Willett-Brozick, J E; Savul, S A; Richey, L E; Baysal, B E
2001-08-01
Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.
Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health
Martin, William F.
2017-01-01
Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. PMID:28444372
Active role of a human genomic insert in replication of a yeast artificial chromosome.
van Brabant, A J; Fangman, W L; Brewer, B J
1999-06-01
Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.
Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health.
Hazkani-Covo, Einat; Martin, William F
2017-05-01
Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
When the Human Immunodeficiency Virus (HIV) infects a cell, the virus inserts a copy of its genetic material into the host cell’s DNA. The inserted genetic material, which is also called a provirus, is used to produce new viruses. Because the viral DNA can be inserted at many sites in the host cell DNA, the site of integration marks each infected cell. Patients infected with
Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise
2017-11-10
N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Templated sequence insertion polymorphisms in the human genome
NASA Astrophysics Data System (ADS)
Onozawa, Masahiro; Aplan, Peter
2016-11-01
Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langlois, S.; Kastelein, J.J.; Hayden, M.R.
1989-02-01
Lipoprotein lipase is an important enzyme involved in triacylglycerol metabolism. Primary LPL deficiency is a genetic disorder that is usually manifested by a severe elevation in triacylglycerol levels. The authors have used a recently isolated LPL cDNA clone to study 15 probands from 11 families with this inherited disorder. Surprisingly, 7 of the probands from 4 families, of different ancestries, had a similar insertion in their LPL gene. In contrast to other human genetic disorders, where insertions are rare causes of mutation, this insertion accounts for a significant proportion of the alleles causing LPL deficiency. Detailed restriction mapping of themore » insertion revealed that it was unlikely to be a duplication of neighboring DNA and that it was not similar to the consensus sequence of human L1 repetitive elements. This suggests that there must be other mechanisms of insertional mutagenesis in human genetic disease besides transposition of mobile L1 repetitive elements.« less
Isolation of CYP3A5P cDNA from human liver: a reflection of a novel cytochrome P-450 pseudogene.
Schuetz, J D; Guzelian, P S
1995-03-14
We have isolated, from a human liver cDNA library, a 1627 bp CYP3A5 cDNA variant (CYP3A5P) that contains several large insertions, deletions, and in-frame termination codons. By comparison with the genomic structure of other CYP3A genes, the major insertions in CYP3A5P cDNA demarcate the inferred sites of several CYP3A5 exons. The segments inserted in CYP3A5P have no homology with splice donor acceptor sites. It is unlikely that CYP3A5P cDNA represents an artifact of the cloning procedures since Southern blot analysis of human genomic DNA disclosed that CYP3A5P cDNA hybridized with a DNA fragment distinct from fragments that hybridized with either CYP3A5, CYP3A3 or CYP3A4. Moreover, analysis of adult human liver RNA on Northern blots hybridized with a CYP3A5P cDNA fragment revealed the presence of an mRNA with the predicted size of CYP3A5P. We conclude that CYP3A5P cDNA was derived from a separate gene, CYP3A5P, most likely a pseudogene evolved from CYP3A5.
Editor’s note: This article was originally published on the Center for Cancer Research website. When the Human Immunodeficiency Virus (HIV) infects a cell, the virus inserts a copy of its genetic material into the host cell’s DNA. The inserted genetic material, which is also called a provirus, is used to produce new viruses. Because the viral DNA can be inserted at many sites
Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R
2014-07-01
Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. © 2014 American Academy of Forensic Sciences.
Preparation and screening of an arrayed human genomic library generated with the P1 cloning system.
Shepherd, N S; Pfrogner, B D; Coulby, J N; Ackerman, S L; Vaidyanathan, G; Sauer, R H; Balkenhol, T C; Sternberg, N
1994-01-01
We describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophage P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight, and stored at -70 degrees C. The resulting library, designated DMPC-HFF#1 series A, consists of approximately 130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date we have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human alpha-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, beta-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. Images PMID:8146166
DOE Office of Scientific and Technical Information (OSTI.GOV)
R Vasquez-Del Carpio; T Silverstein; S Lone
Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure revealsmore » a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.« less
Onozawa, Masahiro; Zhang, Zhenhua; Kim, Yoo Jung; Goldberg, Liat; Varga, Tamas; Bergsagel, P Leif; Kuehl, W Michael; Aplan, Peter D
2014-05-27
We used the I-SceI endonuclease to produce DNA double-strand breaks (DSBs) and observed that a fraction of these DSBs were repaired by insertion of sequences, which we termed "templated sequence insertions" (TSIs), derived from distant regions of the genome. These TSIs were derived from genic, retrotransposon, or telomere sequences and were not deleted from the donor site in the genome, leading to the hypothesis that they were derived from reverse-transcribed RNA. Cotransfection of RNA and an I-SceI expression vector demonstrated insertion of RNA-derived sequences at the DNA-DSB site, and TSIs were suppressed by reverse-transcriptase inhibitors. Both observations support the hypothesis that TSIs were derived from RNA templates. In addition, similar insertions were detected at sites of DNA DSBs induced by transcription activator-like effector nuclease proteins. Whole-genome sequencing of myeloma cell lines revealed additional TSIs, demonstrating that repair of DNA DSBs via insertion was not restricted to experimentally produced DNA DSBs. Analysis of publicly available databases revealed that many of these TSIs are polymorphic in the human genome. Taken together, these results indicate that insertional events should be considered as alternatives to gross chromosomal rearrangements in the interpretation of whole-genome sequence data and that this mutagenic form of DNA repair may play a role in genetic disease, exon shuffling, and mammalian evolution.
Natural mutagenesis of human genomes by endogenous retrotransposons.
Iskow, Rebecca C; McCabe, Michael T; Mills, Ryan E; Torene, Spencer; Pittard, W Stephen; Neuwald, Andrew F; Van Meir, Erwin G; Vertino, Paula M; Devine, Scott E
2010-06-25
Two abundant classes of mobile elements, namely Alu and L1 elements, continue to generate new retrotransposon insertions in human genomes. Estimates suggest that these elements have generated millions of new germline insertions in individual human genomes worldwide. Unfortunately, current technologies are not capable of detecting most of these young insertions, and the true extent of germline mutagenesis by endogenous human retrotransposons has been difficult to examine. Here, we describe technologies for detecting these young retrotransposon insertions and demonstrate that such insertions indeed are abundant in human populations. We also found that new somatic L1 insertions occur at high frequencies in human lung cancer genomes. Genome-wide analysis suggests that altered DNA methylation may be responsible for the high levels of L1 mobilization observed in these tumors. Our data indicate that transposon-mediated mutagenesis is extensive in human genomes and is likely to have a major impact on human biology and diseases.
A Novel Locomotion-based Validation Assay for Candidate Drugs Using Drosophila DYT1 Disease Model
2014-06-01
rescue the locomotion defects of Drosophila larvae caused by the expression of human torsinAΔE. These results demonstrated that human torsinA can... Drosophila dtorsin∆D transgenic lines dtorsin∆E and dtorsin∆D cDNA constructs were made from the wild type dtorsin cDNA using QuikChange II XL Site...After confirming mutated sequences , the insert was again cut out with EcoRI and NotI and inserted between EcoRI and NotI sites of pUAST [2] to produce
Human DNA polymerase θ grasps the primer terminus to mediate DNA repair
Zahn, Karl E.; Averill, April M.; Aller, Pierre; ...
2015-03-16
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less
Lemos, Brenda R; Kaplan, Adam C; Bae, Ji Eun; Ferrazzoli, Alexander E; Kuo, James; Anand, Ranjith P; Waterman, David P; Haber, James E
2018-02-27
Harnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated. The origin of +1 insertions was investigated by using two gRNAs with PAM sequences located on opposite DNA strands but designed to cleave the same sequence. These templated +1 insertions are dependent on the X-family DNA polymerase, Pol4. Deleting Pol4 also eliminated +2 and +3 insertions, which are biased toward homonucleotide insertions. Using inverted PAM sequences, we also found significant differences in overall NHEJ efficiency and repair profiles, suggesting that the binding of the Cas9:gRNA complex influences subsequent NHEJ processing. As with events induced by the site-specific HO endonuclease, CRISPR-Cas9-mediated NHEJ repair depends on the Ku heterodimer and DNA ligase 4. Cas9 events are highly dependent on the Mre11-Rad50-Xrs2 complex, independent of Mre11's nuclease activity. Inspection of the outcomes of a large number of Cas9 cleavage events in mammalian cells reveals a similar templated origin of +1 insertions in human cells, but also a significant frequency of similarly templated +2 insertions.
Functional impact of the human mobilome.
Babatz, Timothy D; Burns, Kathleen H
2013-06-01
The human genome is replete with interspersed repetitive sequences derived from the propagation of mobile DNA elements. Three families of human retrotransposons remain active today: LINE1, Alu, and SVA elements. Since 1988, de novo insertions at previously recognized disease loci have been shown to generate highly penetrant alleles in Mendelian disorders. Only recently has the extent of germline-transmitted retrotransposon insertion polymorphism (RIP) in human populations been fully realized. Also exciting are recent studies of somatic retrotransposition in human tissues and reports of tumor-specific insertions, suggesting roles in tissue heterogeneity and tumorigenesis. Here we discuss mobile elements in human disease with an emphasis on exciting developments from the last several years. Copyright © 2013 Elsevier Ltd. All rights reserved.
When the Human Immunodeficiency Virus (HIV) infects a cell, the virus inserts a copy of its genetic material into the host cell’s DNA. The inserted genetic material, which is also called a provirus, is used to produce new viruses. Because the viral DNA can be inserted at many sites in the host cell DNA, the site of integration marks each infected cell. Patients infected with HIV are currently treated with combined antiretroviral therapy (cART), which prevents viral replication in the majority of treated patients. When cART is initiated, most HIV-infected cells die in one or two days, and more of the infected cells die over a period of weeks to months. However there are some long-lived infected cells that do not die, which prevents patients from being cured.
Editor’s note: This article was originally published on the Center for Cancer Research website. When the Human Immunodeficiency Virus (HIV) infects a cell, the virus inserts a copy of its genetic material into the host cell’s DNA. The inserted genetic material, which is also called a provirus, is used to produce new viruses. Because the viral DNA can be inserted at many sites in the host cell DNA, the site of integration marks each infected cell. Patients infected with HIV are currently treated with combined antiretroviral therapy (cART), which prevents viral replication in the majority of treated patients. When cART is initiated, most HIV-infected cells die in one or two days, and more of the infected cells die over a period of weeks to months. However there are some long-lived infected cells that do not die, which prevents patients from being cured.
Insertion and deletion mutagenesis of the human cytomegalovirus genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaete, R.R.; Mocarski, E.S.
1987-10-01
Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, withmore » levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Amritaj; Zhang, Qianqian; Lei, Li
2015-02-09
The most prevalent lesion in DNA is an abasic site resulting from glycolytic cleavage of a base. In a number of cellular studies, abasic sites preferentially code for dATP insertion (the “A rule”). In some cases frameshifts are also common. X-ray structures with abasic sites in oligonucleotides have been reported for several microbial and human DNA polymerases (pols), e.g. Dpo4, RB69, KlenTaq, yeast pol ι, human (h) pol ι, and human pol β. We reported previously that hpol η is a major pol involved in abasic site bypass (Choi, J.-Y., Lim, S., Kim, E. J., Jo, A., and Guengerich, F.more » P. (2010 J. Mol. Biol. 404, 34–44). hpol η inserted all four dNTPs in steady-state and pre-steady-state assays, preferentially inserting A and G. In LC-MS analysis of primer-template pairs, A and G were inserted but little C or T was inserted. Frameshifts were observed when an appropriate pyrimidine was positioned 5' to the abasic site in the template. In x-ray structures of hpol η with a non-hydrolyzable analog of dATP or dGTP opposite an abasic site, H-bonding was observed between the phosphate 5' to the abasic site and water H-bonded to N1 and N6 of A and N1 and O6 of G nucleoside triphosphate analogs, offering an explanation for what appears to be a “purine rule.” A structure was also obtained for an A inserted and bonded in the primer opposite the abasic site, but it did not pair with a 5' T in the template. Finally, we conclude that hpol η, a major copying enzyme with abasic sites, follows a purine rule, which can also lead to frameshifts. The phenomenon can be explained with H-bonds.« less
Peters, R; King, C Y; Ukiyama, E; Falsafi, S; Donahoe, P K; Weiss, M A
1995-04-11
SRY, a genetic "master switch" for male development in mammals, exhibits two biochemical activities: sequence-specific recognition of duplex DNA and sequence-independent binding to the sharp angles of four-way DNA junctions. Here, we distinguish between these activities by analysis of a mutant SRY associated with human sex reversal (46, XY female with pure gonadal dysgenesis). The substitution (168T in human SRY) alters a nonpolar side chain in the minor-groove DNA recognition alpha-helix of the HMG box [Haqq, C.M., King, C.-Y., Ukiyama, E., Haqq, T.N., Falsalfi, S., Donahoe, P.K., & Weiss, M.A. (1994) Science 266, 1494-1500]. The native (but not mutant) side chain inserts between specific base pairs in duplex DNA, interrupting base stacking at a site of induced DNA bending. Isotope-aided 1H-NMR spectroscopy demonstrates that analogous side-chain insertion occurs on binding of SRY to a four-way junction, establishing a shared mechanism of sequence- and structure-specific DNA binding. Although the mutant DNA-binding domain exhibits > 50-fold reduction in sequence-specific DNA recognition, near wild-type affinity for four-way junctions is retained. Our results (i) identify a shared SRY-DNA contact at a site of either induced or intrinsic DNA bending, (ii) demonstrate that this contact is not required to bind an intrinsically bent DNA target, and (iii) rationalize patterns of sequence conservation or diversity among HMG boxes. Clinical association of the I68T mutation with human sex reversal supports the hypothesis that specific DNA recognition by SRY is required for male sex determination.
Young, Robert S
2016-07-01
Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.
Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B
2017-01-01
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.
Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.
2017-01-01
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104
(New hosts and vectors for genome cloning)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.
[New hosts and vectors for genome cloning]. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.
Moyer, Tyler C; Holland, Andrew J
2015-01-01
The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research. Copyright © 2015 Elsevier Inc. All rights reserved.
Nuclear Mitochondrial DNA Activates Replication in Saccharomyces cerevisiae
Chatre, Laurent; Ricchetti, Miria
2011-01-01
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in. PMID:21408151
Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae.
Chatre, Laurent; Ricchetti, Miria
2011-03-08
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahn, Karl E.; Averill, April M.; Aller, Pierre
DNA polymerase θ protects against genomic instability via an alternative end-joining repair pathway for DNA double-strand breaks. Polymerase θ is overexpressed in breast, lung and oral cancers, and reduction of its activity in mammalian cells increases sensitivity to double-strand break–inducing agents, including ionizing radiation. Reported in this paper are crystal structures of the C-terminal polymerase domain from human polymerase θ, illustrating two potential modes of dimerization. One structure depicts insertion of ddATP opposite an abasic-site analog during translesion DNA synthesis. The second structure describes a cognate ddGTP complex. Polymerase θ uses a specialized thumb subdomain to establish unique upstream contactsmore » to the primer DNA strand, including an interaction with the 3'-terminal phosphate from one of five distinctive insertion loops. Finally, these observations demonstrate how polymerase θ grasps the primer to bypass DNA lesions or extend poorly annealed DNA termini to mediate end-joining.« less
Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide
Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; ...
2014-11-17
Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2’-deoxyguanosine found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate E. coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerase discriminates between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities,more » nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine (Cy) and 8-oxodGTP(syn) utilizes its Hoogsteen edge to base pair with adenine (Ad). Here in this paper we utilized time-lapse crystallography to follow 8-oxo-dGTP insertion opposite Ad or Cy with human DNA pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxodGTP utilizes charge modulation during insertion that can lead to a blocked DNA repair intermediate.« less
[New hosts and vectors for genome cloning]. Progress report, 1990--1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The main goal of our project remains the development of new bacterial hosts and vectors for the stable propagation of human DNA clones in E. coli. During the past six months of our current budget period, we have (1) continued to develop new hosts that permit the stable maintenance of unstable features of human DNA, and (2) developed a series of vectors for (a) cloning large DNA inserts, (b) assessing the frequency of human sequences that are lethal to the growth of E. coli, and (c) assessing the stability of human sequences cloned in M13 for large-scale sequencing projects.
Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.
Byrne, Susan M; Church, George M
2015-01-01
CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.
Retroviral DNA Integration Directed by HIV Integration Protein in Vitro
NASA Astrophysics Data System (ADS)
Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert
1990-09-01
Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.
Patra, Amitraj; Zhang, Qianqian; Guengerich, F Peter; Egli, Martin
2016-11-11
O 6 -Methyl-2'-deoxyguanosine (O 6 -MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the "translesion" Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O 6 -MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O 6 -MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O 6 - MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O 6 -MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O 6 -MeG:dC or O 6 -MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Patra, Amitraj; Zhang, Qianqian; Guengerich, F. Peter; Egli, Martin
2016-01-01
O6-Methyl-2′-deoxyguanosine (O6-MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the “translesion” Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O6-MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O6-MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O6- MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O6-MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O6-MeG:dC or O6-MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η. PMID:27694439
Lim, Kwang-il; Klimczak, Ryan; Yu, Julie H.; Schaffer, David V.
2010-01-01
Retroviral vectors offer benefits of efficient delivery and stable gene expression; however, their clinical use raises the concerns of insertional mutagenesis and potential oncogenesis due to genomic integration preferences in transcriptional start sites (TSS). We have shifted the integration preferences of retroviral vectors by generating a library of viral variants with a DNA-binding domain inserted at random positions throughout murine leukemia virus Gag-Pol, then selecting for variants that are viable and exhibit altered integration properties. We found seven permissive zinc finger domain (ZFD) insertion sites throughout Gag-Pol, including within p12, reverse transcriptase, and integrase. Comprehensive genome integration analysis showed that several ZFD insertions yielded retroviral vector variants with shifted integration patterns that did not favor TSS. Furthermore, integration site analysis revealed selective integration for numerous mutants. For example, two retroviral variants with a given ZFD at appropriate positions in Gag-Pol strikingly integrated primarily into four common sites out of 3.1 × 109 possible human genome locations (P = 4.6 × 10-29). Our findings demonstrate that insertion of DNA-binding motifs into multiple locations in Gag-Pol can make considerable progress toward engineering safer retroviral vectors that integrate into a significantly narrowed pool of sites on human genome and overcome the preference for TSS. PMID:20616052
Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.
Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M
2018-02-01
To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.
Schouten, Henk J; Vande Geest, Henri; Papadimitriou, Sofia; Bemer, Marian; Schaart, Jan G; Smulders, Marinus J M; Perez, Gabino Sanchez; Schijlen, Elio
2017-03-01
Transformation resulted in deletions and translocations at T-DNA inserts, but not in genome-wide small mutations. A tiny T-DNA splinter was detected that probably would remain undetected by conventional techniques. We investigated to which extent Agrobacterium tumefaciens-mediated transformation is mutagenic, on top of inserting T-DNA. To prevent mutations due to in vitro propagation, we applied floral dip transformation of Arabidopsis thaliana. We re-sequenced the genomes of five primary transformants, and compared these to genomic sequences derived from a pool of four wild-type plants. By genome-wide comparisons, we identified ten small mutations in the genomes of the five transgenic plants, not correlated to the positions or number of T-DNA inserts. This mutation frequency is within the range of spontaneous mutations occurring during seed propagation in A. thaliana, as determined earlier. In addition, we detected small as well as large deletions specifically at the T-DNA insert sites. Furthermore, we detected partial T-DNA inserts, one of these a tiny 50-bp fragment originating from a central part of the T-DNA construct used, inserted into the plant genome without flanking other T-DNA. Because of its small size, we named this fragment a T-DNA splinter. As far as we know this is the first report of such a small T-DNA fragment insert in absence of any T-DNA border sequence. Finally, we found evidence for translocations from other chromosomes, flanking T-DNA inserts. In this study, we showed that next-generation sequencing (NGS) is a highly sensitive approach to detect T-DNA inserts in transgenic plants.
The Nucleotide Excision Repair Pathway Limits L1 Retrotransposition
Servant, Geraldine; Streva, Vincent A.; Derbes, Rebecca S.; Wijetunge, Madushani I.; Neeland, Marc; White, Travis B.; Belancio, Victoria P.; Roy-Engel, Astrid M.; Deininger, Prescott L.
2017-01-01
Long interspersed elements 1 (L1) are active mobile elements that constitute almost 17% of the human genome. They amplify through a “copy-and-paste” mechanism termed retrotransposition, and de novo insertions related to these elements have been reported to cause 0.2% of genetic diseases. Our previous data demonstrated that the endonuclease complex ERCC1-XPF, which cleaves a 3′ DNA flap structure, limits L1 retrotransposition. Although the ERCC1-XPF endonuclease participates in several different DNA repair pathways, such as single-strand annealing, or in telomere maintenance, its recruitment to DNA lesions is best characterized in the nucleotide excision repair (NER) pathway. To determine if the NER pathway prevents the insertion of retroelements in the genome, we monitored the retrotransposition efficiencies of engineered L1 elements in NER-deficient cells and in their complemented versions. Core proteins of the NER pathway, XPD and XPA, and the lesion binding protein, XPC, are involved in limiting L1 retrotransposition. In addition, sequence analysis of recovered de novo L1 inserts and their genomic locations in NER-deficient cells demonstrated the presence of abnormally large duplications at the site of insertion, suggesting that NER proteins may also play a role in the normal L1 insertion process. Here, we propose new functions for the NER pathway in the maintenance of genome integrity: limitation of insertional mutations caused by retrotransposons and the prevention of potentially mutagenic large genomic duplications at the site of retrotransposon insertion events. PMID:28049704
Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong
2012-07-01
cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.
A non-canonical transferred DNA insertion at the BRI1 locus in Arabidopsis thaliana.
Zhao, Zhong; Zhu, Yan; Erhardt, Mathieu; Ruan, Ying; Shen, Wen-Hui
2009-04-01
Agrobacterium-mediated transformation is widely used in transgenic plant engineering and has been proven to be a powerful tool for insertional mutagenesis of the plant genome. The transferred DNA (T-DNA) from Agrobacterium is integrated into the plant genome through illegitimate recombination between the T-DNA and the plant DNA. Contrasting to the canonical insertion, here we report on a locus showing a complex mutation associated with T-DNA insertion at the BRI1 gene in Arabidopsis thaliana. We obtained a mutant line, named salade for its phenotype of dwarf stature and proliferating rosette. Molecular characterization of this mutant revealed that in addition to T-DNA a non-T-DNA-localized transposon from bacteria was inserted in the Arabidopsis genome and that a region of more than 11.5 kb of the Arabidopsis genome was deleted at the insertion site. The deleted region contains the brassinosteroid receptor gene BRI1 and the transcription factor gene WRKY13. Our finding reveals non-canonical T-DNA insertion, implicating horizontal gene transfer and cautioning the use of T-DNA as mutagen in transgenic research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira
2012-01-06
Highlights: Black-Right-Pointing-Pointer Adeno-associated virus (AAV) is capable of targeted integration in human cells. Black-Right-Pointing-Pointer Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. Black-Right-Pointing-Pointer A targeted integration system of IDRV DNA using the AAV integration mechanism. Black-Right-Pointing-Pointer Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors,more » therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.« less
Shewale, Jaiprakash G; Schneida, Elaine; Wilson, Jonathan; Walker, Jerilyn A; Batzer, Mark A; Sinha, Sudhir K
2007-03-01
The human DNA quantification (H-Quant) system, developed for use in human identification, enables quantitation of human genomic DNA in biological samples. The assay is based on real-time amplification of AluYb8 insertions in hominoid primates. The relatively high copy number of subfamily-specific Alu repeats in the human genome enables quantification of very small amounts of human DNA. The oligonucleotide primers present in H-Quant are specific for human DNA and closely related great apes. During the real-time PCR, the SYBR Green I dye binds to the DNA that is synthesized by the human-specific AluYb8 oligonucleotide primers. The fluorescence of the bound SYBR Green I dye is measured at the end of each PCR cycle. The cycle at which the fluorescence crosses the chosen threshold correlates to the quantity of amplifiable DNA in that sample. The minimal sensitivity of the H-Quant system is 7.6 pg/microL of human DNA. The amplicon generated in the H-Quant assay is 216 bp, which is within the same range of the common amplifiable short tandem repeat (STR) amplicons. This size amplicon enables quantitation of amplifiable DNA as opposed to a quantitation of degraded or nonamplifiable DNA of smaller sizes. Development and validation studies were performed on the 7500 real-time PCR system following the Quality Assurance Standards for Forensic DNA Testing Laboratories.
Genetic Control of Replication through N1-methyladenine in Human Cells*
Conde, Juan; Yoon, Jung-Hoon; Roy Choudhury, Jayati; Prakash, Louise; Prakash, Satya
2015-01-01
N1-methyl adenine (1-MeA) is formed in DNA by reaction with alkylating agents and naturally occurring methyl halides. The 1-MeA lesion impairs Watson-Crick base pairing and blocks normal DNA replication. Here we identify the translesion synthesis (TLS) DNA polymerases (Pols) required for replicating through 1-MeA in human cells and show that TLS through this lesion is mediated via three different pathways in which Pols ι and θ function in one pathway and Pols η and ζ, respectively, function in the other two pathways. Our biochemical studies indicate that in the Polι/Polθ pathway, Polι would carry out nucleotide insertion opposite 1-MeA from which Polθ would extend synthesis. In the Polη pathway, this Pol alone would function at both the nucleotide insertion and extension steps of TLS, and in the third pathway, Polζ would extend from the nucleotide inserted opposite 1-MeA by an as yet unidentified Pol. Whereas by pushing 1-MeA into the syn conformation and by forming Hoogsteen base pair with the T residue, Polι would carry out TLS opposite 1-MeA, the ability of Polη to replicate through 1-MeA suggests that despite its need for Watson-Crick hydrogen bonding, Polη can stabilize the adduct in its active site. Remarkably, even though Pols η and ι are quite error-prone at inserting nucleotides opposite 1-MeA, TLS opposite this lesion in human cells occurs in a highly error-free fashion. This suggests that the in vivo fidelity of TLS Pols is regulated by factors such as post-translational modifications, protein-protein interactions, and possibly others. PMID:26491020
Ketkar, Amit; Zafar, Maroof K; Banerjee, Surajit; Marquez, Victor E; Egli, Martin; Eoff, Robert L
2012-06-27
Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol ι) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol ι through use of the fixed-conformation nucleotide North-methanocarba-2'-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol ι in complex with DNA containing a template 2'-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol ι inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle, which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol ι. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base-stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol ι by preventing the Hoogsteen base-pairing mode normally observed for hpol ι-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase.
Ketkar, Amit; Zafar, Maroof K.; Banerjee, Surajit; Marquez, Victor E.; Egli, Martin; Eoff, Robert L
2012-01-01
Y-family DNA polymerases participate in replication stress and DNA damage tolerance mechanisms. The properties that allow these enzymes to copy past bulky adducts or distorted template DNA can result in a greater propensity for them to make mistakes. Of the four human Y-family members, human DNA polymerase iota (hpol ι) is the most error-prone. In the current study, we elucidate the molecular basis for improving the fidelity of hpol ι through use of the fixed-conformation nucleotide North-methanocarba-2′-deoxyadenosine triphosphate (N-MC-dATP). Three crystal structures were solved of hpol ι in complex with DNA containing a template 2′-deoxythymidine (dT) paired with an incoming dNTP or modified nucleotide triphosphate. The ternary complex of hpol ι inserting N-MC-dATP opposite dT reveals that the adenine ring is stabilized in the anti orientation about the pseudo-glycosyl torsion angle (χ), which mimics precisely the mutagenic arrangement of dGTP:dT normally preferred by hpol ι. The stabilized anti conformation occurs without notable contacts from the protein but likely results from constraints imposed by the bicyclo[3.1.0]hexane scaffold of the modified nucleotide. Unmodified dATP and South-MC-dATP each adopt syn glycosyl orientations to form Hoogsteen base pairs with dT. The Hoogsteen orientation exhibits weaker base stacking interactions and is less catalytically favorable than anti N-MC-dATP. Thus, N-MC-dATP corrects the error-prone nature of hpol ι by preventing the Hoogsteen base-pairing mode normally observed for hpol ι-catalyzed insertion of dATP opposite dT. These results provide a previously unrecognized means of altering the efficiency and the fidelity of a human translesion DNA polymerase. PMID:22632140
Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide
NASA Astrophysics Data System (ADS)
Freudenthal, Bret D.; Beard, William A.; Perera, Lalith; Shock, David D.; Kim, Taejin; Schlick, Tamar; Wilson, Samuel H.
2015-01-01
Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol β, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.
Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri
2010-10-01
Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.
Mulholland, Kelly; Siddiquei, Farzana; Wu, Chun
2017-07-19
RHPS4, a potent binder to human telomeric DNA G-quadruplex, shows high efficacy in tumor cell growth inhibition. However, it's preferential binding to DNA G-quadruplex over DNA duplex (about 10 fold) remains to be improved toward its clinical application. A high resolution structure of the single-stranded telomeric DNA G-quadruplexes, or B-DNA duplex, in complex with RHPS4 is not available yet, and the binding nature of this ligand to these DNA forms remains to be elusive. In this study, we carried out 40 μs molecular dynamics binding simulations with a free ligand to decipher the binding pathway of RHPS4 to a DNA duplex and three G-quadruplex folders (parallel, antiparallel and hybrid) of the human telomeric DNA sequence. The most stable binding mode identified for the duplex, parallel, antiparallel and hybrid G-quadruplexes is an intercalation, bottom stacking, top intercalation and bottom intercalation mode, respectively. The intercalation mode with similar binding strength to both the duplex and the G-quadruplexes, explains the lack of binding selectivity of RHPS4 to the G-quadruplex form. Therefore, a ligand modification that destabilizes the duplex intercalation mode but stabilizes the G-quadruplex intercalation mode will improve the binding selectivity toward G-quadruplex. The intercalation mode of RHPS4 to both the duplex and the antiparallel and the hybrid G-quadruplex follows a base flipping-insertion mechanism rather than an open-insertion mechanism. The groove binding, the side binding and the intercalation with flipping out of base were observed to be intermediate states before the full intercalation state with paired bases.
Genomic clones for human cholinesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kott, M.; Venta, P.J.; Larsen, J.
1987-05-01
A human genomic library was prepared from peripheral white blood cells from a single donor by inserting an MboI partial digest into BamHI poly-linker sites of EMBL3. This library was screened using an oligolabeled human cholinesterase cDNA probe over 700 bp long. The latter probe was obtained from a human basal ganglia cDNA library. Of approximately 2 million clones screened with high stringency conditions several positive clones were identified; two have been plaque purified. One of these clones has been partially mapped using restriction enzymes known to cut within the coded region of the cDNA for human serum cholinesterase. Hybridizationmore » of the fragments and their sizes are as expected if the genomic clone is cholinesterase. Sequencing of the DNA fragments in M13 is in progress to verify the identify of the clone and the location of introns.« less
Landscape of Insertion Polymorphisms in the Human Genome
Onozawa, Masahiro; Goldberg, Liat; Aplan, Peter D.
2015-01-01
Nucleotide substitutions, small (<50 bp) insertions or deletions (indels), and large (>50 bp) deletions are well-known causes of genetic variation within the human genome. We recently reported a previously unrecognized form of polymorphic insertions, termed templated sequence insertion polymorphism (TSIP), in which the inserted sequence was templated from a distant genomic region, and was inserted in the genome through reverse transcription of an RNA intermediate. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; class 1 TSIPs show target site duplication, polyadenylation, and preference for insertion at a 5′-TTTT/A-3′ sequence, suggesting a LINE-1 based insertion mechanism, whereas class 2 TSIPs show features consistent with repair of a DNA double strand break by nonhomologous end joining. To gain a more complete picture of TSIPs throughout the human population, we evaluated whole-genome sequence from 52 individuals, and identified 171 TSIPs. Most individuals had 25–30 TSIPs, and common (present in >20% of individuals) TSIPs were found in individuals throughout the world, whereas rare TSIPs tended to cluster in specific geographic regions. The number of rare TSIPs was greater than the number of common TSIPs, suggesting that TSIP generation is an ongoing process. Intriguingly, mitochondrial sequences were a frequent template for class 2 insertions, used more commonly than any nuclear chromosome. Similar to single nucleotide polymorphisms and indels, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases, and can be useful in tracking historical migration of populations. PMID:25745018
Child Development and Structural Variation in the Human Genome
ERIC Educational Resources Information Center
Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.
2013-01-01
Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…
High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.
Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca
2015-01-01
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.
Pace, John K; Sen, Shurjo K; Batzer, Mark A; Feschotte, Cédric
2009-05-01
DNA double-strand breaks (DSBs) are a common form of cellular damage that can lead to cell death if not repaired promptly. Experimental systems have shown that DSB repair in eukaryotic cells is often imperfect and may result in the insertion of extra chromosomal DNA or the duplication of existing DNA at the breakpoint. These events are thought to be a source of genomic instability and human diseases, but it is unclear whether they have contributed significantly to genome evolution. Here we developed an innovative computational pipeline that takes advantage of the repetitive structure of genomes to detect repair-mediated duplication events (RDs) that occurred in the germline and created insertions of at least 50 bp of genomic DNA. Using this pipeline we identified over 1,000 probable RDs in the human genome. Of these, 824 were intra-chromosomal, closely linked duplications of up to 619 bp bearing the hallmarks of the synthesis-dependent strand-annealing repair pathway. This mechanism has duplicated hundreds of sequences predicted to be functional in the human genome, including exons, UTRs, intron splice sites and transcription factor binding sites. Dating of the duplication events using comparative genomics and experimental validation revealed that the mechanism has operated continuously but with decreasing intensity throughout primate evolution. The mechanism has produced species-specific duplications in all primate species surveyed and is contributing to genomic variation among humans. Finally, we show that RDs have also occurred, albeit at a lower frequency, in non-primate mammals and other vertebrates, indicating that this mechanism has been an important force shaping vertebrate genome evolution.
Lesmana, Harry; Dyer, Lisa; Li, Xia; Denton, James; Griffiths, Jenna; Chonat, Satheesh; Seu, Katie G; Heeney, Matthew M; Zhang, Kejian; Hopkin, Robert J; Kalfa, Theodosia A
2018-03-01
Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD. © 2017 Wiley Periodicals, Inc.
Impact of DNA mismatch repair system alterations on human fertility and related treatments.
Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan
2016-01-01
DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.
Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.
Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L
2000-05-31
cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.
Gowda, A S Prakasha; Spratt, Thomas E
2016-03-21
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.
Human DNA polymerase η accommodates RNA for strand extension.
Su, Yan; Egli, Martin; Guengerich, F Peter
2017-11-03
Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η in vivo . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Burns, Kathleen H.; Boeke, Jef D.
2012-01-01
Mobile DNAs have had a central role in shaping our genome. More than half of our DNA is comprised of interspersed repeats resulting from replicative copy and paste events of retrotransposons. Although most are fixed, incapable of templating new copies, there are important exceptions to retrotransposon quiescence. De novo insertions cause genetic diseases and cancers, though reliably detecting these occurrences has been difficult. New technologies aimed at uncovering polymorphic insertions reveal that mobile DNAs provide a substantial and dynamic source of structural variation. Key questions going forward include the how and how much new transposition events affect human health and disease. PMID:22579280
An ancient protein-DNA interaction underlying metazoan sex determination.
Murphy, Mark W; Lee, John K; Rojo, Sandra; Gearhart, Micah D; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J
2015-06-01
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.
An ancient protein-DNA interaction underlying metazoan sex determination
Murphy, Mark W.; Lee, John K.; Rojo, Sandra; ...
2015-05-25
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are usedmore » in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.« less
An ancient protein-DNA interaction underlying metazoan sex determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Mark W.; Lee, John K.; Rojo, Sandra
DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. In this paper, we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are usedmore » in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Finally, our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.« less
High-throughput analysis of T-DNA location and structure using sequence capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
High-throughput analysis of T-DNA location and structure using sequence capture
Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; ...
2015-10-07
Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less
Evaluating Risks of Insertional Mutagenesis by DNA Transposons in Gene Therapy
Hackett, Perry B.; Largaespada, David A.; Switzer, Kirsten C.; Cooper, Laurence J.N.
2013-01-01
Investigational therapy can be successfully undertaken using viral- and non-viral-mediated ex vivo gene transfer. Indeed, recent clinical trials have established the potential for genetically modified T cells to improve and restore health. Recently the Sleeping Beauty (SB) transposon/transposase system has been applied in clinical trials to stably insert a chimeric antigen receptor (CAR) to redirect T-cell specificity. We discuss the context in which the SB system can be harnessed for gene therapy and describe the human application of SB-modified CAR+ T cells. We have focused on theoretical issues relating to insertional mutagenesis in the context of human genomes that are naturally subjected to remobilization of transposons and the experimental evidence over the last decade of employing SB transposons for defining genes that induce cancer. These findings are put into the context of the use of SB transposons in the treatment of human disease. PMID:23313630
Maddukuri, Leena; Ketkar, Amit; Eddy, Sarah; Zafar, Maroof K.; Eoff, Robert L.
2014-01-01
Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo-dG bypass activity of hpol κ in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC:8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol κ-catalyzed dCMP insertion opposite 8-oxo-dG ∼10-fold and extension from dC:8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (kpol), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol κ were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol κ was observed in human cells treated with hydrogen peroxide. Thus, WRN limits the error-prone bypass of 8-oxo-dG by hpol κ, which could influence the sensitivity to oxidative damage that has previously been observed for Werner's syndrome cells. PMID:25294835
Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms?
Rodić, Nemanja; Burns, Kathleen H
2013-03-01
LINE-1 (L1) retrotransposons make up a significant portion of human genomes, with an estimated 500,000 copies per genome. Like other retrotransposons, L1 retrotransposons propagate through RNA sequences that are reverse transcribed into DNA sequences, which are integrated into new genomic loci. L1 somatic insertions have the potential to disrupt the transcriptome by inserting into or nearby genes. By mutating genes and playing a role in epigenetic dysregulation, L1 transposons may contribute to tumorigenesis. Studies of the "mobilome" have lagged behind other tumor characterizations at the sequence, transcript, and epigenetic levels. Here, we consider evidence that L1 retrotransposons may sometimes drive human tumorigenesis.
Preferential cleavage sites for Sau3A restriction endonuclease in human ribosomal DNA.
Kupriyanova, N S; Kirilenko, P M; Netchvolodov, K K; Ryskov, A P
2000-07-21
Previous studies of cloned ribosomal DNA (rDNA) variants isolated from the cosmid library of human chromosome 13 have revealed some disproportion in representativity of different rDNA regions (N. S. Kupriyanova, K. K. Netchvolodov, P. M. Kirilenko, B. I. Kapanadze, N. K. Yankovsky, and A. P. Ryskov, Mol. Biol. 30, 51-60, 1996). Here we show nonrandom cleavage of human rDNA with Sau3A or its isoshizomer MboI under mild hydrolysis conditions. The hypersensitive cleavage sites were found to be located in the ribosomal intergenic spacer (rIGS), especially in the regions of about 5-5.5 and 11 kb upstream of the rRNA transcription start point. This finding is based on sequencing mapping of the rDNA insert ends in randomly selected cosmid clones of human chromosome 13 and on the data of digestion kinetics of cloned and noncloned human genomic rDNA with Sau3A and MboI. The results show that a methylation status and superhelicity state of the rIGS have no effect on cleavage site sensitivity. It is interesting that all primary cleavage sites are adjacent to or entering into Alu or Psi cdc 27 retroposons of the rIGS suggesting a possible role of neighboring sequences in nuclease accessibility. The results explain nonequal representation of rDNA sequences in the human genomic DNA library used for this study. Copyright 2000 Academic Press.
Soares, Marcelo Bento; Bonaldo, Maria de Fatima
1998-01-01
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods.
Soares, M.B.; Fatima Bonaldo, M. de
1998-12-08
This invention provides a method to normalize a cDNA library comprising: (a) constructing a directionally cloned library containing cDNA inserts wherein the insert is capable of being amplified by polymerase chain reaction; (b) converting a double-stranded cDNA library into single-stranded DNA circles; (c) generating single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) by polymerase chain reaction with appropriate primers; (d) hybridizing the single-stranded DNA circles converted in step (b) with the complementary single-stranded nucleic acid molecules generated in step (c) to produce partial duplexes to an appropriate Cot; and (e) separating the unhybridized single-stranded DNA circles from the hybridized DNA circles, thereby generating a normalized cDNA library. This invention also provides a method to normalize a cDNA library wherein the generating of single-stranded nucleic acid molecules complementary to the single-stranded DNA circles converted in step (b) is by excising cDNA inserts from the double-stranded cDNA library; purifying the cDNA inserts from cloning vectors; and digesting the cDNA inserts with an exonuclease. This invention further provides a method to construct a subtractive cDNA library following the steps described above. This invention further provides normalized and/or subtractive cDNA libraries generated by the above methods. 25 figs.
Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina
2018-01-01
Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion between mutant and wild type mtDNA molecules is not a consequence of a random repopulation of depleted pool of mtDNA genomes. The heteroplasmy change could be also modulated by cell growth conditions, namely increased by cells culturing in a carbohydrate-free medium, thus forcing them to use oxidative phosphorylation and providing a selective advantage for cells with improved respiration capacities. We discuss the advantages and limitations of this approach and propose further development of the anti-replicative strategy based on the RNA import into human mitochondria.
NASA Astrophysics Data System (ADS)
Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.
1984-08-01
A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.
Yokozaki, H; Tahara, H; Oue, N; Tahara, E
2000-01-01
A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.
Habraken, Y; Sung, P; Prakash, L; Prakash, S
1996-09-01
DNA-mismatch repair removes mismatches from the newly replicated DNA strand. In humans, mutations in the mismatch repair genes hMSH2, hMLH1, hPMS1 and hPMS2 result in hereditary non-polyposis colorectal cancer (HNPCC) [1-8]. The hMSH2 (MSH for MutS homologue) protein forms a complex with a 160 kDa protein, and this heterodimer, hMutSalpha, has high affinity for a G/T mismatch [9,10]. Cell lines in which the 160 kDa subunit of hMutSalpha is mutated are specifically defective in the repair of base-base and single-nucleotide insertion/deletion mismatches [9,11]. Genetic studies in S. cerevisiae have suggested that MSH2 functions with either MSH3 or MSH6 in mismatch repair, and, in the absence of the latter two genes, MSH2 is inactive [12,13]. MSH6 encodes the yeast counterpart of the 160 kDa subunit of hMutSalpha [12,13]. As in humans, yeast MSH6 forms a complex with MSH2, and the MSH2-MSH6 heterodimer binds a G/T mismatch [14]. Here, we find that MSH2 and MSH3 form another stable heterodimer, and we purify this heterodimer to near homogeneity. We show that MSH2-MSH3 has low affinity for a G/T mismatch but binds to insertion/deletion mismatches with high specificity, unlike MSH2-MSH6.
USDA-ARS?s Scientific Manuscript database
The ability to rescue an infectious, recombinant, RNA virus from a cDNA clone, has led to new opportunities for measuring viral replication from a viral expressed reporter gene. In this protocol, the process of inserting enhanced green fluorescent protein (EGFP) gene into the human parainfluenza vi...
Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize.
Lough, Ashley N; Roark, Leah M; Kato, Akio; Ream, Thomas S; Lamb, Jonathan C; Birchler, James A; Newton, Kathleen J
2008-01-01
Mitochondrial DNA (mtDNA) insertions into nuclear chromosomes have been documented in a number of eukaryotes. We used fluorescence in situ hybridization (FISH) to examine the variation of mtDNA insertions in maize. Twenty overlapping cosmids, representing the 570-kb maize mitochondrial genome, were individually labeled and hybridized to root tip metaphase chromosomes from the B73 inbred line. A minimum of 15 mtDNA insertion sites on nine chromosomes were detectable using this method. One site near the centromere on chromosome arm 9L was identified by a majority of the cosmids. To examine variation in nuclear mitochondrial DNA sequences (NUMTs), a mixture of labeled cosmids was applied to chromosome spreads of ten diverse inbred lines: A188, A632, B37, B73, BMS, KYS, Mo17, Oh43, W22, and W23. The number of detectable NUMTs varied dramatically among the lines. None of the tested inbred lines other than B73 showed the strong hybridization signal on 9L, suggesting that there is a recent mtDNA insertion at this site in B73. Different sources of B73 and W23 were examined for NUMT variation within inbred lines. Differences were detectable, suggesting either that mtDNA is being incorporated or lost from the maize nuclear genome continuously. The results indicate that mtDNA insertions represent a major source of nuclear chromosomal variation.
A High-Throughput Arabidopsis Reverse Genetics System
Sessions, Allen; Burke, Ellen; Presting, Gernot; Aux, George; McElver, John; Patton, David; Dietrich, Bob; Ho, Patrick; Bacwaden, Johana; Ko, Cynthia; Clarke, Joseph D.; Cotton, David; Bullis, David; Snell, Jennifer; Miguel, Trini; Hutchison, Don; Kimmerly, Bill; Mitzel, Theresa; Katagiri, Fumiaki; Glazebrook, Jane; Law, Marc; Goff, Stephen A.
2002-01-01
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from ∼100,000 transformed lines. A total of 85,108 TAIL-PCR products from 52,964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org. PMID:12468722
Gong, Qian; Li, Chang-ying; Chang, Ji-wu; Zhu, Tie-hong
2012-06-01
To screen monoclonal antibodies to amylin from a constructed human phage antibody library and identify their antigenic specificity and combining activities. The heavy chain Fd fragment and light chain of human immunoglobulin genes were amplified from peripheral blood lymphocytes of healthy donors using RT-PCR, and then inserted into phagemid pComb3XSS to generate a human phage antibody library. The insertion of light chain or heavy chain Fd genes were identified by PCR after the digestion of Sac I, Xba I, Xho Iand Spe I. One of positive clones was analyzed by DNA sequencing. The specific anti-amylin clones were screened from antibody library against human amylin antigens and then the positive clones were determined by Phage-ELISA analysis. A Fab phage antibody library with 0.8×10(8); members was constructed with the efficacy of about 70%. DNA sequence analysis indicated V(H); gene belonged to V(H);3 gene family and V(λ); gene belonged to the V(λ); gene family. Using human amylin as panning antigen, specific anti-amylin Fab antibodies were enriched by screening the library for three times. Phage-ELISA assay showed the positive clones had very good specificity to amylin antigen. The successful construction of a phage antibody library and the identification of anti-amylin Fab antibodies provide a basis for further study and preparation of human anti-amylin antibodies.
Mechanism of Error-Free DNA Replication Past Lucidin-Derived DNA Damage by Human DNA Polymerase κ.
Yockey, Oliver P; Jha, Vikash; Ghodke, Pratibha P; Xu, Tianzuo; Xu, Wenyan; Ling, Hong; Pradeepkumar, P I; Zhao, Linlin
2017-11-20
DNA damage impinges on genetic information flow and has significant implications in human disease and aging. Lucidin-3-O-primeveroside (LuP) is an anthraquinone derivative present in madder root, which has been used as a coloring agent and food additive. LuP can be metabolically converted to genotoxic compound lucidin, which subsequently forms lucidin-specific N 2 -2'-deoxyguanosine (N 2 -dG) and N 6 -2'-deoxyadenosine (N 6 -dA) DNA adducts. Lucidin is mutagenic and carcinogenic in rodents but has low carcinogenic risks in humans. To understand the molecular mechanism of low carcinogenicity of lucidin in humans, we performed DNA replication assays using site-specifically modified oligodeoxynucleotides containing a structural analogue (LdG) of lucidin-N 2 -dG DNA adduct and determined the crystal structures of DNA polymerase (pol) κ in complex with LdG-bearing DNA and an incoming nucleotide. We examined four human pols (pol η, pol ι, pol κ, and Rev1) in their efficiency and accuracy during DNA replication with LdG; these pols are key players in translesion DNA synthesis. Our results demonstrate that pol κ efficiently and accurately replicates past the LdG adduct, whereas DNA replication by pol η, pol ι is compromised to different extents. Rev1 retains its ability to incorporate dCTP opposite the lesion albeit with decreased efficiency. Two ternary crystal structures of pol κ illustrate that the LdG adduct is accommodated by pol κ at the enzyme active site during insertion and postlesion-extension steps. The unique open active site of pol κ allows the adducted DNA to adopt a standard B-form for accurate DNA replication. Collectively, these biochemical and structural data provide mechanistic insights into the low carcinogenic risk of lucidin in humans.
Repeat-associated plasticity in the Helicobacter pylori RD Gene Family
USDA-ARS?s Scientific Manuscript database
epetitive DNA facilitates genomic flexibility via increased recombination, deletion, and insertion. The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Examining the genomes of two H. pylori strains, we d...
Suboptimal Doses of Raltegravir Cause Aberrant HIV Integrations | Center for Cancer Research
When a cell is infected with HIV, a DNA copy of the HIV genome is inserted into that cell’s chromosomal DNA. This insertion reaction is carried out by the viral enzyme integrase (IN) and involves two distinct steps: removal of two nucleotides from each 3’ end of the viral DNA, followed by the strand transfer reaction, in which the viral DNA ends are inserted into the host
Sequence-Level Mechanisms of Human Epigenome Evolution
Prendergast, James G.D.; Chambers, Emily V.; Semple, Colin A.M.
2014-01-01
DNA methylation and chromatin states play key roles in development and disease. However, the extent of recent evolutionary divergence in the human epigenome and the influential factors that have shaped it are poorly understood. To determine the links between genome sequence and human epigenome evolution, we examined the divergence of DNA methylation and chromatin states following segmental duplication events in the human lineage. Chromatin and DNA methylation states were found to have been generally well conserved following a duplication event, with the evolution of the epigenome largely uncoupled from the total number of genetic changes in the surrounding DNA sequence. However, the epigenome at tissue-specific, distal regulatory regions was observed to be unusually prone to diverge following duplication, with particular sequence differences, altering known sequence motifs, found to be associated with divergence in patterns of DNA methylation and chromatin. Alu elements were found to have played a particularly prominent role in shaping human epigenome evolution, and we show that human-specific AluY insertion events are strongly linked to the evolution of the DNA methylation landscape and gene expression levels, including at key neurological genes in the human brain. Studying paralogous regions within the same sample enables the study of the links between genome and epigenome evolution while controlling for biological and technical variation. We show DNA methylation and chromatin divergence between duplicated regions are linked to the divergence of particular genetic motifs, with Alu elements having played a disproportionate role in the evolution of the epigenome in the human lineage. PMID:24966180
Kolanko, C J; Pyle, M D; Nath, J; Prasanna, P G; Loats, H; Blakely, W F
2000-03-01
We report a low cost and efficient method for synthesizing a human pancentromeric DNA probe by the polymerase chain reaction (PRC) and an optimized protocol for in situ detection using color pigment immunostaining. The DNA template used in the PCR was a 2.4 kb insert containing human alphoid repeated sequences of pancentromeric DNA subcloned into pUC9 (Miller et al. 1988) and the primers hybridized to internal sequences of the 172 bp consensus tandem repeat associated with human centromeres. PCR was performed in the presence of biotin-11-dUTP, and the product was used for in situ hybridization to detect the pancentromeric region of human chromosomes in metaphase spreads. Detection of pancentromeric probe was achieved by immunoenzymatic color pigment painting to yield a permanent image detected at high resolution by bright field microscopy. The ability to synthesize the centromeric probe rapidly and to detect it with color pigment immunostaining will lead to enhanced identification and eventually to automation of various chromosome aberration assays.
Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome.
Ponce, M R; Quesada, V; Micol, J L
1998-05-01
An improvement to previous methods for recovering Arabidopsis thaliana genomic DNA flanking T-DNA insertions is presented that allows for the avoidance of some of the cloning difficulties caused by the concatameric nature of T-DNA inserts. The principle of the procedure is to categorize by size restriction fragments of mutant DNA, produced in separate digestions with NdeI and Bst1107I. Given that the sites for these two enzymes are contiguous within the pGV3850:1003 T-DNA construct, the restriction fragments obtained fall into two categories: those showing identical size in both digestions, which correspond to sequences internal to T-DNA concatamers; and those of different sizes, that contain the junctions between plant DNA and the T-DNA insert. Such a criterion makes it possible to easily distinguish the digestion products corresponding to internal T-DNA parts, which do not deserve further attention, and those which presumably include a segment of the locus of interest. Discrimination between restriction fragments of genomic mutant DNA can be made on rescued plasmids, inverse PCR amplification products or bands in a genomic blot.
Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres.
Morrish, Tammy A; Garcia-Perez, José Luis; Stamato, Thomas D; Taccioli, Guillermo E; Sekiguchi, JoAnn; Moran, John V
2007-03-08
Long interspersed element-1 (LINE-1 or L1) elements are abundant, non-long-terminal-repeat (non-LTR) retrotransposons that comprise approximately 17% of human DNA. The average human genome contains approximately 80-100 retrotransposition-competent L1s (ref. 2), and they mobilize by a process that uses both the L1 endonuclease and reverse transcriptase, termed target-site primed reverse transcription. We have previously reported an efficient, endonuclease-independent L1 retrotransposition pathway (EN(i)) in certain Chinese hamster ovary (CHO) cell lines that are defective in the non-homologous end-joining (NHEJ) pathway of DNA double-strand-break repair. Here we have characterized EN(i) retrotransposition events generated in V3 CHO cells, which are deficient in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity and have both dysfunctional telomeres and an NHEJ defect. Notably, approximately 30% of EN(i) retrotransposition events insert in an orientation-specific manner adjacent to a perfect telomere repeat (5'-TTAGGG-3'). Similar insertions were not detected among EN(i) retrotransposition events generated in controls or in XR-1 CHO cells deficient for XRCC4, an NHEJ factor that is required for DNA ligation but has no known function in telomere maintenance. Furthermore, transient expression of a dominant-negative allele of human TRF2 (also called TERF2) in XRCC4-deficient XR-1 cells, which disrupts telomere capping, enables telomere-associated EN(i) retrotransposition events. These data indicate that L1s containing a disabled endonuclease can use dysfunctional telomeres as an integration substrate. The findings highlight similarities between the mechanism of EN(i) retrotransposition and the action of telomerase, because both processes can use a 3' OH for priming reverse transcription at either internal DNA lesions or chromosome ends. Thus, we propose that EN(i) retrotransposition is an ancestral mechanism of RNA-mediated DNA repair associated with non-LTR retrotransposons that may have been used before the acquisition of an endonuclease domain.
Lyu, Cuicui; Shen, Jun; Wang, Rui; Gu, Haihui; Zhang, Jianping; Xue, Feng; Liu, Xiaofan; Liu, Wei; Fu, Rongfeng; Zhang, Liyan; Li, Huiyuan; Zhang, Xiaobing; Cheng, Tao; Yang, Renchi; Zhang, Lei
2018-04-06
Replacement therapy for hemophilia remains a lifelong treatment. Only gene therapy can cure hemophilia at a fundamental level. The clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9 (CRISPR-Cas9) system is a versatile and convenient genome editing tool which can be applied to gene therapy for hemophilia. A patient's induced pluripotent stem cells (iPSCs) were generated from their peripheral blood mononuclear cells (PBMNCs) using episomal vectors. The AAVS1-Cas9-sgRNA plasmid which targets the AAVS1 locus and the AAVS1-EF1α-F9 cDNA-puromycin donor plasmid were constructed, and they were electroporated into the iPSCs. When insertion of F9 cDNA into the AAVS1 locus was confirmed, whole genome sequencing (WGS) was carried out to detect the off-target issue. The iPSCs were then differentiated into hepatocytes, and human factor IX (hFIX) antigen and activity were measured in the culture supernatant. Finally, the hepatocytes were transplanted into non-obese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice through splenic injection. The patient's iPSCs were generated from PBMNCs. Human full-length F9 cDNA was inserted into the AAVS1 locus of iPSCs of a hemophilia B patient using the CRISPR-Cas9 system. No off-target mutations were detected by WGS. The hepatocytes differentiated from the inserted iPSCs could secrete hFIX stably and had the ability to be transplanted into the NOD/SCID mice in the short term. PBMNCs are good somatic cell choices for generating iPSCs from hemophilia patients. The iPSC technique is a good tool for genetic therapy for human hereditary diseases. CRISPR-Cas9 is versatile, convenient, and safe to be used in iPSCs with low off-target effects. Our research offers new approaches for clinical gene therapy for hemophilia.
Friends-enemies: endogenous retroviruses are major transcriptional regulators of human DNA
NASA Astrophysics Data System (ADS)
Buzdin, Anton A.; Prassolov, Vladimir; Garazha, Andrew V.
2017-06-01
Endogenous retroviruses are mobile genetic elements hardly distinguishable from infectious, or “exogenous”, retroviruses at the time of insertion in the host DNA. Human endogenous retroviruses (HERVs) are not rare. They gave rise to multiple families of closely related mobile elements that occupy 8% of the human genome. Together, they shape genomic regulatory landscape by providing at least 320,000 human transcription factor binding sites (TFBS) located on 110,000 individual HERV elements. The HERVs host as many as 155,000 mapped DNaseI hypersensitivity sites, which denote loci active in the regulation of gene expression or chromatin structure. The contemporary view of the HERVs evolutionary dynamics suggests that at the early stages after insertion, the HERV is treated by the host cells as a foreign genetic element, and is likely to be suppressed by the targeted methylation and mutations. However, at the later stages, when significant number of mutations has been already accumulated and when the retroviral genes are broken, the regulatory potential of a HERV may be released and recruited to modify the genomic balance of transcription factor binding sites. This process goes together with further accumulation and selection of mutations, which reshape the regulatory landscape of the human DNA. However, developmental reprogramming, stress or pathological conditions like cancer, inflammation and infectious diseases, can remove the blocks limiting expression and HERV-mediated host gene regulation. This, in turn, can dramatically alter the gene expression equilibrium and shift it to a newer state, thus further amplifying instability and exacerbating the stressful situation.
Katzif, Samuel; Danavall, Damien; Bowers, Samera; Balthazar, Jacqueline T.; Shafer, William M.
2003-01-01
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system. PMID:12874306
Katzif, Samuel; Danavall, Damien; Bowers, Samera; Balthazar, Jacqueline T; Shafer, William M
2003-08-01
A Tn551 insertional library of Staphylococcus aureus strain ISP479 was challenged with an antimicrobial peptide (CG 117-136) derived from human neutrophil cathepsin G (CG). After repeated selection and screening of surviving colonies, a mutant was identified that expressed increased resistance to CG 117-136. Southern hybridization analysis revealed that the Tn551 insert in this mutant (SK1) was carried on a 10.6-kb EcoRI chromosomal DNA fragment. Subsequent physical mapping of this Tn551 insert revealed that it was positioned between a putative promoter sequence and the translational start codon of the cspA gene, which encodes a protein (CspA) highly similar to the major cold shock proteins CspA and CspB of Escherichia coli and Bacillus subtilis, respectively. This Tn551 insertion as well as a separate deletion-insertion mutation in cspA decreased the capacity of S. aureus to respond to the stress of cold shock and increased resistance to CG 117-136. The results indicate for the first time that a physiologic link exists between bacterial susceptibility to an antimicrobial peptide and a stress response system.
[Cloning of human CD45 gene and its expression in Hela cells].
Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang
2015-11-01
To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.
Conservative site-specific and single-copy transgenesis in human LINE-1 elements
Vijaya Chandra, Shree Harsha; Makhija, Harshyaa; Peter, Sabrina; Myint Wai, Cho Mar; Li, Jinming; Zhu, Jindong; Ren, Zhonglu; D'Alcontres, Martina Stagno; Siau, Jia Wei; Chee, Sharon; Ghadessy, Farid John; Dröge, Peter
2016-01-01
Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, termed attH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes. PMID:26673710
Method for introducing unidirectional nested deletions
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
2001-01-01
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment in the context of a cloning vector which contains an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment. Also disclosed is a method for producing single-stranded DNA probes utilizing the same cloning vector. An optimal vector, PZIP is described. Methods for introducing unidirectional deletions into a terminal location of a cloned DNA sequence which is inserted into the vector of the present invention are also disclosed. These methods are useful for introducing deletions into either or both ends of a cloned DNA insert, for high throughput sequencing of any DNA of interest.
Three Group-I introns in 18S rDNA of Endosymbiotic Algae of Paramecium bursaria from Japan
NASA Astrophysics Data System (ADS)
Hoshina, Ryo; Kamako, Shin-ichiro; Imamura, Nobutaka
2004-08-01
In the nuclear encoded small subunit ribosomal DNA (18S rDNA) of symbiotic alga of Paramecium bursaria (F36 collected in Japan) possesses three intron-like insertions (Hoshina et al., unpubl. data, 2003). The present study confirmed these exact lengths and insertion sites by reverse transcription-PCR. Two of them were inserted at Escherichia coli 16S rRNA genic position 943 and 1512 that are frequent intron insertion positions, but another insertion position (nearly 1370) was the first finding. Their secondary structures suggested they belong to Group-I intron; one belongs to subgroup IE, others belong to subgroup IC1. Similarity search indicated these introns are ancestral ones.
Time- and Cost-Efficient Identification of T-DNA Insertion Sites through Targeted Genomic Sequencing
Lepage, Étienne; Zampini, Éric; Boyle, Brian; Brisson, Normand
2013-01-01
Forward genetic screens enable the unbiased identification of genes involved in biological processes. In Arabidopsis, several mutant collections are publicly available, which greatly facilitates such practice. Most of these collections were generated by agrotransformation of a T-DNA at random sites in the plant genome. However, precise mapping of T-DNA insertion sites in mutants isolated from such screens is a laborious and time-consuming task. Here we report a simple, low-cost and time efficient approach to precisely map T-DNA insertions simultaneously in many different mutants. By combining sequence capture, next-generation sequencing and 2D-PCR pooling, we developed a new method that allowed the rapid localization of T-DNA insertion sites in 55 out of 64 mutant plants isolated in a screen for gyrase inhibition hypersensitivity. PMID:23951038
Michalovova, M; Vyskot, B; Kejnovsky, E
2013-10-01
We analysed the size, relative age and chromosomal localization of nuclear sequences of plastid and mitochondrial origin (NUPTs-nuclear plastid DNA and NUMTs-nuclear mitochondrial DNA) in six completely sequenced plant species. We found that the largest insertions showed lower divergence from organelle DNA than shorter insertions in all species, indicating their recent origin. The largest NUPT and NUMT insertions were localized in the vicinity of the centromeres in the small genomes of Arabidopsis and rice. They were also present in other chromosomal regions in the large genomes of soybean and maize. Localization of NUPTs and NUMTs correlated positively with distribution of transposable elements (TEs) in Arabidopsis and sorghum, negatively in grapevine and soybean, and did not correlate in rice or maize. We propose a model where new plastid and mitochondrial DNA sequences are inserted close to centromeres and are later fragmented by TE insertions and reshuffled away from the centromere or removed by ectopic recombination. The mode and tempo of TE dynamism determines the turnover of NUPTs and NUMTs resulting in their species-specific chromosomal distributions.
Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA.
Ryu, Seunghwan; Kawamura, Ryuzo; Naka, Ryohei; Silberberg, Yaron R; Nakamura, Noriyuki; Nakamura, Chikashi
2013-09-01
An atomic force microscope probe can be formed into an ultra-sharp cylindrical shape (a nanoneedle) using micro-fabrication techniques such as focused ion beam etching. This nanoneedle can be effectively inserted through the plasma membrane of a living cell to not only access the cytosol, but also to penetrate through the nuclear membrane. This technique shows great potential as a tool for performing intranuclear measurements and manipulations. Repeated insertions of a nanoneedle into a live cell were previously shown not to affect cell viability. However, the effect of nanoneedle insertion on the nucleus and nuclear components is still unknown. DNA is the most crucial component of the nucleus for proper cell function and may be physically damaged by a nanoneedle. To investigate the integrity of DNA following nanoneedle insertion, the occurrence of DNA double-strand breaks (DSBs) was assessed. The results showed that there was no chromosomal DNA damage due to nanoneedle insertion into the nucleus, as indicated by the expression level of γ-H2AX, a molecular marker of DSBs. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Pineda, Gina M; Montgomery, Anne H; Thompson, Robyn; Indest, Brooke; Carroll, Marion; Sinha, Sudhir K
2014-11-01
There is a constant need in forensic casework laboratories for an improved way to increase the first-pass success rate of forensic samples. The recent advances in mini STR analysis, SNP, and Alu marker systems have now made it possible to analyze highly compromised samples, yet few tools are available that can simultaneously provide an assessment of quantity, inhibition, and degradation in a sample prior to genotyping. Currently there are several different approaches used for fluorescence-based quantification assays which provide a measure of quantity and inhibition. However, a system which can also assess the extent of degradation in a forensic sample will be a useful tool for DNA analysts. Possessing this information prior to genotyping will allow an analyst to more informatively make downstream decisions for the successful typing of a forensic sample without unnecessarily consuming DNA extract. Real-time PCR provides a reliable method for determining the amount and quality of amplifiable DNA in a biological sample. Alu are Short Interspersed Elements (SINE), approximately 300bp insertions which are distributed throughout the human genome in large copy number. The use of an internal primer to amplify a segment of an Alu element allows for human specificity as well as high sensitivity when compared to a single copy target. The advantage of an Alu system is the presence of a large number (>1000) of fixed insertions in every human genome, which minimizes the individual specific variation possible when using a multi-copy target quantification system. This study utilizes two independent retrotransposon genomic targets to obtain quantification of an 80bp "short" DNA fragment and a 207bp "long" DNA fragment in a degraded DNA sample in the multiplex system InnoQuant™. The ratio of the two quantitation values provides a "Degradation Index", or a qualitative measure of a sample's extent of degradation. The Degradation Index was found to be predictive of the observed loss of STR markers and alleles as degradation increases. Use of a synthetic target as an internal positive control (IPC) provides an additional assessment for the presence of PCR inhibitors in the test sample. In conclusion, a DNA based qualitative/quantitative/inhibition assessment system that accurately predicts the status of a biological sample, will be a valuable tool for deciding which DNA test kit to utilize and how much target DNA to use, when processing compromised forensic samples for DNA testing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
LINE dancing in the human genome: transposable elements and disease.
Belancio, Victoria P; Deininger, Prescott L; Roy-Engel, Astrid M
2009-10-27
Transposable elements (TEs) have been consistently underestimated in their contribution to genetic instability and human disease. TEs can cause human disease by creating insertional mutations in genes, and also contributing to genetic instability through non-allelic homologous recombination and introduction of sequences that evolve into various cis-acting signals that alter gene expression. Other outcomes of TE activity, such as their potential to cause DNA double-strand breaks or to modulate the epigenetic state of chromosomes, are less fully characterized. The currently active human transposable elements are members of the non-LTR retroelement families, LINE-1, Alu (SINE), and SVA. The impact of germline insertional mutagenesis by TEs is well established, whereas the rate of post-insertional TE-mediated germline mutations and all forms of somatic mutations remain less well quantified. The number of human diseases discovered to be associated with non-allelic homologous recombination between TEs, and particularly between Alu elements, is growing at an unprecedented rate. Improvement in the technology for detection of such events, as well as the mounting interest in the research and medical communities in resolving the underlying causes of the human diseases with unknown etiology, explain this increase. Here, we focus on the most recent advances in understanding of the impact of the active human TEs on the stability of the human genome and its relevance to human disease.
Assessment of Azorean ancestry by Alu insertion polymorphisms.
Branco, Claudia C; Palla, Raquel; Lino, Sílvia; Pacheco, Paula R; Cabral, Rita; De Fez, Laura; Peixoto, Bernardo R; Mota-Vieira, Luisa
2006-01-01
Knowledge of population ancestry from genetic markers is essential, for example, to understand the history of human migration and to carry out admixture and association studies. Here we assess the genome ancestry of the Azorean population through analysis of six Alu polymorphic sites (TPA-25, ACE, APO, B65, PV92, and D1) in 65 Azoreans and 30 Portuguese unrelated blood donors and compare data for the Y-chromosome and mtDNA. Allele frequencies were calculated by direct counting. Statistical analysis was performed using Arlequin 2.0. Nei's genetic distance was calculated with DISPAN software, and trees were constructed by neighbor joining (NJ) using PHYLIP 3.63. The results show that all Alu insertions were polymorphic. APO is the closest to fixation. The less frequent insertions are PV92 and D1 in the Azores and Portugal, respectively. ACE and TPA-25 show the highest values of heterozygosity in both populations. Allele frequencies are very similar to those obtained in European populations. These results are validated by the Y-chromosome and mtDNA data, where the majority of the maternal and paternal lineages are European. Overall, these data are reflected in the phylogenetic tree, in which the Azoreans and the Portuguese branch with Catalans, Andalusians, Moroccans, and Algerians. We conclude that the population of the Azores shows no significant genetic differences from that of mainland Portugal and that it is an outbred population. Moreover, the data validate the use of Alu insertion polymorphisms to assess the origin and history of human populations. Am. J. Hum. Biol. 18:223-226, 2006. (c) 2006 Wiley-Liss, Inc.
Patra, Amritraj; Nagy, Leslie D.; Zhang, Qianqian; Su, Yan; Müller, Livia; Guengerich, F. Peter; Egli, Martin
2014-01-01
DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion. PMID:24759104
Patra, Amritraj; Nagy, Leslie D; Zhang, Qianqian; Su, Yan; Müller, Livia; Guengerich, F Peter; Egli, Martin
2014-06-13
DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Ouzon-Shubeita, Hala; Lee, Seongmin
2014-01-01
N7-Methyl-2′-deoxyguanosine (m7dG) is the predominant lesion formed by methylating agents. A systematic investigation on the effect of m7dG on DNA replication has been difficult due to the chemical instability of m7dG. To gain insights into the m7dG effect, we employed a 2′-fluorine-mediated transition-state destabilzation strategy. Specifically, we determined kinetic parameters for dCTP insertion opposite a chemically stable m7dG analogue, 2′-fluoro-m7dG (Fm7dG), by human DNA polymerase β (polβ) and solved three X-ray structures of polβ in complex with the templating Fm7dG paired with incoming dCTP or dTTP analogues. The kinetic studies reveal that the templating Fm7dG slows polβ catalysis ∼300-fold, suggesting that m7dG in genomic DNA may impede replication by some DNA polymerases. The structural analysis reveals that Fm7dG forms a canonical Watson–Crick base pair with dCTP, but metal ion coordination is suboptimal for catalysis in the polβ-Fm7dG:dCTP complex, which partially explains the slow insertion of dCTP opposite Fm7dG by polβ. In addition, the polβ-Fm7dG:dTTP structure shows open protein conformations and staggered base pair conformations, indicating that N7-methylation of dG does not promote a promutagenic replication. Overall, the first systematic studies on the effect of m7dG on DNA replication reveal that polβ catalysis across m7dG is slow, yet highly accurate. PMID:24966350
Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S
2011-01-21
DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gardiner, Gillian E.; Heinemann, Christine; Bruce, Andrew W.; Beuerman, Dee; Reid, Gregor
2002-01-01
Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 are well-characterized probiotic strains with efficacy in the prevention and treatment of urogenital infections in women. The aim of the present study was to apply a molecular biology-based methodology for the detection of these strains and L. rhamnosus GG (a commercially available intestinal probiotic) in the human vagina in order to assess probiotic persistence at this site. Ten healthy women inserted vaginally a capsule containing either a combination of strains GR-1 and RC-14 or the GG strain for 3 consecutive nights. Vaginal swabs taken before and at various time points after probiotic insertion were analyzed, and the Lactobacillus flora was assessed by randomly amplified polymorphic DNA (RAPD) analysis. This method generated discrete DNA fingerprints for GR-1, RC-14, and GG and enabled successful detection of these strains in the vagina. Strain GR-1 and/or strain RC-14 was found to persist in the vaginal tract for up to 19 days after vaginal instillation, while L. rhamnosus GG was detectable for up to 5 days postadministration. In conclusion, the fates of probiotic L. rhamnosus and L. fermentum strains were successfully monitored in the human vagina by RAPD analysis. This technique provides molecular biology-based evidence that RC-14 and GR-1, strains selected as urogenital probiotics, persist in the human vagina and may be more suited to vaginal colonization than L. rhamnosus GG. This highlights the importance of proper selection of strains for urogenital probiotic applications. PMID:11777835
Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase
Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong
2013-01-01
Nitrated polycyclic aromatic hydrocarbons are common environmental pollutants, of which many are mutagenic and carcinogenic. 1-Nitropyrene is the most abundant nitrated polycyclic aromatic hydrocarbon, which causes DNA damage and is carcinogenic in experimental animals. Error-prone translesion synthesis of 1-nitropyrene–derived DNA lesions generates mutations that likely play a role in the etiology of cancer. Here, we report two crystal structures of the human Y-family DNA polymerase iota complexed with the major 1-nitropyrene DNA lesion at the insertion stage, incorporating either dCTP or dATP nucleotide opposite the lesion. Polι maintains the adduct in its active site in two distinct conformations. dCTP forms a Watson–Crick base pair with the adducted guanine and excludes the pyrene ring from the helical DNA, which inhibits replication beyond the lesion. By contrast, the mismatched dATP stacks above the pyrene ring that is intercalated in the helix and achieves a productive conformation for misincorporation. The intra-helical bulky pyrene mimics a base pair in the active site and facilitates adenine misincorporation. By structure-based mutagenesis, we show that the restrictive active site of human polη prevents the intra-helical conformation and A-base misinsertions. This work provides one of the molecular mechanisms for G to T transversions, a signature mutation in human lung cancer. PMID:23268450
Gennero, Isabelle; Edouard, Thomas; Rashad, Mona; Bieth, Eric; Conte-Aurio, Françoise; Marin, Françoise; Tauber, Maithé; Salles, Jean Pierre; El Kholy, Mohamed
2007-07-01
Deletions and mutations in the growth hormone receptor (GHR) gene are the underlying etiology of Laron syndrome (LS) or growth hormone (GH) insensitivity syndrome (GHIS), an autosomal recessive disease. Most patients are distributed in or originate from Mediterranean and Middle-Eastern countries. Sixty mutations have been described so far. We report a novel mutation in the GHR gene in a patient with LS. Genomic DNA sequencing of exon 5 revealed a TT insertion at nucleotide 422 after codon 122. The insertion resulted in a frameshift introducing a premature termination codon that led to a truncated receptor. We present clinical, biochemical and molecular evidence of LS as the result of this homozygous insertion.
Adeno-associated virus inverted terminal repeats stimulate gene editing.
Hirsch, M L
2015-02-01
Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.
NASA Astrophysics Data System (ADS)
Lau, Yun-Fai; Kan, Yuet Wai
1983-09-01
We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.
Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee
2013-01-01
Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165
Identification of structural variation in mouse genomes.
Keane, Thomas M; Wong, Kim; Adams, David J; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz
2014-01-01
Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation.
Takai, T; Nishita, Y; Iguchi-Ariga, S M; Ariga, H
1994-01-01
We have previously reported the human cDNA encoding MSSP-1, a sequence-specific double- and single-stranded DNA binding protein [Negishi, Nishita, Saëgusa, Kakizaki, Galli, Kihara, Tamai, Miyajima, Iguchi-Ariga and Ariga (1994) Oncogene, 9, 1133-1143]. MSSP-1 binds to a DNA replication origin/transcriptional enhancer of the human c-myc gene and has turned out to be identical with Scr2, a human protein which complements the defect of cdc2 kinase in S.pombe [Kataoka and Nojima (1994) Nucleic Acid Res., 22, 2687-2693]. We have cloned the cDNA for MSSP-2, another member of the MSSP family of proteins. The MSSP-2 cDNA shares highly homologous sequences with MSSP-1 cDNA, except for the insertion of 48 bp coding 16 amino acids near the C-terminus. Like MSSP-1, MSSP-2 has RNP-1 consensus sequences. The results of the experiments using bacterially expressed MSSP-2, and its deletion mutants, as histidine fusion proteins suggested that the binding specificity of MSSP-2 to double- and single-stranded DNA is the same as that of MSSP-1, and that the RNP consensus sequences are required for the DNA binding of the protein. MSSP-2 stimulated the DNA replication of an SV40-derived plasmid containing the binding sequence for MSSP-1 or -2. MSSP-2 is hence suggested to play an important role in regulation of DNA replication. Images PMID:7838710
Lambda Red Mediated Gap Repair Utilizes a Novel Replicative Intermediate in Escherichia coli
Reddy, Thimma R.; Fevat, Léna M. S.; Munson, Sarah E.; Stewart, A. Francis; Cowley, Shaun M.
2015-01-01
The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction. Consequently, our findings have important implications for the understanding of E. coli replication and Red recombination. PMID:25803509
2012-01-01
Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants. PMID:22897909
Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops
Gupta, Shikha; Gellert, Martin; Yang, Wei
2011-01-01
DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch Syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutSα is well characterized. We report here crystal structures of human MutSβ complexed with DNA containing insertion-deletion loops (IDL) of 2, 3, 4, or 6 unpaired nucleotides. In contrast to eukaryotic MutSα and bacterial MutS, which bind the base of a mismatched nucleotide, MutSβ binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream basepair can become unpaired; thereby a single unpaired base can be converted to an IDL of 2 nucleotides and recognized by MutSβ. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair. PMID:22179786
Copy number determination of genetically-modified hematopoietic stem cells.
Schuesler, Todd; Reeves, Lilith; Kalle, Christof von; Grassman, Elke
2009-01-01
Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.
DNA glycosylases search for and remove oxidized DNA bases.
Wallace, Susan S
2013-12-01
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage. Copyright © 2013 Wiley Periodicals, Inc.
Indel detection from DNA and RNA sequencing data with transIndel.
Yang, Rendong; Van Etten, Jamie L; Dehm, Scott M
2018-04-19
Insertions and deletions (indels) are a major class of genomic variation associated with human disease. Indels are primarily detected from DNA sequencing (DNA-seq) data but their transcriptional consequences remain unexplored due to challenges in discriminating medium-sized and large indels from splicing events in RNA-seq data. Here, we developed transIndel, a splice-aware algorithm that parses the chimeric alignments predicted by a short read aligner and reconstructs the mid-sized insertions and large deletions based on the linear alignments of split reads from DNA-seq or RNA-seq data. TransIndel exhibits competitive or superior performance over eight state-of-the-art indel detection tools on benchmarks using both synthetic and real DNA-seq data. Additionally, we applied transIndel to DNA-seq and RNA-seq datasets from 333 primary prostate cancer patients from The Cancer Genome Atlas (TCGA) and 59 metastatic prostate cancer patients from AACR-PCF Stand-Up- To-Cancer (SU2C) studies. TransIndel enhanced the taxonomy of DNA- and RNA-level alterations in prostate cancer by identifying recurrent FOXA1 indels as well as exitron splicing in genes implicated in disease progression. Our study demonstrates that transIndel is a robust tool for elucidation of medium- and large-sized indels from DNA-seq and RNA-seq data. Including RNA-seq in indel discovery efforts leads to significant improvements in sensitivity for identification of med-sized and large indels missed by DNA-seq, and reveals non-canonical RNA-splicing events in genes associated with disease pathology.
[cDNA library construction from panicle meristem of finger millet].
Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B
2014-01-01
The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoefler, G.; Forstner, M.; Hulla, W.
1994-01-01
Enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme is one of the four enzymes of the peroxisomal, [beta]-oxidation pathway. Here, the authors report the full-length human cDNA sequence and the localization of the corresponding gene on chromosome 3q26.3-3q28. The cDNA sequence spans 3779 nucleotides with an open reading frame of 2169 nucleotides. The tripeptide SKL at the carboxy terminus, known to serve as a peroxisomal targeting signal, is present. DNA sequence comparison of the coding region showed an 80% homology between human and rat bifunctional enzyme cDNA. The 3[prime] noncoding sequence contains 117 nucleotides homologous to an Alu repeat. Based on sequence comparison,more » they propose that these nucleotides are a free left Alu arm with 86% homology to the Alu-J family. RNA analysis shows one band with highest intensity in liver and kidney. This cDNA will allow in-depth studies of molecular defects in patients with defective peroxisomal bifunctional enzyme. Moreover, it will also provide a means for studying the regulation of peroxisomal [beta]-oxidation in humans. 33 refs., 5 figs.« less
Ulrich, Alexander; Andersen, Kasper R.; Schwartz, Thomas U.
2012-01-01
We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts. PMID:23300917
Ulrich, Alexander; Andersen, Kasper R; Schwartz, Thomas U
2012-01-01
We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP) cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF) cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts.
Genomic deletions created upon LINE-1 retrotransposition.
Gilbert, Nicolas; Lutz-Prigge, Sheila; Moran, John V
2002-08-09
LINE-1 (L1) retrotransposition continues to impact the human genome, yet little is known about how L1 integrates into DNA. Here, we developed a plasmid-based rescue system and have used it to recover 37 new L1 retrotransposition events from cultured human cells. Sequencing of the insertions revealed the usual L1 structural hallmarks; however, in four instances, retrotransposition generated large target site deletions. Remarkably, three of those resulted in the formation of chimeric L1s, containing the 5' end of an endogenous L1 fused precisely to our engineered L1. Thus, our data demonstrate multiple pathways for L1 integration in cultured cells, and show that L1 is not simply an insertional mutagen, but that its retrotransposition can result in significant deletions of genomic sequence.
In Vitro Lesion Bypass Studies of O(4)-Alkylthymidines with Human DNA Polymerase η.
Williams, Nicole L; Wang, Pengcheng; Wu, Jiabin; Wang, Yinsheng
2016-04-18
Environmental exposure and endogenous metabolism can give rise to DNA alkylation. Among alkylated nucleosides, O(4)-alkylthymidine (O(4)-alkyldT) lesions are poorly repaired in mammalian systems and may compromise the efficiency and fidelity of cellular DNA replication. To cope with replication-stalling DNA lesions, cells are equipped with translesion synthesis DNA polymerases that are capable of bypassing various DNA lesions. In this study, we assessed human DNA polymerase η (Pol η)-mediated bypass of various O(4)-alkyldT lesions, with the alkyl group being Me, Et, nPr, iPr, nBu, iBu, (R)-sBu, or (S)-sBu, in template DNA by conducting primer extension and steady-state kinetic assays. Our primer extension assay results revealed that human Pol η, but not human polymerases κ and ι or yeast polymerase ζ, was capable of bypassing all O(4)-alkyldT lesions and extending the primer to generate full-length replication products. Data from steady-state kinetic measurements showed that Pol η preferentially misincorporated dGMP opposite O(4)-alkyldT lesions with a straight-chain alkyl group. The nucleotide misincorporation opposite most lesions with a branched-chain alkyl group was, however, not selective, where dCMP, dGMP, and dTMP were inserted at similar efficiencies opposite O(4)-iPrdT, O(4)-iBudT, and O(4)-(R)-sBudT. These results provide important knowledge about the effects of the length and structure of the alkyl group in O(4)-alkyldT lesions on the fidelity and efficiency of DNA replication mediated by human Pol η.
Suboptimal Doses of Raltegravir Cause Aberrant HIV Integrations | Center for Cancer Research
When a cell is infected with HIV, a DNA copy of the HIV genome is inserted into that cell’s chromosomal DNA. This insertion reaction is carried out by the viral enzyme integrase (IN) and involves two distinct steps: removal of two nucleotides from each 3’ end of the viral DNA, followed by the strand transfer reaction, in which the viral DNA ends are inserted into the host chromosomal DNA. Integration is essential for viral replication, making it an important target for antiviral therapy. Raltegravir, and the other approved integrase inhibitor, Elvitegravir, are called integrase strand transfer inhibitors (INSTIs), because they bind to the active site of IN and block the strand transfer reaction.
Lam, Kathy N; Charles, Trevor C
2015-01-01
Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite widespread use of E. coli to propagate foreign DNA in metagenomic libraries, the effects of in vivo transcriptional activity on clone stability are not well understood. Further work is required to tease apart the effects of transcription from those of gene product toxicity.
Schroeder, Oskar; Benecke, Norbert; Frölich, Kai; Peng, Zuogang; Kaniuth, Kai; Sverchkov, Leonid; Reinhold, Sabine; Belinskiy, Andrey; Ludwig, Arne
2017-01-01
Sheep were one of the first livestock species domesticated by humans. After initial domestication in the Middle East they were spread across Eurasia. The modern distribution of endogenous Jaagsiekte sheep retrovirus insertions in domestic sheep breeds suggests that over the course of millennia, successive introductions of improved lineages and selection for wool quality occurred in the Mediterranean region and most of Asia. Here we present a novel ancient DNA approach using data of endogenous retroviral insertions in Bronze and Iron Age domestic sheep from the Caucasus and Pamir mountain areas. Our findings support a secondary introduction of wool sheep from the Middle East between the Late Bronze Age and Iron Age into most areas of Eurasia. PMID:28632161
Schroeder, Oskar; Benecke, Norbert; Frölich, Kai; Peng, Zuogang; Kaniuth, Kai; Sverchkov, Leonid; Reinhold, Sabine; Belinskiy, Andrey; Ludwig, Arne
2017-06-20
Sheep were one of the first livestock species domesticated by humans. After initial domestication in the Middle East they were spread across Eurasia. The modern distribution of endogenous Jaagsiekte sheep retrovirus insertions in domestic sheep breeds suggests that over the course of millennia, successive introductions of improved lineages and selection for wool quality occurred in the Mediterranean region and most of Asia. Here we present a novel ancient DNA approach using data of endogenous retroviral insertions in Bronze and Iron Age domestic sheep from the Caucasus and Pamir mountain areas. Our findings support a secondary introduction of wool sheep from the Middle East between the Late Bronze Age and Iron Age into most areas of Eurasia.
SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.
Singer, Maxine; Winocour, Ernest
2011-04-10
The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.
Structure of human Cdc45 and implications for CMG helicase function
Simon, Aline C.; Sannino, Vincenzo; Costanzo, Vincenzo; Pellegrini, Luca
2016-01-01
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. PMID:27189187
Cheng, Xin; Ivessa, Andreas S
2012-10-01
Translocation of mitochondrial DNA (mtDNA) fragments to the nucleus and insertion of those fragments into nuclear DNA has been observed in several organisms ranging from yeast to plants and mammals. Disruption of specific nuclear genes by de novo insertions of mtDNA fragments has even been linked to the initiation of several human diseases. Recently, we demonstrated that baker's yeast strains with high rates of mtDNA fragments migrating to the nucleus (yme1-1 mutant) exhibit short chronological life spans (CLS). The yeast CLS is determined by the survival of non-dividing cell populations. Here, we show that lack of the non-homologous-end-joining enzyme DNA ligase IV (DNL4) can rescue the short CLS of the yme1-1 mutant. In fission yeast, DNA ligase IV has been shown to be required for the capture of mtDNA fragments during the repair of double-stranded DNA breaks in nuclear DNA. In further analyses using pulse field gel and 2D gel electrophoresis we demonstrate that linear mtDNA fragments with likely nuclear localization accumulate in the yme1-1 mutant. The accumulation of the linear mtDNA fragments in the yme1-1 mutant is suppressed when Dnl4 is absent. We propose that the linear nuclear mtDNA fragments accelerate the aging process in the yme1-1 mutant cells by possibly affecting nuclear processes including DNA replication, recombination, and repair as well as transcription of nuclear genes. We speculate further that Dnl4 protein has besides its function as a ligase also a role in DNA protection. Dnl4 protein may stabilize the linear mtDNA fragments in the nucleus by binding to their physical ends. In the absence of Dnl4 protein the linear fragments are therefore unprotected and possibly degraded by nuclear nucleases. Copyright © 2012 Elsevier GmbH. All rights reserved.
Large-Scale Concatenation cDNA Sequencing
Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.
1997-01-01
A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174
The ATRX cDNA is prone to bacterial IS10 element insertions that alter its structure.
Valle-García, David; Griffiths, Lyra M; Dyer, Michael A; Bernstein, Emily; Recillas-Targa, Félix
2014-01-01
The SWI/SNF-like chromatin-remodeling protein ATRX has emerged as a key factor in the regulation of α-globin gene expression, incorporation of histone variants into the chromatin template and, more recently, as a frequently mutated gene across a wide spectrum of cancers. Therefore, the availability of a functional ATRX cDNA for expression studies is a valuable tool for the scientific community. We have identified two independent transposon insertions of a bacterial IS10 element into exon 8 of ATRX isoform 2 coding sequence in two different plasmids derived from a single source. We demonstrate that these insertion events are common and there is an insertion hotspot within the ATRX cDNA. Such IS10 insertions produce a truncated form of ATRX, which significantly compromises its nuclear localization. In turn, we describe ways to prevent IS10 insertion during propagation and cloning of ATRX-containing vectors, including optimal growth conditions, bacterial strains, and suggested sequencing strategies. Finally, we have generated an insertion-free plasmid that is available to the community for expression studies of ATRX.
Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus
Ianiri, Giuseppe; Averette, Anna F.; Kingsbury, Joanne M.; Heitman, Joseph
2016-01-01
ABSTRACT The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. PMID:27899504
van der Klift, Heleen M; Tops, Carli M; Hes, Frederik J; Devilee, Peter; Wijnen, Juul T
2012-07-01
Heterozygous germline mutations in the mismatch repair gene PMS2 predispose carriers for Lynch syndrome, an autosomal dominant predisposition to cancer. Here, we present a LINE-1-mediated retrotranspositional insertion in PMS2 as a novel mutation type for Lynch syndrome. This insertion, detected with Southern blot analysis in the genomic DNA of the patient, is characterized as a 2.2 kb long 5' truncated SVA_F element. The insertion is not detectable by current diagnostic testing limited to MLPA and direct Sanger sequencing on genomic DNA. The molecular nature of this insertion could only be resolved in RNA from cultured lymphocytes in which nonsense-mediated RNA decay was inhibited. Our report illustrates the technical problems encountered in the detection of this mutation type. Especially large heterozygous insertions will remain unnoticed because of preferential amplification of the smaller wild-type allele in genomic DNA, and are probably underreported in the mutation spectra of autosomal dominant disorders. © 2012 Wiley Periodicals, Inc.
Triple helix purification and sequencing
Wang, Renfeng; Smith, Lloyd M.; Tong, Xinchun E.
1995-01-01
Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis.
Triple helix purification and sequencing
Wang, R.; Smith, L.M.; Tong, X.E.
1995-03-28
Disclosed herein are methods, kits, and equipment for purifying single stranded circular DNA and then using the DNA for DNA sequencing purposes. Templates are provided with an insert having a hybridization region. An elongated oligonucleotide has two regions that are complementary to the insert and the oligo is bound to a magnetic anchor. The oligo hybridizes to the insert on two sides to form a stable triple helix complex. The anchor can then be used to drag the template out of solution using a magnet. The system can purify sequencing templates, and if desired the triple helix complex can be opened up to a double helix so that the oligonucleotide will act as a primer for further DNA synthesis. 4 figures.
Trinh, T. Q.; Sinden, R. R.
1993-01-01
We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events. PMID:8325478
Schiavo, Giuseppina; Hoffmann, Orsolya Ivett; Ribani, Anisa; Utzeri, Valerio Joe; Ghionda, Marco Ciro; Bertolini, Francesca; Geraci, Claudia; Bovo, Samuele; Fontanesi, Luca
2017-10-01
Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Oxidized nucleotide insertion by pol β confounds ligation during base excision repair
Çağlayan, Melike; Horton, Julie K.; Dai, Da-Peng; Stefanick, Donna F.; Wilson, Samuel H.
2017-01-01
Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions. Here we report that the DNA ligation step of BER is compromised after pol β insertion of oxidized purine nucleotides into the BER intermediate in vitro. These results suggest the possibility that BER mediated toxic strand breaks are produced in cells under oxidative stress conditions. We observe enhanced cytotoxicity in oxidizing-agent treated pol β expressing mouse fibroblasts, suggesting formation of DNA strand breaks under these treatment conditions. Increased cytotoxicity following MTH1 knockout or treatment with MTH1 inhibitor suggests the oxidation of precursor nucleotides. PMID:28067232
Stability and dynamics of membrane-spanning DNA nanopores
NASA Astrophysics Data System (ADS)
Maingi, Vishal; Burns, Jonathan R.; Uusitalo, Jaakko J.; Howorka, Stefan; Marrink, Siewert J.; Sansom, Mark S. P.
2017-03-01
Recently developed DNA-based analogues of membrane proteins have advanced synthetic biology. A fundamental question is how hydrophilic nanostructures reside in the hydrophobic environment of the membrane. Here, we use multiscale molecular dynamics (MD) simulations to explore the structure, stability and dynamics of an archetypical DNA nanotube inserted via a ring of membrane anchors into a phospholipid bilayer. Coarse-grained MD reveals that the lipids reorganize locally to interact closely with the membrane-spanning section of the DNA tube. Steered simulations along the bilayer normal establish the metastable nature of the inserted pore, yielding a force profile with barriers for membrane exit due to the membrane anchors. Atomistic, equilibrium simulations at two salt concentrations confirm the close packing of lipid around of the stably inserted DNA pore and its cation selectivity, while revealing localized structural fluctuations. The wide-ranging and detailed insight informs the design of next-generation DNA pores for synthetic biology or biomedicine.
Megabase sequencing of human genome by ordered-shotgun-sequencing (OSS) strategy
NASA Astrophysics Data System (ADS)
Chen, Ellson Y.
1997-05-01
So far we have used OSS strategy to sequence over 2 megabases DNA in large-insert clones from regions of human X chromosomes with different characteristic levels of GC content. The method starts by randomly fragmenting a BAC, YAC or PAC to 8-12 kb pieces and subcloning those into lambda phage. Insert-ends of these clones are sequenced and overlapped to create a partial map. Complete sequencing is then done on a minimal tiling path of selected subclones, recursively focusing on those at the edges of contigs to facilitate mergers of clones across the entire target. To reduce manual labor, PCR processes have been adapted to prepare sequencing templates throughout the entire operation. The streamlined process can thus lend itself to further automation. The OSS approach is suitable for large- scale genomic sequencing, providing considerable flexibility in the choice of subclones or regions for more or less intensive sequencing. For example, subclones containing contaminating host cell DNA or cloning vector can be recognized and ignored with minimal sequencing effort; regions overlapping a neighboring clone already sequenced need not be redone; and segments containing tandem repeats or long repetitive sequences can be spotted early on and targeted for additional attention.
Henle, E S; Han, Z; Tang, N; Rai, P; Luo, Y; Linn, S
1999-01-08
Preferential cleavage sites have been determined for Fe2+/H2O2-mediated oxidations of DNA. In 50 mM H2O2, preferential cleavages occurred at the nucleoside 5' to each of the dG moieties in the sequence RGGG, a sequence found in a majority of telomere repeats. Within a plasmid containing a (TTAGGG)81 human telomere insert, 7-fold more strand breakage occurred in the restriction fragment with the insert than in a similar-sized control fragment. This result implies that telomeric DNA could protect coding DNA from oxidative damage and might also link oxidative damage and iron load to telomere shortening and aging. In micromolar H2O2, preferential cleavage occurred at the thymidine within the sequence RTGR, a sequence frequently found to be required in promoters for normal responses of many procaryotic and eucaryotic genes to iron or oxygen stress. Computer modeling of the interaction of Fe2+ with RTGR in B-DNA suggests that due to steric hindrance with the thymine methyl, Fe2+ associates in a specific manner with the thymine flipped out from the base stack so as to allow an octahedrally-oriented coordination of the Fe2+ with the three purine N7 residues. Fe2+-dependent changes in NMR spectra of duplex oligonucleotides containing ATGA versus those containing AUGA or A5mCGA were consistent with this model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, A.J.; Burgess, D.L.; Kohrman, D.
1994-09-01
The Twirler mutation (Tw) causing cleft palate {plus_minus} cleft lip, vestibular defects and obesity is located within 0.5 cM of an ataxia locus (ax) on mouse chromosome 18. We identified a transgene-induced insertional mutation with vestibular and craniofacial defects that appears to be a new allele of Twirler. Mouse DNA flanking the transgene insertion site was isolated from a cosmid library. An evolutionarily conserved, zoo blot positive cosmid subclone was used to probe a human {lambda} genomic library. From the sequence of a highly homologous human {lambda} clone, we designed STS primers and screened a human P1 library. DNA frommore » two positive P1 clones was hybridized with simple sequence probes, and a (CTAT){sub 12} repeat was detected. Analysis of 62 CEPH parents with primers flanking the repeat identified six alleles containing 9 to 14 copies of the repeat, at frequencies of 0.17, 0.17, 0.17, 0.27, 0.15 and 0.07, respectively. The observed heterozygosity was 49/62 with a calculated PIC value of 0.76. This polymorphic microsatellite marker, designated Umi3, was mapped to the predicted conserved human linkage group by analysis of somatic cell hybrid panels. The anticipated short distance between Umi3 and the disease genes will facilitate detection of linkage in small families. We would like to type appropriate human pedigrees with Umi3 in order to identify patients with inherited disorders homologous to the mouse mutations Twirler and ataxia.« less
Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong
2013-01-01
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706
Kirouac, Kevin N; Basu, Ashis K; Ling, Hong
2013-11-15
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.
Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin
2015-06-01
Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure.
DNA and RNA profiling of excavated human remains with varying postmortem intervals.
van den Berge, M; Wiskerke, D; Gerretsen, R R R; Tabak, J; Sijen, T
2016-11-01
When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.
Guo, Bingfu; Guo, Yong; Hong, Huilong; Qiu, Li-Juan
2016-01-01
Molecular characterization of sequence flanking exogenous fragment insertion is essential for safety assessment and labeling of genetically modified organism (GMO). In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS) method. More than 22.4 Gb sequence data (∼21 × coverage) for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundaries of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of genomic insertion sites of G2-EPSPS and GAT transgenes will facilitate the utilization of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS was a cost-effective and rapid method for identifying sites of T-DNA insertions and flanking sequences in soybean.
Morozumi, Takeya; Toki, Daisuke; Eguchi-Ogawa, Tomoko; Uenishi, Hirohide
2011-09-01
Large-scale cDNA-sequencing projects require an efficient strategy for mass sequencing. Here we describe a method for sequencing pooled cDNA clones using a combination of transposon insertion and Gateway technology. Our method reduces the number of shotgun clones that are unsuitable for reconstruction of cDNA sequences, and has the advantage of reducing the total costs of the sequencing project.
Construction of human artificial chromosome vectors by recombineering.
Kotzamanis, George; Cheung, Wing; Abdulrazzak, Hassan; Perez-Luz, Sara; Howe, Steven; Cooke, Howard; Huxley, Clare
2005-05-23
Human artificial chromosomes (HACs) can be formed de novo by transfection of large fragments of cloned alphoid DNA into human HT1080 cells in tissue culture. In order to generate HACs carrying a gene of interest, one can either co-transfect the alphoid DNA and the gene of interest, or one can clone both into a single vector prior to transfection. Here we describe linking approximately 70 kb of alphoid DNA onto a 156-kb BAC carrying the human HPRT gene using Red homologous recombination in the EL350 Escherichia coli host [Lee et al., Genomics 73 (2001) 56-65]. A selectable marker and EGFP marker were then added by loxP/Cre recombination using the arabinose inducible cre gene in the EL350 bacteria. The final construct generates minichromosomes in HT1080 cells and the HPRT gene is expressed. The retrofitting vector can be used to add the approximately 70 kb of alphoid DNA to any BAC carrying a gene of interest to generate a HAC vector. The method can also be used to link any unrelated BAC or PAC insert onto another BAC clone. The EL350 bacteria are an excellent host for building up complex vectors by a combination of homologous and loxP/Cre recombination.
Mechanism of mismatch recognition revealed by human MutS[beta] bound to unpaired DNA loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Shikha; Gellert, Martin; Yang, Wei
2012-04-17
DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutS{alpha} is well characterized. We report here crystal structures of human MutS{beta} in complex with DNA containing insertion-deletion loops (IDL) of two, three, four or six unpaired nucleotides. In contrast to eukaryotic MutS{alpha} and bacterial MutS, which bind the base of a mismatched nucleotide, MutS{beta} binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flippedmore » out into the major groove and partially exposed to solvent. A normal downstream base pair can become unpaired; a single unpaired base can thereby be converted to an IDL of two nucleotides and recognized by MutS{beta}. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.« less
Sherrer, Shanen M.; Taggart, David J.; Pack, Lindsey R.; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai
2012-01-01
N- (deoxyguanosin-8-yl)-1-aminopyrene (dGAP) is the predominant nitro polyaromatic hydrocarbon product generated from the air pollutant 1-nitropyrene reacting with DNA. Previous studies have shown that dGAP induces genetic mutations in bacterial and mammalian cells. One potential source of these mutations is the error-prone bypass of dGAP lesions catalyzed by the low-fidelity Y-family DNA polymerases. To provide a comparative analysis of the mutagenic potential of the translesion DNA synthesis (TLS) of dGAP, we employed short oligonucleotide sequencing assays (SOSAs) with the model Y-family DNA polymerase from Sulfolobus solfataricus, DNA Polymerase IV (Dpo4), and the human Y-family DNA polymerases eta (hPolη), kappa (hPolκ), and iota (hPolι). Relative to undamaged DNA, all four enzymes generated far more mutations (base deletions, insertions, and substitutions) with a DNA template containing a site-specifically placed dGAP. Opposite dGAP and at an immediate downstream template position, the most frequent mutations made by the three human enzymes were base deletions and the most frequent base substitutions were dAs for all enzymes. Based on the SOSA data, Dpo4 was the least error-prone Y-family DNA polymerase among the four enzymes during the TLS of dGAP. Among the three human Y-family enzymes, hPolκ made the fewest mutations at all template positions except opposite the lesion site. hPolκ was significantly less error-prone than hPolι and hPolη during the extension of dGAP bypass products. Interestingly, the most frequent mutations created by hPolι at all template positions were base deletions. Although hRev1, the fourth human Y-family enzyme, could not extend dGAP bypass products in our standing start assays, it preferentially incorporated dCTP opposite the bulky lesion. Collectively, these mutagenic profiles suggest that hPolkk and hRev1 are the most suitable human Y-family DNA polymerases to perform TLS of dGAP in humans. PMID:22917544
Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle
2010-01-01
Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779
Optical tweezers reveal how proteins alter replication
NASA Astrophysics Data System (ADS)
Chaurasiya, Kathy
Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.
[Construction and characterization of a cDNA library from human liver tissue of cirrhosis].
Chen, Xiao-hong; Chen, Zhi; Chen, Feng; Zhu, Hai-hong; Zhou, Hong-juan; Yao, Hang-ping
2005-03-01
To construct a cDNA library from human liver tissue of cirrhosis. The total RNA from human liver tissue of cirrhosis was extracted using Trizol method, and the mRNA was purified using mRNA purification kit. SMART technique and CDSIII/3' primer were used for first-strand cDNA synthesis. Long distance PCR was then used to synthesize the double-strand cDNA that was then digested by proteinase K and Sfi I, and was fractionated by CHOMA SPIN-400 column. The cDNA fragments longer than 0.4 kb were collected and ligated to lambdaTripl Ex2 vector. Then lambda-phage packaging reaction and library amplification were performed. The qualities of both unamplified and amplified cDNA libraries was strictly checked by conventional titer determination. Eleven plaques were randomly picked and tested using PCR with universal primers derived from the sequence flanking the vector. The titers of unamplifed and amplified libraries were 1.03 x 10(6) pfu/ml and 1.36 x 10(9) pfu/ml respectively. The percentages of recombinants from both libraries were 97.24 % in unamplified library and 99.02 % in amplified library. The lengths of the inserts were 1.02 kb in average (36.36 % 1 approximately equals 2 kb and 63.64 % 0.5 approximately equals 1.0 kb). A high quality cDNA library from human liver tissue of cirrhosis was constructed successfully, which can be used for screening and cloning new special genes associated with the occurrence of cirrhosis.
Quadros, Rolen M; Miura, Hiromi; Harms, Donald W; Akatsuka, Hisako; Sato, Takehito; Aida, Tomomi; Redder, Ronald; Richardson, Guy P; Inagaki, Yutaka; Sakai, Daisuke; Buckley, Shannon M; Seshacharyulu, Parthasarathy; Batra, Surinder K; Behlke, Mark A; Zeiner, Sarah A; Jacobi, Ashley M; Izu, Yayoi; Thoreson, Wallace B; Urness, Lisa D; Mansour, Suzanne L; Ohtsuka, Masato; Gurumurthy, Channabasavaiah B
2017-05-17
Conditional knockout mice and transgenic mice expressing recombinases, reporters, and inducible transcriptional activators are key for many genetic studies and comprise over 90% of mouse models created. Conditional knockout mice are generated using labor-intensive methods of homologous recombination in embryonic stem cells and are available for only ~25% of all mouse genes. Transgenic mice generated by random genomic insertion approaches pose problems of unreliable expression, and thus there is a need for targeted-insertion models. Although CRISPR-based strategies were reported to create conditional and targeted-insertion alleles via one-step delivery of targeting components directly to zygotes, these strategies are quite inefficient. Here we describe Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR), a targeting strategy in which long single-stranded DNA donors are injected with pre-assembled crRNA + tracrRNA + Cas9 ribonucleoprotein (ctRNP) complexes into mouse zygotes. We show for over a dozen loci that Easi-CRISPR generates correctly targeted conditional and insertion alleles in 8.5-100% of the resulting live offspring. Easi-CRISPR solves the major problem of animal genome engineering, namely the inefficiency of targeted DNA cassette insertion. The approach is robust, succeeding for all tested loci. It is versatile, generating both conditional and targeted insertion alleles. Finally, it is highly efficient, as treating an average of only 50 zygotes is sufficient to produce a correctly targeted allele in up to 100% of live offspring. Thus, Easi-CRISPR offers a comprehensive means of building large-scale Cre-LoxP animal resources.
Burstyn, J N; Heiger-Bernays, W J; Cohen, S M; Lippard, S J
2000-11-01
Mapping of cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) DNA adducts over >3000 nucleotides was carried out using a replication blockage assay. The sites of inhibition of modified T4 DNA polymerase, also referred to as stop sites, were analyzed to determine the effects of local sequence context on the distribution of intrastrand cisplatin cross-links. In a 3120 base fragment from replicative form M13mp18 DNA containing 24.6% guanine, 25.5% thymine, 26.9% adenine and 23.0% cytosine, 166 individual stop sites were observed at a bound platinum/nucleotide ratio of 1-2 per thousand. The majority of stop sites (90%) occurred at G(n>2) sequences and the remainder were located at sites containing an AG dinucleotide. For all of the GG sites present in the mapped sequences, including those with Gn(>)2, 89% blocked replication, whereas for the AG sites only 17% blocked replication. These blockage sites were independent of flanking nucleotides in a sequence of N(1)G*G*N(2) where N(1), N(2) = A, C, G, T and G*G* indicates a 1,2-intrastrand platinum cross-link. The absence of long-range sequence dependence was confirmed by monitoring the reaction of cisplatin with a plasmid containing an 800 bp insert of the human telomere repeat sequence (TTAGGG)(n). Platination reactions monitored at several formal platinum/nucleotide ratios or as a function of time reveal that the telomere insert was not preferentially damaged by cisplatin. Both replication blockage and telomere-insert plasmid platination experiments indicate that cisplatin 1,2-intrastrand adducts do not form preferentially at G-rich sequences in vitro.
The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku
di Fagagna, Fabrizio d'Adda; Weller, Geoffrey R.; Doherty, Aidan J.; Jackson, Stephen P.
2003-01-01
Mu bacteriophage inserts its DNA into the genome of host bacteria and is used as a model for DNA transposition events in other systems. The eukaryotic Ku protein has key roles in DNA repair and in certain transposition events. Here we show that the Gam protein of phage Mu is conserved in bacteria, has sequence homology with both subunits of Ku, and has the potential to adopt a similar architecture to the core DNA-binding region of Ku. Through biochemical studies, we demonstrate that Gam and the related protein of Haemophilus influenzae display DNA binding characteristics remarkably similar to those of human Ku. In addition, we show that Gam can interfere with Ty1 retrotransposition in Saccharomyces cerevisiae. These data reveal structural and functional parallels between bacteriophage Gam and eukaryotic Ku and suggest that their functions have been evolutionarily conserved. PMID:12524520
Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H
2006-11-21
Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.
Mobile elements reveal small population size in the ancient ancestors of Homo sapiens.
Huff, Chad D; Xing, Jinchuan; Rogers, Alan R; Witherspoon, David; Jorde, Lynn B
2010-02-02
The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10(-30)), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent.
DNA Glycosylases Search for and Remove Oxidized DNA Bases
Wallace, Susan S.
2014-01-01
The following mini review summarizes recent research from the Author’s laboratory as presented to the Environmental Mutagen Society in October 2012. It provides an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a “zincless finger” with the same properties. Also the “lesion recognition loop” is not involved in lesion recognition rather stabilization of 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the duplex and interact with the opposite strand which may account for its preference for lesions in single stranded DNA. We also showed, using single molecule approaches, that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage. PMID:24123395
Localization of a bacterial group II intron-encoded protein in human cells.
Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; García Pérez, José Luis; Toro, Nicolás
2015-08-05
Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.
Localization of a bacterial group II intron-encoded protein in human cells
Reinoso-Colacio, Mercedes; García-Rodríguez, Fernando Manuel; García-Cañadas, Marta; Amador-Cubero, Suyapa; Pérez, José Luis García; Toro, Nicolás
2015-01-01
Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells. PMID:26244523
Arnaiz, Olivier; Mathy, Nathalie; Baudry, Céline; Malinsky, Sophie; Aury, Jean-Marc; Denby Wilkes, Cyril; Garnier, Olivier; Labadie, Karine; Lauderdale, Benjamin E; Le Mouël, Anne; Marmignon, Antoine; Nowacki, Mariusz; Poulain, Julie; Prajer, Malgorzata; Wincker, Patrick; Meyer, Eric; Duharcourt, Sandra; Duret, Laurent; Bétermier, Mireille; Sperling, Linda
2012-01-01
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of -45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a -10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.
Arnaiz, Olivier; Mathy, Nathalie; Baudry, Céline; Malinsky, Sophie; Aury, Jean-Marc; Denby Wilkes, Cyril; Garnier, Olivier; Labadie, Karine; Lauderdale, Benjamin E.; Le Mouël, Anne; Marmignon, Antoine; Nowacki, Mariusz; Poulain, Julie; Prajer, Malgorzata; Wincker, Patrick; Meyer, Eric; Duharcourt, Sandra; Duret, Laurent; Bétermier, Mireille; Sperling, Linda
2012-01-01
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated. PMID:23071448
Kitchen, J L; Li, Z; Crooke, E
1999-05-11
The initiation of Escherichia coli chromosomal replication by DnaA protein is strongly influenced by the tight binding of the nucleotides ATP and ADP. Anionic phospholipids in a fluid bilayer promote the conversion of inactive ADP-DnaA protein to replicatively active ATP-DnaA protein in vitro, and thus likely play a key role in regulating DnaA activity. Previous studies have revealed that, during this reactivation, a specific region of DnaA protein inserts into the hydrophobic portion of the lipid bilayer in an acidic phospholipid-dependent manner. To elucidate the requirement for acidic phospholipids in the reactivation process, the contribution of electrostatic forces in the interaction of DnaA and lipid was examined. DnaA-lipid binding required anionic phospholipids, and DnaA-lipid binding as well as lipid-mediated release of DnaA-bound nucleotide were inhibited by increased ionic strength, suggesting the involvement of electrostatic interactions in these processes. As the vesicular content of acidic phospholipids was increased, both nucleotide release and DnaA-lipid binding increased in a linear, parallel manner. Given that DnaA-membrane binding, the insertion of DnaA into the membrane, and the consequent nucleotide release all require anionic phospholipids, the acidic headgroup may be necessary to recruit DnaA protein to the membrane for insertion and subsequent reactivation for replication.
Dowen, Jill M.; Putnam, Christopher D.; Kolodner, Richard D.
2010-01-01
The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions. PMID:20421420
Dowen, Jill M; Putnam, Christopher D; Kolodner, Richard D
2010-07-01
The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions.
Using Cellular Proteins to Reveal Mechanisms of HIV Infection | Center for Cancer Research
A vital step in HIV infection is the insertion of viral DNA into the genome of the host cell. In order for the insertion to occur, viral nucleic acid must be transported through the membrane that separates the main cellular compartment (the cytoplasm) from the nucleus, where the host DNA is located. Scientists are actively studying the mechanism used to transport viral DNA
Kleinboelting, Nils; Huep, Gunnar; Weisshaar, Bernd
2017-01-01
SimpleSearch provides access to a database containing information about T-DNA insertion lines of the GABI-Kat collection of Arabidopsis thaliana mutants. These mutants are an important tool for reverse genetics, and GABI-Kat is the second largest collection of such T-DNA insertion mutants. Insertion sites were deduced from flanking sequence tags (FSTs), and the database contains information about mutant plant lines as well as insertion alleles. Here, we describe improvements within the interface (available at http://www.gabi-kat.de/db/genehits.php) and with regard to the database content that have been realized in the last five years. These improvements include the integration of the Araport11 genome sequence annotation data containing the recently updated A. thaliana structural gene descriptions, an updated visualization component that displays groups of insertions with very similar insertion positions, mapped confirmation sequences, and primers. The visualization component provides a quick way to identify insertions of interest, and access to improved data about the exact structure of confirmed insertion alleles. In addition, the database content has been extended by incorporating additional insertion alleles that were detected during the confirmation process, as well as by adding new FSTs that have been produced during continued efforts to complement gaps in FST availability. Finally, the current database content regarding predicted and confirmed insertion alleles as well as primer sequences has been made available as downloadable flat files. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Clemans, Daniel L.; Kolenbrander, Paul E.; Debabov, Dmitri V.; Zhang, Qunying; Lunsford, R. Dwayne; Sakone, Holly; Whittaker, Catherine J.; Heaton, Michael P.; Neuhaus, Francis C.
1999-01-01
Most human oral viridans streptococci participate in intrageneric coaggregations, the cell-to-cell adherence among genetically distinct streptococci. Two genes relevant to these intrageneric coaggregations were identified by transposon Tn916 mutagenesis of Streptococcus gordonii DL1 (Challis). A 626-bp sequence flanking the left end of the transposon was homologous to dltA and dltB of Lactobacillus rhamnosus ATCC 7469 (formerly called Lactobacillus casei). A 60-kb probe based on this flanking sequence was used to identify the homologous DNA in a fosmid library of S. gordonii DL1. This DNA encoded d-alanine-d-alanyl carrier protein ligase that was expressed in Escherichia coli from the fosmid clone. The cloned streptococcal dltA was disrupted by inserting an ermAM cassette, and then it was linearized and transformed into S. gordonii DL1 for allelic replacement. Erythromycin-resistant transformants containing a single insertion in dltA exhibited a loss of d-alanyl esters in lipoteichoic acid (LTA) and a loss of intrageneric coaggregation. This phenotype was correlated with the loss of a 100-kDa surface protein reported previously to be involved in mediating intrageneric coaggregation (C. J. Whittaker, D. L. Clemans, and P. E. Kolenbrander, Infect. Immun. 64:4137–4142, 1996). The mutants retained the parental ability to participate in intergeneric coaggregation with human oral actinomyces, indicating the specificity of the mutation in altering intrageneric coaggregations. The mutants were altered morphologically and exhibited aberrant cell septa in a variety of pleomorphs. The natural DNA transformation frequency was reduced 10-fold in these mutants. Southern analysis of chromosomal DNAs from various streptococcal species with the dltA probe revealed the presence of this gene in most viridans streptococci. Thus, it is hypothesized that d-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of this adhesin to mediate intrageneric coaggregation. PMID:10225909
Clemans, D L; Kolenbrander, P E; Debabov, D V; Zhang, Q; Lunsford, R D; Sakone, H; Whittaker, C J; Heaton, M P; Neuhaus, F C
1999-05-01
Most human oral viridans streptococci participate in intrageneric coaggregations, the cell-to-cell adherence among genetically distinct streptococci. Two genes relevant to these intrageneric coaggregations were identified by transposon Tn916 mutagenesis of Streptococcus gordonii DL1 (Challis). A 626-bp sequence flanking the left end of the transposon was homologous to dltA and dltB of Lactobacillus rhamnosus ATCC 7469 (formerly called Lactobacillus casei). A 60-kb probe based on this flanking sequence was used to identify the homologous DNA in a fosmid library of S. gordonii DL1. This DNA encoded D-alanine-D-alanyl carrier protein ligase that was expressed in Escherichia coli from the fosmid clone. The cloned streptococcal dltA was disrupted by inserting an ermAM cassette, and then it was linearized and transformed into S. gordonii DL1 for allelic replacement. Erythromycin-resistant transformants containing a single insertion in dltA exhibited a loss of D-alanyl esters in lipoteichoic acid (LTA) and a loss of intrageneric coaggregation. This phenotype was correlated with the loss of a 100-kDa surface protein reported previously to be involved in mediating intrageneric coaggregation (C. J. Whittaker, D. L. Clemans, and P. E. Kolenbrander, Infect. Immun. 64:4137-4142, 1996). The mutants retained the parental ability to participate in intergeneric coaggregation with human oral actinomyces, indicating the specificity of the mutation in altering intrageneric coaggregations. The mutants were altered morphologically and exhibited aberrant cell septa in a variety of pleomorphs. The natural DNA transformation frequency was reduced 10-fold in these mutants. Southern analysis of chromosomal DNAs from various streptococcal species with the dltA probe revealed the presence of this gene in most viridans streptococci. Thus, it is hypothesized that D-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of this adhesin to mediate intrageneric coaggregation.
NcoI and TaqI RFLPs for human M creatine kinase (CKM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, M.B.; Hejtmancik, J.F.; Ashizawa, Tetsuo
1988-09-12
Probe pHMCKUT contains a 135 bp cDNA fragment inserted into pGEM 3. The probe corresponds to nucleotides 1,201 to 1,336 located in the 3{prime} untranslated region of human M creatine kinase. The probe is specific for human M creatine kinase and does not hybridize to human B cretine kinase sequences. NcoI identifies a two allele polymorphism of a band at either 2.5 kb or 3.6 kb. TaqI identifies a two allele polymorphism at either 3.8 kb or 4.5 kb. Human M creatine has been localized to chromosome 19q. Autosomal co-dominant inheritance was shown in six informative Caucasian families.
Replication infidelity via a mismatch with Watson–Crick geometry
Bebenek, Katarzyna; Pedersen, Lars C.; Kunkel, Thomas A.
2011-01-01
In describing the DNA double helix, Watson and Crick suggested that “spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms.” Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson–Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base–base mismatch with Watson–Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson–Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson–Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G•T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA. PMID:21233421
Replication infidelity via a mismatch with Watson-Crick geometry.
Bebenek, Katarzyna; Pedersen, Lars C; Kunkel, Thomas A
2011-02-01
In describing the DNA double helix, Watson and Crick suggested that "spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms." Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson-Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base-base mismatch with Watson-Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson-Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson-Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G • T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA.
Glinsky, Gennadi V.
2016-01-01
Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290
NASA Astrophysics Data System (ADS)
Sherman, Paula A.; Fyfe, James A.
1990-07-01
The human immunodeficiency virus (HIV) integration protein, a potential target for selective antiviral therapy, was expressed in Escherichia coli. The purified protein, free of detectable contaminating endonucleases, selectively cleaved double-stranded DNA oligonucleotides that mimic the U3 and the U5 termini of linear HIV DNA. Two nucleotides were removed from the 3' ends of both the U5 plus strand and the U3 minus strand; in both cases, cleavage was adjacent to a conserved CA dinucleotide. The reaction was metal-ion dependent, with a preference for Mn2+ over Mg2+. Reaction selectivity was further demonstrated by the lack of cleavage of an HIV U5 substrate on the complementary (minus) strand, an analogous substrate that mimics the U3 terminus of an avian retrovirus, and an HIV U5 substrate in which the conserved CA dinucleotide was replaced with a TA dinucleotide. Such an integration protein-mediated cleavage reaction is expected to occur as part of the integration event in the retroviral life cycle, in which a double-stranded DNA copy of the viral RNA genome is inserted into the host cell DNA.
Sullivan, Thomas D.; Rooney, Peggy J.; Klein, Bruce S.
2002-01-01
The dimorphic fungi Blastomyces dermatitidis and Histoplasma capsulatum cause systemic mycoses in humans and other animals. Forward genetic approaches to generating and screening mutants for biologically important phenotypes have been underutilized for these pathogens. The plant-transforming bacterium Agrobacterium tumefaciens was tested to determine whether it could transform these fungi and if the fate of transforming DNA was suited for use as an insertional mutagen. Yeast cells from both fungi and germinating conidia from B. dermatitidis were transformed via A. tumefaciens by using hygromycin resistance for selection. Transformation frequencies up to 1 per 100 yeast cells were obtained at high effector-to-target ratios of 3,000:1. B. dermatitidis and H. capsulatum ura5 lines were complemented with transfer DNA vectors expressing URA5 at efficiencies 5 to 10 times greater than those obtained using hygromycin selection. Southern blot analyses indicated that in 80% of transformants the transferred DNA was integrated into chromosomal DNA at single, unique sites in the genome. Progeny of B. dermatitidis transformants unexpectedly showed that a single round of colony growth under hygromycin selection or visible selection of transformants by lacZ expression generated homokaryotic progeny from multinucleate yeast. Theoretical analysis of random organelle sorting suggests that the majority of B. dermatitidis cells would be homokaryons after the ca. 20 generations necessary for colony formation. Taken together, the results demonstrate that A. tumefaciens efficiently transfers DNA into B. dermatitidis and H. capsulatum and has the properties necessary for use as an insertional mutagen in these fungi. PMID:12477790
Dunn, R. C.; Laurie, C. C.
1995-01-01
Variation in the DNA sequence and level of alcohol dehydrogenase (Adh) gene expression in Drosophila melanogaster have been studied to determine what types of DNA polymorphisms contribute to phenotypic variation in natural populations. The Adh gene, like many others, shows a high level of variability in both DNA sequence and quantitative level of expression. A number of transposable element insertions occur in the Adh region and one of these, a copia insertion in the 5' flanking region, is associated with unusually low Adh expression. To determine whether this insertion (called RI42) causes the low expression level, the insertion was excised from the cloned RI42 Adh gene and the effect was assessed by P-element transformation. Removal of this insertion causes a threefold increase in the level of ADH, clearly showing that it contributes to the naturally occurring variation in expression at this locus. Removal of all but one LTR also causes a threefold increase, indicating that the mechanism is not a simple sequence disruption. Furthermore, this copia insertion, which is located between the two Adh promoters and their upstream enhancer sequences, has differential effects on the levels of proximal and distal transcripts. Finally, a test for the possible modifying effects of two suppressor loci, su(w(a)) and su(f), on this insertional mutation was negative, in contrast to a previous report in the literature. PMID:7498745
Yohn, Chris T; Jiang, Zhaoshi; McGrath, Sean D; Hayden, Karen E; Khaitovich, Philipp; Johnson, Matthew E; Eichler, Marla Y; McPherson, John D; Zhao, Shaying; Pääbo, Svante; Eichler, Evan E
2005-04-01
Retroviral infections of the germline have the potential to episodically alter gene function and genome structure during the course of evolution. Horizontal transmissions between species have been proposed, but little evidence exists for such events in the human/great ape lineage of evolution. Based on analysis of finished BAC chimpanzee genome sequence, we characterize a retroviral element (Pan troglodytes endogenous retrovirus 1 [PTERV1]) that has become integrated in the germline of African great ape and Old World monkey species but is absent from humans and Asian ape genomes. We unambiguously map 287 retroviral integration sites and determine that approximately 95.8% of the insertions occur at non-orthologous regions between closely related species. Phylogenetic analysis of the endogenous retrovirus reveals that the gorilla and chimpanzee elements share a monophyletic origin with a subset of the Old World monkey retroviral elements, but that the average sequence divergence exceeds neutral expectation for a strictly nuclear inherited DNA molecule. Within the chimpanzee, there is a significant integration bias against genes, with only 14 of these insertions mapping within intronic regions. Six out of ten of these genes, for which there are expression data, show significant differences in transcript expression between human and chimpanzee. Our data are consistent with a retroviral infection that bombarded the genomes of chimpanzees and gorillas independently and concurrently, 3-4 million years ago. We speculate on the potential impact of such recent events on the evolution of humans and great apes.
Young, Gregory J; Zhang, Shiping; Mirsky, Henry P; Cressman, Robert F; Cong, Bin; Ladics, Gregory S; Zhong, Cathy X
2012-10-01
Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schonhoft, Joseph D; Stivers, James T
2013-04-16
Human uracil DNA glycosylase (hUNG) plays a central role in DNA repair and programmed mutagenesis of Ig genes, requiring it to act on sparsely or densely spaced uracil bases located in a variety of contexts, including U/A and U/G base pairs, and potentially uracils within single-stranded DNA (ssDNA). An interesting question is whether the facilitated search mode of hUNG, which includes both DNA sliding and hopping, changes in these different contexts. Here we find that hUNG uses an enhanced local search mode when it acts on uracils in ssDNA, and also, in a context where uracils are densely clustered in duplex DNA. In the context of ssDNA, hUNG performs an enhanced local search by sliding with a mean sliding length larger than that of double-stranded DNA (dsDNA). In the context of duplex DNA, insertion of high-affinity abasic product sites between two uracil lesions serves to significantly extend the apparent sliding length on dsDNA from 4 to 20 bp and, in some cases, leads to directionally biased 3' → 5' sliding. The presence of intervening abasic product sites mimics the situation where hUNG acts iteratively on densely spaced uracils. The findings suggest that intervening product sites serve to increase the amount of time the enzyme remains associated with DNA as compared to nonspecific DNA, which in turn increases the likelihood of sliding as opposed to falling off the DNA. These findings illustrate how the search mechanism of hUNG is not predetermined but, instead, depends on the context in which the uracils are located.
Suzuki, Naomi; Yasui, Manabu; Santosh Laxmi, Y R; Ohmori, Haruo; Hanaoka, Fumio; Shibutani, Shinya
2004-09-07
Estrogen replacement therapy (ERT), composed of equilenin, is associated with increased risk of breast, ovarian, and endometrial cancers. Several diastereoisomers of unique dC and dA DNA adducts were derived from 4-hydroxyequilenin (4-OHEN), a metabolite of equilenin, and have been detected in women receiving ERT. To explore the miscoding property of 4-OHEN-dC adduct, site-specifically modified oligodeoxynucleotides (Pk-1, Pk-2, Pk-3, and Pk-4) containing a single diastereoisomer of 4-OHEN-dC were prepared by a postsynthetic method. Among them, major 4-OHEN-dC-modified oligodeoxynucleotides (Pk-3 and Pk-4) were used to prepare the templates for primer extension reactions catalyzed by DNA polymerase (pol) alpha, pol eta, and pol kappa. Primer extension was retarded one base prior to the lesion and opposite the lesion; stronger blockage was observed with pol alpha, while with human pol eta or pol kappa, a fraction of the primers was extended past the lesion. Steady-state kinetic studies showed that both pol kappa and pol eta inserted dCMP and dAMP opposite the 4-OHEN-dC and extended past the lesion. Never or less-frequently, dGMP, the correct base, was inserted opposite the lesion. The relative bypass frequency past the 4-OHEN-dC lesion with pol eta was at least 3 orders of magnitude higher than that for pol kappa, as observed for primer extension reactions. The bypass frequency past the dA.4-OHEN-dC adduct in Pk-4 was 2 orders of magnitude more efficient than that past the adduct in Pk-3. Thus, 4-OHEN-dC is a highly miscoding lesion capable of generating C --> T transitions and C --> G transversions. The miscoding frequency and specificity of 4-OHEN-dC were strikingly influenced by the adduct stereochemistry and DNA polymerase used.
Seto, P; Hirayu, H; Magnusson, R P; Gestautas, J; Portmann, L; DeGroot, L J; Rapoport, B
1987-01-01
The thyroid microsomal antigen (MSA) in autoimmune thyroid disease is a protein of approximately 107 kD. We screened a human thyroid cDNA library constructed in the expression vector lambda gt11 with anti-107-kD monoclonal antibodies. Of five clones obtained, the recombinant beta-galactosidase fusion protein from one clone (PM-5) was confirmed to react with the monoclonal antiserum. The complementary DNA (cDNA) insert from PM-5 (0.8 kb) was used as a probe on Northern blot analysis to estimate the size of the mRNA coding for the MSA. The 2.9-kb messenger RNA (mRNA) species observed was the same size as that coding for human thyroid peroxidase (TPO). The probe did not bind to human liver mRNA, indicating the thyroid-specific nature of the PM-5-related mRNA. The nucleotide sequence of PM-5 (842 bp) was determined and consisted of a single open reading frame. Comparison of the nucleotide sequence of PM-5 with that presently available for pig TPO indicates 84% homology. In conclusion, a cDNA clone representing part of the microsomal antigen has been isolated. Sequence homology with porcine TPO, as well as identity in the size of the mRNA species for both the microsomal antigen and TPO, indicate that the microsomal antigen is, at least in part, TPO. Images PMID:3654979
The expanding universe of transposon technologies for gene and cell engineering.
Ivics, Zoltán; Izsvák, Zsuzsanna
2010-12-07
Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons) can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (sh)RNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB) was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB), discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.
Public antibodies to malaria antigens generated by two LAIR1 insertion modalities.
Pieper, Kathrin; Tan, Joshua; Piccoli, Luca; Foglierini, Mathilde; Barbieri, Sonia; Chen, Yiwei; Silacci-Fregni, Chiara; Wolf, Tobias; Jarrossay, David; Anderle, Marica; Abdi, Abdirahman; Ndungu, Francis M; Doumbo, Ogobara K; Traore, Boubacar; Tran, Tuan M; Jongo, Said; Zenklusen, Isabelle; Crompton, Peter D; Daubenberger, Claudia; Bull, Peter C; Sallusto, Federica; Lanzavecchia, Antonio
2017-08-31
In two previously described donors, the extracellular domain of LAIR1, a collagen-binding inhibitory receptor encoded on chromosome 19 (ref. 1), was inserted between the V and DJ segments of an antibody. This insertion generated, through somatic mutations, broadly reactive antibodies against RIFINs, a type of variant antigen expressed on the surface of Plasmodium falciparum-infected erythrocytes. To investigate how frequently such antibodies are produced in response to malaria infection, we screened plasma from two large cohorts of individuals living in malaria-endemic regions. Here we report that 5-10% of malaria-exposed individuals, but none of the European blood donors tested, have high levels of LAIR1-containing antibodies that dominate the response to infected erythrocytes without conferring enhanced protection against febrile malaria. By analysing the antibody-producing B cell clones at the protein, cDNA and gDNA levels, we characterized additional LAIR1 insertions between the V and DJ segments and discovered a second insertion modality whereby the LAIR1 exon encoding the extracellular domain and flanking intronic sequences are inserted into the switch region. By exon shuffling, this mechanism leads to the production of bispecific antibodies in which the LAIR1 domain is precisely positioned at the elbow between the VH and CH1 domains. Additionally, in one donor the genomic DNA encoding the VH and CH1 domains was deleted, leading to the production of a camel-like LAIR1-containing antibody. Sequencing of the switch regions of memory B cells from European blood donors revealed frequent templated inserts originating from transcribed genes that, in rare cases, comprised exons with orientations and frames compatible with expression. These results reveal different modalities of LAIR1 insertion that lead to public and dominant antibodies against infected erythrocytes and suggest that insertion of templated DNA represents an additional mechanism of antibody diversification that can be selected in the immune response against pathogens and exploited for B cell engineering.
Scanning the human genome at kilobase resolution.
Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming
2008-05-01
Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.
Ribosomal DNA Integrating rAAV-rDNA Vectors Allow for Stable Transgene Expression
Lisowski, Leszek; Lau, Ashley; Wang, Zhongya; Zhang, Yue; Zhang, Feijie; Grompe, Markus; Kay, Mark A
2012-01-01
Although recombinant adeno-associated virus (rAAV) vectors are proving to be efficacious in clinical trials, the episomal character of the delivered transgene restricts their effectiveness to use in quiescent tissues, and may not provide lifelong expression. In contrast, integrating vectors enhance the risk of insertional mutagenesis. In an attempt to overcome both of these limitations, we created new rAAV-rDNA vectors, with an expression cassette flanked by ribosomal DNA (rDNA) sequences capable of homologous recombination into genomic rDNA. We show that after in vivo delivery the rAAV-rDNA vectors integrated into the genomic rDNA locus 8–13 times more frequently than control vectors, providing an estimate that 23–39% of the integrations were specific to the rDNA locus. Moreover, a rAAV-rDNA vector containing a human factor IX (hFIX) expression cassette resulted in sustained therapeutic levels of serum hFIX even after repeated manipulations to induce liver regeneration. Because of the relative safety of integration in the rDNA locus, these vectors expand the usage of rAAV for therapeutics requiring long-term gene transfer into dividing cells. PMID:22990671
Shi, Xue; Zeng, Haiyang; Xue, Yadong; Luo, Meizhong
2011-10-11
Large-insert BAC and BIBAC libraries are important tools for structural and functional genomics studies of eukaryotic genomes. To facilitate the construction of BAC and BIBAC libraries and the transfer of complete large BAC inserts into BIBAC vectors, which is desired in positional cloning, we developed a pair of new BAC and BIBAC vectors. The new BAC vector pIndigoBAC536-S and the new BIBAC vector BIBAC-S have the following features: 1) both contain two 18-bp non-palindromic I-SceI sites in an inverted orientation at positions that flank an identical DNA fragment containing the lacZ selection marker and the cloning site. Large DNA inserts can be excised from the vectors as single fragments by cutting with I-SceI, allowing the inserts to be easily sized. More importantly, because the two vectors contain different antibiotic resistance genes for transformant selection and produce the same non-complementary 3' protruding ATAA ends by I-SceI that suppress self- and inter-ligations, the exchange of intact large genomic DNA inserts between the BAC and BIBAC vectors is straightforward; 2) both were constructed as high-copy composite vectors. Reliable linearized and dephosphorylated original low-copy pIndigoBAC536-S and BIBAC-S vectors that are ready for library construction can be prepared from the high-copy composite vectors pHZAUBAC1 and pHZAUBIBAC1, respectively, without the need for additional preparation steps or special reagents, thus simplifying the construction of BAC and BIBAC libraries. BIBAC clones constructed with the new BIBAC-S vector are stable in both E. coli and Agrobacterium. The vectors can be accessed through our website http://GResource.hzau.edu.cn. The two new vectors and their respective high-copy composite vectors can largely facilitate the construction and characterization of BAC and BIBAC libraries. The transfer of complete large genomic DNA inserts from one vector to the other is made straightforward.
Schiavo, G; Strillacci, M G; Ribani, A; Bovo, S; Roman-Ponce, S I; Cerolini, S; Bertolini, F; Bagnato, A; Fontanesi, L
2018-06-01
Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage. © 2018 Stichting International Foundation for Animal Genetics.
Thermodynamic impact of abasic sites on simulated translesion DNA synthesis.
Malina, Jaroslav; Brabec, Viktor
2014-06-16
Loss of a base in DNA and the creation of an abasic (apurinic/apyrimidinic, AP) site is a frequent lesion that may occur spontaneously, or as a consequence of the action of DNA-damaging agents. The AP lesion is mutagenic or lethal if not repaired. We report a systematic thermodynamic investigation by differential scanning calorimetry on the evolution, during primer extension, of a model AP site in chemically simulated DNA translesion synthesis. Incorporation of dAMP (deoxyadenosine monophosphate), as well as dTMP (deoxythymidine monophosphate), opposite an AP site is enthalpically unfavorable, although incorporation of dTMP is more enthalpically unfavorable than that of dAMP. This finding is in a good agreement with experimental data showing that AP sites block various DNA polymerases of eukaryotic and prokaryotic origin and that, if bypassed, dAMP is preferentially inserted, whereas insertion of dTMP is less likely. The results emphasize the importance of thermodynamic contributions to the insertion of nucleotides opposite an AP site by DNA polymerases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regulation of human MutYH DNA glycosylase by the E3 ubiquitin ligase mule.
Dorn, Julia; Ferrari, Elena; Imhof, Ralph; Ziegler, Nathalie; Hübscher, Ulrich
2014-03-07
Oxidation of DNA is a frequent and constantly occurring event. One of the best characterized oxidative DNA lesions is 7,8-dihydro-8-oxoguanine (8-oxo-G). It instructs most DNA polymerases to preferentially insert an adenine (A) opposite 8-oxo-G instead of the appropriate cytosine (C) thus showing miscoding potential. The MutY DNA glycosylase homologue (MutYH) recognizes A:8-oxo-G mispairs and removes the mispaired A giving way to the canonical base excision repair that ultimately restores undamaged guanine (G). Here we characterize for the first time in detail a posttranslational modification of the human MutYH DNA glycosylase. We show that MutYH is ubiquitinated in vitro and in vivo by the E3 ligase Mule between amino acids 475 and 535. Mutation of five lysine residues in this region significantly stabilizes MutYH, suggesting that these are the target sites for ubiquitination. The endogenous MutYH protein levels depend on the amount of expressed Mule. Furthermore, MutYH and Mule physically interact. We found that a ubiquitination-deficient MutYH mutant shows enhanced binding to chromatin. The mutation frequency of the ovarian cancer cell line A2780, analyzed at the HPRT locus can be increased upon oxidative stress and depends on the MutYH levels that are regulated by Mule. This reflects the importance of tightly regulated MutYH levels in the cell. In summary our data show that ubiquitination is an important regulatory mechanism for the essential MutYH DNA glycosylase in human cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremer, T.; Popp, S.; Emmerich, P.
1990-01-01
Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the 1q12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co-gamma-rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreadsmore » were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization.« less
Phenotypic characterization of an Arabidopsis T-DNA insertion line SALK_063500.
Sng, Natasha J; Paul, Anna-Lisa; Ferl, Robert J
2018-06-01
In this article we report the identification of a homozygous lethal T-DNA (transfer DNA) line within the coding region of the At1G05290 gene in the genome of Arabidopsis thaliana (Arabidopsis) line, SALK_063500. The T-DNA insertion is found within exon one of the AT1G05290 gene, however a homozygous T-DNA allele is unattainable. In the heterozygous T-DNA allele the expression levels of AT1G05290 were compared to wild type Arabidopsis (Col-0, Columbia). Further analyses revealed an aberrant silique phenotype found in the heterozygous SALK_063500 plants that is attributed to the reduced rate of pollen tube germination. These data are original and have not been published elsewhere.
“Agrolistic” transformation of plant cells: Integration of T-strands generated in planta
Hansen, Geneviève; Chilton, Mary-Dell
1996-01-01
We describe a novel plant transformation technique, termed “agrolistic,” that combines the advantages of the Agrobacterium transformation system with the high efficiency of biolistic DNA delivery. Agrolistic transformation allows integration of the gene of interest without undesired vector sequence. The virulence genes virD1 and virD2 from Agrobacterium tumefaciens that are required in bacteria for excision of T-strands from the tumor-inducing plasmid were placed under the control of the CaMV35S promoter and codelivered with a target plasmid containing border sequences flanking the gene of interest. Transient expression assays in tobacco and in maize cells indicated that vir gene products caused strand-specific nicking in planta at the right border sequence, similar to VirD1/VirD2-catalyzed T-strand excision observed in Agrobacterium. Agrolistically transformed tobacco calli were obtained after codelivery of virD1 and virD2 genes together with a selectable marker flanked by border sequences. Some inserts exhibited right junctions with plant DNA that corresponded precisely to the sequence expected for T-DNA (portion of the tumor-inducing plasmid that is transferred to plant cells) insertion events. We designate these as “agrolistic” inserts, as distinguished from “biolistic” inserts. Both types of inserts were found in some transformed lines. The frequency of agrolistic inserts was 20% that of biolistic inserts. PMID:8962167
Molecular mechanisms of retroviral integration site selection
Kvaratskhelia, Mamuka; Sharma, Amit; Larue, Ross C.; Serrao, Erik; Engelman, Alan
2014-01-01
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic. PMID:25147212
Kolk, A H; Noordhoek, G T; de Leeuw, O; Kuijper, S; van Embden, J D
1994-01-01
For the detection of Mycobacterium tuberculosis by PCR, the IS6110 sequence was used. A modified target was constructed by insertion of 56 nucleotides in the IS6110 insertion element of Mycobacterium bovis BCG. This modified insertion sequence was integrated into the genome of Mycobacterium smegmatis, a mycobacterium species which does not contain the IS6110 element. When DNA from the modified M. smegmatis 1008 strain was amplified with IS6110-specific primers INS1 and INS2, a band of 301 bp was seen on agarose gel, whereas the PCR product of M. tuberculosis complex DNA was a 245-bp fragment with these primers. The addition of a small number of M. smegmatis 1008 cells to clinical samples before DNA purification enables the detection of problems which may be due to the loss of DNA in the isolation procedure or to the presence of inhibitors. The presence of inhibitors of the amplification reaction can be confirmed by the addition of M. smegmatis 1008 DNA after the DNA isolation procedure. Furthermore, competition between the different target DNAs of M. smegmatis 1008 DNA and M. tuberculosis complex DNA enables the estimation of the number of IS6110 elements in the clinical sample. Images PMID:8051267
Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector.
Xu, Hai; Bao, Xi; Wang, Yiwei; Xu, Yue; Deng, Bihua; Lu, Yu; Hou, Jibo
2018-03-20
DNA delivery with bacteriophage by surface-displayed mammalian cell penetrating peptides has been reported. Although, various phages have been used to facilitate DNA transfer by surface displaying the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide), no similar study has been conducted using T7 phage. In this study, we engineeredT7 phage as a DNA targeting delivery vector to facilitate cellular internalization. We constructed recombinant T7 phages that displayed Tat peptide on their surface and carried eukaryotic expression box (EEB) as a part of their genomes (T7-EEB-Tat). We demonstrated that T7 phage harboring foreign gene insertion had packaged into infective progeny phage particles. Moreover, when mammalian cells that were briefly exposed to T7-EEB-Tat, expressed a significant higher level of the marker gene with the control cells infected with the wide type phage without displaying Tat peptides. These data suggested that the potential of T7 phage as an effective delivery vector for DNA vaccine transfer.
The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.
Monot, Clément; Kuciak, Monika; Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël
2013-05-01
L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.
Smith, Michael G; Gianoulis, Tara A; Pukatzki, Stefan; Mekalanos, John J; Ornston, L Nicholas; Gerstein, Mark; Snyder, Michael
2007-03-01
Acinetobacter baumannii has emerged as an important and problematic human pathogen as it is the causative agent of several types of infections including pneumonia, meningitis, septicemia, and urinary tract infections. We explored the pathogenic content of this harmful pathogen using a combination of DNA sequencing and insertional mutagenesis. The genome of this organism was sequenced using a strategy involving high-density pyrosequencing, a novel, rapid method of high-throughput sequencing. Excluding the rDNA repeats, the assembled genome is 3,976,746 base pairs (bp) and has 3830 ORFs. A significant fraction of ORFs (17.2%) are located in 28 putative alien islands, indicating that the genome has acquired a large amount of foreign DNA. Consistent with its role in pathogenesis, a remarkable number of the islands (16) contain genes implicated in virulence, indicating the organism devotes a considerable portion of its genes to pathogenesis. The largest island contains elements homologous to the Legionella/Coxiella Type IV secretion apparatus. Type IV secretion systems have been demonstrated to be important for virulence in other organisms and thus are likely to help mediate pathogenesis of A. baumannii. Insertional mutagenesis generated avirulent isolates of A. baumannii and verified that six of the islands contain virulence genes, including two novel islands containing genes that lacked homology with others in the databases. The DNA sequencing approach described in this study allows the rapid elucidation of the DNA sequence of any microbe and, when combined with genetic screens, can identify many novel genes important for microbial pathogenesis.
Matthews, R J; Cahir, E D; Thomas, M L
1990-01-01
Protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.13.48) have been implicated in the regulation of cell growth; however, to date few tyrosine phosphatases have been characterized. To identify additional family members, the cDNA for the human tyrosine phosphatase leukocyte common antigen (LCA; CD45) was used to screen, under low stringency, a mouse pre-B-cell cDNA library. Two cDNA clones were isolated and sequence analysis predicts a protein sequence of 793 amino acids. We have named the molecule LRP (LCA-related phosphatase). RNA transfer analysis indicates that the cDNAs were derived from a 3.2-kilobase mRNA. The LRP mRNA is transcribed in a wide variety of tissues. The predicted protein structure can be divided into the following structural features: a short 19-amino acid leader sequence, an exterior domain of 123 amino acids that is predicted to be highly glycosylated, a 24-amino acid membrane-spanning region, and a 627-amino acid cytoplasmic region. The cytoplasmic region contains two approximately 260-amino acid domains, each with homology to the tyrosine phosphatase family. One of the cDNA clones differed in that it had a 108-base-pair insertion that, while preserving the reading frame, would disrupt the first protein-tyrosine-phosphatase domain. Analysis of genomic DNA indicates that the insertion is due to an alternatively spliced exon. LRP appears to be evolutionarily conserved as a putative homologue has been identified in the invertebrate Styela plicata. Images PMID:2162042
GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database.
Kleinboelting, Nils; Huep, Gunnar; Kloetgen, Andreas; Viehoever, Prisca; Weisshaar, Bernd
2012-01-01
T-DNA insertion mutants are very valuable for reverse genetics in Arabidopsis thaliana. Several projects have generated large sequence-indexed collections of T-DNA insertion lines, of which GABI-Kat is the second largest resource worldwide. User access to the collection and its Flanking Sequence Tags (FSTs) is provided by the front end SimpleSearch (http://www.GABI-Kat.de). Several significant improvements have been implemented recently. The database now relies on the TAIRv10 genome sequence and annotation dataset. All FSTs have been newly mapped using an optimized procedure that leads to improved accuracy of insertion site predictions. A fraction of the collection with weak FST yield was re-analysed by generating new FSTs. Along with newly found predictions for older sequences about 20,000 new FSTs were included in the database. Information about groups of FSTs pointing to the same insertion site that is found in several lines but is real only in a single line are included, and many problematic FST-to-line links have been corrected using new wet-lab data. SimpleSearch currently contains data from ~71,000 lines with predicted insertions covering 62.5% of the 27,206 nuclear protein coding genes, and offers insertion allele-specific data from 9545 confirmed lines that are available from the Nottingham Arabidopsis Stock Centre.
Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.
Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia
2016-09-12
Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.
Spooner, David M; Ruess, Holly; Iorizzo, Massimo; Senalik, Douglas; Simon, Philipp
2017-02-01
We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid ( Dc MP). Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus . Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named Dc MP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus , (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid. © 2017 Spooner et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons public domain license (CC0 1.0).
Lee, Young-Sam; Gregory, Mark T.; Yang, Wei
2014-01-01
DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3–Rev7–PolD2–PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3–Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3′ guanine and Pol ζ4 to extend the primers. PMID:24449906
Lee, Young-Sam; Gregory, Mark T; Yang, Wei
2014-02-25
DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.
Traverse, Charles C.
2017-01-01
ABSTRACT Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola, which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. PMID:28851848
Application of signature-tagged mutagenesis to the study of virulence of Erwinia amylovora.
Wang, Limei; Beer, Steven V
2006-12-01
To identify genes that contribute to the virulence of Erwinia amylovora in plants, 1892 mutants were created and screened in pools of < or =96 mutants using signature-tagged mutagenesis. Nineteen mutants were not recovered from apple shoots following inoculation, which suggested that the insertions in these mutants affected genes important for bacterial survival in planta. DNA flanking the Tn5 insertions in the 19 mutants was sequenced and analysed by blast. One mutant had a Tn5 insertion in amsE, a gene involved in the biosynthesis of exopolysaccaride (EPS). Fourteen mutants had insertions in loci that were implicated in biosynthesis or transport of particular amino acids or nucleotides, a site-specific recombinase active during cell division and several putative proteins of unknown function; the flanking DNA of the remaining four mutants lacked significant homology with any DNA in the database. When inoculated individually to hosts, 10 of the 19 mutants caused significantly less disease and multiplied less, as compared with the wild-type strain.
In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome
2013-01-01
Background Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only known rDNA-specific DNA transposon, Pokey (superfamily: piggyBac) is found in the freshwater microcrustacean, Daphnia pulex. Here, we present a genome-wide analysis of Pokey based on the recently completed whole genome sequencing project for D. pulex. Results Phylogenetic analysis of Pokey elements recovered from the genome sequence revealed the presence of four lineages corresponding to two divergent autonomous families and two related lineages of non-autonomous miniature inverted repeat transposable elements (MITEs). The MITEs are also found at the same 28S rRNA gene insertion site as the Pokey elements, and appear to have arisen as deletion derivatives of autonomous elements. Several copies of the full-length Pokey elements may be capable of producing an active transposase. Surprisingly, both families of Pokey possess a series of 200 bp repeats upstream of the transposase that is derived from the rDNA intergenic spacer (IGS). The IGS sequences within the Pokey elements appear to be evolving in concert with the rDNA units. Finally, analysis of the insertion sites of Pokey elements outside of rDNA showed a target preference for sites similar to the specific sequence that is targeted within rDNA. Conclusions Based on the target site preference of Pokey elements and the concerted evolution of a segment of the element with the rDNA unit, we propose an evolutionary path by which the ancestors of Pokey elements have invaded the rDNA niche. We discuss how specificity for the rDNA unit may have evolved and how this specificity has played a role in the long-term survival of these elements in the subgenus Daphnia. PMID:24059783
Glinsky, Gennadi V
2016-09-19
Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Mutants of Cre recombinase with improved accuracy
Eroshenko, Nikolai; Church, George M.
2013-01-01
Despite rapid advances in genome engineering technologies, inserting genes into precise locations in the human genome remains an outstanding problem. It has been suggested that site-specific recombinases can be adapted towards use as transgene delivery vectors. The specificity of recombinases can be altered either with directed evolution or via fusions to modular DNA-binding domains. Unfortunately, both wildtype and altered variants often have detectable activities at off-target sites. Here we use bacterial selections to identify mutations in the dimerization surface of Cre recombinase (R32V, R32M, and 303GVSdup) that improve the accuracy of recombination. The mutants are functional in bacteria, in human cells, and in vitro (except for 303GVSdup, which we did not purify), and have improved selectivity against both model off-target sites and the entire E. coli genome. We propose that destabilizing binding cooperativity may be a general strategy for improving the accuracy of dimeric DNA-binding proteins. PMID:24056590
Cancer gene discovery: exploiting insertional mutagenesis
Ranzani, Marco; Annunziato, Stefano; Adams, David J.; Montini, Eugenio
2013-01-01
Insertional mutagenesis has been utilized as a functional forward genetics screen for the identification of novel genes involved in the pathogenesis of human cancers. Different insertional mutagens have been successfully used to reveal new cancer genes. For example, retroviruses (RVs) are integrating viruses with the capacity to induce the deregulation of genes in the neighborhood of the insertion site. RVs have been employed for more than 30 years to identify cancer genes in the hematopoietic system and mammary gland. Similarly, another tool that has revolutionized cancer gene discovery is the cut-and-paste transposons. These DNA elements have been engineered to contain strong promoters and stop cassettes that may function to perturb gene expression upon integration proximal to genes. In addition, complex mouse models characterized by tissue-restricted activity of transposons have been developed to identify oncogenes and tumor suppressor genes that control the development of a wide range of solid tumor types, extending beyond those tissues accessible using RV-based approaches. Most recently, lentiviral vectors (LVs) have appeared on the scene for use in cancer gene screens. LVs are replication defective integrating vectors that have the advantage of being able to infect non-dividing cells, in a wide range of cell types and tissues. In this review, we describe the various insertional mutagens focusing on their advantages/limitations and we discuss the new and promising tools that will improve the insertional mutagenesis screens of the future. PMID:23928056
Radecke, Sarah; Radecke, Frank; Cathomen, Toni; Schwarz, Klaus
2010-01-01
Correcting a mutated gene directly at its endogenous locus represents an alternative to gene therapy protocols based on viral vectors with their risk of insertional mutagenesis. When solely a single-stranded oligodeoxynucleotide (ssODN) is used as a repair matrix, the efficiency of the targeted gene correction is low. However, as shown with the homing endonuclease I-SceI, ssODN-mediated gene correction can be enhanced by concomitantly inducing a DNA double-strand break (DSB) close to the mutation. Because I-SceI is hardly adjustable to cut at any desired position in the human genome, here, customizable zinc-finger nucleases (ZFNs) were used to stimulate ssODN-mediated repair of a mutated single-copy reporter locus stably integrated into human embryonic kidney-293 cells. The ZFNs induced faithful gene repair at a frequency of 0.16%. Six times more often, ZFN-induced DSBs were found to be modified by unfaithful addition of ssODN between the termini and about 60 times more often by nonhomologous end joining-related deletions and insertions. Additionally, ZFN off-target activity based on binding mismatch sites at the locus of interest was detected in in vitro cleavage assays and also in chromosomal DNA isolated from treated cells. Therefore, the specificity of ZFN-induced ssODN-mediated gene repair needs to be improved, especially regarding clinical applications. PMID:20068556
DNA modification and functional delivery into human cells using Escherichia coli DH10B
Narayanan, Kumaran; Warburton, Peter E.
2003-01-01
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ∼200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd– rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies. PMID:12711696
Ye, Jing; Lenain, Christelle; Bauwens, Serge; Rizzo, Angela; Saint-Léger, Adelaïde; Poulet, Anaïs; Benarroch, Delphine; Magdinier, Frédérique; Morere, Julia; Amiard, Simon; Verhoeyen, Els; Britton, Sébastien; Calsou, Patrick; Salles, Bernard; Bizard, Anna; Nadal, Marc; Salvati, Erica; Sabatier, Laure; Wu, Yunlin; Biroccio, Annamaria; Londoño-Vallejo, Arturo; Giraud-Panis, Marie-Josèphe; Gilson, Eric
2010-07-23
Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres. Copyright 2010 Elsevier Inc. All rights reserved.
Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors.
Miura, Hiromi; Quadros, Rolen M; Gurumurthy, Channabasavaiah B; Ohtsuka, Masato
2018-01-01
CRISPR/Cas9-based genome editing can easily generate knockout mouse models by disrupting the gene sequence, but its efficiency for creating models that require either insertion of exogenous DNA (knock-in) or replacement of genomic segments is very poor. The majority of mouse models used in research involve knock-in (reporters or recombinases) or gene replacement (e.g., conditional knockout alleles containing exons flanked by LoxP sites). A few methods for creating such models have been reported that use double-stranded DNA as donors, but their efficiency is typically 1-10% and therefore not suitable for routine use. We recently demonstrated that long single-stranded DNAs (ssDNAs) serve as very efficient donors, both for insertion and for gene replacement. We call this method efficient additions with ssDNA inserts-CRISPR (Easi-CRISPR) because it is a highly efficient technology (efficiency is typically 30-60% and reaches as high as 100% in some cases). The protocol takes ∼2 months to generate the founder mice.
Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η*
Su, Yan; Egli, Martin; Guengerich, F. Peter
2016-01-01
Ribonucleotides and 2′-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2′-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2′-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2′-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 103-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2′-deoxyguanosine with a significant propeller twist. As a result, the 2′-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion. PMID:26740629
Frimodt-Møller, Jakob; Charbon, Godefroid; Krogfelt, Karen A; Løbner-Olesen, Anders
2017-09-11
The optimal chromosomal position(s) of a given DNA element was/were determined by transposon-mediated random insertion followed by fitness selection. In bacteria, the impact of the genetic context on the function of a genetic element can be difficult to assess. Several mechanisms, including topological effects, transcriptional interference from neighboring genes, and/or replication-associated gene dosage, may affect the function of a given genetic element. Here, we describe a method that permits the random integration of a DNA element into the chromosome of Escherichia coli and select the most favorable locations using a simple growth competition experiment. The method takes advantage of a well-described transposon-based system of random insertion, coupled with a selection of the fittest clone(s) by growth advantage, a procedure that is easily adjustable to experimental needs. The nature of the fittest clone(s) can be determined by whole-genome sequencing on a complex multi-clonal population or by easy gene walking for the rapid identification of selected clones. Here, the non-coding DNA region DARS2, which controls the initiation of chromosome replication in E. coli, was used as an example. The function of DARS2 is known to be affected by replication-associated gene dosage; the closer DARS2 gets to the origin of DNA replication, the more active it becomes. DARS2 was randomly inserted into the chromosome of a DARS2-deleted strain. The resultant clones containing individual insertions were pooled and competed against one another for hundreds of generations. Finally, the fittest clones were characterized and found to contain DARS2 inserted in close proximity to the original DARS2 location.
Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes.
Lopez, Victor; Cauvi, David M; Arispe, Nelson; De Maio, Antonio
2016-07-01
The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death. Extracellular hsp act as signaling molecules directed at activating a systemic response to stress. The export of hsp requires the translocation from the cytosol into the extracellular milieu across the plasma membrane. We have proposed that membrane insertion is the initial step in this export process. We investigated the interaction of the major inducible hsp from mammalian (Hsp70) and bacterial (DnaK) species with liposomes. We found that mammalian Hsp70 displayed a high specificity for negatively charged phospholipids, such as phosphatidyl serine, whereas DnaK interacted with all lipids tested regardless of the charge. Both proteins were inserted into the lipid bilayer as demonstrated by resistance to acid or basic washes that was confirmed by partial protection from proteolytic cleavage. Several regions of mammalian Hsp70 were inserted into the membrane with a small portion of the N-terminus end exposed to the outer phase of the liposome. In contrast, the N-terminus end of DnaK was inserted into the membrane, exposing the C-terminus end outside the liposome. Mammalian Hsp70 was found to make high oligomeric complexes upon insertion into the membranes whereas DnaK only formed dimers within the lipid bilayer. These observations suggest that both Hsp70s interact with lipids, but mammalian Hsp70 displays a high degree of specificity and structure as compared with the bacterial form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, L.; Serneels, L.; Hilliker, C.
1994-08-01
The authors have cloned the mouse gene coding for {alpha}{sub 2}-macroglobulin in overlapping {lambda} clones and have analyzed its structure. The gene contains 36 exons, coding for the 4.8-kb cDNA that we cloned previously. Including putative control elements in the 5{prime} flanking region, the gene covers about 45 kb. A region of 3.8 kb, stretching from 835 bases upstream of the cDNA start site to exon 4, including all intervening sequences, was sequenced completely. The analysis demonstrated that the putative promoter region of the mouse A2M gene differed considerably from the known promoter sequences of the human A2M gene andmore » of the rat acute-phas A2M gene. Comparison of the exon-intron structure of all known genes of the A2M family confirmed that the rat acute phase A2M gene is more closely related to the human gene than to the mouse A2M gene. To generate mice with the A2M gene inactivated, an insertion type of construct containing 7.5 kb of genomic DNA of the mouse strain 129/J, encompassing exons 16 to 19, was synthesized. A hygromycin marker gene was embedded in intron 17. After electroporation, 198 hygromycin-resistant ES cell lines were isolated and analyzed by Southern blotting. Five ES cell lines were obtained with one allele of the mouse A2M gene targeted by this insertion construct, demonstrating that the position and the characteristics of the vector served the intended goal.« less
Structural and Histone Binding Ability Characterizations of Human PWWP Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hong; Zeng, Hong; Lam, Robert
2013-09-25
The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members,more » implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.« less
Sastre-Garau, X; Favre, M; Couturier, J; Orth, G
2000-08-01
We previously described two genital carcinomas (IC2, IC4) containing human papillomavirus type 16 (HPV-16)- or HPV-18-related sequences integrated in chromosomal bands containing the c-myc (8q24) or N-myc (2p24) gene, respectively. The c-myc gene was rearranged and amplified in IC2 cells without evidence of overexpression. The N-myc gene was amplified and highly transcribed in IC4 cells. Here, the sequence of an 8039 bp IC4 DNA fragment containing the integrated viral sequences and the cellular junctions is reported. A 3948 bp segment of the genome of HPV-45 encompassing the upstream regulatory region and the E6 and E7 ORFs was integrated into the untranslated part of N-myc exon 3, upstream of the N-myc polyadenylation signal. Both N-myc and HPV-45 sequences were amplified 10- to 20-fold. The 3' ends of the major N-myc transcript were mapped upstream of the 5' junction. A minor N-myc/HPV-45 fusion transcript was also identified, as well as two abundant transcripts from the HPV-45 E6-E7 region. Large amounts of N-myc protein were detected in IC4 cells. A major alteration of c-myc sequences in IC2 cells involved the insertion of a non-coding sequence into the second intron and their co-amplification with the third exon, without any evidence for the integration of HPV-16 sequences within or close to the gene. Different patterns of myc gene alterations may thus be associated with integration of HPV DNA in genital tumours, including the activation of the protooncogene via a mechanism of insertional mutagenesis and/or gene amplification.
Chen, Chao; Zhao, Xinqing; Jin, Yingyu; Zhao, Zongbao Kent; Suh, Joo-Won
2014-11-01
Bacterial artificial chromosomal (BAC) vectors are increasingly being used in cloning large DNA fragments containing complex biosynthetic pathways to facilitate heterologous production of microbial metabolites for drug development. To express inserted genes using Streptomyces species as the production hosts, an integration expression cassette is required to be inserted into the BAC vector, which includes genetic elements encoding a phage-specific attachment site, an integrase, an origin of transfer, a selection marker and a promoter. Due to the large sizes of DNA inserted into the BAC vectors, it is normally inefficient and time-consuming to assemble these fragments by routine PCR amplifications and restriction-ligations. Here we present a rapid method to insert fragments to construct BAC-based expression vectors. A DNA fragment of about 130 bp was designed, which contains upstream and downstream homologous sequences of both BAC vector and pIB139 plasmid carrying the whole integration expression cassette. In-Fusion cloning was performed using the designer DNA fragment to modify pIB139, followed by λ-RED-mediated recombination to obtain the BAC-based expression vector. We demonstrated the effectiveness of this method by rapid construction of a BAC-based expression vector with an insert of about 120 kb that contains the entire gene cluster for biosynthesis of immunosuppressant FK506. The empty BAC-based expression vector constructed in this study can be conveniently used for construction of BAC libraries using either microbial pure culture or environmental DNA, and the selected BAC clones can be directly used for heterologous expression. Alternatively, if a BAC library has already been constructed using a commercial BAC vector, the selected BAC vectors can be manipulated using the method described here to get the BAC-based expression vectors with desired gene clusters for heterologous expression. The rapid construction of a BAC-based expression vector facilitates heterologous expression of large gene clusters for drug discovery. Copyright © 2014 Elsevier Inc. All rights reserved.
Hamm, Michelle L; Crowley, Kelly A; Ghio, Michael; Lindell, Maria A M; McFadden, Emily J; Silberg, Jordan S L; Weaver, Amelia M
2012-11-19
8-Oxo-2'-deoxyguanosine (OdG) is an abundant DNA lesion produced during oxidative damage to DNA. It can form relatively stable base pairs with both dC and dA that mimic natural dG:dC and dT:dA base pairs, respectively. Thus, when in the template strand, OdG can direct the insertion of either dCTP or dATP during replication, the latter of which can lead to a dG → T transversion. The potential for OdG to cause mutation is dependent on the preference for dCTP or dATP insertion opposite OdG, as well as the ability to extend past the resulting base pairs. The C2-amine and C8-oxygen could play major roles during these reactions since both would lie outside the Watson-Crick cognate base pairs shape in the major groove when OdG base pairs to dA and dC, respectively, and both have the ability to form strong interactions, like hydrogen bonds. To gain a more generalized understanding of how the C2-amine and C8-oxygen of OdG affect its mutagenic potential, the incorporation opposite and extension past seven analogues of dG/OdG that vary at C2 and/or C8 were characterized for three DNA polymerases, including an exonuclease-deficient version of the replicative polymerase from RB69 (RB69), human polymerase (pol) β, and polymerase IV from Sulfolobus solfataricus P2 (Dpo4). Based on the results from these studies, as well as those from previous studies with RB69, pol β, Dpo4, and two A-family polymerases, the influence of the C2-amine and C8-oxygen during each incorporation and extension reaction with each polymerase is discussed. In general, it appears that when the C2-amine and the C8-oxygen are in the minor groove, they allow OdG to retain interactions that are normally present during insertion and extension. However, when the two groups are in the major groove, they each tend to form novel active site interactions, both stabilizing and destabilizing, that are not present during insertion and extension with natural DNA.
Genomic patterns associated with paternal/maternal distribution of transposable elements
NASA Astrophysics Data System (ADS)
Jurka, Jerzy
2003-03-01
Transposable elements (TEs) are specialized DNA or RNA fragments capable of surviving in intragenomic niches. They are commonly, perhaps unjustifiably referred to as "selfish" or "parasitic" elements. TEs can be divided in two major classes: retroelements and DNA transposons. The former include non-LTR retrotransposons and retrovirus-like elements, using reverse transriptase for their reproduction prior to integration into host DNA. The latter depend mostly on host DNA replication, with possible exception of rolling-circle transposons recently discovered by our team. I will review basic information on TEs, with emphasis on human Alu and L1 retroelements discussed in the context of genomic organization. TEs are non-randomly distributed in chromosomal DNA. In particular, human Alu elements tend to prefer GC-rich regions, whereas L1 accumulate in AT-rich regions. Current explanations of this phenomenon focus on the so called "target effects" and post-insertional selection. However, the proposed models appear to be unsatisfactory and alternative explanations invoking "channeling" to different chromosomal regions will be a major focus of my presentation. Transposable elements (TEs) can be expressed and integrated into host DNA in the male or female germlines, or both. Different models of expression and integration imply different proportions of TEs on sex chromosomes and autosomes. The density of recently retroposed human Alu elements is around three times higher on chromosome Y than on chromosome X, and over two times higher than the average density for all human autosomes. This implies Alu activity in paternal germlines. Analogous inter-chromosomal proportions for other repeat families should determine their compatibility with one of the three basic models describing the inheritance of TEs. Published evidence indicates that maternally and paternally imprinted genes roughly correspond to GC-rich and AT-rich DNA. This may explain the observed chromosomal distribution of Alu and L1 elements. Finally, paternal models of inheritance predict rapid accumulation of active TEs on chromosome Y. I will discuss potential implications of this phenomenon for evolution of chromosome Y and transposable elements.
Hepatitis B Virus Core Gene Mutations Which Block Nucleocapsid Envelopment
Koschel, Matthias; Oed, Daniela; Gerelsaikhan, Tudevdagwa; Thomssen, Reiner; Bruss, Volker
2000-01-01
Recently we generated a panel of hepatitis B virus core gene mutants carrying single insertions or deletions which allowed efficient expression of the core protein in bacteria and self-assembly of capsids. Eleven of these mutations were introduced into a eukaryotic core gene expression vector and characterized by trans complementation of a core-negative HBV genome in cotransfected human hepatoma HuH7 cells. Surprisingly, four mutants (two insertions [EFGA downstream of A11 and LDTASALYR downstream of R39] and two deletions [Y38-R39-E40 and L42]) produced no detectable capsids. The other seven mutants supported capsid formation and pregenome packaging/viral minus- and plus-strand-DNA synthesis but to different levels. Four of these seven mutants (two insertions [GA downstream of A11 and EHCSP downstream of P50] and two deletions [S44 and A80]) allowed virion morphogenesis and secretion. The mutant carrying a deletion of A80 at the tip of the spike protruding from the capsid was hepatitis B virus core antigen negative but wild type with respect to virion formation, indicating that this site might not be crucial for capsid-surface protein interactions during morphogenesis. The other three nucleocapsid-forming mutants (one insertion [LS downstream of S141] and two deletions [T12 and P134]) were strongly blocked in virion formation. The corresponding sites are located in the part of the protein forming the body of the capsid and not in the spike. These mutations may alter sites on the particle which contact surface proteins during envelopment, or they may block the appearance of a signal for the transport or the maturation of the capsid which is linked to viral DNA synthesis and required for envelopment. PMID:10590084
Bonnefoy, Nathalie; Fox, Thomas D
2007-01-01
Saccharomyces cerevisiae is currently the only species in which genetic transformation of mitochondria can be used to generate a wide variety of defined alterations in mitochondrial deoxyribonucleic acid (mtDNA). DNA sequences can be delivered into yeast mitochondria by microprojectile bombardment (biolistic transformation) and subsequently incorporated into mtDNA by the highly active homologous recombination machinery present in the organelle. Although transformation frequencies are relatively low, the availability of strong mitochondrial selectable markers for the yeast system, both natural and synthetic, makes the isolation of transformants routine. The strategies and procedures reviewed here allow the researcher to insert defined mutations into endogenous mitochondrial genes and to insert new genes into mtDNA. These methods provide powerful in vivo tools for the study of mitochondrial biology.
Molecular Studies on MIC1/PDF in Human Prostate Cancer
2005-09-01
expression of secreted MIC-1 protein (Aim 2). Moreover, the functions of MIC-1 have been studied in vitro by using specific antibody directed against MIC-1... antibody M2 (Sigma). The FLAG tag was inserted at the 3’-translated region of the MIC-l/PDF cDNA. A double stranded, synthetic oligonucleotide was designed...B) Lower panel showed the coomassie blue of specific antibody directed against stained gel as a loading control. MIC-1 protein. More specifically
[Cosmid libraries containing DNA from human chromosome 13].
Kapanadze, B I; Brodianskiĭ, V M; Baranova, A V; Sevat'ianov, S Iu; Fedorova, N D; Kurskov, M M; Kostina, M A; Mironov, A A; Sineokiĭ, S P; Zakhar'ev, V M; Grafodatskiĭ, A S; Modianov, N N; Iankovskiĭ, N K
1996-03-01
We characterized two cosmid libraries constructed from flow-sorted chromosome 13 at the Imperial Cancer Research Fund (ICRF), UK (13,000 clones) and Los Alamos National Laboratory (LANL), USA (17,000 clones). After storage for two years, clones showed high viability (95%) and structural stability. EcoR I and Hind III restriction patterns were studied in more than 500 ICRF and 200 LANL cosmids. The average size of inserts was shown to be 35-37 kb in both the libraries. Most cosmids (83% and 93% of ICRF and LANL libraries, respectively) exceed the lower size limit of DNA fragments that can be packaged and represent a good source for physical mapping of chromosome 13. Total length of inserts is four and five genome equivalents in the ICRF and LANL libraries, respectively. ICRF cosmids showed hybridization to 22 of 24 unique probes tested, which corresponds to a 90% probability of having any DNA fragment represented in the library. More than 1 Mb of chromosome 13 is overlapped by 90 cosmids of 22 groups revealed. A chromosomal region of more than 150 kb, containing the ATP1AL1 gene for alpha-1 peptide of Na+, K(+)-ATPase, is covered by 12 cosmids forming a contig. The results of restriction and hybridization analyses are stored in a CLONE database. These data and all the cosmids described are publicly available.
Golubenko, M V; Puzyrev, V P; Saliukov, V B; Kucher, A N; Sanchat, N O
2000-03-01
Mitochondrial DNA region V deletion-insertion polymorphism was examined in three Tuvinian populations inhabiting western, northeastern, and southeastern parts of the republic. The 9-bp deletion was characterized by nonrandom distribution across the Tuva territory: its frequency in the western population (13.37%) was statistically significantly higher than that in the northeastern (4.62%), and southeastern populations, as well as in Mongols, who are territorially and ethnically close to Tuvinians. The insertion mutation in the region V was detected with a frequency of about 3% in two out of the three populations tested.
Deisher, Theresa A; Doan, Ngoc V; Koyama, Kumiko; Bwabye, Sarah
2015-01-01
To assess the public health consequences of fetal cell line manufactured vaccines that contain residual human fetal DNA fragments utilizing laboratory and ecological approaches including statistics, molecular biology and genomics. MMR coverage and autism disorder or autism spectrum disorder prevalence data for Norway, Sweden and the UK were obtained from public and government websites as well as peer reviewed published articles. Biologically, the size and quantity of the contaminating fetal DNA in Meruvax II and Havrix as well as the propensity of various cell lines for cellular and nuclear uptake of primitive human DNA fragments were measured and quantified using gel electrophoresis, fluorescence microscopy and fluorometry. Lastly, genomic analysis identified the specific sites where fetal DNA fragment integration into a child's genome is most likely to occur. The average MMR coverage for the three countries fell below 90% after Dr. Wakefield's infamous 1998 publication but started to recover slowly after 2001 until reaching over 90% coverage again by 2004. During the same time period, the average autism spectrum disorder prevalence in the United Kingdom, Norway and Sweden dropped substantially after birth year 1998 and gradually increased again after birth year 2000. Average single stranded DNA and double stranded DNA in Meruvax II were 142.05 ng/vial and 35.00 ng/vial, respectively, and 276.00 ng/vial and 35.74 ng/vial in Havrix respectively. The size of the fetal DNA fragments in Meruvax II was approximately 215 base pairs. There was spontaneous cellular and nuclear DNA uptake in HFF1 and NCCIT cells. Genes that have been linked to autism (autism associated genes; AAGs) have a more concentrated susceptibility for insults to genomic stability in comparison to the group of all genes contained within the human genome. Of the X chromosome AAGs, 15 of 19 have double strand break motifs less than 100 kilobases away from the center of a meiotic recombination hotspot located within an exon. Vaccines manufactured in human fetal cell lines contain unacceptably high levels of fetal DNA fragment contaminants. The human genome naturally contains regions that are susceptible to double strand break formation and DNA insertional mutagenesis. The "Wakefield Scare" created a natural experiment that may demonstrate a causal relationship between fetal cell-line manufactured vaccines and ASD prevalence.
Ishiguro, Naotaka; Inoshima, Yasuo; Yanai, Tokuma; Sasaki, Motoki; Matsui, Akira; Kikuchi, Hiroki; Maruyama, Masashi; Hongo, Hitomi; Vostretsov, Yuri E; Gasilin, Viatcheslav; Kosintsev, Pavel A; Quanjia, Chen; Chunxue, Wang
2016-02-01
The mitochondrial DNA (mtDNA) control region (198- to 598-bp) of four ancient Canis specimens (two Canis mandibles, a cranium, and a first phalanx) was examined, and each specimen was genetically identified as Japanese wolf. Two unique nucleotide substitutions, the 78-C insertion and the 482-G deletion, both of which are specific for Japanese wolf, were observed in each sample. Based on the mtDNA sequences analyzed, these four specimens and 10 additional Japanese wolf samples could be classified into two groups- Group A (10 samples) and Group B (4 samples)-which contain or lack an 8-bp insertion/deletion (indel), respectively. Interestingly, three dogs (Akita-b, Kishu 25, and S-husky 102) that each contained Japanese wolf-specific features were also classified into Group A or B based on the 8-bp indel. To determine the origin or ancestor of the Japanese wolf, mtDNA control regions of ancient continental Canis specimens were examined; 84 specimens were from Russia, and 29 were from China. However, none of these 113 specimens contained Japanese wolf-specific sequences. Moreover, none of 426 Japanese modern hunting dogs examined contained these Japanese wolf-specific mtDNA sequences. The mtDNA control region sequences of Groups A and B appeared to be unique to grey wolf and dog populations.
Partier, A; Gay, G; Tassy, C; Beckert, M; Feuillet, C; Barret, P
2017-10-01
A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.
Sabri, Suriana; Steen, Jennifer A; Bongers, Mareike; Nielsen, Lars K; Vickers, Claudia E
2013-06-24
Metabolic engineering projects often require integration of multiple genes in order to control the desired phenotype. However, this often requires iterative rounds of engineering because many current insertion approaches are limited by the size of the DNA that can be transferred onto the chromosome. Consequently, construction of highly engineered strains is very time-consuming. A lack of well-characterised insertion loci is also problematic. A series of knock-in/knock-out (KIKO) vectors was constructed for integration of large DNA sequences onto the E. coli chromosome at well-defined loci. The KIKO plasmids target three nonessential genes/operons as insertion sites: arsB (an arsenite transporter); lacZ (β-galactosidase); and rbsA-rbsR (a ribose metabolism operon). Two homologous 'arms' target each insertion locus; insertion is mediated by λ Red recombinase through these arms. Between the arms is a multiple cloning site for the introduction of exogenous sequences and an antibiotic resistance marker (either chloramphenicol or kanamycin) for selection of positive recombinants. The resistance marker can subsequently be removed by flippase-mediated recombination. The insertion cassette is flanked by hairpin loops to isolate it from the effects of external transcription at the integration locus. To characterize each target locus, a xylanase reporter gene (xynA) was integrated onto the chromosomes of E. coli strains W and K-12 using the KIKO vectors. Expression levels varied between loci, with the arsB locus consistently showing the highest level of expression. To demonstrate the simultaneous use of all three loci in one strain, xynA, green fluorescent protein (gfp) and a sucrose catabolic operon (cscAKB) were introduced into lacZ, arsB and rbsAR respectively, and shown to be functional. The KIKO plasmids are a useful tool for efficient integration of large DNA fragments (including multiple genes and pathways) into E. coli. Chromosomal insertion provides stable expression without the need for continuous antibiotic selection. Three non-essential loci have been characterised as insertion loci; combinatorial insertion at all three loci can be performed in one strain. The largest insertion at a single site described here was 5.4 kb; we have used this method in other studies to insert a total of 7.3 kb at one locus and 11.3 kb across two loci. These vectors are particularly useful for integration of multigene cassettes for metabolic engineering applications.
Chen, C N; Su, Y; Baybayan, P; Siruno, A; Nagaraja, R; Mazzarella, R; Schlessinger, D; Chen, E
1996-01-01
Ordered shotgun sequencing (OSS) has been successfully carried out with an Xq25 YAC substrate. yWXD703 DNA was subcloned into lambda phage and sequences of insert ends of the lambda subclones were used to generate a map to select a minimum tiling path of clones to be completely sequenced. The sequence of 135 038 nt contains the entire ANT2 cDNA as well as four other candidates suggested by computer-assisted analyses. One of the putative genes is homologous to a gene implicated in Graves' disease and it, ANT2 and two others are confirmed by EST matches. The results suggest that OSS can be applied to YACs in accord with earlier simulations and further indicate that the sequence of the YAC accurately reflects the sequence of uncloned human DNA. PMID:8918809
Bakker, Theo C M; Giger, Thomas; Frommen, Joachim G; Largiadèr, Carlo R
2017-08-01
There is a need for rapid and reliable molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus, the supermodel species for evolutionary biology. A DNA region at the 5' end of the sex-linked microsatellite Gac4202 was sequenced for the X chromosome of six females and the Y chromosome of five males from three populations. The Y chromosome contained two large insertions, which did not recombine with the phenotype of sex in a cross of 322 individuals. Genetic variation (SNPs and indels) within the insertions was smaller than on flanking DNA sequences. Three molecular PCR-based sex tests were developed, in which the first, the second or both insertions were covered. In five European populations (from DE, CH, NL, GB) of three-spined sticklebacks, tests with both insertions combined showed two clearly separated bands on agarose minigels in males and one band in females. The tests with the separate insertions gave similar results. Thus, the new molecular sexing method gave rapid and reliable results for sexing three-spined sticklebacks and is an improvement and/or alternative to existing methods.
Alu Sb2 subfamily is present in all higher primates but was most succesfully amplified in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richer, C.; Zietkiewicz, E.; Labuda, D.
Alu repeats can be classified into subfamilies which amplified in primate genomes at different evolutionary time periods. A young Alu subfamily, Sb2, with a characteristic 7-nucleotide duplication at position 256, has been described in seven human loci. An Sb2 insertion found near the HD gene was unique to two HD families, indicating that Sb2 was still retropositionally active. Here, we have shown that the Sb2 insertion in the CHOL locus was similarly rare, being absent in 120 individuals of Caucasian, Oriental and Black origin. In contrast, Sb2 inserts in five other loci were found fixed (non-polymorphic), based on measurements inmore » the same population sample, but absent from orthologous positions in higher apes. This suggest that Sb2 repeats spread relatively early in the human lineage following divergence from other primates and that these elements may be human-specific. By quantitative PCR, we investigated the presence of Sb2 sequences in different primate DNA, using one PCR primer anchored at the 5{prime} Alu-end and the other complementary to the duplicated Sb2-specific segment. With an Sb2-containing plasmid as a standard, we estimated the number of Sb2 repeats at 1500-1800 copies per human haploid equivalent; corresponding numbers in chimpanzee and gorilla were almost two orders of magnitude lower, while the signal observed in orangutan and gibbon DNAs was consistent with the presence of a single copy. The analysis of 22 human, 11 chimpanzee and 10 gorilla sequences indicates that the Alu Sb2 dispersed independently in these three primate lineages; gorilla consensus differs from the human Sb2 sequence by one position, while all chimpanzee repeats have their linker expanded by up to eight A-residues. Should they be thus considered as separate subfamilies? It is possible that sequence modifications with respect to the human consensus are responsible for poor retroposition of Sb2 in apes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Heqiao; Liu Jianying; Malkas, Linda H.
2009-04-15
Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediatedmore » by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells.« less
Dai, Heqiao; Liu, Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi; Hickey, Robert J.
2009-01-01
Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC50 of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases α, δ and ε is 15, 45 and 125 μM, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC50 =88 μM), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2–13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr (III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells. PMID:19371627
Akimzhanov, Askar; Krenacs, Laszlo; Schlegel, Timm; Klein-Hessling, Stefan; Bagdi, Enikö; Stelkovics, Eva; Kondo, Eisaku; Chuvpilo, Sergei; Wilke, Philipp; Avots, Andris; Gattenlöhner, Stefan; Müller-Hermelink, Hans-Konrad; Palmetshofer, Alois; Serfling, Edgar
2008-01-01
The nuclear factor of activated T cell 1 (Nfatc1) locus is a common insertion site for murine tumorigenic retroviruses, suggesting a role of transcription factor NFATc1 in lymphomagenesis. Although NFATc1 is expressed in most human primary lymphocytes and mature human T- and B-cell neoplasms, we show by histochemical stainings that NFATc1 expression is suppressed in anaplastic large cell lymphomas and classical Hodgkin’s lymphomas (HLs). In HL cell lines, NFATc1 silencing correlated with a decrease in histone H3 acetylation, H3-K4 trimethylation, and Sp1 factor binding but with an increase in HP1 binding to the NFATC1 P1 promoter. Together with DNA hypermethylation of the NFATC1 P1 promoter, which we detected in all anaplastic large cell lymphoma and many HL lines, these observations reflect typical signs of transcriptional silencing. In several lymphoma lines, methylation of NFATC1 promoter DNA resulted in a “window of hypomethylation,” which is flanked by Sp1-binding sites. Together with the under-representation of Sp1 at the NFATC1 P1 promoter in HL cells, this suggests that Sp1 factors can protect P1 DNA methylation in a directional manner. Blocking immunoreceptor signaling led to NFATC1 P1 promoter silencing and to a decrease in H3 acetylation and H3-K4 methylation but not DNA methylation. This shows that histone modifications precede the DNA methylation in NFATC1 promoter silencing. PMID:18156209
Walter, Vonn; Patel, Nirali M.; Eberhard, David A.; Hayward, Michele C.; Salazar, Ashley H.; Jo, Heejoon; Soloway, Matthew G.; Wilkerson, Matthew D.; Parker, Joel S.; Yin, Xiaoying; Zhang, Guosheng; Siegel, Marni B.; Rosson, Gary B.; Earp, H. Shelton; Sharpless, Norman E.; Gulley, Margaret L.; Weck, Karen E.
2015-01-01
The recent FDA approval of the MiSeqDx platform provides a unique opportunity to develop targeted next generation sequencing (NGS) panels for human disease, including cancer. We have developed a scalable, targeted panel-based assay termed UNCseq, which involves a NGS panel of over 200 cancer-associated genes and a standardized downstream bioinformatics pipeline for detection of single nucleotide variations (SNV) as well as small insertions and deletions (indel). In addition, we developed a novel algorithm, NGScopy, designed for samples with sparse sequencing coverage to detect large-scale copy number variations (CNV), similar to human SNP Array 6.0 as well as small-scale intragenic CNV. Overall, we applied this assay to 100 snap-frozen lung cancer specimens lacking same-patient germline DNA (07–0120 tissue cohort) and validated our results against Sanger sequencing, SNP Array, and our recently published integrated DNA-seq/RNA-seq assay, UNCqeR, where RNA-seq of same-patient tumor specimens confirmed SNV detected by DNA-seq, if RNA-seq coverage depth was adequate. In addition, we applied the UNCseq assay on an independent lung cancer tumor tissue collection with available same-patient germline DNA (11–1115 tissue cohort) and confirmed mutations using assays performed in a CLIA-certified laboratory. We conclude that UNCseq can identify SNV, indel, and CNV in tumor specimens lacking germline DNA in a cost-efficient fashion. PMID:26076459
Kassis, J. A.
1994-01-01
We have previously shown that a 2-kb fragment of engrailed DNA can suppress expression of a linked marker gene, white, in the P element vector CaSpeR. This suppression is dependent on the presence of two copies of engrailed DNA-containing P elements (P[en]) in proximity in the Drosophila genome (either in cis or in trans). In this study, the 2-kb fragment was dissected and found to contain three fragments of DNA which could mediate white suppression [called ``pairing-sensitive sites'' (PS)]. A PS site was also identified in regulatory DNA from the Drosophila escargot gene. The eye colors of six different P[en] insertions in the escargot gene suggest an interaction between P[en]-encoded and genome-encoded PS sites. I hypothesize that white gene expression from P[en] is repressed by the formation of a protein complex which is initiated at the engrailed PS sites and also requires interactions with flanking genomic DNA. Genes were sought which influence the function of PS sites. Mutations in some Polycomb and trithorax group genes were found to affect the eye color from some P[en] insertion sites. However, different mutations affected expression from different P[en] insertion sites and no one mutation was found to affect expression from all P[en] insertion sites examined. These results suggest that white expression from P[en] is not directly regulated by members of the Polycomb and trithorax group genes, but in some cases can be influenced by them. I propose that engrailed PS sites normally act to promote interactions between distantly located engrailed regulatory sites and the engrailed promoter. PMID:8005412
Wang, H; Miao, S; Chen, D; Wang, L; Koide, S S
1999-10-06
The gene (HSD-1) coding a human sperm membrane protein (hSMP-1) was isolated from a human testis cDNA expression library using antibodies found in the serum of an infertile woman. HSD-1 was localized to a single locus on chromosome 9 and assigned to band 9p12-p13 by fluorescent in situ hybridization (FISH) mapping and DAPI (4,6-diamidino-2-phenylindole) banding, using rat/human somatic cell hybrids and metaphase chromosomes of human lymphocytes. In rescreening a testis lambdagt10 cDNA expression library, the full-length cDNA (HSD-1) and several truncated cDNAs with heterologous regions were isolated from positive clones. The heterology consisted of deletion, insertion and alteration of the 5'-end. These heterologous truncated fragments may be produced by alternative splicing of mRNAs. Two recombinant prokaryotic expression vectors were constructed with one of the heterologous fragment (clone #26) with and without the alternative 5'-end. Escherichia coli transfected with the construct containing the alternative 5'-end failed to produce the recombinant product, whereas those transfected with the vector lacking the 5'-end produced hSMP-1. DNASIS analysis of the structure of #26 mRNA suggests that the 5'-end has a stable secondary configuration that may maintain the mRNA in an inactivated state, whereby hindering its translation and preventing the expression of the gene.
Targeted gene insertion for molecular medicine.
Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán
2008-11-01
Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.
Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.
2015-01-01
Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578
Traverse, Charles C; Ochman, Howard
2017-08-29
Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola , which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. IMPORTANCE The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions-errors that potentially have more dire effects on protein function-is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions. Knowledge of the full extent of sequences subject to transcription indels supports a new model of bacterial transcription slippage, one that relies on the number of complementary bases between the transcript and the DNA template to which it slipped. Copyright © 2017 Traverse and Ochman.
Molecular cloning of cDNAs for the nerve-cell specific phosphoprotein, synapsin I.
Kilimann, M W; DeGennaro, L J
1985-01-01
To provide access to synapsin I-specific DNA sequences, we have constructed cDNA clones complementary to synapsin I mRNA isolated from rat brain. Synapsin I mRNA was specifically enriched by immunoadsorption of polysomes prepared from the brains of 10-14 day old rats. Employing this enriched mRNA, a cDNA library was constructed in pBR322 and screened by differential colony hybridization with single-stranded cDNA probes made from synapsin I mRNA and total polysomal poly(A)+ RNA. This screening procedure proved to be highly selective. Five independent recombinant plasmids which exhibited distinctly stronger hybridization with the synapsin I probe were characterized further by restriction mapping. All of the cDNA inserts gave restriction enzyme digestion patterns which could be aligned. In addition, some of the cDNA inserts were shown to contain poly(dA) sequences. Final identification of synapsin I cDNA clones relied on the ability of the cDNA inserts to hybridize specifically to synapsin I mRNA. Several plasmids were tested by positive hybridization selection. They specifically selected synapsin I mRNA which was identified by in vitro translation and immunoprecipitation of the translation products. The established cDNA clones were used for a blot-hybridization analysis of synapsin I mRNA. A fragment (1600 bases) from the longest cDNA clone hybridized with two discrete RNA species 5800 and 4500 bases long, in polyadenylated RNA from rat brain and PC12 cells. No hybridization was detected to RNA from rat liver, skeletal muscle or cardiac muscle. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:3933975
Genomic sequencing of Pleistocene cave bears
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noonan, James P.; Hofreiter, Michael; Smith, Doug
2005-04-01
Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less
The Specificity and Flexibility of L1 Reverse Transcription Priming at Imperfect T-Tracts
Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël
2013-01-01
L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5′-TTTT/A-3′ sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether—and to which degree—the liberated 3′-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3′ end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3′ overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3′ end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome. PMID:23675310
Foldback intercoil DNA and the mechanism of DNA transposition.
Kim, Byung-Dong
2014-09-01
Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as 180° and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.
CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection.
Yin, Lijuan; Hu, Siqi; Mei, Shan; Sun, Hong; Xu, Fengwen; Li, Jian; Zhu, Weijun; Liu, Xiaoman; Zhao, Fei; Zhang, Di; Cen, Shan; Liang, Chen; Guo, Fei
2018-05-09
CRISPR/Cas9 is an adaptive immune system where bacteria and archaea have evolved to resist the invading viruses and plasmid DNA by creating site-specific double-strand breaks in DNA. This study tested this gene editing system in inhibiting human immunodeficiency virus type 1 (HIV-1) infection by targeting the viral long terminal repeat and the gene coding sequences. Strong inhibition of HIV-1 infection by Cas9/gRNA was observed, which resulted not only from insertions and deletions (indels) that were introduced into viral DNA due to Cas9 cleavage, but also from the marked decrease in the levels of the late viral DNA products and the integrated viral DNA. This latter defect might have reflected the degradation of viral DNA that has not been immediately repaired after Cas9 cleavage. It was further observed that Cas9, when solely located in the cytoplasm, inhibits HIV-1 as strongly as the nuclear Cas9, except that the cytoplasmic Cas9 does not act on the integrated HIV-1 DNA and thus cannot be used to excise the latent provirus. Together, the results suggest that Cas9/gRNA is able to target and edit HIV-1 DNA both in the cytoplasm and in the nucleus. The inhibitory effect of Cas9 on HIV-1 is attributed to both the indels in viral DNA and the reduction in the levels of viral DNA.
Medkova, A Iu; Siniashina, L N; Rumiantseva, Iu P; Voronina, O L; Kunda, M S; Karataev, G I
2013-01-01
The duration of the persistence and dynamics of accumulation of insertion bvg- Bordetella pertussis mutants were studied in lungs of laboratory mice after intranasal and intravenous challenge by virulent bacteria of the causative agent of whooping cough. The capability of the virulent B. pertussis bacteria to long-term persistence in the body of mice was tested. Using the real-time PCR approximately hundred genome equivalents of the B. pertussis DNA were detected in lungs of mice in two months after infection regardless of the way of challenge. Using the bacterial test bacteria were identified during only four weeks after challenge. Bvg- B. pertussis avirulent mutants were accumulated for the infection time. The percentage of the avirulent bacteria in the B. pertussis population reached 50% in 7-9 weeks after challenge. The obtained results show that the laboratory mice can be used for study of the B. pertussis insertion mutant formation dynamics in vivo and confirm the hypothesis about insertional bvg- B. pertussis virulent mutants accumulation during development of pertussis infection in human.
In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining
Geisinger, Jonathan M.; Turan, Sören; Hernandez, Sophia; Spector, Laura P.; Calos, Michele P.
2016-01-01
The CRISPR/Cas9 system facilitates precise DNA modifications by generating RNA-guided blunt-ended double-strand breaks. We demonstrate that guide RNA pairs generate deletions that are repaired with a high level of precision by non-homologous end-joining in mammalian cells. We present a method called knock-in blunt ligation for exploiting these breaks to insert exogenous PCR-generated sequences in a homology-independent manner without loss of additional nucleotides. This method is useful for making precise additions to the genome such as insertions of marker gene cassettes or functional elements, without the need for homology arms. We successfully utilized this method in human and mouse cells to insert fluorescent protein cassettes into various loci, with efficiencies up to 36% in HEK293 cells without selection. We also created versions of Cas9 fused to the FKBP12-L106P destabilization domain in an effort to improve Cas9 performance. Our in vivo blunt-end cloning method and destabilization-domain-fused Cas9 variant increase the repertoire of precision genome engineering approaches. PMID:26762978
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved
Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.
2016-01-01
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945
New t-gap insertion-deletion-like metrics for DNA hybridization thermodynamic modeling.
D'yachkov, Arkadii G; Macula, Anthony J; Pogozelski, Wendy K; Renz, Thomas E; Rykov, Vyacheslav V; Torney, David C
2006-05-01
We discuss the concept of t-gap block isomorphic subsequences and use it to describe new abstract string metrics that are similar to the Levenshtein insertion-deletion metric. Some of the metrics that we define can be used to model a thermodynamic distance function on single-stranded DNA sequences. Our model captures a key aspect of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. Thermodynamic distance functions are important components in the construction of DNA codes, and DNA codes are important components in biomolecular computing, nanotechnology, and other biotechnical applications that employ DNA hybridization assays. We show how our new distances can be calculated by using a dynamic programming method, and we derive a Varshamov-Gilbert-like lower bound on the size of some of codes using these distance functions as constraints. We also discuss software implementation of our DNA code design methods.
Ancient DNA analysis reveals woolly rhino evolutionary relationships.
Orlando, Ludovic; Leonard, Jennifer A; Thenot, Aurélie; Laudet, Vincent; Guerin, Claude; Hänni, Catherine
2003-09-01
With ancient DNA technology, DNA sequences have been added to the list of characters available to infer the phyletic position of extinct species in evolutionary trees. We have sequenced the entire 12S rRNA and partial cytochrome b (cyt b) genes of one 60-70,000-year-old sample, and partial 12S rRNA and cyt b sequences of two 40-45,000-year-old samples of the extinct woolly rhinoceros (Coelodonta antiquitatis). Based on these two mitochondrial markers, phylogenetic analyses show that C. antiquitatis is most closely related to one of the three extant Asian rhinoceros species, Dicerorhinus sumatrensis. Calculations based on a molecular clock suggest that the lineage leading to C. antiquitatis and D. sumatrensis diverged in the Oligocene, 21-26 MYA. Both results agree with morphological models deduced from palaeontological data. Nuclear inserts of mitochondrial DNA were identified in the ancient specimens. These data should encourage the use of nuclear DNA in future ancient DNA studies. It also further establishes that the degraded nature of ancient DNA does not completely protect ancient DNA studies based on mitochondrial data from the problems associated with nuclear inserts.
Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost
Benoit, Roger M.; Ostermeier, Christian; Geiser, Martin; Li, Julia Su Zhou; Widmer, Hans; Auer, Manfred
2016-01-01
Seamless cloning methods, such as co-transformation cloning, sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the precise construction of plasmids. The efficiency of co-transformation cloning is however low and the Gibson assembly reagents are expensive. With the aim to improve the robustness of seamless cloning experiments while keeping costs low, we examined the importance of complementary single-stranded DNA ends for co-transformation cloning and the influence of single-stranded gaps in circular plasmids on SLIC cloning efficiency. Most importantly, our data show that single-stranded gaps in double-stranded plasmids, which occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Accordingly, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These findings demonstrate that highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this modified Gibson assembly protocol with two short insert-plasmid overlap regions, each counting only 15 nucleotides. PMID:27073895
Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir
2017-12-01
A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.
A multi-landing pad DNA integration platform for mammalian cell engineering
Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron
2018-01-01
Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873
Genomic stability of adipogenic human adenovirus 36.
Nam, J-H; Na, H-N; Atkinson, R L; Dhurandhar, N V
2014-02-01
Human adenovirus Ad36 increases adiposity in several animal models, including rodents and non-human primates. Importantly, Ad36 is associated with human obesity, which has prompted research to understand its epidemiology and to develop a vaccine to prevent a subgroup of obesity. For this purpose, understanding the genomic stability of Ad36 in vivo and in vitro infections is critical. Here, we examined whether in vitro cell passaging over a 14-year period introduced any genetic variation in Ad36. We sequenced the whole genome of Ad36-which was plaque purified in 1998 from the original strain obtained from American Type Culture Collection, and passaged approximately 12 times over the past 14 years (Ad36-2012). This DNA sequence was compared with a previously published sequence of Ad36 likely obtained from the same source (Ad36-1988). Compared with Ad36-1988, only two nucleotides were altered in Ad36-2012: a T insertion at nucleotide 1862, which may induce early termination of the E1B viral protein, and a T➝C transition at nucleotide 26 136. Virus with the T insertion (designated Ad36-2012-T6) was mixed with wild-type virus lacking the T insertion (designated Ad36-2012-T5) in the viral stock. The transition at nucleotide 26 136 does not change the encoded amino acid (aspartic acid) in the pVIII viral protein. The rate of genetic variation in Ad36 is ∼2.37 × 10(-6) mutations/nucleotide/passage. Of particular importance, there were no mutations in the E4orf1 gene, the critical gene for producing obesity. This very-low-variation rate should reduce concerns about genetic variability when developing Ad36 vaccines or developing assays for detecting Ad36 infection in populations.
USDA-ARS?s Scientific Manuscript database
Inserts and insert sites in transgenic, commercial papaya line 55-1 derivatives Rainbow and SunUp were characterized as part of a petition to Japan to allow import of fresh fruit of these cultivars from the U.S. and to provide data for a larger study aimed at understanding the global impact of DNA t...
Vengut-Climent, Empar; Peñalver, Pablo; Lucas, Ricardo; Gómez-Pinto, Irene; Aviñó, Anna; Muro-Pastor, Alicia M.; Galbis, Elsa; de Paz, M. Violante; Fonseca Guerra, Célia; Bickelhaupt, F. Matthias; Eritja, Ramón; González, Carlos
2018-01-01
Recently, we studied glucose-nucleobase pairs, a binding motif found in aminoglycoside–RNA recognition. DNA duplexes with glucose as a nucleobase were able to hybridize and were selective for purines. They were less stable than natural DNA but still fit well on regular B-DNA. These results opened up the possible use of glucose as a non-aromatic DNA base mimic. Here, we have studied the incorporation and thermal stability of glucose with different types of anchoring units and alternative apolar sugar-nucleobase pairs. When we explored butanetriol instead of glycerol as a wider anchoring unit, we did not gain duplex thermal stability. This result confirmed the necessity of a more conformationally restricted linker to increase the overall duplex stability. Permethylated glucose-nucleobase pairs showed similar stability to glucoside-nucleobase pairs but no selectivity for a specific nucleobase, possibly due to the absence of hydrogen bonds between them. The three-dimensional structure of the duplex solved by NMR located both, the hydrophobic permethylated glucose and the nucleobase, inside the DNA helix as in the case of glucose-nucleobase pairs. Quantum chemical calculations on glucose-nucleobase pairs indicate that the attachment of the sugar to the DNA skeleton through the OH1 or OH4 positions yields the highest binding energies. Moreover, glucose was very selective for guanine when attached through OH1 or OH4 to the DNA. Finally, we examined DNA polymerase insertion of nucleotides in front of the saccharide unit. KF– polymerase from E. coli inserted A and G opposite glc and 6dglc with low efficiency but notable selectivity. It is even capable of extending the new pair although its efficiency depended on the DNA sequence. In contrast, Bst 2.0, SIII and BIOTAQ™ DNA polymerases seem to display a loop-out mechanism possibly due to the flexible glycerol linker used instead of deoxyribose. PMID:29780486
Asemu, Girma; Fishbein, Kenneth; Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C; Spencer, Richard G; Soldatov, Nikolai M
2011-01-01
Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human CaV 1.2 α(1C) cDNA deprived of 3'-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading "transgenic artifact" compatible with the expected function of the incorporated "correct" transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of "incidental incorporation" leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains.
Cardiac phenotype induced by a dysfunctional α1C transgene
Lao, Qi Zong; Ravindran, Arippa; Herbert, Ron; Canuto, Holly C
2011-01-01
Based on stable integration of recombinant DNA into a host genome, transgenic technology has become an important genetic engineering methodology. An organism whose genetic characteristics have been altered by the insertion of foreign DNA is supposed to exhibit a new phenotype associated with the function of the transgene. However, successful insertion may not be sufficient to achieve specific modification of function. In this study we describe a strain of transgenic mouse, G7-882, generated by incorporation into the mouse genome of human Cav1.2 α1C cDNA deprived of 3′-UTR to exclude transcription. We found that, in response to chronic infusion of isoproterenol, G7-882 develops dilated cardiomyopathy, a misleading “transgenic artifact” compatible with the expected function of the incorporated “correct” transgene. Specifically, using magnetic resonance imaging (MRI), we found that chronic β-adrenergic stimulation of G7-882 mice caused left ventricular hypertrophy and aggravated development of dilated cardiomyopathy, although no significant changes in the kinetics, density and voltage dependence of the calcium current were observed in G7-882 cardiomyocytes as compared to cells from wild type mice. This result illustrates the possibility that even when a functional transgene is expressed, an observed change in phenotype may be due to the artifact of “incidental incorporation” leading to misleading conclusions. To exclude this possibility and thus provide a robust tool for exploring biological function, the new transgenic phenotype must be replicated in several independently generated transgenic strains. PMID:21224729
Characterization of a highly polymorphic region 5′ to JH in the human immunoglobulin heavy chain
Silva, Alcino J.; Johnson, John P.; White, Raymond L.
1987-01-01
A cloned DNA segment 1.25 kilobases (kb) upstream from the joining segments of the human heavy chain immunoglobulin gene revealed extensive polymorphic variation at this locus, and the polymorphic pattern was stably transmitted to the next generation. Genomic restriction analysis showed that the polymorphism was caused by insertions/deletions within an MspI/BamHI fragment. Sequencing of one allele, 848 base pairs (bp) long, revealed eleven 50-base-pair tandem repeats. A second allele, 648 bp long, was cloned from a human genomic cosmid library, sequenced, and found to contain four fewer repeats than the first allele. A survey of 186 chromosomes from unrelated individuals of primarily northern European descent revealed at least six alleles. Images PMID:2884636
Grandchamp, Nicolas; Altémir, Dorothée; Philippe, Stéphanie; Ursulet, Suzanna; Pilet, Héloïse; Serre, Marie-Claude; Lenain, Aude; Serguera, Che; Mallet, Jacques; Sarkis, Chamsy
2014-01-01
Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.
Koschmann, Carl; Calinescu, Alexandra; Thomas, Daniel; Kamran, Neha; Nunez-Aguilera, Felipe; Dzaman, Marta; Lemons, Rosie; Li, Youping; Roh, Haeji; Lowenstein, Pedro; Castro, Maria
2014-01-01
Pediatric glioblastoma (GBM) remains one of the most difficult childhood tumors to treat. ATRX is a histone chaperone protein that is mutated primarily in younger patients with GBM. No previous animal model has demonstrated the effect of ATRX loss on GBM formation. We cloned an ATRX knockdown sequence into a Sleeping Beauty (SB) transposase-responsive plasmid (shATRX) for insertion into host genomic DNA. Glioblastomas were induced in mice by injecting plasmids encoding SB transposase/ luciferase, shp53 and NRAS, with or without shATRX, into the ventricle of neonatal mice. Tumors in both groups (with or without shATRX) showed histological hallmarks of human glioblastoma. The loss of ATRX was specifically localized only within tumors generated with the shATRX plasmid and not in the adjacent cortex. Notably, loss of ATRX reduced median survival of mice by 43% (p = 0.012). ATRX-deficient tumors were significantly more likely to develop microsatellite instability (p = 0.014), a hallmark of impaired DNA-damage repair. Analysis of three human GBM sequencing datasets confirmed increased number of somatic nucleotide mutations in ATRX-deficient tumors. Treatment of primary cell cultures generated from mouse GBMs showed that ATRX-deficient tumor cells are significantly more sensitive to DNA damaging agents. In addition, mice with ATRX-deficient GBM treated with whole brain irradiation had trend towards improved survival (p= 0.06), with some long-term survivors. Treated ATRX-deficient tumor cells showed greater evidence of double-stranded DNA breakage, by gH2A.X. In summary, this mouse model prospectively validates ATRX as a tumor suppressor in human GBM for the first time in an animal model. In addition, loss of ATRX leads to increased mutation frequency and response to DNA-damaging therapy. We have generated the hypothesis that ATRX loss leads to a genetically unstable tumor; which is more aggressive when untreated, but more responsive to DNA-damaging therapy, ultimately resulting in equivalent or improved overall survival.
Weiser, Keith C.; Liu, Bin; Hansen, Gwenn M.; Skapura, Darlene; Hentges, Kathryn E.; Yarlagadda, Sujatha; Morse III, Herbert C.
2007-01-01
AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision. PMID:17926094
Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J
2007-10-01
AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .
Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M
2016-07-15
The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.
Kharazmi, Sara; Ataie Kachoie, Elham; Behjatnia, Seyed Ali Akbar
2016-05-01
The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, βC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the βC1 was deleted (β∆C1). The recombinant βΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant βΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that β∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants.
Method for introducing unidirectional nested deletions
Dunn, J.J.; Quesada, M.A.; Randesi, M.
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.
Method for introducing unidirectional nested deletions
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
Method for producing labeled single-stranded nucleic acid probes
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-10-19
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase.
Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S
2014-01-01
Extensive structural studies of human DNA glycosylase hOGG1 have revealed essential conformational changes of the enzyme. However, at present there is little information about the time scale of the rearrangements of the protein structure as well as the dynamic behavior of individual amino acids. Using pre-steady-state kinetic analysis with Trp and 2-aminopurine fluorescence detection the conformational dynamics of hOGG1 wild-type (WT) and mutants Y203W, Y203A, H270W, F45W, F319W and K249Q as well as DNA-substrates was examined. The roles of catalytically important amino acids F45, Y203, K249, H270, and F319 in the hOGG1 enzymatic pathway and their involvement in the step-by-step mechanism of oxidative DNA lesion recognition and catalysis were elucidated. The results show that Tyr-203 participates in the initial steps of the lesion site recognition. The interaction of the His-270 residue with the oxoG base plays a key role in the insertion of the damaged base into the active site. Lys-249 participates not only in the catalytic stages but also in the processes of local duplex distortion and flipping out of the oxoG residue. Non-damaged DNA does not form a stable complex with hOGG1, although a complex with a flipped out guanine base can be formed transiently. The kinetic data obtained in this study significantly improves our understanding of the molecular mechanism of lesion recognition by hOGG1. © 2013.
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.
Ricchetti, M; Fairhead, C; Dujon, B
1999-11-04
The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, D.S.; Nussbaum, R.L.
1994-09-01
The Lowe oculocerebrorenal syndrome (OCRL) is an X-linked disease characterized by congenital cataract, mental retardation, and renal tubular dysfunction. A candidate cDNA, OCRL-1, was identified by positional cloning and mutations in OCRL-1 have been detected in patients with Lowe syndrome. The OCRL-1 nucleotide sequence encodes a predicted protein of 968 amino acids and shares 51% amino acid identity with a human inositol polyphosphate-5-phosphatase. This suggests that the underlying defect in OCRL may be due to a defect in inositol phosphate metabolism. The isolation of OCRL-1 provides the opportunity to investigate its function through the use of animal model systems. Wemore » have isolated a partial cDNA clone encoding an OCRL-1 homologue, X-OCRL, from the South African clawed frog, Xenopus laevis. We used a portion of the human cDNA to screen a Xenopus laevis embryo cDNA library and isolated four positive clones. One clone, 42-5A, is a 650 bp insert with over 75% amino acid identity to the corresponding region of the human OCRL-1 sequence. 42-5A detects messenger RNA in adult Xenopus brain, stomach, small intestine, skin, muscle, lung, blood, and oviduct. X-OCRL messenger RNA is first detected during late gastrula and continues to be expressed throughout Xenopus development. In situ hybridization studies are underway to identify the cellular localization of X-OCRL expression in Xenopus embryos and adult tissues. We are especially interested in characterizing X-OCRL expression during formation of the amphibian lens since congenital cataracts are a constant feature of the human disease.« less
Continuous Influx of Genetic Material from Host to Virus Populations
Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane
2016-01-01
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors. PMID:26829124
Continuous Influx of Genetic Material from Host to Virus Populations.
Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane; Cordaux, Richard; Herniou, Elisabeth A
2016-02-01
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, S.B.
Our laboratory has explored the use of short DNA oligomers as targets for activated polycyclic aromatic hydrocarbons, such as benzo(a)pyrene diol epoxide (BPDE), in order to detect alterations in DNA sequence arrangement. In this model system, oligomers alkylated with (+)-BPDE are ligated into M13 viral DNA and used to transfect Escherichia coli. These cells are plated on agar, incubated at 37/sup 0/C, progeny viral clones are selected, amplified, and the viral DNAs isolated are sequenced at the site of oligomer insertion. We have devised a procedure for the preparation of unique duplex DNA oligomers such that the site of oligomermore » alkylation is specific for a single deoxynucleotide species in the two DNA strands. The procedure for oligomer assembly also allows us to vary the position of the alkylated residue in each of the two strands. Using our model system, the results obtained over the past year can be summarized as follows. When nonalkylated oligomer constructs are ligated into M13 viral DNA and used to transfect E. coli, no modifications in DNA sequence arrangement are detected in progeny viral DNAs. On the other hand, with oligomer constructs containing BP-adducts two major types of modifications in DNA sequence arrangement were observed: (1) large deletions, and (2) nonhomologous (illegitimate) recombinants. Both of these DNA modifications result in the complete removal of the oligomer insert. Transfection of E. coli that are recA/sup -/ does not alter these DNA modifications, therefore, it appears that the deletions and recombinants induced by the alkylated inserts are not under control of the RecA gene. As the distance between the alkylated residues in the duplex strands is increased, the number of recombinant events detected is reduced. In addition to the above types of DNA modifications, restoration of the original nucleotide sequence in the alkylated construct was also observed in progeny viral DNAs. 7 refs., 6 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micklos, David A.
2006-10-30
This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms â which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, andmore » computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nationâÂÂs oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism kits by Carolina Biological rose from 700 units in 1999 to 1,132 in 2000 â a 62% increase. Competing kits using the Alu system, and based substantially on our earlier work, are also marketed by Biorad and Edvotek. In parallel with the lab experiments, we developed a suite of database/statistical applications and easy-to-use interfaces that allow students to use their own DNA data to explore human population genetics and to test theories of human evolution. Database searches and statistical analyses are launched from a centralized workspace. Workshop participants were introduced to these and other resources available at the DNALC WWW site (http://vector.cshl.org/bioserver/): 1) Allele Server tests Hardy-Weinberg equilibrium and statistically compares PV92 data from world populations. 2) Sequence Server uses DNA sequence data to search Genbank using BLASTN, compare sequences using CLUSTALW, and create phylogenetic trees using PHYLIP. 3) Simulation Server uses a Monte Carlo generator to model the long-term effects of drift, selection, and population bottlenecks. By targeting motivated and innovative biology faculty, we believe that this project offered a cost-effective means to bring high school biology education up-to-the-minute with genomic biology. The workshop reached a target audience of highly professional faculty who have already implemented hands-on labs in molecular genetics and many of whom offer laboratory electives in biotechnology. Many attend professional meetings, develop curriculum, collaborate with scientists, teach faculty workshops, and manage equipment-sharing programs. These individuals are life-long learners, anxious for deeper insight and additional training to further extend their leadership. This contention was supported by data from a mail survey, conducted in February-March 2000 and 2001, of 256 faculty who participated in workshops conducted during the current term of DOE support. Seventy percent of participants responded, providing direct reports on how their teaching behavior had changed since taking the DOE workshop. About nine of ten respondents said they had provided new classroom materials and first-hand accounts of DNA typing, sequencing, or PCR. Three-fourths had introduced new units on human molecular genetics. Most strikingly, half had students use PCR to amplify their own insertion polymorphisms (PV92), and better than one-fourth amplified a VNTR polymorphism and the mitochondrial control region. One in five had mitochondrial DNA sequenced by the DNALC Sequencing Service. A majority (58%) used online materials at the DNALC WWW site, and 28% analyzed student polymorphism data with Bioservers at the DNALC site. A majority (58%) assisted other faculty with student labs on polymorphisms, reaching an additional 786 teachers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David. A Micklos
2006-10-30
This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms – which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, andmore » computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nation’s oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism kits by Carolina Biological rose from 700 units in 1999 to 1,132 in 2000 – a 62% increase. Competing kits using the Alu system, and based substantially on our earlier work, are also marketed by Biorad and Edvotek. In parallel with the lab experiments, we developed a suite of database/statistical applications and easy-to-use interfaces that allow students to use their own DNA data to explore human population genetics and to test theories of human evolution. Database searches and statistical analyses are launched from a centralized workspace. Workshop participants were introduced to these and other resources available at the DNALC WWW site (http://vector.cshl.org/bioserver/): 1) Allele Server tests Hardy-Weinberg equilibrium and statistically compares PV92 data from world populations. 2) Sequence Server uses DNA sequence data to search Genbank using BLASTN, compare sequences using CLUSTALW, and create phylogenetic trees using PHYLIP. 3) Simulation Server uses a Monte Carlo generator to model the long-term effects of drift, selection, and population bottlenecks. By targeting motivated and innovative biology faculty, we believe that this project offered a cost-effective means to bring high school biology education up-to-the-minute with genomic biology. The workshop reached a target audience of highly professional faculty who have already implemented hands-on labs in molecular genetics and many of whom offer laboratory electives in biotechnology. Many attend professional meetings, develop curriculum, collaborate with scientists, teach faculty workshops, and manage equipment-sharing programs. These individuals are life-long learners, anxious for deeper insight and additional training to further extend their leadership. This contention was supported by data from a mail survey, conducted in February-March 2000 and 2001, of 256 faculty who participated in workshops conducted during the current term of DOE support. Seventy percent of participants responded, providing direct reports on how their teaching behavior had changed since taking the DOE workshop. About nine of ten respondents said they had provided new classroom materials and first-hand accounts of DNA typing, sequencing, or PCR. Three-fourths had introduced new units on human molecular genetics. Most strikingly, half had students use PCR to amplify their own insertion polymorphisms (PV92), and better than one-fourth amplified a VNTR polymorphism and the mitochondrial control region. One in five had mitochondrial DNA sequenced by the DNALC Sequencing Service. A majority (58%) used online materials at the DNALC WWW site, and 28% analyzed student polymorphism data with Bioservers at the DNALC site. A majority (58%) assisted other faculty with student labs on polymorphisms, reaching an additional 786 teachers.« less
Genetically modified myths and realities.
Parrott, Wayne
2010-11-30
Myths abound when it comes to GE crops. At their worst, myths play an active role in discouraging the use of GE to solve problems that afflict humankind, such as malnutrition and birth defects. Of all the various myths, two have been particularly important in preventing the use of GE maize in its areas of origin. The first is that transgenic maize will contaminate and destroy land races, thus destroying biodiversity and its associated cultural traditions. This myth totally ignores the fact that the gene flow that has taken place between maize and its progenitor, between the land races, and between land races and modern hybrids, has not led to any dire consequences. The second myth is that crops are natural and have not been modified by humans, or if they have, that plant breeding does not alter DNA. This myth ignores the fact that for the most part, it is impossible to alter the appearance of crops without changing the DNA. In fact, DNA movement within the crop genome is normal and its movement leads to double-strand DNA repair, with results like those found around transgene insertion sites. In addition, plants have ways to create novel genes. These changes help plants adapt to evolution and to human selection. The net result is that changes similar to what happens during the production of engineered plants takes place anyway in plant genomes. Copyright © 2010 Elsevier B.V. All rights reserved.
Amirhaeri, S; Wohlrab, F; Wells, R D
1995-02-17
The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.
Physical mapping of complex genomes
Evans, G.A.
1993-06-15
A method for the simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts in the pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert in the common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed.
NASA Astrophysics Data System (ADS)
Fakhar-E-Alam, Muhammad; Akram, M. Waseem; Iqbal, Seemab; Alimgeer, K. S.; Atif, M.; Sultana, K.; Willander, M.; Wang, Zhiming M.
2017-04-01
Carcinogenesis is a complex molecular process starting with genetic and epigenetic alterations, mutation stimulation, and DNA modification, which leads to proteomic adaptation ending with an uncontrolled proliferation mechanism. The current research focused on the empirical modelling of the physiological response of human melanoma cells (FM55P) and human foreskin fibroblasts cells (AG01518) to the multilayer zinc oxide (ZnO) nanomaterials under UV-A exposure. To validate this experimental scheme, multilayer ZnO nanomaterials were grown on a femtotip silver capillary and conjugated with protoporphyrin IX (PpIX). Furthermore, PpIX-conjugated ZnO nanomaterials grown on the probe were inserted into human melanoma (FM55P) and foreskin fibroblasts cells (AG01518) under UV-A light exposure. Interestingly, significant cell necrosis was observed because of a loss in mitochondrial membrane potential just after insertion of the femtotip tool. Intense reactive oxygen species (ROS) fluorescence was observed after exposure to the ZnO NWs conjugated with PpIX femtotip model under UV exposure. Results were verified by applying several experimental techniques, e.g., ROS detection, MTT assay, and fluorescence spectroscopy. The present work reports experimental modelling of cell necrosis in normal human skin as well as a cancerous tissue. These obtained results pave the way for a more rational strategy for biomedical and clinical applications.
Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.
Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A
2016-01-01
Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA. Copyright © 2016 John Wiley & Sons, Inc.
Köppen-Rung, Pánja; Dittmer, Alexandra; Bogner, Elke
2016-07-01
DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and pUL89 and another postulated packaging protein, pUL93, in infected, as well as transfected, cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
Angsuthanasombat, C; Chungjatupornchai, W; Kertbundit, S; Luxananil, P; Settasatian, C; Wilairat, P; Panyim, S
1987-07-01
Five recombinant E. coli clones exhibiting toxicity to Aedes aegypti larvae were obtained from a library of 800 clones containing XbaI DNA fragments of 110 kb plasmid from B. thuringiensis var. israelensis. All the five clones (pMU 14/258/303/388/679) had the same 3.8-kb insert and encoded a major protein of 130 kDa which was highly toxic to A. aegypti larvae. Three clones (pMU 258/303/388) transcribed the 130 kD a gene in the same direction as that of lac Z promoter of pUC12 vector whereas the transcription of the other two (pMU 14/679) was in the opposite direction. A 1.9-kb fragment of the 3.8 kb insert coded for a protein of 65 kDa. Partial DNA sequence of the 3.8 kb insert, corresponding to the 5'-terminal of the 130 kDa gene, revealed a continuous reading frame, a Shine-Dalgarno sequence and a tentative 5'-regulatory region. These results demonstrated that the 3.8 kb insert is a minimal DNA fragment containing a regulatory region plus the coding sequence of the 130 kDa protein that is highly toxic to mosquito larvae.
Identification of Tumor Rejection Antigens for Breast Cancer Using a Mouse Tumor Rejection Model
2009-05-01
plaques were randomly picked and PCR with T3 and T7 primer was done to validate the cDNA insert. The inserts ranged from 500 to 3,500 bp. A...modifications. Briefly, 5 103 phage clones were plated with XL-Blue on NZY agar plates. After 4 hours of incubation at 37jC, isopropyl-L-thio-h-D...using XLOLR cells and ExAssist helper phage (Stratagene). Plasmid DNA was prepared using a FastPlasmid kit (Eppendorf, Hamburg, Germany). The nucleotide
Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir
2017-01-01
Background A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. Methods The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3′end of the reporter gene and the VP2 start sequence to allow co-translational ‘cleavage’ of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Results Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. Conclusion NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication. PMID:29379384
Mutations at Several Loci Cause Increased Expression of Ribonucleotide Reductase in Escherichia coli
Feeney, Morgan Anne; Ke, Na
2012-01-01
Production of deoxyribonucleotides for DNA synthesis is an essential and tightly regulated process. The class Ia ribonucleotide reductase (RNR), the product of the nrdAB genes, is required for aerobic growth of Escherichia coli. In catalyzing the reduction of ribonucleotides, two of the cysteines of RNR become oxidized, forming a disulfide bond. To regenerate active RNR, the cell uses thioredoxins and glutaredoxins to reduce the disulfide bond. Strains that lack thioredoxins 1 and 2 and glutaredoxin 1 do not grow because RNR remains in its oxidized, inactive form. However, suppressor mutations that lead to RNR overproduction allow glutaredoxin 3 to reduce sufficient RNR for growth of these mutant strains. We previously described suppressor mutations in the dnaA and dnaN genes that had such effects. Here we report the isolation of new mutations that lead to increased levels of RNR. These include mutations that were not known to influence production of RNR previously, such as a mutation in the hda gene and insertions in the nrdAB promoter region of insertion elements IS1 and IS5. Bioinformatic analysis raises the possibility that IS element insertion in this region represents an adaptive mechanism in nrdAB regulation in E. coli and closely related species. We also characterize mutations altering different amino acids in DnaA and DnaN from those isolated before. PMID:22247510
Freije, J M; Díez-Itza, I; Balbín, M; Sánchez, L M; Blasco, R; Tolivia, J; López-Otín, C
1994-06-17
A cDNA coding for a new human matrix metalloproteinase (MMP) has been cloned from a cDNA library derived from a breast tumor. The isolated cDNA contains an open reading frame coding for a polypeptide of 471 amino acids. The predicted protein sequence displays extensive similarity to the previously known MMPs and presents all the structural features characteristic of the members of this protein family, including the well conserved PRCGXPD motif, involved in the latency of the enzyme and the zinc-binding domain (HEXGHXXXXXHS). In addition, this novel human MMP contains in its amino acid sequence several residues specific to the collagenase subfamily (Tyr-214, Asp-235, and Gly-237) and lacks the 9-residue insertion present in the stromelysins. According to these structural characteristics, the MMP described herein has been tentatively called collagenase-3, since it represents the third member of this subfamily, composed at present of fibroblast and neutrophil collagenases. The collagenase-3 cDNA was expressed in a vaccinia virus system, and the recombinant protein was able to degrade fibrillar collagens, providing support to the hypothesis that the isolated cDNA codes for an authentic collagenase. Northern blot analysis of RNA from normal and pathological tissues demonstrated the existence in breast tumors of three different mRNA species, which seem to be the result of the utilization of different polyadenylation sites present in the 3'-noncoding region of the gene. By contrast, no collagenase-3 mRNA was detected either by Northern blot or RNA polymerase chain reaction analysis with RNA from other human tissues, including normal breast, mammary fibroadenomas, liver, placenta, ovary, uterus, prostate, and parotid gland. On the basis of the increased expression of collagenase-3 in breast carcinomas and the absence of detectable expression in normal tissues, a possible role for this metalloproteinase in the tumoral process is proposed.
Basis of Miscoding of the DNA Adduct N2,3-Ethenoguanine by Human Y-family DNA Polymerases*
Zhao, Linlin; Pence, Matthew G.; Christov, Plamen P.; Wawrzak, Zdzislaw; Choi, Jeong-Yun; Rizzo, Carmelo J.; Egli, Martin; Guengerich, F. Peter
2012-01-01
N2,3-Ethenoguanine (N2,3-ϵG) is one of the exocyclic DNA adducts produced by endogenous processes (e.g. lipid peroxidation) and exposure to bioactivated vinyl monomers such as vinyl chloride, which is a known human carcinogen. Existing studies exploring the miscoding potential of this lesion are quite indirect because of the lability of the glycosidic bond. We utilized a 2′-fluoro isostere approach to stabilize this lesion and synthesized oligonucleotides containing 2′-fluoro-N2,3-ϵ-2′-deoxyarabinoguanosine to investigate the miscoding potential of N2,3-ϵG by Y-family human DNA polymerases (pols). In primer extension assays, pol η and pol κ replicated through N2,3-ϵG, whereas pol ι and REV1 yielded only 1-base incorporation. Steady-state kinetics revealed that dCTP incorporation is preferred opposite N2,3-ϵG with relative efficiencies in the order of pol κ > REV1 > pol η ≈ pol ι, and dTTP misincorporation is the major miscoding event by all four Y-family human DNA pols. Pol ι had the highest dTTP misincorporation frequency (0.71) followed by pol η (0.63). REV1 misincorporated dTTP and dGTP with much lower frequencies. Crystal structures of pol ι with N2,3-ϵG paired to dCTP and dTTP revealed Hoogsteen-like base pairing mechanisms. Two hydrogen bonds were observed in the N2,3-ϵG:dCTP base pair, whereas only one appears to be present in the case of the N2,3-ϵG:dTTP pair. Base pairing mechanisms derived from the crystal structures explain the slightly favored dCTP insertion for pol ι in steady-state kinetic analysis. Taken together, these results provide a basis for the mutagenic potential of N2,3-ϵG. PMID:22910910
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.
Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J
2016-08-19
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DYZ1 arrays show sequence variation between the monozygotic males
2014-01-01
Background Monozygotic twins (MZT) are an important resource for genetical studies in the context of normal and diseased genomes. In the present study we used DYZ1, a satellite fraction present in the form of tandem arrays on the long arm of the human Y chromosome, as a tool to uncover sequence variations between the monozygotic males. Results We detected copy number variation, frequent insertions and deletions within the sequences of DYZ1 arrays amongst all the three sets of twins used in the present study. MZT1b showed loss of 35 bp compared to that in 1a, whereas 2a showed loss of 31 bp compared to that in 2b. Similarly, 3b showed 10 bp insertion compared to that in 3a. MZT1a germline DNA showed loss of 5 bp and 1b blood DNA showed loss of 26 bp compared to that of 1a blood and 1b germline DNA, respectively. Of the 69 restriction sites detected in DYZ1 arrays, MboII, BsrI, TspEI and TaqI enzymes showed frequent loss and or gain amongst all the 3 pairs studied. MZT1 pair showed loss/gain of VspI, BsrDI, AgsI, PleI, TspDTI, TspEI, TfiI and TaqI restriction sites in both blood and germline DNA. All the three sets of MZT showed differences in the number of DYZ1 copies. FISH signals reflected somatic mosaicism of the DYZ1 copies across the cells. Conclusions DYZ1 showed both sequence and copy number variation between the MZT males. Sequence variation was also noticed between germline and blood DNA samples of the same individual as we observed at least in one set of sample. The result suggests that DYZ1 faithfully records all the genetical changes occurring after the twining which may be ascribed to the environmental factors. PMID:24495361
Gladyshev, Eugene A; Arkhipova, Irina R
2009-12-15
Ribosomal DNA genes in many eukaryotes contain insertions of non-LTR retrotransposable elements belonging to the R2 clade. These elements persist in the host genomes by inserting site-specifically into multicopy target sites, thereby avoiding random disruption of single-copy host genes. Here we describe R9 retrotransposons from the R2 clade in the 28S RNA genes of bdelloid rotifers, small freshwater invertebrate animals best known for their long-term asexuality and for their ability to survive repeated cycles of desiccation and rehydration. While the structural organization of R9 elements is highly similar to that of other members of the R2 clade, they are characterized by two distinct features: site-specific insertion into a previously unreported target sequence within the 28S gene, and an unusually long target site duplication of 126 bp. We discuss the implications of these findings in the context of bdelloid genome organization and the mechanisms of target-primed reverse transcription.
Chao, Michael C.; Pritchard, Justin R.; Zhang, Yanjia J.; Rubin, Eric J.; Livny, Jonathan; Davis, Brigid M.; Waldor, Matthew K.
2013-01-01
The coupling of high-density transposon mutagenesis to high-throughput DNA sequencing (transposon-insertion sequencing) enables simultaneous and genome-wide assessment of the contributions of individual loci to bacterial growth and survival. We have refined analysis of transposon-insertion sequencing data by normalizing for the effect of DNA replication on sequencing output and using a hidden Markov model (HMM)-based filter to exploit heretofore unappreciated information inherent in all transposon-insertion sequencing data sets. The HMM can smooth variations in read abundance and thereby reduce the effects of read noise, as well as permit fine scale mapping that is independent of genomic annotation and enable classification of loci into several functional categories (e.g. essential, domain essential or ‘sick’). We generated a high-resolution map of genomic loci (encompassing both intra- and intergenic sequences) that are required or beneficial for in vitro growth of the cholera pathogen, Vibrio cholerae. This work uncovered new metabolic and physiologic requirements for V. cholerae survival, and by combining transposon-insertion sequencing and transcriptomic data sets, we also identified several novel noncoding RNA species that contribute to V. cholerae growth. Our findings suggest that HMM-based approaches will enhance extraction of biological meaning from transposon-insertion sequencing genomic data. PMID:23901011
Expression of human argininosuccinate synthetase after retroviral-mediated gene transfer.
Wood, P A; Partridge, C A; O'Brien, W E; Beaudet, A L
1986-09-01
The cDNA sequence for human argininosuccinate synthetase (AS) was introduced into plasmid expression vectors with an SV40 promoter or Rous sarcoma virus promoter to construct pSV2-AS and pRSV-AS, respectively, and human enzyme was synthesized after gene transfer into Chinese hamster cells. The functional cDNA was inserted into the retroviral vectors pZIP-NeoSV(X) and pZIP-NeoSV(B). Ecotropic AS retrovirus was produced after calcium-phosphate-mediated gene transfer of these constructions into the packaging cell line psi-2, and viral titers up to 10(5) CFU/ml were obtained. Recombinant AS retrovirus was evaluated by detecting G-418-resistant colonies after infection of the rodent cells, XC, NRK, and 3T3. Colonies were also obtained when infected XC cells were selected in citrulline medium for expression of AS activity. Southern blot analysis of infected cells demonstrated that the recombinant retroviral genome was not altered grossly after infecting some rodent cells, while other cells showed evidence of rearrangement. A rapid assay for detecting AS retrovirus was developed based on the incorporation of [14C]citrulline into protein by intact 3T3 cells or XC cells.
NASA Astrophysics Data System (ADS)
Zhou, Ming; Breton, Rock; Azzi, Arezki; Lin, Sheng-Xiang
1996-10-01
Three-beta hydroxysteroid dehydrogenase / Δ 5-Δ 4 isomerase catalyses a key step in the transformation of all 5-prognen-3β-ol and 5-androsten-3β-ol steroids into the corresponding Δ 4-3-keto-steroids. Human type I 3β-HSD can be found in the subcellular fractions of mitochondria and microsome. A 1.5 kbp cDNA encoding human type I 3β-HSD was inserted into the transfer vector pBlueBac to form plasmid pBB / 3β-HSD. The recombinant baculovirus was obtained by co-transfection of wild type AcNPV genomic DNA and PBB / 3β-HSD in Sf9 cells, then used to infect Sf9 cells to over-express human 3β-HSD protein. The 3β-HSD sample was purified to homogeneity by a rapid procedure, consisting of an anion-exchange and an adsorbance chromatographies, based on FPLC and some detergents application. The whole process was successful with a purification rate of 90 fold and a high recovery (70%). The kinetic study showed a Vmax of 500 nmol/min · mg and a Km of 2.8 μM, being much more active than those reported.
Using Cellular Proteins to Reveal Mechanisms of HIV Infection | Center for Cancer Research
A vital step in HIV infection is the insertion of viral DNA into the genome of the host cell. In order for the insertion to occur, viral nucleic acid must be transported through the membrane that separates the main cellular compartment (the cytoplasm) from the nucleus, where the host DNA is located. Scientists are actively studying the mechanism used to transport viral DNA into the nucleus in the hopes of targeting this step with future anti-HIV treatments. Up to this point, researchers have identified some of the viral components that play a role in nuclear transport, but they have not determined how viral interactions with other molecules in the cell contribute to the process.
Highly stable maintenance of a mouse artificial chromosome in human cells and mice.
Kazuki, Kanako; Takehara, Shoko; Uno, Narumi; Imaoka, Natsuko; Abe, Satoshi; Takiguchi, Masato; Hiramatsu, Kei; Oshimura, Mitsuo; Kazuki, Yasuhiro
2013-12-06
Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis. Copyright © 2013 Elsevier Inc. All rights reserved.
Wicker, Thomas; Yu, Yeisoo; Haberer, Georg; Mayer, Klaus F. X.; Marri, Pradeep Reddy; Rounsley, Steve; Chen, Mingsheng; Zuccolo, Andrea; Panaud, Olivier; Wing, Rod A.; Roffler, Stefan
2016-01-01
DNA (class 2) transposons are mobile genetic elements which move within their ‘host' genome through excising and re-inserting elsewhere. Although the rice genome contains tens of thousands of such elements, their actual role in evolution is still unclear. Analysing over 650 transposon polymorphisms in the rice species Oryza sativa and Oryza glaberrima, we find that DNA repair following transposon excisions is associated with an increased number of mutations in the sequences neighbouring the transposon. Indeed, the 3,000 bp flanking the excised transposons can contain over 10 times more mutations than the genome-wide average. Since DNA transposons preferably insert near genes, this is correlated with increases in mutation rates in coding sequences and regulatory regions. Most importantly, we find this phenomenon also in maize, wheat and barley. Thus, these findings suggest that DNA transposon activity is a major evolutionary force in grasses which provide the basis of most food consumed by humankind. PMID:27599761
Generating finite cyclic and dihedral groups using sequential insertion systems with interactions
NASA Astrophysics Data System (ADS)
Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod; Yosman, Ahmad Firdaus
2017-04-01
The operation of insertion has been studied extensively throughout the years for its impact in many areas of theoretical computer science such as DNA computing. First introduced as a generalization of the concatenation operation, many variants of insertion have been introduced, each with their own computational properties. In this paper, we introduce a new variant that enables the generation of some special types of groups called sequential insertion systems with interactions. We show that these new systems are able to generate all finite cyclic and dihedral groups.
[Construction of large fragment metagenome library of natural mangrove soil].
Jiang, Yun-Xia; Zheng, Tian-Ling
2007-11-01
Applying our optimized direct extraction method, the percentage of large fragment DNA in the total extracted mangrove soil DNA was significant increased. The large fragment metagenome library derived from natural mangrove soil over four seasons was successfully constructed by the optimized DNA extraction and electro elution purification method. All of the clones had recombinant Cosmids and each differed in their fragment profiles when Cosmid DNA was extracted from 12 randomly picked colonies and digested with BamHI. The average insert size for this library was larger than 35 kbp. This culturing-independent library at least encompassed 335 Mbp valuable genetic information of mangrove soil microbes. It allowed mining of valuable intertidal microbial resource to become a reality. It is a recommended method for those researchers who have still not circumvented the large insert environmental libraries or for those beginning research in this field, so as to avoid them attempting repetitive, fussy work.
Kim, Sihyeon; Lee, Se Jin; Nai, Yu-Shin; Yu, Jeong Seon; Lee, Mi Rong; Yang, Yi-Ting; Kim, Jae Su
2016-10-01
The bean bug, Riptortus pedestris, is a major agricultural pest that reduces crop quality and value. Chemical pesticides have contributed to pest management, but resistance to these chemicals has significantly limited their use. Alternative strategies with different modes of action, such as entomopathogenic fungi, are therefore of great interest. Herein, we explored how entomopathogenic fungi can potentially be used to control the bean bug and focused on identifying virulence-related genes. Beauveria bassiana (JEF isolates) were assayed against bean bugs under laboratory conditions. One isolate, JEF-007, showed >80 % virulence by both spray and contact exposure methods. Agrobacterium tumefaciens-mediated transformation (AtMT) of JEF-007 generated 249 random transformants, two of which (B1-06 and C1-49) showed significantly reduced virulence against Tenebrio molitor and R. pedestris immatures. Both species were used for rapid screening of virulence-reduced mutants. The two transformants had different morphologies, conidial production, and thermotolerance than the wild type. To determine the localization of the randomly inserted T-DNA, thermal asymmetric interlaced (TAIL) PCR was conducted and analysis of the two clones found multiple T-DNA insertions (two in B1-06 and three in C1-49). Genes encoding complex I intermediate-associated protein 30 (CIA30) and the autophagy protein (Atg22) were possibly disrupted by the T-DNA insertion and might be involved in the virulence. This work provides a strong platform for future functional genetic studies of bean bug-pathogenic B. bassiana. The genes putatively involved in fungal virulence should be experimentally validated by knockdown in future studies.
Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A
2017-11-01
In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.
Insertional mutagenesis using Tnt1 retrotransposon in potato
USDA-ARS?s Scientific Manuscript database
Potato is the third most important food crop in the world. However, genetics and genomics research of potato has lagged behind many major crop species due to its autotetraploidy and a highly heterogeneous genome. Insertional mutagenesis using T-DNA or transposable elements, which is available in sev...
Bonen, Linda; Boer, Poppo H.; Gray, Michael W.
1984-01-01
We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity. ImagesFig. 3.Fig. 4.Fig. 5. PMID:16453565
Characterization of (CA)n microsatellite repeats from large-insert clones.
Litt, M; Browne, D
2001-05-01
The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit determination of sequences flanking the microsatellites. When cosmids or large-insert phage clones are used as primary sources of (CA)n repeat markers, they have traditionally been subcloned into plasmid vectors such as pUC18 or M13 mp 18/19 cloning vectors to obtain fragments of suitable size for DNA sequencing. This unit presents an alternative approach whereby a set of degenerate sequencing primers that anneal directly to (CA)n microsatellites can be used to determine sequences that are inaccessible with vector-derived primers. Because the primers anneal to the repeat and not to the vector, they can be used with subclones containing inserts of several kilobases and should, in theory, always give sequence in the regions directly flanking the repeat. Degeneracy at the 3 end of each of these primers prevents elongation of primers that have annealed out-of-register. The most laborious part of developing (CA)n microsatellite repeats as genetic markers is constructing DNA clones to permit.
Majira, Amel; Domin, Monique; Grandjean, Olivier; Gofron, Krystyna; Houba-Hérin, Nicole
2002-10-01
A seedling lethal mutant of Nicotiana plumbaginifolia (sdl-1) was isolated by transposon tagging using a maize Dissociation (Ds) element. The insertion mutation was produced by direct co-transformation of protoplasts with two plasmids: one containing Ds and a second with an Ac transposase gene. sdl-1 seedlings exhibit several phenotypes: swollen organs, short hypocotyls in light and dark conditions, and enlarged and multinucleated cells, that altogether suggest cell growth defects. Mutant cells are able to proliferate under in vitro culture conditions. Genomic DNA sequences bordering the transposon were used to recover cDNA from the normal allele. Complementation of the mutant phenotype with the cDNA confirmed that the transposon had caused the mutation. The Ds element was inserted into the first exon of the open reading frame and the homozygous mutant lacked detectable transcript. Phenocopies of the mutant were obtained by an antisense approach. SDL-1 encodes a novel protein found in several plant genomes but apparently missingfrom animal and fungal genomes; the protein is highly conserved and has a potential plastid targeting motif.
Cloning and Expression of cDNA for Rat Heme Oxygenase
NASA Astrophysics Data System (ADS)
Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi
1985-12-01
Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.
Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.
Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji
2014-01-01
The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.
Z-DNA binding protein from chicken blood nuclei
NASA Technical Reports Server (NTRS)
Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.
1993-01-01
A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.
Novel insertion mutation in a non-Jewish Caucasian type 1 Gaucher disease patient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choy, F.Y.M.; Humphries, M.L.; Ferreira, P.
1997-01-20
Gaucher disease is the most prevalent lysosomal storage disorder. It is autosomal recessive, resulting in lysosomal glucocerebrosidase deficiency. Three clinical forms of Gaucher disease have been described: type 1 (nonneuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). We performed PCR-thermal cycle sequence analysis of glucocerebrosidase genomic DNA and identified a novel mutation in a non-Jewish type 1 Gaucher disease patient. It is a C insertion in exon 3 at cDNA nucleotide position 122 and genomic nucleotide position 1626. This mutation causes a frameshift and, subsequently, four of the five codons immediately downstream of the insertion were changed whilemore » the sixth was converted to a stop codon, resulting in premature termination of protein translation. The 122CC insertion abolishes a Cac81 restriction endonuclease cleavage site, allowing a convenient and reliable method for detection using RFLP analysis of PCR-amplified glucocerebrosidase genomic DNA. The mutation in the other Gaucher allele was found to be an A{r_arrow}G substitution at glucocerebrosidase cDNA nucleotide position 1226 that so far has only been reported among type 1 Gaucher disease patients. Since mutation 122CC causes a frameshift and early termination of protein translation, it most likely results in a meaningless transcript and subsequently no residual glucocerebrosidase enzyme activity. We speculate that mutation 122CC may result in a worse prognosis than mutations associated with partial activity. When present in the homozygous form, it could be a lethal allele similar to what has been postulated for the other known insertion mutation, 84GG. Our patient, who is a compound heterozygote 122CC/1226G, has moderately severe type 1 Gaucher disease. Her clinical response to Ceredase{reg_sign} therapy that began 31 months ago has been favorable, though incomplete. 30 refs., 3 figs., 2 tabs.« less
Effects of the adenovirus 2 late promoter on simian virus 40 transcription and replication.
Grass, D S; Manley, J L
1986-01-01
A 100-base-pair fragment of adenovirus 2 (Ad2) DNA encompassing the major late transcriptional promoter was inserted into the simian virus 40 (SV40) late promoter region at SV40 nucleotide 294 to study the effects of a strong TATA box-containing promoter on SV40 late transcription. pSVAdE contains the insert in an orientation such that it would promote transcription towards the origin and early region of SV40, while the insert is in the opposite orientation in pSVAdL. Nuclease S1 analysis with 5'-end-labeled probes showed that in cells transfected with pSVAdE, the late mRNA initiation sites are essentially the same as in wild type, demonstrating that an insert of 100 base pairs can have no effect on utilization of the SV40 late start sites. In pSVAdL-transfected cells, however, the major late viral initiation site is now in the insert at +1 with respect to the Ad2 major late cap site. However, all of the SV40 initiation sites are still utilized and with the same efficiency relative to each other as in wild type. Thus, it appears that the Ad2 late promoter and the SV40 late promoter can function independently on the same DNA molecule, even when one promoter is embedded within the other. By using cytosine arabinoside to block DNA replication and thereby inhibit the onset of late expression, it has been shown that both the Ad2 late promoter and the SV40 late promoter have similar requirement for DNA replication in this context. In addition, pSVAdL showed dramatically diminished virus viability and VPI expression compared with both wildtype and pSVAdE. Possible explanations for this unexpected finding are discussed. Images PMID:3001338
Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T
1990-01-05
We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.
Mutt, Eshita; Sowdhamini, Ramanathan
2016-01-01
Insertions/deletions are common evolutionary tools employed to alter the structural and functional repertoire of protein domains. An insert situated proximal to the active site or ligand binding site frequently impacts protein function; however, the effect of distal indels on protein activity and/or stability are often not studied. In this paper, we have investigated a distal insert, which influences the function and stability of a unique DNA polymerase, called terminal deoxynucleotidyl transferase (TdT). TdT (EC:2.7.7.31) is a monomeric 58 kDa protein belonging to family X of eukaryotic DNA polymerases and known for its role in V(D)J recombination as well as in non-homologous end-joining (NHEJ) pathways. Two murine isoforms of TdT, with a length difference of twenty residues and having different biochemical properties, have been studied. All-atom molecular dynamics simulations at different temperatures and interaction network analyses were performed on the short and long-length isoforms. We observed conformational changes in the regions distal to the insert position (thumb subdomain) in the longer isoform, which indirectly affects the activity and stability of the enzyme through a mediating loop (Loop1). A structural rationale could be provided to explain the reduced polymerization rate as well as increased thermosensitivity of the longer isoform caused by peripherally located length variations within a DNA polymerase. These observations increase our understanding of the roles of length variants in introducing functional diversity in protein families in general. PMID:27311013
Role of the Adenovirus DNA-Binding Protein in In Vitro Adeno-Associated Virus DNA Replication
Ward, Peter; Dean, Frank B.; O’Donnell, Michael E.; Berns, Kenneth I.
1998-01-01
A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences. PMID:9420241
Molecular cloning of human protein 4.2: a major component of the erythrocyte membrane.
Sung, L A; Chien, S; Chang, L S; Lambert, K; Bliss, S A; Bouhassira, E E; Nagel, R L; Schwartz, R S; Rybicki, A C
1990-01-01
Protein 4.2 (P4.2) comprises approximately 5% of the protein mass of human erythrocyte (RBC) membranes. Anemia occurs in patients with RBCs deficient in P4.2, suggesting a role for this protein in maintaining RBC stability and integrity. We now report the molecular cloning and characterization of human RBC P4.2 cDNAs. By immunoscreening a human reticulocyte cDNA library and by using the polymerase chain reaction, two cDNA sequences of 2.4 and 2.5 kilobases (kb) were obtained. These cDNAs differ only by a 90-base-pair insert in the longer isoform located three codons downstream from the putative initiation site. The 2.4- and 2.5-kb cDNAs predict proteins of approximately 77 and approximately 80 kDa, respectively, and the authenticity was confirmed by sequence identity with 46 amino acids of three cyanogen bromide-cleaved peptides of P4.2. Northern blot analysis detected a major 2.4-kb RNA species in reticulocytes. Isolation of two P4.2 cDNAs implies existence of specific regulation of P4.2 expression in human RBCs. Human RBC P4.2 has significant homology with human factor XIII subunit a and guinea pig liver transglutaminase. Sequence alignment of P4.2 with these two transglutaminases, however, revealed that P4.2 lacks the critical cysteine residue required for the enzymatic crosslinking of substrates. Images PMID:1689063
Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility
Wissing, Silke; Muñoz-Lopez, Martin; Macia, Angela; Yang, Zhiyuan; Montano, Mauricio; Collins, William; Garcia-Perez, Jose Luis; Moran, John V.; Greene, Warner C.
2012-01-01
Long interspersed element-1 (LINE-1 or L1) retrotransposons account for nearly 17% of human genomic DNA and represent a major evolutionary force that has reshaped the structure and function of the human genome. However, questions remain concerning both the frequency and the developmental timing of L1 retrotransposition in vivo and whether the mobility of these retroelements commonly results in insertional and post-insertional mechanisms of genomic injury. Cells exhibiting high rates of L1 retrotransposition might be especially at risk for such injury. We assessed L1 mRNA expression and L1 retrotransposition in two biologically relevant cell types, human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), as well as in control parental human dermal fibroblasts (HDFs). Full-length L1 mRNA and the L1 open reading frame 1-encoded protein (ORF1p) were readily detected in hESCs and iPSCs, but not in HDFs. Sequencing analysis proved the expression of human-specific L1 element mRNAs in iPSCs. Bisulfite sequencing revealed that the increased L1 expression observed in iPSCs correlates with an overall decrease in CpG methylation in the L1 promoter region. Finally, retrotransposition of an engineered human L1 element was ∼10-fold more efficient in iPSCs than in parental HDFs. These findings indicate that somatic cell reprogramming is associated with marked increases in L1 expression and perhaps increases in endogenous L1 retrotransposition, which could potentially impact the genomic integrity of the resultant iPSCs. PMID:21989055
Patra, Amritraj; Politica, Dustin A; Chatterjee, Arindom; Tokarsky, E John; Suo, Zucai; Basu, Ashis K; Stone, Michael P; Egli, Martin
2016-11-03
The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Van Maele, Bénédicte; De Rijck, Jan; De Clercq, Erik; Debyser, Zeger
2003-01-01
Lentiviral vectors derived from human immunodeficiency virus type 1 (HIV-1) show great promise as gene carriers for future gene therapy. Insertion of a fragment containing the central polypurine tract (cPPT) in HIV-1 vector constructs is known to enhance transduction efficiency drastically, reportedly by facilitating the nuclear import of HIV-1 cDNA through a central DNA flap. We have studied the impact of the cPPT on the kinetics of HIV-1 vector transduction by real-time PCR. The kinetics of total HIV-1 DNA, two-long-terminal-repeat (2-LTR) circles, and, by an Alu-PCR, integrated proviral DNA were monitored. About 6 to 12 h after transduction, the total HIV-1 DNA reached a maximum level, followed by a steep decrease. The 2-LTR circles peaked after 24 to 48 h and were diluted upon cell division. Integration of HIV-1 DNA was first detected at 12 h postinfection. When HIV-1 vectors that contained the cPPT were used, DNA synthesis was similar but a threefold higher amount of 2-LTR circles was detected, confirming the impact on nuclear import. Moreover, a 10-fold increase in the amount of integrated DNA was observed in the presence of the cPPT. Only in the absence of the cPPT was a saturation in 2-LTR circle formation seen at a high multiplicity of infection, suggesting a role for the cPPT in overcoming a barrier to the nuclear import of HIV-1 DNA. A major effect of the central DNA flap on the juxtaposition of both LTRs is unlikely, since transduction with HIV-1 vectors containing ectopic cPPT fragments resulted in increased amounts of 2-LTR circles as well as integrated DNA. Inhibitors of transduction by cPPT-containing HIV vectors were also studied by real-time PCR. The reverse transcriptase inhibitor azidothymidine (AZT) and the nonnucleoside reverse transcriptase inhibitor α-APA clearly inhibited viral DNA synthesis, whereas integrase inhibitors such as the diketo acid L-708,906 and the pyranodipyrimidine V-165 specifically inhibited integration. PMID:12663775
Hu, Yufei; Chen, Zhiyu; Zhuang, Chuxiong; Huang, Jilei
2017-06-01
Transferred DNA (T-DNA) from Agrobacterium tumefaciens can be integrated into the plant genome. The double-stranded break repair (DSBR) pathway is a major model for T-DNA integration. From this model, we expect that two ends of a T-DNA molecule would invade into a single DNA double-stranded break (DSB) or independent DSBs in the plant genome. We call the later phenomenon a heterogeneous T-DNA integration, which has never been observed. In this work, we demonstrated it in an Arabidopsis T-DNA insertion mutant seb19. To resolve the chromosomal structural changes caused by T-DNA integration at both the nucleotide and chromosome levels, we performed inverse PCR, genome resequencing, fluorescence in situ hybridization and linkage analysis. We found, in seb19, a single T-DNA connected two different chromosomal loci and caused complex chromosomal rearrangements. The specific break-junction pattern in seb19 is consistent with the result of heterogeneous T-DNA integration but not of recombination between two T-DNA insertions. We demonstrated that, in seb19, heterogeneous T-DNA integration evoked a cascade of incorrect repair of seven DSBs on chromosomes 4 and 5, and then produced translocation, inversion, duplication and deletion. Heterogeneous T-DNA integration supports the DSBR model and suggests that two ends of a T-DNA molecule could be integrated into the plant genome independently. Our results also show a new origin of chromosomal abnormalities. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Selfish DNA in protein-coding genes of Rickettsia.
Ogata, H; Audic, S; Barbe, V; Artiguenave, F; Fournier, P E; Raoult, D; Claverie, J M
2000-10-13
Rickettsia conorii, the aetiological agent of Mediterranean spotted fever, is an intracellular bacterium transmitted by ticks. Preliminary analyses of the nearly complete genome sequence of R. conorii have revealed 44 occurrences of a previously undescribed palindromic repeat (150 base pairs long) throughout the genome. Unexpectedly, this repeat was found inserted in-frame within 19 different R. conorii open reading frames likely to encode functional proteins. We found the same repeat in proteins of other Rickettsia species. The finding of a mobile element inserted in many unrelated genes suggests the potential role of selfish DNA in the creation of new protein sequences.
Ebbie: automated analysis and storage of small RNA cloning data using a dynamic web server
Ebhardt, H Alexander; Wiese, Kay C; Unrau, Peter J
2006-01-01
Background DNA sequencing is used ubiquitously: from deciphering genomes[1] to determining the primary sequence of small RNAs (smRNAs) [2-5]. The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products. Recently we completed a smRNA cloning project involving tobacco plants, where analysis was required for ~700 smRNA sequences[6]. Finding no easily accessible research tool to enter and analyze smRNA sequences we developed Ebbie to assist us with our study. Results Ebbie is a semi-automated smRNA cloning data processing algorithm, which initially searches for any substring within a DNA sequencing text file, which is flanked by two constant strings. The substring, also termed smRNA or insert, is stored in a MySQL and BlastN database. These inserts are then compared using BlastN to locally installed databases allowing the rapid comparison of the insert to both the growing smRNA database and to other static sequence databases. Our laboratory used Ebbie to analyze scores of DNA sequencing data originating from an smRNA cloning project[6]. Through its built-in instant analysis of all inserts using BlastN, we were able to quickly identify 33 groups of smRNAs from ~700 database entries. This clustering allowed the easy identification of novel and highly expressed clusters of smRNAs. Ebbie is available under GNU GPL and currently implemented on Conclusion Ebbie was designed for medium sized smRNA cloning projects with about 1,000 database entries [6-8].Ebbie can be used for any type of sequence analysis where two constant primer regions flank a sequence of interest. The reliable storage of inserts, and their annotation in a MySQL database, BlastN[9] comparison of new inserts to dynamic and static databases make it a powerful new tool in any laboratory using DNA sequencing. Ebbie also prevents manual mistakes during the excision process and speeds up annotation and data-entry. Once the server is installed locally, its access can be restricted to protect sensitive new DNA sequencing data. Ebbie was primarily designed for smRNA cloning projects, but can be applied to a variety of RNA and DNA cloning projects[2,3,10,11]. PMID:16584563
Kesler, Kyle; Dillon, Neal P; Fichera, Loris; Labadie, Robert F
2017-09-01
Objectives Document human motions associated with cochlear implant electrode insertion at different speeds and determine the lower limit of continuous insertion speed by a human. Study Design Observational. Setting Academic medical center. Subjects and Methods Cochlear implant forceps were coupled to a frame containing reflective fiducials, which enabled optical tracking of the forceps' tip position in real time. Otolaryngologists (n = 14) performed mock electrode insertions at different speeds based on recommendations from the literature: "fast" (96 mm/min), "stable" (as slow as possible without stopping), and "slow" (15 mm/min). For each insertion, the following metrics were calculated from the tracked position data: percentage of time at prescribed speed, percentage of time the surgeon stopped moving forward, and number of direction reversals (ie, going from forward to backward motion). Results Fast insertion trials resulted in better adherence to the prescribed speed (45.4% of the overall time), no motion interruptions, and no reversals, as compared with slow insertions (18.6% of time at prescribed speed, 15.7% stopped time, and an average of 18.6 reversals per trial). These differences were statistically significant for all metrics ( P < .01). The metrics for the fast and stable insertions were comparable; however, stable insertions were performed 44% slower on average. The mean stable insertion speed was 52 ± 19.3 mm/min. Conclusion Results indicate that continuous insertion of a cochlear implant electrode at 15 mm/min is not feasible for human operators. The lower limit of continuous forward insertion is 52 mm/min on average. Guidelines on manual insertion kinematics should consider this practical limit of human motion.
Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
Wang, Bangmei; Li, Kunyu; Wang, Amy; Reiser, Michelle; Saunders, Thom; Lockey, Richard F; Wang, Jia-Wang
2015-10-01
The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, has been used to generate gene knock-outs with variable sizes of small insertion/deletions with high efficiency. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. However, HDR-mediated gene knock-in experiments are typically inefficient, and there have been no reports of successful gene knock-in with DNA fragments larger than 4 kb. Here, we describe the targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem (ES) cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors. Our data show that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors. Although NHEJ is the dominant repair pathway associated with CRISPR-mediated double-strand breaks (DSBs), and biallelic gene knock-ins are common, NHEJ and biallelic gene knock-ins were not detected. Our results demonstrate that efficient targeted insertion of large DNA fragments without NHEJ inhibitors is possible, a result that should stimulate interest in understanding the mechanisms of high efficiency CRISPR targeting in general.
Genome-wide analysis of Tol2 transposon reintegration in zebrafish.
Kondrychyn, Igor; Garcia-Lecea, Marta; Emelyanov, Alexander; Parinov, Sergey; Korzh, Vladimir
2009-09-08
Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.
USDA-ARS?s Scientific Manuscript database
We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results to prior phylogenetic results using plastid, nuclear, and mitochondrial DNA sequences. We obtained, using Illumina sequencing, full plastid sequences of 37 accessions of 20 Daucus taxa and outgrou...
Wong, Richard G; Kazane, Katelynn; Maslov, Dmitri A; Rogers, Kestrel; Aphasizhev, Ruslan; Simpson, Larry
2015-11-01
We studied the intramitochondrial localization of several multiprotein complexes involved in U-insertion/deletion RNA editing in trypanosome mitochondria. The editing complexes are located in one or two antipodal nodes adjacent to the kinetoplast DNA (kDNA) disk, which are distinct from but associated with the minicircle catenation nodes. In some cases the proteins are in a bilateral sheet configuration. We also found that mitoribosomes have a nodal configuration. This type of organization is consistent with evidence for protein and RNA interactions of multiple editing complexes to form an ~40S editosome and also an interaction of editosomes with mitochondrial ribosomes. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Kirchner, O; Gartemann, K H; Zellermann, E M; Eichenlaub, R; Burger, A
2001-11-01
A transposon mutagenesis system for Clavibacter michiganensis subsp. michiganensis was developed based on antibiotic resistance transposons that were derived from the insertion element IS1409 from Arthrobacter sp. strain TM1 NCIB12013. As a prerequisite, the electroporation efficiency was optimized by using unmethylated DNA and treatment of the cells with glycine such that about 5 x 10(6) transformants per microg of DNA were generally obtained. Electroporation of C. michiganensis subsp. michiganensis with a suicide vector carrying transposon Tn1409C resulted in approximately 1 x 10(3) transposon mutants per pg of DNA and thus is suitable for saturation mutagenesis. Analysis of Tn1409C insertion sites suggests a random mode of transposition. Transposition of Tn1409C was also demonstrated for other subspecies of C. michiganensis.
Packaging double-helical DNA into viral capsids.
LaMarque, Jaclyn C; Le, Thuc-Vy L; Harvey, Stephen C
2004-02-15
DNA packaging in bacteriophage P4 has been examined using a molecular mechanics model with a reduced representation containing one pseudoatom per turn of the double helix. The model is a discretized version of an elastic continuum model. The DNA is inserted piecewise into the model capsid, with the structure being reoptimized after each piece is inserted. Various optimization protocols were investigated, and it was found that molecular dynamics at a very low temperature (0.3 K) produces the optimal packaged structure. This structure is a concentric spool, rather than the coaxial spool that has been commonly accepted for so many years. This geometry, which was originally suggested by Hall and Schellman in 1982 (Biopolymers Vol. 21, pp. 2011-2031), produces a lower overall elastic energy than coaxial spooling. Copyright 2003 Wiley Periodicals, Inc.
Doxorubicin (DOX) is an effective drug for treating cancers ranging from leukemia and lymphoma to solid tumors, such as breast cancer. DOX kills dividing cells in two ways: inserting between the base pairs of DNA and trapping a complex of DNA and an enzyme that cuts DNA, topoisomerase 2α, preventing DNA repair. However, DOX also causes congestive heart failure in about 30
Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii.
Vieira, André L G; Camilo, César M
2011-08-01
Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class. Copyright © 2011 Elsevier Inc. All rights reserved.
The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation
Kwiatek, Agnieszka; Bacal, Pawel; Wasiluk, Adrian; Trybunko, Anastasiya; Adamczyk-Poplawska, Monika
2014-01-01
Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than Dam presence. PMID:25566225
The topography of mutational processes in breast cancer genomes.
Morganella, Sandro; Alexandrov, Ludmil B; Glodzik, Dominik; Zou, Xueqing; Davies, Helen; Staaf, Johan; Sieuwerts, Anieta M; Brinkman, Arie B; Martin, Sancha; Ramakrishna, Manasa; Butler, Adam; Kim, Hyung-Yong; Borg, Åke; Sotiriou, Christos; Futreal, P Andrew; Campbell, Peter J; Span, Paul N; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E; Thompson, Alastair M; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W M; Børresen-Dale, Anne-Lise; Richardson, Andrea L; Kong, Gu; Thomas, Gilles; Sale, Julian; Rada, Cristina; Stratton, Michael R; Birney, Ewan; Nik-Zainal, Serena
2016-05-02
Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.
Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S
2015-12-01
Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.
Guo, Jinchao; Yang, Litao; Liu, Xin; Guan, Xiaoyan; Jiang, Lingxi; Zhang, Dabing
2009-08-26
Genetically modified (GM) papaya (Carica papaya L.), Huanong No. 1, was approved for commercialization in Guangdong province, China in 2006, and the development of the Huanong No. 1 papaya detection method is necessary for implementing genetically modified organism (GMO) labeling regulations. In this study, we reported the characterization of the exogenous integration of GM Huanong No. 1 papaya by means of conventional polymerase chain reaction (PCR) and thermal asymmetric interlaced (TAIL)-PCR strategies. The results suggested that one intact copy of the initial construction was integrated in the papaya genome and which probably resulted in one deletion (38 bp in size) of the host genomic DNA. Also, one unintended insertion of a 92 bp truncated NptII fragment was observed at the 5' end of the exogenous insert. Furthermore, we revealed its 5' and 3' flanking sequences between the insert DNA and the papaya genomic DNA, and developed the event-specific qualitative and quantitative PCR assays for GM Huanong No. 1 papaya based on the 5' integration flanking sequence. The relative limit of detection (LOD) of the qualitative PCR assay was about 0.01% in 100 ng of total papaya genomic DNA, corresponding to about 25 copies of papaya haploid genome. In the quantitative PCR, the limits of detection and quantification (LOD and LOQ) were as low as 12.5 and 25 copies of papaya haploid genome, respectively. In practical sample quantification, the quantified biases between the test and true values of three samples ranged from 0.44% to 4.41%. Collectively, we proposed that all of these results are useful for the identification and quantification of Huanong No. 1 papaya and its derivates.
Singha, Kritsada; Fucharoen, Goonnapa; Hama, Abdulloh; Fucharoen, Supan
2015-07-01
To report the phenotypes and genetic basis of a novel (A)γδβ(0)-thalassemia found in Thai individuals with several forms of thalassemia. An initial study was done in an adult Thai woman who had hypochromic microcytic red cells with unusually 100% Hb F. Extended study was carried out on her parents and another 17 unrelated individuals with elevated Hb F. Hb analysis was performed by capillary electrophoresis and DNA analysis was done using PCR. A novel diagnostic method based on multiplex PCR assays was developed. DNA analysis of the proband revealed the homozygosity for a novel deletion of 118.3 kb, removing the entire (A)γ, ψβ, δ-, β-globin and five olfactory receptor (OR) genes with an insertion of a 179 bp inverted DNA sequence located behind the OR52A5 gene located downstream and an insertion of 7 orphan nucleotides. Her parents were both carriers of this mutation. Further screening in suspected cases in our series unexpectedly led to identification of an additional 17 cases with this mutation in different genotypes including plain heterozygote, homozygote, compound heterozygote with Hb E, and double heterozygote with several forms of α-thalassemia. Hematological features associated with these genetic interactions are presented. Haplotype analysis indicated a single origin of this novel deletion-inversion-insertion (A)γδβ(0)-thalassemia in the Thai population. Differentiation of this mutation and other high Hb F determinants documented previously could be done by using a developed multiplex PCR assay. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Human structural variation: mechanisms of chromosome rearrangements
Weckselblatt, Brooke; Rudd, M. Katharine
2015-01-01
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074
LINE-1 protein localization and functional dynamics during the cell cycle
Wudzinska, Aleksandra; Sun, Xiaoji; Andrade, Joshua; Nayak, Shruti; Kahler, David J; Badri, Sana; LaCava, John; Ueberheide, Beatrix; Yun, Chi Y; Fenyö, David
2018-01-01
LINE-1/L1 retrotransposon sequences comprise 17% of the human genome. Among the many classes of mobile genetic elements, L1 is the only autonomous retrotransposon that still drives human genomic plasticity today. Through its co-evolution with the human genome, L1 has intertwined itself with host cell biology. However, a clear understanding of L1’s lifecycle and the processes involved in restricting its insertion and intragenomic spread remains elusive. Here we identify modes of L1 proteins’ entrance into the nucleus, a necessary step for L1 proliferation. Using functional, biochemical, and imaging approaches, we also show a clear cell cycle bias for L1 retrotransposition that peaks during the S phase. Our observations provide a basis for novel interpretations about the nature of nuclear and cytoplasmic L1 ribonucleoproteins (RNPs) and the potential role of DNA replication in L1 retrotransposition. PMID:29309036
Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.
Livneh, Zvi; Ziv, Omer; Shachar, Sigal
2010-02-15
The encounter of replication forks with DNA lesions may lead to fork arrest and/or the formation of single-stranded gaps. A major strategy to cope with these replication irregularities is translesion DNA synthesis (TLS), in which specialized error-prone DNA polymerases bypass the blocking lesions. Recent studies suggest that TLS across a particular DNA lesion may involve as many as four different TLS polymerases, acting in two-polymerase reactions in which insertion by a particular polymerase is followed by extension by another polymerase. Insertion determines the accuracy and mutagenic specificity of the TLS reaction, and is carried out by one of several polymerases such as poleta, polkappa or poliota. In contrast, extension is carried out primarily by polzeta. In cells from XPV patients, which are deficient in TLS across cyclobutane pyrimidine dimers (CPD) due to a deficiency in poleta, TLS is carried out by at least two backup reactions each involving two polymerases: One reaction involves polkappa and polzeta, and the other poliota and polzeta. These mechanisms may also assist poleta in normal cells under an excessive amount of UV lesions.
Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C; Burgess, Shawn M; Sampath, Karuna
2016-04-07
DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering. Copyright © 2016 Vrljicak et al.
Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding.
Sénéchal, Hélène; Delesques, Jérémy; Szatmari, George
2010-04-01
The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.
Burke, W D; Calalang, C C; Eickbush, T H
1987-01-01
Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905
Benleulmi, Mohamed S; Matysiak, Julien; Robert, Xavier; Miskey, Csaba; Mauro, Eric; Lapaillerie, Delphine; Lesbats, Paul; Chaignepain, Stéphane; Henriquez, Daniel R; Calmels, Christina; Oladosu, Oyindamola; Thierry, Eloïse; Leon, Oscar; Lavigne, Marc; Andreola, Marie-Line; Delelis, Olivier; Ivics, Zoltán; Ruff, Marc; Gouet, Patrice; Parissi, Vincent
2017-11-28
Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein-protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process. We show here that histone tails are required for an optimal association between HIV-1 integrase (IN) and the nucleosome for efficient integration. We also demonstrate direct interactions between IN and the amino-terminal tail of human histone H4 in vitro. Structure/function studies enabled us to identify amino acids in the carboxy-terminal domain of IN that are important for this interaction. Analysis of the nucleosome-binding properties of catalytically active mutated INs confirmed that their ability to engage the nucleosome for integration in vitro was affected. Pseudovirus particles bearing mutations that affect the IN/H4 association also showed impaired replication capacity due to altered integration and re-targeting of their insertion sites toward dynamic regions of the chromatin with lower nucleosome occupancy. Collectively, our data support a functional association between HIV-1 IN and histone tails that promotes anchoring of the intasome to nucleosomes and optimal integration into chromatin.
[Screening and identification of anoikis-resistant gene UBCH7 in esophageal cancer cells].
Yang, Yang; Wang, Bo-Shi; Wang, Xiao-Min; Zhang, Yu; Wang, Ming-Rong; Jia, Xue-Mei
2012-02-01
Anoikis is a kind of programmed cell death induced by loss of extracellular matrix (ECM) adhesion, which is one of key factors for homestasis. Resistance to anoikis is required for tumor cell metastasis. We have previously shown several anoikis-resistance genes in esophageal squamous cell carcinoma (ESCC). In order to find novel anoikis-resistant genes in ESCC, we constructed retroviral cDNA library using total RNA from ESCC cell lines. NIH 3T3 cells, which are sensitive to anoikis, were infected with the library constructed. The cells were cultured in soft agar, and the clones which can survive in detached states were selected. The cDNAs inserted into the anoikis-resistant NIH3T3 clones were amplified using retroviral specific primers. Sequencing analysis showed that a cDNA fragment inserted into the anoikis-resistant clone contains full coding sequence (ORF) of human UBCH7/UBE2L3 gene. By infection with retrovirus encoding UBCH7 ORF (pMSCV-UBCH7), forced expression of UBCH7 increased the anoikis-resistance of NIH3T3 cells. More importantly, knockdown of UBCH7 expression by siRNA transfection reduced the anoikis-resistant ability of esophageal cancer MLuC1 cells. The data suggest that UBCH7/UBE2L3 gene would be involved in anoikis-resistance in ESCC.
Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A
1989-10-01
A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.
Hook, Ch D; Samsonov, V V; Ublinskaya, A A; Kuvaeva, T M; Andreeva, E V; Gorbacheva, L Yu; Stoynova, N V
2016-11-01
Despite the abundance of genetic manipulation approaches, particularly for Escherichia coli, new techniques and increased flexibility in the application of existing techniques are required to address novel aims. The most widely used approaches for chromosome editing are based on bacteriophage site-specific and λRed/RecET-mediated homologous recombination. In the present study, these techniques were combined to develop a novel approach for in vivo cloning and targeted long-length chromosomal insertion. This approach permits direct λRed-mediated cloning of DNA fragment with lengths of 10kb or greater from the E. coli chromosome into the plasmid vector pGL2, which carries the ori of pSC101, the ϕ80-attP site of ϕ80 phage, and an excisable Cm R marker bracketed by λ-attL/attR sites. In pGL2-based recombinant plasmids, the origin of replication can be eliminated in vitro via hydrolysis by SceI endonuclease and recircularization by DNA ligase. The resulting ori-less circular recombinant DNA can be used for targeted insertion of the cloned sequence into the chromosome at a selected site via ϕ80 phage-specific integrase-mediated recombination using the Dual-In/Out approach (Minaeva et al., 2008). At the final stage of chromosomal editing, the Cm R -marker can be excised from the chromosome due to expression of the λint/xis genes. Notably, the desired fragment can be inserted as multiple copies in the chromosome by combining insertions at different sites in one strain using the P1 general transduction technique (Moore, 2011). The developed approach is useful for the construction of plasmidless, markerless recombinant strains for fundamental and industrial purposes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D.
2014-01-01
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions. PMID:24550389
Srivatsan, Anjana; Bowen, Nikki; Kolodner, Richard D
2014-03-28
DNA mismatch repair is initiated by either the Msh2-Msh6 or the Msh2-Msh3 mispair recognition heterodimer. Here we optimized the expression and purification of Saccharomyces cerevisiae Msh2-Msh3 and performed a comparative study of Msh2-Msh3 and Msh2-Msh6 for mispair binding, sliding clamp formation, and Mlh1-Pms1 recruitment. Msh2-Msh3 formed sliding clamps and recruited Mlh1-Pms1 on +1, +2, +3, and +4 insertion/deletions and CC, AA, and possibly GG mispairs, whereas Msh2-Msh6 formed mispair-dependent sliding clamps and recruited Mlh1-Pms1 on 7 of the 8 possible base:base mispairs, the +1 insertion/deletion mispair, and to a low level on the +2 but not the +3 or +4 insertion/deletion mispairs and not on the CC mispair. The mispair specificity of sliding clamp formation and Mlh1-Pms1 recruitment but not mispair binding alone correlated best with genetic data on the mispair specificity of Msh2-Msh3- and Msh2-Msh6-dependent mismatch repair in vivo. Analysis of an Msh2-Msh6/Msh3 chimeric protein and mutant Msh2-Msh3 complexes showed that the nucleotide binding domain and communicating regions but not the mispair binding domain of Msh2-Msh3 are responsible for the extremely rapid dissociation of Msh2-Msh3 sliding clamps from DNA relative to that seen for Msh2-Msh6, and that amino acid residues predicted to stabilize Msh2-Msh3 interactions with bent, strand-separated mispair-containing DNA are more critical for the recognition of small +1 insertion/deletions than larger +4 insertion/deletions.
Watanabe, S M; Goodman, M F
1982-01-01
Enzyme kinetic measurements are presented showing that Km rather than maximum velocity (Vmax) discrimination governs the frequency of forming 2-aminopurine X cytosine base mispairs by DNA polymerase alpha. An in vitro system is used in which incorporation of dTMP or dCMP occurs opposite a template 2-aminopurine, and values for Km and Vmax are obtained. Results from a previous study in which dTTP and dCTP were competing simultaneously for insertion opposite 2-aminopurine indicated that dTMP is inserted 22 times more frequently than dCMP. We now report that the ratio of Km values KCm/KTm = 25 +/- 6, which agrees quantitatively with the dTMP/dCMP incorporation ratio obtained previously. We also report that VCmax is indistinguishable from VTmax. These Km and Vmax data are consistent with predictions from a model, the Km discrimination model, in which replication fidelity is determined by free energy differences between matched and mismatched base pairs. Central to this model is the prediction that the ratio of Km values for insertion of correct and incorrect nucleotides specifies the insertion fidelity, and the maximum velocities of insertion are the same for both nucleotides. PMID:6959128
Molina-Estevez, F Javier; Nowrouzi, Ali; Lozano, M Luz; Galy, Anne; Charrier, Sabine; von Kalle, Christof; Guenechea, Guillermo; Bueren, Juan A; Schmidt, Manfred
2015-01-01
Fanconi anemia is a DNA repair-deficiency syndrome mainly characterized by cancer predisposition and bone marrow failure. Trying to restore the hematopoietic function in these patients, lentiviral vector-mediated gene therapy trials have recently been proposed. However, because no insertional oncogenesis studies have been conducted so far in DNA repair-deficiency syndromes such as Fanconi anemia, we have carried out a genome-wide screening of lentiviral insertion sites after the gene correction of Fanca(-/-) hematopoietic stem cells (HSCs), using LAM-PCR and 454-pyrosequencing. Our studies first demonstrated that transduction of Fanca(-/-) HSCs with a lentiviral vector designed for clinical application efficiently corrects the phenotype of Fanconi anemia repopulating cells without any sign of toxicity. The identification of more than 6,500 insertion sites in primary and secondary recipients showed a polyclonal pattern of reconstitution, as well as a continuous turnover of corrected Fanca(-/-) HSC clones, without evidences of selection towards specific common integration sites. Taken together our data show, for the first time in a DNA repair-deficiency syndrome, that lentiviral vector-mediated gene therapy efficiently corrects the phenotype of affected HSCs and promotes a healthy pattern of clonal turnover in vivo. These studies will have a particular impact in the development of new gene therapy trials in patients affected by DNA repair syndromes, particularly in Fanconi anemia.
DNA transposon-based gene vehicles - scenes from an evolutionary drive
2013-01-01
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation. PMID:24320156
Nie, Xiao-wei; Sun, Li-jun; Hao, Yue-wen; Yang, Guang-xiao; Wang, Quan-ying
2011-03-01
To synthesize the minimal and artificial HRE, and to insert it into the anterior extremity of CMV promoter of a AAV plasmid, and then to construct the AAV regulated by hypoxic-responsive element which was introduced into 293 cell by method of Ca3(PO4)2 using three plasmids. Thus obtaining the adenoassociated virus vector regulated by hypoxic-responsive element was possibly used for gene therapy in ischemia angiocardiopathy and cerebrovascular disease. Artificially synthesize the 36 bp nucleotide sequences of four connection in series HIF-binding sites A/GCGTG(4×HBS)and a 35 bp nucleotide sequences spacing inserted into anterior extremity of CMV promoter TATA Box, then amplified by PCR. The cDNA fragment was confirmed to be right by DNA sequencing. Molecular biology routine method was used to construct a AAV vector regulated by minimal hypoxic-responsive element after the normal CMV promoter in AAV vector was replaced by the CMV promoter included minimal hypoxic-responsive element. Then, NT4-6His-PR39 fusogenic peptide was inserted into MCS of the plasmid, the recombinant AAV vector was obtained by three plasmid co-transfection in 293 cells, in which we can also investigate the expression of 6×His using immunochemistry in hypoxia environment. Artificial HRE was inserted into anterior extremity of CMV promoter and there was a correct spacing between the HRE and the TATA-box. The DNA sequencing and restriction enzyme digestion results indicated that the AAV regulated by hypoxic-responsive element was successfully constructed. Compared to the control group, the expressions of 6×His was significantly increased in the experimental groups in hypoxia environment, which confirmed that the AAV effectually regulated by the minimal HRE was inserted into anterior extremity of CMV promoter. The HRE is inserted into anterior extremity of CMV promoter to lack incision enzyme recognition site by PCR. And eukaryotic expression vector regulated by hypoxic-responsive is constructed. The AAV effectually regulated by the minimal HRE inserted into anterior extremity of CMV promoter. The vector is successfully constructed and it has important theoretical and practical value in the synteresis and therapy of ischemia angiocardiopathy and cerebrovascular disease.
ERIC Educational Resources Information Center
Galewsky, Samuel
2000-01-01
Introduces a series of molecular genetics laboratories where students pick a single colony from a Drosophila melanogester embryo cDNA library and purify the plasmid, then analyze the insert through restriction digests and gel electrophoresis. (Author/YDS)
Technique of laser chromosome welding for chromosome repair and artificial chromosome creation.
Huang, Yao-Xiong; Li, Lin; Yang, Liu; Zhang, Yi
2018-04-01
Here we report a technique of laser chromosome welding that uses a violet pulse laser micro-beam for welding. The technique can integrate any size of a desired chromosome fragment into recipient chromosomes by combining with other techniques of laser chromosome manipulation such as chromosome cutting, moving, and stretching. We demonstrated that our method could perform chromosomal modifications with high precision, speed and ease of use in the absence of restriction enzymes, DNA ligases and DNA polymerases. Unlike the conventional methods such as de novo artificial chromosome synthesis, our method has no limitation on the size of the inserted chromosome fragment. The inserted DNA size can be precisely defined and the processed chromosome can retain its intrinsic structure and integrity. Therefore, our technique provides a high quality alternative approach to directed genetic recombination, and can be used for chromosomal repair, removal of defects and artificial chromosome creation. The technique may also have applicability on the manipulation and extension of large pieces of synthetic DNA.
Zock, C; Iselt, A; Doerfler, W
1993-01-01
Human adenovirus type 12 (Ad12) cannot replicate in hamster cells, whereas human cells are permissive for Ad12. Ad12 DNA replication and late-gene and virus-associated RNA expression are blocked in hamster cells. Early Ad12 genes are transcribed, and the viral DNA can be integrated into the host genome. Ad12 DNA replication and late-gene transcription can be complemented in hamster cells by E1 functions of Ad2 or Ad5, for which hamster cells are fully permissive (for a review, see W. Doerfler, Adv. Virus Res. 39:89-128, 1991). We have previously demonstrated that a 33-nucleotide mitigator sequence, which is located in the downstream region of the major late promoter (MLP) of Ad12 DNA, is responsible for the inactivity of the Ad12 MLP in hamster cells (C. Zock and W. Doerfler, EMBO J. 9:1615-1623, 1990). A similar negative regulator has not been found in the MLP of Ad2 DNA. We have now studied the mechanism of action of this mitigator element. The results of nuclear run-on experiments document the absence of MLP transcripts in the nuclei of Ad12-infected BHK21 hamster cells. Surprisingly, the mitigator element cannot elicit its function in in vitro transcription experiments with nuclear extracts from both hamster BHK21 and human HeLa cells. Intact nuclear topology and/or tightly bound nuclear elements that cannot be eluted in nuclear extracts are somehow required for recognition of the Ad12 mitigator. Electrophoretic mobility shift assays have not revealed significant differences in the binding of proteins from human HeLa or hamster BHK21 cells to the mitigator sequence in the MLP of Ad12 DNA or to the corresponding sequence in Ad2 DNA. We have converted the sequence of the mitigator in the MLP of Ad12 DNA to the equivalent sequence in the MLP of Ad2 DNA by site-directed mutagenesis. This construct was not active in hamster cells. When the Ad12 mitigator, on the other hand, was inserted into the Ad2 MLP, the latter's function in hamster cells was not compromised. Deletions in the 5' upstream region of the Ad12 MLP have provided evidence for the existence of additional sequences that codetermine the deficiency of the Ad12 MLP in hamster cells. The amphifunctional YY1 protein from HeLa cells can bind specifically to the mitigator and to upstream elements of the MLP of Ad12 DNA.(ABSTRACT TRUNCATED AT 400 WORDS) Images PMID:8419643
Targeting vector construction through recombineering.
Malureanu, Liviu A
2011-01-01
Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.
Ribeyre, Cyril; Lopes, Judith; Boulé, Jean-Baptiste; Piazza, Aurèle; Guédin, Aurore; Zakian, Virginia A; Mergny, Jean-Louis; Nicolas, Alain
2009-05-01
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Delta cells. Hence, we conclude that CEB1 instability in pif1Delta cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.
Musharova, Olga; Klimuk, Evgeny; Datsenko, Kirill A; Metlitskaya, Anastasia; Logacheva, Maria; Semenova, Ekaterina; Severinov, Konstantin; Savitskaya, Ekaterina
2017-04-07
During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi
2012-01-01
To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830
Machado, Helena; Silva, Susana
2014-01-01
The creation and expansion of forensic DNA databases might involve potential threats to the protection of a range of human rights. At the same time, such databases have social benefits. Based on data collected through an online questionnaire applied to 628 individuals in Portugal, this paper aims to analyze the citizens' willingness to donate voluntarily a sample for profiling and inclusion in the National Forensic DNA Database and the views underpinning such a decision. Nearly one-quarter of the respondents would indicate 'no', and this negative response increased significantly with age and education. The overriding willingness to accept the inclusion of the individual genetic profile indicates an acknowledgement of the investigative potential of forensic DNA technologies and a relegation of civil liberties and human rights to the background, owing to the perceived benefits of protecting both society and the individual from crime. This rationale is mostly expressed by the idea that all citizens should contribute to the expansion of the National Forensic DNA Database for reasons that range from the more abstract assumption that donating a sample for profiling would be helpful in fighting crime to the more concrete suggestion that everyone (criminals and non-criminals) should be in the database. The concerns with the risks of accepting the donation of a sample for genetic profiling and inclusion in the National Forensic DNA Database are mostly related to lack of control and insufficient or unclear regulations concerning safeguarding individuals' data and supervising the access and uses of genetic data. By providing an empirically-grounded understanding of the attitudes regarding willingness to donate voluntary a sample for profiling and inclusion in a National Forensic DNA Database, this study also considers the citizens' perceived benefits and risks of operating forensic DNA databases. These collective views might be useful for the formation of international common ethical standards for the development and governance of DNA databases in a framework in which the citizens' perspectives are taken into consideration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η.
Ucisik, Melek N; Hammes-Schiffer, Sharon
2017-04-20
Human DNA polymerase η (Pol η) plays a vital role in protection against skin cancer caused by damage from ultraviolet light. This enzyme rescues stalled replication forks at cyclobutane thymine-thymine dimers (TTDs) by inserting nucleotides opposite these DNA lesions. Residue R61 is conserved in the Pol η enzymes across species, but the corresponding residue, as well as its neighbor S62, is different in other Y-family polymerases, Pol ι and Pol κ. Herein, R61 and S62 are mutated to their Pol ι and Pol κ counterparts. Relative binding free energies of dATP to mutant Pol η•DNA complexes with and without a TTD were calculated using thermodynamic integration. The binding free energies of dATP to the Pol η•DNA complex with and without a TTD are more similar for all of these mutants than for wild-type Pol η, suggesting that these mutations decrease the ability of this enzyme to distinguish between a TTD lesion and undamaged DNA. Molecular dynamics simulations of the mutant systems provide insights into the molecular level basis for the changes in relative binding free energies. The simulations identified differences in hydrogen-bonding, cation-π, and π-π interactions of the side chains with the dATP and the TTD or thymine-thymine (TT) motif. The simulations also revealed that R61 and Q38 act as a clamp to position the dATP and the TTD or TT and that the mutations impact the balance among the interactions related to this clamp. Overall, these calculations suggest that R61 and S62 play key roles in the specificity and effectiveness of Pol η for bypassing TTD lesions during DNA replication. Understanding the basis for this specificity is important for designing drugs aimed at cancer treatment.
Effects of Active Site Mutations on Specificity of Nucleobase Binding in Human DNA Polymerase η
2016-01-01
Human DNA polymerase η (Pol η) plays a vital role in protection against skin cancer caused by damage from ultraviolet light. This enzyme rescues stalled replication forks at cyclobutane thymine–thymine dimers (TTDs) by inserting nucleotides opposite these DNA lesions. Residue R61 is conserved in the Pol η enzymes across species, but the corresponding residue, as well as its neighbor S62, is different in other Y-family polymerases, Pol ι and Pol κ. Herein, R61 and S62 are mutated to their Pol ι and Pol κ counterparts. Relative binding free energies of dATP to mutant Pol η•DNA complexes with and without a TTD were calculated using thermodynamic integration. The binding free energies of dATP to the Pol η•DNA complex with and without a TTD are more similar for all of these mutants than for wild-type Pol η, suggesting that these mutations decrease the ability of this enzyme to distinguish between a TTD lesion and undamaged DNA. Molecular dynamics simulations of the mutant systems provide insights into the molecular level basis for the changes in relative binding free energies. The simulations identified differences in hydrogen-bonding, cation−π, and π–π interactions of the side chains with the dATP and the TTD or thymine–thymine (TT) motif. The simulations also revealed that R61 and Q38 act as a clamp to position the dATP and the TTD or TT and that the mutations impact the balance among the interactions related to this clamp. Overall, these calculations suggest that R61 and S62 play key roles in the specificity and effectiveness of Pol η for bypassing TTD lesions during DNA replication. Understanding the basis for this specificity is important for designing drugs aimed at cancer treatment. PMID:28423907
Mechanism for DNA transposons to generate introns on genomic scales
Huff, Jason T.; Zilberman, Daniel; Roy, Scott W.
2017-01-01
Discovered four decades ago, the existence of introns was one of the most unexpected findings in molecular biology1. Introns are sequences interrupting genes that must be removed as part of mRNA production. Genome sequencing projects have documented that most eukaryotic genes contain at least one and frequently many introns2,3. Comparison of these genomes reveals a history of long evolutionary periods with little intron gain punctuated by episodes of rapid, extensive gain2,3. However, no detailed mechanism for such episodic intron generation has been empirically supported on a sufficient scale, despite several proposals4–8. Here we show how short non-autonomous DNA transposons independently generated hundreds to thousands of introns in the prasinophyte Micromonas pusilla and the pelagophyte Aureococcus anophagefferens. Each transposon carries one splice site. The other splice site is co-opted from gene sequence duplicated upon transposon insertion, allowing perfect splicing out of RNA. The distributions of sequences that can be co-opted are biased with respect to codons, and phasing of transposon-generated introns is similarly biased. These transposons insert between preexisting nucleosomes, so that multiple nearby insertions generate nucleosome-sized intervening segments. Thus, transposon insertion and sequence co-option may explain the intron phase biases2 and prevalence of nucleosome-sized exons9 observed in eukaryotes. Overall, the two independent examples of proliferating elements illustrate a general DNA transposon mechanism plausibly accounting for episodes of rapid, extensive intron gain during eukaryotic evolution2,3. PMID:27760113
Large Genomic Fragment Deletions and Insertions in Mouse Using CRISPR/Cas9
Satheka, Achim Cchitvsanzwhoh; Togo, Jacques; An, Yao; Humphrey, Mabwi; Ban, Luying; Ji, Yan; Jin, Honghong; Feng, Xuechao; Zheng, Yaowu
2015-01-01
ZFN, TALENs and CRISPR/Cas9 system have been used to generate point mutations and large fragment deletions and insertions in genomic modifications. CRISPR/Cas9 system is the most flexible and fast developing technology that has been extensively used to make mutations in all kinds of organisms. However, the most mutations reported up to date are small insertions and deletions. In this report, CRISPR/Cas9 system was used to make large DNA fragment deletions and insertions, including entire Dip2a gene deletion, about 65kb in size, and β-galactosidase (lacZ) reporter gene insertion of larger than 5kb in mouse. About 11.8% (11/93) are positive for 65kb deletion from transfected and diluted ES clones. High targeting efficiencies in ES cells were also achieved with G418 selection, 46.2% (12/26) and 73.1% (19/26) for left and right arms respectively. Targeted large fragment deletion efficiency is about 21.4% of live pups or 6.0% of injected embryos. Targeted insertion of lacZ reporter with NEO cassette showed 27.1% (13/48) of targeting rate by ES cell transfection and 11.1% (2/18) by direct zygote injection. The procedures have bypassed in vitro transcription by directly co-injection of zygotes or co-transfection of embryonic stem cells with circular plasmid DNA. The methods are technically easy, time saving, and cost effective in generating mouse models and will certainly facilitate gene function studies. PMID:25803037
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayne, M.L.; Cascieri, M.A.; Kelder, B.
1987-05-01
A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less
Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.
Orebaugh, Clinton D; Lujan, Scott A; Burkholder, Adam B; Clausen, Anders R; Kunkel, Thomas A
2018-01-01
Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.
Orbán, Erika; Mezo, Gábor; Schlage, Pascal; Csík, Gabriella; Kulić, Zarko; Ansorge, Philipp; Fellinger, Erzsébet; Möller, Heiko Michael; Manea, Marilena
2011-07-01
Bioconjugates with receptor-mediated tumor-targeting functions and carrying cytotoxic agents should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting the peripheral toxicity. In the present study, gonadotropin-releasing hormone III (GnRH-III; Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was employed as a targeting moiety to which daunorubicin was attached via oxime bond, either directly or by insertion of a GFLG or YRRL tetrapeptide spacer. The in vitro antitumor activity of the bioconjugates was determined on MCF-7 human breast and HT-29 human colon cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their degradation/stability (1) in human serum, (2) in the presence of cathepsin B and (3) in rat liver lysosomal homogenate was analyzed by liquid chromatography in combination with mass spectrometry. The results show that (1) all synthesized bioconjugates have in vitro antitumor effect, (2) they are stable in human serum at least for 24 h, except for the compound containing an YRRL spacer and (3) they are hydrolyzed by cathepsin B and in the lysosomal homogenate. To investigate the relationship between the in vitro antitumor activity and the structure of the bioconjugates, the smallest metabolites produced in the lysosomal homogenate were synthesized and their binding to DNA was assessed by fluorescence spectroscopy. Our data indicate that the incorporation of a peptide spacer in the structure of oxime bond-linked daunorubicin-GnRH-III bioconjugates is not required for their antitumor activity. Moreover, the antitumor activity is influenced by the structure of the metabolites (daunorubicin-amino acid derivatives) and their DNA-binding properties.
Takeshita, S; Kikuno, R; Tezuka, K; Amann, E
1993-01-01
A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580
Aschard, Hugues; Cattoir, Vincent; Yoder-Himes, Deborah; Lory, Stephen; Pier, Gerald B.
2013-01-01
High-throughput sequencing of transposon (Tn) libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq) to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200–1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian host. PMID:24039572
Kanazhevskaya, Lyubov Yu; Koval, Vladimir V; Vorobjev, Yury N; Fedorova, Olga S
2012-02-14
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex.
Ferrás, Cristina; Oude Vrielink, Joachim AF; Verspuy, Johan WA; te Riele, Hein; Tsaalbi-Shtylik, Anastasia; de Wind, Niels
2009-01-01
A substantial fraction of sporadic and inherited colorectal and endometrial cancers in humans is deficient in DNA mismatch repair (MMR). These cancers are characterized by length alterations in ubiquitous simple sequence repeats, a phenotype called microsatellite instability. Here we have exploited this phenotype by developing a novel approach for the highly selective gene therapy of MMR-deficient tumors. To achieve this selectivity, we mutated the VP22FCU1 suicide gene by inserting an out-of-frame microsatellite within its coding region. We show that in a significant fraction of microsatellite-instable (MSI) cells carrying the mutated suicide gene, full-length protein becomes expressed within a few cell doublings, presumably resulting from a reverting frameshift within the inserted microsatellite. Treatment of these cells with the innocuous prodrug 5-fluorocytosine (5-FC) induces strong cytotoxicity and we demonstrate that this owes to multiple bystander effects conferred by the suicide gene/prodrug combination. In a mouse model, MMR-deficient tumors that contained the out-of-frame VP22FCU1 gene displayed strong remission after treatment with 5-FC, without any obvious adverse systemic effects to the mouse. By virtue of its high selectivity and potency, this conditional enzyme/prodrug combination may hold promise for the treatment or prevention of MMR-deficient cancer in humans. PMID:19471249
Douville, Christopher; Masica, David L; Stenson, Peter D; Cooper, David N; Gygax, Derek M; Kim, Rick; Ryan, Michael; Karchin, Rachel
2016-01-01
Insertion/deletion variants (indels) alter protein sequence and length, yet are highly prevalent in healthy populations, presenting a challenge to bioinformatics classifiers. Commonly used features--DNA and protein sequence conservation, indel length, and occurrence in repeat regions--are useful for inference of protein damage. However, these features can cause false positives when predicting the impact of indels on disease. Existing methods for indel classification suffer from low specificities, severely limiting clinical utility. Here, we further develop our variant effect scoring tool (VEST) to include the classification of in-frame and frameshift indels (VEST-indel) as pathogenic or benign. We apply 24 features, including a new "PubMed" feature, to estimate a gene's importance in human disease. When compared with four existing indel classifiers, our method achieves a drastically reduced false-positive rate, improving specificity by as much as 90%. This approach of estimating gene importance might be generally applicable to missense and other bioinformatics pathogenicity predictors, which often fail to achieve high specificity. Finally, we tested all possible meta-predictors that can be obtained from combining the four different indel classifiers using Boolean conjunctions and disjunctions, and derived a meta-predictor with improved performance over any individual method. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
Bourras, Salim; Meyer, Michel; Grandaubert, Jonathan; Lapalu, Nicolas; Fudal, Isabelle; Linglin, Juliette; Ollivier, Benedicte; Blaise, Françoise; Balesdent, Marie-Hélène; Rouxel, Thierry
2012-08-01
The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.
Xiao, M; Luo, Z; Mantel, C; Broxmeyer, H E; Lu, L
2000-02-01
Human growth factor-dependent cell line TF1, which lacks interleukin (IL)-9 receptors (R) and does not grow in IL-9, was transduced with a retroviral vector containing human IL-9R cDNA and a selection marker. An IL-9-dependent TF1 cell line, which could also grow in other cytokines, was established after selection in G418 and could produce mature RBC in response to cytokine stimulation. TF1 cells transduced with the same viral vector without the IL-9R insert cDNA (mock control) and then selected responded the same as nontransduced TF1 cells. They failed to grow in response to IL-9 and did not generate RBC. An increased number and size of burst-forming units-erythroid (BFU-E)-like colonies were detected from IL-9R-transduced TF1 cells, compared with mock-transduced cells, in response to erythropoietin (EPO) and IL-9. To evaluate self-renewal and differentiation capacity, colony-replating assays were performed in the presence of IL-3, GM-CSF, IL-9, and EPO. After four replatings, the cloning efficiency of IL-9R-transduced TF1 cells decreased from 98% to 38%, most likely due to terminal erythroid cell differentiation. In contrast, no change in replating efficiency was detected in mock-transduced cells. TF1 cells stably expressing IL-9R and responding to IL-9 can serve as a cell line model to study the intracellular signals mediating IL-9-induced erythroid cell proliferation and differentiation.
Thieme, Frank; Marillonnet, Sylvestre
2014-01-01
Identification of unknown sequences that flank known sequences of interest requires PCR amplification of DNA fragments that contain the junction between the known and unknown flanking sequences. Since amplified products often contain a mixture of specific and nonspecific products, the quick and clean (QC) cloning procedure was developed to clone specific products only. QC cloning is a ligation-independent cloning procedure that relies on the exonuclease activity of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. A specific feature of QC cloning is the use of vectors that contain a sequence called catching sequence that allows cloning specific products only. QC cloning is performed by a one-pot incubation of insert and vector in the presence of T4 DNA polymerase at room temperature for 10 min followed by direct transformation of the incubation mix in chemo-competent Escherichia coli cells.
The Evolution of Poxvirus Vaccines
Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano
2015-01-01
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483
The evolution of poxvirus vaccines.
Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano
2015-04-07
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Transcriptional regulatory elements in the noncoding region of human papillomavirus type 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tzyy-Choou.
1989-01-01
The structure and function of the transcriptional regulatory region of human papillomavirus type 6 (HPV-6) has been investigated. To investigate tissue specific gene expression, a sensitive method to detect and localize HPV-6 viral DNA, mRNA and protein in plastic-embedded tissue sections of genital and respiratory tract papillomata by using in situ hybridization and immunoperoxidase assays has been developed. This method, using ultrathin sections and strand-specific {sup 3}H labeled riboprobes, offers the advantages of superior morphological preservation and detection of viral genomes at low copy number with good resolution, and the modified immunocytochemistry provides better sensitivity. The results suggest that genitalmore » tract epithelium is more permissive for HPV-6 replication than respiratory tract epithelium. To study the tissue tropism of HPV-6 at the level of regulation of viral gene expression, the polymerase chain reaction was used to isolate the noncoding region (NCR) of HPV-6 in independent isolates. Nucleotide sequence analysis of molecularly cloned DNA identified base substitutions, deletions/insertions and tandem duplications. Transcriptional regulatory elements in the NCR were assayed in recombinant plasmids containing the bacterial gene for chloramphenicol acetyl transferase.« less
Population and clinical genetics of human transposable elements in the (post) genomic era
Rishishwar, Lavanya; Wang, Lu; Clayton, Evan A.; Mariño-Ramírez, Leonardo; McDonald, John F.; Jordan, I. King
2017-01-01
ABSTRACT Recent technological developments—in genomics, bioinformatics and high-throughput experimental techniques—are providing opportunities to study ongoing human transposable element (TE) activity at an unprecedented level of detail. It is now possible to characterize genome-wide collections of TE insertion sites for multiple human individuals, within and between populations, and for a variety of tissue types. Comparison of TE insertion site profiles between individuals captures the germline activity of TEs and reveals insertion site variants that segregate as polymorphisms among human populations, whereas comparison among tissue types ascertains somatic TE activity that generates cellular heterogeneity. In this review, we provide an overview of these new technologies and explore their implications for population and clinical genetic studies of human TEs. We cover both recent published results on human TE insertion activity as well as the prospects for future TE studies related to human evolution and health. PMID:28228978
Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H
2017-08-15
DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.
Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs
Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun
2014-01-01
Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489
Tagging potato leafroll virus with the jellyfish green fluorescent protein gene.
Nurkiyanova, K M; Ryabov, E V; Commandeur, U; Duncan, G H; Canto, T; Gray, S M; Mayo, M A; Taliansky, M E
2000-03-01
A full-length cDNA corresponding to the RNA genome of Potato leafroll virus (PLRV) was modified by inserting cDNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene near its 3' end. Nicotiana benthamiana protoplasts electroporated with plasmid DNA containing this cDNA behind the 35S RNA promoter of Cauliflower mosaic virus became infected with the recombinant virus (PLRV-GFP). Up to 5% of transfected protoplasts showed GFP-specific fluorescence. Progeny virus particles were morphologically indistinguishable from those of wild-type PLRV but, unlike PLRV particles, they bound to grids coated with antibodies to GFP. Aphids fed on extracts of these protoplasts transmitted PLRV-GFP to test plants, as shown by specific fluorescence in some vascular tissue and epidermal cells and subsequent systemic infection. In plants agroinfected with PLRV-GFP cDNA in pBIN19, some cells became fluorescent and systemic infections developed. However, after either type of inoculation, fluorescence was mostly restricted to single cells and the only PLRV genome detected in systemically infected tissues lacked some or all of the inserted GFP cDNA, apparently because of naturally occurring deletions. Thus, intact PLRV-GFP was unable to move from cell to cell. Nevertheless, PLRV-GFP has novel potential for exploring the initial stages of PLRV infection.
Putterman, D G; Gryczan, T J; Dubnau, D; Day, L A
1983-01-01
The genome of Pf3, a filamentous single-stranded DNA bacteriophage of Pseudomonas aeruginosa (a gram-negative organism) was cloned into pBD214, a plasmid cloning vector of Bacillus subtilis (a gram-positive organism). Cloning in the gram-positive organism was done to avoid anticipated lethal effects. The entire Pf3 genome was inserted in each orientation at a unique Bc/I site within a thymidylate synthetase gene (from B. subtilis phage beta 22) on the plasmid. Additional clones were made by inserting EcoRI fragments of Pf3 DNA into a unique EcoRI site within this gene. Images PMID:6306273
Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes
Throop, Andrea L.; LaBaer, Joshua
2015-01-01
The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088
pYEMF, a pUC18-derived XcmI T-vector for efficient cloning of PCR products.
Gu, Jingsong; Ye, Chunjiang
2011-03-01
A 1330-bp DNA sequence with two XcmI cassettes was inserted into pUC18 to construct an efficient XcmI T-vector parent plasmid, pYEMF. The large size of the inserted DNA fragment improved T-vector cleavage efficiency, and guaranteed good separation of the molecular components after restriction digestion. The pYEMF-T-vector generated from parent plasmid pYEMF permits blue/white colony screening; cloning efficiency analysis showed that most white colonies (>75%) were putative transformants which carried the cloning product. The sequence analysis and design approach presented here will facilitate applications in the fields of molecular biology and genetic engineering.
Large exon size does not limit splicing in vivo.
Chen, I T; Chasin, L A
1994-03-01
Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.
Cloning of a promoter-like soybean DNA sequence responding to IAA induction in Escherichia coli K12.
Kline, E L; Chiang, S J; Lattora, D; Chaung, W
1992-02-01
We have constructed a soybean genomic DNA library in Escherichia coli K12 strain KC13 using plasmid pPV33, which consists of a promoter-less tetracycline resistance (Tcr) gene. A recombinant clone, KC13(pAU-SB1)+, was obtained by selecting for resistance to tetracycline in the presence of indole-3-acetic acid (IAA). Restriction enzyme cleavage and Southern hybridization analysis revealed that the pAU-SB1 plasmid has a 250 bp soybean DNA insert fused with the Tcr gene. In the presence of a selected group of auxins, induction of the Tcr phenotype and mRNA synthesis of the Tcr gene are observed only in KC13(pAU-SB1)+ cultures. On the other hand, induction of the Tcr phenotype and mRNA synthesis of the Tcr gene are absent in cells harboring the cloning vector pPV33 or a recombinant plasmid containing the 250 bp insert in the reverse orientation, pAU-SB1ro. This demonstrated a need for the insertion of the 250 bp soybean DNA and the specificity of its orientation in response to IAA induction. The start point of mRNA transcription in response to IAA, IBA, IPA, 2,4,5-T, and a-NAP is at base pair -96 or -95 upstream of the translational start site of the Tcr gene and base pair -98 with 2,4-D.
Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus.
Ma, Peng-Fei; Zhang, Yu-Xiao; Guo, Zhen-Hua; Li, De-Zhu
2015-06-23
In flowering plants, three genomes (nuclear, mitochondrial, and plastid) coexist and intracellular horizontal transfer of DNA is prevalent, especially from the plastid to the mitochondrion genome. However, the plastid genomes are generally conserved in evolution and have long been considered immune to foreign DNA. Recently, the opposite direction of DNA transfer from the mitochondrial to the plastid genome has been reported in two eudicot lineages. Here we sequenced 6 plastid genomes of bamboos, three of which are neotropical woody species and three are herbaceous ones. Several unusual features were found, including the duplication of trnT-GGU and loss of one copy of rps19 due to contraction of inverted repeats (IRs). The most intriguing was the ~2.7 kb insertion in the plastid IR regions in the three herbaceous bamboos. Furthermore, the insertion was documented to be horizontally transferred from the mitochondrial to the plastid genome. Our study provided evidence of the mitochondrial-to-plastid DNA transfer in the monocots, demonstrating again that this rare event does occur in other angiosperm lineages. However, the mechanism underlying the transfer remains obscure, and more studies in other plants may elucidate it in the future.
Carbonaro, Denise A; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L; Sebire, Neil J; Hollis, Roger P; Blundell, Michael P; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J; Kohn, Donald B; Gaspar, H Bobby
2014-01-01
Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)–deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA−/− mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA−/− mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34+ cells transduced with 1–5 × 107 TU/ml had 1–3 vector copies/cell and expressed 1–2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis. PMID:24256635
Spy: a new group of eukaryotic DNA transposons without target site duplications.
Han, Min-Jin; Xu, Hong-En; Zhang, Hua-Hao; Feschotte, Cédric; Zhang, Ze
2014-06-24
Class 2 or DNA transposons populate the genomes of most eukaryotes and like other mobile genetic elements have a profound impact on genome evolution. Most DNA transposons belong to the cut-and-paste types, which are relatively simple elements characterized by terminal-inverted repeats (TIRs) flanking a single gene encoding a transposase. All eukaryotic cut-and-paste transposons so far described are also characterized by target site duplications (TSDs) of host DNA generated upon chromosomal insertion. Here, we report a new group of evolutionarily related DNA transposons called Spy, which also include TIRs and DDE motif-containing transposase but surprisingly do not create TSDs upon insertion. Instead, Spy transposons appear to transpose precisely between 5'-AAA and TTT-3' host nucleotides, without duplication or modification of the AAATTT target sites. Spy transposons were identified in the genomes of diverse invertebrate species based on transposase homology searches and structure-based approaches. Phylogenetic analyses indicate that Spy transposases are distantly related to IS5, ISL2EU, and PIF/Harbinger transposases. However, Spy transposons are distinct from these and other DNA transposon superfamilies by their lack of TSD and their target site preference. Our findings expand the known diversity of DNA transposons and reveal a new group of eukaryotic DDE transposases with unusual catalytic properties. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
CAPRRESI: Chimera Assembly by Plasmid Recovery and Restriction Enzyme Site Insertion.
Santillán, Orlando; Ramírez-Romero, Miguel A; Dávila, Guillermo
2017-06-25
Here, we present chimera assembly by plasmid recovery and restriction enzyme site insertion (CAPRRESI). CAPRRESI benefits from many strengths of the original plasmid recovery method and introduces restriction enzyme digestion to ease DNA ligation reactions (required for chimera assembly). For this protocol, users clone wildtype genes into the same plasmid (pUC18 or pUC19). After the in silico selection of amino acid sequence regions where chimeras should be assembled, users obtain all the synonym DNA sequences that encode them. Ad hoc Perl scripts enable users to determine all synonym DNA sequences. After this step, another Perl script searches for restriction enzyme sites on all synonym DNA sequences. This in silico analysis is also performed using the ampicillin resistance gene (ampR) found on pUC18/19 plasmids. Users design oligonucleotides inside synonym regions to disrupt wildtype and ampR genes by PCR. After obtaining and purifying complementary DNA fragments, restriction enzyme digestion is accomplished. Chimera assembly is achieved by ligating appropriate complementary DNA fragments. pUC18/19 vectors are selected for CAPRRESI because they offer technical advantages, such as small size (2,686 base pairs), high copy number, advantageous sequencing reaction features, and commercial availability. The usage of restriction enzymes for chimera assembly eliminates the need for DNA polymerases yielding blunt-ended products. CAPRRESI is a fast and low-cost method for fusing protein-coding genes.
Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng
2008-01-01
To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.
Adamek, Martina; Opelz, Gerhard; Klein, Katrin; Morath, Christian; Tran, Thuong Hien
2016-07-01
Timely detection of graft rejection is an important issue in the follow-up care after solid organ transplantation. Until now, biopsy has been considered the "gold standard" in the diagnosis of graft rejection. However, non-invasive tests such as monitoring the levels of cell-free DNA (cfDNA) as a sensitive biomarker for graft integrity have attracted increasing interest. The rationale of this approach is that a rejected organ will lead to a significant release of donor-derived cfDNA, which can be detected in the serum of the transplant recipient. We have developed a novel quantitative real-time PCR (qPCR) approach for detecting an increase of donor-derived cfDNA in the recipient's serum. Common insertion/deletion (InDel) genetic polymorphisms, which differ between donor and recipient, are targeted in our qPCR assay. In contrast to some other strategies, no specific donor/recipient constellations such as certain gender combinations or human leukocyte antigen (HLA) discrepancies are required for the application of our test. The method was first validated with serial dilutions of serum mixtures obtained from healthy blood donors and then used to determine donor-derived cfDNA levels in patients' sera within the first 3 days after their kidney transplantation had been performed. Our method represents a universally applicable, simple and cost-effective tool which can potentially be used to detect graft dysfunction in transplant recipients.
NASA Astrophysics Data System (ADS)
Gregersen, Jens-Peter
2001-12-01
Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.
Dong, Chun-nan; Yang, Ya-dong; Li, Shu-jin; Yang, Ya-ran; Zhang, Xiao-jing; Fang, Xiang-dong; Yan, Jiang-wei; Cong, Bin
2016-01-01
In the case of mass disasters, missing persons and forensic caseworks, highly degraded biological samples are often encountered. It can be a challenge to analyze and interpret the DNA profiles from these samples. Here we provide a new strategy to solve the problem by taking advantage of the intrinsic structural properties of DNA. We have assessed the in vivo positions of more than 35 million putative nucleosome cores in human leukocytes using high-throughput whole genome sequencing, and identified 2,462 single nucleotide variations (SNVs), 128 insertion-deletion polymorphisms (indels). After comparing the sequence reads with 44 STR loci commonly used in forensics, five STRs (TH01, TPOX, D18S51, DYS391, and D10S1248)were matched. We compared these “nucleosome protected STRs” (NPSTRs) with five other non-NPSTRs using mini-STR primer design, real-time PCR, and capillary gel electrophoresis on artificially degraded DNA. Moreover, genotyping performance of the five NPSTRs and five non-NPSTRs was also tested with real casework samples. All results show that loci located in nucleosomes are more likely to be successfully genotyped in degraded samples. In conclusion, after further strict validation, these markers could be incorporated into future forensic and paleontology identification kits, resulting in higher discriminatory power for certain degraded sample types. PMID:27189082
Pustovalova, Yulia; Magalhães, Mariana T. Q.; D’Souza, Sanjay; Rizzo, Alessandro A.; Korza, George; Walker, Graham C.; Korzhnev, Dmitry M.
2016-01-01
Translesion synthesis (TLS) is a mutagenic branch of cellular DNA damage tolerance that enables bypass replication over DNA lesions carried out by specialized low-fidelity DNA polymerases. The replicative bypass of most types of DNA damage is performed in a two-step process of Rev1/Polζ-dependent TLS. In the first step, a Y-family TLS enzyme, typically Polη, Polι or Polκ, inserts a nucleotide across DNA lesion. In the second step, a four-subunit B-family DNA polymerase Polζ (Rev3/Rev7/PolD2/PolD3 complex) extends the distorted DNA primer-template. The coordinated action of error-prone TLS enzymes is regulated through their interactions with the two scaffold proteins, the sliding clamp PCNA and the TLS polymerase Rev1. Rev1 interactions with all other TLS enzymes are mediated by its C-terminal domain (Rev1-CT), which can simultaneously bind the Rev7 subunit of Polζ and Rev1-interacting regions (RIRs) from Polη, Polι or Polκ. In this work, we identified a previously unknown RIR motif in the C-terminal part of PolD3 subunit of Polζ whose interaction with the Rev1-CT is among the tightest mediated by RIR motifs. Three-dimensional structure of the Rev1-CT/PolD3-RIR complex determined by NMR spectroscopy revealed a structural basis for the relatively high affinity of this interaction. The unexpected discovery of PolD3-RIR motif suggests a mechanism of 'inserter' to 'extender' DNA polymerase switch upon Rev1/Polζ-dependent TLS, in which the PolD3-RIR binding to the Rev1-CT (i) helps displace the 'inserter' Polη, Polι or Polκ from its complex with Rev1, and (ii) facilitates assembly of the four-subunit 'extender' Polζ through simultaneous interaction of Rev1-CT with Rev7 and PolD3 subunits. PMID:26982350
Physical mapping of complex genomes
Evans, Glen A.
1993-01-01
Method for simultaneous identification of overlapping cosmid clones among multiple cosmid clones and the use of the method for mapping complex genomes are provided. A library of cosmid clones that contains the DNA to be mapped is constructed and arranged in a manner such that individual clones can be identified and replicas of the arranged clones prepared. In preferred embodiments, the clones are arranged in a two dimensional matrix. In such embodiments, the cosmid clones in a row are pooled, mixed probes complementary to the ends of the DNA inserts int he pooled clones are synthesized, hybridized to a first replica of the library. Hybridizing clones, which include the pooled row, are identified. A second portion of clones is prepared by pooling cosmid clones that correspond to a column in the matrix. The second pool thereby includes one clone from the first portion pooled clones. This common clone is located on the replica at the intersection of the column and row. Mixed probes complementary to the ends of the DNA inserts in the second pooled portion of clones are prepared and hybridized to a second replica of the library. The hybridization pattern on the first and second replicas of the library are compared and cross-hybridizing clones, other than the clones in the pooled column and row, that hybridize to identical clones in the first and second replicas are identified. These clones necessarily include DNA inserts that overlap with the DNA insert int he common clone located at the intersection of the pooled row and pooled column. The DNA in the entire library may be mapped by pooling the clones in each of the rows and columns of the matrix, preparing mixed end-specific probes and hybridizing the probes from each row or column to a replica of the library. Since all clones in the library are located at the intersection of a column and a row, the overlapping clones for all clones in the library may be identified and a physical map constructed. In other preferred embodiments, the cosmid clones are arranged in a three dimensional matrix, pooled and compared in threes according to intersecting planes of the three dimensional matrix. Arrangements corresponding to geometries of higher dimensions may also be prepared and used to simultaneously identify overlapping clones in highly complex libraries with relatively few hybridization reactions.
Cheriyan, Manoj; Chan, Siu-Hong; Perler, Francine
2014-12-12
Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices. Copyright © 2014. Published by Elsevier Ltd.
Maumus, Florian; Blanc, Guillaume
2016-12-14
The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain unicellular eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. These findings prompted us to search the genome of Acanthamoeba castellanii strain Neff (Neff), one of the most prolific hosts in the discovery of giant NCLDVs, for possible DNA inserts of viral origin. We report the identification of 267 markers of lateral gene transfer with viruses, approximately half of which are clustered in Neff genome regions of viral origins, transcriptionally inactive or exhibit nucleotide-composition signatures suggestive of a foreign origin. The integrated viral genes had diverse origin among relatives of viruses that infect Neff, including Mollivirus, Pandoravirus, Marseillevirus, Pithovirus, and Mimivirus However, phylogenetic analysis suggests the existence of a yet-undiscovered family of amoeba-infecting NCLDV in addition to the five already characterized. The active transcription of some apparently anciently integrated virus-like genes suggests that some viral genes might have been domesticated during the amoeba evolution. These insights confirm that genomic insertion of NCLDV DNA is a common theme in eukaryotes. This gene flow contributed fertilizing the eukaryotic gene repertoire and participated in the occurrence of orphan genes, a long standing issue in genomics. Search for viral inserts in eukaryotic genomes followed by environmental screening of the original viruses should be used to isolate radically new NCLDVs. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Sawada, Koichi; Kokeguchi, Susumu; Hongyo, Hiroshi; Sawada, Satoko; Miyamoto, Manabu; Maeda, Hiroshi; Nishimura, Fusanori; Takashiba, Shogo; Murayama, Yoji
1999-01-01
Subtractive hybridization was employed to isolate specific genes from virulent Porphyromonas gingivalis strains that are possibly related to abscess formation. The genomic DNA from the virulent strain P. gingivalis W83 was subtracted with DNA from the avirulent strain ATCC 33277. Three clones unique to strain W83 were isolated and sequenced. The cloned DNA fragments were 885, 369, and 132 bp and had slight homology with only Bacillus stearothermophilus IS5377, which is a putative transposase. The regions flanking the cloned DNA fragments were isolated and sequenced, and the gene structure around the clones was revealed. These three clones were located side-by-side in a gene reported as an outer membrane protein. The three clones interrupt the open reading frame of the outer membrane protein gene. This inserted DNA, consisting of three isolated clones, was designated IS1598, which was 1,396 bp (i.e., a 1,158-bp open reading frame) in length and was flanked by 16-bp terminal inverted repeats and a 9-bp duplicated target sequence. IS1598 was detected in P. gingivalis W83, W50, and FDC 381 by Southern hybridization. All three P. gingivalis strains have been shown to possess abscess-forming ability in animal models. However, IS1598 was not detected in avirulent strains of P. gingivalis, including ATCC 33277. The IS1598 may interrupt the synthesis of the outer membrane protein, resulting in changes in the structure of the bacterial outer membrane. The IS1598 isolated in this study is a novel insertion element which might be a specific marker for virulent P. gingivalis strains. PMID:10531208
Liao, Sumei; Klein, Marlise I.; Heim, Kyle P.; Fan, Yuwei; Bitoun, Jacob P.; Ahn, San-Joon; Burne, Robert A.; Koo, Hyun; Brady, L. Jeannine
2014-01-01
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA. PMID:24748612
Huang, Shengbing; Song, Wei; Lin, Qishui
2005-08-01
A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.
Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar
2014-01-01
Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system. Copyright © 2013 Elsevier GmbH. All rights reserved.
A non-heme iron-mediated chemical demethylation in DNA and RNA.
Yi, Chengqi; Yang, Cai-Guang; He, Chuan
2009-04-21
DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes. The crystal structures show a distinct base-flipping feature in AlkB and establish ABH2 as a dsDNA repair protein. They also provide a molecular framework for understanding the demethylation reaction catalyzed by these proteins and help to explain their substrate preferences. The chemical cross-linking method demonstrated here can be applied to trap other labile protein-DNA interactions and can serve as a general strategy for exploring the structural and functional aspects of base-flipping proteins.
Transposition of an intron in yeast mitochondria requires a protein encoded by that intron.
Macreadie, I G; Scott, R M; Zinn, A R; Butow, R A
1985-06-01
The optional 1143 bp intron in the yeast mitochondrial 21S rRNA gene (omega +) is nearly quantitatively inserted in genetic crosses into 21S rRNA alleles that lack it (omega -). The intron contains an open reading frame that can encode a protein of 235 amino acids, but no function has been ascribed to this sequence. We previously found an in vivo double-strand break in omega - DNA at or close to the intron insertion site only in zygotes of omega + X omega - crosses that appears with the same kinetics as intron insertion. We now show that mutations in the intron open reading frame that would alter the translation product simultaneously inhibit nonreciprocal omega recombination and the in vivo double-strand break in omega - DNA. These results provide evidence that the open reading frame encodes a protein required for intron transposition and support the role of the double-strand break in the process.
NASA Astrophysics Data System (ADS)
Panicali, Dennis; Paoletti, Enzo
1982-08-01
We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.
Isolation and Expression of the Lysis Genes of Actinomyces naeslundii Phage Av-1
Delisle, Allan L.; Barcak, Gerard J.; Guo, Ming
2006-01-01
Like most gram-positive oral bacteria, Actinomyces naeslundii is resistant to salivary lysozyme and to most other lytic enzymes. We are interested in studying the lysins of phages of this important oral bacterium as potential diagnostic and therapeutic agents. To identify the Actinomyces phage genes encoding these species-specific enzymes in Escherichia coli, we constructed a new cloning vector, pAD330, that can be used to enrich for and isolate phage holin genes, which are located adjacent to the lysin genes in most phage genomes. Cloned holin insert sequences were used to design sequencing primers to identify nearby lysin genes by using whole phage DNA as the template. From partial digestions of A. naeslundii phage Av-1 genomic DNA we were able to clone, in independent experiments, inserts that complemented the defective λ holin in pAD330, as evidenced by extensive lysis after thermal induction. The DNA sequence of the inserts in these plasmids revealed that both contained the complete lysis region of Av-1, which is comprised of two holin-like genes, designated holA and holB, and an endolysin gene, designated lysA. We were able to subclone and express these genes and determine some of the functional properties of their gene products. PMID:16461656
Xiong, Y; Eickbush, T H
1988-01-01
Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons. Images PMID:2447482
Viruses and Human Cancers: a Long Road of Discovery of Molecular Paradigms
White, Martyn K.; Pagano, Joseph S.
2014-01-01
SUMMARY About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved. PMID:24982317
Lee, Susan D.; Surtees, Jennifer A.; Alani, Eric
2007-01-01
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. In this study we showed that the msh2Δ1 mutation, containing a complete deletion of the conserved mismatch recognition Domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Δ1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of Domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that Domain I in MSH2 contributed a non-specific DNA binding activity while Domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA-binding. These observations reveal distinct requirements for the MSH2 DNA binding Domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding. PMID:17157869
Lee, Susan D; Surtees, Jennifer A; Alani, Eric
2007-02-09
In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.
USDA-ARS?s Scientific Manuscript database
Site-specific recombination technologies are powerful new tools for the manipulation of genomic DNA in insects that can improve transgenesis strategies such as targeting transgene insertions, allowing transgene cassette exchange and DNA mobilization for transgene stabilization. However, understandin...
Okada, Kazuma; Wada, Masato; Moriya, Shigeki; Katayose, Yuichi; Fujisawa, Hiroko; Wu, Jianzhong; Kanamori, Hiroyuki; Kurita, Kanako; Sasaki, Harumi; Fujii, Hiroshi; Terakami, Shingo; Iwanami, Hiroshi; Yamamoto, Toshiya; Abe, Kazuyuki
2016-11-01
Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant 'McIntosh Wijcik', which was discovered as a bud mutation from 'McIntosh', exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in 'McIntosh Wijcik' but not in 'McIntosh'. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in 'McIntosh Wijcik' is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.
Unlocking the sugar "steric gate" of DNA polymerases.
Brown, Jessica A; Suo, Zucai
2011-02-22
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.
Unlocking the Sugar ‘Steric Gate’ of DNA Polymerases†
Brown, Jessica A.; Suo, Zucai
2011-01-01
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2′-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the ‘steric gate’, establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review article. PMID:21226515
NASA Astrophysics Data System (ADS)
Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki
Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.
High-throughput microtitre plate-based assay for DNA topoisomerases.
Taylor, James A; Burton, Nicolas P; Maxwell, Anthony
2012-01-01
We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of DNA topoisomerases. The assay utilizes intermolecular triplex formation between an immobilized triplex-forming oligo (TFO) and a triplex-forming region inserted into the plasmid substrate (pNO1), and capitalizes on the observation that supercoiled DNA forms triplexes more readily than relaxed DNA. Thus, supercoiled DNA is preferentially retained by the TFO under triplex-forming conditions while relaxed DNA can be washed away. Due to its high speed of sample analysis and reduced sample handling over conventional gel-based techniques, this assay can be used to screen chemical libraries for novel inhibitors of topoisomerases.
Using secondary structure to identify ribosomal numts: cautionary examples from the human genome.
Olson, Link E; Yoder, Anne D
2002-01-01
The identification of inadvertently sequenced mitochondrial pseudogenes (numts) is critical to any study employing mitochondrial DNA sequence data. Failure to discriminate numts correctly can confound phylogenetic reconstruction and studies of molecular evolution. This is especially problematic for ribosomal mtDNA genes. Unlike protein-coding loci, whose pseudogenes tend to accumulate diagnostic frameshift or premature stop mutations, functional ribosomal genes are not constrained to maintain a reading frame and can accumulate insertion-deletion events of varying length, particularly in nonpairing regions. Several authors have advocated using structural features of the transcribed rRNA molecule to differentiate functional mitochondrial rRNA genes from their nuclear paralogs. We explored this approach using the mitochondrial 12S rRNA gene and three known 12S numts from the human genome in the context of anthropoid phylogeny and the inferred secondary structure of primate 12S rRNA. Contrary to expectation, each of the three human numts exhibits striking concordance with secondary structure models, with little, if any, indication of their pseudogene status, and would likely escape detection based on structural criteria alone. Furthermore, we show that the unwitting inclusion of a particularly ancient (18-25 Myr old) and surprisingly cryptic human numt in a phylogenetic analysis would yield a well-supported but dramatically incorrect conclusion regarding anthropoid relationships. Though we endorse the use of secondary structure models for inferring positional homology wholeheartedly, we caution against reliance on structural criteria for the discrimination of rRNA numts, given the potential fallibility of this approach.
Whole-genome sequencing of Atacama skeleton shows novel mutations linked with dysplasia
Bhattacharya, Sanchita; Li, Jian; Sockell, Alexandra; Kan, Matthew J.; Bava, Felice A.; Chen, Shann-Ching; Ávila-Arcos, María C.; Ji, Xuhuai; Smith, Emery; Asadi, Narges B.; Lachman, Ralph S.; Lam, Hugo Y.K.; Bustamante, Carlos D.; Butte, Atul J.; Nolan, Garry P.
2018-01-01
Over a decade ago, the Atacama humanoid skeleton (Ata) was discovered in the Atacama region of Chile. The Ata specimen carried a strange phenotype—6-in stature, fewer than expected ribs, elongated cranium, and accelerated bone age—leading to speculation that this was a preserved nonhuman primate, human fetus harboring genetic mutations, or even an extraterrestrial. We previously reported that it was human by DNA analysis with an estimated bone age of about 6–8 yr at the time of demise. To determine the possible genetic drivers of the observed morphology, DNA from the specimen was subjected to whole-genome sequencing using the Illumina HiSeq platform with an average 11.5× coverage of 101-bp, paired-end reads. In total, 3,356,569 single nucleotide variations (SNVs) were found as compared to the human reference genome, 518,365 insertions and deletions (indels), and 1047 structural variations (SVs) were detected. Here, we present the detailed whole-genome analysis showing that Ata is a female of human origin, likely of Chilean descent, and its genome harbors mutations in genes (COL1A1, COL2A1, KMT2D, FLNB, ATR, TRIP11, PCNT) previously linked with diseases of small stature, rib anomalies, cranial malformations, premature joint fusion, and osteochondrodysplasia (also known as skeletal dysplasia). Together, these findings provide a molecular characterization of Ata's peculiar phenotype, which likely results from multiple known and novel putative gene mutations affecting bone development and ossification. PMID:29567674
Active Transposition in Genomes
Huang, Cheng Ran Lisa; Burns, Kathleen H.; Boeke, Jef D.
2013-01-01
Transposons are DNA sequences capable of moving in genomes. Early evidence showed their accumulation in many species and suggested their continued activity in at least isolated organisms. In the past decade, with the development of various genomic technologies, it has become abundantly clear that ongoing activity is the rule rather than the exception. Active transposons of various classes are observed throughout plants and animals, including humans. They continue to create new insertions, have an enormous variety of structural and functional impact on genes and genomes, and play important roles in genome evolution. Transposon activities have been identified and measured by employing various strategies. Here, we summarize evidence of current transposon activity in various plant and animal genomes. PMID:23145912
The topography of mutational processes in breast cancer genomes
Morganella, Sandro; Alexandrov, Ludmil B.; Glodzik, Dominik; ...
2016-01-01
Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription,more » DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Lastly, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.« less
Different genome maintenance strategies in human and tobacco cells.
Pelczar, Pawel; Kalck, Véronique; Kovalchuk, Igor
2003-08-22
In this work, genome maintenance strategies of organisms belonging to different kingdoms (animals versus plants) but of similar genome size were investigated using a novel, universal double-strand break (DSB) repair assay. Different plasmids linearised with KpnI, Acc65I or EcoRV yielding either 3' or 5' protruding or blunt DNA termini, respectively, were transfected into HeLa cells and Nicotiana plumbaginifolia protoplasts and assayed for the efficiency and fidelity of DSB repair. We show that the mechanism of break sealing is similar but that drastic differences are seen in the fidelity of repair: in HeLa cells, 50-55% DSBs were repaired precisely, compared to as little as 15-30% in tobacco cells. Moreover, the DSB repair in plants resulted in 30-40% longer deletions and significantly shorter insertions. Combined, these led to more than twofold larger net DNA loss in tobacco cells. Our observations point to possible differences in the strategies of DSB repair and genome maintenance in plants and animals.
IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics.
Sasaki, Masato; Knobbe, Christiane B; Munger, Joshua C; Lind, Evan F; Brenner, Dirk; Brüstle, Anne; Harris, Isaac S; Holmes, Roxanne; Wakeham, Andrew; Haight, Jillian; You-Ten, Annick; Li, Wanda Y; Schalm, Stefanie; Su, Shinsan M; Virtanen, Carl; Reifenberger, Guido; Ohashi, Pamela S; Barber, Dwayne L; Figueroa, Maria E; Melnick, Ari; Zúñiga-Pflücker, Juan-Carlos; Mak, Tak W
2012-08-30
Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the ‘oncometabolite’ R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.
Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames.
Behrens, R; Hayles, J; Nurse, P
2000-12-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100-420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed.
Fission yeast retrotransposon Tf1 integration is targeted to 5′ ends of open reading frames
Behrens, Ralf; Hayles, Jacky; Nurse, Paul
2000-01-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100–420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed. PMID:11095681
Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops.
Kar, Anirban; Willcox, Smaranda; Griffith, Jack D
2016-11-02
The formation of DNA loops at chromosome ends (t-loops) and the transcription of telomeres producing G-rich RNA (TERRA) represent two central features of telomeres. To explore a possible link between them we employed artificial human telomeres containing long arrays of TTAGGG repeats flanked by the T7 or T3 promoters. Transcription of these DNAs generates a high frequency of t-loops within individual molecules and homologous recombination events between different DNAs at their telomeric sequences. T-loop formation does not require a single strand overhang, arguing that both terminal strands insert into the preceding duplex. The loops are very stable and some RNase H resistant TERRA remains at the t-loop, likely adding to their stability. Transcription of DNAs containing TTAGTG or TGAGTG repeats showed greatly reduced loop formation. While in the cell multiple pathways may lead to t-loop formation, the pathway revealed here does not depend on the shelterins but rather on the unique character of telomeric DNA when it is opened for transcription. Hence, telomeric sequences may have evolved to facilitate their ability to loop back on themselves. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cloning and expression of cyclophilin from Platanus orientalis pollens in Escherichia coli
Sankian, Mojtaba; Vahedi, Fatemeh; Pazouki, Nazanin; Moghadam, Malihe; Jabbari Azad, Farahzad; Varasteh, Abdol-Reza
2012-01-01
Background: Allergy is a clinical disorder affecting the human population with wide geographical distribution. Platanus orientalis (P. orientalis) trees are planted in many countries and their pollen causes allergic reactions. Cyclophilin has recently been identified as one of the most important allergens of P. orientalis pollen. We aimed to clone and purify this allergen in Escherichia coli for further studies and therapeutic and diagnostic purposes for allergy to P. orientalis. Methods: RNA was extracted from P. orientalis. A full-length fragment encoding cyclophilin was prepared by polymerase chain reaction amplification of the first-strand cDNA synthesized from P. orientalis RNA. The cDNA was inserted into the pET32b (+) vector, and the construct transformed into E. coli Top10 and BL21 cells. The expressed protein was purified by the CuSO4 method. Results: The cDNA for the cyclophilin of P. orientalis pollen was cloned, and a specific reactivity of recombinant cyclophin was confirmed by immunoblotting using sera from patients allergic to P. orientalis pollen. Conclusion: The recombinant cyclophilin has a potential for immunologic assays for evaluation of allergy to P. orientalis pollen. PMID:26989705
Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan
2015-09-01
5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion. Copyright © 2015 Elsevier B.V. All rights reserved.
Hwang, Hanshin; Taylor, John-Stephen
2005-03-29
We have recently reported that pyrene nucleotide is preferentially inserted opposite an abasic site, the 3'-T of a thymine dimer, and most undamaged bases by yeast DNA polymerase eta (pol eta). Because pyrene is a nonpolar molecule with no H-bonding ability, the unusually high efficiencies of dPMP insertion are ascribed to its superior base stacking ability, and underscore the importance of base stacking in the selection of nucleotides by pol eta. To investigate the role of H-bonding and base pair geometry in the selection of nucleotides by pol eta, we determined the insertion efficiencies of the base-modified nucleotides 2,6-diaminopurine, 2-aminopurine, 6-chloropurine, and inosine which would make a different number of H-bonds with the template base depending on base pair geometry. Watson-Crick base pairing appears to play an important role in the selection of nucleotide analogues for insertion opposite C and T as evidenced by the decrease in the relative insertion efficiencies with a decrease in the number of Watson-Crick H-bonds and an increase in the number of donor-donor and acceptor-acceptor interactions. The selectivity of nucleotide insertion is greater opposite the 5'-T than the 3'-T of the thymine dimer, in accord with previous work suggesting that the 5'-T is held more rigidly than the 3'-T. Furthermore, insertion of A opposite both Ts of the dimer appears to be mediated by Watson-Crick base pairing and not by Hoogsteen base pairing based on the almost identical insertion efficiencies of A and 7-deaza-A, the latter of which lacks H-bonding capability at N7. The relative efficiencies for insertion of nucleotides that can form Watson-Crick base pairs parallel those for the Klenow fragment, whereas the Klenow fragment more strongly discriminates against mismatches, in accord with its greater shape selectivity. These results underscore the importance of H-bonding and Watson-Crick base pair geometry in the selection of nucleotides by both pol eta and the Klenow fragment, and the lesser role of shape selection in insertion by pol eta due to its more open and less constrained active site.
Kuhn, Alexandre; Ong, Yao Min; Cheng, Ching-Yu; Wong, Tien Yin; Quake, Stephen R; Burkholder, William F
2014-06-03
Insertions of the human-specific subfamily of LINE-1 (L1) retrotransposon are highly polymorphic across individuals and can critically influence the human transcriptome. We hypothesized that L1 insertions could represent genetic variants determining important human phenotypic traits, and performed an integrated analysis of L1 elements and single nucleotide polymorphisms (SNPs) in several human populations. We found that a large fraction of L1s were in high linkage disequilibrium with their surrounding genomic regions and that they were well tagged by SNPs. However, L1 variants were only partially captured by SNPs on standard SNP arrays, so that their potential phenotypic impact would be frequently missed by SNP array-based genome-wide association studies. We next identified potential phenotypic effects of L1s by looking for signatures of natural selection linked to L1 insertions; significant extended haplotype homozygosity was detected around several L1 insertions. This finding suggests that some of these L1 insertions may have been the target of recent positive selection.
Mortensen, Christian; Karlsen, Stine; Grønbæk, Henning; Nielsen, Dennis T; Frevert, Susanne; Clemmesen, Jens O; Møller, Søren; Jensen, Jørgen S; Bendtsen, Flemming
2013-10-01
Bacterial translocation (BT) with immune activation may lead to hemodynamical alterations and poor outcomes in patients with cirrhosis. We investigated bacterial DNA (bDNA), a marker of BT, and its relation to portal pressure and markers of inflammation in the portal and hepatic veins in patients with cirrhosis undergoing TIPS insertion. We analysed plasma for bDNA and markers of inflammation in 28 patients [median portal pressure gradient 15 (11-19) mmHg] during TIPS treatment for refractory ascites (n = 19) or acute variceal bleeding (n = 9). Advanced cirrhosis was present in the majority [Child-Pugh class (A/B/C): 1/14/13], and most often caused by alcohol (n = 21). bDNA was detectable in one or both samples in 16 of 28 patients (57%). bDNA was present in 39% of the samples from the portal vein vs 43% of the samples in the hepatic vein (P = 0.126). Antibiotics had no effect on bDNA or markers of inflammation. Markers of inflammation did not differ between the hepatic and portal veins with the exceptions of soluble urokinase plasminogen activating receptor (suPAR) and vascular endothelial growth factor (VEGF), both higher in the hepatic vein (P = 0.031 and 0.003 respectively). No transhepatic gradient of bDNA was evident, suggesting that no major hepatic elimination of bDNA occurs in advanced liver disease. bDNA, in contrast to previous reports was largely unrelated to a panel of markers of inflammation and without relation to portal pressure. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ho, Sherry Sze Yee; Barrett, Angela; Thadani, Henna; Asibal, Cecille Laureano; Koay, Evelyn Siew-Chuan; Choolani, Mahesh
2015-07-01
Prenatal diagnosis of sex-linked disorders requires invasive procedures, carrying a risk of miscarriage of up to 1%. Cell-free fetal DNA (cffDNA) present in cell-free DNA (cfDNA) from maternal plasma offers a non-invasive source of fetal genetic material for analysis. Detection of Y-chromosome sequences in cfDNA indicates presence of a male fetus; in the absence of a Y-chromosome signal a female fetus is inferred. We aimed to validate the clinical utility of insertion-deletion polymorphisms (INDELs) to confirm presence of a female fetus using cffDNA. Quantitative real-time PCR (qPCR) for the Y-chromosome-specific sequence, SRY, was performed on cfDNA from 82 samples at 6-39 gestational weeks. In samples without detectable SRY, qPCRs for eight INDELs were performed on maternal genomic DNA and cfDNA. Detection of paternally inherited fetal alleles in cfDNA negative for SRY confirmed a female fetus. Fetal sex was correctly determined in 77/82 (93.9%) cfDNA samples. SRY was detected in all 39 samples from male-bearing pregnancies, and none of the 43 female-bearing pregnancies (sensitivity and specificity of SRY qPCR is therefore 100%; 95% CI 91%-100%). Paternally inherited fetal alleles were detected in 38/43 samples with no SRY signal, confirming the presence of a female fetus (INDEL assay sensitivity is therefore 88.4%; 95% CI 74.1%-95.6%). Since paternally inherited fetal INDELs were not used in women bearing male fetuses, the specificity of INDELs cannot be calculated. Five cfDNA samples were negative for both SRY and INDELS. We have validated a non-invasive prenatal test to confirm fetal sex as early as 6 gestational weeks using cffDNA from maternal plasma.
Comparison of large-insert, small-insert and pyrosequencing libraries for metagenomic analysis.
Danhorn, Thomas; Young, Curtis R; DeLong, Edward F
2012-11-01
The development of DNA sequencing methods for characterizing microbial communities has evolved rapidly over the past decades. To evaluate more traditional, as well as newer methodologies for DNA library preparation and sequencing, we compared fosmid, short-insert shotgun and 454 pyrosequencing libraries prepared from the same metagenomic DNA samples. GC content was elevated in all fosmid libraries, compared with shotgun and 454 libraries. Taxonomic composition of the different libraries suggested that this was caused by a relative underrepresentation of dominant taxonomic groups with low GC content, notably Prochlorales and the SAR11 cluster, in fosmid libraries. While these abundant taxa had a large impact on library representation, we also observed a positive correlation between taxon GC content and fosmid library representation in other low-GC taxa, suggesting a general trend. Analysis of gene category representation in different libraries indicated that the functional composition of a library was largely a reflection of its taxonomic composition, and no additional systematic biases against particular functional categories were detected at the level of sequencing depth in our samples. Another important but less predictable factor influencing the apparent taxonomic and functional library composition was the read length afforded by the different sequencing technologies. Our comparisons and analyses provide a detailed perspective on the influence of library type on the recovery of microbial taxa in metagenomic libraries and underscore the different uses and utilities of more traditional, as well as contemporary 'next-generation' DNA library construction and sequencing technologies for exploring the genomics of the natural microbial world.
Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information
McDonald, Daniel; Gonzalez, Antonio; Navas-Molina, Jose A.; Jiang, Lingjing; Xu, Zhenjiang Zech; Winker, Kevin; Kado, Deborah M.; Orwoll, Eric; Manary, Mark; Mirarab, Siavash
2018-01-01
ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies enable the inference of exact amplicon sequence fragments. These new methods enable the investigation of sub-operational taxonomic units (sOTU) by removing erroneous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments do not contain sufficient phylogenetic signal to reproduce a reasonable tree, introducing a barrier in the utilization of critical phylogenetically aware metrics such as Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods have not been tested for sOTUs from high-throughput amplicon studies in insertions against a broad reference phylogeny. We benchmarked the SATé-enabled phylogenetic placement (SEPP) technique explicitly against 16S V4 sequence fragments and showed that it outperforms the conceptually problematic but often-used practice of reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2 plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration into the microbial study management platform QIITA. IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing additional resolution, also introduces computational challenges. We demonstrate that one popular method of dealing with sOTUs (building a de novo tree from the short sequences) can provide incorrect results in human gut metagenomic studies and show that phylogenetic placement of the new sequences with SEPP resolves this problem while also yielding other benefits over existing methods. PMID:29719869
Nusse, R; Theunissen, H; Wagenaar, E; Rijsewijk, F; Gennissen, A; Otte, A; Schuuring, E; van Ooyen, A
1990-01-01
Wnt-1 (int-1) is a cellular oncogene often activated by insertion of proviral DNA of the mouse mammary tumor virus. We have mapped the 5' end and the promoter area of the Wnt-1 gene by nuclease protection and primer extension assays. In differentiating P19 embryonal carcinoma cells, in which Wnt-1 is naturally expressed, two start sites of transcription were found, one preceded by two TATA boxes and one preceded by several GC boxes. In P19 cells, a 1-kilobase upstream sequence of Wnt-1 was able to confer differentiation-specific expression on a heterologous gene. We have investigated how Wnt-1 transcription was affected by mouse mammary tumor virus proviral integrations in various configurations near the promoters of the gene. One provirus has been inserted in the 5' nontranslated part of Wnt-1, in the same transcriptional orientation, and has functionally replaced the Wnt-1 promoters. Wnt-1 transcription in this tumor starts in the right long terminal repeat of the provirus, with considerable readthrough transcription from the left long terminal repeat. Another provirus has been inserted in the orientation opposite that of Wnt-1 into a GC box, disrupting the first Wnt-1 transcription start site but not the downstream start site. Most insertions have not structurally altered the Wnt-1 transcripts and have enhanced the activity of the normal two promoters. Images PMID:1695322
Pseudomonas cepacia strain AC1100, capable of growth on 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), was mutated to the 2,4,5-T− strain PT88 by a ColE1 :: Tn5 chromosomal insertion. Using cloned DNA from the region flanking the insertion, a 1477-bp sequence (designated RS1100) wa...
Younger, Andrew K D; Su, Peter Y; Shepard, Andrea J; Udani, Shreya V; Cybulski, Thaddeus R; Tyo, Keith E J; Leonard, Joshua N
2018-02-01
Naturally evolved metabolite-responsive biosensors enable applications in metabolic engineering, ranging from screening large genetic libraries to dynamically regulating biosynthetic pathways. However, there are many metabolites for which a natural biosensor does not exist. To address this need, we developed a general method for converting metabolite-binding proteins into metabolite-responsive transcription factors-Biosensor Engineering by Random Domain Insertion (BERDI). This approach takes advantage of an in vitro transposon insertion reaction to generate all possible insertions of a DNA-binding domain into a metabolite-binding protein, followed by fluorescence activated cell sorting to isolate functional biosensors. To develop and evaluate the BERDI method, we generated a library of candidate biosensors in which a zinc finger DNA-binding domain was inserted into maltose binding protein, which served as a model well-studied metabolite-binding protein. Library diversity was characterized by several methods, a selection scheme was deployed, and ultimately several distinct and functional maltose-responsive transcriptional biosensors were identified. We hypothesize that the BERDI method comprises a generalizable strategy that may ultimately be applied to convert a wide range of metabolite-binding proteins into novel biosensors for applications in metabolic engineering and synthetic biology. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Elango, Narayanasamy; Prince, Gregory A.; Murphy, Brian R.; Venkatesan, Sundararajan; Chanock, Robert M.; Moss, Bernard
1986-03-01
A cDNA copy of the G glycoprotein gene of human respiratory syncytial virus (RSV) was placed under control of a vaccinia virus promoter and inserted into the thymidine kinase locus of the vaccinia virus genome. The recombinant vaccinia virus retained infectivity and expressed a 93-kDa protein that migrated with the authentic RSV G glycoprotein upon polyacrylamide gel electrophoresis. Glycosylation of the expressed protein and transport to the cell surface were demonstrated in the absence of other RSV proteins. Cotton rats that were inoculated intradermally with the infectious recombinant virus produced serum antibody to the G glycoprotein that neutralized RSV in vitro. Furthermore, the vaccinated animals were resistant to lower respiratory tract infection upon intranasal inoculation with RSV and had reduced titers of RSV in the nose.
Bunge, Andreas; Kurz, Anke; Windeck, Anne-Kathrin; Korte, Thomas; Flasche, Wolfgang; Liebscher, Jürgen; Herrmann, Andreas; Huster, Daniel
2007-04-10
For the development of surface functionalized bilayers, we have synthesized lipophilic oligonucleotides to combine the molecular recognition mechanism of nucleic acids and the self-assembly characteristics of lipids in planar membranes. A lipophilic oligonucleotide consisting of 21 thymidine units and two lipophilic nucleotides with an alpha-tocopherol moiety as a lipophilic anchor was synthesized using solid-phase methods with a phosphoramadite strategy. The interaction of the water soluble lipophilic oligonucleotide with vesicular lipid membranes and its capability to bind complementary DNA strands was studied using complementary methods such as NMR, EPR, DSC, fluorescence spectroscopy, and fluorescence microscopy. This oligonucleotide inserted stably into preformed membranes from the aqueous phase. Thereby, no significant perturbation of the lipid bilayer and its stability was observed. However, the non-lipidated end of the oligonucleotide is exposed to the aqueous environment, is relatively mobile, and is free to interact with complementary DNA strands. Binding of the complementary single-stranded DNA molecules is fast and accomplished by the formation of Watson-Crick base pairs, which was confirmed by 1H NMR chemical shift analysis and fluorescence resonance energy transfer. The molecular structure of the membrane bound DNA double helix is very similar to the free double-stranded DNA. Further, the membrane bound DNA double strands also undergo regular melting. Finally, in raft-like membrane mixtures, the lipophilic oligonucleotide was shown to preferentially sequester into liquid-disordered membrane domains.
Alu repeat discovery and characterization within human genomes
Hormozdiari, Fereydoun; Alkan, Can; Ventura, Mario; Hajirasouliha, Iman; Malig, Maika; Hach, Faraz; Yorukoglu, Deniz; Dao, Phuong; Bakhshi, Marzieh; Sahinalp, S. Cenk; Eichler, Evan E.
2011-01-01
Human genomes are now being rapidly sequenced, but not all forms of genetic variation are routinely characterized. In this study, we focus on Alu retrotransposition events and seek to characterize differences in the pattern of mobile insertion between individuals based on the analysis of eight human genomes sequenced using next-generation sequencing. Applying a rapid read-pair analysis algorithm, we discover 4342 Alu insertions not found in the human reference genome and show that 98% of a selected subset (63/64) experimentally validate. Of these new insertions, 89% correspond to AluY elements, suggesting that they arose by retrotransposition. Eighty percent of the Alu insertions have not been previously reported and more novel events were detected in Africans when compared with non-African samples (76% vs. 69%). Using these data, we develop an experimental and computational screen to identify ancestry informative Alu retrotransposition events among different human populations. PMID:21131385
Final technical report for: Insertional Mutagenesis of Brachypodium distachyon DE-AI02-07ER64452
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, Vogel P.
Several bioenergy grasses are poised to become a major source of energy in the United States. Despite their increasing importance, we know little about the basic biology underlying the traits that control the utility of grasses as energy crops. Better knowledge of grass biology (e.g. identification of the genes that control cell wall composition, plant architecture, cell size, cell division, reproduction, nutrient uptake, carbon flux, etc.) could be used to design rational strategies for crop improvement and shorten the time required to domesticate these species. The use of an appropriate model system is an efficient way to gain this knowledge.more » Brachypodium distachyon is a small annual grass with all the attributes needed to be a modern model organism including simple growth requirements, fast generation time, small stature, small genome size and self-fertility. These attributes led to the recommendation in the DOE’s “Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda” report to propose developing and using B. distachyon as a model for energy crops to accelerate their domestication. Strategic investments (e.g. genome sequencing) in B. distachyon by the DOE are now bearing fruit and B. distachyon is being used as a model grass by hundreds of laboratories worldwide. Sequence indexed insertional mutants are an extremely powerful tool for both forward and reverse genetics. They allow researchers to order mutants in any gene tagged in the collection by simply emailing a request. The goal of this project was to create a collection of sequence indexed insertional mutants (T-DNA lines) for the model grass Brachypodium distachyon in order to facilitate research by the scientific community. During the course of this grant we created a collection of 23,649 B. distachyon T-DNA lines and identified 26,112 unique insertion sites. The collection can be queried through the project website (http://jgi.doe.gov/our-science/science-programs/plant-genomics/brachypodium/brachypodium-t-dna-collection/) and through the Phytozome genome browser (http://phytozome.jgi.doe.gov/pz/portal.html). The collection has been heavily utilized by the research community and, as of October 23, 2015, 223 orders for 12,069 seeds packets have been filled. In addition to creating this resource, we also optimized methods for transformation and sequencing DNA flanking insertion sites.« less
Hamazaki, Hideaki; Hamazaki, Michiko Horikawa
2016-01-15
Protein-glucosylgalactosylhydroxylysine glucosidase (PGGHG; EC3.2.1.107) cleaves glucose from disaccharide unit (Glc-α1,2-Gal) linked to hydroxylysine residues of collagen. In the present paper we first show that PGGHG is the product of ATHL1 gene as follows. (1) PGGHG was purified from chick embryos and digested with trypsin. LC-MS/MS analysis suggested the tryptic-peptides were from the ATHL1 gene product. (2) Chick embryo ATHL1 cDNA was cloned to a cloning and expression vector and two plasmid clones with different ATHL1 CDS insert were obtained. (3) Each plasmid DNA was transformed into Escherichia coli cells for expression and two isoforms of chicken PGGHG were obtained. (4) Both isoforms effectively released glucose from type IV collagen. Next, we searched for carboxyl residues crucial for catalytic activity as follows; human ATHL1 cDNA was cloned into a cloning and expression vector and 18 mutants were obtained by site-directed mutagenesis for 15 carboxyl residues conserved in ATHL1 of jawed vertebrates. The expression analysis indicated that substitutions of Asp301, Glu430 and Glu574 with sterically conservative (D301N, E430Q, E574Q) or functionally conservative (D301E, E430D, E574D) residues led to the complete elimination of enzyme activity. These findings lead us to the conclusion that PGGHG is encoded by ATHL1 and three carboxyl residues (corresponding to Asp301, Glu430 and Glu574 of human PGGHG) might be involved in the catalytic site of PGGHG. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of AIF in human coronary artery endothelial cell apoptosis.
Zhang, Wenguang; Li, Dayuan; Mehta, Jawahar L
2004-01-01
Apoptosis-inducing factor (AIF), which exerts its effect via a caspase-independent pathway, has been suggested to be a mediator of cell injury. We have recently identified the expression of AIF in human coronary artery endothelial cells (HCAECs). The present study was designed to determine the pathophysiological role of AIF in oxidized low-density lipoprotein (ox-LDL)-induced apoptosis of HCAECs. The cells were cultured and treated with ox-LDL (40 microg/ml) for 24 h. Ox-LDL increased AIF expression, caused apoptosis of HCAECs (determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining and large-scale DNA fragmentation), and induced translocation of AIF from the cytoplasm to the nucleus (fluorescence immunocytochemistry). Pretreatment of HCAECs with a caspase inhibitor (ZVAD-fmk) did not influence AIF-mediated apoptosis in response to ox-LDL. We developed a specific antisense oligonucleotide targeted to the 5'-TCG CCG AAA TGT TCC GGT GTG GA-3' portion of the human AIF mRNA sequence (AIF-AS) to bind a complementary sequence overlapping the translational start site. Pretreatment of cells with the AIF-AS for 24 h resulted in suppression of ox-LDL-upregulated AIF protein, as measured by immunoblot analysis. AIF-AS also reduced apoptosis and AIF translocation (P < 0.01 vs. ox-LDL alone). Next, we constructed a recombinant AIF plasmid by inserting whole-length AIF cDNA into the expression vector pcDNA3.1 with a cytomegalovirus promoter. HCAECs transfected with plasmid showed a two- to fourfold increase in AIF expression, extensive apoptosis, and translocation of AIF from the cytoplasm to the nucleus. These results from two approaches indicate that AIF plays an important role in ox-LDL-induced endothelial injury.
The insertional history of an active family of L1 retrotransposons in humans.
Boissinot, Stéphane; Entezam, Ali; Young, Lynn; Munson, Peter J; Furano, Anthony V
2004-07-01
As humans contain a currently active L1 (LINE-1) non-LTR retrotransposon family (Ta-1), the human genome database likely provides only a partial picture of Ta-1-generated diversity. We used a non-biased method to clone Ta-1 retrotransposon-containing loci from representatives of four ethnic populations. We obtained 277 distinct Ta-1 loci and identified an additional 67 loci in the human genome database. This collection represents approximately 90% of the Ta-1 population in the individuals examined and is thus more representative of the insertional history of Ta-1 than the human genome database, which lacked approximately 40% of our cloned Ta-1 elements. As both polymorphic and fixed Ta-1 elements are as abundant in the GC-poor genomic regions as in ancestral L1 elements, the enrichment of L1 elements in GC-poor areas is likely due to insertional bias rather than selection. Although the chromosomal distribution of Ta-1 inserts is generally a function of chromosomal length and gene density, chromosome 4 significantly deviates from this pattern and has been much more hospitable to Ta-1 insertions than any other chromosome. Also, the intra-chromosomal distribution of Ta-1 elements is not uniform. Ta-1 elements tend to cluster, and the maximal gaps between Ta-1 inserts are larger than would be expected from a model of uniform random insertion. Copyright 2004 Cold Spring Harbor Laboratory Press ISSN
Genetic resources offer efficient tools for rice functional genomics research.
Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May
2016-05-01
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops. © 2015 John Wiley & Sons Ltd.
A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis
NASA Technical Reports Server (NTRS)
Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)
1996-01-01
The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.
Wu, Eugene Y.; Beese, Lorena S.
2011-01-01
To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established “open” and “closed” states. In this “ajar” conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation. PMID:21454515
Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus.
Ianiri, Giuseppe; Averette, Anna F; Kingsbury, Joanne M; Heitman, Joseph; Idnurm, Alexander
2016-11-29
The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals. Copyright © 2016 Ianiri et al.
Cloning of human prourokinase cDNA without the signal peptide and expression in Escherichia coli.
Hu, B; Li, J; Yu, W; Fang, J
1993-01-01
Human prourokinase (pro-UK) cDNA without the signal peptide was obtained using synthetic oligonucleotide and DNA recombination techniques and was successfully expressed in E. coli. The plasmid pMMUK which contained pro-UK cDNA (including both the entire coding sequence and the sequence for signal peptide) was digested with Hind III and PstI, so that the N-terminal 371-bp fragment could be recovered. A 304-bp fragment was collected from the 371-bp fragment after partial digestion with Fnu4HI in order to remove the signal peptide sequence. An intermediate plasmid was formed after this 304-bp fragment and the synthetic oligonucleotide was ligated with pUC18. Correctness of the ligation was confirmed by enzyme digestion and sequencing. By joining the PstI-PstI fragment of pro-UK to the plasmid we obtained the final plasmid which contained the entire coding sequence of pro-UK without the signal peptide. The coding sequence with correct orientation was inserted into pBV220 under the control of the temperature-induced promoter PRPL, and mature pro-UK was expressed in E. coli at 42 degrees C. Both sonicated supernatant and inclusion bodies of the bacterial host JM101 showed positive results by ELISA and FAPA assays. After renaturation, the biological activity of the expressed product was increased from 500-1000IU/L to about 60,000IU/L. The bacterial pro-UK showed a molecular weight of about 47,000 daltons by Western blot analysis. It can be completely inhibited by UK antiserum but not by t-PA antiserum nor by normal rabbit serum.
Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N
2003-09-01
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.
Identifying transposon insertions and their effects from RNA-sequencing data.
de Ruiter, Julian R; Kas, Sjors M; Schut, Eva; Adams, David J; Koudijs, Marco J; Wessels, Lodewyk F A; Jonkers, Jos
2017-07-07
Insertional mutagenesis using engineered transposons is a potent forward genetic screening technique used to identify cancer genes in mouse model systems. In the analysis of these screens, transposon insertion sites are typically identified by targeted DNA-sequencing and subsequently assigned to predicted target genes using heuristics. As such, these approaches provide no direct evidence that insertions actually affect their predicted targets or how transcripts of these genes are affected. To address this, we developed IM-Fusion, an approach that identifies insertion sites from gene-transposon fusions in standard single- and paired-end RNA-sequencing data. We demonstrate IM-Fusion on two separate transposon screens of 123 mammary tumors and 20 B-cell acute lymphoblastic leukemias, respectively. We show that IM-Fusion accurately identifies transposon insertions and their true target genes. Furthermore, by combining the identified insertion sites with expression quantification, we show that we can determine the effect of a transposon insertion on its target gene(s) and prioritize insertions that have a significant effect on expression. We expect that IM-Fusion will significantly enhance the accuracy of cancer gene discovery in forward genetic screens and provide initial insight into the biological effects of insertions on candidate cancer genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Timmis, K N; Cabello, F; Andrés, I; Nordheim, A; Burkhardt, H J; Cohen, S N
1978-11-16
Detailed examination of the structure of cloned DNA fragments of the R6-5 antibiotic resistance plasmid has revealed a substantial degree of polynucleotide sequence heterogeneity and indicates that sequence rearrangements in plasmids and possible other replicons occur more frequently than has hitherto been appreciated. The sequences changes in cloned R6-5 fragments were shown in some instances to have occurred prior to cloning, i.e. existing in the original population of R6-5 molecules that was obtained from a single bacterial clone and by several different criteria judged to be homogeneous, and in others to have occurred either during the cloning procedure or during subsequent propagation of hybrid molecules. The molecular changes that are described involved insertion/deletion of the previously characterized IS2 insertion element, formation of a new inverted repeat structure probably by duplication of a preexisting R6-5 DNA sequence, sequence inversion, and loss and gain of restriction endonuclease cleavage sites.
Visualization of chromatin domains created by the gypsy insulator of Drosophila.
Byrd, Keith; Corces, Victor G
2003-08-18
Insulators might regulate gene expression by establishing and maintaining the organization of the chromatin fiber within the nucleus. Biochemical fractionation and in situ high salt extraction of lysed cells show that two known protein components of the gypsy insulator are present in the nuclear matrix. Using FISH with DNA probes located between two endogenous Su(Hw) binding sites, we show that the intervening DNA is arranged in a loop, with the two insulators located at the base. Mutations in insulator proteins, subjecting the cells to a brief heat shock, or destruction of the nuclear matrix lead to disruption of the loop. Insertion of an additional gypsy insulator in the center of the loop results in the formation of paired loops through the attachment of the inserted sequences to the nuclear matrix. These results suggest that the gypsy insulator might establish higher-order domains of chromatin structure and regulate nuclear organization by tethering the DNA to the nuclear matrix and creating chromatin loops.
Liu, Ruifang; Koyanagi, Kanako O; Chen, Sunlu; Kishima, Yuji
2012-12-01
In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique
2005-06-01
Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.
p53 Specifically Binds Triplex DNA In Vitro and in Cells
Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej
2016-01-01
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175
Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones
Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O; Barrero, Roberto A; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K; Brookes, Anthony J; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba, Rie; Shimizu, Nobuyoshi; Shimoyama, Mary; Simpson, Andrew J; Soares, Bento; Steward, Charles; Suwa, Makiko; Suzuki, Mami; Takahashi, Aiko; Tamiya, Gen; Tanaka, Hiroshi; Taylor, Todd; Terwilliger, Joseph D; Unneberg, Per; Veeramachaneni, Vamsi; Watanabe, Shinya; Wilming, Laurens; Yasuda, Norikazu; Yoo, Hyang-Sook; Stodolsky, Marvin; Makalowski, Wojciech; Go, Mitiko; Nakai, Kenta; Takagi, Toshihisa; Kanehisa, Minoru; Sakaki, Yoshiyuki; Quackenbush, John; Okazaki, Yasushi; Hayashizaki, Yoshihide; Hide, Winston; Chakraborty, Ranajit; Nishikawa, Ken; Sugawara, Hideaki; Tateno, Yoshio; Chen, Zhu; Oishi, Michio; Tonellato, Peter; Apweiler, Rolf; Okubo, Kousaku; Wagner, Lukas; Wiemann, Stefan; Strausberg, Robert L; Isogai, Takao; Auffray, Charles; Nomura, Nobuo; Sugano, Sumio
2004-01-01
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology. PMID:15103394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullinax, R.L.; Gross, E.A.; Amberg, J.R.
1990-10-01
The authors have applied a molecular biology approach to the identification of human monoclonal antibodies. Human peripheral blood lymphocyte mRNA was converted to cDNA and a select subset was amplified by the polymerase chain reaction. These products, containing coding sequences for numerous immunoglobulin heavy- and {kappa} light-chain variable and constant region domains, were inserted into modified bacteriophase {lambda} expression vectors and introduced into Escherichia coli by infection to yield a combinatorial immunoexpression library. Clones with binding activity to tetanus toxoid were identified by filter hybridization with radiolabeled antigen and appeared at a frequency of 0.2{percent} in the library. These humanmore » antigen binding fragments, consisting of a heavy-chain fragment covalently linked to a light chain, displayed high affinity of binding to tetanus toxoid with equilibrium constants in the nanomolar range but did not cross-react with other proteins tested. They estimate that this human immunoexpression library contains 20,000 clones with high affinity and specificity to our chosen antigen.« less
Mobile Interspersed Repeats Are Major Structural Variants in the Human Genome
Huang, Cheng Ran Lisa; Schneider, Anna M.; Lu, Yunqi; Niranjan, Tejasvi; Shen, Peilin; Robinson, Matoya A.; Steranka, Jared P.; Valle, David; Civin, Curt I.; Wang, Tao; Wheelan, Sarah J.; Ji, Hongkai; Boeke, Jef D.; Burns, Kathleen H.
2010-01-01
Summary Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map human L1(Ta) retrotransposons (LINE-1 s) genome-wide. This identified numerous novel human L1(Ta) insertional polymorphisms with highly variant allelic frequencies. We also explored TIP-chip's usefulness to identify candidate alleles associated with different phenotypes in clinical cohorts. Our data suggest that the occurrence of new insertions is twice as high as previously estimated, and that these repeats are under-recognized as sources of human genomic and phenotypic diversity. We have just begun to probe the universe of human L1(Ta) polymorphisms, and as TIP-chip is applied to other insertions such as Alu SINEs, it will expand the catalog of genomic variants even further. PMID:20602999
Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι.
Choi, Jeong-Yun; Patra, Amritaj; Yeom, Mina; Lee, Young-Sam; Zhang, Qianqian; Egli, Martin; Guengerich, F Peter
2016-09-30
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn 2+ than Mg 2+ The human germline R96G variant impairs both Mn 2+ -dependent and Mg 2+ -dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg 2+ -dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn 2+ (0.15 mm) instead of Mg 2+ (2 mm) caused a 770-fold increase in efficiency (k pol /K d ,dCTP ) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in K d ,dCTP The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in k pol /K d ,dCTP for dCTP insertion opposite G with Mg 2+ when compared with wild type, substantially attenuated by substitution with Mn 2+ Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg 2+ or Mn 2+ , revealed that Mn 2+ achieves more optimal octahedral coordination geometry than Mg 2+ , with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι*
Choi, Jeong-Yun; Patra, Amritaj; Yeom, Mina; Lee, Young-Sam; Zhang, Qianqian; Egli, Martin; Guengerich, F. Peter
2016-01-01
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn2+ than Mg2+. The human germline R96G variant impairs both Mn2+-dependent and Mg2+-dependent activities of pol ι, whereas the Δ1–25 variant selectively enhances its Mg2+-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1–445) proteins. The presence of Mn2+ (0.15 mm) instead of Mg2+ (2 mm) caused a 770-fold increase in efficiency (kpol/Kd,dCTP) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in Kd,dCTP. The R96G and Δ1–25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in kpol/Kd,dCTP for dCTP insertion opposite G with Mg2+ when compared with wild type, substantially attenuated by substitution with Mn2+. Crystal structures of pol ι ternary complexes, including the primer terminus 3′-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg2+ or Mn2+, revealed that Mn2+ achieves more optimal octahedral coordination geometry than Mg2+, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation. PMID:27555320
Luch, Andreas; Glas, Andreas; Carell, Thomas; Naegeli, Hanspeter
2011-01-01
How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable β-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin. PMID:22039351
Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903.
Grindley, N D; Joyce, C M
1980-01-01
The kanamycin resistance transposon Tn903 consists of a unique region of about 1000 base pairs bounded by a pair of 1050-base-pair inverted repeat sequences. Each repeat contains two Pvu II endonuclease cleavage sites separated by 520 base pairs. We have constructed derivatives of Tn903 in which this 520-base-pair fragment is deleted from one or both repeats. Those derivatives that lack both 520-base-pair fragments cannot transpose, whereas those that lack just one remain transposition proficient. One such transposable derivative, Tn903 delta I, has been selected for further study. We have determined the sequence of the intact inverted repeat. The 18 base pairs at each end are identical and inverted relative to one another, a structure characteristic of insertion sequences. Additional experiments indicate that a single inverted repeat from Tn903 can, in fact, transpose; we propose that this element be called IS903. To correlate the DNA sequence with genetic activities, we have created mutations by inserting a 10-base-pair DNA fragment at several sites within the intact repeat of Tn903 delta 1, and we have examined the effect of such insertions on transposability. The results suggest that IS903 encodes a 307-amino-acid polypeptide (a "transposase") that is absolutely required for transposition of IS903 or Tn903. Images PMID:6261245
Hamzeiy, Hossein; Vahdati-Mashhadian, Nasser; Edwards, Helen J; Goldfarb, Peter S
2002-03-20
Human CYP3A4 is the major cytochrome P450 isoenzyme in adult human liver and is known to metabolise many xenobiotic and endogenous compounds. There is substantial inter-individual variation in the hepatic levels of CYP3A4. Although, polymorphic mutations have been reported in the 5' regulatory region of the CYP3A4 gene, those that have been investigated so far do not appear to have any effect on gene expression. To determine whether other mutations exist in this region of the gene, we have performed a new population screen on a panel of 101 human DNA samples. A 1140 bp section of the 5' proximal regulatory region of the CYP3A4 gene, containing numerous regulatory motifs, was amplified from genomic DNA as three overlapping segments. The 300 bp distal enhancer region at -7.9kb containing additional regulatory motifs was also amplified. Mutation analysis of the resulting PCR products was carried out using non-radioactive single strand conformation polymorphism (SSCP) and confirmatory sequencing of both DNA strands in those samples showing extra SSCP bands. In addition to detection of the previously reported CYP3A4*1B allele in nine subjects, three novel alleles were found: CYP3A4*1E (having a T-->A transversion at -369 in one subject), CYP3A4*1F (having a C-->G tranversion at -747 in 17 subjects) and CYP3A4*15B containing a nine-nucleotide insertion between -845 and -844 linked to an A-->G transition at -392 and a G-->A transition in exon 6 (position 485 in the cDNA) in one subject. All the novel alleles were heterozygous. No mutations were found in the upstream distal enhancer region. Our results clearly indicate that this rapid and simple SSCP approach can reveal mutant alleles in drug metabolising enzyme genes. Detection and determination of the frequency of novel alleles in CYP3A4 will assist investigation of the relationship between genotype, xenobiotic metabolism and toxicity in the CYP3A family of isoenzymes.
Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua
2015-06-01
Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.
[Primary culture of cat intestinal epithelial cell and construction of its cDNA library].
Ye, L; Gui-Hua, Z; Kun, Y; Hong-Fa, W; Ting, X; Gong-Zhen, L; Wei-Xia, Z; Yong, C
2017-04-12
Objective To establish the primary cat intestinal epithelial cells (IECs) culture methods and construct the cDNA library for the following yeast two-hybrid experiment, so as to screen the virulence interaction factors among the final host. Methods The primary cat IECs were cultured by the tissue cultivation and combined digestion with collagenase XI and dispase I separately. Then the cat IECs cultured was identified with the morphological observation and cyto-keratin detection, by using goat anti-cyto-keratin monoclonal antibodies. The mRNA of cat IECs was isolated and used as the template to synthesize the first strand cDNA by SMART™ technology, and then the double-strand cDNAs were acquired by LD-PCR, which were subsequently cloned into the plasmid PGADT7-Rec to construct yeast two-hybrid cDNA library in the yeast strain Y187 by homologous recombination. Matchmaker™ Insert Check PCR was used to detect the size distribution of cDNA fragments after the capacity calculation of the cDNA library. Results The comparison of the two cultivation methods indicated that the combined digestion of collagenase XI and dispase I was more effective than the tissue cultivation. The cat IECs system of continuous culture was established and the cat IECs with high purity were harvested for constructing the yeast two-hybrid cDNA library. The library contained 1.1×10 6 independent clones. The titer was 2.8×10 9 cfu/ml. The size of inserted fragments was among 0.5-2.0 kb. Conclusion The yeast two-hybrid cDNA library of cat IECs meets the requirements of further screen research, and this study lays the foundation of screening the Toxoplasma gondii virulence interaction factors among the cDNA libraries of its final hosts.
Construction of Biologically Functional Bacterial Plasmids In Vitro
Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Helling, Robert B.
1973-01-01
The construction of new plasmid DNA species by in vitro joining of restriction endonuclease-generated fragments of separate plasmids is described. Newly constructed plasmids that are inserted into Escherichia coli by transformation are shown to be biologically functional replicons that possess genetic properties and nucleotide base sequences from both of the parent DNA molecules. Functional plasmids can be obtained by reassociation of endonuclease-generated fragments of larger replicons, as well as by joining of plasmid DNA molecules of entirely different origins. Images PMID:4594039
Mateos, L M; Schäfer, A; Kalinowski, J; Martin, J F; Pühler, A
1996-10-01
Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure.
Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview.
Grabundzija, Ivana; Izsvák, Zsuzsanna; Ivics, Zoltán
2011-01-01
Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.
Mateos, L M; Schäfer, A; Kalinowski, J; Martin, J F; Pühler, A
1996-01-01
Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure. PMID:8824624
Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA.
Kosbar, Tamer R; Sofan, Mamdouh A; Abou-Zeid, Laila; Pedersen, Erik B
2015-05-14
G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2014-05-07
Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our methodology, there is fertile ground to consider a symmetry model for genetic coding based on our specific wallpaper group. A more integrated formulation containing "central dogma" for future molecular/genetic biology remains to be explored.
Mechanism of RNA polymerase II bypass of oxidative cyclopurine DNA lesions
Walmacq, Celine; Wang, Lanfeng; Chong, Jenny; ...
2015-01-20
In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5´-templating base, indicating that it derives from nontemplated synthesismore » according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. The translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, trans-lesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.« less
Clinical characteristics of severe congenital neutropenia caused by novel ELANE gene mutations.
Shu, Zhou; Li, Xiao-Hui; Bai, Xiao-Ming; Zhang, Zhi-Yong; Jiang, Li-ping; Tang, Xue-Mei; Zhao, Xiao-dong
2015-02-01
Mutations within the ELANE gene, which encodes human neutrophil elastase, are the most common genetic causes of severe congenital neutropenia (SCN). No cases of SCN have been previously described from a Chinese population. Herein, we describe the clinical, hematologic and molecular characteristics of 7 Chinese SCN cases with novel ELANE mutations. Seven Chinese pediatric patients (4 males and 3 females) with suspected SCN were enrolled in this study. Clinical data, peripheral blood, bone marrow and immune function were evaluated for SCN. ELANE genomic DNA and cDNA sequences from patients and potential carriers were analyzed using polymerase chain reaction (PCR) and direct sequencing. All the7 patients experienced recurrent infection (soft tissue, lung, oral cavity) during a period of 120 days. Noninfectious conditions such as anemia and osteopenia were found in most patients, and absolute peripheral neutrophil counts varied. DNA and cDNA sequencing demonstrated that the patients harbored a range of heterozygous ELANE gene mutations, including substitution, deletion, insertion and frame shift alterations. All the mutations had not been reported previously; however, no mutation carriers were identified among the parents or siblings, even in a family with 2 affected offspring. SCN cases were identified for the first time in China, and all patients carried novel ELANE mutations. Granulocyte-colony stimulating factor (G-CSF) was an effective treatment for most of the SCN patients and prevented life-threatening bacterial infections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solera, J.; Magallon, M.; Martin-Villar, J.
1992-02-01
DNA from a patient with severe hemophilia B was evaluated by RFLP analysis, producing results which suggested the existence of a partial deletion within the factor IX gene. The deletion was further localized and characterized by PCR amplification and sequencing. The altered allele has a 4,442-bp deletion which removes both the donor splice site located at the 5[prime] end of intron d and the two last coding nucleotides located at the 3[prime] end of exon IV in the normal factor IX gene; this fragment has been inserted in inverted orientation. Two homologous sequences have been discovered at the ends ofmore » the deleted DNA fragment.« less
Characterization of full-length sequenced cDNA inserts (FLIcs) from Atlantic salmon (Salmo salar)
Andreassen, Rune; Lunner, Sigbjørn; Høyheim, Bjørn
2009-01-01
Background Sequencing of the Atlantic salmon genome is now being planned by an international research consortium. Full-length sequenced inserts from cDNAs (FLIcs) are an important tool for correct annotation and clustering of the genomic sequence in any species. The large amount of highly similar duplicate sequences caused by the relatively recent genome duplication in the salmonid ancestor represents a particular challenge for the genome project. FLIcs will therefore be an extremely useful resource for the Atlantic salmon sequencing project. In addition to be helpful in order to distinguish between duplicate genome regions and in determining correct gene structures, FLIcs are an important resource for functional genomic studies and for investigation of regulatory elements controlling gene expression. In contrast to the large number of ESTs available, including the ESTs from 23 developmental and tissue specific cDNA libraries contributed by the Salmon Genome Project (SGP), the number of sequences where the full-length of the cDNA insert has been determined has been small. Results High quality full-length insert sequences from 560 pre-smolt white muscle tissue specific cDNAs were generated, accession numbers [GenBank: BT043497 - BT044056]. Five hundred and ten (91%) of the transcripts were annotated using Gene Ontology (GO) terms and 440 of the FLIcs are likely to contain a complete coding sequence (cCDS). The sequence information was used to identify putative paralogs, characterize salmon Kozak motifs, polyadenylation signal variation and to identify motifs likely to be involved in the regulation of particular genes. Finally, conserved 7-mers in the 3'UTRs were identified, of which some were identical to miRNA target sequences. Conclusion This paper describes the first Atlantic salmon FLIcs from a tissue and developmental stage specific cDNA library. We have demonstrated that many FLIcs contained a complete coding sequence (cCDS). This suggests that the remaining cDNA libraries generated by SGP represent a valuable cCDS FLIc source. The conservation of 7-mers in 3'UTRs indicates that these motifs are functionally important. Identity between some of these 7-mers and miRNA target sequences suggests that they are miRNA targets in Salmo salar transcripts as well. PMID:19878547
Precision genome editing in the CRISPR era.
Salsman, Jayme; Dellaire, Graham
2017-04-01
With the introduction of precision genome editing using CRISPR-Cas9 technology, we have entered a new era of genetic engineering and gene therapy. With RNA-guided endonucleases, such as Cas9, it is possible to engineer DNA double strand breaks (DSB) at specific genomic loci. DSB repair by the error-prone non-homologous end-joining (NHEJ) pathway can disrupt a target gene by generating insertions and deletions. Alternatively, Cas9-mediated DSBs can be repaired by homology-directed repair (HDR) using an homologous DNA repair template, thus allowing precise gene editing by incorporating genetic changes into the repair template. HDR can introduce gene sequences for protein epitope tags, delete genes, make point mutations, or alter enhancer and promoter activities. In anticipation of adapting this technology for gene therapy in human somatic cells, much focus has been placed on increasing the fidelity of CRISPR-Cas9 and increasing HDR efficiency to improve precision genome editing. In this review, we will discuss applications of CRISPR technology for gene inactivation and genome editing with a focus on approaches to enhancing CRISPR-Cas9-mediated HDR for the generation of cell and animal models, and conclude with a discussion of recent advances and challenges towards the application of this technology for gene therapy in humans.
Structural and functional analysis of the YAP-binding domain of human TEAD2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.
2010-06-15
The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like {beta}-sandwich fold with two extra helix-turn-helixmore » inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP.« less
Progress in directed energy control of vectors for microbes and other cells
NASA Astrophysics Data System (ADS)
Kiel, Johnathan L.; Parker, Jill E.; Holwitt, Eric A.; Vivekananda, Jeeva; Sloan, Mark A.; Stribling, Lucille J. V.
2004-07-01
Biosynthetic semiconductor, diazoluminomelanin (DALM), is a polymer of tyrosine, luminol, and nitrite. DALM has a very large cross section of absorption for light from ultraviolet to radio frequencies. This polymer can be made efficiently in a genetically engineered E.coli, JM109/pIC2ORNR1.1 (ATCC# 69905). We have been pursuing ways to couple electromagnetic radiation to vectors using this polymer. DNA capture elements (DCEs; formerly aptamers) have made this possible. We incorporated DCEs into the plasmid of this E. coli to direct binding to whatever microbe or cell desired and to produce DALM attached to the plasmid DNA. Using two other vectors pSV2neoNR101 or pSV2neoNR8005 (ATCC # 69617 and 69618, respectively), both propagated in the E. coli host HB101, we have also inserted genes necessary for DALM production into animal and human cell lines (mouse monocytic leukemia: ATCC # CRL- 11771, -11772, -1173, mouse mammary adenocarcinoma: ATCC# CRL-12184, -12185; and human carcinoma of the cervix: ATCC # CRL-12510). The DCE/DALM vectors can be used to tag target cells, detectable by broad-spectrum light absorbance, luminescence, or fluorescence. DCE/DALM can further be activated with light, microwave energy, or by oxidative chemistry to kill the targeted microbes or other cells.
Durnez, Lies; Stragier, Pieter; Roebben, Karen; Ablordey, Anthony; Leirs, Herwig; Portaels, Françoise
2009-02-01
Mycobacterium ulcerans is the causative agent of Buruli ulcer, the third most common mycobacterial disease in humans after tuberculosis and leprosy. Although the disease is associated with aquatic ecosystems, cultivation of the bacillus from the environment is difficult to achieve. Therefore, at the moment, research is based on the detection by PCR of the insertion sequence IS2404 present in M. ulcerans and some closely related mycobacteria. In the present study, we compared four DNA extraction methods for detection of M. ulcerans DNA, namely the one tube cell lysis and DNA extraction procedure (OT), the FastPrep procedure (FP), the modified Boom procedure (MB), and the Maxwell 16 Procedure (M16). The methods were performed on serial dilutions of M. ulcerans, followed by PCR analysis with different PCR targets in M. ulcerans to determine the detection limit (DL) of each method. The purity of the extracted DNA and the time and effort needed were compared as well. All methods were performed on environmental specimens and the two best methods (MB and M16) were tested on clinical specimens for detection of M. ulcerans DNA. When comparing the DLs of the DNA extraction methods, the MB and M16 had a significantly lower DL than the OT and FP. For the different PCR targets, IS2404 showed a significantly lower DL than mlsA, MIRU1, MIRU5 and VNTR6. The FP and M16 were considerably faster than the MB and OT, while the purity of the DNA extracted with the MB was significantly higher than the DNA extracted with the other methods. The MB performed best on the environmental and clinical specimens. This comparative study shows that the modified Boom procedure, although lengthy, provides a better method of DNA extraction than the other methods tested for detection and identification of M. ulcerans in both clinical and environmental specimens.
[Agricultural biotechnology safety assessment].
McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue
2015-01-01
Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe.
Monitoring the presence of genetically modified food on the market of the Republic of Croatia.
Cattunar, Albert; Capak, Krunoslav; Novak, Jelena Zafran; Mićović, Vladimir; Doko-Jelinić, Jagoda; Malatestinić, Dulija
2011-12-01
From the beginning of the human race people have been applying different methods to change the genetic material of either plants or animals in order to increase their yield as well as to improve the quality and quantity of food. Genetically modified organism (GMO) means an organism in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination. Analysing the presence of GMO in food is done by detecting the presence of either specific DNA sequences inserted in the genome of transgenic organism, or detecting proteins as a result of the expression of the inserted DNA. In this work food testing for the presence of genetically modified organisms was conducted during the period from 2004 to 2007 in the GMO laboratory of the Croatian National Institute of Public Health. According to the regulations, among the samples in which the presence of GMO was detected, all those which had more than 0.9% of GMO content were either rejected from the border or removed from the market, because such GM food has to be appropriately labelled. Among the food samples which were analysed in 2004: 127 (2.37%) of a total of 1226 samples contained more than 0.9% of GMOs; in 2005 there was only one in 512 (0.20%) samples in total; in 2006 there were 4 out of 404 samples (0.99%), and in 2007: 7 of a total of 655 samples (1.07%) had GMO content above the allowed threshold of 0.9%.
Fister, Karin; Fister, Iztok; Murovec, Jana; Bohanec, Borut
2017-02-01
Plant breeders' rights are undergoing dramatic changes due to changes in patent rights in terms of plant variety rights protection. Although differences in the interpretation of »breeder's exemption«, termed research exemption in the 1991 UPOV, did exist in the past in some countries, allowing breeders to use protected varieties as parents in the creation of new varieties of plants, current developments brought about by patenting conventionally bred varieties with the European Patent Office (such as EP2140023B1) have opened new challenges. Legal restrictions on germplasm availability are therefore imposed on breeders while, at the same time, no practical information on how to distinguish protected from non-protected varieties is given. We propose here a novel approach that would solve this problem by the insertion of short DNA stretches (labels) into protected plant varieties by genetic transformation. This information will then be available to breeders by a simple and standardized procedure. We propose that such a procedure should consist of using a pair of universal primers that will generate a sequence in a PCR reaction, which can be read and translated into ordinary text by a computer application. To demonstrate the feasibility of such approach, we conducted a case study. Using the Agrobacterium tumefaciens transformation protocol, we inserted a stretch of DNA code into Nicotiana benthamiana. We also developed an on-line application that enables coding of any text message into DNA nucleotide code and, on sequencing, decoding it back into text. In the presented case study, a short command line coding the phrase »Hello world« was transformed into a DNA sequence that was inserted in the plant genome. The encoded message was reconstructed from the resulting T1 seedlings with 100 % accuracy. The feasibility and possible other applications of this approach are discussed.
Vashee, Sanjay; Stockwell, Timothy B; Alperovich, Nina; Denisova, Evgeniya A; Gibson, Daniel G; Cady, Kyle C; Miller, Kristofer; Kannan, Krishna; Malouli, Daniel; Crawford, Lindsey B; Voorhies, Alexander A; Bruening, Eric; Caposio, Patrizia; Früh, Klaus
2017-01-01
Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae . Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae . Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes.
Vashee, Sanjay; Stockwell, Timothy B.; Alperovich, Nina; Denisova, Evgeniya A.; Gibson, Daniel G.; Cady, Kyle C.; Miller, Kristofer; Kannan, Krishna; Malouli, Daniel; Crawford, Lindsey B.; Voorhies, Alexander A.; Bruening, Eric; Caposio, Patrizia
2017-01-01
ABSTRACT Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes. PMID:28989973
Lo, Te-Wen; Pickle, Catherine S; Lin, Steven; Ralston, Edward J; Gurling, Mark; Schartner, Caitlin M; Bian, Qian; Doudna, Jennifer A; Meyer, Barbara J
2013-10-01
Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination.
Verdin, E; Kobisch, M; Bové, J M; Garnier, M; Saillard, C
2000-12-01
We have previously reported a nested PCR assay for the detection of Mycoplasma hyopneumoniae directly in tracheobronchiolar washings from living pigs in field conditions. Here, we describe the construction and use of an internal control to monitor the presence of PCR inhibitors. A PCR modified target DNA was constructed by insertion of a small DNA fragment into the M. hyopneumoniae specific DNA target. We have demonstrated that the internal control failed to be amplified in only three tracheobronchiolar washings samples out of the 362 tested. This control molecule was inserted in a Spiroplasma citri derived plasmid vector and introduced into S. citri cells by electroporation. After a few passages we ensured that the recombinant plasmid became inserted into the genome of S. citri. PCR amplification of the DNA of this transformed S. citri strain using nested PCR primers led to amplification of a 900-bp fragment which can be discriminated from the M. hyopneumoniae PCR product 700 bp. The S. citri transformants with the integrated internal control were added to the tracheobronchiolar washings prior to PCR and used as an internal control to check the efficiency of sample processing, and to demonstrate the presence of inhibitors. Furthermore, we have been able to estimate the number of mycoplasma cells in the tracheobronchiolar washings. Quantitation was performed by comparing the PCR signal intensity of the specific M. hyopneumoniae template with known concentrations of the S. citri competitor. The titer in tracheobronchiolar washings ranged approximatively from 10(4)to 10(8)M. hyopneumoniae cells per ml of clinical specimen. Quantitative PCR can be a useful tool for monitoring the progression of M. hyopneumoniae in the disease process. Copyright 2000 Academic Press.
Bashir, Ali; Bansal, Vikas; Bafna, Vineet
2010-06-18
Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of libraries) for novel applications of next generation sequencing.
Gene therapy for immune disorders: good news tempered by bad news.
Puck, Jennifer M; Malech, Harry L
2006-04-01
After a dozen years of human gene therapy trials characterized by minimal gene correction and disappointing clinical impact, the field of gene therapy received some good news in 2000. Infants with X-linked severe combined immunodeficiency who received retroviral gene addition to cells from their bone marrow developed impressive immune reconstitution. During the following 2 years, additional patients were treated and the news was even better-babies receiving gene therapy had sustained T-cell production and in several cases developed better cell function than most patients treated with standard bone marrow transplants. Unfortunately, bad news followed. Three of the patients experienced leukemic T-cell expansions, found to be associated with retroviral insertions into genomic DNA. Where does the field stand today?