responsible for binding to its receptor. These antibodies are exceptionally potent inhibitors of MERS-CoV infection and also provide a basis for creating a future MERS-CoV vaccine.

  16. Role of sialic acids in feline enteric coronavirus infections.

    PubMed

    Desmarets, Lowiese M B; Theuns, Sebastiaan; Roukaerts, Inge D M; Acar, Delphine D; Nauwynck, Hans J

    2014-09-01

    To initiate infections, many coronaviruses use sialic acids, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily glycosylated mucus layer. In the present study, the role of sialic acids in serotype I feline enteric coronavirus (FECV) infections was studied in feline intestinal epithelial cell cultures. Treatment of cells with neuraminidase (NA) enhanced infection efficiency, showing that terminal sialic acid residues on the cell surface were not receptor determinants and even hampered efficient virus-receptor engagement. Knowing that NA treatment of coronaviruses can unmask viral sialic acid binding activity, replication of untreated and NA-treated viruses was compared, showing that NA treatment of the virus enhanced infectivity in untreated cells, but was detrimental in NA-treated cells. By using sialylated compounds as competitive inhibitors, it was demonstrated that sialyllactose (2,6-α-linked over 2,3-α-linked) notably reduced infectivity of NA-treated viruses, whereas bovine submaxillary mucin inhibited both treated and untreated viruses. In desialylated cells, however, viruses were less prone to competitive inhibition with sialylated compounds. In conclusion, this study demonstrated that FECV had a sialic acid binding capacity, which was partially masked by virus-associated sialic acids, and that attachment to sialylated compounds could facilitate enterocyte infections. However, sialic acid binding was not a prerequisite for the initiation of infection and virus-receptor engagement was even more efficient after desialylation of cells, indicating that FECV requires sialidases for efficient enterocyte infections.

  17. Infection, Replication, and Transmission of Middle East Respiratory Syndrome Coronavirus in Alpacas

    PubMed Central

    Adney, Danielle R.; Bielefeldt-Ohmann, Helle; Hartwig, Airn E.

    2016-01-01

    Middle East respiratory syndrome coronavirus is a recently emerged pathogen associated with severe human disease. Zoonotic spillover from camels appears to play a major role in transmission. Because of logistic difficulties in working with dromedaries in containment, a more manageable animal model would be desirable. We report shedding and transmission of this virus in experimentally infected alpacas (n = 3) or those infected by contact (n = 3). Infectious virus was detected in all infected animals and in 2 of 3 in-contact animals. All alpacas seroconverted and were rechallenged 70 days after the original infection. Experimentally infected animals were protected against reinfection, and those infected by contact were partially protected. Necropsy specimens from immunologically naive animals (n = 3) obtained on day 5 postinfection showed virus in the upper respiratory tract. These data demonstrate efficient virus replication and animal-to-animal transmission and indicate that alpacas might be useful surrogates for camels in laboratory studies. PMID:27070385

  18. Vaccines to prevent severe acute respiratory syndrome coronavirus-induced disease

    PubMed Central

    Enjuanes, Luis; DeDiego, Marta L.; Álvarez, Enrique; Deming, Damon; Sheahan, Tim; Baric, Ralph

    2009-01-01

    An important effort has been performed after the emergence of severe acute respiratory syndrome (SARS) epidemic in 2003 to diagnose and prevent virus spreading. Several types of vaccines have been developed including inactivated viruses, subunit vaccines, virus-like particles (VLPs), DNA vaccines, heterologous expression systems, and vaccines derived from SARS-CoV genome by reverse genetics. This review describes several aspects essential to develop SARS-CoV vaccines, such as the correlates of protection, virus serotypes, vaccination side effects, and bio-safeguards that can be engineered into recombinant vaccine approaches based on the SARS-CoV genome. The production of effective and safe vaccines to prevent SARS has led to the development of promising vaccine candidates, in contrast to the design of vaccines for other coronaviruses, that in general has been less successful. After preclinical trials in animal models, efficacy and safety evaluation of the most promising vaccine candidates described has to be performed in humans. PMID:17416434

  19. To sense or not to sense viral RNA--essentials of coronavirus innate immune evasion.

    PubMed

    Kindler, Eveline; Thiel, Volker

    2014-08-01

    An essential function of innate immunity is to distinguish self from non-self and receptors have evolved to specifically recognize viral components and initiate the expression of antiviral proteins to restrict viral replication. Coronaviruses are RNA viruses that replicate in the host cytoplasm and evade innate immune sensing in most cell types, either passively by hiding their viral signatures and limiting exposure to sensors or actively, by encoding viral antagonists to counteract the effects of interferons. Since many cytoplasmic viruses exploit similar mechanisms of innate immune evasion, mechanistic insight into the direct interplay between viral RNA, viral RNA-processing enzymes, cellular sensors and antiviral proteins will be highly relevant to develop novel antiviral targets and to restrict important animal and human infections.

  20. Murine Coronavirus Cell Type Dependent Interaction with the Type I Interferon Response

    PubMed Central

    Rose, Kristine M.; Weiss, Susan R.

    2009-01-01

    Coronaviruses infect many species of animal including humans, causing acute and chronic diseases of many organ systems. Murine coronavirus, mouse hepatitis virus (MHV) infection of the mouse, provides animal models for the study of central nervous system disease, including encephalitis and demyelinating diseases such as Multiple Sclerosis and for hepatitis. While there are many studies of the adaptive immune response to MHV, there has until recently been scant information on the type I interferon (IFN) response to MHV. The relationship between MHV and the IFN-α/β response is paradoxical. While the type I IFN response is a crucial aspect of host defense against MHV in its natural host, there is little if any induction of IFN following infection of mouse fibroblast cell lines in vitro. Furthermore, MHV is relatively resistant to the antiviral effects of IFN-α/β in mouse fibroblast cell lines and in human 293T cells. MHV can, under some circumstances, compromise the antiviral effects of IFN signaling. The nucleocapsid protein as well as the nsp1 and nsp3 proteins of MHV has been reported to have IFN antagonist activity. However, in primary cell types such as plasmacytoid dendritic cells (pDC) and macrophages, IFN is induced by MHV infection and an antiviral state is established. Other primary cell types such as neurons, astrocytes and hepatocytes fail to produce IFN following infection and, in vivo, likely depend on IFN produced by pDCs and macrophages for protection from MHV. Thus MHV induction of IFN-α/β and the ability to induce an antiviral state in response to interferon is extremely cell type dependent. IFN induced protection from MHV pathogenesis likely requires the orchestrated activities of several cell types, however, the cell types involved in limiting MHV replication may be different in the liver and in the immune privileged CNS. PMID:20221421

  1. A synthetic consensus anti–spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates

    PubMed Central

    Muthumani, Karuppiah; Falzarano, Darryl; Reuschel, Emma L.; Tingey, Colleen; Flingai, Seleeke; Villarreal, Daniel O.; Wise, Megan; Patel, Ami; Izmirly, Abdullah; Aljuaid, Abdulelah; Seliga, Alecia M.; Soule, Geoff; Morrow, Matthew; Kraynyak, Kimberly A.; Khan, Amir S.; Scott, Dana P.; Feldmann, Friederike; LaCasse, Rachel; Meade-White, Kimberly; Okumura, Atsushi; Ugen, Kenneth E.; Sardesai, Niranjan Y.; Kim, J. Joseph; Kobinger, Gary; Feldmann, Heinz; Weiner, David B.

    2015-01-01

    First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen. PMID:26290414

  2. Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy.

    PubMed

    Boniotti, M Beatrice; Papetti, Alice; Lavazza, Antonio; Alborali, Giovanni; Sozzi, Enrica; Chiapponi, Chiara; Faccini, Silvia; Bonilauri, Paolo; Cordioli, Paolo; Marthaler, Douglas

    2016-01-01

    Porcine epidemic diarrhea virus (PEDV) has been detected sporadically in Italy since the 1990s. We report the phylogenetic relationship of swine enteric coronaviruses collected in Italy during 2007-2014 and identify a drastic shift in PEDV strain variability and a new swine enteric coronavirus generated by recombination of transmissible gastroenteritis virus and PEDV.

  3. Enteric disease in postweaned beef calves associated with Bovine coronavirus clade 2.

    PubMed

    Fulton, Robert W; Herd, Heather R; Sorensen, Nicholas J; Confer, Anthony W; Ritchey, Jerry W; Ridpath, Julia F; Burge, Lurinda J

    2015-01-01

    Bovine coronavirus (BoCV; Betacoronavirus 1) infections are associated with varied clinical presentations including neonatal diarrhea, winter dysentery in dairy cattle, and respiratory disease in various ages of cattle. The current report presents information on BoCV infections associated with enteric disease of postweaned beef cattle in Oklahoma. In 3 separate accessions from a single herd, 1 in 2012 and 2 in 2013, calves were observed with bloody diarrhea. One calf in 2012 died and was necropsied, and 2 calves from this herd died in 2013 and were necropsied. A third calf from another herd died and was necropsied. The gross and histologic diagnosis was acute, hemorrhagic colitis in all 4 cattle. Colonic tissues from all 4 animals were positive by fluorescent antibody testing and/or immunohistochemical staining for BoCV antigen. Bovine coronavirus was isolated in human rectal tumor cells from swabs of colon surfaces of all animals. The genomic information from a region of the S envelope region revealed BoCV clade 2. Detection of BoCV clade 2 in beef cattle in Oklahoma is consistent with recovery of BoCV clade 2 from the respiratory tract of postweaned beef calves that had respiratory disease signs or were healthy. Further investigations on the ecology of BoCV in cattle are important, as BoCV may be an emerging disease beyond the initial descriptions. Challenge studies are needed to determine pathogenicity of these strains, and to determine if current BoCV vaccines are efficacious against the BoCV clade 2 strains. PMID:25428188

  4. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities.

    PubMed

    Subissi, Lorenzo; Posthuma, Clara C; Collet, Axelle; Zevenhoven-Dobbe, Jessika C; Gorbalenya, Alexander E; Decroly, Etienne; Snijder, Eric J; Canard, Bruno; Imbert, Isabelle

    2014-09-16

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  5. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities

    PubMed Central

    Subissi, Lorenzo; Posthuma, Clara C.; Collet, Axelle; Zevenhoven-Dobbe, Jessika C.; Gorbalenya, Alexander E.; Decroly, Etienne; Snijder, Eric J.; Canard, Bruno; Imbert, Isabelle

    2014-01-01

    In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3′-5′ exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5′-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities. PMID:25197083

  6. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design

    SciTech Connect

    Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao; Xue, Fei; Wu, Zhixin; Shen, Wei; Li, Jun; Zhou, Zhe; Ding, Yi; Zhao, Qi; Zhang, Xuejun C.; Liao, Ming; Bartlam, Mark; Rao, Zihe

    2008-07-21

    Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{sup pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.

  7. Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

    PubMed Central

    Lau, Susanna K. P.; Feng, Yun; Chen, Honglin; Luk, Hayes K. H.; Yang, Wei-Hong; Li, Kenneth S. M.; Zhang, Yu-Zhen; Huang, Yi; Song, Zhi-Zhong; Chow, Wang-Ngai; Fan, Rachel Y. Y.; Ahmed, Syed Shakeel; Yeung, Hazel C.; Lam, Carol S. F.; Cai, Jian-Piao; Wong, Samson S. Y.; Chan, Jasper F. W.; Yuen, Kwok-Yung

    2015-01-01

    ABSTRACT Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka/Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS

  8. Receptor Variation and Susceptibility to Middle East Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Barlan, Arlene; Zhao, Jincun; Sarkar, Mayukh K.; Li, Kun; McCray, Paul B.; Perlman, Stanley

    2014-01-01

    ABSTRACT The Middle East respiratory syndrome coronavirus (MERS-CoV) recently spread from an animal reservoir to infect humans, causing sporadic severe and frequently fatal respiratory disease. Appropriate public health and control measures will require discovery of the zoonotic MERS coronavirus reservoirs. The relevant animal hosts are liable to be those that offer optimal MERS virus cell entry. Cell entry begins with virus spike (S) protein binding to DPP4 receptors. We constructed chimeric DPP4 receptors that have the virus-binding domains of indigenous Middle Eastern animals and assessed the activities of these receptors in supporting S protein binding and virus entry. Human, camel, and horse receptors were potent and nearly equally effective MERS virus receptors, while goat and bat receptors were considerably less effective. These patterns reflected S protein affinities for the receptors. However, even the low-affinity receptors could hypersensitize cells to infection when an S-cleaving protease(s) was present, indicating that affinity thresholds for virus entry must be considered in the context of host-cell proteolytic environments. These findings suggest that virus receptors and S protein-cleaving proteases combine in a variety of animals to offer efficient virus entry and that several Middle Eastern animals are potential reservoirs for transmitting MERS-CoV to humans. IMPORTANCE MERS is a frequently fatal disease that is caused by a zoonotic CoV. The animals transmitting MERS-CoV to humans are not yet known. Infection by MERS-CoV requires receptors and proteases on host cells. We compared the receptors of humans and Middle Eastern animals and found that human, camel, and horse receptors sensitized cells to MERS-CoV infection more robustly than goat and bat receptors. Infection susceptibility correlated with affinities of the receptors for viral spike proteins. We also found that the presence of a cell surface lung protease greatly increases susceptibility

  9. THE INTRACELLULAR CARGO RECEPTOR ERGIC-53 IS REQUIRED FOR THE PRODUCTION OF INFECTIOUS ARENAVIRUS, CORONAVIRUS, AND FILOVIRUS PARTICLES

    PubMed Central

    Klaus, Joseph; Eisenhauer, Philip; Russo, Joanne; Mason, Anne; Do, Danh; King, Benjamin; Taatjes, Douglas; Cornillez-Ty, Cromwell; Boyson, Jonathan E.; Thali, Markus; Zheng, Chunlei; Liao, Lujian; Yates, John R.; Zhang, Bin; Ballif, Bryan A.; Botten, Jason

    2013-01-01

    SUMMARY Arenaviruses and hantaviruses cause severe and often fatal diseases in humans. Little is known regarding host proteins required for their propagation. We identified human proteins that interact with the glycoproteins (GPs) of a prototypic arenavirus and hantavirus and show that the lectin ERGIC-53 - a cargo receptor required for cellular glycoprotein trafficking within the early exocytic pathway - associates with arenavirus, hantavirus, coronavirus, orthomyxovirus, and filovirus GPs. ERGIC-53 binds to arenavirus GPs through a lectin-independent mechanism, traffics to arenavirus budding sites, and is incorporated into arenavirus particles. ERGIC-53 is required for arenavirus, coronavirus, and filovirus propagation; in its absence, GP-containing virus particles form, but are noninfectious due, in part, to their inability to attach to host cells. Thus, we have identified a class of pathogen-derived ERGIC-53 ligands, a lectin-independent basis for their association with ERGIC-53, and a role for ERGIC-53 in the propagation of several highly pathogenic RNA virus families. PMID:24237698

  10. A Comparative Review of Animal Models of Middle East Respiratory Syndrome Coronavirus Infection.

    PubMed

    Baseler, L; de Wit, E; Feldmann, H

    2016-05-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) was initially isolated from a Saudi Arabian man with fatal pneumonia. Since the original case in 2012, MERS-CoV infections have been reported in >1500 humans, and the case fatality rate is currently 35%. This lineage C betacoronavirus has been reported to cause a wide range of disease severity in humans, ranging from asymptomatic to progressive fatal pneumonia that may be accompanied by renal or multiorgan failure. Although the clinical presentation of human MERS-CoV infection has been documented, many facets of this emerging disease are still unknown and could be studied with animal models. Several animal models of MERS-CoV have been developed, including New Zealand white rabbits, transduced or transgenic mice that express human dipeptidyl peptidase 4, rhesus macaques, and common marmosets. This review provides an overview of the current state of knowledge on human MERS-CoV infections, the probable origin of MERS-CoV, and the available animal models of MERS-CoV infection. Evaluation of the benefits and limitations of these models will aid in appropriate model selection for studying viral pathogenesis and transmission, as well as for testing vaccines and antivirals against MERS-CoV.

  11. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses.

    PubMed

    Sánchez, C M; Gebauer, F; Suñé, C; Mendez, A; Dopazo, J; Enjuanes, L

    1992-09-01

    Transmissible gastroenteritis virus (TGEV) is an enteropathogenic coronavirus isolated for the first time in 1946. Nonenteropathogenic porcine respiratory coronaviruses (PRCVs) have been derived from TGEV. The genetic relationship among six European PRCVs and five coronaviruses of the TGEV antigenic cluster has been determined based on their RNA sequences. The S protein of six PRCVs have an identical deletion of 224 amino acids starting at position 21. The deleted area includes the antigenic sites C and B of TGEV S glycoprotein. Interestingly, two viruses (NEB72 and TOY56) with respiratory tropism have S proteins with a size similar to the enteric viruses. NEB72 and TOY56 viruses have in the S protein 2 and 15 specific amino acid differences with the enteric viruses. Four of the residues changed (aa 219 of NEB72 isolate and aa 92, 94, and 218 of TOY56) are located within the deletion present in the PRCVs and may be involved in the receptor binding site (RBS) conferring enteric tropism to TGEVs. A second RBS used by the virus to infect ST cells might be located in a conserved area between sites A and D of the S glycoprotein, since monoclonal antibodies specific for these sites inhibit the binding of the virus to ST cells. An evolutionary tree relating 13 enteric and respiratory isolates has been proposed. According to this tree, a main virus lineage evolved from a recent progenitor virus which was circulating around 1941. From this, secondary lineages originated PUR46, NEB72, TOY56, MIL65, BR170, and the PRCVs, in this order. Least squares estimation of the origin of TGEV-related coronaviruses showed a significant constancy in the fixation of mutations with time, that is, the existence of a well-defined molecular clock. A mutation fixation rate of 7 +/- 2 x 10(-4) nucleotide substitutions per site and per year was calculated for TGEV-related viruses. This rate falls in the range reported for other RNA viruses. Point mutations and probably recombination events have

  12. The paradox of feline coronavirus pathogenesis: a review.

    PubMed

    Myrrha, Luciana Wanderley; Silva, Fernanda Miquelitto Figueira; Peternelli, Ethel Fernandes de Oliveira; Junior, Abelardo Silva; Resende, Maurício; de Almeida, Márcia Rogéria

    2011-01-01

    Feline coronavirus (FCoV) is an enveloped single-stranded RNA virus, of the family Coronaviridae and the order Nidovirales. FCoV is an important pathogen of wild and domestic cats and can cause a mild or apparently symptomless enteric infection, especially in kittens. FCoV is also associated with a lethal, systemic disease known as feline infectious peritonitis (FIP). Although the precise cause of FIP pathogenesis remains unclear, some hypotheses have been suggested. In this review we present results from different FCoV studies and attempt to elucidate existing theories on the pathogenesis of FCoV infection.

  13. A Coronavirus Associated with Runting Stunting Syndrome in Broiler Chickens.

    PubMed

    Hauck, Rüdiger; Gallardo, Rodrigo A; Woolcock, Peter R; Shivaprasad, H L

    2016-06-01

    Runting stunting syndrome (RSS) is a disease condition that affects broilers and causes impaired growth and poor feed conversion because of enteritis characterized by pale and distended small intestines with watery contents. The etiology of the disease is multifactorial, and a large variety of viral agents have been implicated. Here we describe the detection and isolation of an infectious bronchitis virus (IBV) -like coronavirus from the intestines of a flock of 60,000 14-day-old brown/red broiler chicks. The birds showed typical clinical signs of RSS including stunting and uneven growth. At necropsy, the small intestines were pale and distended with watery contents. Histopathology of the intestines revealed increased cellularity of the lamina propria, blunting of villi, and cystic changes in the crypts. Negative stain electron microscopy of the intestinal contents revealed coronavirus particles. Transmission electron microscopy of the intestine confirmed coronavirus in the cytoplasm of enterocytes. Using immunohistochemistry (IHC), IBV antigen was detected in the intestinal epithelial cells as well as in the proventriculus and pancreas. There were no lesions in the respiratory system, and no IBV antigen was detected in trachea, lung, air sac, conjunctiva, and cecal tonsils. A coronavirus was isolated from the intestine of chicken embryos but not from the allantoic sac inoculated with the intestinal contents of the broiler chicks. Sequencing of the S1 gene showed nucleic acid sequence identities of 93.8% to the corresponding region of IBV California 99 and of 85.7% to IBV Arkansas. Nucleic acid sequence identities to other IBV genotypes were lower. The histopathologic lesions in the intestines were reproduced after experimental infection of specific-pathogen-free chickens inoculated in the conjunctiva and nares. Five days after infection, six of nine investigated birds showed enteritis associated with IBV antigen as detected by IHC. In contrast to the field

  14. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Totura, Allison L.; Whitmore, Alan; Agnihothram, Sudhakar; Schäfer, Alexandra; Katze, Michael G.; Heise, Mark T.

    2015-01-01

    ABSTRACT Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3−/−, TLR4−/−, and TRAM−/− mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF−/− mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF−/− mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections. PMID:26015500

  15. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection.

    PubMed

    Chen, Hui-Wen; Huang, Chen-Yu; Lin, Shu-Yi; Fang, Zih-Syun; Hsu, Chen-Hsuan; Lin, Jung-Chen; Chen, Yuan-I; Yao, Bing-Yu; Hu, Che-Ming J

    2016-11-01

    The ongoing battle against current and rising viral infectious threats has prompted increasing effort in the development of vaccine technology. A major thrust in vaccine research focuses on developing formulations with virus-like features towards enhancing antigen presentation and immune processing. Herein, a facile approach to formulate synthetic virus-like particles (sVLPs) is demonstrated by exploiting the phenomenon of protein corona formation induced by the high-energy surfaces of synthetic nanoparticles. Using an avian coronavirus spike protein as a model antigen, sVLPs were prepared by incubating 100 nm gold nanoparticles in a solution containing an optimized concentration of viral proteins. Following removal of free proteins, antigen-laden particles were recovered and showed morphological semblance to natural viral particles under nanoparticle tracking analysis and transmission electron microscopy. As compared to inoculation with free proteins, vaccination with the sVLPs showed enhanced lymphatic antigen delivery, stronger antibody titers, increased splenic T-cell response, and reduced infection-associated symptoms in an avian model of coronavirus infection. Comparison to a commercial whole inactivated virus vaccine also showed evidence of superior antiviral protection by the sVLPs. The study demonstrates a simple yet robust method in bridging viral antigens with synthetic nanoparticles for improved vaccine application; it has practical implications in the management of human viral infections as well as in animal agriculture.

  16. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection.

    PubMed

    Chen, Hui-Wen; Huang, Chen-Yu; Lin, Shu-Yi; Fang, Zih-Syun; Hsu, Chen-Hsuan; Lin, Jung-Chen; Chen, Yuan-I; Yao, Bing-Yu; Hu, Che-Ming J

    2016-11-01

    The ongoing battle against current and rising viral infectious threats has prompted increasing effort in the development of vaccine technology. A major thrust in vaccine research focuses on developing formulations with virus-like features towards enhancing antigen presentation and immune processing. Herein, a facile approach to formulate synthetic virus-like particles (sVLPs) is demonstrated by exploiting the phenomenon of protein corona formation induced by the high-energy surfaces of synthetic nanoparticles. Using an avian coronavirus spike protein as a model antigen, sVLPs were prepared by incubating 100 nm gold nanoparticles in a solution containing an optimized concentration of viral proteins. Following removal of free proteins, antigen-laden particles were recovered and showed morphological semblance to natural viral particles under nanoparticle tracking analysis and transmission electron microscopy. As compared to inoculation with free proteins, vaccination with the sVLPs showed enhanced lymphatic antigen delivery, stronger antibody titers, increased splenic T-cell response, and reduced infection-associated symptoms in an avian model of coronavirus infection. Comparison to a commercial whole inactivated virus vaccine also showed evidence of superior antiviral protection by the sVLPs. The study demonstrates a simple yet robust method in bridging viral antigens with synthetic nanoparticles for improved vaccine application; it has practical implications in the management of human viral infections as well as in animal agriculture. PMID:27552321

  17. Establishment of serological test to detect antibody against ferret coronavirus

    PubMed Central

    MINAMI, Shohei; TERADA, Yutaka; SHIMODA, Hiroshi; TAKIZAWA, Masaki; ONUMA, Mamoru; OTA, Akihiko; OTA, Yuichi; AKABANE, Yoshihito; TAMUKAI, Kenichi; WATANABE, Keiichiro; NAGANUMA, Yumiko; KANAGAWA, Eiichi; NAKAMURA, Kaneichi; OHASHI, Masanari; TAKAMI, Yoshinori; MIWA, Yasutsugu; TANOUE, Tomoaki; OHWAKI, Masao; OHTA, Jouji; UNE, Yumi; MAEDA, Ken

    2016-01-01

    Since there is no available serological methods to detect antibodies to ferret coronavirus (FRCoV), an enzyme-linked immunosorbent assay (ELISA) using recombinant partial nucleocapsid (N) proteins of the ferret coronavirus (FRCoV) Yamaguchi-1 strain was developed to establish a serological method for detection of FRCoV infection. Many serum samples collected from ferrets recognized both a.a. 1–179 and a.a. 180–374 of the N protein, but two serum samples did not a.a. 180–374 of the N protein. This different reactivity was also confirmed by immunoblot analysis using the serum from the ferret.Therefore, the a.a. 1–179 of the N protein was used as an ELISA antigen. Serological test was carried out using sera or plasma of ferrets in Japan. Surprisingly, 89% ferrets in Japan had been infected with FRCoV. These results indicated that our established ELISA using a.a. 1–179 of the N protein is useful for detection of antibody to FRCoV for diagnosis and seroepidemiology of FRCoV infection. PMID:26935842

  18. Coronaviridae and SARS-associated coronavirus strain HSR1.

    PubMed

    Vicenzi, Elisa; Canducci, Filippo; Pinna, Debora; Mancini, Nicasio; Carletti, Silvia; Lazzarin, Adriano; Bordignon, Claudio; Poli, Guido; Clementi, Massimo

    2004-03-01

    During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription-polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 microg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features. PMID:15109406

  19. Coronaviridae and SARS-associated Coronavirus Strain HSR1

    PubMed Central

    Canducci, Filippo; Pinna, Debora; Mancini, Nicasio; Carletti, Silvia; Lazzarin, Adriano; Bordignon, Claudio; Poli, Guido; Clementi, Massimo

    2004-01-01

    During the recent severe acute respiratory (SARS) outbreak, the etiologic agent was identified as a new coronavirus (CoV). We have isolated a SARS-associated CoV (SARS-CoV) strain by injecting Vero cells with a sputum specimen from an Italian patient affected by a severe pneumonia; the patient traveled from Vietnam to Italy in March 2003. Ultrastructural analysis of infected Vero cells showed the virions within cell vesicles and around the cell membrane. The full-length viral genome sequence was similar to those derived from the Hong-Kong Hotel M isolate. By using both real-time reverse transcription–polymerase chain reaction TaqMan assay and an infectivity plaque assay, we determined that approximately 360 viral genomes were required to generate a PFU. In addition, heparin (100 μg/mL) inhibited infection of Vero cells by 50%. Overall, the molecular and biologic characteristics of the strain HSR1 provide evidence that SARS-CoV forms a fourth genetic coronavirus group with distinct genomic and biologic features. PMID:15109406

  20. Coronavirus envelope (E) protein remains at the site of assembly

    SciTech Connect

    Venkatagopalan, Pavithra; Daskalova, Sasha M.; Lopez, Lisa A.; Dolezal, Kelly A.; Hogue, Brenda G.

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  1. Middle East Respiratory Syndrome Coronavirus Intra-Host Populations Are Characterized by Numerous High Frequency Variants

    DOE PAGES

    Borucki, Monica K.; Lao, Victoria; Hwang, Mona; Gardner, Shea; Adney, Danielle; Munster, Vincent; Bowen, Richard; Allen, Jonathan E.

    2016-01-20

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen related to SARS virus. In vitro studies indicate this virus may have a broad host range suggesting an increased pandemic potential. Genetic and epidemiological evidence indicate camels serve as a reservoir for MERS virus but the mechanism of cross species transmission is unclear and many questions remain regarding the susceptibility of humans to infection. Deep sequencing data was obtained from the nasal samples of three camels that had been experimentally infected with a human MERS-CoV isolate. A majority of the genome was covered and average coverage was greater thanmore » 12,000x depth. Although only 5 mutations were detected in the consensus sequences, 473 intrahost single nucleotide variants were identified. Lastly, many of these variants were present at high frequencies and could potentially influence viral phenotype and the sensitivity of detection assays that target these regions for primer or probe binding.« less

  2. A review of genetic methods and models for analysis of coronavirus-induced severe pneumonitis

    PubMed Central

    McGruder, Brenna

    2015-01-01

    Coronaviruses (CoVs) have been studied for over 60 years, but have only recently gained notoriety as deadly human pathogens with the emergence of severe respiratory syndrome CoV and Middle East respiratory syndrome virus. The rapid emergence of these viruses has demonstrated the need for good models to study severe CoV respiratory infection and pathogenesis. There are, currently, different methods and models for the study of CoV disease. The available genetic methods for the study and evaluation of CoV genetics are reviewed here. There are several animal models, both mouse and alternative animals, for the study of severe CoV respiratory disease that have been examined, each with different pros and cons relative to the actual pathogenesis of the disease in humans. A current limitation of these models is that no animal model perfectly recapitulates the disease seen in humans. Through the review and analysis of the available disease models, investigators can employ the most appropriate available model to study various aspects of CoV pathogenesis and evaluate possible antiviral treatments that may potentially be successful in future treatment and prevention of severe CoV respiratory infections. PMID:25252685

  3. Prevalence of rotavirus and coronavirus antigens in the feces of normal cows.

    PubMed Central

    Crouch, C F; Acres, S D

    1984-01-01

    The prevalence of rotavirus and coronavirus shedding by adult cows was investigated using capture enzyme-linked immunosorbent assays. Fecal samples from 121 cows in a single herd were tested for the presence of rotavirus and coronavirus, either free or complexed with immunoglobulin. Free rotavirus was not detected in any samples while rotavirus-immunoglobulin complexes were detected in 53 of 121 (44%) samples tested. In contrast, free coronavirus was detected in six (5%) samples and coronavirus-immunoglobulin complexes were detected in 85 (70%) of the samples tested. Thus it appears that subclinical infection of cows by either of these viruses is common, possibly providing a source for infection of the neonate. These assays may therefore provide important information regarding the epidemiology of enteric virus infections and suggest means of improving management to prevent epidemics of neonatal diarrhea. PMID:6089985

  4. A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene

    PubMed Central

    Shi, Yi; Ji, Wei; Jia, Hao; Zhou, Yongming; Wen, Honghua; Zhao, Honglan; Liu, Huaxing; Li, Hong; Wang, Qihui; Wu, Ying; Wang, Liang; Liu, Di; Liu, Guang; Yu, Hongjie; Holmes, Edward C.; Lu, Lin; Gao, George F.

    2016-01-01

    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 has generated enormous interest in the biodiversity, genomics and cross-species transmission potential of coronaviruses, especially those from bats, the second most speciose order of mammals. Herein, we identified a novel coronavirus, provisionally designated Rousettus bat coronavirus GCCDC1 (Ro-BatCoV GCCDC1), in the rectal swab samples of Rousettus leschenaulti bats by using pan-coronavirus RT-PCR and next-generation sequencing. Although the virus is similar to Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9) in genome characteristics, it is sufficiently distinct to be classified as a new species according to the criteria defined by the International Committee of Taxonomy of Viruses (ICTV). More striking was that Ro-BatCoV GCCDC1 contained a unique gene integrated into the 3’-end of the genome that has no homologs in any known coronavirus, but which sequence and phylogeny analyses indicated most likely originated from the p10 gene of a bat orthoreovirus. Subgenomic mRNA and cellular-level observations demonstrated that the p10 gene is functional and induces the formation of cell syncytia. Therefore, here we report a putative heterologous inter-family recombination event between a single-stranded, positive-sense RNA virus and a double-stranded segmented RNA virus, providing insights into the fundamental mechanisms of viral evolution. PMID:27676249

  5. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft.

    PubMed

    Ge, Xing-Yi; Wang, Ning; Zhang, Wei; Hu, Ben; Li, Bei; Zhang, Yun-Zhi; Zhou, Ji-Hua; Luo, Chu-Ming; Yang, Xing-Lou; Wu, Li-Jun; Wang, Bo; Zhang, Yun; Li, Zong-Xiao; Shi, Zheng-Li

    2016-02-01

    Since the 2002-2003 severe acute respiratory syndrome (SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012-2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene (RdRp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial RdRp fragments had 80%-99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including BtCoV HKU2, BtCoV HKU8, and BtCoV1, and unassigned species BtCoV HKU7 and BtCoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens. PMID:26920708

  6. A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens.

    PubMed

    Sun, Lei; Zhang, Gui-Hong; Jiang, Jing-Wei; Fu, Jia-Dong; Ren, Tao; Cao, Wei-Sheng; Xin, Chao-An; Liao, Ming; Liu, Wen-Jun

    2007-12-01

    Coronavirus infection was investigated in apparently healthy wild peafowls in Guangdong province of China in 2003, while severe acute respiratory syndrome (SARS) broke out there. No SARS-like coronavirus had been isolated but a novel avian coronavirus strain, Peafowl/GD/KQ6/2003 (KQ6), was identified. Sequence analysis revealed that KQ6 was an avian coronavirus infectious bronchitis virus (IBV), a member of coronavirus in group 3. The genome sequence of KQ6 had extremely high degree of identity with that of a Massachusetts prototype IBV M41. KQ6 was pathogenic to chickens but non-pathogenic to peafowls under experimental conditions. Seventeen out of fifty-four (31.48%) peafowl serum samples were tested positive for specific antibodies against IBV. Present results indicate that the peafowl isolate KQ6 is a Massachusetts prototype like coronavirus strain which undergoes few genetic changes and peafowl might have acted as a natural reservoir of IBV for very long time. PMID:17629993

  7. The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination

    PubMed Central

    Kim, Jin Il; Kim, You-Jin; Lemey, Philippe; Lee, Ilseob; Park, Sehee; Bae, Joon-Yong; Kim, Donghwan; Kim, Hyejin; Jang, Seok-Il; Yang, Jeong-Sun; Kim, Hak; Kim, Dae-Won; Nam, Jeong-Gu; Kim, Sung Soon; Kim, Kisoon; Myun Lee, Jae; Song, Man Ki; Song, Daesub; Chang, Jun; Hong, Kee-Jong; Bae, Yong-Soo; Song, Jin-Won; Lee, Joo-Shil; Park, Man-Seong

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe cases of human respiratory disease. Since 2012, the victims have mainly come from the Middle East countries or sporadically from some other geographical regions seeded by the travelers who visited the Middle East. Such an introduction through travelling led to the emergence of a MERS-CoV outbreak in Korea in May 2015, which caused more than 140 confirmed human cases in less than a month. Using 70 complete genome sequences of MERS-CoV isolates, including the most recent sequences for the Korean and Chinese isolates, we reconstructed the phylogenetic relationships of the complete genome and the individual protein coding regions. The Korean MERS-CoV strain clustered in the previously established Hafr-Al-Batin-1_2013 clade together with two Saudi Arabian and one Chinese strain sampled in 2015. Although these four strains remained monophyletic in the entire protein-coding region, this clade showed different phylogenetic relationships across the genome, indicating a shared unique recombination pattern that is different from previously reported putative recombination strains. Our findings suggest that the recent ancestor of the Korean and its related MERS-CoV strains is characterized by unique mosaic genome pattern that is different from other putative recombinants. PMID:26732651

  8. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005.

    PubMed

    Alexandersen, S; Kobinger, G P; Soule, G; Wernery, U

    2014-04-01

    We tested, using a low starting dilution, sequential serum samples from dromedary camels, sheep and horses collected in Dubai from February/April to October of 2005 and from dromedary camels for export/import testing between Canada and USA in 2000-2001. Using a standard Middle East respiratory syndrome coronavirus (MERS-CoV) neutralization test, serial sera from three sheep and three horses were all negative while sera from 9 of 11 dromedary camels from Dubai were positive for antibodies supported by similar results in a MERS-CoV recombinant partial spike protein antibody ELISA. The two negative Dubai camels were both dromedary calves and remained negative over the 5 months studied. The six dromedary samples from USA and Canada were negative in both tests. These results support the recent findings that infection with MERS-CoV or a closely related virus is not a new occurrence in camels in the Middle East. Therefore, interactions of MERS-CoV at the human-animal interface may have been ongoing for several, perhaps many, years and by inference, a widespread pandemic may be less likely unless significant evolution of the virus allow accelerated infection and spread potential in the human population.

  9. An Acute Immune Response to Middle East Respiratory Syndrome Coronavirus Replication Contributes to Viral Pathogenicity.

    PubMed

    Baseler, Laura J; Falzarano, Darryl; Scott, Dana P; Rosenke, Rebecca; Thomas, Tina; Munster, Vincent J; Feldmann, Heinz; de Wit, Emmie

    2016-03-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in a human with severe pneumonia in 2012. Since then, infections have been detected in >1500 individuals, with disease severity ranging from asymptomatic to severe, fatal pneumonia. To elucidate the pathogenesis of this virus and investigate mechanisms underlying disease severity variation in the absence of autopsy data, a rhesus macaque and common marmoset model of MERS-CoV disease were analyzed. Rhesus macaques developed mild disease, and common marmosets exhibited moderate to severe, potentially lethal, disease. Both nonhuman primate species exhibited respiratory clinical signs after inoculation, which were more severe and of longer duration in the marmosets, and developed bronchointerstitial pneumonia. In marmosets, the pneumonia was more extensive, with development of severe airway lesions. Quantitative analysis showed significantly higher levels of pulmonary neutrophil infiltration and higher amounts of pulmonary viral antigen in marmosets. Pulmonary expression of the MERS-CoV receptor, dipeptidyl peptidase 4, was similar in marmosets and macaques. These results suggest that increased virus replication and the local immune response to MERS-CoV infection likely play a role in pulmonary pathology severity. Together, the rhesus macaque and common marmoset models of MERS-CoV span the wide range of disease severity reported in MERS-CoV-infected humans, which will aid in investigating MERS-CoV disease pathogenesis. PMID:26724387

  10. Middle East Respiratory Syndrome Coronavirus Transmission in Extended Family, Saudi Arabia, 2014

    PubMed Central

    Arwady, M. Allison; Alraddadi, Basem; Basler, Colin; Azhar, Esam I.; Abuelzein, Eltayb; Sindy, Abdulfattah I.; Sadiq, Bakr M. Bin; Althaqafi, Abdulhakeem O.; Shabouni, Omaima; Banjar, Ayman; Haynes, Lia M.; Gerber, Susan I.; Feikin, Daniel R.

    2016-01-01

    Risk factors for human-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) are largely unknown. After MERS-CoV infections occurred in an extended family in Saudi Arabia in 2014, relatives were tested by using real-time reverse transcription PCR (rRT-PCR) and serologic methods. Among 79 relatives, 19 (24%) were MERS-CoV positive; 11 were hospitalized, and 2 died. Eleven (58%) tested positive by rRT-PCR; 8 (42%) tested negative by rRT-PCR but positive by serology. Compared with MERS-CoV–negative adult relatives, MERS-CoV–positive adult relatives were older and more likely to be male and to have chronic medical conditions. Risk factors for household transmission included sleeping in an index patient’s room and touching respiratory secretions from an index patient. Casual contact and simple proximity were not associated with transmission. Serology was more sensitive than standard rRT-PCR for identifying infected relatives, highlighting the value of including serology in future investigations. PMID:27191038

  11. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

    PubMed

    Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV-neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.

  12. Stillbirth During Infection With Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Payne, Daniel C.; Iblan, Ibrahim; Alqasrawi, Sultan; Al Nsour, Mohannad; Rha, Brian; Tohme, Rania A.; Abedi, Glen R.; Farag, Noha H.; Haddadin, Aktham; Sanhouri, Tarek Al; Jarour, Najwa; Swerdlow, David L.; Jamieson, Denise J.; Pallansch, Mark A.; Haynes, Lia M.; Gerber, Susan I.; Al Abdallat, Mohammad Mousa

    2015-01-01

    We conducted an epidemiologic investigation among survivors of an outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Jordan. A second-trimester stillbirth occurred during the course of an acute respiratory illness that was attributed to MERS-CoV on the basis of exposure history and positive results of MERS-CoV serologic testing. This is the first occurrence of stillbirth during an infection with MERS-CoV and may have bearing upon the surveillance and management of pregnant women in settings of unexplained respiratory illness potentially due to MERS-CoV. Future prospective investigations of MERS-CoV should ascertain pregnancy status and obtain further pregnancy-related data, including biological specimens for confirmatory testing. PMID:24474813

  13. Stillbirth during infection with Middle East respiratory syndrome coronavirus.

    PubMed

    Payne, Daniel C; Iblan, Ibrahim; Alqasrawi, Sultan; Al Nsour, Mohannad; Rha, Brian; Tohme, Rania A; Abedi, Glen R; Farag, Noha H; Haddadin, Aktham; Al Sanhouri, Tarek; Jarour, Najwa; Swerdlow, David L; Jamieson, Denise J; Pallansch, Mark A; Haynes, Lia M; Gerber, Susan I; Al Abdallat, Mohammad Mousa

    2014-06-15

    We conducted an epidemiologic investigation among survivors of an outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Jordan. A second-trimester stillbirth occurred during the course of an acute respiratory illness that was attributed to MERS-CoV on the basis of exposure history and positive results of MERS-CoV serologic testing. This is the first occurrence of stillbirth during an infection with MERS-CoV and may have bearing upon the surveillance and management of pregnant women in settings of unexplained respiratory illness potentially due to MERS-CoV. Future prospective investigations of MERS-CoV should ascertain pregnancy status and obtain further pregnancy-related data, including biological specimens for confirmatory testing. PMID:24474813

  14. Serologic survey for canine coronavirus in wolves from Alaska

    USGS Publications Warehouse

    Zarnke, R.L.; Evermann, J.; Ver Hoef, J.M.; McNay, M.E.; Boertje, R.D.; Gardner, C.L.; Adams, L.G.; Dale, B.W.; Burch, J.

    2001-01-01

    Wolves (Canis lupus) were captured in three areas of Interior Alaska (USA). Four hundred twenty-five sera were tested for evidence of exposure to canine coronavirus by means of an indirect fluorescent antibody procedure. Serum antibody prevalence averaged 70% (167/ 240) during the spring collection period and 25% (46/185) during the autumn collection period. Prevalence was 0% (0/42) in the autumn pup cohort (age 4-5 mo), and 60% (58/97) in the spring pup cohort (age 9-10 mo). Prevalence was lowest in the Eastern Interior study area. A statistical model indicates that prevalence increased slightly each year in all three study areas. These results indicate that transmission occurs primarily during the winter months, antibody decay is quite rapid, and reexposure during the summer is rare.

  15. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    PubMed Central

    Ujike, Makoto; Taguchi, Fumihiro

    2015-01-01

    The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions. PMID:25855243

  16. Novel Coronavirus and Astrovirus in Delaware Bay Shorebirds

    PubMed Central

    Honkavuori, Kirsi S.; Briese, Thomas; Krauss, Scott; Sanchez, Maria D.; Jain, Komal; Hutchison, Stephen K.; Webster, Robert G.; Lipkin, W. Ian

    2014-01-01

    Background Wild birds are an important but to some extent under-studied reservoir for emerging pathogens. We used unbiased sequencing methods for virus discovery in shorebird samples from the Delaware Bay, USA; an important feeding ground for thousands of migratory birds. Findings Analysis of shorebird fecal samples indicated the presence of a novel astrovirus and coronavirus. A sanderling sample yielded sequences with distant homology to avian nephritis virus 1, an astrovirus associated with acute nephritis in poultry. A ruddy turnstone sample yielded sequences with homology to deltacoronaviruses. Conclusions Our findings highlight shorebirds as a virus reservoir and the need to closely monitor wild bird populations for the emergence of novel virus variants. PMID:24699424

  17. Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus

    PubMed Central

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Lam, Carol S. F.; Tsang, Alan K. L.; Hui, Suk-Wai; Fan, Rachel Y. Y.; Martelli, Paolo

    2014-01-01

    While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 103 to 1 × 105 copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus. PMID:24227844

  18. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Lam, Carol S F; Tsang, Alan K L; Hui, Suk-Wai; Fan, Rachel Y Y; Martelli, Paolo; Yuen, Kwok-Yung

    2014-01-01

    While gammacoronaviruses mainly comprise infectious bronchitis virus (IBV) and its closely related bird coronaviruses (CoVs), the only mammalian gammacoronavirus was discovered from a white beluga whale (beluga whale CoV [BWCoV] SW1) in 2008. In this study, we discovered a novel gammacoronavirus from fecal samples from three Indo-Pacific bottlenose dolphins (Tursiops aduncus), which we named bottlenose dolphin CoV (BdCoV) HKU22. All the three BdCoV HKU22-positive samples were collected on the same date, suggesting a cluster of infection, with viral loads of 1 × 10(3) to 1 × 10(5) copies per ml. Clearance of virus was associated with a specific antibody response against the nucleocapsid of BdCoV HKU22. Complete genome sequencing and comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 have similar genome characteristics and structures. Their genome size is about 32,000 nucleotides, the largest among all CoVs, as a result of multiple unique open reading frames (NS5a, NS5b, NS5c, NS6, NS7, NS8, NS9, and NS10) between their membrane (M) and nucleocapsid (N) protein genes. Although comparative genome analysis showed that BdCoV HKU22 and BWCoV SW1 should belong to the same species, a major difference was observed in the proteins encoded by their spike (S) genes, which showed only 74.3 to 74.7% amino acid identities. The high ratios of the number of synonymous substitutions per synonymous site (Ks) to the number of nonsynonymous substitutions per nonsynonymous site (Ka) in multiple regions of the genome, especially the S gene (Ka/Ks ratio, 2.5), indicated that BdCoV HKU22 may be evolving rapidly, supporting a recent transmission event to the bottlenose dolphins. We propose a distinct species, Cetacean coronavirus, in Gammacoronavirus, to include BdCoV HKU22 and BWCoV SW1, whereas IBV and its closely related bird CoVs represent another species, Avian coronavirus, in Gammacoronavirus. PMID:24227844

  19. A role for naturally occurring variation of the murine coronavirus spike protein in stabilizing association with the cellular receptor.

    PubMed

    Gallagher, T M

    1997-04-01

    Murine hepatitis virus (MHV), a coronavirus, initiates infection by binding to its cellular receptor (MHVR) via spike (S) proteins projecting from the virion membrane. The structures of these S proteins vary considerably among MHV strains, and this variation is generally considered to be important in determining the strain-specific pathologies of MHV infection, perhaps by affecting the interaction between MHV and the MHVR. To address the relationships between S variation and receptor binding, assays capable of measuring interactions between MHV and MHVR were developed. The assays made use of a novel soluble form of the MHVR, sMHVR-Ig, which comprised the virus-binding immunoglobulin-like domain of MHVR fused to the Fc portion of human immunoglobulin G1. sMHVR-Ig was stably expressed as a disulfide-linked dimer in human 293 EBNA cells and was immobilized to Sepharose-protein G via the Fc domain. The resulting Sepharose beads were used to adsorb radiolabelled MHV particles. At 4 degrees C, the beads specifically adsorbed two prototype MHV strains, MHV JHM (strain 4) and a tissue culture-adapted mutant of MHV JHM, the JHMX strain. A shift to 37 degrees C resulted in elution of JHM but not JHMX. This in vitro observation of JHM (but not JHMX) elution from its receptor at 37 degrees C was paralleled by a corresponding 37 degrees C elution of receptor-associated JHM (but not JHMX) from tissue culture cells. The basis for this difference in maintenance of receptor association was correlated with a large deletion mutation present within the JHMX S protein, as sMHVR-Ig exhibited relatively thermostable binding to vaccinia virus-expressed S proteins containing the deletion. These results indicate that naturally occurring mutations in the coronavirus S protein affect the stability of the initial interaction with the host cell and thus contribute to the likelihood of successful infection by incoming virions. These changes in virus entry features may result in coronaviruses

  20. Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus

    SciTech Connect

    Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang

    2012-12-10

    The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.

  1. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV) in Oman.

    PubMed

    Al-Abaidani, I S; Al-Maani, A S; Al-Kindi, H S; Al-Jardani, A K; Abdel-Hady, D M; Zayed, B E; Al-Harthy, K S; Al-Shaqsi, K H; Al-Abri, S S

    2014-12-01

    Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman. PMID:25447719

  2. Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus.

    PubMed

    Das Sarma, J; Fu, L; Tsai, J C; Weiss, S R; Lavi, E

    2000-10-01

    Demyelination is the pathologic hallmark of the human immune-mediated neurologic disease multiple sclerosis, which may be triggered or exacerbated by viral infections. Several experimental animal models have been developed to study the mechanism of virus-induced demyelination, including coronavirus mouse hepatitis virus (MHV) infection in mice. The envelope spike (S) glycoprotein of MHV contains determinants of properties essential for virus-host interactions. However, the molecular determinants of MHV-induced demyelination are still unknown. To investigate the mechanism of MHV-induced demyelination, we examined whether the S gene of MHV contains determinants of demyelination and whether demyelination is linked to viral persistence. Using targeted RNA recombination, we replaced the S gene of a demyelinating virus (MHV-A59) with the S gene of a closely related, nondemyelinating virus (MHV-2). Recombinant viruses containing an S gene derived from MHV-2 in an MHV-A59 background (Penn98-1 and Penn98-2) exhibited a persistence-positive, demyelination-negative phenotype. Thus, determinants of demyelination map to the S gene of MHV. Furthermore, viral persistence is insufficient to induce demyelination, although it may be a prerequisite for the development of demyelination.

  3. Middle East respiratory syndrome coronavirus "MERS-CoV": current knowledge gaps.

    PubMed

    Banik, G R; Khandaker, G; Rashid, H

    2015-06-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) that causes a severe lower respiratory tract infection in humans is now considered a pandemic threat to the Gulf region. Since its discovery in 2012, MERS-CoV has reached 23 countries affecting about 1100 people, including a dozen children, and claiming over 400 lives. Compared to SARS (severe acute respiratory syndrome), MERS-CoV appears to kill more people (40% versus 10%), more quickly, and is especially more severe in those with pre-existing medical conditions. Most MERS-CoV cases (>85%) reported thus far have a history of residence in, or travel to the Middle East. The current epidemiology is characterised by slow and sustained transmission with occasional sparks. The dromedary camel is the intermediate host of MERS-CoV, but the transmission cycle is not fully understood. In this current review, we have briefly summarised the latest information on the epidemiology, clinical features, diagnosis, treatment and prevention of MERS-CoV especially highlighting the knowledge gaps in its transmission dynamics, diagnosis and preventive strategy. PMID:26002405

  4. Tracking the evolution of the SARS coronavirus using high-throughput, high-density resequencing arrays.

    PubMed

    Wong, Christopher W; Albert, Thomas J; Vega, Vinsensius B; Norton, Jason E; Cutler, David J; Richmond, Todd A; Stanton, Lawrence W; Liu, Edison T; Miller, Lance D

    2004-03-01

    Mutations in the SARS-Coronavirus (SARS-CoV) can alter its clinical presentation, and the study of its mutation patterns in human populations can facilitate contact tracing. Here, we describe the development and validation of an oligonucleotide resequencing array for interrogating the entire 30-kb SARS-CoV genome in a rapid, cost-effective fashion. Using this platform, we sequenced SARS-CoV genomes from Vero cell culture isolates of 12 patients and directly from four patient tissues. The sequence obtained from the array is highly reproducible, accurate (>99.99% accuracy) and capable of identifying known and novel variants of SARS-CoV. Notably, we applied this technology to a field specimen of probable SARS and rapidly deduced its infectious source. We demonstrate that array-based resequencing-by-hybridization is a fast, reliable, and economical alternative to capillary sequencing for obtaining SARS-CoV genomic sequence on a population scale, making this an ideal platform for the global monitoring of SARS-CoV and other small-genome pathogens. PMID:14993206

  5. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China

    PubMed Central

    Liu, Shuo; Hou, Guang-Yu; Jiang, Wen-Ming; Wang, Su-Chun; Li, Jin-Ping; Yu, Jian-Min; Chen, Ji-Ming

    2015-01-01

    The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV), and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV). The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks. PMID:26053682

  6. The emergence of the Middle East Respiratory Syndrome coronavirus (MERS-CoV)

    PubMed Central

    Milne-Price, Shauna; Miazgowicz, Kerri L.; Munster, Vincent J.

    2014-01-01

    On September 20, 2012, a Saudi Arabian physician reported the isolation of a novel coronavirus from a patient with pneumonia on ProMED-mail. Within a few days the same virus was detected in a Qatari patient receiving intensive care in a London hospital, a situation reminiscent of the role air travel played in the spread of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2002. SARS-CoV originated in China’s Guangdong Province and affected more than 8000 patients in 26 countries before it was contained six months later. Over a year after the emergence of this novel coronavirus—Middle East Respiratory Syndrome coronavirus (MERS-CoV)—it has caused 178 laboratory confirmed cases and 76 deaths The emergence of a second highly pathogenic coronavirus within a decade highlights the importance of a coordinated global response incorporating reservoir surveillance, high-containment capacity with fundamental and applied research programs, and dependable communication pathways to ensure outbreak containment. Here we review the current state of knowledge on the epidemiology, ecology, molecular biology, clinical features and intervention strategies of the novel coronavirus, MERS-CoV. PMID:24585737

  7. Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication.

    PubMed

    Casais, Rosa; Davies, Marc; Cavanagh, David; Britton, Paul

    2005-07-01

    The avian coronavirus Infectious bronchitis virus (IBV), like other coronaviruses, expresses several small nonstructural (ns) proteins in addition to those from gene 1 (replicase) and the structural proteins. These coronavirus ns genes differ both in number and in amino acid similarity between the coronavirus groups but show some concordance within a group or subgroup. The functions and requirements of the small ns gene products remain to be elucidated. With the advent of reverse genetics for coronaviruses, the first steps in elucidating their role can be investigated. We have used our reverse genetics system for IBV (R. Casais, V. Thiel, S. G. Siddell, D. Cavanagh, and P. Britton, J. Virol. 75:12359-12369, 2001) to investigate the requirement of IBV gene 5 for replication in vivo, in ovo, and ex vivo. We produced a series of recombinant viruses, with an isogenic background, in which complete expression of gene 5 products was prevented by the inactivation of gene 5 following scrambling of the transcription-associated sequence, thereby preventing the expression of IBV subgenomic mRNA 5, or scrambling either separately or together of the translation initiation codons for the two gene 5 products. As all of the recombinant viruses replicated very similarly to the wild-type virus, Beau-R, we conclude that the IBV gene 5 products are not essential for IBV replication per se and that they are accessory proteins.

  8. Host Species Restriction of Middle East Respiratory Syndrome Coronavirus through Its Receptor, Dipeptidyl Peptidase 4

    PubMed Central

    van Doremalen, Neeltje; Miazgowicz, Kerri L.; Milne-Price, Shauna; Bushmaker, Trenton; Robertson, Shelly; Scott, Dana; Kinne, Joerg; McLellan, Jason S.; Zhu, Jiang

    2014-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir. IMPORTANCE The ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 701 laboratory-confirmed cases to date, with 249 fatalities. Although bats and dromedary camels have been identified as potential MERS-CoV hosts, the virus has so far not been isolated from any species

  9. Middle East respiratory syndrome coronavirus (MERS-CoV): what lessons can we learn?

    PubMed

    Omrani, A S; Shalhoub, S

    2015-11-01

    The Middle East Respiratory Coronavirus (MERS-CoV) was first isolated from a patient who died with severe pneumonia in June 2012. As of 19 June 2015, a total of 1,338 MERS-CoV infections have been notified to the World Health Organization (WHO). Clinical illness associated with MERS-CoV ranges from mild upper respiratory symptoms to rapidly progressive pneumonia and multi-organ failure. A significant proportion of patients present with non-respiratory symptoms such as headache, myalgia, vomiting and diarrhoea. A few potential therapeutic agents have been identified but none have been conclusively shown to be clinically effective. Human to human transmission is well documented, but the epidemic potential of MERS-CoV remains limited at present. Healthcare-associated clusters of MERS-CoV have been responsible for the majority of reported cases. The largest outbreaks have been driven by delayed diagnosis, overcrowding and poor infection control practices. However, chains of MERS-CoV transmission can be readily interrupted with implementation of appropriate control measures. As with any emerging infectious disease, guidelines for MERS-CoV case identification and surveillance evolved as new data became available. Sound clinical judgment is required to identify unusual presentations and trigger appropriate control precautions. Evidence from multiple sources implicates dromedary camels as natural hosts of MERS-CoV. Camel to human transmission has been demonstrated, but the exact mechanism of infection remains uncertain. The ubiquitously available social media have facilitated communication and networking amongst healthcare professionals and eventually proved to be important channels for presenting the public with factual material, timely updates and relevant advice. PMID:26452615

  10. Critical Assessment of the Important Residues Involved in the Dimerization and Catalysis of MERS Coronavirus Main Protease

    PubMed Central

    Ho, Bo-Lin; Cheng, Shu-Chun; Shi, Lin; Wang, Ting-Yun; Ho, Kuan-I; Chou, Chi-Yuan

    2015-01-01

    Background A highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and other places in Saudi Arabia, and has quickly spread to European and Asian countries since September 2012. Up to the 1st October 2015 it has infected at least 1593 people with a global fatality rate of about 35%. Studies to understand the virus are necessary and urgent. In the present study, MERS-CoV main protease (Mpro) is expressed; the dimerization of the protein and its relationship to catalysis are investigated. Methods and Results The crystal structure of MERS-CoV Mpro indicates that it shares a similar scaffold to that of other coronaviral Mpro and consists of chymotrypsin-like domains I and II and a helical domain III of five helices. Analytical ultracentrifugation analysis demonstrated that MERS-CoV Mpro undergoes a monomer to dimer conversion in the presence of a peptide substrate. Glu169 is a key residue and plays a dual role in both dimerization and catalysis. The mutagenesis of other residues found on the dimerization interface indicate that dimerization of MERS-CoV Mpro is required for its catalytic activity. One mutation, M298R, resulted in a stable dimer with a higher level of proteolytic activity than the wild-type enzyme. Conclusions MERS-CoV Mpro shows substrate-induced dimerization and potent proteolytic activity. A critical assessment of the residues important to these processes provides insights into the correlation between dimerization and catalysis within the coronaviral Mpro family. PMID:26658006

  11. Biochemical characterization of exoribonuclease encoded by SARS coronavirus.

    PubMed

    Chen, Ping; Jiang, Miao; Hu, Tao; Liu, Qingzhen; Chen, Xiaojiang S; Guo, Deyin

    2007-09-30

    The nsp14 protein is an exoribonuclease that is encoded by severe acute respiratory syndrome coronavirus (SARS-CoV). We have cloned and expressed the nsp14 protein in Escherichia coli, and characterized the nature and the role(s) of the metal ions in the reaction chemistry. The purified recombinant nsp14 protein digested a 5'-labeled RNA molecule, but failed to digest the RNA substrate that is modified with fluorescein group at the 3'-hydroxyl group, suggesting a 3'-to-5' exoribonuclease activity. The exoribonuclease activity requires Mg2+ as a cofactor. Isothermal titration calorimetry (ITC) analysis indicated a two-metal binding mode for divalent cations by nsp14. Endogenous tryptophan fluorescence and circular dichroism (CD) spectra measurements showed that there was a structural change of nsp14 when binding with metal ions. We propose that the conformational change induced by metal ions may be a prerequisite for catalytic activity by correctly positioning the side chains of the residues located in the active site of the enzyme.

  12. Suppression of feline coronavirus replication in vitro by cyclosporin A.

    PubMed

    Tanaka, Yoshikazu; Sato, Yuka; Osawa, Shuichi; Inoue, Mai; Tanaka, Satoka; Sasaki, Takashi

    2012-04-30

    The feline infectious peritonitis virus (FIPV) is a member of the feline coronavirus family that causes FIP, which is incurable and fatal in cats. Cyclosporin A (CsA), an immunosuppressive agent that targets the nuclear factor pathway of activated T-cells (NF-AT) to bind cellular cyclophilins (CyP), dose-dependently inhibited FIPV replication in vitro. FK506 (an immunosuppressor of the pathway that binds cellular FK506-binding protein (FKBP) but not CyP) did not affect FIPV replication. Neither cell growth nor viability changed in the presence of either CsA or FK506, and these factors did not affect the NF-AT pathway in fcwf-4 cells. Therefore, CsA does not seem to exert inhibitory effects via the NF-AT pathway. In conclusion, CsA inhibited FIPV replication in vitro and further studies are needed to verify the practical value of CsA as an anti-FIPV treatment in vivo.

  13. Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection.

    PubMed

    Addie, Diane D; McDonald, Mike; Audhuy, Stéphane; Burr, Paul; Hollins, Jonathan; Kovacic, Rémi; Lutz, Hans; Luxton, Zoe; Mazar, Shlomit; Meli, Marina L

    2012-02-01

    Feline coronavirus (FCoV) causes feline infectious peritonitis (FIP). Since 2002, when 20 cats on the Falkland Islands were found to be FCoV seronegative, only seronegative cats could be imported. Between 2005-2007, 95 pet and 10 feral cats tested negative by indirect immunofluorescence antibody (IFA) analysis using two strains of type II FCoV, two transmissible gastroenteritis virus assays, an enzyme-linked immunosorbent assay and rapid immunomigration test. Twenty-four samples (23%) showed non-specific fluorescence, mostly attributable to anti-nuclear antibodies (ANA). The reason for ANA was unclear: reactive samples were negative for Erhlichia canis antibodies; seven were feline immunodeficiency virus positive, but 15 were negative. It was not possible to determine retrospectively whether the cats had autoimmune disease, hyperthyroidism treatment, or recent vaccination which may also cause ANA. The FCoV/ FIP-free status of the Falkland Islands cats should be maintained by FCoV testing incoming cats. However, ANA can complicate interpretation of IFA tests.

  14. A structural view of coronavirus-receptor interactions.

    PubMed

    Reguera, Juan; Mudgal, Gaurav; Santiago, César; Casasnovas, José M

    2014-12-19

    In the coronavirus (CoV), the envelope spike (S) glycoprotein is responsible for CoV cell entry and host-to-host transmission. The S is a multifunctional glycoprotein that mediates both attachment of CoV particles to cell surface receptor molecules as well as membrane penetration by fusion. Receptor-binding domains (RBD) have been identified in the S of diverse CoV; they usually contain antigenic determinants targeted by antibodies that neutralize CoV infections. To penetrate host cells, the CoV can use various cell surface molecules, although they preferentially bind to ectoenzymes. Several crystal structures have determined the folding of CoV RBD and the mode by which they recognize cell entry receptors. Here we review the CoV-receptor complex structures reported to date, and highlight the distinct receptor recognition modes, common features, and key determinants of the binding specificity. Structural studies have established the basis for understanding receptor recognition diversity in CoV, its evolution and the adaptation of this virus family to different hosts. CoV responsible for recent outbreaks have extraordinary potential for cross-species transmission; their RBD bear large platforms specialized in recognition of receptors from different species, which facilitates host-to-host circulation and adaptation to man. PMID:25451063

  15. Specific interaction between coronavirus leader RNA and nucleocapsid protein

    SciTech Connect

    Stohlman, S.A.; Baric, R.S.; Nelson, G.N.; Soe, L.H.; Welter, L.M.; Deans, R.J.

    1988-11-01

    Northwestern blot analysis in the presence of competitor RNA was used to examine the interaction between the mouse hepatitis virus (MHV) nucleocapsid protein (N) and virus-specific RNAs. The authors accompanying article demonstrates that anti-N monoclonal antibodies immunoprecipitated all seven MHV-specific RNAs as well as the small leader-containing RNAs from infected cells. In this article the authors report that a Northwestern blotting protocol using radiolabeled viral RNAs in the presence of host cell competitor RNA can be used to demonstrate a high-affinity interaction between the MHV N protein and the virus-specific RNAs. Further, RNA probes prepared by in vitro transcription were used to define the sequences that participate in such high-affinity binding. A specific interaction occurs between the N protein and sequences contained with the leader RNA which is conserved at the 5' end of all MHV RNAs. They have further defined the binding sites to the area of nucleotides 56 to 65 at the 3' end of the leader RNA and suggest that this interaction may play an important role in the discontinuous nonprocessive RNA transcriptional process unique to coronaviruses.

  16. Differential in vitro inhibition of feline enteric coronavirus and feline infectious peritonitis virus by actinomycin D.

    PubMed

    Lewis, E L; Harbour, D A; Beringer, J E; Grinsted, J

    1992-12-01

    The growth of feline enteric coronavirus strain 79-1683 in whole feline embryo cells was inhibited by the presence of 1 microgram/ml of actinomycin D in the culture fluid. No virus-specific mRNAs could be detected in such cultures and yields of infectious virus were depressed by > 99%. By contrast, the antigenically related feline infectious peritonitis virus strain 79-1146 was unaffected by the presence of actinomycin D, indicating a fundamental difference between the two feline coronavirus strains in their requirements for host-encoded function(s).

  17. First genome sequences of buffalo coronavirus from water buffaloes in Bangladesh.

    PubMed

    Lau, S K P; Tsang, A K L; Shakeel Ahmed, S; Mahbub Alam, M; Ahmed, Z; Wong, P-C; Yuen, K-Y; Woo, P C Y

    2016-05-01

    We report the complete genome sequences of a buffalo coronavirus (BufCoV HKU26) detected from the faecal samples of two domestic water buffaloes (Bubalus bubalis) in Bangladesh. They possessed 98-99% nucleotide identities to bovine coronavirus (BCoV) genomes, supporting BufCoV HKU26 as a member of Betacoronavirus 1. Nevertheless, BufCoV HKU26 possessed distinct accessory proteins between spike and envelope compared to BCoV. Sugar-binding residues in the N-terminal domain of S protein in BCoV are conserved in BufCoV HKU26.

  18. Maintenance of pluripotency in mouse embryonic stem cells persistently infected with murine coronavirus.

    PubMed Central

    Okumura, A; Machii, K; Azuma, S; Toyoda, Y; Kyuwa, S

    1996-01-01

    A persistently coronavirus-infected embryonic stem (ES) cell line A3/MHV was established by infecting an ES cell line, A3-1, with mouse hepatitis virus type-2. Although almost all A3/MHV cells were found infected, both A3/MHV and A3-1 cells expressed comparable levels of cell surface differentiation markers. In addition, A3/MHV cells retained the ability to form embryoid bodies. These results suggest that persistent coronavirus infection does not affect the differentiation of ES cells. PMID:8648758

  19. First genome sequences of buffalo coronavirus from water buffaloes in Bangladesh.

    PubMed

    Lau, S K P; Tsang, A K L; Shakeel Ahmed, S; Mahbub Alam, M; Ahmed, Z; Wong, P-C; Yuen, K-Y; Woo, P C Y

    2016-05-01

    We report the complete genome sequences of a buffalo coronavirus (BufCoV HKU26) detected from the faecal samples of two domestic water buffaloes (Bubalus bubalis) in Bangladesh. They possessed 98-99% nucleotide identities to bovine coronavirus (BCoV) genomes, supporting BufCoV HKU26 as a member of Betacoronavirus 1. Nevertheless, BufCoV HKU26 possessed distinct accessory proteins between spike and envelope compared to BCoV. Sugar-binding residues in the N-terminal domain of S protein in BCoV are conserved in BufCoV HKU26. PMID:27274850

  20. Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Bhadra, Sanchita; Jiang, Yu Sherry; Kumar, Mia R.; Johnson, Reed F.; Hensley, Lisa E.; Ellington, Andrew D.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens. PMID:25856093

  1. ATP1A1-Mediated Src Signaling Inhibits Coronavirus Entry into Host Cells

    PubMed Central

    Burkard, Christine; Verheije, Monique H.; Haagmans, Bart L.; van Kuppeveld, Frank J.; Rottier, Peter J. M.; Bosch, Berend-Jan

    2015-01-01

    ABSTRACT In addition to transporting ions, the multisubunit Na+,K+-ATPase also functions by relaying cardiotonic steroid (CTS)-binding-induced signals into cells. In this study, we analyzed the role of Na+,K+-ATPase and, in particular, of its ATP1A1 α subunit during coronavirus (CoV) infection. As controls, the vesicular stomatitis virus (VSV) and influenza A virus (IAV) were included. Using gene silencing, the ATP1A1 protein was shown to be critical for infection of cells with murine hepatitis virus (MHV), feline infectious peritonitis virus (FIPV), and VSV but not with IAV. Lack of ATP1A1 did not affect virus binding to host cells but resulted in inhibited entry of MHV and VSV. Consistently, nanomolar concentrations of the cardiotonic steroids ouabain and bufalin, which are known not to affect the transport function of Na+,K+-ATPase, inhibited infection of cells with MHV, FIPV, Middle East respiratory syndrome (MERS)-CoV, and VSV, but not IAV, when the compounds were present during virus inoculation. Cardiotonic steroids were shown to inhibit entry of MHV at an early stage, resulting in accumulation of virions close to the cell surface and, as a consequence, in reduced fusion. In agreement with an early block in infection, the inhibition of VSV by CTSs could be bypassed by low-pH shock. Viral RNA replication was not affected when these compounds were added after virus entry. The antiviral effect of ouabain could be relieved by the addition of different Src kinase inhibitors, indicating that Src signaling mediated via ATP1A1 plays a crucial role in the inhibition of CoV and VSV infections. IMPORTANCE Coronaviruses (CoVs) are important pathogens of animals and humans, as demonstrated by the recent emergence of new human CoVs of zoonotic origin. Antiviral drugs targeting CoV infections are lacking. In the present study, we show that the ATP1A1 subunit of Na+,K+-ATPase, an ion transporter and signaling transducer, supports CoV infection. Targeting ATP1A1 either by

  2. Identification and Survey of a Novel Avian Coronavirus in Ducks

    PubMed Central

    Chen, Gui-Qian; Zhuang, Qing-Ye; Wang, Kai-Cheng; Liu, Shuo; Shao, Jian-Zhong; Jiang, Wen-Ming; Hou, Guang-Yu; Li, Jin-Ping; Yu, Jian-Min; Li, Yi-Ping; Chen, Ji-Ming

    2013-01-01

    The rapid discovery of novel viruses using next generation sequencing (NGS) technologies including DNA-Seq and RNA-Seq, has greatly expanded our understanding of viral diversity in recent years. The timely identification of novel viruses using NGS technologies is also important for us to control emerging infectious diseases caused by novel viruses. In this study, we identified a novel duck coronavirus (CoV), distinct with chicken infectious bronchitis virus (IBV), using RNA-Seq. The novel duck-specific CoV was a potential novel species within the genus Gammacoronavirus, as indicated by sequences of three regions in the viral 1b gene. We also performed a survey of CoVs in domestic fowls in China using reverse-transcription polymerase chain reaction (RT-PCR), targeting the viral nucleocapsid (N) gene. A total of 102 CoV positives were identified through the survey. Phylogenetic analysis of the viral N sequences suggested that CoVs in domestic fowls have diverged into several region-specific or host-specific clades or subclades in the world, and IBVs can infect ducks, geese and pigeons, although they mainly circulate in chickens. Moreover, this study provided novel data supporting the notion that some host-specific CoVs other than IBVs circulate in ducks, geese and pigeons, and indicated that the novel duck-specific CoV identified through RNA-Seq in this study is genetically closer to some CoVs circulating in wild water fowls. Taken together, this study shed new insight into the diversity, distribution, evolution and control of avian CoVs. PMID:24023656

  3. Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-Like Disease

    PubMed Central

    Chan, Jasper F. W.; Lau, Susanna K. P.; To, Kelvin K. W.; Cheng, Vincent C. C.; Woo, Patrick C. Y.

    2015-01-01

    SUMMARY The source of the severe acute respiratory syndrome (SARS) epidemic was traced to wildlife market civets and ultimately to bats. Subsequent hunting for novel coronaviruses (CoVs) led to the discovery of two additional human and over 40 animal CoVs, including the prototype lineage C betacoronaviruses, Tylonycteris bat CoV HKU4 and Pipistrellus bat CoV HKU5; these are phylogenetically closely related to the Middle East respiratory syndrome (MERS) CoV, which has affected more than 1,000 patients with over 35% fatality since its emergence in 2012. All primary cases of MERS are epidemiologically linked to the Middle East. Some of these patients had contacted camels which shed virus and/or had positive serology. Most secondary cases are related to health care-associated clusters. The disease is especially severe in elderly men with comorbidities. Clinical severity may be related to MERS-CoV's ability to infect a broad range of cells with DPP4 expression, evade the host innate immune response, and induce cytokine dysregulation. Reverse transcription-PCR on respiratory and/or extrapulmonary specimens rapidly establishes diagnosis. Supportive treatment with extracorporeal membrane oxygenation and dialysis is often required in patients with organ failure. Antivirals with potent in vitro activities include neutralizing monoclonal antibodies, antiviral peptides, interferons, mycophenolic acid, and lopinavir. They should be evaluated in suitable animal models before clinical trials. Developing an effective camel MERS-CoV vaccine and implementing appropriate infection control measures may control the continuing epidemic. PMID:25810418

  4. Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves.

    PubMed

    Park, S J; Kim, G Y; Choy, H E; Hong, Y J; Saif, L J; Jeong, J H; Park, S I; Kim, H H; Kim, S K; Shin, S S; Kang, M I; Cho, K O

    2007-01-01

    Although winter dysentery (WD), which is caused by the bovine coronavirus (BCoV) is characterized by the sudden onset of diarrhea in many adult cattle in a herd, the pathogenesis of the WD-BCoV is not completely understood. In this study, colostrum-deprived calves were experimentally infected with a Korean WD-BCoV strain and examined for viremia, enteric and nasal virus shedding as well as for viral antigen expression and virus-associated lesions in the small and large intestines and the upper and lower respiratory tract from 1 to 8 days after an oral infection. The WD-BCoV-inoculated calves showed gradual villous atrophy in the small intestine and a gradual increase in the crypt depth of the large intestine. The WD-BCoV-infected animals showed epithelial damage in nasal turbinates, trachea and lungs, and interstitial pneumonia. The WD-BCoV antigen was detected in the epithelium of the small and large intestines, nasal turbinates, trachea and lungs. WD-BCoV RNA was detected in the serum from post-inoculation day 3. These results show that the WD-BCoV has dual tropism and induces pathological changes in both the digestive and respiratory tracts of calves. To our knowledge, this is the first detailed report of dual enteric and respiratory tropisms of WD-BCoV in calves. Comprehensive studies of the dual tissue pathogenesis of the BCoV might contribute to an increased understanding of similar pneumoenteric CoV infections in humans.

  5. Spread, Circulation, and Evolution of the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Cotten, Matthew; Watson, Simon J.; Zumla, Alimuddin I.; Makhdoom, Hatem Q.; Palser, Anne L.; Ong, Swee Hoe; Al Rabeeah, Abdullah A.; Alhakeem, Rafat F.; Assiri, Abdullah; Al-Tawfiq, Jaffar A.; Albarrak, Ali; Barry, Mazin; Shibl, Atef; Alrabiah, Fahad A.; Hajjar, Sami; Balkhy, Hanan H.; Flemban, Hesham; Rambaut, Andrew; Kellam, Paul; Memish, Ziad A.

    2014-01-01

    ABSTRACT The Middle East respiratory syndrome coronavirus (MERS-CoV) was first documented in the Kingdom of Saudi Arabia (KSA) in 2012 and, to date, has been identified in 180 cases with 43% mortality. In this study, we have determined the MERS-CoV evolutionary rate, documented genetic variants of the virus and their distribution throughout the Arabian peninsula, and identified the genome positions under positive selection, important features for monitoring adaptation of MERS-CoV to human transmission and for identifying the source of infections. Respiratory samples from confirmed KSA MERS cases from May to September 2013 were subjected to whole-genome deep sequencing, and 32 complete or partial sequences (20 were ≥99% complete, 7 were 50 to 94% complete, and 5 were 27 to 50% complete) were obtained, bringing the total available MERS-CoV genomic sequences to 65. An evolutionary rate of 1.12 × 10−3 substitutions per site per year (95% credible interval [95% CI], 8.76 × 10−4; 1.37 × 10−3) was estimated, bringing the time to most recent common ancestor to March 2012 (95% CI, December 2011; June 2012). Only one MERS-CoV codon, spike 1020, located in a domain required for cell entry, is under strong positive selection. Four KSA MERS-CoV phylogenetic clades were found, with 3 clades apparently no longer contributing to current cases. The size of the population infected with MERS-CoV showed a gradual increase to June 2013, followed by a decline, possibly due to increased surveillance and infection control measures combined with a basic reproduction number (R0) for the virus that is less than 1. PMID:24549846

  6. Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies

    PubMed Central

    Mudgal, Gaurav; Ordoño, Desiderio; Enjuanes, Luis; Casasnovas, José M.

    2012-01-01

    The coronaviruses (CoVs) are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10–20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN), a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S) mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs) of two closely related CoV strains, transmissible gastroenteritis virus (TGEV) and porcine respiratory CoV (PRCV), in complex with their receptor, porcine APN (pAPN), or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs. PMID:22876187

  7. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies.

    PubMed

    Reguera, Juan; Santiago, César; Mudgal, Gaurav; Ordoño, Desiderio; Enjuanes, Luis; Casasnovas, José M

    2012-01-01

    The coronaviruses (CoVs) are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10-20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN), a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S) mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs) of two closely related CoV strains, transmissible gastroenteritis virus (TGEV) and porcine respiratory CoV (PRCV), in complex with their receptor, porcine APN (pAPN), or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs. PMID:22876187

  8. Quantification of infectious bronchitis coronavirus by titration in vitro and in ovo.

    PubMed

    Kint, Joeri; Maier, Helena Jane; Jagt, Erik

    2015-01-01

    Quantification of the number of infectious viruses in a sample is a basic virological technique. In this chapter we provide a detailed description of three techniques to estimate the number of viable infectious avian coronaviruses in a sample. All three techniques are serial dilution assays, better known as titrations.

  9. Complete Genome Sequence of a Brazil-Type Avian coronavirus Detected in a Chicken

    PubMed Central

    Ayres, Giselle R. R.; Torres, Carolina A.; Villarreal, Laura Y. B.; Hora, Aline S.; Taniwaki, Sueli A.

    2016-01-01

    Avian coronavirus is the causative agent of infectious bronchitis in chickens, leading to multisystemic disease that might be controlled if adequate vaccine strains are used. This paper reports the first complete genome sequence of a Brazil type of this virus (27,615 nucleotides [nt]) isolated from the kidneys of a chicken. PMID:27738043

  10. First Case of Systemic Coronavirus Infection in a Domestic Ferret (Mustela putorius furo) in Peru.

    PubMed

    Lescano, J; Quevedo, M; Gonzales-Viera, O; Luna, L; Keel, M K; Gregori, F

    2015-12-01

    A domestic ferret from Lima, Peru, died after ten days of non-specific clinical signs. Based on pathology, immunohistochemistry and molecular analysis, ferret systemic coronavirus (FRSCV)-associated disease was diagnosed for the first time in South America. This report highlights the potential spread of pathogens by the international pet trade.

  11. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein.

    PubMed

    Hurst, Kelley R; Koetzner, Cheri A; Masters, Paul S

    2009-07-01

    The coronavirus nucleocapsid protein (N), together with the large, positive-strand RNA viral genome, forms a helically symmetric nucleocapsid. This ribonucleoprotein structure becomes packaged into virions through association with the carboxy-terminal endodomain of the membrane protein (M), which is the principal constituent of the virion envelope. Previous work with the prototype coronavirus mouse hepatitis virus (MHV) has shown that a major determinant of the N-M interaction maps to the carboxy-terminal domain 3 of the N protein. To explore other domain interactions of the MHV N protein, we expressed a series of segments of the MHV N protein as fusions with green fluorescent protein (GFP) during the course of viral infection. We found that two of these GFP-N-domain fusion proteins were selectively packaged into virions as the result of tight binding to the N protein in the viral nucleocapsid, in a manner that did not involve association with either M protein or RNA. The nature of each type of binding was further explored through genetic analysis. Our results defined two strongly interacting regions of the N protein. One is the same domain 3 that is critical for M protein recognition during assembly. The other is domain N1b, which corresponds to the N-terminal domain that has been structurally characterized in detail for two other coronaviruses, infectious bronchitis virus and the severe acute respiratory syndrome coronavirus.

  12. Microevolution of Outbreak-Associated Middle East Respiratory Syndrome Coronavirus, South Korea, 2015

    PubMed Central

    Seong, Moon-Woo; Kim, So Yeon; Corman, Victor Max; Kim, Taek Soo; Cho, Sung Im; Kim, Man Jin; Lee, Seung Jun; Lee, Jee-Soo; Seo, Soo Hyun; Ahn, Ji Soo; Yu, Byeong Su; Park, Nare; Oh, Myoung-don; Park, Wan Beom; Lee, Ji Yeon; Kim, Gayeon; Joh, Joon Sung; Jeong, Ina; Kim, Eui Chong

    2016-01-01

    During the 2015 Middle East respiratory syndrome coronavirus outbreak in South Korea, we sequenced full viral genomes of strains isolated from 4 patients early and late during infection. Patients represented at least 4 generations of transmission. We found no evidence of changes in the evolutionary rate and no reason to suspect adaptive changes in viral proteins. PMID:26814649

  13. Viral RNA in Blood as Indicator of Severe Outcome in Middle East Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Kim, So Yeon; Park, Sun Jae; Cho, Sook Young; Cha, Ran-hui; Jee, Hyeon-Gun; Kim, Gayeon; Shin, Hyoung-Shik; Kim, Yeonjae; Jung, Yu Mi; Yang, Jeong-Sun; Kim, Sung Soon; Cho, Sung Im; Kim, Man Jin; Lee, Jee-Soo; Lee, Seung Jun; Seo, Soo Hyun; Park, Sung Sup

    2016-01-01

    We evaluated the diagnostic and clinical usefulness of blood specimens to detect Middle East respiratory syndrome coronavirus infection in 21 patients from the 2015 outbreak in South Korea. Viral RNA was detected in blood from 33% of patients at initial diagnosis, and the detection preceded a worse clinical course. PMID:27479636

  14. Viral RNA in Blood as Indicator of Severe Outcome in Middle East Respiratory Syndrome Coronavirus Infection.

    PubMed

    Kim, So Yeon; Park, Sun Jae; Cho, Sook Young; Cha, Ran-Hui; Jee, Hyeon-Gun; Kim, Gayeon; Shin, Hyoung-Shik; Kim, Yeonjae; Jung, Yu Mi; Yang, Jeong-Sun; Kim, Sung Soon; Cho, Sung Im; Kim, Man Jin; Lee, Jee-Soo; Lee, Seung Jun; Seo, Soo Hyun; Park, Sung Sup; Seong, Moon-Woo

    2016-10-01

    We evaluated the diagnostic and clinical usefulness of blood specimens to detect Middle East respiratory syndrome coronavirus infection in 21 patients from the 2015 outbreak in South Korea. Viral RNA was detected in blood from 33% of patients at initial diagnosis, and the detection preceded a worse clinical course. PMID:27479636

  15. Development of Broad-Spectrum Halomethyl Ketone Inhibitors Against Coronavirus Main Protease 3CL(pro)

    SciTech Connect

    Bacha,U.; Barilla, J.; Gabelli, S.; Kiso, Y.; Amzel, L.; Freire, E.

    2008-01-01

    Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CLpro (Mpro), which is highly conserved among all coronaviruses. Here 3CLpro derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CLpro with Ki's as low as 300 nm. The crystal structure of the complex of one of the compounds with 3CLpro indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.

  16. Enteric disease in postweaned beef calves associated with a Bovine coronavirus clade 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine coronavirus (BoCV) infections are associated with varied clinical presentations including neonatal diarrhea, winter dysentery in dairy cattle, and respiratory disease in various ages of cattle. This report presents information on BoCV infections associated with enteric disease of postweaned b...

  17. Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Crameri, Gary; Klein, Reuben; Foord, Adam; Yu, Meng; Riddell, Sarah; Haining, Jessica; Johnson, Dayna; Hemida, Maged G.; Barr, Jennifer; Peiris, Malik; Middleton, Deborah; Wang, Lin-Fa

    2016-01-01

    We conducted a challenge/rechallenge trial in which 3 alpacas were infected with Middle East respiratory syndrome coronavirus. The alpacas shed virus at challenge but were refractory to further shedding at rechallenge on day 21. The trial indicates that alpacas may be suitable models for infection and shedding dynamics of this virus. PMID:27070733

  18. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

    PubMed

    Sevajol, Marion; Subissi, Lorenzo; Decroly, Etienne; Canard, Bruno; Imbert, Isabelle

    2014-12-19

    The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world. PMID:25451065

  19. Origin and Possible Genetic Recombination of the Middle East Respiratory Syndrome Coronavirus from the First Imported Case in China: Phylogenetics and Coalescence Analysis

    PubMed Central

    Wang, Yanqun; Liu, Di; Shi, Weifeng; Lu, Roujian; Wang, Wenling; Zhao, Yanjie; Deng, Yao; Zhou, Weimin; Ren, Hongguang; Wu, Jun; Wang, Yu; Wu, Guizhen

    2015-01-01

    ABSTRACT The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory tract infection with a high fatality rate in humans. Coronaviruses are capable of infecting multiple species and can evolve rapidly through recombination events. Here, we report the complete genomic sequence analysis of a MERS-CoV strain imported to China from South Korea. The imported virus, provisionally named ChinaGD01, belongs to group 3 in clade B in the whole-genome phylogenetic tree and also has a similar tree topology structure in the open reading frame 1a and -b (ORF1ab) gene segment but clusters with group 5 of clade B in the tree constructed using the S gene. Genetic recombination analysis and lineage-specific single-nucleotide polymorphism (SNP) comparison suggest that the imported virus is a recombinant comprising group 3 and group 5 elements. The time-resolved phylogenetic estimation indicates that the recombination event likely occurred in the second half of 2014. Genetic recombination events between group 3 and group 5 of clade B may have implications for the transmissibility of the virus. PMID:26350969

  20. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling.

    PubMed

    Irigoyen, Nerea; Firth, Andrew E; Jones, Joshua D; Chung, Betty Y-W; Siddell, Stuart G; Brierley, Ian

    2016-02-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global "snap-shot" of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  1. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian

    2016-01-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  2. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

    PubMed Central

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi

    2015-01-01

    ABSTRACT RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic

  3. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    PubMed

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential.

  4. Taking forward a 'One Health' approach for turning the tide against the Middle East respiratory syndrome coronavirus and other zoonotic pathogens with epidemic potential.

    PubMed

    Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild

    2016-06-01

    The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential. PMID:27321961

  5. Effect of coronavirus infection on reproductive performance of turkey hens.

    PubMed

    Awe, Olusegun O; Ali, Ahmed; Elaish, Mohamed; Ibrahim, Mahmoud; Murgia, Maria; Pantin-Jackwood, Mary; Saif, Yehia M; Lee, Chang-Won

    2013-09-01

    Turkey coronavirus (TCoV) infection causes enteritis in turkeys of varying ages with high mortality in young birds. In older birds, field evidence indicates the possible involvement of TCoV in egg-production drops in turkey hens. However, no experimental studies have been conducted to demonstrate TCoV pathogenesis in turkey hens and its effect on reproductive performance. In the present study, we assessed the possible effect of TCoV on the reproductive performance of experimentally infected turkey hens. In two separate trials, 29- to 30-wk-old turkey hens in peak egg production were either mock-infected or inoculated orally with TCoV (Indiana strain). Cloacal swabs and intestinal and reproductive tissues were collected and standard reverse-transcription PCR was conducted to detect TCoV RNA. In the cloacal swabs, TCoV was detected consistently at 3, 5, 7, and 12 days postinoculation (DPI) with higher rates of detection after 5 DPI (> 90%). All intestinal samples were also positive for TCoV at 7 DPI, and microscopic lesions consisting of severe enteritis with villous atrophy were observed in the duodenum and jejunum of TCoV-infected hens. In one of the trials TCoV was detected from the oviduct of two birds at 7 DPI; however, no or mild microscopic lesions were present. In both experimental trials an average of 28%-29% drop in egg production was observed in TCoV-infected turkey hens between 4 and 7 DPI. In a separate trial we also confirmed that TCoV can efficiently transmit from infected to contact control hens. Our results show that TCoV infection can affect the reproductive performance in turkey hens, causing a transient drop in egg production. This drop in egg production most likely occurred as consequence of the severe enteritis produced by the TCoV. However, the potential replication of TCoV in the oviduct and its effect on pathogenesis should be considered and further investigated. PMID:24283132

  6. Effect of coronavirus infection on reproductive performance of turkey hens.

    PubMed

    Awe, Olusegun O; Ali, Ahmed; Elaish, Mohamed; Ibrahim, Mahmoud; Murgia, Maria; Pantin-Jackwood, Mary; Saif, Yehia M; Lee, Chang-Won

    2013-09-01

    Turkey coronavirus (TCoV) infection causes enteritis in turkeys of varying ages with high mortality in young birds. In older birds, field evidence indicates the possible involvement of TCoV in egg-production drops in turkey hens. However, no experimental studies have been conducted to demonstrate TCoV pathogenesis in turkey hens and its effect on reproductive performance. In the present study, we assessed the possible effect of TCoV on the reproductive performance of experimentally infected turkey hens. In two separate trials, 29- to 30-wk-old turkey hens in peak egg production were either mock-infected or inoculated orally with TCoV (Indiana strain). Cloacal swabs and intestinal and reproductive tissues were collected and standard reverse-transcription PCR was conducted to detect TCoV RNA. In the cloacal swabs, TCoV was detected consistently at 3, 5, 7, and 12 days postinoculation (DPI) with higher rates of detection after 5 DPI (> 90%). All intestinal samples were also positive for TCoV at 7 DPI, and microscopic lesions consisting of severe enteritis with villous atrophy were observed in the duodenum and jejunum of TCoV-infected hens. In one of the trials TCoV was detected from the oviduct of two birds at 7 DPI; however, no or mild microscopic lesions were present. In both experimental trials an average of 28%-29% drop in egg production was observed in TCoV-infected turkey hens between 4 and 7 DPI. In a separate trial we also confirmed that TCoV can efficiently transmit from infected to contact control hens. Our results show that TCoV infection can affect the reproductive performance in turkey hens, causing a transient drop in egg production. This drop in egg production most likely occurred as consequence of the severe enteritis produced by the TCoV. However, the potential replication of TCoV in the oviduct and its effect on pathogenesis should be considered and further investigated.

  7. RT-PCR detection of avian coronaviruses of galliform birds (chicken, turkey, pheasant) and in a parrot.

    PubMed

    Culver, Francesca Anne; Britton, Paul; Cavanagh, Dave

    2008-01-01

    Of the many primer combinations that we have investigated for the detection of avian coronaviruses, two have worked better than any of the others: they worked with the largest number of strains/samples of a given coronavirus and the most species of avian coronavirus, and they also produced the most sensitive detection tests. The primer combinations were: oligonucleotide pair 2Bp/4Bm, which is in a region of gene 1 that is moderately conserved among all species of coronavirus (1); and UTR11-/UTR41+, which are in a highly conserved part of the 3' untranslated region of avian coronaviruses related to infectious bronchitis virus (2). The gene 1 primer pair enabled the detection of a new coronavirus in a green-checked Amazon parrot (Amazon viridigenalis Cassin). In this chapter we describe the use of these oligonucleotides in a one-step (single-tube) RT-PCR, and describe the procedure that we used to extract RNA from turkey feces.

  8. Institutional Preparedness to Prevent Future Middle East Respiratory Syndrome Coronavirus-Like Outbreaks in Republic of Korea

    PubMed Central

    2016-01-01

    A year has passed since the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea. This 2015 outbreak led to a better understanding of healthcare infection control. The first Korean patient infected by Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was diagnosed on May 20, 2015, after he returned from Qatar and Bahrain. Thereafter, 186 Korean people were infected with the MERS-CoV in a short time through human-to-human transmission. All these cases were linked to healthcare settings, and 25 (13.5 %) infected patients were healthcare workers. Phylogenetic analysis suggested that the MERS-CoV isolate found in the Korean patient was closely related to the Qatar strain, and did not harbor transmission efficiency-improving mutations. Nevertheless, with the same infecting virus strain, Korea experienced the largest MERS-CoV outbreak outside the Arabian Peninsula, primarily due to the different characteristics of population density and the healthcare system. We aimed to review the epidemiological features and existing knowledge on the Korean MERS outbreak, and suggest methods to prevent future epidemics. PMID:27433377

  9. Institutional Preparedness to Prevent Future Middle East Respiratory Syndrome Coronavirus-Like Outbreaks in Republic of Korea.

    PubMed

    Jeon, Min Huok; Kim, Tae Hyong

    2016-06-01

    A year has passed since the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea. This 2015 outbreak led to a better understanding of healthcare infection control. The first Korean patient infected by Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was diagnosed on May 20, 2015, after he returned from Qatar and Bahrain. Thereafter, 186 Korean people were infected with the MERS-CoV in a short time through human-to-human transmission. All these cases were linked to healthcare settings, and 25 (13.5 %) infected patients were healthcare workers. Phylogenetic analysis suggested that the MERS-CoV isolate found in the Korean patient was closely related to the Qatar strain, and did not harbor transmission efficiency-improving mutations. Nevertheless, with the same infecting virus strain, Korea experienced the largest MERS-CoV outbreak outside the Arabian Peninsula, primarily due to the different characteristics of population density and the healthcare system. We aimed to review the epidemiological features and existing knowledge on the Korean MERS outbreak, and suggest methods to prevent future epidemics. PMID:27433377

  10. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  11. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1.

    PubMed

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Hein, Marco Y; Müller, Marcel A; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-08-30

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PL(pro)), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95-144 of RCHY1 and 389-652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PL(pro)s from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD-PL(pro) fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PL(pro) alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes.

  12. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1

    PubMed Central

    Ma-Lauer, Yue; Carbajo-Lozoya, Javier; Müller, Marcel A.; Deng, Wen; Lei, Jian; Meyer, Benjamin; Kusov, Yuri; von Brunn, Brigitte; Bairad, Dev Raj; Hünten, Sabine; Drosten, Christian; Hermeking, Heiko; Leonhardt, Heinrich; Mann, Matthias; Hilgenfeld, Rolf; von Brunn, Albrecht

    2016-01-01

    Highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) has developed strategies to inhibit host immune recognition. We identify cellular E3 ubiquitin ligase ring-finger and CHY zinc-finger domain-containing 1 (RCHY1) as an interacting partner of the viral SARS-unique domain (SUD) and papain-like protease (PLpro), and, as a consequence, the involvement of cellular p53 as antagonist of coronaviral replication. Residues 95–144 of RCHY1 and 389–652 of SUD (SUD-NM) subdomains are crucial for interaction. Association with SUD increases the stability of RCHY1 and augments RCHY1-mediated ubiquitination as well as degradation of p53. The calcium/calmodulin-dependent protein kinase II delta (CAMK2D), which normally influences RCHY1 stability by phosphorylation, also binds to SUD. In vivo phosphorylation shows that SUD does not regulate phosphorylation of RCHY1 via CAMK2D. Similarly to SUD, the PLpros from SARS-CoV, MERS-CoV, and HCoV-NL63 physically interact with and stabilize RCHY1, and thus trigger degradation of endogenous p53. The SARS-CoV papain-like protease is encoded next to SUD within nonstructural protein 3. A SUD–PLpro fusion interacts with RCHY1 more intensively and causes stronger p53 degradation than SARS-CoV PLpro alone. We show that p53 inhibits replication of infectious SARS-CoV as well as of replicons and human coronavirus NL63. Hence, human coronaviruses antagonize the viral inhibitor p53 via stabilizing RCHY1 and promoting RCHY1-mediated p53 degradation. SUD functions as an enhancer to strengthen interaction between RCHY1 and nonstructural protein 3, leading to a further increase in in p53 degradation. The significance of these findings is that down-regulation of p53 as a major player in antiviral innate immunity provides a long-sought explanation for delayed activities of respective genes. PMID:27519799

  13. Coronaviruses: propagation, quantification, storage, and construction of recombinant mouse hepatitis virus.

    PubMed

    Leibowitz, Julian; Kaufman, Gili; Liu, Pinghua

    2011-05-01

    The focus of this protocol is mouse hepatitis virus (MHV), with occasional references to other coronaviruses. Many of these protocols can be easily adapted to other coronaviruses. Protocols for propagating MHV in DBT and 17CL-1 cells; the storage and titration of viral stocks; purification of MHV on sucrose gradients; and the generation of recombinant viruses by a cDNA assembly method and by targeted recombination will be presented. Protocols are also included for the propagation of DBT, 17CL-1, and L2 cells used for growing and titrating MHV, and for the growth of BHK-R cells and FCWF cells. The latter two cell lines are used for regenerating infectious MHV by an in vitro cDNA assembly protocol and by a targeted recombination protocol, respectively, allowing reverse genetic manipulation of these viruses. An additional protocol for the maintenance of the large plasmids used for generating recombinant MHVs will also be presented.

  14. Canine Enteric Coronaviruses: Emerging Viral Pathogens with Distinct Recombinant Spike Proteins

    PubMed Central

    Licitra, Beth N.; Duhamel, Gerald E.; Whittaker, Gary R.

    2014-01-01

    Canine enteric coronavirus (CCoV) is an alphacoronavirus infecting dogs that is closely related to enteric coronaviruses of cats and pigs. While CCoV has traditionally caused mild gastro-intestinal clinical signs, there are increasing reports of lethal CCoV infections in dogs, with evidence of both gastrointestinal and systemic viral dissemination. Consequently, CCoV is now considered to be an emerging infectious disease of dogs. In addition to the two known serotypes of CCoV, novel recombinant variants of CCoV have been found containing spike protein N-terminal domains (NTDs) that are closely related to those of feline and porcine strains. The increase in disease severity in dogs and the emergence of novel CCoVs can be attributed to the high level of recombination within the spike gene that can occur during infection by more than one CCoV type in the same host. PMID:25153347

  15. [Infections with the MERS coronavirus--for the present no threat to Europe].

    PubMed

    Stock, Ingo

    2015-12-01

    In Saudi Arabia, a novel coronavirus named Middle East respiratory syndrome coronavirus (MERS-CoV) was isolated in 2012 from patients with severe respiratory symptoms. Up to now, more than 1600 MERS cases have been registered mainly in the Arabian Peninsula. MERS is usually accompanied with fever, cough, and shortness of breath. In many cases, pneumonia is observed. However, clinical features of MERS range from mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. To date, about one in three people died as a result of MERS. In Europe, MERS cases have only been registered in isolated travelers entering from the Middle East.

  16. E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity

    SciTech Connect

    Vlasak, R.; Luytjes, W.; Leider, J.; Spaan, W.; Palese, P.

    1988-12-01

    In addition to members of the Orthomyxoviridae and Paramyxoviridae, several coronaviruses have been shown to possess receptor-destroying activities. Purified bovine coronavirus (BCV) preparations have an esterase activity which inactivates O-acetylsialic acid-containing receptors on erythrocytes. Diisopropyl fluorophosphate (DFP) completely inhibits this receptor-destroying activity of BCV, suggesting that the viral enzyme is a serine esterase. Treatment of purified BCV with (/sup 3/H)DFP and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the proteins revealed that the esterase/receptor-destroying activity of BCV is associated with the E3 protein was specifically phosphorylated. This finding suggests that the esterase/receptor-destroying activity of BCV is associated with the E3 protein. Furthermore, treatment of BCV with DFP dramatically reduced its infectivity in a plaque assay. It is assumed that the esterase activity of BCV is required in an early step of virus replication, possible during virus entry or uncoating.

  17. Prevalence and implications of feline coronavirus infections of captive and free-ranging cheetahs (Acinonyx jubatus).

    PubMed Central

    Heeney, J L; Evermann, J F; McKeirnan, A J; Marker-Kraus, L; Roelke, M E; Bush, M; Wildt, D E; Meltzer, D G; Colly, L; Lukas, J

    1990-01-01

    The extent and progression of exposure to feline infectious peritonitis (FIP) virus in the cheetah, Acinonyx jubatus, was monitored by a world-wide serological survey with indirect fluorescent antibody titers to coronavirus. The indirect fluorescent antibody assay was validated by Western blots, which showed that all indirect fluorescent antibody-positive cheetah sera detected both domestic cat and cheetah coronavirus structural proteins. There was a poor correlation between indirect fluorescent antibody results and the presence of coronaviruslike particles in cheetah feces, suggesting that electron microscopic detection of shed particles may not be an easily interpreted diagnostic parameter for FIP disease. Low, but verifiable (by Western blots [immunoblots]) antibody titers against coronavirus were detected in eight free-ranging cheetahs from east Africa as well as from captive cheetahs throughout the world. Of 20 North American cheetah facilities screened, 9 had cheetahs with measurable antibodies to feline coronavirus. Five facilities showed patterns of an ongoing epizootic. Retrospective FIP virus titers of an FIP outbreak in a cheetah-breeding facility in Oregon were monitored over a 5-year period and are interpreted here in terms of clinical disease progression. During that outbreak the morbidity was over 90% and the mortality was 60%, far greater than any previously reported epizootic of FIP in any cat species. Age of infection was a significant risk factor in this epizootic, with infants (less than 3 months old) displaying significantly higher risk for mortality than subadults or adults. Based upon these observations, empirical generalizations are drawn which address epidemiologic concerns for cheetahs in the context of this lethal infectious agent. Images PMID:2157864

  18. Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium.

    PubMed

    Addie, Diane D; Paltrinieri, Saverio; Pedersen, Niels C

    2004-04-01

    In August 2002, scientists and veterinarians from all over the world met in Scotland to discuss feline coronavirus (FCoV) and feline infectious peritonitis (FIP). The conference ended with delegates dividing into three workshops to draw up recommendations for FCoV control, diagnosis and treatment and future research. The workshops were chaired by the three authors and the recommendations are presented in this paper.

  19. Middle East Respiratory Syndrome Coronavirus during Pregnancy, Abu Dhabi, United Arab Emirates, 2013.

    PubMed

    Malik, Asim; El Masry, Karim Medhat; Ravi, Mini; Sayed, Falak

    2016-03-01

    As of June 19, 2015, the World Health Organization had received 1,338 notifications of laboratory-confirmed infection with Middle East respiratory syndrome coronavirus (MERS-CoV). Little is known about the course of or treatment for MERS-CoV in pregnant women. We report a fatal case of MERS-CoV in a pregnant woman administered combination ribavirin-peginterferon-α therapy.

  20. Laboratory Testing for Middle East Respiratory Syndrome Coronavirus, California, USA, 2013–2014

    PubMed Central

    Shahkarami, Mahtab; Yen, Cynthia; Glaser, Carol; Xia, Dongxiang; Watt, James

    2015-01-01

    Since Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged, the California Department of Public Health has coordinated efforts to identify possible cases in travelers to California, USA, from affected areas. During 2013–2014, the department investigated 54 travelers for MERS-CoV; none tested positive, but 32 (62%) of 52 travelers with suspected MERS-CoV had other respiratory viruses. PMID:26291839

  1. Rat respiratory coronavirus infection: replication in airway and alveolar epithelial cells and the innate immune response

    PubMed Central

    Funk, C. Joel; Manzer, Rizwan; Miura, Tanya A.; Groshong, Steve D.; Ito, Yoko; Travanty, Emily A.; Leete, Jennifer; Holmes, Kathryn V.; Mason, Robert J.

    2009-01-01

    The rat coronavirus sialodacryoadenitis virus (SDAV) causes respiratory infection and provides a system for investigating respiratory coronaviruses in a natural host. A viral suspension in the form of a microspray aerosol was delivered by intratracheal instillation into the distal lung of 6–8-week-old Fischer 344 rats. SDAV inoculation produced a 7 % body weight loss over a 5 day period that was followed by recovery over the next 7 days. SDAV caused focal lesions in the lung, which were most severe on day 4 post-inoculation (p.i.). Immunofluorescent staining showed that four cell types supported SDAV virus replication in the lower respiratory tract, namely Clara cells, ciliated cells in the bronchial airway and alveolar type I and type II cells in the lung parenchyma. In bronchial alveolar lavage fluid (BALF) a neutrophil influx increased the population of neutrophils to 45 % compared with 6 % of the cells in control samples on day 2 after mock inoculation. Virus infection induced an increase in surfactant protein SP-D levels in BALF of infected rats on days 4 and 8 p.i. that subsided by day 12. The concentrations of chemokines MCP-1, LIX and CINC-1 in BALF increased on day 4 p.i., but returned to control levels by day 8. Intratracheal instillation of rats with SDAV coronavirus caused an acute, self-limited infection that is a useful model for studying the early events of the innate immune response to respiratory coronavirus infections in lungs of the natural virus host. PMID:19741068

  2. Retargeting of Coronavirus by Substitution of the Spike Glycoprotein Ectodomain: Crossing the Host Cell Species Barrier

    PubMed Central

    Kuo, Lili; Godeke, Gert-Jan; Raamsman, Martin J. B.; Masters, Paul S.; Rottier, Peter J. M.

    2000-01-01

    Coronaviruses generally have a narrow host range, infecting one or just a few species. Using targeted RNA recombination, we constructed a mutant of the coronavirus mouse hepatitis virus (MHV) in which the ectodomain of the spike glycoprotein (S) was replaced with the highly divergent ectodomain of the S protein of feline infectious peritonitis virus. The resulting chimeric virus, designated fMHV, acquired the ability to infect feline cells and simultaneously lost the ability to infect murine cells in tissue culture. This reciprocal switch of species specificity strongly supports the notion that coronavirus host cell range is determined primarily at the level of interactions between the S protein and the virus receptor. The isolation of fMHV allowed the localization of the region responsible for S protein incorporation into virions to the carboxy-terminal 64 of the 1,324 residues of this protein. This establishes a basis for further definition of elements involved in virion assembly. In addition, fMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants, no matter how defective, that have regained the ability to replicate in murine cells. PMID:10627550

  3. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    PubMed Central

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  4. Quantitation, biological and physicochemical properties of cell culture-adapted porcine epidemic diarrhea coronavirus (PEDV).

    PubMed

    Hofmann, M; Wyler, R

    1989-06-01

    The porcine epidemic coronavirus (PEDV), tentatively classified as a coronavirus, was adapted to Vero cells and a plaque test developed for infectivity titration, allowing us to test the biological and biophysical properties of the virus. Growth kinetics showed peak titers of 10(5.5) plaque-forming units ml-1 15 h after infection. Filtration experiments and electron microscopy revealed a particle diameter between 100 and 200 nm. The buoyant density of the virus was 1.18. The particle lost its infectivity on treatment with lipid solvents. Virus replication could not be inhibited by 5-iodo-2'-deoxyuridine. PEDV was moderately stable at 50 degrees C, but heat sensitivity was not altered by divalent cations. At 4 degrees C, the virus was stable between pH 5.0 and 9.0, but at 37 degrees C stability was restricted to the pH range 6.5-7.5. Viral infectivity was not impaired by ultrasonication or by multiple freezing and thawing. PEDV was not neutralized by transmissible gastroenteritis virus antiserum. On the basis of the tests carried out, PEDV is a pleomorphic, enveloped RNA virus with a particle diameter of approximately 150 nm and a buoyant density of 1.18. Infectivity depends on the presence of trypsin, and infected cells show a tendency to fuse and to form syncytia. All of these properties, as well as its physicochemical characteristics, allow PEDV to be classified as a coronavirus.

  5. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus.

    PubMed

    Licitra, Beth N; Millet, Jean K; Regan, Andrew D; Hamilton, Brian S; Rinaldi, Vera D; Duhamel, Gerald E; Whittaker, Gary R

    2013-07-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses.

  6. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier.

    PubMed

    Kuo, L; Godeke, G J; Raamsman, M J; Masters, P S; Rottier, P J

    2000-02-01

    Coronaviruses generally have a narrow host range, infecting one or just a few species. Using targeted RNA recombination, we constructed a mutant of the coronavirus mouse hepatitis virus (MHV) in which the ectodomain of the spike glycoprotein (S) was replaced with the highly divergent ectodomain of the S protein of feline infectious peritonitis virus. The resulting chimeric virus, designated fMHV, acquired the ability to infect feline cells and simultaneously lost the ability to infect murine cells in tissue culture. This reciprocal switch of species specificity strongly supports the notion that coronavirus host cell range is determined primarily at the level of interactions between the S protein and the virus receptor. The isolation of fMHV allowed the localization of the region responsible for S protein incorporation into virions to the carboxy-terminal 64 of the 1,324 residues of this protein. This establishes a basis for further definition of elements involved in virion assembly. In addition, fMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants, no matter how defective, that have regained the ability to replicate in murine cells.

  7. Genomic RNA sequence of Feline coronavirus strain FIPV WSU-79/1146

    PubMed Central

    Dye, Charlotte; Siddell, Stuart G.

    2008-01-01

    A consensus sequence of the Feline coronavirus (FCoV) (strain FIPV WSU-79/1146) genome was determined from overlapping cDNA fragments produced by RT-PCR amplification of viral RNA. The genome was found to be 29 125 nt in length, excluding the poly(A) tail. Analysis of the sequence identified conserved open reading frames and revealed an overall genome organization similar to that of other coronaviruses. The genomic RNA was analysed for putative cis-acting elements and the pattern of subgenomic mRNA synthesis was analysed by Northern blotting. Comparative sequence analysis of the predicted FCoV proteins identified 16 replicase proteins (nsp1–nsp16) and four structural proteins (spike, membrane, envelope and nucleocapsid). Two mRNAs encoding putative accessory proteins were also detected. Phylogenetic analyses confirmed that FIPV WSU-79/1146 belongs to the coronavirus subgroup G1-1. These results confirm and extend previous findings from partial sequence analysis of FCoV genomes. PMID:16033972

  8. Bovine coronavirus (BCV) infections in transported commingled beef cattle and sole-source ranch calves.

    PubMed

    Fulton, Robert W; Step, Douglas L; Wahrmund, Jackie; Burge, Lurinda J; Payton, Mark E; Cook, Billy J; Burken, Dirk; Richards, Chris J; Confer, Anthony W

    2011-07-01

    This study investigated bovine coronavirus (BCV) in both beef calves direct from the ranch and commingled, mixed-source calves obtained from an auction market. The level of BCV-neutralizing antibodies found in the calves varied among ranches in 2 different studies in a retained-ownership program (ROP), from the ranch to the feedlot. Calves with low levels of BCV-neutralizing antibodies (16 or less) were more likely to be treated for bovine respiratory disease (BRD) than those with higher titers. In 3 studies of commingled, mixed-source calves, BCV was recovered from calves at entry to the feedlot and the infections were cleared by day 8. The BCV was identified in lung samples [bronchoalveolar lavage (BAL) collection] as well as in nasal swabs. Calves with low levels of BCV-neutralizing antibodies at entry were most likely to be shedding BCV. Bovine coronavirus was isolated from both healthy and sick calves, but not from sick calves after 4 d arrival at the feedlot. Bovine coronavirus (BCV) should be considered along with other bovine respiratory viruses in the diagnosis of etiologies in bovine respiratory disease, especially for animals that become sick shortly after arrival. If approved vaccines are developed, it would be best to carry out vaccination programs before calves are weaned, giving them sufficient time to gain active immunity before commingling with other cattle. PMID:22210995

  9. Crystal structure of murine coronavirus receptor sCEACAM1a[1,4],a member of the carcinoembtyonic antigen family

    SciTech Connect

    Tan, K.; Zelus, B. D.; Meijers, R.; Liu, J.-H.; Bergelson, J. M.; Zhang, R.; Duke, N.; Joachimiak, A.; Holmes, K. V.; Wang, J.-H.; Biosciences Division; Dana-Farber Cancer Inst.; Harvard Medical School; Univ. of Colorado Health Science Center; Univ. of Pennsylvania School of Medicine

    2002-05-01

    CEACAM1 is a member of the carcinoembryonic antigen (CEA) family. Isoforms of murine CEACAM1 serve as receptors for mouse hepatitis virus (MHV), a murine coronavirus. Here we report the crystal structure of soluble murine sCEACAM1a[1,4], which is composed of two Ig-like domains and has MHV neutralizing activity. Its N-terminal domain has a uniquely folded CC' loop that encompasses key virus-binding residues. This is the first atomic structure of any member of the CEA family, and provides a prototypic architecture for functional exploration of CEA family members. We discuss the structural basis of virus receptor activities of murine CEACAM1 proteins, binding of Neisseria to human CEACAM1, and other homophilic and heterophilic interactions of CEA family members.

  10. Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus

    PubMed Central

    2013-01-01

    Background The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) that first appeared in Saudi Arabia during the summer of 2012 has to date (20th September 2013) caused 58 human deaths. MERS-CoV utilizes the dipeptidyl peptidase 4 (DPP4) host cell receptor, and analysis of the long-term interaction between virus and receptor provides key information on the evolutionary events that lead to the viral emergence. Findings We show that bat DPP4 genes have been subject to significant adaptive evolution, suggestive of a long-term arms-race between bats and MERS related CoVs. In particular, we identify three positively selected residues in DPP4 that directly interact with the viral surface glycoprotein. Conclusions Our study suggests that the evolutionary lineage leading to MERS-CoV may have circulated in bats for a substantial time period. PMID:24107353

  11. SARS Coronavirus Fusion Peptide-Derived Sequence Suppresses Collagen-Induced Arthritis in DBA/1J Mice

    PubMed Central

    Shen, Zu T.; Sigalov, Alexander B.

    2016-01-01

    During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities. PMID:27349522

  12. SARS Coronavirus Fusion Peptide-Derived Sequence Suppresses Collagen-Induced Arthritis in DBA/1J Mice.

    PubMed

    Shen, Zu T; Sigalov, Alexander B

    2016-01-01

    During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities. PMID:27349522

  13. Coronavirus nonstructural protein 1: common and distinct functions in the regulation of host and viral gene expression

    PubMed Central

    Narayanan, Krishna; Ramirez, Sydney I.; Lokugamage, Kumari G.; Makino, Shinji

    2014-01-01

    The recent emergence of two highly pathogenic human coronaviruses (CoVs), severe acute respiratory syndrome CoV and Middle East respiratory syndrome CoV, has ignited a strong interest in the identification of viral factors that determine the virulence and pathogenesis of CoVs. The nonstructural protein 1 (nsp1) of CoVs has attracted considerable attention in this regard as a potential virulence factor and a target for CoV vaccine development because of accumulating evidence that point to its role in the downregulation of host innate immune responses to CoV infection. Studies have revealed both functional conservation and mechanistic divergence among the nsp1 of different mammalian CoVs in perturbing host gene expression and antiviral responses. This review summarizes the current knowledge about the biological functions of CoV nsp1 that provides an insight into the novel strategies utilized by this viral protein to modulate host and viral gene expression during CoV infection. PMID:25432065

  14. Recombinant Receptor Binding Domain Protein Induces Partial Protective Immunity in Rhesus Macaques Against Middle East Respiratory Syndrome Coronavirus Challenge☆

    PubMed Central

    Lan, Jiaming; Yao, Yanfeng; Deng, Yao; Chen, Hong; Lu, Guangwen; Wang, Wen; Bao, Linlin; Deng, Wei; Wei, Qiang; Gao, George F.; Qin, Chuan; Tan, Wenjie

    2015-01-01

    Background Development an effective vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) is urgent and limited information is available on vaccination in nonhuman primate (NHP) model. We herein report of evaluating a recombinant receptor-binding domain (rRBD) protein vaccine in a rhesus macaque model. Methods Nine monkeys were randomly assigned to high-dose, low-dose and mock groups,which were immunized with different doses of rRBD plus alum adjuvant or adjuvant alone at different time points (0, 8, 25 weeks). Immunological analysis was conducted after each immunisation. Monkeys were challenged with MERS-CoV at 14 days after the final immunisation followed by observation for clinical signs and chest X-rays. Nasal, oropharyngeal and rectal swabs were also collected for analyses. Monkeys were euthanized 3 days after challenge and multiple specimens from tissues were collected for pathological, virological and immunological tests. Conclusion Robust and sustained immunological responses (including neutralisation antibody) were elicited by the rRBD vaccination. Besides, rRBD vaccination alleviated pneumonia with evidence of reduced tissue impairment and clinical manifestation in monkeys. Furthermore, the rRBD vaccine decreased viral load of lung, trachea and oropharyngeal swabs of monkeys. These data in NHP paves a way for further development of an effective human vaccine against MERS-CoV infection. PMID:26629538

  15. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    NASA Astrophysics Data System (ADS)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  16. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  17. Replication of murine coronavirus defective interfering RNA from negative-strand transcripts.

    PubMed

    Joo, M; Banerjee, S; Makino, S

    1996-09-01

    The positive-strand defective interfering (DI) RNA of the murine coronavirus mouse hepatitis virus (MHV), when introduced into MHV-infected cells, results in DI RNA replication and accumulation. We studied whether the introduction of negative-strand transcripts of MHV DI RNA would also result in replication. At a location downstream of the T7 promoter and upstream of the human hepatitis delta virus ribozyme domain, we inserted a complete cDNA clone of MHV DI RNA in reverse orientation; in vitro-synthesized RNA from this plasmid yielded a negative-strand RNA copy of the MHV DI RNA. When the negative-strand transcripts of the DI RNA were expressed in MHV-infected cells by a vaccinia virus T7 expression system, positive-strand DI RNAs accumulated in the plasmid-transfected cells. DI RNA replication depended on the expression of T7 polymerase and on the presence of the T7 promoter. Transfection of in vitro-synthesized negative-strand transcripts into MHV-infected cells and serial passage of virus samples from RNA-transfected cells also resulted in accumulation of the DI RNA. Positive-strand DI RNA transcripts were undetectable in sample preparations of the in vitro-synthesized negative-strand DI RNA transcripts, and DI RNA did not accumulate after cotransfection of a small amount of positive-strand DI RNA and truncated-replication-disabled negative-strand transcripts; clearly, the DI RNA replicated from the transfected negative-strand transcripts and not from minute amounts of positive-strand DI RNAs that might be envisioned as artifacts of T7 transcription. Sequence analysis of positive-strand DI RNAs in the cells transfected with negative-strand transcripts showed that DI RNAs maintained the DI-specific unique sequences introduced within the leader sequence. These data indicated that positive-strand DI RNA synthesis occurred from introduced negative-strand transcripts in the MHV-infected cells; this demonstration, using MHV, of DI RNA replication from transfected

  18. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic?

    PubMed

    Chan, Jasper F W; Li, Kenneth S M; To, Kelvin K W; Cheng, Vincent C C; Chen, Honglin; Yuen, Kwok-Yung

    2012-12-01

    Fouchier et al. reported the isolation and genome sequencing of a novel coronavirus tentatively named "human betacoronavirus 2c EMC/2012 (HCoV-EMC)" from a Saudi patient presenting with pneumonia and renal failure in June 2012. Genome sequencing showed that this virus belongs to the group C species of the genus betacoronavirus and phylogenetically related to the bat coronaviruses HKU4 and HKU5 previously found in lesser bamboo bat and Japanese Pipistrelle bat of Hong Kong respectively. Another patient from Qatar with similar clinical presentation and positive RT-PCR test was reported in September 2012. We compare and contrast the clinical presentation, laboratory diagnosis and management of infection due to this novel coronavirus and that of SARS coronavirus despite the paucity of published information on the former. Since 70% of all emerging infectious pathogens came from animals, the emergence of this novel virus may represent another instance of interspecies jumping of betacoronavirus from animals to human similar to the group A coronavirus OC43 possibly from a bovine source in the 1890s and the group B SARS coronavirus in 2003 from bat to civet and human. Despite the apparently low transmissibility of the virus at this stage, research preparedness against another SARS-like pandemic is an important precautionary strategy.

  19. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    PubMed Central

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Fan, Rachel Y. Y.; Lau, Candy C. Y.; Wong, Emily Y. M.; Joseph, Sunitha; Tsang, Alan K. L.; Wernery, Renate; Yip, Cyril C. Y.; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-01-01

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1. PMID:27164099

  20. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    SciTech Connect

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M. . E-mail: w.j.m.spaan@lumc.nl

    2007-04-25

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction.

  1. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria

    PubMed Central

    Ammar, Selles Sidi Mohammed; Mokhtaria, Kouidri; Tahar, Belhamiti Belkacem; Amar, Ait Amrane; Redha, Benia Ahmed; Yuva, Bellik; Mohamed, Hammoudi Si; Abdellatif, Niar; Laid, Boukrâa

    2014-01-01

    Objective To study the prevalence of bovine group A rotavirus (GARV) and bovine coronavirus (BCoV) in diarrheic feces from calves and the sensitive's parameters such as age group and sex. Methods Feces samples from 82 diarrheic dairy calves from farms around Tiaret (Western Algeria) were collected. These samples were tested by ELISA assay. Results The results showed that the prevalence of rotavirus and coronavirus infection are 14.63% (12.2% alone and 2.43% associated with bovine coronavirus) and 20.73% (18.3% alone and 2.43% associated with GARV), respectively. Conclusions The present study demonstrates that the both BCoV and GARV are involved in the neonatal calves' diarrhea, where the frequency of BCoV is clearly higher than that of GARV. PMID:25183104

  2. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice.

    PubMed

    Yount, Boyd; Roberts, Rhonda S; Sims, Amy C; Deming, Damon; Frieman, Matthew B; Sparks, Jennifer; Denison, Mark R; Davis, Nancy; Baric, Ralph S

    2005-12-01

    SARS coronavirus (SARS-CoV) encodes several unique group-specific open reading frames (ORFs) relative to other known coronaviruses. To determine the significance of the SARS-CoV group-specific ORFs in virus replication in vitro and in mice, we systematically deleted five of the eight group-specific ORFs, ORF3a, OF3b, ORF6, ORF7a, and ORF7b, and characterized recombinant virus replication and gene expression in vitro. Deletion of the group-specific ORFs of SARS-CoV, either alone or in various combinations, did not dramatically influence replication efficiency in cell culture or in the levels of viral RNA synthesis. The greatest reduction in virus growth was noted following ORF3a deletion. SARS-CoV spike (S) glycoprotein does not encode a rough endoplasmic reticulum (rER)/Golgi retention signal, and it has been suggested that ORF3a interacts with and targets S glycoprotein retention in the rER/Golgi apparatus. Deletion of ORF3a did not alter subcellular localization of the S glycoprotein from distinct punctuate localization in the rER/Golgi apparatus. These data suggest that ORF3a plays little role in the targeting of S localization in the rER/Golgi apparatus. In addition, insertion of the 29-bp deletion fusing ORF8a/b into the single ORF8, noted in early-stage SARS-CoV human and civet cat isolates, had little if any impact on in vitro growth or RNA synthesis. All recombinant viruses replicated to wild-type levels in the murine model, suggesting that either the group-specific ORFs play little role in in vivo replication efficiency or that the mouse model is not of sufficient quality for discerning the role of the group-specific ORFs in disease origin and development. PMID:16282490

  3. beta-Cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence.

    PubMed

    Abdou, S; Collomb, J; Sallas, F; Marsura, A; Finance, C

    1997-01-01

    The ability of cyclodextrins to enhance the antiviral activity of a phosphodiester oligodeoxynucleotide has been investigated. A 18-mer oligodeoxynucleotide complementary to the initiation region of the mRNA coding for the spike protein and containing the intergenic consensus sequence of an enteric coronavirus has been tested for antiviral action against virus growth in human adenocarcinoma cells. The phosphodiester oligodeoxynucleotide only showed a limited effect on virus growth rate (from 12 to 34% viral inhibition in cells treated with 7.5 to 25 microM oligodeoxynucleotide, respectively, at a multiplicity of infection of 0.1 infectious particle per cell). In the same conditions, the phosphorothioate analogue exhibited stronger antiviral activity, the inhibition increased from 56 to 90%. The inhibitory effect of this analogue was antisense and sequence-specific. Northern blot analysis showed that the sequence-dependent mechanism of action appears to be the inhibition of mRNA transcription. We conclude that the coronavirus intergenic consensus sequence is a good target for an antisense oligonucleotide antiviral action. The properties of the phosphodiester oligonucleotide was improved after its complexation with cyclodextrins. The most important increase of the antiviral activity (90% inhibition) was obtained with only 7.5 microM oligonucleotide complexed to a cyclodextrin derivative, 6-deoxy-6-S-beta-D-galactopyranosyl-6-thio-cyclomalto-heptaose+ ++ in a molar ratio of 1:100. These studies suggest that the use of cyclodextrin derivatives as carrier for phosphodiester oligonucleotides delivery may be an effective method for increasing the therapeutic potential of these compounds in viral infections. PMID:9672621

  4. Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations.

    PubMed

    Chen, Shuai; Chen, Lili; Tan, Jinzhi; Chen, Jing; Du, Li; Sun, Tao; Shen, Jianhua; Chen, Kaixian; Jiang, Hualiang; Shen, Xu

    2005-01-01

    Severe acute respiratory syndrome (SARS) coronavirus is a novel human coronavirus and is responsible for SARS infection. SARS coronavirus 3C-like proteinase (SARS 3CL(pro)) plays key roles in viral replication and transcription and is an attractive target for anti-SARS drug discovery. In this report, we quantitatively characterized the dimerization features of the full-length and N-terminal residues 1-7 deleted SARS 3CL(pro)s by using glutaraldehyde cross-linking SDS-PAGE, size-exclusion chromatography, and isothermal titration calorimeter techniques. Glutaraldehyde cross-linking SDS-PAGE and size-exclusion chromatography results show that, similar to the full-length SARS 3CL(pro), the N-terminal deleted SARS 3CL(pro) still remains a dimer/monomer mixture within a wide range of protein concentrations. Isothermal titration calorimeter determinations indicate that the equilibrium dissociation constant (K(d)) of the N-terminal deleted proteinase dimer (262 microm) is very similar to that of the full-length proteinase dimer (227 microm). Enzymatic activity assay using the fluorescence resonance energy transfer method reveals that N-terminal deletion results in almost complete loss of enzymatic activity for SARS 3CL(pro). Molecular dynamics and docking simulations demonstrate the N-terminal deleted proteinase dimer adopts a state different from that of the full-length proteinase dimer, which increases the angle between the two protomers and reduces the binding pocket that is not beneficial to the substrate binding. This conclusion is verified by the surface plasmon resonance biosensor determination, indicating that the model substrate cannot bind to the N-terminal deleted proteinase. These results suggest the N terminus is not indispensable for the proteinase dimerization but may fix the dimer at the active state and is therefore vital to enzymatic activity.

  5. Identification of Diverse Alphacoronaviruses and Genomic Characterization of a Novel Severe Acute Respiratory Syndrome-Like Coronavirus from Bats in China

    PubMed Central

    He, Biao; Zhang, Yuzhen; Xu, Lin; Yang, Weihong; Yang, Fanli; Feng, Yun; Xia, Lele; Zhou, Jihua; Zhen, Weibin; Feng, Ye; Guo, Huancheng

    2014-01-01

    ABSTRACT Although many severe acute respiratory syndrome-like coronaviruses (SARS-like CoVs) have been identified in bats in China, Europe, and Africa, most have a genetic organization significantly distinct from human/civet SARS CoVs in the receptor-binding domain (RBD), which mediates receptor binding and determines the host spectrum, resulting in their failure to cause human infections and making them unlikely progenitors of human/civet SARS CoVs. Here, a viral metagenomic analysis of 268 bat rectal swabs collected from four counties in Yunnan Province has identified hundreds of sequences relating to alpha- and betacoronaviruses. Phylogenetic analysis based on a conserved region of the RNA-dependent RNA polymerase gene revealed that alphacoronaviruses had diversities with some obvious differences from those reported previously. Full genomic analysis of a new SARS-like CoV from Baoshan (LYRa11) showed that it was 29,805 nucleotides (nt) in length with 13 open reading frames (ORFs), sharing 91% nucleotide identity with human/civet SARS CoVs and the most recently reported SARS-like CoV Rs3367, while sharing 89% with other bat SARS-like CoVs. Notably, it showed the highest sequence identity with the S gene of SARS CoVs and Rs3367, especially in the RBD region. Antigenic analysis showed that the S1 domain of LYRa11 could be efficiently recognized by SARS-convalescent human serum, indicating that LYRa11 is a novel virus antigenically close to SARS CoV. Recombination analyses indicate that LYRa11 is likely a recombinant descended from parental lineages that had evolved into a number of bat SARS-like CoVs. IMPORTANCE Although many severe acute respiratory syndrome-like coronaviruses (SARS-like CoVs) have been discovered in bats worldwide, there are significant different genic structures, particularly in the S1 domain, which are responsible for host tropism determination, between bat SARS-like CoVs and human SARS CoVs, indicating that most reported bat SARS-like CoVs are

  6. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling.

    PubMed

    Sun, Li; Xing, Yaling; Chen, Xiaojuan; Zheng, Yang; Yang, Yudong; Nichols, Daniel B; Clementz, Mark A; Banach, Bridget S; Li, Kui; Baker, Susan C; Chen, Zhongbin

    2012-01-01

    Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKε, leading to IRF-3 activation and subsequent induction of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKε complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction.

  7. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    SciTech Connect

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L. . E-mail: showlic@ha.mc.ntu.edu.tw

    2006-05-26

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla{sub b}ind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-{gamma} stimulation of blood CD8{sup +} T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.

  8. High Prevalence and Putative Lineage Maintenance of Avian Coronaviruses in Scandinavian Waterfowl

    PubMed Central

    Wille, Michelle; Muradrasoli, Shaman; Nilsson, Anna; Järhult, Josef D.

    2016-01-01

    Coronaviruses (CoVs) are found in a wide variety of wild and domestic animals, and constitute a risk for zoonotic and emerging infectious disease. In poultry, the genetic diversity, evolution, distribution and taxonomy of some coronaviruses have been well described, but little is known about the features of CoVs in wild birds. In this study we screened 764 samples from 22 avian species of the orders Anseriformes and Charadriiformes in Sweden collected in 2006/2007 for CoV, with an overall CoV prevalence of 18.7%, which is higher than many other wild bird surveys. The highest prevalence was found in the diving ducks—mainly Greater Scaup (Aythya marila; 51.5%)—and the dabbling duck Mallard (Anas platyrhynchos; 19.2%). Sequences from two of the Greater Scaup CoV fell into an infrequently detected lineage, shared only with a Tufted Duck (Aythya fuligula) CoV. Coronavirus sequences from Mallards in this study were highly similar to CoV sequences from the sample species and location in 2011, suggesting long-term maintenance in this population. A single Black-headed Gull represented the only positive sample from the order Charadriiformes. Globally, Anas species represent the largest fraction of avian CoV sequences, and there seems to be no host species, geographical or temporal structure. To better understand the eitiology, epidemiology and ecology of these viruses more systematic surveillance of wild birds and subsequent sequencing of detected CoV is imperative. PMID:26938459

  9. A Three-Stemmed mRNA Pseudoknot in the SARS Coronavirus Frameshift Signal

    PubMed Central

    2005-01-01

    A wide range of RNA viruses use programmed −1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed −1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics. PMID:15884978

  10. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function.

    PubMed

    Kuo, Lili; Hurst, Kelley R; Masters, Paul S

    2007-03-01

    The small envelope protein (E) plays a role of central importance in the assembly of coronaviruses. This was initially established by studies demonstrating that cellular expression of only E protein and the membrane protein (M) was necessary and sufficient for the generation and release of virus-like particles. To investigate the role of E protein in the whole virus, we previously generated E gene mutants of mouse hepatitis virus (MHV) that were defective in viral growth and produced aberrantly assembled virions. Surprisingly, however, we were also able to isolate a viable MHV mutant (DeltaE) in which the entire E gene, as well as the nonessential upstream genes 4 and 5a, were deleted. We have now constructed an E knockout mutant that confirms that the highly defective phenotype of the DeltaE mutant is due to loss of the E gene. Additionally, we have created substitution mutants in which the MHV E gene was replaced by heterologous E genes from viruses spanning all three groups of the coronavirus family. Group 2 and 3 E proteins were readily exchangeable for that of MHV. However, the E protein of a group 1 coronavirus, transmissible gastroenteritis virus, became functional in MHV only after acquisition of particular mutations. Our results show that proteins encompassing a remarkably diverse range of primary amino acid sequences can provide E protein function in MHV. These findings suggest that E protein facilitates viral assembly in a manner that does not require E protein to make sequence-specific contacts with M protein.

  11. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas).

    PubMed

    Liu, Shengwang; Chen, Jianfei; Chen, Jinding; Kong, Xiangang; Shao, Yuhao; Han, Zongxi; Feng, Li; Cai, Xuehui; Gu, Shoulin; Liu, Ming

    2005-03-01

    Coronavirus-like viruses, designated peafowl/China/LKQ3/2003 (pf/CH/LKQ3/03) and teal/China/LDT3/2003 (tl/CH/LDT3/03), were isolated from a peafowl and a teal during virological surveillance in Guangdong province, China. Partial genomic sequence analysis showed that these isolates had the S-3-M-5-N gene order that is typical of avian coronaviruses. The spike, membrane and nucleocapsid protein genes of pf/CH/LKQ3/03 had >99 % identity to those of the avian infectious bronchitis coronavirus H120 vaccine strain (Massachusetts serotype) and other Massachusetts serotype isolates. Furthermore, when pf/CH/LKQ3/03 was inoculated experimentally into chickens (specific-pathogen-free), no disease signs were apparent. tl/CH/LDT3/03 had a spike protein gene with 95 % identity to that of a Chinese infectious bronchitis virus (IBV) isolate, although more extensive sequencing revealed the possibility that this strain may have undergone recombination. When inoculated into chickens, tl/CH/LDT3/03 resulted in the death of birds from nephritis. Taken together, this information suggests that pf/CH/LKQ3/03 might be a revertant, attenuated vaccine IBV strain, whereas tl/CH/LDT3/03 is a nephropathogenic field IBV strain, generated through recombination. The replication and non-pathogenic nature of IBV in domestic peafowl and teal under field conditions raises questions as to the role of these hosts as carriers of IBV and the potential that they may have to transmit virus to susceptible chicken populations.

  12. High Prevalence and Putative Lineage Maintenance of Avian Coronaviruses in Scandinavian Waterfowl.

    PubMed

    Wille, Michelle; Muradrasoli, Shaman; Nilsson, Anna; Järhult, Josef D

    2016-01-01

    Coronaviruses (CoVs) are found in a wide variety of wild and domestic animals, and constitute a risk for zoonotic and emerging infectious disease. In poultry, the genetic diversity, evolution, distribution and taxonomy of some coronaviruses have been well described, but little is known about the features of CoVs in wild birds. In this study we screened 764 samples from 22 avian species of the orders Anseriformes and Charadriiformes in Sweden collected in 2006/2007 for CoV, with an overall CoV prevalence of 18.7%, which is higher than many other wild bird surveys. The highest prevalence was found in the diving ducks--mainly Greater Scaup (Aythya marila; 51.5%)--and the dabbling duck Mallard (Anas platyrhynchos; 19.2%). Sequences from two of the Greater Scaup CoV fell into an infrequently detected lineage, shared only with a Tufted Duck (Aythya fuligula) CoV. Coronavirus sequences from Mallards in this study were highly similar to CoV sequences from the sample species and location in 2011, suggesting long-term maintenance in this population. A single Black-headed Gull represented the only positive sample from the order Charadriiformes. Globally, Anas species represent the largest fraction of avian CoV sequences, and there seems to be no host species, geographical or temporal structure. To better understand the eitiology, epidemiology and ecology of these viruses more systematic surveillance of wild birds and subsequent sequencing of detected CoV is imperative. PMID:26938459

  13. Role of the lipid rafts in the life cycle of canine coronavirus.

    PubMed

    Pratelli, Annamaria; Colao, Valeriana

    2015-02-01

    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.

  14. Isolation of avian infectious bronchitis coronavirus from domestic peafowl (Pavo cristatus) and teal (Anas).

    PubMed

    Liu, Shengwang; Chen, Jianfei; Chen, Jinding; Kong, Xiangang; Shao, Yuhao; Han, Zongxi; Feng, Li; Cai, Xuehui; Gu, Shoulin; Liu, Ming

    2005-03-01

    Coronavirus-like viruses, designated peafowl/China/LKQ3/2003 (pf/CH/LKQ3/03) and teal/China/LDT3/2003 (tl/CH/LDT3/03), were isolated from a peafowl and a teal during virological surveillance in Guangdong province, China. Partial genomic sequence analysis showed that these isolates had the S-3-M-5-N gene order that is typical of avian coronaviruses. The spike, membrane and nucleocapsid protein genes of pf/CH/LKQ3/03 had >99 % identity to those of the avian infectious bronchitis coronavirus H120 vaccine strain (Massachusetts serotype) and other Massachusetts serotype isolates. Furthermore, when pf/CH/LKQ3/03 was inoculated experimentally into chickens (specific-pathogen-free), no disease signs were apparent. tl/CH/LDT3/03 had a spike protein gene with 95 % identity to that of a Chinese infectious bronchitis virus (IBV) isolate, although more extensive sequencing revealed the possibility that this strain may have undergone recombination. When inoculated into chickens, tl/CH/LDT3/03 resulted in the death of birds from nephritis. Taken together, this information suggests that pf/CH/LKQ3/03 might be a revertant, attenuated vaccine IBV strain, whereas tl/CH/LDT3/03 is a nephropathogenic field IBV strain, generated through recombination. The replication and non-pathogenic nature of IBV in domestic peafowl and teal under field conditions raises questions as to the role of these hosts as carriers of IBV and the potential that they may have to transmit virus to susceptible chicken populations. PMID:15722532

  15. CORONAVIRUS VIRULENCE GENES WITH MAIN FOCUS ON SARS-CoV ENVELOPE GENE

    PubMed Central

    DeDiego, Marta L.; Nieto-Torres, Jose L.; Jimenez-Guardeño, Jose M.; Regla-Nava, Jose A.; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-01-01

    Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and 7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal

  16. Enzyme-linked immunosorbent assay for the detection of canine coronavirus and its antibody in dogs.

    PubMed

    Tuchiya, K; Horimoto, T; Azetaka, M; Takahashi, E; Konishi, S

    1991-01-01

    Two methods of enzyme-linked immunosorbent assay (ELISA) were developed for the diagnosis of canine coronavirus (CCV) infection in dogs. One ELISA, in which CCV-infected CRFK cell lysate is used as antigen, is for the detection and titration of antibody against CCV, and the other ELISA uses the double antibody sandwich method for the detection of CCV antigen. The first ELISA procedure demonstrated antibody responses in dogs inoculated with CCV, as did the virus neutralization test; the second ELISA detected specific CCV antigen in feces and organ homogenates of inoculated dogs.

  17. Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1.

    PubMed

    Hogan, Robert J; Gao, Guangping; Rowe, Thomas; Bell, Peter; Flieder, Douglas; Paragas, Jason; Kobinger, Gary P; Wivel, Nelson A; Crystal, Ronald G; Boyer, Julie; Feldmann, Heinz; Voss, Thomas G; Wilson, James M

    2004-10-01

    Intranasal inhalation of the severe acute respiratory syndrome coronavirus (SARS CoV) in the immunocompetent mouse strain 129SvEv resulted in infection of conducting airway epithelial cells followed by rapid clearance of virus from the lungs and the development of self-limited bronchiolitis. Animals resistant to the effects of interferons by virtue of a deficiency in Stat1 demonstrated a markedly different course following intranasal inhalation of SARS CoV, one characterized by replication of virus in lungs and progressively worsening pulmonary disease with inflammation of small airways and alveoli and systemic spread of the virus to livers and spleens.

  18. Viral Shedding and Environmental Cleaning in Middle East Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Choi, Min Joo; Jeon, Ji Ho; Kang, Seong Hee; Jeong, Eun Ju; Yoon, Jin Gu; Lee, Saem Na; Kim, Sung Ran

    2015-01-01

    Viral shedding lasted 31 and 19 days from symptom onset in two patients with east respiratory syndrome coronavirus (MERS-CoV) pneumonia, respectively. Environmental real-time RT-PCR was weakly positive for bed guardrail and monitors. Even after cleaning the monitors with 70% alcohol-based disinfectant, RT-PCR was still weakly positive, and converted to negative only after wiping with diluted sodium chlorite. Further studies are required to clarify the appropriate methods to clean environments during and after treatment of patients with MERS-CoV infection. PMID:26788409

  19. Comparison of different antigen preparations as substrates for use in passive hemagglutination and enzyme-linked immunosorbent assays for detection of antibody against bovine enteric coronavirus.

    PubMed Central

    Crouch, C F; Raybould, T J

    1983-01-01

    Purified coronavirus, detergent extracts of purified coronavirus, and virus-infected Madin-Darby bovine kidney cells were evaluated as antigen substrates in enzyme-linked immunosorbent assay (ELISA) and passive hemagglutination systems. Only detergent-extracted and -unextracted, purified viruses were reactive as antigen substrates in ELISA, whereas all three antigen preparations could be used for sensitization of erythrocytes in the passive hemagglutination assay. The passive hemagglutination system with infected cell extracts exhibited a similar level of sensitivity and specificity to the ELISA system employing purified coronavirus but enabled 300 times more tests to be performed per volume of virus-infected cell culture. PMID:6309897

  20. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays

    PubMed Central

    Hart, Brit J.; Dyall, Julie; Postnikova, Elena; Zhou, Huanying; Kindrachuk, Jason; Johnson, Reed F.; Olinger, Gene G.; Frieman, Matthew B.; Holbrook, Michael R.; Hensley, Lisa

    2014-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) presents a novel emerging threat to public health worldwide. Several treatments for infected individuals have been suggested including IFN, ribavirin and passive immunotherapy with convalescent plasma. Administration of IFN-α2b and ribavirin has improved outcomes of MERS-CoV infection in rhesus macaques when administered within 8 h post-challenge. However, detailed and systematic evidence on the activity of other clinically available drugs is limited. Here we compared the susceptibility of MERS-CoV with different IFN products (IFN-α2b, IFN-γ, IFN-universal, IFN-α2a and IFN-β), as well as with two antivirals, ribavirin and mycophenolic acid (MPA), against MERS-CoV (Hu/Jordan-N3/2012) in vitro. Of all the IFNs tested, IFN-β showed the strongst inhibition of MERS-CoV in vitro, with an IC50 of 1.37 U ml−1, 41 times lower than the previously reported IC50 (56.08 U ml−1) of IFN-α2b. IFN-β inhibition was confirmed in the virus yield reduction assay, with an IC90 of 38.8 U ml−1. Ribavirin did not inhibit viral replication in vitro at a dose that would be applicable to current treatment protocols in humans. In contrast, MPA showed strong inhibition, with an IC50 of 2.87 µM. This drug has not been previously tested against MERS-CoV and may provide an alternative to ribavirin for treatment of MERS-CoV. In conclusion, IFN-β, MPA or a combination of the two may be beneficial in the treatment of MERS-CoV or as a post-exposure intervention in high-risk patients with known exposures to MERS-CoV. PMID:24323636

  1. Host-directed therapies for improving poor treatment outcomes associated with the middle east respiratory syndrome coronavirus infections.

    PubMed

    Zumla, Alimuddin; Azhar, Esam I; Arabi, Yaseen; Alotaibi, Badriah; Rao, Martin; McCloskey, Brian; Petersen, Eskild; Maeurer, Markus

    2015-11-01

    Three years after its first discovery in Jeddah Saudi Arabia, the novel zoonotic pathogen of humans, the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) continues to be a major threat to global health security.(1) Sporadic community acquired cases of MERS continue to be reported from the Middle East. The recent nosocomial outbreaks in hospitals in Seoul, Korea and at the National Guard Hospital in Riyadh, Saudi Arabia indicate the epidemic potential of MERS-CoV. Currently there are no effective anti-MERS-CoV anti-viral agents or therapeutics and MERS is associated with a high mortality rate (40%) in hospitalised patients. A large proportion of MERS patients who die have a range of pulmonary pathology ranging from pneumonia to adult respiratory distress syndrome with multi-organ failure, compounded by co-morbidities, reflecting a precarious balance of interactions between the host-immune system and MERS-CoV. Whilst we wait for new MERS-CoV specific drugs, therapeutics and vaccines to be developed, there is a need to advance a range of Host-Directed Therapies. A range of HDTs are available, including commonly used drugs with good safety profiles, which could augment host innate and adaptive immune mechanisms to MERS-CoV, modulate excessive inflammation and reduce lung tissue destruction. We discuss the rationale and potential of using Host-Directed Therapies for improving the poor treatment outcomes associated with MERS. Carefully designed randomized controlled trials will be needed to determine whether HDTs could benefit patients with MERS. The recurrent outbreaks of MERS-CoV infections at hospitals in the Middle East present unique opportunities to conduct randomized clinical trials. The time has come for a more coordinated global response to MERS and a multidisciplinary global MERS-CoV response group is required to take forward priority research agendas. PMID:26365771

  2. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP)

    PubMed Central

    2014-01-01

    Background The first documented case of Middle East Respiratory Syndrome coronavirus (MERS-CoV) occurred in 2012, and outbreaks have continued ever since, mainly in Saudi Arabia. MERS-CoV is primarily diagnosed using a real-time RT-PCR assay, with at least two different genomic targets required for a positive diagnosis according to the case definition of The World Health Organization (WHO) as of 3 July 2013. Therefore, it is urgently necessary to develop as many specific genetic diagnostic methods as possible to allow stable diagnosis of MERS-CoV infections. Methods Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) is a genetic diagnostic method used widely for the detection of viral pathogens, which requires only a single temperature for amplification, and can be completed in less than 1 h. This study developed a novel RT-LAMP assay for detecting MERS-CoV using primer sets targeting a conserved nucleocapsid protein region. Results The RT-LAMP assay was capable of detecting as few as 3.4 copies of MERS-CoV RNA, and was highly specific, with no cross-reaction to other respiratory viruses. Pilot experiments to detect MERS-CoV from medium containing pharyngeal swabs inoculated with pre-titrated viruses were also performed. The RT-LAMP assay exhibited sensitivity similar to that of MERS-CoV real-time RT-PCR. Conclusions These results suggest that the RT-LAMP assay described here is a useful tool for the diagnosis and epidemiologic surveillance of human MERS-CoV infections. PMID:25103205

  3. Detection by radioimmunoassay and enzyme-linked immunosorbent assay of coronavirus antibodies in bovine serum and lacteal secretions.

    PubMed Central

    Rodak, L; Babiuk, L A; Acres, S D

    1982-01-01

    The sensitivity of a radioimmunoassay (RIA), an enzyme-linked immunosorbent assay (ELISA), and a serum neutralization assay (SN) for detecting antibodies to bovine coronavirus in serum and colostrum were compared. Although there proved to be a good correlation among all three assays (r = 0.915 and 0.964 for RIA with SN and ELISA, respectively), RIA and ELISA proved to be at least 10 times more sensitive than neutralization tests. By using these techniques, it was possible to detect a time-dependent decrease in antibody levels in bovine colostrum after parturition. Using ELISA, we demonstrated that 12 of 12 herds in Saskatchewan, and 109 of 110 animals tested, and antibody to bovine coronavirus. There was no elevated antibody response in serum or lacteal secretions of cows vaccinated once or twice with a commercially available modified live rota-coronavirus vaccine. In addition to being more sensitive than SN, ELISA and RIA proved to have other advantages for measuring antibody levels to bovine coronavirus and therefore warrant wider use as tools in diagnostic virology. Images PMID:7107859

  4. Detection by radioimmunoassay and enzyme-linked immunosorbent assay of coronavirus antibodies in bovine serum and lacteal secretions.

    PubMed

    Rodak, L; Babiuk, L A; Acres, S D

    1982-07-01

    The sensitivity of a radioimmunoassay (RIA), an enzyme-linked immunosorbent assay (ELISA), and a serum neutralization assay (SN) for detecting antibodies to bovine coronavirus in serum and colostrum were compared. Although there proved to be a good correlation among all three assays (r = 0.915 and 0.964 for RIA with SN and ELISA, respectively), RIA and ELISA proved to be at least 10 times more sensitive than neutralization tests. By using these techniques, it was possible to detect a time-dependent decrease in antibody levels in bovine colostrum after parturition. Using ELISA, we demonstrated that 12 of 12 herds in Saskatchewan, and 109 of 110 animals tested, and antibody to bovine coronavirus. There was no elevated antibody response in serum or lacteal secretions of cows vaccinated once or twice with a commercially available modified live rota-coronavirus vaccine. In addition to being more sensitive than SN, ELISA and RIA proved to have other advantages for measuring antibody levels to bovine coronavirus and therefore warrant wider use as tools in diagnostic virology.

  5. Follow-up of Contacts of Middle East Respiratory Syndrome Coronavirus-Infected Returning Travelers, the Netherlands, 2014.

    PubMed

    Mollers, Madelief; Jonges, Marcel; Pas, Suzan D; van der Eijk, Annemiek A; Dirksen, Kees; Jansen, Casper; Gelinck, Luc B S; Leyten, Eliane M S; Thurkow, Ingrid; Groeneveld, Paul H P; van Gageldonk-Lafeber, Arianne B; Koopmans, Marion P; Timen, Aura

    2015-09-01

    Notification of 2 imported cases of infection with Middle East respiratory syndrome coronavirus in the Netherlands triggered comprehensive monitoring of contacts. Observed low rates of virus transmission and the psychological effect of contact monitoring indicate that thoughtful assessment of close contacts is prudent and must be guided by clinical and epidemiologic risk factors.

  6. [Importance of the case of coronavirus-associated severe acute respiratory syndrome detected in Hungary in 2005].

    PubMed

    Rókusz, László; Jankovics, István; Jankovics, Máté; Sarkadi, Júlia; Visontai, Ildikó

    2013-11-24

    Ten years have elapsed since the severe acute respiratory syndrome outbreak, which resulted in more than 8000 cases worldwide with more than 700 deaths. Recently, a new coronavirus, the Middle East Respiratory Syndrome Coronavirus emerged, causing serious respiratory cases and death. By the end of August 2013, 108 cases including 50 deaths were reported. The authors discuss a coronavirus-associated severe acute respiratory syndrome, which was detected in Hungary in 2005 and highlight its significance in 2013. In 2005 the patient was hospitalized and all relevant clinical and microbiological tests were performed. Based on the IgG antibody positivity of the serum samples, the patient was diagnosed as having severe acute respiratory syndrome coronavirus infection in the past. The time and source of the infection remained unknown. The condition of the patient improved and he was discharged from the hospital. The case raises the possibility of infections in Hungary imported from remote areas of the world and the importance of thorough examination of patients with severe respiratory syndrome with unknown etiology.

  7. Follow-up of Contacts of Middle East Respiratory Syndrome Coronavirus-Infected Returning Travelers, the Netherlands, 2014.

    PubMed

    Mollers, Madelief; Jonges, Marcel; Pas, Suzan D; van der Eijk, Annemiek A; Dirksen, Kees; Jansen, Casper; Gelinck, Luc B S; Leyten, Eliane M S; Thurkow, Ingrid; Groeneveld, Paul H P; van Gageldonk-Lafeber, Arianne B; Koopmans, Marion P; Timen, Aura

    2015-09-01

    Notification of 2 imported cases of infection with Middle East respiratory syndrome coronavirus in the Netherlands triggered comprehensive monitoring of contacts. Observed low rates of virus transmission and the psychological effect of contact monitoring indicate that thoughtful assessment of close contacts is prudent and must be guided by clinical and epidemiologic risk factors. PMID:26291986

  8. Biological and genetic analysis of a bovine-like coronavirus isolated from water buffalo (Bubalus bubalis) calves.

    PubMed

    Decaro, Nicola; Martella, Vito; Elia, Gabriella; Campolo, Marco; Mari, Viviana; Desario, Costantina; Lucente, Maria Stella; Lorusso, Alessio; Greco, Grazia; Corrente, Marialaura; Tempesta, Maria; Buonavoglia, Canio

    2008-01-01

    We describe the isolation, biological and genetic characterization of a host-range variant of bovine coronavirus (BCoV) detected in water buffalo (Bubalus bubalis). By conventional and real-time RT-PCR assays, the virus was demonstrated in the intestinal contents of two 20-day-old buffalo calves dead of a severe form of enteritis and in the feces of additional 17 buffalo calves with diarrhea. Virus isolation, hemagglutination and receptor-destroying enzyme activity showed that the buffalo coronavirus (BuCoV) is closely related to BCoV but possesses some different biological properties. Sequence and phylogenetic analyses of the 3' end (9.6 kb) of the BuCoV RNA revealed a genomic organization typical of group 2 coronaviruses. Moreover, the genetic distance between BuCoV and BCoV was proven to be the same or even higher than the distance between other ruminant coronaviruses and BCoV. In conclusion, our data support the existence of a host-range variant of BCoV associated with enteritis in buffaloes.

  9. Development and comparison of the real-time amplification based methods--NASBA-Beacon, RT-PCR taqman and RT-PCR hybridization probe assays--for the qualitative detection of sars coronavirus.

    PubMed

    Chantratita, Wasun; Pongtanapisit, Wiroj; Piroj, Wantanich; Srichunrasmi, Chutatip; Seesuai, Somying

    2004-09-01

    The aim of this study was to develop a rapid, sensitive and robust procedure for the qualitative detection of SARS coronavirus RNA. Three unique detection formats were developed for real-time RNA amplification assays: a post amplification detection step with a virus-specific internal capture probe based on Taqman (RT-PCR TaqMan assay), hybridization probe (RT-PCR hybridization probe assay) and a real-time assay with virus-specific molecular beacon probes (NASBA-Beacon assay). The analytical sensitivity or reproducibility of the test results among those three assays was compared. All assays yielded results by detecting SARS coronavirus targeting the BNI-1 region in less than 2 hours. RNA detection by all the formats was unaffected by the presence of human sputum. The limits of detection were at least 10 copies of input RNA for both RT-PCR formats (RT-PCR TaqMan and RT-PCR hybridization probe assays), while the NASBA-Beacon assay could detect as little as 1 copy per reaction, with high reproducibility of the coefficient of variation (CV) of <10. These results demonstrate that real-time NASBA provides a rapid and sensitive alternative to RT-PCR for the routine qualitative assay of sputum for SARS corona viral RNA detection.

  10. Antigenic relationships among homologous structural polypeptides of porcine, feline, and canine coronaviruses.

    PubMed Central

    Horzinek, M C; Lutz, H; Pedersen, N C

    1982-01-01

    Transmissible gastroenteritis virus of swine (TGEV), feline infectious peritonitis virus (FIPV), and canine coronavirus were studied with respect to their serological cross-reactivity in homologous and heterologous virus neutralization, immune precipitation of radiolabeled TGEV, electroblotting, and enzyme-linked immunosorbent assay using individual virion polypeptides prepared by polyacrylamide gel electrophoresis. TGEV was neutralized by feline anti-FIPV serum, and the reaction was potentiated by complement; heterologous neutralization involved antibody reacting with the peplomer protein (P), the envelope protein (E), and cellular (glycolipid) components incorporated into the TGEV membrane. Electrophoretic analysis of immune precipitates containing [35S]methionine-labeled disrupted TGEV and feline anti-FIPV antibody confirmed the reaction with the P and E polypeptides and showed the nucleocapsid protein (N) in addition. Electroblotting, followed by incubation with antibody, 125I-labeled protein A, and fluorography, disclosed cross-reactions between the three viruses at the N and E levels and revealed differences in the apparent molecular weights of the latter. Enzyme immunoassays performed with standard amounts of immobilized P, N, and E polypeptides of the three viruses showed recognition of the antigens by homologous and heterologous antibody to comparable degrees. These results indicate a close antigenic relationship between TGEV, FIPV, and canine coronavirus due to common determinants on the three major virion proteins. The taxonomic implications of these findings are discussed. Images PMID:6182101

  11. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment.

    PubMed Central

    Storz, J; Rott, R; Kaluza, G

    1981-01-01

    Plaque formation, replication, and related cytopathic functions of the enteropathogenic bovine coronavirus strain L9 in bovine fetal thyroid (BFTy) and bovine fetal brain (BFB) cells were investigated in the presence and absence of trypsin. Plaque formation was enhanced in both cell types. Plaques reached a size with an average diameter of 5 mm within 4 days with trypsin in the overlay, whereas their diameter remained less than 1 mm at this time after plating without trypsin in the overlay. Fusion of both cell types was observed 12 to 18 h after infection when trypsin was present in the medium. Fusion was not observed in infected BFB cell cultures and was rarely observed 48 h after infection of BFTy cells maintained with the trypsin-free medium. The largest polycaryons formed had 15 to 22 nuclei. They then lysed and detached. Cell fusion depended on de novo synthesis of hemagglutinin and infectivity. Fusion from without was not observed. Virus produced under trypsin-enhancing conditions accompanied by cell fusion did not lyse mouse erythrocytes that reacted with L9 coronavirus hemagglutinin. Trypsin-treated, infected BFTy cultures produced coronaviral particles that excluded stain from the envelope confinement. These virions had uniformly shorter surface projections than did the viral forms generated by trypsin-free cell cultures. Images PMID:7228403

  12. Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany.

    PubMed

    Fischer, Kerstin; Zeus, Veronika; Kwasnitschka, Linda; Kerth, Gerald; Haase, Martin; Groschup, Martin H; Balkema-Buschmann, Anne

    2016-01-01

    Recently several infectious agents with a zoonotic potential have been detected in different bat species. However, there is still a lack of knowledge on the transmission dynamics within and between bat species, as well as from bats to other mammals. To better understand these processes, it is important to compare the phylogenetic relationships between different agents to that of their respective hosts. In this study, we analysed more than 950 urine, faeces and oral swab samples collected from 653 bats from mainly four species (Myotis nattereri, Myotis bechsteinii, Myotis daubentonii, and Plecotus auritus) for the presence of coronavirus, paramyxovirus and astrovirus related nucleic acids located in three different regions of Germany. Using hemi-nested reverse transcriptase (RT)-PCR amplification of fragments within the highly conserved regions of the respective RNA dependent RNA polymerase (RdRp) genes, we detected astrovirus sequences at an overall detection rate of 25.8% of the analysed animals, with a maximum of 65% in local populations. The detection rates for coronaviruses and paramyxoviruses were distinctly lower, ranging between 1.4% and 3.1%. Interestingly, the sequence similarities in samples collected from the same bat species in different geographical areas were distinctly larger than the sequence similarities between samples from different species sampled at the same location. This indicates that host specificity may be more important than host ecology for the presence of certain viruses in bats.

  13. Antigenic relationship of turkey coronavirus isolates from different geographic locations in the United States.

    PubMed

    Lin, Tsang Long; Loa, Chien Chang; Wu, Ching Ching; Bryan, Thomas; Hooper, Tom; Schrader, Donna

    2002-01-01

    The purpose of the present study was to examine the antigenicity of turkey coronavirus (TCV) isolates from various geographic areas with antibodies to different viruses. Seventeen isolates of TCV were recovered from intestinal samples submitted to Animal Disease Diagnostic Laboratory, Purdue University, from turkey farms located in different geographic areas. The prototype TCV Minnesota isolate (TCV-ATCC) was obtained from the American Type Culture Collection. Intestinal sections were prepared from turkey embryos infected with different TCV isolates and reacted with polyclonal or monoclonal antibodies to TCV, infectious bronchitis virus (IBV), bovine coronavirus (BCV), transmissible gastroenteritis virus (TGEV), reovirus, rotavirus, adenovirus, or enterovirus in immunofluorescent antibody staining. All 18 TCV isolates have the same antigenic reactivity pattern with the same panel of antibodies. Positive reactivity was seen with polyclonal antibodies to the TCV Indiana isolate, the TCV Virginia isolate, TCV-ATCC, and the IBV Massachusetts strain as well as monoclonal antibodies to the TCV North Carolina isolate or the membrane protein of IBV. Antibodies to BCV or TGEV were not reactive with any of the TCV isolates. Reactivity of antibodies to unrelated virus, rotavirus, reovirus, adenovirus, or enterovirus with different TCV isolates was all negative, except positive response was seen between enterovirus antibody and a TCV western North Carolina isolate, suggesting coinfection of turkeys with TCV and enterovirus in that particular case. The results indicated that the TCV isolates from these geographic locations in the U.S. shared close antigenicity and were antigenically related to IBV.

  14. Survey of feline leukemia virus and feline coronaviruses in captive neotropical wild felids from Southern Brazil.

    PubMed

    Guimaraes, Ana M S; Brandão, Paulo E; de Moraes, Wanderlei; Cubas, Zalmir S; Santos, Leonilda C; Villarreal, Laura Y B; Robes, Rogério R; Coelho, Fabiana M; Resende, Mauricio; Santos, Renata C F; Oliveira, Rosangela C; Yamaguti, Mauricio; Marques, Lucas M; Neto, Renata L; Buzinhani, Melissa; Marques, Regina; Messick, Joanne B; Biondo, Alexander W; Timenetsky, Jorge

    2009-06-01

    A total of 57 captive neotropical felids (one Leopardus geoffroyi, 14 Leopardus pardalis, 17 Leopardus wiedii, 22 Leopardus tigrinus, and three Puma yagouaroundi) from the Itaipu Binacional Wildlife Research Center (Refúgio Bela Vista, Southern Brazil) were anesthetized for blood collection. Feces samples were available for 44 animals, including one L. geoffroyi, eight L. pardalis, 14 L. wiedii, 20 L. tigrinus, and one P. yagouaroundi. Total DNA and RNA were extracted from blood and feces, respectively, using commercial kits. Blood DNA samples were evaluated by polymerase chain reaction (PCR) for feline leukemia virus (FeLV) proviral DNA, whereas reverse transcriptase-PCR was run on fecal samples for detection of coronavirus RNA. None of the samples were positive for coronaviruses. A male L. pardalis and a female L. tigrinus were positive for FeLV proviral DNA, and identities of PCR products were confirmed by sequencing. This is the first evidence of FeLV proviral DNA in these species in Southern Brazil.

  15. Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture

    PubMed Central

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J.; Wubbolts, Richard W.; van Kuppeveld, Frank J. M.; Rottier, Peter J. M.

    2014-01-01

    ABSTRACT Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. IMPORTANCE Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  16. Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity

    PubMed Central

    Maier, Helena J.; Neuman, Benjamin W.; Bickerton, Erica; Keep, Sarah M.; Alrashedi, Hasan; Hall, Ross; Britton, Paul

    2016-01-01

    Positive-strand RNA (+RNA) viruses rearrange cellular membranes during replication, possibly in order to concentrate and arrange viral replication machinery for efficient viral RNA synthesis. Our previous work showed that in addition to the conserved coronavirus double membrane vesicles (DMVs), Beau-R, an apathogenic strain of avian Gammacoronavirus infectious bronchitis virus (IBV), induces regions of ER that are zippered together and tethered open-necked double membrane spherules that resemble replication organelles induced by other +RNA viruses. Here we compared structures induced by Beau-R with the pathogenic lab strain M41 to determine whether membrane rearrangements are strain dependent. Interestingly, M41 was found to have a low spherule phenotype. We then compared a panel of pathogenic, mild and attenuated IBV strains in ex vivo tracheal organ culture (TOC). Although the low spherule phenotype of M41 was conserved in TOCs, each of the other tested IBV strains produced DMVs, zippered ER and spherules. Furthermore, there was a significant correlation for the presence of DMVs with spherules, suggesting that these structures are spatially and temporally linked. Our data indicate that virus induced membrane rearrangements are fundamentally linked to the viral replicative machinery. However, coronavirus replicative apparatus clearly has the plasticity to function in different structural contexts. PMID:27255716

  17. Analysis of murine coronavirus surface glycoprotein functions by using monoclonal antibodies.

    PubMed Central

    Routledge, E; Stauber, R; Pfleiderer, M; Siddell, S G

    1991-01-01

    The murine coronavirus surface glycoprotein gene was expressed as a fusion protein in bacteria, and the expressed protein was used to generate S protein-specific monoclonal antibodies (MAbs). Three of the MAbs, 11F, 30B, and 10G, were able to neutralize virus infectivity, and two of them, 11F and 10G, were able to block virus-induced, cell-to-cell fusion. The binding sites of the 11F, 30B, and 10G MAbs were determined by Western immunoblotting and epitope mapping. The 11F and 30B MAbs bound to sites located, respectively, between amino acids 33 to 40 and 395 to 406 in the amino-terminal (S1) subunit of the S protein, and the 10G MAb bound to a site located between amino acids 1123 and 1137 in the carboxy-terminal (S2) subunit. These data define more precisely the interactions between the S1 and S2 subunits of the murine coronavirus S protein and provide further insights into its structure and function. Images PMID:1985201

  18. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture.

    PubMed

    Wicht, Oliver; Li, Wentao; Willems, Lione; Meuleman, Tom J; Wubbolts, Richard W; van Kuppeveld, Frank J M; Rottier, Peter J M; Bosch, Berend Jan

    2014-07-01

    Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. Importance: Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV. PMID:24807723

  19. Biochemical and biophysical characterization of the transmissible gastroenteritis coronavirus fusion core

    SciTech Connect

    Ma Guangpeng; Feng Youjun; Gao Feng; Wang Jinzi; Liu Cheng; Li Yijing . E-mail: yijingli@163.com

    2005-12-02

    Transmissible gastroenteritis coronavirus (TGEV) is one of the most destructive agents, responsible for the enteric infections that are lethal for suckling piglets, causing enormous economic loss to the porcine fostering industry every year. Although it has been known that TGEV spiker protein is essential for the viral entry for many years, the detail knowledge of the TGEV fusion protein core is still very limited. Here, we report that TGEV fusion core (HR1-SGGRGG-HR2), in vitro expressed in GST prokaryotic expression system, shares the typical properties of the trimer of coiled-coil heterodimer (six {alpha}-helix bundle), which has been confirmed by a combined series of biochemical and biophysical evidences including size exclusion chromatography (gel-filtration), chemical crossing, and circular diagram. The 3D homologous structure model presents its most likely structure, extremely similar to those of the coronaviruses documented. Taken together, TGEV spiker protein belongs to the class I fusion protein, characterized by the existence of two heptad-repeat (HR) regions, HR1 and HR2, and the present knowledge about the truncated TGEV fusion protein core may facilitate in the design of the small molecule or polypeptide drugs targeting the membrane fusion between TGEV and its host.

  20. Synthesis and processing of structural and intracellular proteins of two enteric coronaviruses

    SciTech Connect

    Sardinia, L.M.

    1985-01-01

    The synthesis and processing of virus-specific proteins of two economically important enteric coronaviruses, bovine enteric coronavirus (BCV) and transmissible gastroenteritis virus (TGEV), were studied at the molecular level. To determine the time of appearance of virus-specific proteins, virus-infected cells were labeled with /sup 35/S-methionine at various times during infection, immunoprecipitated with specific hyperimmune ascitic fluid, and analyzed by SDS-polyacrylamide gel electrophoresis. The peak of BCV protein synthesis was found to be at 12 hours postinfection (hpi). The appearance of all virus-specific protein was coordinated. In contrast, the peak of TGEV protein synthesis was at 8 hpi, but the nucleocapsid proteins was present as early as 4 hpi. Virus-infected cells were treated with tunicamycin to ascertain the types of glycosidic linkages of the glycoproteins. The peplomer proteins of both viruses were sensitive to inhibition by tunicamycin indicating that they possessed N-linked carbohydrates. The matrix protein of TGEV was similarly affected. The matrix protein of BCV, however, was resistant to tunicamycin treatment and, therefore, has O-linked carbohydrates. Only the nucleocapsid protein of both viruses is phosphorylated as detected by radiolabeling with /sup 32/P-orthophosphate. Pulse-chase studies and comparison of intracellular and virion proteins were done to detect precursor-product relationships.

  1. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection.

    PubMed

    Dyall, Julie; Coleman, Christopher M; Hart, Brit J; Venkataraman, Thiagarajan; Holbrook, Michael R; Kindrachuk, Jason; Johnson, Reed F; Olinger, Gene G; Jahrling, Peter B; Laidlaw, Monique; Johansen, Lisa M; Lear-Rooney, Calli M; Glass, Pamela J; Hensley, Lisa E; Frieman, Matthew B

    2014-08-01

    Outbreaks of emerging infections present health professionals with the unique challenge of trying to select appropriate pharmacologic treatments in the clinic with little time available for drug testing and development. Typically, clinicians are left with general supportive care and often untested convalescent-phase plasma as available treatment options. Repurposing of approved pharmaceutical drugs for new indications presents an attractive alternative to clinicians, researchers, public health agencies, drug developers, and funding agencies. Given the development times and manufacturing requirements for new products, repurposing of existing drugs is likely the only solution for outbreaks due to emerging viruses. In the studies described here, a library of 290 compounds was screened for antiviral activity against Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Selection of compounds for inclusion in the library was dependent on current or previous FDA approval or advanced clinical development. Some drugs that had a well-defined cellular pathway as target were included. In total, 27 compounds with activity against both MERS-CoV and SARS-CoV were identified. The compounds belong to 13 different classes of pharmaceuticals, including inhibitors of estrogen receptors used for cancer treatment and inhibitors of dopamine receptor used as antipsychotics. The drugs identified in these screens provide new targets for in vivo studies as well as incorporation into ongoing clinical studies. PMID:24841273

  2. Comparison of immunohistochemistry, electron microscopy, and direct fluorescent antibody test for the detection of bovine coronavirus.

    PubMed

    Dar, A M; Kapil, S; Goyal, S M

    1998-04-01

    Bovine coronavirus (BCV) is 1 of the major causes of calf diarrhea and has also been implicated in respiratory infections of young calves and winter dysentery of adult cattle. Currently, transmission electron microscopy (TEM), direct fluorescent antibody (DFA), and enzyme-linked immunosorbent assay (ELISA) techniques are considered standard methods for the diagnosis of BCV infection. However, these techniques are not useful if fresh tissues and intestinal contents are not available for examination. The detection of viral antigens in formalin-fixed, paraffin-embedded tissues using immunohistochemistry (IHC) is a suitable alternative. In the present study, 166 tissue specimens were tested by IHC for the presence of BCV. These tissues were from animals whose feces were positive for rotavirus and/or coronavirus by TEM. Some of these samples were also tested by DFA. Thus, TEM, DFA, and IHC were compared for the detection of BCV. There was 56% agreement among the 3 methods (overall kappa = 0.368). When IHC was compared with TEM, 78% agreement was observed (kappa = 0.475). Similarly, IHC and DFA had 64% agreement (kappa = 0.277). These kappa values indicate a moderate degree of agreement between IHC and TEM; agreement between IHC and DFA was fair. The results of this study indicate that IHC may be a suitable adjunct for the detection of BCV because of its simplicity, ease of use, and relatively close correlation with TEM results. PMID:9576342

  3. Broad-Spectrum Inhibitors against 3C-Like Proteases of Feline Coronaviruses and Feline Caliciviruses

    PubMed Central

    Shivanna, Vinay; Narayanan, Sanjeev; Prior, Allan M.; Weerasekara, Sahani; Hua, Duy H.; Kankanamalage, Anushka C. Galasiti; Groutas, William C.; Chang, Kyeong-Ok

    2015-01-01

    ABSTRACT Feline infectious peritonitis and virulent, systemic calicivirus infection are caused by certain types of feline coronaviruses (FCoVs) and feline caliciviruses (FCVs), respectively, and are important infectious diseases with high fatality rates in members of the Felidae family. While FCoV and FCV belong to two distinct virus families, the Coronaviridae and the Caliciviridae, respectively, they share a dependence on viral 3C-like protease (3CLpro) for their replication. Since 3CLpro is functionally and structurally conserved among these viruses and essential for viral replication, 3CLpro is considered a potential target for the design of antiviral drugs with broad-spectrum activities against these distinct and highly important viral infections. However, small-molecule inhibitors against the 3CLpro enzymes of FCoV and FCV have not been previously identified. In this study, derivatives of peptidyl compounds targeting 3CLpro were synthesized and evaluated for their activities against FCoV and FCV. The structures of compounds that showed potent dual antiviral activities with a wide margin of safety were identified and are discussed. Furthermore, the in vivo efficacy of 3CLpro inhibitors was evaluated using a mouse model of coronavirus infection. Intraperitoneal administration of two 3CLpro inhibitors in mice infected with murine hepatitis virus A59, a hepatotropic coronavirus, resulted in significant reductions in virus titers and pathological lesions in the liver compared to the findings for the controls. These results suggest that the series of 3CLpro inhibitors described here may have the potential to be further developed as therapeutic agents against these important viruses in domestic and wild cats. This study provides important insights into the structure and function relationships of 3CLpro for the design of antiviral drugs with broader antiviral activities. IMPORTANCE Feline infectious peritonitis virus (FIPV) is the leading cause of death in young cats

  4. The murine coronavirus mouse hepatitis virus strain A59 from persistently infected murine cells exhibits an extended host range.

    PubMed Central

    Schickli, J H; Zelus, B D; Wentworth, D E; Sawicki, S G; Holmes, K V

    1997-01-01

    In murine 17 Cl 1 cells persistently infected with murine coronavirus mouse hepatitis virus strain A59 (MHV-A59), expression of the virus receptor glycoprotein MHVR was markedly reduced (S. G. Sawicki, J. H. Lu, and K. V. Holmes, J. Virol. 69:5535-5543, 1995). Virus isolated from passage 600 of the persistently infected cells made smaller plaques on 17 Cl 1 cells than did MHV-A59. Unlike the parental MHV-A59, this variant virus also infected the BHK-21 (BHK) line of hamster cells. Virus plaque purified on BHK cells (MHV/BHK) grew more slowly in murine cells than did MHV-A59, and the rate of viral RNA synthesis was lower and the development of the viral nucleocapsid (N) protein was slower than those of MHV-A59. MHV/BHK was 100-fold more resistant to neutralization with the purified soluble recombinant MHV receptor glycoprotein (sMHVR) than was MHV-A59. Pretreatment of 17 Cl 1 cells with anti-MHVR monoclonal antibody CC1 protected the cells from infection with MHV-A59 but only partially protected them from infection with MHV/BHK. Thus, although MHV/BHK could still utilize MHVR as a receptor, its interactions with the receptor were significantly different from those of MHV-A59. To determine whether a hemagglutinin esterase (HE) glycoprotein that could bind the virions to 9-O-acetylated neuraminic acid moieties on the cell surface was expressed by MHV/BHK, an in situ esterase assay was used. No expression of HE activity was detected in 17 Cl 1 cells infected with MHV/BHK, suggesting that this virus, like MHV-A59, bound to cell membranes via its S glycoprotein. MHV/BHK was able to infect cell lines from many mammalian species, including murine (17 Cl 1), hamster (BHK), feline (Fcwf), bovine (MDBK), rat (RIE), monkey (Vero), and human (L132 and HeLa) cell lines. MHV/BHK could not infect dog kidney (MDCK I) or swine testis (ST) cell lines. Thus, in persistently infected murine cell lines that express very low levels of virus receptor MHVR and which also have and may

  5. Virus Pathogen Database and Analysis Resource (ViPR): A Comprehensive Bioinformatics Database and Analysis Resource for the Coronavirus Research Community

    PubMed Central

    Pickett, Brett E.; Greer, Douglas S.; Zhang, Yun; Stewart, Lucy; Zhou, Liwei; Sun, Guangyu; Gu, Zhiping; Kumar, Sanjeev; Zaremba, Sam; Larsen, Christopher N.; Jen, Wei; Klem, Edward B.; Scheuermann, Richard H.

    2012-01-01

    Several viruses within the Coronaviridae family have been categorized as either emerging or re-emerging human pathogens, with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) being the most well known. The NIAID-sponsored Virus Pathogen Database and Analysis Resource (ViPR, www.viprbrc.org) supports bioinformatics workflows for a broad range of human virus pathogens and other related viruses, including the entire Coronaviridae family. ViPR provides access to sequence records, gene and protein annotations, immune epitopes, 3D structures, host factor data, and other data types through an intuitive web-based search interface. Records returned from these queries can then be subjected to web-based analyses including: multiple sequence alignment, phylogenetic inference, sequence variation determination, BLAST comparison, and metadata-driven comparative genomics statistical analysis. Additional tools exist to display multiple sequence alignments, view phylogenetic trees, visualize 3D protein structures, transfer existing reference genome annotations to new genomes, and store or share results from any search or analysis within personal private ‘Workbench’ spaces for future access. All of the data and integrated analysis and visualization tools in ViPR are made available without charge as a service to the Coronaviridae research community to facilitate the research and development of diagnostics, prophylactics, vaccines and therapeutics against these human pathogens. PMID:23202522

  6. Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro)

    PubMed Central

    Tomar, Sakshi; Johnston, Melanie L.; St. John, Sarah E.; Osswald, Heather L.; Nyalapatla, Prasanth R.; Paul, Lake N.; Ghosh, Arun K.; Denison, Mark R.; Mesecar, Andrew D.

    2015-01-01

    All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CLpro) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CLpro from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CLpro is less efficient at processing a peptide substrate due to MERS-CoV 3CLpro being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CLpro enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CLpro is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CLpro were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CLpro undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CLpro from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CLpro dimerization. Activation of MERS-CoV 3CLpro through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CLpro inhibitors as antiviral agents. PMID:26055715

  7. Middle East Respiratory Syndrome Coronavirus Superspreading Event Involving 81 Persons, Korea 2015.

    PubMed

    Oh, Myoung-don; Choe, Pyoeng Gyun; Oh, Hong Sang; Park, Wan Beom; Lee, Sang-Min; Park, Jinkyeong; Lee, Sang Kook; Song, Jeong-Sup; Kim, Nam Joong

    2015-11-01

    Since the first imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection was reported on May 20, 2015 in Korea, there have been 186 laboratory-confirmed cases of MERS-CoV infection with 36 fatalities. Ninety-seven percent (181/186) of the cases had exposure to the health care facilities. We are reporting a superspreading event that transmitted MERS-CoV to 81 persons at a hospital emergency room (ER) during the Korean outbreak in 2015. The index case was a 35-yr-old man who had vigorous coughing while staying at the ER for 58 hr. As in severe acute respiratory syndrome outbreaks, superspreading events can cause a large outbreak of MERS in healthcare facilities with severe consequences. All healthcare facilities should establish and implement infection prevention and control measure as well as triage policies and procedures for early detection and isolation of suspected MERS-CoV cases.

  8. Conservation of nucleotide sequences for molecular diagnosis of Middle East respiratory syndrome coronavirus, 2015.

    PubMed

    Furuse, Yuki; Okamoto, Michiko; Oshitani, Hitoshi

    2015-11-01

    Infection due to the Middle East respiratory syndrome coronavirus (MERS-CoV) is widespread. The present study was performed to assess the protocols used for the molecular diagnosis of MERS-CoV by analyzing the nucleotide sequences of viruses detected between 2012 and 2015, including sequences from the large outbreak in eastern Asia in 2015. Although the diagnostic protocols were established only 2 years ago, mismatches between the sequences of primers/probes and viruses were found for several of the assays. Such mismatches could lead to a lower sensitivity of the assay, thereby leading to false-negative diagnosis. A slight modification in the primer design is suggested. Protocols for the molecular diagnosis of viral infections should be reviewed regularly after they are established, particularly for viruses that pose a great threat to public health such as MERS-CoV.

  9. Large-scale preparation of UV-inactivated SARS coronavirus virions for vaccine antigen.

    PubMed

    Tsunetsugu-Yokota, Yasuko

    2008-01-01

    In general, a whole virion serves as a simple vaccine antigen and often essential material for the analysis of immune responses against virus infection. However, to work with highly contagious pathogens, it is necessary to take precautions against laboratory-acquired infection. We have learned many lessons from the recent outbreak of severe acute respiratory syndrome (SARS). In order to develop an effective vaccine and diagnostic tools, we prepared UV-inactivated SARS coronavirus on a large scale under the strict Biosafety Level 3 (BSL3) regulation. Our protocol for large-scale preparation of UV-inactivated SARS-CoV including virus expansion, titration, inactivation, and ultracentrifugation is applicable to any newly emerging virus we might encounter in the future.

  10. Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis.

    PubMed

    Soma, Takehisa; Wada, Makoto; Taharaguchi, Satoshi; Tajima, Tomoko

    2013-10-01

    Ascitic feline coronavirus (FCoV) RNA was examined in 854 cats with suspected feline infectious peritonitis (FIP) by RT-PCR. The positivity was significantly higher in purebreds (62.2%) than in crossbreds (34.8%) (P<0.0001). Among purebreds, the positivities in the Norwegian forest cat (92.3%) and Scottish fold (77.6%) were significantly higher than the average of purebreds (P=0.0274 and 0.0251, respectively). The positivity was significantly higher in males (51.5%) than in females (35.7%) (P<0.0001), whereas no gender difference has generally been noted in FCoV antibody prevalence, indicating that FIP more frequently develops in males among FCoV-infected cats. Genotyping was performed for 377 gene-positive specimens. Type I (83.3%) was far more predominantly detected than type II (10.6%) (P<0.0001), similar to previous serological and genetic surveys. PMID:23719724

  11. Prevalence of feline coronavirus antibodies in Japanese domestic cats during the past decade.

    PubMed

    Taharaguchi, Satoshi; Soma, Takehisa; Hara, Motonobu

    2012-10-01

    From 2001 to 2010, 17,392 Japanese cats were examined for feline coronavirus (FCoV) antibodies. The seroprevalence of purebreds (66.7%) was higher than that of random breds (31.2%). Seroprevalence increased greatly in purebreds by three months of age, while it did not fluctuate greatly in random breds with aging, indicating that cattery environments can contribute to FCoV epidemics. Purebreds from northern regions of Japan were likely to be seropositive (76.6% in Hokkaido, 80.0% in Tohoku), indicating cattery cats in cold climates might be more closely confined. Among purebreds, the American shorthair, Himalayan, Oriental, Persian, and Siamese showed low seroprevalence, while the American curl, Maine coon, Norwegian forest cat, ragdoll and Scottish fold showed high seroprevalence. There would also be breed-related differences in Japan similar to the previous studies in Australia. PMID:22673084

  12. Coronavirus non-structural protein 16: Evasion, attenuation, and possible treatments

    PubMed Central

    Menachery, Vineet D.; Debbink, Kari; Baric, Ralph S.

    2014-01-01

    The recent emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV), nearly a decade after the Severe Acute Respiratory Syndrome (SARS) CoV, highlights the importance of understanding and developing therapeutic treatment for current and emergent CoVs. This manuscript explores the role of NSP16, a 2′O-methyl-transferase (2′O-MTase), in CoV infection and the host immune response. The review highlights conserved motifs, required interaction partners, as well as the attenuation of NSP16 mutants, and restoration of these mutants in specific immune knockouts. Importantly, the work also identifies a number of approaches to exploit this understanding for therapeutic treatment and the data clearly illustrate the importance of NSP16 2′O-MTase activity for CoV infection and pathogenesis. PMID:25278144

  13. Genetically diverse coronaviruses in captive bird populations in a Brazilian zoological park.

    PubMed

    Cardoso, Tereza C; Teixeira, Maria Cecília B; Gomes, Deriane E; Jerez, Antônio José

    2011-02-01

    This study aimed to investigate the occurrence of coronaviruses (CoVs) in captive birds placed inside a zoological park in Brazil. The role of captive birds in the epidemiology of CoVs in the tropics is poorly understood. A total of 25 (n=25) different species were tested for viral RNA using individual fecal samples collected from healthy birds. Reverse transcription-polymerase chain reaction targeting the 3' untranslated region was used to detect CoV RNA, and positive samples were submitted for sequence analysis. The phylogenetic search revealed nine mutations in the black shouldered peafowl (Pavus cristatus) CoV sequence, which clustered separately from samples previously described in England. This is the first report on the detection of the CoV genome in captive birds in Brazil.

  14. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  15. Transmission of Middle East Respiratory Syndrome Coronavirus Infections in Healthcare Settings, Abu Dhabi

    PubMed Central

    Nguyen, Duc; Aden, Bashir; Al Bandar, Zyad; Al Dhaheri, Wafa; Abu Elkheir, Kheir; Khudair, Ahmed; Al Mulla, Mariam; El Saleh, Feda; Imambaccus, Hala; Al Kaabi, Nawal; Sheikh, Farrukh Amin; Sasse, Jurgen; Turner, Andrew; Abdel Wareth, Laila; Weber, Stefan; Al Ameri, Asma; Abu Amer, Wesal; Alami, Negar N.; Bunga, Sudhir; Haynes, Lia M.; Hall, Aron J.; Kallen, Alexander J.; Kuhar, David; Pham, Huong; Pringle, Kimberly; Tong, Suxiang; Whitaker, Brett L.; Gerber, Susan I.; Al Hosani, Farida Ismail

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections sharply increased in the Arabian Peninsula during spring 2014. In Abu Dhabi, United Arab Emirates, these infections occurred primarily among healthcare workers and patients. To identify and describe epidemiologic and clinical characteristics of persons with healthcare-associated infection, we reviewed laboratory-confirmed MERS-CoV cases reported to the Health Authority of Abu Dhabi during January 1, 2013–May 9, 2014. Of 65 case-patients identified with MERS-CoV infection, 27 (42%) had healthcare-associated cases. Epidemiologic and genetic sequencing findings suggest that 3 healthcare clusters of MERS-CoV infection occurred, including 1 that resulted in 20 infected persons in 1 hospital. MERS-CoV in healthcare settings spread predominantly before MERS-CoV infection was diagnosed, underscoring the importance of increasing awareness and infection control measures at first points of entry to healthcare facilities. PMID:26981708

  16. Structure of a Conserved Golgi Complex-targeting Signal in Coronavirus Envelope Proteins

    PubMed Central

    Li, Yan; Surya, Wahyu; Claudine, Stephanie; Torres, Jaume

    2014-01-01

    Coronavirus envelope (CoV E) proteins are ∼100-residue polypeptides with at least one channel-forming α-helical transmembrane (TM) domain. The extramembrane C-terminal tail contains a completely conserved proline, at the center of a predicted β-coil-β motif. This hydrophobic motif has been reported to constitute a Golgi-targeting signal or a second TM domain. However, no structural data for this or other extramembrane domains in CoV E proteins is available. Herein, we show that the E protein in the severe acute respiratory syndrome virus has only one TM domain in micelles, whereas the predicted β-coil-β motif forms a short membrane-bound α-helix connected by a disordered loop to the TM domain. However, complementary results suggest that this motif is potentially poised for conformational change or in dynamic exchange with other conformations. PMID:24668816

  17. Heparan sulfate is a selective attachment factor for the avian coronavirus infectious bronchitis virus Beaudette.

    PubMed

    Madu, Ikenna G; Chu, Victor C; Lee, Hwajin; Regan, Andrew D; Bauman, Beverley E; Whittaker, Gary R

    2007-03-01

    The avian coronavirus infectious bronchitis virus (IBV) strain Beaudette is an embryo-adapted virus that has extended species tropism in cell culture. In order to understand the acquired tropism of the Beaudette strain, we compared the S protein sequences of several IBV strains. The Beaudette strain was found to contain a putative heparan sulfate (HS)-binding site, indicating that the Beaudette virus may use HS as a selective receptor. To ascertain the requirements of cell-surface HS for Beaudette infectivity, we assayed for infectivity in the presence of soluble heparin as a competitor and determined infectivity in mutant cell lines with no HS or glycosaminoglycan expression. Our results indicate that HS plays a role as an attachment factor for IBV, working in concert with other factors like sialic acid to mediate virus binding to cells, and may explain in part the extended tropism of IBV Beaudette.

  18. Genetically diverse coronaviruses in captive bird populations in a Brazilian zoological park.

    PubMed

    Cardoso, Tereza C; Teixeira, Maria Cecília B; Gomes, Deriane E; Jerez, Antônio José

    2011-02-01

    This study aimed to investigate the occurrence of coronaviruses (CoVs) in captive birds placed inside a zoological park in Brazil. The role of captive birds in the epidemiology of CoVs in the tropics is poorly understood. A total of 25 (n=25) different species were tested for viral RNA using individual fecal samples collected from healthy birds. Reverse transcription-polymerase chain reaction targeting the 3' untranslated region was used to detect CoV RNA, and positive samples were submitted for sequence analysis. The phylogenetic search revealed nine mutations in the black shouldered peafowl (Pavus cristatus) CoV sequence, which clustered separately from samples previously described in England. This is the first report on the detection of the CoV genome in captive birds in Brazil. PMID:21142971

  19. Intracellular localization of the SARS coronavirus protein 9b: evidence of active export from the nucleus.

    PubMed

    Moshynskyy, Igor; Viswanathan, Sathiyanarayanan; Vasilenko, Natalia; Lobanov, Vladislav; Petric, Martin; Babiuk, Lorne A; Zakhartchouk, Alexander N

    2007-07-01

    Open reading frame 9b (ORF 9b) encodes a 98 amino acid group-specific protein of severe acute respiratory syndrome (SARS) coronavirus (CoV). It has no homology with known proteins and its function in SARS CoV replication has not been determined. The N-terminal part of the 9b protein was used to raise polyclonal antibodies in rabbits, and these antibodies could detect 9b protein in infected cells. We analyzed the sub-cellular localization of recombinant 9b protein using fluorescence microscopy of live transfected cells and indirect immunofluorescence of transfected fixed cells. Our findings indicate that the 9b protein is exported outside of a cell nucleus and localizes to the endoplasmic reticulum. Our data also suggest that the 46-LRLGSQLSL-54 amino acid sequence of 9b functions as a nuclear export signal (NES).

  20. Murine Coronavirus Delays Expression of a Subset of Interferon-Stimulated Genes▿

    PubMed Central

    Rose, Kristine M.; Elliott, Ruth; Martínez-Sobrido, Luis; García-Sastre, Adolfo; Weiss, Susan R.

    2010-01-01

    The importance of the type I interferon (IFN-I) system in limiting coronavirus replication and dissemination has been unequivocally demonstrated by rapid lethality following infection of mice lacking the alpha/beta IFN (IFN-α/β) receptor with mouse hepatitis virus (MHV), a murine coronavirus. Interestingly, MHV has a cell-type-dependent ability to resist the antiviral effects of IFN-α/β. In primary bone-marrow-derived macrophages and mouse embryonic fibroblasts, MHV replication was significantly reduced by the IFN-α/β-induced antiviral state, whereas IFN treatment of cell lines (L2 and 293T) has only minor effects on replication (K. M. Rose and S. R. Weiss, Viruses 1:689-712, 2009). Replication of other RNA viruses, including Theiler's murine encephalitis virus (TMEV), vesicular stomatitis virus (VSV), Sindbis virus, Newcastle disease virus (NDV), and Sendai virus (SeV), was significantly inhibited in L2 cells treated with IFN-α/β, and MHV had the ability to rescue only SeV replication. We present evidence that MHV infection can delay interferon-stimulated gene (ISG) induction mediated by both SeV and IFN-β but only when MHV infection precedes SeV or IFN-β exposure. Curiously, we observed no block in the well-defined IFN-β signaling pathway that leads to STAT1-STAT2 phosphorylation and translocation to the nucleus in cultures infected with MHV. This observation suggests that MHV must inhibit an alternative IFN-induced pathway that is essential for early induction of ISGs. The ability of MHV to delay SeV-mediated ISG production may partially involve limiting the ability of IFN regulatory factor 3 (IRF-3) to function as a transcription factor. Transcription from an IRF-3-responsive promoter was partially inhibited by MHV; however, IRF-3 was transported to the nucleus and bound DNA in MHV-infected cells superinfected with SeV. PMID:20357099

  1. Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    PubMed Central

    Burkard, Christine; Verheije, Monique H.; Wicht, Oliver; van Kasteren, Sander I.; van Kuppeveld, Frank J.; Haagmans, Bart L.; Pelkmans, Lucas; Rottier, Peter J. M.; Bosch, Berend Jan; de Haan, Cornelis A. M.

    2014-01-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion. PMID:25375324

  2. Coronavirus Nsp10, a Critical Co-factor for Activation of Multiple Replicative Enzymes*

    PubMed Central

    Bouvet, Mickaël; Lugari, Adrien; Posthuma, Clara C.; Zevenhoven, Jessika C.; Bernard, Stéphanie; Betzi, Stéphane; Imbert, Isabelle; Canard, Bruno; Guillemot, Jean-Claude; Lécine, Patrick; Pfefferle, Susanne; Drosten, Christian; Snijder, Eric J.; Decroly, Etienne; Morelli, Xavier

    2014-01-01

    The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1–16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3′-5′ exoribonuclease and 2′-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2′-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses. PMID:25074927

  3. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein.

    PubMed Central

    Baker, S C; Shieh, C K; Soe, L H; Chang, M F; Vannier, D M; Lai, M M

    1989-01-01

    The 5'-most gene of the murine coronavirus genome, gene A, is presumed to encode viral RNA-dependent RNA polymerase. It has previously been shown that the N-terminal portion of this gene product is cleaved into a protein of 28 kilodaltons (p28). To further understand the mechanism of synthesis of the p28 protein, cDNA clones representing the 5'-most 5.3 kilobases of murine coronavirus mouse hepatitis virus strain JHM were sequenced and subcloned into pT7 vectors from which RNAs were transcribed and translated in vitro. The sequence was found to encode a single long open reading frame continuing from near the 5' terminus of the genome. Although p28 is encoded from the first 1 kilobase at the 5' end of the genome, translation of in vitro-transcribed RNAs indicated that this protein was not detected unless the product of the entire 5.3-kilobase region was synthesized. Translation of RNAs of 3.9 kilobases or smaller yielded proteins which contained the p28 sequence, but p28 was not cleaved. This suggests that the sequence in the region between 3.9 and 5.3 kilobases from the 5' end of the genomic RNA is essential for proteolytic cleavage and contains autoproteolytic activity. The p28 protein could not be cleaved from the smaller primary translation products of gene A, even in the presence of the larger autocleaving protein. Cleavage of the p28 protein was inhibited by addition of the protease inhibitor ZnCl2. This study thus identified a protein domain essential for autoproteolytic cleavage of the gene A polyprotein. Images PMID:2547993

  4. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes.

    PubMed

    Bouvet, Mickaël; Lugari, Adrien; Posthuma, Clara C; Zevenhoven, Jessika C; Bernard, Stéphanie; Betzi, Stéphane; Imbert, Isabelle; Canard, Bruno; Guillemot, Jean-Claude; Lécine, Patrick; Pfefferle, Susanne; Drosten, Christian; Snijder, Eric J; Decroly, Etienne; Morelli, Xavier

    2014-09-12

    The RNA-synthesizing machinery of the severe acute respiratory syndrome Coronavirus (SARS-CoV) is composed of 16 non-structural proteins (nsp1-16) encoded by ORF1a/1b. The 148-amino acid nsp10 subunit contains two zinc fingers and is known to interact with both nsp14 and nsp16, stimulating their respective 3'-5' exoribonuclease and 2'-O-methyltransferase activities. Using alanine-scanning mutagenesis, in cellulo bioluminescence resonance energy transfer experiments, and in vitro pulldown assays, we have now identified the key residues on the nsp10 surface that interact with nsp14. The functional consequences of mutations introduced at these positions were first evaluated biochemically by monitoring nsp14 exoribonuclease activity. Disruption of the nsp10-nsp14 interaction abrogated the nsp10-driven activation of the nsp14 exoribonuclease. We further showed that the nsp10 surface interacting with nsp14 overlaps with the surface involved in the nsp10-mediated activation of nsp16 2'-O-methyltransferase activity, suggesting that nsp10 is a major regulator of SARS-CoV replicase function. In line with this notion, reverse genetics experiments supported an essential role of the nsp10 surface that interacts with nsp14 in SARS-CoV replication, as several mutations that abolished the interaction in vitro yielded a replication-negative viral phenotype. In contrast, mutants in which the nsp10-nsp16 interaction was disturbed proved to be crippled but viable. These experiments imply that the nsp10 surface that interacts with nsp14 and nsp16 and possibly other subunits of the viral replication complex may be a target for the development of antiviral compounds against pathogenic coronaviruses. PMID:25074927

  5. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus

    PubMed Central

    Nasiri, Khadijeh; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza; Zibaee, Saeed

    2016-01-01

    Purpose: Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. Methods: In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. Results: The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni–NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. Conclusion: The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure. PMID:27123423

  6. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.

    PubMed

    Ulasli, Mustafa; Gurses, Serdar A; Bayraktar, Recep; Yumrutas, Onder; Oztuzcu, Serdar; Igci, Mehri; Igci, Yusuf Ziya; Cakmak, Ecir Ali; Arslan, Ahmet

    2014-03-01

    Extracts of Anthemis hyalina (Ah), Nigella sativa (Ns) and peels of Citrus sinensis (Cs) have been used as folk medicine to fight antimicrobial diseases. To evaluate the effect of extracts of Ah, Ns and Cs on the replication of coronavirus (CoV) and on the expression of TRP genes during coronavirus infection, HeLa-CEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cells were inoculated with MHV-A59 (mouse hepatitis virus-A59) at moi of 30. 1/50 dilution of the extracts was found to be the safe active dose. ELISA kits were used to detect the human IL-8 levels. Total RNA was isolated from the infected cells and cDNA was synthesized. Fluidigm Dynamic Array nanofluidic chip 96.96 was used to analyze the mRNA expression of 21 TRP genes and two control genes. Data was analyzed using the BioMark digital array software. Determinations of relative gene expression values were carried out by using the 2(-∆∆Ct) method (normalized threshold cycle (Ct) value of sample minus normalized Ct value of control). TCID50/ml (tissue culture infectious dose that will produce cytopathic effect in 50% of the inoculated tissue culture cells) was found for treatments to determine the viral loads. The inflammatory cytokine IL-8 level was found to increase for both 24 and 48 h time points following Ns extract treatment. TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 were the genes which expression levels changed significantly after Ah, Ns or Cs extract treatments. The virus load decreased when any of the Ah, Ns or Cs extracts was added to the CoV infected cells with Ah extract treatment leading to undetectable virus load for both 6 and 8 hpi. Although all the extract treatments had an effect on IL-8 secretion, TRP gene expression and virus load after CoV infection, it was the Ah extract treatment that showed the biggest difference in virus load. Therefore Ah extract is the best candidate in our hands that contains potential treatment molecule(s).

  7. Construct design, biophysical, and biochemical characterization of the fusion core from mouse hepatitis virus (a coronavirus) spike protein.

    PubMed

    Xu, Yanhui; Cole, David K; Lou, Zhiyong; Liu, Yiwei; Qin, Lan; Li, Xu; Bai, Zhihong; Yuan, Fang; Rao, Zihe; Gao, George F

    2004-11-01

    Membrane fusion between virus and host cells is the key step for enveloped virus entry and is mediated by the viral envelope fusion protein. In murine coronavirus, mouse hepatitis virus (MHV), the spike (S) protein mediates this process. Recently, the formation of anti-parallel 6-helix bundle of the MHV S protein heptad repeat (HR) regions (HR1 and HR2) has been confirmed, implying coronavirus has a class I fusion protein. This bundle is also called fusion core. To facilitate the solution of the crystal structure of this fusion core, we deployed an Escherichia coli in vitro expression system to express the HR1 and HR2 regions linked together by a flexible linker as a single chain (named 2-helix). This 2-helix polypeptide subsequently assembled into a typical 6-helix bundle. This bundle has been analyzed by a series of biophysical and biochemical techniques and confirmed that the design technique can be used for coronavirus as we successfully used for members of paramyxoviruses.

  8. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2006-07-05

    The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.

  9. A translation-attenuating intraleader open reading frame is selected on coronavirus mRNAs during persistent infection.

    PubMed Central

    Hofmann, M A; Senanayake, S D; Brian, D A

    1993-01-01

    Short open reading frames within the 5' leader of some eukaryotic mRNAs are known to regulate the rate of translation initiation on the downstream open reading frame. By employing the polymerase chain reaction, we learned that the 5'-terminal 5 nt on the common leader sequence of bovine coronavirus subgenomic mRNAs were heterogeneous and hypervariable throughout early infection in cell culture and that as a persistent infection became established, termini giving rise to a common 33-nt intraleader open reading frame were selected. Since the common leader is derived from the genomic 5' end during transcription, a common focus of origin for the heterogeneity is expected. The intraleader open reading frame was shown by in vitro translation studies to attenuate translation of downstream open reading frames in a cloned bovine coronavirus mRNA molecule. Selection of an intraleader open reading frame resulting in a general attenuation of mRNA translation and a consequent attenuation of virus replication may, therefore, be a mechanism by which coronaviruses and possibly other RNA viruses with a similar transcriptional strategy maintain a persistent infection. Images Fig. 1 Fig. 3 PMID:8265618

  10. MERS-CoV Antibodies in Humans, Africa, 2013–2014

    PubMed Central

    Liljander, Anne; Meyer, Benjamin; Jores, Joerg; Müller, Marcel A.; Lattwein, Erik; Njeru, Ian; Bett, Bernard; Corman, Victor Max

    2016-01-01

    Dromedaries in Africa and elsewhere carry the Middle East respiratory syndrome coronavirus (MERS-CoV). To search for evidence of autochthonous MERS-CoV infection in humans, we tested archived serum from livestock handlers in Kenya for MERS-CoV antibodies. Serologic evidence of infection was confirmed for 2 persons sampled in 2013 and 2014. PMID:27071076

  11. Macro Domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES.

    PubMed

    Cho, Chao-Cheng; Lin, Meng-Hsuan; Chuang, Chien-Ying; Hsu, Chun-Hua

    2016-03-01

    The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) encodes the conserved macro domain within non-structural protein 3. However, the precise biochemical function and structure of the macro domain is unclear. Using differential scanning fluorimetry and isothermal titration calorimetry, we characterized the MERS-CoV macro domain as a more efficient adenosine diphosphate (ADP)-ribose binding module than macro domains from other CoVs. Furthermore, the crystal structure of the MERS-CoV macro domain was determined at 1.43-Å resolution in complex with ADP-ribose. Comparison of macro domains from MERS-CoV and other human CoVs revealed structural differences in the α1 helix alters how the conserved Asp-20 interacts with ADP-ribose and may explain the efficient binding of the MERS-CoV macro domain to ADP-ribose. This study provides structural and biophysical bases to further evaluate the role of the MERS-CoV macro domain in the host response via ADP-ribose binding but also as a potential target for drug design.

  12. Selection of SARS-Coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice

    SciTech Connect

    Yu Hua; Jiang Lifang . E-mail: jianglf909@yahoo.com.cn; Fang Danyun; Yan Huijun; Zhou Jingjiao; Zhou Junmei; Liang Yu; Gao Yang; Zhao, Wei; Long Beiguo

    2007-03-15

    Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed.

  13. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014.

    PubMed

    Ng, Dianna L; Al Hosani, Farida; Keating, M Kelly; Gerber, Susan I; Jones, Tara L; Metcalfe, Maureen G; Tong, Suxiang; Tao, Ying; Alami, Negar N; Haynes, Lia M; Mutei, Mowafaq Ali; Abdel-Wareth, Laila; Uyeki, Timothy M; Swerdlow, David L; Barakat, Maha; Zaki, Sherif R

    2016-03-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection causes an acute respiratory illness and is associated with a high case fatality rate; however, the pathogenesis of severe and fatal MERS-CoV infection is unknown. We describe the histopathologic, immunohistochemical, and ultrastructural findings from the first autopsy performed on a fatal case of MERS-CoV in the world, which was related to a hospital outbreak in the United Arab Emirates in April 2014. The main histopathologic finding in the lungs was diffuse alveolar damage. Evidence of chronic disease, including severe peripheral vascular disease, patchy cardiac fibrosis, and hepatic steatosis, was noted in the other organs. Double staining immunoassays that used anti-MERS-CoV antibodies paired with immunohistochemistry for cytokeratin and surfactant identified pneumocytes and epithelial syncytial cells as important targets of MERS-CoV antigen; double immunostaining with dipeptidyl peptidase 4 showed colocalization in scattered pneumocytes and syncytial cells. No evidence of extrapulmonary MERS-CoV antigens were detected, including the kidney. These results provide critical insights into the pathogenesis of MERS-CoV in humans.

  14. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  15. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014.

    PubMed

    Ng, Dianna L; Al Hosani, Farida; Keating, M Kelly; Gerber, Susan I; Jones, Tara L; Metcalfe, Maureen G; Tong, Suxiang; Tao, Ying; Alami, Negar N; Haynes, Lia M; Mutei, Mowafaq Ali; Abdel-Wareth, Laila; Uyeki, Timothy M; Swerdlow, David L; Barakat, Maha; Zaki, Sherif R

    2016-03-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infection causes an acute respiratory illness and is associated with a high case fatality rate; however, the pathogenesis of severe and fatal MERS-CoV infection is unknown. We describe the histopathologic, immunohistochemical, and ultrastructural findings from the first autopsy performed on a fatal case of MERS-CoV in the world, which was related to a hospital outbreak in the United Arab Emirates in April 2014. The main histopathologic finding in the lungs was diffuse alveolar damage. Evidence of chronic disease, including severe peripheral vascular disease, patchy cardiac fibrosis, and hepatic steatosis, was noted in the other organs. Double staining immunoassays that used anti-MERS-CoV antibodies paired with immunohistochemistry for cytokeratin and surfactant identified pneumocytes and epithelial syncytial cells as important targets of MERS-CoV antigen; double immunostaining with dipeptidyl peptidase 4 showed colocalization in scattered pneumocytes and syncytial cells. No evidence of extrapulmonary MERS-CoV antigens were detected, including the kidney. These results provide critical insights into the pathogenesis of MERS-CoV in humans. PMID:26857507

  16. Biologic, antigenic, and full-length genomic characterization of a bovine-like coronavirus isolated from a giraffe.

    PubMed

    Hasoksuz, Mustafa; Alekseev, Konstantin; Vlasova, Anastasia; Zhang, Xinsheng; Spiro, David; Halpin, Rebecca; Wang, Shiliang; Ghedin, Elodie; Saif, Linda J

    2007-05-01

    Coronaviruses (CoVs) possess large RNA genomes and exist as quasispecies, which increases the possibility of adaptive mutations and interspecies transmission. Recently, CoVs were recognized as important pathogens in captive wild ruminants. This is the first report of the isolation and detailed genetic, biologic, and antigenic characterization of a bovine-like CoV from a giraffe (Giraffa camelopardalis) in a wild-animal park in the United States. CoV particles were detected by immune electron microscopy in fecal samples from three giraffes with mild-to-severe diarrhea. From one of the three giraffe samples, a CoV (GiCoV-OH3) was isolated and successfully adapted to serial passage in human rectal tumor 18 cell cultures. Hemagglutination assays, receptor-destroying enzyme activity, hemagglutination inhibition, and fluorescence focus neutralization tests revealed close biological and antigenic relationships between the GiCoV-OH3 isolate and selected respiratory and enteric bovine CoV (BCoV) strains. When orally inoculated into a BCoV-seronegative gnotobiotic calf, GiCoV-OH3 caused severe diarrhea and virus shedding within 2 to 3 days. Sequence comparisons and phylogenetic analyses were performed to assess its genetic relatedness to other CoVs. Molecular characterization confirmed that the new isolate belongs to group 2a of the mammalian CoVs and revealed closer genetic relatedness between GiCoV-OH3 and the enteric BCoVs BCoV-ENT and BCoV-DB2, whereas BCoV-Mebus was more distantly related. Detailed sequence analysis of the GiCoV-OH3 spike gene demonstrated the presence of a deletion in the variable region of the S1 subunit (from amino acid 543 to amino acid 547), which is a region associated with pathogenicity and tissue tropism for other CoVs. The point mutations identified in the structural proteins (by comparing GiCoV-OH3, BCoV-ENT, BCoV-DB2, and BCoV-Mebus) were most conserved among GiCoV-OH3, BCoV-ENT, and BCoV-DB2, whereas most of the point mutations in the

  17. Human Antibodies Against Middle East Respiratory Syndrome Coronavirus | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to co-develop antibody-based therapeutic against MERS-CoV, including animal studies, cGMP manufacturing, and clinical trials.

  18. Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis

    PubMed Central

    Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley

    2015-01-01

    ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered

  19. Myd88 Initiates Early Innate Immune Responses and Promotes CD4 T Cells during Coronavirus Encephalomyelitis

    PubMed Central

    Butchi, Niranjan; Kapil, Parul; Puntambekar, Shweta; Stohlman, Stephen A.; Hinton, David R.

    2015-01-01

    ABSTRACT Myd88 signaling is critical to the control of numerous central nervous system (CNS) infections by promoting both innate and adaptive immune responses. Nevertheless, the extent to which Myd88 regulates type I interferon (IFN) versus proinflammatory factors and T cell function, as well as the anatomical site of action, varies extensively with the pathogen. CNS infection by neurotropic coronavirus with replication confined to the brain and spinal cord induces protective IFN-α/β via Myd88-independent activation of melanoma differentiation-associated gene 5 (MDA5). However, a contribution of Myd88-dependent signals to CNS pathogenesis has not been assessed. Infected Myd88−/− mice failed to control virus, exhibited enhanced clinical disease coincident with increased demyelination, and succumbed to infection within 3 weeks. The induction of IFN-α/β, as well as of proinflammatory cytokines and chemokines, was impaired early during infection. However, defects in both IFN-α/β and select proinflammatory factors were rapidly overcome prior to T cell recruitment. Myd88 deficiency also specifically blunted myeloid and CD4 T cell recruitment into the CNS without affecting CD8 T cells. Moreover, CD4 T cells but not CD8 T cells were impaired in IFN-γ production. Ineffective virus control indeed correlated most prominently with reduced antiviral IFN-γ in the CNS of Myd88−/− mice. The results demonstrate a crucial role for Myd88 both in early induction of innate immune responses during coronavirus-induced encephalomyelitis and in specifically promoting protective CD4 T cell activation. In the absence of these responses, functional CD8 T cells are insufficient to control viral spread within the CNS, resulting in severe demyelination. IMPORTANCE During central nervous system (CNS) infections, signaling through the adaptor protein Myd88 promotes both innate and adaptive immune responses. The extent to which Myd88 regulates antiviral type I IFN, proinflammatory

  20. Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses

    PubMed Central

    Rabouw, Huib H.; Canton, Javier; Sola, Isabel; Enjuanes, Luis; Bredenbeek, Peter J.; Kikkert, Marjolein; de Groot, Raoul J.; van Kuppeveld, Frank J. M.

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I interferon (IFN-α/β) response, the protein kinase R (PKR)-mediated stress response is being recognized as an important innate response pathway. Upon detecting viral dsRNA, PKR phosphorylates eIF2α, leading to the inhibition of cellular and viral translation and the formation of stress granules (SGs), which are increasingly recognized as platforms for antiviral signaling pathways. It is unknown whether cellular infection by MERS-CoV activates the stress response pathway or whether the virus has evolved strategies to suppress this infection-limiting pathway. Here, we show that cellular infection with MERS-CoV does not lead to the formation of SGs. By transiently expressing the MERS-CoV accessory proteins individually, we identified a role of protein 4a (p4a) in preventing activation of the stress response pathway. Expression of MERS-CoV p4a impeded dsRNA-mediated PKR activation, thereby rescuing translation inhibition and preventing SG formation. In contrast, p4a failed to suppress stress response pathway activation that is independent of PKR and dsRNA. MERS-CoV p4a is a dsRNA binding protein. Mutation of the dsRNA binding motif in p4a disrupted its PKR antagonistic activity. By inserting p4a in a picornavirus lacking its natural PKR antagonist, we showed that p4a exerts PKR antagonistic activity also under infection conditions. However, a recombinant MERS-CoV deficient in p4a expression still suppressed SG formation, indicating the expression of at least one other stress response antagonist. This virus also suppressed the dsRNA-independent stress response pathway. Thus, MERS-CoV interferes with antiviral stress responses using at least two different mechanisms, with p4a

  1. Crystal Structure of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Papain-like Protease Bound to Ubiquitin Facilitates Targeted Disruption of Deubiquitinating Activity to Demonstrate Its Role in Innate Immune Suppression*

    PubMed Central

    Bailey-Elkin, Ben A.; Knaap, Robert C. M.; Johnson, Garrett G.; Dalebout, Tim J.; Ninaber, Dennis K.; van Kasteren, Puck B.; Bredenbeek, Peter J.; Snijder, Eric J.; Kikkert, Marjolein; Mark, Brian L.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human pathogen that was first isolated in 2012. MERS-CoV replication depends in part on a virus-encoded papain-like protease (PLpro) that cleaves the viral replicase polyproteins at three sites releasing non-structural protein 1 (nsp1), nsp2, and nsp3. In addition to this replicative function, MERS-CoV PLpro was recently shown to be a deubiquitinating enzyme (DUB) and to possess deISGylating activity, as previously reported for other coronaviral PLpro domains, including that of severe acute respiratory syndrome coronavirus. These activities have been suggested to suppress host antiviral responses during infection. To understand the molecular basis for ubiquitin (Ub) recognition and deconjugation by MERS-CoV PLpro, we determined its crystal structure in complex with Ub. Guided by this structure, mutations were introduced into PLpro to specifically disrupt Ub binding without affecting viral polyprotein cleavage, as determined using an in trans nsp3↓4 cleavage assay. Having developed a strategy to selectively disable PLpro DUB activity, we were able to specifically examine the effects of this activity on the innate immune response. Whereas the wild-type PLpro domain was found to suppress IFN-β promoter activation, PLpro variants specifically lacking DUB activity were no longer able to do so. These findings directly implicate the DUB function of PLpro, and not its proteolytic activity per se, in the inhibition of IFN-β promoter activity. The ability to decouple the DUB activity of PLpro from its role in viral polyprotein processing now provides an approach to further dissect the role(s) of PLpro as a viral DUB during MERS-CoV infection. PMID:25320088

  2. Alphacoronaviruses Detected in French Bats Are Phylogeographically Linked to Coronaviruses of European Bats

    PubMed Central

    Goffard, Anne; Demanche, Christine; Arthur, Laurent; Pinçon, Claire; Michaux, Johan; Dubuisson, Jean

    2015-01-01

    Bats are a reservoir for a diverse range of viruses, including coronaviruses (CoVs). To determine the presence of CoVs in French bats, fecal samples were collected between July and August of 2014 from four bat species in seven different locations around the city of Bourges in France. We present for the first time the presence of alpha-CoVs in French Pipistrellus pipistrellus bat species with an estimated prevalence of 4.2%. Based on the analysis of a fragment of the RNA-dependent RNA polymerase (RdRp) gene, phylogenetic analyses show that alpha-CoVs sequences detected in French bats are closely related to other European bat alpha-CoVs. Phylogeographic analyses of RdRp sequences show that several CoVs strains circulate in European bats: (i) old strains detected that have probably diverged a long time ago and are detected in different bat subspecies; (ii) strains detected in Myotis and Pipistrellus bat species that have more recently diverged. Our findings support previous observations describing the complexity of the detected CoVs in bats worldwide. PMID:26633467

  3. Identification of natural compounds with antiviral activities against SARS-associated coronavirus.

    PubMed

    Li, Shi-You; Chen, Cong; Zhang, Hai-Qing; Guo, Hai-Yan; Wang, Hui; Wang, Lin; Zhang, Xiang; Hua, Shi-Neng; Yu, Jun; Xiao, Pei-Gen; Li, Rong-Song; Tan, Xuehai

    2005-07-01

    More than 200 Chinese medicinal herb extracts were screened for antiviral activities against Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay for virus-induced cytopathic effect (CPE). Four of these extracts showed moderate to potent antiviral activities against SARS-CoV with 50% effective concentration (EC50) ranging from 2.4 +/- 0.2 to 88.2 +/- 7.7 microg/ml. Out of the four, Lycoris radiata was most potent. To identify the active component, L. radiata extract was subjected to further fractionation, purification, and CPE/MTS assays. This process led to the identification of a single substance lycorine as an anti-SARS-CoV component with an EC50 value of 15.7 +/- 1.2 nM. This compound has a CC50 value of 14980.0 +/- 912.0 nM in cytotoxicity assay and a selective index (SI) greater than 900. The results suggested that four herbal extracts and the compound lycorine are candidates for the development of new anti-SARS-CoV drugs in the treatment of SARS. PMID:15885816

  4. Alphacoronaviruses Detected in French Bats Are Phylogeographically Linked to Coronaviruses of European Bats.

    PubMed

    Goffard, Anne; Demanche, Christine; Arthur, Laurent; Pinçon, Claire; Michaux, Johan; Dubuisson, Jean

    2015-12-02

    Bats are a reservoir for a diverse range of viruses, including coronaviruses (CoVs). To determine the presence of CoVs in French bats, fecal samples were collected between July and August of 2014 from four bat species in seven different locations around the city of Bourges in France. We present for the first time the presence of alpha-CoVs in French Pipistrellus pipistrellus bat species with an estimated prevalence of 4.2%. Based on the analysis of a fragment of the RNA-dependent RNA polymerase (RdRp) gene, phylogenetic analyses show that alpha-CoVs sequences detected in French bats are closely related to other European bat alpha-CoVs. Phylogeographic analyses of RdRp sequences show that several CoVs strains circulate in European bats: (i) old strains detected that have probably diverged a long time ago and are detected in different bat subspecies; (ii) strains detected in Myotis and Pipistrellus bat species that have more recently diverged. Our findings support previous observations describing the complexity of the detected CoVs in bats worldwide.

  5. Field trial evaluation of a reo-coronavirus calf diarrhea vaccine.

    PubMed Central

    Thurber, E T; Bass, E P; Beckenhauer, W H

    1977-01-01

    Field trials were conducted using an experimental, modified live virus, oral vaccine for prevention of reo- and coronavirus calf diarrhea. Prior to the trials, one or both of the specific causative agents were identified from affected calves in each participating herd. In 21 herds, sequential trials were conducted in which results of uninterrupted vaccination were compared with disease rates during a preceding or subsequent control period. In these herds there was a statistically significant reduction in the morbidity and mortality from disease in 1,598 vaccinates compared with the rates in 829 prevaccination control calves. Morbidity and mortality in 206 post-vaccination control calves rose marginally above the rates in the same vaccinates. In 26 other herds, where double blind trials were conducted, rates of morbidity and mortality from disease were virtually the same for 1,080 vaccinated calves and 355 placebo calves. Vaccinates in the sequential trials had the lowest morbidity and mortality rates of any test group in either field trial format. In a selected dairy herd, both field trial formats were implemented and the results compared. In the double blind trial, vaccinates and placebo calves had comparable rates of morbidity and mortality from disease. When a sequential trial was later implemented, a statistically significant reduction in morbidity and mortality occurred in vaccinates compared with rates in control calves. PMID:193622

  6. Severe respiratory illness associated with a novel coronavirus--Saudi Arabia and Qatar, 2012.

    PubMed

    2012-10-12

    CDC is working closely with the World Health Organization (WHO) and other partners to better understand the public health risk presented by a recently detected, novel coronavirus. This virus has been identified in two patients, both previously healthy adults who suffered severe respiratory illness. The first patient, a man aged 60 years from Saudi Arabia, was hospitalized in June 2012 and died; the second patient, a man aged 49 years from Qatar with onset of symptoms in September 2012 was transported to the United Kingdom for intensive care. He remains hospitalized on life support with both pulmonary and renal failure. Person-to-person or health-care-associated transmission has not been identified to date. Interim case definitions based on acute respiratory illness and travel history were issued by WHO on September 29 and include criteria for "patient under investigation," "probable case," and "confirmed case". This information is current as of October 4. Updates on the investigation and the WHO case definition are available at http://www.who.int/csr/don/en/index.html. PMID:23051613

  7. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994-2010.

    PubMed

    Bok, M; Miño, S; Rodriguez, D; Badaracco, A; Nuñes, I; Souza, S P; Bilbao, G; Louge Uriarte, E; Galarza, R; Vega, C; Odeon, A; Saif, L J; Parreño, V

    2015-12-31

    Bovine coronavirus (BCoV) is an important viral pathogen associated with neonatal calf diarrhea. Our aim was to investigate the incidence of BCoV in diarrhea outbreaks in beef and dairy herds from Argentina during 1994-2010. A total of 5.365 fecal samples from diarrheic calves were screened for BCoV diagnosis by ELISA. The virus was detected in 1.71% (92/5365) of the samples corresponding to 5.95% (63/1058) of the diarrhea cases in 239 beef and 324 dairy farms. The detection rate of BCoV was significantly higher in dairy than in beef herds: 12.13% (29/239) vs. 4.32% (14/324) respectively. Phylogenetic analysis of the hypervariable S1 region of seven representative samples (from different husbandry systems, farm locations and years of sampling) indicated that BCoV strains circulating in Argentinean beef and dairy herds formed a cluster distinct from other geographical regions. Interestingly, Argentinean strains are distantly related (at both the nucleotide and amino acid levels) with the Mebus historic reference BCoV strain included in the vaccines currently available in Argentina. However, Mebus-induced antibodies were capable of neutralizing the BCoV Arg95, a field strain adapted to grow in vitro, and vice versa, indicating that both strains belong to the same CoV serotype reported in cattle. This work represents the first large survey describing BCoV circulation in Argentinean cattle. PMID:26520931

  8. Assessment of the awareness level of dental students toward Middle East Respiratory Syndrome-coronavirus

    PubMed Central

    Kharma, Mohamed Yasser; Alalwani, Mohamad Sadek; Amer, Manal Fouad; Tarakji, Bassel; Aws, Ghassan

    2015-01-01

    Background: Infection prevention and control measures are critical to prevent the possible spread of Middle East Respiratory Syndrome-coronavirus (MERS-CoV) in healthcare facilities. Therefore, healthcare workers should be aware of all procedures concerning prevention of and protection from MERS-CoV. Objective: The aim of this study is to improve the knowledge of the dental students and evaluate their awareness about MERS-CoV. Materials and Methods: A questionnaire was made according to MOH information and 200 dental students (Al-Farabi Colleges, Jeddah) were interviewed to evaluate their knowledge about MERS-CoV. Results: More than half of the dental students (54%) interviewed had good knowledge about the etiology, symptoms, and treatment of MERS-CoV. Measurements for infection control and protection were also known (79%). The sources of information for the students were: college (27%), MOH (25%), media (24%), and social community (23%), while 17% of the students interviewed had no idea about it. Conclusion: Dental students had good knowledge about MERS-CoV. However, more information still must be provided by MOH and college for the medical staff. PMID:26236674

  9. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway

    SciTech Connect

    Ortego, Javier; Ceriani, Juan E.; Patino, Cristina; Plana, Juan; Enjuanes, Luis

    2007-11-25

    A recombinant transmissible gastroenteritis coronavirus (rTGEV) in which E gene was deleted (rTGEV-{delta}E) has been engineered. This deletion mutant only grows in cells expressing E protein (E{sup +} cells) indicating that E was an essential gene for TGEV replication. Electron microscopy studies of rTGEV-{delta}E infected BHK-pAPN-E{sup -} cells showed that only immature intracellular virions were assembled. These virions were non-infectious and not secreted to the extracellular medium in BHK-pAPN-E{sup -} cells. RNA and protein composition analysis by RNase-gold and immunoelectron microscopy showed that rTGEV-{delta}E virions contained RNA and also all the structural TGEV proteins, except the deleted E protein. Nevertheless, full virion maturation was blocked. Studies of the rTGEV-{delta}E subcellular localization by confocal and immunoelectron microscopy in infected E{sup -} cells showed that in the absence of E protein virus trafficking was arrested in the intermediate compartment. Therefore, the absence of E protein in TGEV resulted in two actions, a blockade of virus trafficking in the membranes of the secretory pathway, and prevention of full virus maturation.

  10. Attempted immunisation of cats against feline infectious peritonitis using canine coronavirus.

    PubMed

    Stoddart, C A; Barlough, J E; Baldwin, C A; Scott, F W

    1988-11-01

    Specific pathogen free kittens were vaccinated with an unattenuated field isolate of canine coronavirus (CCV) either by aerosol or subcutaneously, and received boosting vaccinations four weeks later. Aerosolisation elicited a homologous virus-neutralising (VN) antibody response that increased steadily over a four-week period and levelled off one to two weeks after revaccination. The initial aerosolised dose produced an asymptomatic infection with excretion of CCV from the oropharynx up to eight days after vaccination; virus shedding was not detected, however, after the second inoculation. Cats vaccinated subcutaneously developed low VN antibody titres after the first CCV dose and experienced a strong anamnestic response after the second dose. Neutralising antibody titres then levelled off one to two weeks after revaccination at mean values somewhat lower than in cats vaccinated by aerosol. CCV was not isolated from the oropharynx after either subcutaneous dose. Four weeks after CCV boosting inoculations, vaccinated cats and sham-vaccinated control cats were divided into three subgroups and challenged by aerosol with the virulent UCD1 strain of feline infectious peritonitis virus (FIPV UCD1) at three different dosage levels. Five of six cats (including sham-vaccinated controls) given the lowest challenge dose showed no signs of disease, while all other cats developed lesions typical of feline infectious peritonitis (FIP). The five surviving cats developed FIP after subsequent challenge with a fivefold higher dose of FIPV. Thus heterotypic vaccination of cats with CCV did not provide effective protection against FIPV challenge.

  11. In vitro inhibition of feline coronavirus replication by small interfering RNAs.

    PubMed

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2011-06-01

    Infection with virulent biotypes of feline coronavirus (FCoV) can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. In this study we demonstrate the ability of small interfering RNA (siRNA) mediated RNA interference (RNAi) to inhibit the replication of virulent FCoV strain FIPV WSU 79-1146 in an immortalised feline cell line. A panel of eight synthetic siRNAs targeting four different regions of the FCoV genome were tested for antiviral effects. Efficacy was determined by qRT-PCR of intracellular viral genomic and messenger RNA, TCID50 infectivity assay of extracellular virus, and direct IFA for viral protein expression. All siRNAs demonstrated an inhibitory effect on viral replication in vitro. The two most effective siRNAs, targeting the untranslated 5' leader sequence (L2) and the nucleocapsid gene (N1), resulted in a >95% reduction in extracellular viral titre. Further characterisation of these two siRNAs demonstrated their efficacy when used at low concentrations and in cells challenged with high viral loads. Taken together these findings provide important information for the potential therapeutic application of RNAi in treating FIP.

  12. Identification and characterisation of small molecule inhibitors of feline coronavirus replication.

    PubMed

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2014-12-01

    Feline infectious peritonitis (FIP), a feline coronavirus (FCoV) induced disease, is almost invariably fatal with median life expectancy measured in days. Current treatment options are, at best, palliative. The objectives of this study were to evaluate a panel of nineteen candidate compounds for antiviral activity against FCoV in vitro to determine viable candidates for therapy. A resazurin-based cytopathic effect inhibition assay, which detects viable cells through their reduction of the substrate resazurin to fluorescent resorufin, was developed for screening compounds for antiviral efficacy against FCoV. Plaque reduction and virus yield reduction assays were performed to confirm antiviral effects of candidate compounds identified during screening, and the possible antiviral mechanisms of action of these compounds were investigated using virucidal suspension assays and CPE inhibition and IFA-based time of addition assays. Three compounds, chloroquine, mefloquine, and hexamethylene amiloride demonstrated marked inhibition of virus induced CPE at low micromolar concentrations. Orthogonal assays confirmed inhibition of CPE was associated with significant reductions in viral replication. Selectivity indices calculated based on in vitro cytotoxicity screening and reductions in extracellular viral titre were 217, 24, and 20 for chloroquine, mefloquine, and hexamethylene amiloride respectively. Preliminary experiments performed to inform the antiviral mechanism of the compounds demonstrated all three acted at an early stage of viral replication. These results suggest that these direct acting antiviral compounds, or their derivatives, warrant further investigation for clinical use in cats with FIP.

  13. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus.

    PubMed

    Hsieh, Li-En; Lin, Chao-Nan; Su, Bi-Ling; Jan, Tong-Rong; Chen, Chi-Min; Wang, Ching-Ho; Lin, Dah-Sheng; Lin, Chung-Tien; Chueh, Ling-Ling

    2010-10-01

    Feline infectious peritonitis (FIP) is a fatal disease in domestic and nondomestic felids caused by feline coronavirus (FCoV). Currently, no effective vaccine is available for the prevention of this disease. In searching for agents that may prove clinically effective against FCoV infection, 16 compounds were screened for their antiviral activity against a local FCoV strain in Felis catus whole fetus-4 cells. The results showed that Galanthus nivalis agglutinin (GNA) and nelfinavir effectively inhibited FCoV replication. When the amount of virus preinoculated into the test cells was increased to mimic the high viral load present in the target cells of FIP cats, GNA and nelfinavir by themselves lost their inhibitory effect. However, when the two agents were added together to FCoV-infected cells, a synergistic antiviral effect defined by complete blockage of viral replication was observed. These results suggest that the combined use of GNA and nelfinavir has therapeutic potential in the prophylaxis and treatment of cats with early-diagnosed FIP.

  14. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome.

    PubMed

    Nieto-Torres, Jose L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2015-11-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a viroporin involved in virulence. E protein ion channel (IC) activity is specifically correlated with enhanced pulmonary damage, edema accumulation and death. IL-1β driven proinflammation is associated with those pathological signatures, however its link to IC activity remains unknown. In this report, we demonstrate that SARS-CoV E protein forms protein-lipid channels in ERGIC/Golgi membranes that are permeable to calcium ions, a highly relevant feature never reported before. Calcium ions together with pH modulated E protein pore charge and selectivity. Interestingly, E protein IC activity boosted the activation of the NLRP3 inflammasome, leading to IL-1β overproduction. Calcium transport through the E protein IC was the main trigger of this process. These findings strikingly link SARS-CoV E protein IC induced ionic disturbances at the cell level to immunopathological consequences and disease worsening in the infected organism.

  15. Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    PubMed Central

    Gralinski, Lisa E.; Bankhead, Armand; Jeng, Sophia; Menachery, Vineet D.; Proll, Sean; Belisle, Sarah E.; Matzke, Melissa; Webb-Robertson, Bobbie-Jo M.; Luna, Maria L.; Shukla, Anil K.; Ferris, Martin T.; Bolles, Meagan; Chang, Jean; Aicher, Lauri; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.; Law, G. Lynn; Katze, Michael G.; McWeeney, Shannon; Baric, Ralph S.

    2013-01-01

    ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. PMID:23919993

  16. Molecular and antigenic characterization of bovine Coronavirus circulating in Argentinean cattle during 1994-2010.

    PubMed

    Bok, M; Miño, S; Rodriguez, D; Badaracco, A; Nuñes, I; Souza, S P; Bilbao, G; Louge Uriarte, E; Galarza, R; Vega, C; Odeon, A; Saif, L J; Parreño, V

    2015-12-31

    Bovine coronavirus (BCoV) is an important viral pathogen associated with neonatal calf diarrhea. Our aim was to investigate the incidence of BCoV in diarrhea outbreaks in beef and dairy herds from Argentina during 1994-2010. A total of 5.365 fecal samples from diarrheic calves were screened for BCoV diagnosis by ELISA. The virus was detected in 1.71% (92/5365) of the samples corresponding to 5.95% (63/1058) of the diarrhea cases in 239 beef and 324 dairy farms. The detection rate of BCoV was significantly higher in dairy than in beef herds: 12.13% (29/239) vs. 4.32% (14/324) respectively. Phylogenetic analysis of the hypervariable S1 region of seven representative samples (from different husbandry systems, farm locations and years of sampling) indicated that BCoV strains circulating in Argentinean beef and dairy herds formed a cluster distinct from other geographical regions. Interestingly, Argentinean strains are distantly related (at both the nucleotide and amino acid levels) with the Mebus historic reference BCoV strain included in the vaccines currently available in Argentina. However, Mebus-induced antibodies were capable of neutralizing the BCoV Arg95, a field strain adapted to grow in vitro, and vice versa, indicating that both strains belong to the same CoV serotype reported in cattle. This work represents the first large survey describing BCoV circulation in Argentinean cattle.

  17. Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme

    PubMed Central

    Ratia, Kiira; Saikatendu, Kumar Singh; Santarsiero, Bernard D.; Barretto, Naina; Baker, Susan C.; Stevens, Raymond C.; Mesecar, Andrew D.

    2006-01-01

    Replication of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) requires proteolytic processing of the replicase polyprotein by two viral cysteine proteases, a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro). These proteases are important targets for development of antiviral drugs that would inhibit viral replication and reduce mortality associated with outbreaks of SARS-CoV. In this work, we describe the 1.85-Å crystal structure of the catalytic core of SARS-CoV PLpro and show that the overall architecture adopts a fold closely resembling that of known deubiquitinating enzymes. Key features, however, distinguish PLpro from characterized deubiquitinating enzymes, including an intact zinc-binding motif, an unobstructed catalytically competent active site, and the presence of an intriguing, ubiquitin-like N-terminal domain. To gain insight into the active-site recognition of the C-terminal tail of ubiquitin and the related LXGG motif, we propose a model of PLpro in complex with ubiquitin–aldehyde that reveals well defined sites within the catalytic cleft that help to account for strict substrate-recognition motifs. PMID:16581910

  18. Awareness, Attitudes, and Practices Related to Coronavirus Pandemic Among Public in Saudi Arabia.

    PubMed

    Almutairi, Khalid M; Al Helih, Eyad M; Moussa, Mahaman; Boshaiqah, Ahmad E; Saleh Alajilan, Abdulrahman; Vinluan, Jason M; Almutairi, Abdulaziz

    2015-01-01

    New cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) were reported in Gulf countries in 2014, and to date, it has reportedly infected 837 people and killed 291 globally. Awareness of an individual's knowledge and being able to predict his or her behavior is crucial when evaluating clinical preparedness for pandemics with a highly pathogenic virus. The aim of this study was to identify awareness, attitudes, and practices related to MERS-CoV among the public in Saudi Arabia. A cross-sectional study of 1147 adult subjects recruited from various shopping malls in Riyadh was conducted. All the subjects were interviewed using a questionnaire that tested their knowledge, attitudes, and use of precautionary measures in relation to the MERS-CoV pandemic. The majority of the participants showed high levels of concern and had utilized precautionary measures. After adjusting for other variables, gender was the only significant predictor of the level of concern (P < .001), while knowledge was the significant predictor of both the level of concern and precaution (P < .001). High concern translated into a higher compliance with precautionary recommendations. Frequent communication between health care providers and the public is recommended to help dispel myths about the disease and to empower the public with the information needed to help the Saudi government in containing the disease outbreak. PMID:26291193

  19. Ethical Perspectives on the Middle East Respiratory Syndrome Coronavirus Epidemic in Korea.

    PubMed

    Kim, Ock-Joo

    2016-01-01

    Ethical considerations are essential in planning for and responding to outbreaks of infectious diseases. During the outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in the Republic of Korea in 2015, serious challenges emerged regarding important ethical issues, such as transparency and the protection of privacy. The development of bioethics in Korea has been influenced by individualistic perspectives applied in clinical contexts, leading to a paucity of ethical perspectives relevant to population-level phenomena such as outbreaks. Alternative theories of public health ethics include the perspectives of relational autonomy and the patient as victim and vector. Public health actions need to incorporate clear and systematic procedures founded upon ethical principles. The MERS-CoV epidemic in Korea created significant public support for more aggressive early interventions in future outbreaks. This trend makes it all the more imperative for ethical principles and procedures to be implemented in future planning and responses to outbreaks in order to promote perceptions of legitimacy and civic participation.

  20. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein.

    PubMed

    Xia, Shuai; Liu, Qi; Wang, Qian; Sun, Zhiwu; Su, Shan; Du, Lanying; Ying, Tianlei; Lu, Lu; Jiang, Shibo

    2014-12-19

    The recent outbreak of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) infection has led to more than 800 laboratory-confirmed MERS cases with a high case fatality rate (∼35%), posing a serious threat to global public health and calling for the development of effective and safe therapeutic and prophylactic strategies to treat and prevent MERS-CoV infection. Here we discuss the most recent studies on the structure of the MERS-CoV spike protein and its role in virus binding and entry, and the development of MERS-CoV entry/fusion inhibitors targeting the S1 subunit, particularly the receptor-binding domain (RBD), and the S2 subunit, especially the HR1 region, of the MERS-CoV spike protein. We then look ahead to future applications of these viral entry/fusion inhibitors, either alone or in combination with specific and nonspecific MERS-CoV replication inhibitors, for the treatment and prevention of MERS-CoV infection. PMID:25451066

  1. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals?

    PubMed Central

    Torres, Jaume; Surya, Wahyu; Li, Yan; Liu, Ding Xiang

    2015-01-01

    Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity. PMID:26053927

  2. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay.

    PubMed

    Amer, H M; Abd El Wahed, A; Shalaby, M A; Almajhdi, F N; Hufert, F T; Weidmann, M

    2013-11-01

    Bovine coronavirus (BCoV) is an economically significant cause of calf scours and winter dysentery of adult cattle, and may induce respiratory tract infections in cattle of all ages. Early diagnosis of BCoV helps to diminish its burden on the dairy and beef industry. Real-time RT-PCR assay for the detection of BCoV has been described, but it is relatively expensive, requires well-equipped laboratories and is not suitable for on-site screening. A novel assay, using reverse transcription recombinase polymerase amplification (RT-RPA), for the detection of BCoV is developed. The BCoV RT-RPA was rapid (10-20 min) and has an analytical sensitivity of 19 molecules. No cross-reactivity with other viruses causing bovine gastrointestinal and/or respiratory infections was observed. The assay performance on clinical samples was validated by testing 16 fecal and 14 nasal swab specimens and compared to real-time RT-PCR. Both assays provided comparable results. The RT-RPA assay was significantly more rapid than the real-time RT-PCR assay. The BCoV RT-RPA constitutes a suitable accurate, sensitive and rapid alternative to the common measures used for BCoV diagnosis. In addition, the use of a portable fluorescence reading device extends its application potential to use in the field and point-of-care diagnosis.

  3. Ethical Perspectives on the Middle East Respiratory Syndrome Coronavirus Epidemic in Korea

    PubMed Central

    2016-01-01

    Ethical considerations are essential in planning for and responding to outbreaks of infectious diseases. During the outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in the Republic of Korea in 2015, serious challenges emerged regarding important ethical issues, such as transparency and the protection of privacy. The development of bioethics in Korea has been influenced by individualistic perspectives applied in clinical contexts, leading to a paucity of ethical perspectives relevant to population-level phenomena such as outbreaks. Alternative theories of public health ethics include the perspectives of relational autonomy and the patient as victim and vector. Public health actions need to incorporate clear and systematic procedures founded upon ethical principles. The MERS-CoV epidemic in Korea created significant public support for more aggressive early interventions in future outbreaks. This trend makes it all the more imperative for ethical principles and procedures to be implemented in future planning and responses to outbreaks in order to promote perceptions of legitimacy and civic participation. PMID:26841881

  4. Transient dominant selection for the modification and generation of recombinant infectious bronchitis coronaviruses.

    PubMed

    Keep, Sarah M; Bickerton, Erica; Britton, Paul

    2015-01-01

    We have developed a reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) in which a full-length cDNA corresponding to the IBV genome is inserted into the vaccinia virus genome under the control of a T7 promoter sequence. Vaccinia virus as a vector for the full-length IBV cDNA has the advantage that modifications can be introduced into the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. Here, we describe the use of transient dominant selection as a method for introducing modifications into the IBV cDNA; this has been successfully used for the substitution of specific nucleotides, deletion of genomic regions, and the exchange of complete genes. Infectious recombinant IBVs are generated in situ following the transfection of vaccinia virus DNA, containing the modified IBV cDNA, into cells infected with a recombinant fowlpox virus expressing T7 DNA-dependent RNA polymerase.

  5. Rat coronaviruses infect rat alveolar type I epithelial cells and induce expression of CXC chemokines

    PubMed Central

    Miura, Tanya A.; Wang, Jieru; Holmes, Kathryn V.; Mason, Robert J.

    2007-01-01

    We analyzed the ability of two rat coronavirus (RCoV) strains, sialodacryoadenitis virus (SDAV) and Parker’s RCoV (RCoV-P), to infect rat alveolar type I cells and induce chemokine expression. Primary rat alveolar type II cells were transdifferentiated into the type I cell phenotype. Type I cells were productively infected with SDAV and RCoV-P, and both live virus and UV-inactivated virus induced mRNA and protein expression of three CXC chemokines: CINC-2, CINC-3, and LIX, which are neutrophil chemoattractants. Dual immunolabeling of type I cells for viral antigen and CXC chemokines showed that chemokines were expressed primarily by uninfected cells. Virus-induced chemokine expression was reduced by the IL-1 receptor antagonist, suggesting that IL-1 produced by infected cells induces uninfected cells to express chemokines. Primary cultures of alveolar epithelial cells are an important model for the early events in viral infection that lead to pulmonary inflammation. PMID:17804032

  6. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide

    PubMed Central

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (−)-catechin gallate and (−)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (−)-catechin gallate and (−)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL−1, (−)-catechin gallate and (−)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system. PMID:22619553

  7. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.

    PubMed

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-01-01

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo. PMID:27173006

  8. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein.

    PubMed

    Verma, Sandhya; Bednar, Valerie; Blount, Andrew; Hogue, Brenda G

    2006-05-01

    The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly. PMID:16611893

  9. A field trial to evaluate the efficacy of a combined rotavirus-coronavirus/Escherichia coli vaccine in dairy cattle.

    PubMed Central

    Waltner-Toews, D; Martin, S W; Meek, A H; McMillan, I; Crouch, C F

    1985-01-01

    A field trial was designed to determine the efficacy of a combination rotavirus-coronavirus/Escherichia coli vaccine on dairy farms in southwestern Ontario. In Part A of the trial, 321 cows on 15 farms were randomly assigned to either vaccination or placebo groups. On eight farms, 50% of the dams were vaccinated, while on the other seven farms, 80% of the dams were vaccinated. In Part B of the trial, 26 farms were randomly assigned to either a total vaccination program or to no vaccination program. Mortality, disease occurrence and weight gains were recorded on all calves for the first two weeks of life. In Part A, 23.5% of all calves were treated in the first two weeks of life, 20.9% were treated specifically for scours and 3.6% of live-born calves died. Enteropathogenic E. coli was identified on 13 of the 15 farms, rotavirus on 11 and coronavirus on ten. At least one of the three potential pathogens was found on every farm. There were no significant differences between calves from placebo-treated and vaccine-treated dams with regard to the proportion treated for all diseases, or for scours, or the proportion which died. Neither were there differences in days to first treatment for all diseases (seven days on average), days to first scour (6.7 days), duration of treatments (3.9 days for all diseases, 3.7 days for scours), or estimated weight gains (0.5 kg/day to 14 days). These results were not altered when the presence or absence of enteropathogenic E. coli, rotavirus or coronavirus on the premises was accounted for.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2985213

  10. The nsp2 Replicase Proteins of Murine Hepatitis Virus and Severe Acute Respiratory Syndrome Coronavirus Are Dispensable for Viral Replication

    PubMed Central

    Graham, Rachel L.; Sims, Amy C.; Brockway, Sarah M.; Baric, Ralph S.; Denison, Mark R.

    2005-01-01

    The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVΔnsp2 and SARSΔnsp2, respectively). Infectious MHVΔnsp2 and SARSΔnsp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Δnsp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVΔnsp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVΔnsp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function. PMID:16227261

  11. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication.

    PubMed

    Graham, Rachel L; Sims, Amy C; Brockway, Sarah M; Baric, Ralph S; Denison, Mark R

    2005-11-01

    The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVDeltansp2 and SARSDeltansp2, respectively). Infectious MHVDeltansp2 and SARSDeltansp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Deltansp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVDeltansp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVDeltansp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function. PMID:16227261

  12. Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome.

    PubMed Central

    Shieh, C K; Lee, H J; Yokomori, K; La Monica, N; Makino, S; Lai, M M

    1989-01-01

    We have previously shown that some strains of the murine coronavirus mouse hepatitis virus (MHV) synthesize an additional mRNA species (mRNA 2b, previously called mRNA 2a) with a size intermediate between that of mRNAs 2 and 3, suggesting the presence of an optional transcriptional initiation site. This transcriptional start is dependent on the leader sequence of the virus strains. To study the mechanism of coronavirus transcriptional regulation, we have cloned and sequenced the region of the viral genome corresponding to the 5' unique coding region of mRNA 2 of the JHM strain of MHV. In addition to the open reading frame (ORF) predicted to encode the viral nonstructural protein p30, a second complete ORF, with the potential to encode a 439-amino-acid polypeptide, was discovered. The transcriptional initiation sites of both mRNA 2a (formerly called mRNA 2) and mRNA 2b were determined by primer extension studies and RNA sequencing. The data indicated that transcription of mRNA 2a initiated at a site, UCUAUAC, that resembled the consensus intergenic sequence. In contrast, the start signal of the optional mRNA 2b, UAAUAAAC, deviated from the consensus sequence. mRNA 2b is a functional mRNA, as shown by in vitro translation studies of mRNA and ORF 2b and by the detection of an additional viral structural protein, gp65, in the JHM strain that synthesized this mRNA. Although the A59 strain of MHV was found to retain ORF 2b, it lacked the correct transcriptional and translational start signals for this gene. This study has therefore identified an optional gene product for murine coronaviruses and provided insights into the mechanism of regulation of MHV RNA transcription. Images PMID:2547994

  13. Reselection of a Genomic Upstream Open Reading Frame in Mouse Hepatitis Coronavirus 5′-Untranslated-Region Mutants

    PubMed Central

    Wu, Hung-Yi; Guan, Bo-Jhih; Su, Yu-Pin; Fan, Yi-Hsin

    2014-01-01

    An AUG-initiated upstream open reading frame (uORF) encoding a potential polypeptide of 3 to 13 amino acids (aa) is found within the 5′ untranslated region (UTR) of >75% of coronavirus genomes based on 38 reference strains. Potential CUG-initiated uORFs are also found in many strains. The AUG-initiated uORF is presumably translated following genomic 5′-end cap-dependent ribosomal scanning, but its function is unknown. Here, in a reverse-genetics study with mouse hepatitis coronavirus, the following were observed. (i) When the uORF AUG-initiating codon was replaced with a UAG stop codon along with a U112A mutation to maintain a uORF-harboring stem-loop 4 structure, an unimpaired virus with wild-type (WT) growth kinetics was recovered. However, reversion was found at all mutated sites within five virus passages. (ii) When the uORF was fused with genomic (main) ORF1 by converting three in-frame stop codons to nonstop codons, a uORF-ORF1 fusion protein was made, and virus replicated at WT levels. However, a frameshifting G insertion at virus passage 7 established a slightly 5′-extended original uORF. (iii) When uAUG-eliminating deletions of 20, 30, or 51 nucleotides (nt) were made within stem-loop 4, viable but debilitated virus was recovered. However, a C80U mutation in the first mutant and an A77G mutation in the second appeared by passage 10, which generated alternate uORFs that correlated with restored WT growth kinetics. In vitro, the uORF-disrupting nondeletion mutants showed enhanced translation of the downstream ORF1 compared with the WT. These results together suggest that the uORF represses ORF1 translation yet plays a beneficial but nonessential role in coronavirus replication in cell culture. PMID:24173235

  14. A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection.

    PubMed

    Jiang, Xinpeng; Hou, Xingyu; Tang, Lijie; Jiang, Yanping; Ma, Guangpeng; Li, Yijing

    2016-09-01

    Transmissible gastroenteritis coronavirus (TGEV) is a member of the genus Coronavirus, family Coronaviridae, order Nidovirales. TGEV is an enteropathogenic coronavirus that causes highly fatal acute diarrhoea in newborn pigs. An oral Lactobacillus casei (L. casei) vaccine against anti-transmissible gastroenteritis virus developed in our laboratory was used to study mucosal immune responses. In this L. casei vaccine, repetitive peptides expressed by L. casei (specifically the MDP and tuftsin fusion protein (MT)) were repeated 20 times and the D antigenic site of the TGEV spike (S) protein was repeated 6 times. Immunization with recombinant Lactobacillus is crucial for investigations of the effect of immunization, such as the first immunization time and dose. The first immunization is more important than the last immunization in the series. The recombinant Lactobacillus elicited specific systemic and mucosal immune responses. Recombinant L. casei had a strong potentiating effect on the cellular immunity induced by the oral L. casei vaccine. However, during TGEV infection, the systemic and local immune responses switched from Th1 to Th2-based immune responses. The systemic humoral immune response was stronger than the cellular immune response after TGEV infection. We found that the recombinant Lactobacillus stimulated IL-17 expression in both the systemic and mucosal immune responses against TGEV infection. Furthermore, the Lactobacillus vaccine stimulated an anti-TGEV infection Th17 pathway. The histopathological examination showed tremendous potential for recombinant Lactobacillus to enable rapid and effective treatment for TGEV with an intestinal tropism in piglets. The TGEV immune protection was primarily dependent on mucosal immunity. PMID:27020282

  15. Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013.

    PubMed

    2013-01-01

    In February 2013, novel coronavirus (nCoV) infection was diagnosed in an adult male in the United Kingdom with severe respiratory illness, who had travelled to Pakistan and Saudi Arabia 10 days before symptom onset. Contact tracing identified two secondary cases among family members without recent travel: one developed severe respiratory illness and died, the other an influenza-like illness. No other severe cases were identified or nCoV detected in respiratory samples among 135 contacts followed for 10 days. PMID:23517868

  16. Blocking of Exchange Proteins Directly Activated by cAMP Leads to Reduced Replication of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Tao, Xinrong; Mei, Feng; Agrawal, Anurodh; Peters, Clarence J.; Ksiazek, Thomas G.

    2014-01-01

    The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infections and diseases represents a potential threat for worldwide spread and requires development of effective therapeutic strategies. In this study, we revealed a novel positive function of an exchange protein directly activated by cyclic AMP 1 (cAMP-1; Epac-1) on MERS-CoV replication. Specifically, we have shown that Epac-specific inhibitor treatment or silencing Epac-1 gene expression rendered cells resistant to viral infection. We believe Epac-1 inhibitors deserve further study as potential therapeutic agents for MERS-CoV infection. PMID:24453361

  17. Recommendations for a standardized avian coronavirus (AvCoV) nomenclature: outcome from discussions within the framework of the European Union COST Action FA1207: "towards control of avian coronaviruses: strategies for vaccination, diagnosis and surveillance".

    PubMed

    Ducatez, Mariette F

    2016-10-01

    Viruses within the Coronaviridae family show variations within their genome sequences, especially within the major structural protein the Spike (S) glycoprotein gene. Therefore, many different antigenic forms, serotypes or variant strains of avian coronaviruses (AvCoV) exist worldwide. Only a few of them, the so called protectotypes, cross protect against different serotypes. New serotypes arise by recombination or spontaneous mutations. From time to time, antigenic virus variants appear, which differ significantly from known serotypes. The result of this variability is an inconsistent nomenclature and classification of virus strains. Furthermore, there are currently no standard classification methods defined. Within the framework of the COST Action FA1207 "Towards control of avian coronaviruses: strategies for diagnosis, surveillance and vaccination" (working groups "Molecular virology" and "Epidemiology"), we aimed at defining and developing a unified and internationally standardized nomenclature and classification of AvCoVs. We recommend the use of "CoV Genus/AvCov/host/country/specimen id/year" to refer to AvCoV strains. PMID:27647350

  18. A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant.

    PubMed

    Agnihothram, Sudhakar; Yount, Boyd L; Donaldson, Eric F; Huynh, Jeremy; Menachery, Vineet D; Gralinski, Lisa E; Graham, Rachel L; Becker, Michelle M; Tomar, Sakshi; Scobey, Trevor D; Osswald, Heather L; Whitmore, Alan; Gopal, Robin; Ghosh, Arun K; Mesecar, Andrew; Zambon, Maria; Heise, Mark; Denison, Mark R; Baric, Ralph S

    2014-03-25

    Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (β-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c β-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c β-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis. IMPORTANCE The 2012 outbreak of MERS-CoV raises the specter

  19. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    PubMed

    Nieto-Torres, Jose L; DeDiego, Marta L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2014-05-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  20. Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015

    PubMed Central

    2015-01-01

    Objectives The outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the Republic of Korea started from the index case who developed fever after returning from the Middle East. He infected 26 cases in Hospital C, and consecutive nosocomial transmission proceeded throughout the nation. We provide an epidemiologic description of the outbreak, as of July 2015. Methods Epidemiological research was performed by direct interview of the confirmed patients and reviewing medical records. We also analyzed the incubation period, serial interval, the characteristics of superspreaders, and factors associated with mortality. Full genome sequence was obtained from sputum specimens of the index patient. Results A total of 186 confirmed patients with MERS-CoV infection across 16 hospitals were identified in the Republic of Korea. Some 44.1% of the cases were patients exposed in hospitals, 32.8% were caregivers, and 13.4% were healthcare personnel. The most common presenting symptom was fever and chills. The estimated incubation period was 6.83 days and the serial interval was 12.5 days. A total of 83.2% of the transmission events were epidemiologically linked to five superspreaders, all of whom had pneumonia at presentation and contacted hundreds of people. Older age [odds ratio (OR) = 4.86, 95% confidence interval (CI) 1.90–12.45] and underlying respiratory disease (OR = 4.90, 95% CI 1.64–14.65) were significantly associated with mortality. Phylogenetic analysis showed that the MERS-CoV of the index case clustered closest with a recent virus from Riyadh, Saudi Arabia. Conclusion A single imported MERS-CoV infection case imposed a huge threat to public health and safety. This highlights the importance of robust preparedness and optimal infection prevention control. The lessons learned from the current outbreak will contribute to more up-to-date guidelines and global health security. PMID:26473095

  1. Genotypic Characterization of Canine Coronaviruses Associated with Fatal Canine Neonatal Enteritis in the United States

    PubMed Central

    Licitra, Beth N.; Whittaker, Gary R.; Dubovi, Edward J.

    2014-01-01

    Emerging canine coronavirus (CCoV) variants that are associated with systemic infections have been reported in the European Union; however, CCoV-associated disease in the United States is incompletely characterized. The purpose of this study was to correlate the clinicopathological findings and viral antigen distribution with the genotypic characteristics of CCoV in 11 puppies from nine premises in five states that were submitted for diagnostic investigation at Cornell University between 2008 and 2013. CCoV antigen was found in epithelial cells of small intestinal villi in all puppies and the colon in 2 of the 10 puppies where colon specimens were available. No evidence of systemic CCoV infection was found. Comparative sequence analyses of viral RNA extracted from intestinal tissues revealed CCoV-II genotype in 9 out of 11 puppies. Of the nine CCoV-IIs, five were subtyped as group IIa and one as IIb, while three CCoVs could not be subtyped. One of the CCoV-IIa variants was isolated in cell culture. Infection with CCoV alone was found in five puppies, of which two also had small intestinal intussusception. Concurrent infections with either parvovirus (n = 1), attaching-effacing Escherichia coli (n = 4), or protozoan parasites (n = 3) were found in the other six puppies. CCoV is an important differential diagnosis in outbreaks of severe enterocolitis among puppies between 4 days and 21 weeks of age that are housed at high population density. These findings will assist with the rapid laboratory diagnosis of enteritis in puppies and highlight the need for continued surveillance for CCoV variants and intestinal viral diseases of global significance. PMID:25253797

  2. Serotype shift of a 793/B genotype infectious bronchitis coronavirus by natural recombination.

    PubMed

    Zhang, Tingting; Han, Zongxi; Xu, Qianqian; Wang, Qiuling; Gao, Mengying; Wu, Wei; Shao, Yuhao; Li, Huixin; Kong, Xiangang; Liu, Shengwang

    2015-06-01

    An infectious bronchitis coronavirus, designated as ck/CH/LHLJ/140906, was isolated from an infectious bronchitis virus (IBV) strain H120-vaccinated chicken flock, which presented with a suspected infectious bronchitis virus (IBV) infection. A phylogenetic analysis based on the S1 gene clustered ck/CH/LHLJ/140906 with the 793/B group; however, a pairwise comparison showed that the 5' terminal of the S1 gene (containing hypervariable regions I and II) had high sequence identity with the H120 strain, while the 3' terminal sequence was very similar to that of IBV 4/91 strain. A SimPlot analysis of the complete genomic sequence, which was confirmed by a phylogenetic analysis and nucleotide similarities using the corresponding gene fragments, suggested that isolate ck/CH/LHLJ/140906 emerged from multiple recombination events between parental IBV strains 4/91 and H120. Although the isolate ck/CH/LHLJ/140906 had slightly higher S1 amino acid sequence identity to strain 4/91 (88.2%) than to strain H120 (86%), the serotype of the virus was more closely related to that of the H120 strain (32% antigenic relatedness) than to the 4/91 strain (15% antigenic relatedness). Whereas, vaccination of specific pathogen-free chickens with the 4/91 vaccine provided better protection against challenge with ck/CH/LHLJ/140906 than did vaccination with the H120 strain according to the result of virus re-isolation. As the spike protein, especially in the hypervariable regions of the S1 domain, of IBVs contains viral neutralizing epitopes, the results of this study showed that recombination of the S1 domain resulted in the emergence of a new serotype.

  3. Genotypic characterization of canine coronaviruses associated with fatal canine neonatal enteritis in the United States.

    PubMed

    Licitra, Beth N; Whittaker, Gary R; Dubovi, Edward J; Duhamel, Gerald E

    2014-12-01

    Emerging canine coronavirus (CCoV) variants that are associated with systemic infections have been reported in the European Union; however, CCoV-associated disease in the United States is incompletely characterized. The purpose of this study was to correlate the clinicopathological findings and viral antigen distribution with the genotypic characteristics of CCoV in 11 puppies from nine premises in five states that were submitted for diagnostic investigation at Cornell University between 2008 and 2013. CCoV antigen was found in epithelial cells of small intestinal villi in all puppies and the colon in 2 of the 10 puppies where colon specimens were available. No evidence of systemic CCoV infection was found. Comparative sequence analyses of viral RNA extracted from intestinal tissues revealed CCoV-II genotype in 9 out of 11 puppies. Of the nine CCoV-IIs, five were subtyped as group IIa and one as IIb, while three CCoVs could not be subtyped. One of the CCoV-IIa variants was isolated in cell culture. Infection with CCoV alone was found in five puppies, of which two also had small intestinal intussusception. Concurrent infections with either parvovirus (n = 1), attaching-effacing Escherichia coli (n = 4), or protozoan parasites (n = 3) were found in the other six puppies. CCoV is an important differential diagnosis in outbreaks of severe enterocolitis among puppies between 4 days and 21 weeks of age that are housed at high population density. These findings will assist with the rapid laboratory diagnosis of enteritis in puppies and highlight the need for continued surveillance for CCoV variants and intestinal viral diseases of global significance.

  4. Proteome Profile of Swine Testicular Cells Infected with Porcine Transmissible Gastroenteritis Coronavirus

    PubMed Central

    Ma, Ruili; Zhang, Yanming; Liu, Haiquan; Ning, Pengbo

    2014-01-01

    The interactions occurring between a virus and a host cell during a viral infection are complex. The purpose of this paper was to analyze altered cellular protein levels in porcine transmissible gastroenteritis coronavirus (TGEV)-infected swine testicular (ST) cells in order to determine potential virus-host interactions. A proteomic approach using isobaric tags for relative and absolute quantitation (iTRAQ)-coupled two-dimensional liquid chromatography-tandem mass spectrometry identification was conducted on the TGEV-infected ST cells. The results showed that the 4-plex iTRAQ-based quantitative approach identified 4,112 proteins, 146 of which showed significant changes in expression 48 h after infection. At 64 h post infection, 219 of these proteins showed significant change, further indicating that a larger number of proteomic changes appear to occur during the later stages of infection. Gene ontology analysis of the altered proteins showed enrichment in multiple biological processes, including cell adhesion, response to stress, generation of precursor metabolites and energy, cell motility, protein complex assembly, growth, developmental maturation, immune system process, extracellular matrix organization, locomotion, cell-cell signaling, neurological system process, and cell junction organization. Changes in the expression levels of transforming growth factor beta 1 (TGF-β1), caspase-8, and heat shock protein 90 alpha (HSP90α) were also verified by western blot analysis. To our knowledge, this study is the first time the response profile of ST host cells following TGEV infection has been analyzed using iTRAQ technology, and our description of the late proteomic changes that are occurring after the time of vigorous viral production are novel. Therefore, this study provides a solid foundation for further investigation, and will likely help us to better understand the mechanisms of TGEV infection and pathogenesis. PMID:25333634

  5. Genomic RNA sequence of feline coronavirus strain FCoV C1Je

    PubMed Central

    Dye, Charlotte; Siddell, Stuart G.

    2007-01-01

    This paper reports the first genomic RNA sequence of a field strain feline coronavirus (FCoV). Viral RNA was isolated at post mortem from the jejunum and liver of a cat with feline infectious peritonitis (FIP). A consensus sequence of the jejunum-derived genomic RNA (FCoV C1Je) was determined from overlapping cDNA fragments produced by reverse transcriptase polymerase chain reaction (RT-PCR) amplification. RT-PCR products were sequenced by a reiterative sequencing strategy and the genomic RNA termini were determined using a rapid amplification of cDNA ends PCR strategy. The FCoV C1Je genome was found to be 29,255 nucleotides in length, excluding the poly(A) tail. Comparison of the FCoV C1Je genomic RNA sequence with that of the laboratory strain FCoV FIP virus (FIPV) 79-1146 showed that both viruses have a similar genome organisation and predictions made for the open reading frames and cis-acting elements of the FIPV 79-1146 genome hold true for FCoV C1Je. In addition, the sequence of the 3′-proximal third of the liver derived genomic RNA (FCoV C1Li), which encompasses the structural and accessory protein genes of the virus, was also determined. Comparisons of the enteric (jejunum) and non-enteric (liver) derived viral RNA sequences revealed 100% nucleotide identity, a finding that questions the well accepted ‘internal mutation theory’ of FIPV pathogenicity. PMID:17363313

  6. Suppression of coronavirus replication by inhibition of the MEK signaling pathway.

    PubMed

    Cai, Yingyun; Liu, Yin; Zhang, Xuming

    2007-01-01

    We previously demonstrated that infection of cultured cells with murine coronavirus mouse hepatitis virus (MHV) resulted in activation of the mitogen-activated protein kinase (Raf/MEK/ERK) signal transduction pathway (Y. Cai et al., Virology 355:152-163, 2006). Here we show that inhibition of the Raf/MEK/ERK signaling pathway by the MEK inhibitor UO126 significantly impaired MHV progeny production (a reduction of 95 to 99% in virus titer), which correlated with the phosphorylation status of ERK1/2. Moreover, knockdown of MEK1/2 and ERK1/2 by small interfering RNAs suppressed MHV replication. The inhibitory effect of UO126 on MHV production appeared to be a general phenomenon since the effect was consistently observed in all six different MHV strains and in three different cell types tested; it was likely exerted at the postentry steps of the virus life cycle because the virus titers were similarly inhibited from infected cells treated at 1 h prior to, during, or after infection. Furthermore, the treatment did not affect the virus entry, as revealed by the virus internalization assay. Metabolic labeling and reporter gene assays demonstrated that translation of cellular and viral mRNAs appeared unaffected by UO126 treatment. However, synthesis of viral genomic and subgenomic RNAs was severely suppressed by UO126 treatment, as demonstrated by a reduced incorporation of [3H]uridine and a decrease in chloramphenicol acetyltransferase (CAT) activity in a defective-interfering RNA-CAT reporter assay. These findings indicate that the Raf/MEK/ERK signaling pathway is involved in MHV RNA synthesis.

  7. SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6

    PubMed Central

    Li, Shih-Wen; Wang, Ching-Ying; Jou, Yu-Jen; Huang, Su-Hua; Hsiao, Li-Hsin; Wan, Lei; Lin, Ying-Ju; Kung, Szu-Hao; Lin, Cheng-Wen

    2016-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLPro) reportedly inhibits the production of type I interferons (IFNs) and pro-inflammatory cytokines in Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene 1 (RIG-I) pathways. The study investigated the inhibitory effect and its antagonistic mechanism of SARS-CoV PLPro on TLR7-mediated cytokine production. TLR7 agonist (imiquimod (IMQ)) concentration-dependently induced activation of ISRE-, NF-κB- and AP-1-luciferase reporters, as well as the production of IFN-α, IFN-β, TNF-α, IL-6 and IL-8 in human promonocyte cells. However, SARS-CoV PLPro significantly inhibited IMQ-induced cytokine production through suppressing the activation of transcription factors IRF-3, NF-κB and AP-1. Western blot analysis with anti-Lys48 and anti-Lys63 ubiquitin antibodies indicated the SARS-CoV PLPro removed Lys63-linked ubiquitin chains of TRAF3 and TRAF6, but not Lys48-linked ubiquitin chains in un-treated and treated cells. The decrease in the activated state of TRAF3 and TRAF6 correlated with the inactivation of TBK1 in response to IMQ by PLPro. The results revealed that the antagonism of SARS-CoV PLPro on TLR7-mediated innate immunity was associated with the negative regulation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signals. PMID:27164085

  8. SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6.

    PubMed

    Li, Shih-Wen; Wang, Ching-Ying; Jou, Yu-Jen; Huang, Su-Hua; Hsiao, Li-Hsin; Wan, Lei; Lin, Ying-Ju; Kung, Szu-Hao; Lin, Cheng-Wen

    2016-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLPro) reportedly inhibits the production of type I interferons (IFNs) and pro-inflammatory cytokines in Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene 1 (RIG-I) pathways. The study investigated the inhibitory effect and its antagonistic mechanism of SARS-CoV PLPro on TLR7-mediated cytokine production. TLR7 agonist (imiquimod (IMQ)) concentration-dependently induced activation of ISRE-, NF-κB- and AP-1-luciferase reporters, as well as the production of IFN-α, IFN-β, TNF-α, IL-6 and IL-8 in human promonocyte cells. However, SARS-CoV PLPro significantly inhibited IMQ-induced cytokine production through suppressing the activation of transcription factors IRF-3, NF-κB and AP-1. Western blot analysis with anti-Lys48 and anti-Lys63 ubiquitin antibodies indicated the SARS-CoV PLPro removed Lys63-linked ubiquitin chains of TRAF3 and TRAF6, but not Lys48-linked ubiquitin chains in un-treated and treated cells. The decrease in the activated state of TRAF3 and TRAF6 correlated with the inactivation of TBK1 in response to IMQ by PLPro. The results revealed that the antagonism of SARS-CoV PLPro on TLR7-mediated innate immunity was associated with the negative regulation of TRAF3/6-TBK1-IRF3/NF-κB/AP1 signals. PMID:27164085

  9. Detection of feline coronavirus in cheetah (Acinonyx jubatus) feces by reverse transcription-nested polymerase chain reaction in cheetahs with variable frequency of viral shedding.

    PubMed

    Gaffney, Patricia M; Kennedy, Melissa; Terio, Karen; Gardner, Ian; Lothamer, Chad; Coleman, Kathleen; Munson, Linda

    2012-12-01

    Cheetahs (Acinonyx jubatus) are a highly threatened species because of habitat loss, human conflict, and high prevalence of disease in captivity. An epidemic of feline infectious peritonitis and concern for spread of infectious disease resulted in decreased movement of cheetahs between U.S. zoological facilities for managed captive breeding. Identifying the true feline coronavirus (FCoV) infection status of cheetahs is challenging because of inconsistent correlation between seropositivity and fecal viral shedding. Because the pattern of fecal shedding of FCoV is unknown in cheetahs, this study aimed to assess the frequency of detectable fecal viral shedding in a 30-day period and to determine the most efficient fecal sampling strategy to identify cheetahs shedding FCoV. Fecal samples were collected from 16 cheetahs housed at seven zoological facilities for 30 to 46 consecutive days; the samples were evaluated for the presence of FCoV by reverse transcription-nested polymerase chain reaction (RT-nPCR). Forty-four percent (7/16) of cheetahs had detectable FCoV in feces, and the proportion of positive samples for individual animals ranged from 13 to 93%. Cheetahs shed virus persistently, intermittently, or rarely over 30-46 days. Fecal RT-nPCR results were used to calculate the probability of correctly identifying a cheetah known to shed virus given multiple hypothetical fecal collection schedules. The most efficient hypothetical fecal sample collection schedule was evaluation of five individual consecutive fecal samples, resulting in a 90% probability of identifying a known shedder. Demographic and management risk factors were not significantly associated (P < or = 0.05) with fecal viral shedding. Because some cheetahs shed virus intermittently to rarely, fecal sampling schedules meant to identify all known shedders would be impractical with current tests and eradication of virus from the population unreasonable. Managing the captive population as endemically

  10. A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity

    SciTech Connect

    He Yuxian . E-mail: yhe@nybloodcenter.org; Li Jingjing; Jiang Shibo

    2006-05-26

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) has two major functions: interacting with the receptor to mediate virus entry and inducing protective immunity. Coincidently, the receptor-binding domain (RBD, residues 318-510) of SAR-CoV S protein is a major antigenic site to induce neutralizing antibodies. Here, we used RBD-Fc, a fusion protein containing the RBD and human IgG1 Fc, as a model in the studies and found that a single amino acid substitution in the RBD (R441A) could abolish the immunogenicity of RBD to induce neutralizing antibodies in immunized mice and rabbits. With a panel of anti-RBD mAbs as probes, we observed that R441A substitution was able to disrupt the majority of neutralizing epitopes in the RBD, suggesting that this residue is critical for the antigenic structure responsible for inducing protective immune responses. We also demonstrated that the RBD-Fc bearing R441A mutation could not bind to soluble and cell-associated angiotensin-converting enzyme 2 (ACE2), the functional receptor for SARS-CoV and failed to block S protein-mediated pseudovirus entry, indicating that this point mutation also disrupted the receptor-binding motif (RBM) in the RBD. Taken together, these data provide direct evidence to show that a single amino acid residue at key position in the RBD can determine the major function of SARS-CoV S protein and imply for designing SARS vaccines and therapeutics.

  11. A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform

    PubMed Central

    Malczyk, Anna H.; Kupke, Alexandra; Prüfer, Steffen; Scheuplein, Vivian A.; Hutzler, Stefan; Kreuz, Dorothea; Beissert, Tim; Bauer, Stefanie; Hubich-Rau, Stefanie; Tondera, Christiane; Eldin, Hosam Shams; Schmidt, Jörg; Vergara-Alert, Júlia; Süzer, Yasemin; Seifried, Janna; Hanschmann, Kay-Martin; Kalinke, Ulrich; Herold, Susanne; Sahin, Ugur; Cichutek, Klaus; Waibler, Zoe; Eickmann, Markus; Becker, Stephan

    2015-01-01

    ABSTRACT In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR−/−)-CD46Ge mice with 2 × 105 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE Although MERS-CoV has not yet acquired extensive distribution

  12. Identification of Information Types and Sources by the Public for Promoting Awareness of Middle East Respiratory Syndrome Coronavirus in Saudi Arabia

    ERIC Educational Resources Information Center

    Hoda, Jradi

    2016-01-01

    Middle East Respiratory Syndrome (MERS) is a viral respiratory disease of serious consequences caused by MERS Coronavirus (MERS-CoV). Saudi communities still lack awareness of available protective measures to prevent the transmission of the virus. It is necessary to explore the current information-seeking strategies and preferences for…

  13. Construction of recombinant Newcastle disease virus expressing the S1 protein of Turkey enteric coronavirus for use as a bivalent vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turkey enteric coronavirus (TCoV) causes a contagious form of enteritis in turkeys, generally recognized in the field by outward signs including diarrhea and decreased weight gain, resulting in severe economic losses for the poultry industry in the US. To date there is no commercial vaccine availab...

  14. Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease.

    PubMed

    Békés, Miklós; van der Heden van Noort, Gerbrand J; Ekkebus, Reggy; Ovaa, Huib; Huang, Tony T; Lima, Christopher D

    2016-05-19

    Deubiquitinating enzymes (DUBs) recognize and cleave linkage-specific polyubiquitin (polyUb) chains, but mechanisms underlying specificity remain elusive in many cases. The severe acute respiratory syndrome (SARS) coronavirus papain-like protease (PLpro) is a DUB that cleaves ISG15, a two-domain Ub-like protein, and Lys48-linked polyUb chains, releasing diUb(Lys48) products. To elucidate this specificity, we report the 2.85 Å crystal structure of SARS PLpro bound to a diUb(Lys48) activity-based probe. SARS PLpro binds diUb(Lys48) in an extended conformation via two contact sites, S1 and S2, which are proximal and distal to the active site, respectively. We show that specificity for polyUb(Lys48) chains is predicated on contacts in the S2 site and enhanced by an S1-S1' preference for a Lys48 linkage across the active site. In contrast, ISG15 specificity is dominated by contacts in the S1 site. Determinants revealed for polyUb(Lys48) specificity should prove useful in understanding PLpro deubiquitinating activities in coronavirus infections. PMID:27203180

  15. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.

    PubMed

    Wong, Swee Kee; Li, Wenhui; Moore, Michael J; Choe, Hyeryun; Farzan, Michael

    2004-01-30

    The coronavirus spike (S) protein mediates infection of receptor-expressing host cells and is a critical target for antiviral neutralizing antibodies. Angiotensin-converting enzyme 2 (ACE2) is a functional receptor for the coronavirus (severe acute respiratory syndrome (SARS)-CoV) that causes SARS. Here we demonstrate that a 193-amino acid fragment of the S protein (residues 318-510) bound ACE2 more efficiently than did the full S1 domain (residues 12-672). Smaller S protein fragments, expressing residues 327-510 or 318-490, did not detectably bind ACE2. A point mutation at aspartic acid 454 abolished association of the full S1 domain and of the 193-residue fragment with ACE2. The 193-residue fragment blocked S protein-mediated infection with an IC(50) of less than 10 nm, whereas the IC(50) of the S1 domain was approximately 50 nm. These data identify an independently folded receptor-binding domain of the SARS-CoV S protein.

  16. Dendritic Cell-Specific Delivery of Flt3L by Coronavirus Vectors Secures Induction of Therapeutic Antitumor Immunity

    PubMed Central

    Nussbacher, Monika; Allgäuer, Eva; Cervantes-Barragan, Luisa; Züst, Roland; Ludewig, Burkhard

    2013-01-01

    Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding for Fms-like tyrosine kinase 3 ligand (Flt3L) exhibited a higher capacity to induce DC maturation compared to vectors delivering IL-2 or IL-15. Moreover, Flt3L vectors more efficiently induced tumor-specific CD8+ T cells, expanded the epitope repertoire, and provided both prophylactic and therapeutic tumor immunity. In contrast, IL-2- or IL-15-encoding vectors showed a substantially lower efficacy in CD8+ T cell priming and failed to protect the host once tumors had been established. Thus, specific in vivo targeting of DCs with coronavirus vectors in conjunction with appropriate conditioning of the microenvironment through Flt3L represents an efficient strategy for the generation of therapeutic antitumor immunity. PMID:24312302

  17. Functional analysis of the stem loop S3 and S4 structures in the coronavirus 3'UTR.

    PubMed

    Liu, Pinghua; Yang, Dong; Carter, Kristen; Masud, Faryal; Leibowitz, Julian L

    2013-08-15

    We designed a series of mutations to separately destabilize two helical stems (designated S3 and S4) predicted by a covariation-based model of the coronavirus 3'UTR (Zust et al., 2008). Mouse hepatitis virus genomes containing three or four nucleotide mutations that destabilize either S3 or S4 were viable, whereas genomes carrying these mutations in both S3 and S4 were not viable. A genome carrying these mutations in S3 and S4 plus compensatory mutations restoring base-pairing yielded a virus with wild type phenotype. Larger mutations which completely disrupt S3 or S4 generated various phenotypes. Mutations opening up S3 were lethal. Disruptions of S4 generated both viable and lethal mutants. Genomes carrying the original mutations in S3 or S4 plus compensatory mutations restoring base pairing were viable and had robust growth phenotypes. These results support the Zust model for the coronavirus 3'UTR and suggest that the S3 stem is required for virus viability.

  18. Monitoring the Spread of Swine Enteric Coronavirus Diseases in the United States in the Absence of a Regulatory Framework

    PubMed Central

    Perez, Andres M.; Alba, Anna; Goede, Dane; McCluskey, Brian; Morrison, Robert

    2016-01-01

    The reporting and monitoring of swine enteric coronavirus diseases (SECD), including porcine epidemic diarrhea virus and porcine delta coronavirus, in the United States have been challenging because of the initial absence of a regulatory framework and the emerging nature of these diseases. The National Animal Health Laboratory Network, the Emergency Management and Response System, and the Swine Health Monitoring Project were used to monitor the disease situation between May 2013 and March 2015. Important differences existed between and among them in terms of nature and extent of reporting. Here, we assess the implementation of these systems from different perspectives, including a description and comparison of collected data, disease metrics, usefulness, simplicity, flexibility, acceptability, representativeness, timeliness, and stability. This assessment demonstrates the limitations that the absence of premises identification imposes on certain animal health surveillance and response databases, and the importance of federally regulated frameworks in collecting accurate information in a timely manner. This study also demonstrates the value that the voluntary and producer-organized systems may have in monitoring emerging diseases. The results from all three data sources help to establish the baseline information on SECD epidemiological dynamics after almost 3 years of disease occurrence in the country. PMID:27014703

  19. CD26/DPP4 Cell-Surface Expression in Bat Cells Correlates with Bat Cell Susceptibility to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection and Evolution of Persistent Infection

    PubMed Central

    Caì, Yíngyún; Yú, Shuǐqìng; Postnikova, Elena N.; Mazur, Steven; Bernbaum, John G.; Burk, Robin; Zhāng, Téngfēi; Radoshitzky, Sheli R.; Müller, Marcel A.; Jordan, Ingo; Bollinger, Laura; Hensley, Lisa E.; Jahrling, Peter B.; Kuhn, Jens H.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors. PMID:25409519

  20. Persistence and evolution of feline coronavirus in a closed cat-breeding colony.

    PubMed

    Herrewegh, A A; Mähler, M; Hedrich, H J; Haagmans, B L; Egberink, H F; Horzinek, M C; Rottier, P J; de Groot, R J

    1997-08-01

    Feline coronavirus (FCoV) persistence and evolution were studied in a closed cat-breeding facility with an endemic serotype I FCoV infection. Viral RNA was detected by reverse transcriptase polymerase chain reaction (RT-PCR) in the feces and/or plasma of 36 of 42 cats (86%) tested. Of 5 cats, identified as FCoV shedders during the initial survey, 4 had detectable viral RNA in the feces when tested 111 days later. To determine whether this was due to continuous reinfection or to viral persistence, 2 cats were placed in strict isolation and virus shedding in the feces was monitored every 2-4 days. In 1 of the cats, virus shedding continued for up to 7 months. The other animal was sacrificed after 124 days of continuous virus shedding in order to identify the sites of viral replication. Viral mRNA was detected only in the ileum, colon, and rectum. Also in these tissues, FCoV-infected cells were identified by immunohistochemistry. These findings provide the first formal evidence that FCoV causes chronic enteric infections. To assess FCoV heterogeneity in the breeding facility and to study viral evolution during chronic infection, FCoV quasispecies sampled from individual cats were characterized by RT-PCR amplification of selected regions of the viral genome followed by sequence analysis. Phylogenetic comparison of nucleotides 7-146 of ORF7b to corresponding sequences obtained for independent European and American isolates indicated that the viruses in the breeding facility form a clade and are likely to have originated from a single founder infection. Comparative consensus sequence analysis of the more variable region formed by residues 79-478 of the S gene revealed that each cat harbored a distinct FCoV quasispecies. Moreover, FCoV appeared to be subject to immune selection during chronic infection. The combined data support a model in which the endemic infection is maintained by chronically infected carriers. Virtually every cat born to the breeding facility becomes

  1. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.

    PubMed

    Page, Carly; Goicochea, Lindsay; Matthews, Krystal; Zhang, Yong; Klover, Peter; Holtzman, Michael J; Hennighausen, Lothar; Frieman, Matthew

    2012-12-01

    Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1(-/-) mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6(-/-) double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA

  2. Long-Term Care Facilities: A Cornucopia of Viral Pathogens

    PubMed Central

    Falsey, Ann R.; Dallal, Gerard E.; Formica, Maria A.; Andolina, Gloria G.; Hamer, Davidson H.; Leka, Lynette L.; Meydani, Simin Nikbin

    2010-01-01

    Objectives To determine the frequency and types of respiratory viruses circulating in Boston long-term care facilities (LTCFs) during a 3-year period. Design Observational. Setting Thirty-three Boston-area LTCFs over a 3-year period. Participants Residents of long-term care who had previously participated in a trial of vitamin E supplementation and