Science.gov

Sample records for human energy macro

  1. High energy neutrino astronomy with MACRO

    NASA Technical Reports Server (NTRS)

    Auriemma, G.

    1985-01-01

    A large area underground detector with accurate muon tracking and directionality can be used for the search of extraterrestrial sources of high energy neutrinos. The sensitivity of the MACRO detector to possible sources of neutrinos was evaluated with a Monte-Carlo simulation of the neutrino interaction in the rock and and of the detection in the real apparatus. Two categories of possible neutrino sources are discussed in comparison with the detector sensitivity. Promising candidate objects for this search appear to be the two binary X-ray sources in the southern key Vela X1 and LMC X4, which are known to emit gamma rays up to the 10,000 TeV region.

  2. Macro creatine kinase: determination and differentiation of two types by their activation energies

    SciTech Connect

    Stein, W.; Bohner, J.; Steinhart, R.; Eggstein, M.

    1982-01-01

    Determination of the MB isoenzyme of creatine kinase in patients with acute myocardial infarction may be disturbed by the presence of macro creatine kinase. The relative molecular mass of this form of creatine kinase in human serum is at least threefold that of the ordinary enzyme, and it is more thermostable. Here we describe our method for determination of macro creatine kinases and an easy-to-perform test for differentiating two forms of macro creatine kinase, based on their distinct activation energies. The activation energies of serum enzymes are mostly in the range of 40-65 kJ/mol of substrate. Unlike normal cytoplasmatic creatine kinases and IgG-linked CK-BB (macro creatine kinase type 1) a second form of macro creatine kinase (macro creatine kinase type 2) shows activation energies greater than 80 kJ/mol of substrate. The exact composition of macro creatine kinase type 2 is still unknown, but there is good reason to believe that it is of mitochondrial origin.

  3. [The role of macro-elements in the human body].

    PubMed

    Lakatos, Béla; Balla, József; Vinkler, Péter; Szentmihályi, Klára

    2006-05-21

    The authors summarize the role of essential macro metal elements (Na, K, Ca, Mg) in human body: their homeostasis, absorption, transport, storage and excretion. Metabolism of macro-elements, daily requirements, cause of metal deficiencies and diseases caused by deficiencies are also discussed. Messenger and prooxidant effect of Ca2+-ions, indirect antioxidant effect of Mg2+-ions and the adjuvant application of magnesium are also reviewed.

  4. Optimizing efficiency of energy harvesting by macro-fiber composites

    NASA Astrophysics Data System (ADS)

    Tang, Lihua; Yang, Yaowen; Li, Hongyun

    2008-12-01

    The decreasing energy consumption of today's portable electronics has invoked the possibility of energy harvesting from ambient environment for self power supply. One common and simple method for energy harvesting is to utilize the direct piezoelectric effect. Compared to traditional piezoelectric materials such as lead zirconate titanate (PZT), macro-fiber composites (MFC) are featured in their flexibility of large deformation. However, the energy generated by MFC is still far smaller than that required by electronics at present. In this paper, an energy harvesting system prototype with MFC patches bonded to a cantilever beam is fabricated and tested. A finite element analysis (FEA) model is established to estimate the output voltage of MFC harvester. The energy accumulation procedure in the capacitor is simulated by using the electronic design automation (EDA) software. The simulation results are validated by the experimental ones. Subsequently, the electrical properties of MFC as well as the geometry configurations of the cantilever beam and MFC are parametrically studied by combining the FEA and EDA simulations for optimal energy harvesting efficiency.

  5. Macro histone variants are critical for the differentiation of human pluripotent cells.

    PubMed

    Barrero, María J; Sese, Borja; Martí, Mercè; Izpisua Belmonte, Juan Carlos

    2013-05-31

    We have previously shown that macro histone variants (macroH2A) are expressed at low levels in stem cells and are up-regulated during differentiation. Here we show that the knockdown of macro histone variants impaired the in vitro and in vivo differentiation of human pluripotent cells, likely through defects in the silencing of pluripotency-related genes. ChIP experiments showed that during differentiation macro histone variants are recruited to the regulatory regions of pluripotency and developmental genes marked with H3K27me3 contributing to the silencing of these genes.

  6. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs

    PubMed Central

    Huh, Yeamin; Smith, David E.; Feng, Meihau Rose

    2014-01-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879

  7. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs.

    PubMed

    Huh, Yeamin; Smith, David E; Feng, Meihau Rose

    2011-11-01

    Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis. Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally. The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW). Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs.

  8. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  9. MARKAL-MACRO: A linked model for energy-economy analysis

    SciTech Connect

    Manne, A.S. ); Wene, C.O. Chalmers Univ. of Tech., Goeteborg )

    1992-02-01

    MARKAL-MACRO is an experiment in model linkage for energy and economy analysis. This new tool is intended as an improvement over existing methods for energy strategy assessment. It is designed specifically for estimating the costs and analyzing the technologies proposed for reducing environmental risks such as global climate change or regional air pollution. The greenhouse gas debate illustrates the usefulness of linked energy-economy models. A central issue is the coupling between economic growth, the level of energy demands, and the development of an energy system to supply these demands. The debate is often connected with alternative modeling approaches. The competing philosophies may be labeled top-down macroeconomic'' and bottom-up engineering'' perspectives. MARKAL is a systems engineering (physical process) analysis built on the concept of a Reference Energy System (RES). MARKAL is solved by means of dynamic linear programming. In most applications, the end use demands are fixed, and an economically efficient solution is obtained by minimizing the present value of energy system's costs throughout the planning horizon. MACRO is a macroeconomic model with an aggregated view of long-term economic growth. The basis input factors of production are capital, labor and individual forms of energy. MACRO is solved by nonlinear optimization.

  10. MARKAL-MACRO: A linked model for energy-economy analysis

    SciTech Connect

    Manne, A.S.; Wene, C.O. |

    1992-02-01

    MARKAL-MACRO is an experiment in model linkage for energy and economy analysis. This new tool is intended as an improvement over existing methods for energy strategy assessment. It is designed specifically for estimating the costs and analyzing the technologies proposed for reducing environmental risks such as global climate change or regional air pollution. The greenhouse gas debate illustrates the usefulness of linked energy-economy models. A central issue is the coupling between economic growth, the level of energy demands, and the development of an energy system to supply these demands. The debate is often connected with alternative modeling approaches. The competing philosophies may be labeled ``top-down macroeconomic`` and ``bottom-up engineering`` perspectives. MARKAL is a systems engineering (physical process) analysis built on the concept of a Reference Energy System (RES). MARKAL is solved by means of dynamic linear programming. In most applications, the end use demands are fixed, and an economically efficient solution is obtained by minimizing the present value of energy system`s costs throughout the planning horizon. MACRO is a macroeconomic model with an aggregated view of long-term economic growth. The basis input factors of production are capital, labor and individual forms of energy. MACRO is solved by nonlinear optimization.

  11. MARKAL-MACRO: A methodology for informed energy, economy and environmental decision making. Informal report

    SciTech Connect

    Goldstein, G.A.

    1995-05-16

    Since the mid-1970`s, energy system analysts have been using models to represent the complexities of interactions in energy systems to help shape policy. Since the mid-1980`s, heightened awareness has made it necessary also to consider the environmental impacts of energy policies. MARKAL is a cost-minimizing energy-environment system planning model used to explore mid- to long-term responses to different technological futures, emissions limitations, and policy scenarios. MARKAL-MACRO is an extension of MARKAL that integrates these capabilities directly with a neoclassical macroeconomic growth model. By combining bottom-up engineering and top-down macroeconomic approaches in a single modeling framework, MARKAL-MACR is able to capture the interplay between the energy system, the economy and the environment, allowing the affects on demands of endogenously determined energy prices to be explored.

  12. Quantum theory and human perception of the macro-world.

    PubMed

    Aerts, Diederik

    2014-01-01

    We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new 'conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing-light as a geometric theory-and human touching-only ruled by Pauli's exclusion principle-plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects-as they occur in smaller entities-appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed.

  13. Quantum theory and human perception of the macro-world

    PubMed Central

    Aerts, Diederik

    2014-01-01

    We investigate the question of ‘why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time’, starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new ‘conceptual quantum interpretation’, including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing—light as a geometric theory—and human touching—only ruled by Pauli's exclusion principle—plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects—as they occur in smaller entities—appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general

  14. Macro And Microcosmus: Moon Influence On The Human Body

    NASA Astrophysics Data System (ADS)

    Zanchin, Giorgio

    Belief in the action of the macrocosmus, i.e., celestial bodies, on the microcosmus, i.e., on man, goes back to the dawn of human thinking. More specifically, lunar phases have been considered to act on behaviour and on physiological functions. This possible relationship has not only been taken for granted for many centuries in ancient medicine but also investigated in a number of modern published works, mainly on the issues of emergency activity; violent behaviour; car accidents; drug overdose; menses and birth; and mood disorders. Indeed, if the idea that the stars and planets may influence human health and behaviour can be traced so far in the past, it seems that not only the laymen but a high proportion of health professionals continue to hold this credence: recently, in New Orleans a questionnaire sent to 325 people indicated that 140 individuals (43%) held the opinion that lunar phenomena alter personal behaviour. Specifically, it came out that mental health professionals (social workers, clinical psychologists, nurses' aides) held this belief more strongly than other occupational groups (Vance, 1995). A short historical outline of some old beliefs and the results of contemporary research on this fascinating, time-honoured field, will be presented.

  15. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    PubMed

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin

  16. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    EIA Publications

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  17. The influence of environment and energy macro surroundings on the development of tourism in the 21st century.

    PubMed

    Jovicić, Dobrica

    2012-06-01

    Trying to anticipate the future of tourism may be a particularly fraught task. However, this does not mean that trying to predict the future of tourism is not without value. From a business perspective, examining the future enables firms to anticipate new business conditions and develop new strategies. From a destination perspective, reflections on the future enable consideration of how to maintain or improve the qualities of a destination. The paper is focused on an analysis of the impacts of the energy and ecological macro environments on tourism trends in 21st century. Mass international tourism has thrived on the abundant and cheap supply of energy, and this may be about to change as the world moves towards 'Peak Oil'. The resultant scarcity and high price of all energy fuels will produce changes in human activities, specifically in tourism. The basis of the health of the economy is the health of the environment. Therefore issues of global environmental changes are increasingly influencing consideration of trends in tourism. In this looming transitional era tourism needs to make some dramatic changes to harmonize with the new realities of a post-energy world affected additionaly by global warming and other environmental changes.

  18. High energy cosmic ray physics with underground muons in MACRO. II. Primary spectra and composition

    SciTech Connect

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Montaruli, T.; Raino, A.; Spinelli, P.; Cecchini, S.; Dekhissi, H.; Fantini, R.; Giacomelli, G.; Mandrioli, G.; Margiotta-Neri, A.; Patrizii, L.; Popa, V.; Serra-Lugaresi, P.; Spurio, M.; Togo, V.; Hong, J.T.; Kearns, E.; Okada, C.; Orth, C.; Stone, J.L.; Sulak, L.R.; Barish, B.C.; Goretti, M.; Katsavounidis, E.; Kyriazopoulou, S.; Michael, D.G.; Nolty, R.; Peck, C.W.; Scholberg, K.; Walter, C.W.; Lane, C.; Steinberg, R.; Battistoni, G.; Bilokon, H.; Bloise, C.; Carboni, M.; Chiarella, V.; Forti, C.; Iarocci, E.; Marini, A.; Patera, V.; Ronga, F.; Satta, L.; Sciubba, A.; Spinetti, M.; Valente, V.; Antolini, R.; Bosio, T.; Di Credico, A.; Grillo, A.; Gustavino, C.; Mikheyev, S.; Parlati, S.; Reynoldson, J.; Scapparone, E.; Bower, C.; Habig, A.; Hawthorne, A.; Heinz, R.; Miller, L.; Mufson, S.; Musser, J.; De Mitri, I.; Monacelli, P.; Bernardini, P.; Mancarella, G.; Martello, D.; Palamara, O.; Petrera, S.; Pistilli, P.; Ricciardi, M.; Surdo, A.; Baker, R.; and others

    1997-08-01

    Multimuon data from the MACRO experiment at Gran Sasso have been analyzed using a new method, which allows one to estimate the primary cosmic ray fluxes. The estimated all-particle spectrum is higher and flatter than the one obtained from direct measurements but is consistent with EAS array measurements. The spectral indexes of the fitted energy spectrum are 2.56{plus_minus}0.05 for E{lt}500 TeV and 2.9{plus_minus}0.3 for E{gt}5000 TeV with a gradual change at intermediate energies. The average mass number shows little dependence on the primary energy below 1000 TeV, with a value of 10.1{plus_minus}2.5 at 100 TeV. At higher energies the best fit average mass shows a mild increase with energy, even though no definite conclusion can be reached taking into account errors. The fitted spectra cover a range from {approximately} 50 TeV up to several thousand TeV. {copyright} {ital 1997} {ital The American Physical Society}

  19. Exact Energy and Momentum Conservation in Variational Macro-Particle Plasma Models

    NASA Astrophysics Data System (ADS)

    Shadwick, B. A.; Evstatiev, E. G.; Nguyen, Nam

    2016-10-01

    We consider a class of variational macro-particle plasma models that exhibit simultaneous conservation of energy and momentum. These models retain translation invariance by using a Fourier representation of the electromagnetic fields in place of a spatial grid. That is, the Fourier amplitudes of the fields are the fundamental quantities. From the discrete Lagrangian, a canonical Hamiltonian system is obtained in the usual way, for which we introduce a symplectic integrator. We present a general formulation of the method with examples drawn from 1-1/2D studies of intense laser-plasma interactions. We comment on the relative merits of the Lagrangian vs. Hamiltonian formulations and discuss efficiency and practicality of using this technique in three dimensions. Supported by the National Science Foundation under Contract No. PHY-1104683.

  20. Guided macro-mutation in a graded energy based genetic algorithm for protein structure prediction.

    PubMed

    Rashid, Mahmood A; Iqbal, Sumaiya; Khatib, Firas; Hoque, Md Tamjidul; Sattar, Abdul

    2016-04-01

    Protein structure prediction is considered as one of the most challenging and computationally intractable combinatorial problem. Thus, the efficient modeling of convoluted search space, the clever use of energy functions, and more importantly, the use of effective sampling algorithms become crucial to address this problem. For protein structure modeling, an off-lattice model provides limited scopes to exercise and evaluate the algorithmic developments due to its astronomically large set of data-points. In contrast, an on-lattice model widens the scopes and permits studying the relatively larger proteins because of its finite set of data-points. In this work, we took the full advantage of an on-lattice model by using a face-centered-cube lattice that has the highest packing density with the maximum degree of freedom. We proposed a graded energy-strategically mixes the Miyazawa-Jernigan (MJ) energy with the hydrophobic-polar (HP) energy-based genetic algorithm (GA) for conformational search. In our application, we introduced a 2 × 2 HP energy guided macro-mutation operator within the GA to explore the best possible local changes exhaustively. Conversely, the 20 × 20 MJ energy model-the ultimate objective function of our GA that needs to be minimized-considers the impacts amongst the 20 different amino acids and allow searching the globally acceptable conformations. On a set of benchmark proteins, our proposed approach outperformed state-of-the-art approaches in terms of the free energy levels and the root-mean-square deviations.

  1. Electrohydroelastic dynamics of macro-fiber composites for underwater energy harvesting from base excitation

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Erturk, A.

    2014-04-01

    Low-power electronic systems are used in various underwater applications ranging from naval sensor networks to ecological monitoring for sustainability. In this work, underwater base excitation of cantilevers made of Macro-Fiber Composite (MFC) piezoelectric structures is explored experimentally and theoretically to harvest energy for such wireless electronic components toward enabling self-powered underwater systems. Bimorph cantilevers made of MFCs with different length-to-width ratios and same thickness are tested in air and under water to characterize the change in natural frequency and damping with a focus on the fundamental bending mode. The real and imaginary parts of hydrodynamic frequency response functions are identified and corrected based on this set of experiments. An electrohydroelastic model is developed and experimentally validated for predicting the power delivered to an electrical load as well as the shunted underwater vibration response under base excitation. Variations of the electrical power output with excitation frequency and load resistance are obtained for different length-to-width ratios. Underwater power density results are reported and compared with their in-air counterparts. Specifically a nonlinear dependence of the power density to the cantilever width is reported for energy harvesting from underwater base excitation.

  2. Irreducible specific energy of new surfaces creation in materials with crack-type macro defects under pulse action

    NASA Astrophysics Data System (ADS)

    Krivosheev, S. I.; Magazinov, S. G.

    2016-11-01

    The study of destruction of samples with crack-type macro defects in shockwave microsecond duration range mode with amplitude up to 1 GPa was carried out using the magnetic pulse method of pressure pulse creation. The result analysis held on the basis of computer modeling of stressed condition and thermodynamic approach. The relation between the surface fracture energy and the material parameter, such as the energy accumulation time required for destruction, was revealed.

  3. Intravital lectin perfusion analysis of vascular permeability in human micro- and macro- blood vessels.

    PubMed

    Debbage, P L; Sölder, E; Seidl, S; Hutzler, P; Hugl, B; Ofner, D; Kreczy, A

    2001-10-01

    We previously applied intravital lectin perfusion in mouse models to elucidate mechanisms underlying vascular permeability. The present work transfers this technique to human models, analysing vascular permeability in macro- and microvessels. Human vascular endothelial surface carbohydrate biochemistry differs significantly from its murine counterpart, lacking alpha-galactosyl epitopes and expressing the L-fucose moiety in the glycocalyx; the poly-N-lactosamine glycan backbone is common to all mammals. We examined extensively lectin binding specificities in sections and in vivo, and then applied the poly-N-lactosamine-specific lectin LEA and the L-fucose-specific lectin UEA-I in human intravital perfusions. Transendothelial transport differed in macrovessels and microvessels. In microvessels of adult human fat tissue, rectal wall and rectal carcinomas, slow transendothelial transport by vesicles was followed by significant retention at the subendothelial basement membrane; paracellular passage was not observed. Passage time exceeded 1 h. Thus we found barrier mechanisms resembling those we described previously in murine tissues. In both adult and fetal macrovessels, the vena saphena magna and the umbilical vein, respectively, rapid passage across the endothelial lining was observed, the tracer localising completely in the subendothelial tissues within 15 min; vesicular transport was more rapid than in microvessels, and retention at the subendothelial basement membrane briefer.

  4. Energy and human health.

    PubMed

    Smith, Kirk R; Frumkin, Howard; Balakrishnan, Kalpana; Butler, Colin D; Chafe, Zoë A; Fairlie, Ian; Kinney, Patrick; Kjellstrom, Tord; Mauzerall, Denise L; McKone, Thomas E; McMichael, Anthony J; Schneider, Mycle

    2013-01-01

    Energy use is central to human society and provides many health benefits. But each source of energy entails some health risks. This article reviews the health impacts of each major source of energy, focusing on those with major implications for the burden of disease globally. The biggest health impacts accrue to the harvesting and burning of solid fuels, coal and biomass, mainly in the form of occupational health risks and household and general ambient air pollution. Lack of access to clean fuels and electricity in the world's poor households is a particularly serious risk for health. Although energy efficiency brings many benefits, it also entails some health risks, as do renewable energy systems, if not managed carefully. We do not review health impacts of climate change itself, which are due mostly to climate-altering pollutants from energy systems, but do discuss the potential for achieving near-term health cobenefits by reducing certain climate-related emissions.

  5. High energy cosmic ray physics with underground muons in MACRO. I. Analysis methods and experimental results

    SciTech Connect

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Montaruli, T.; Raino, A.; Spinelli, P.; Cecchini, S.; Dekhissi, H.; Fantini, R.; Giacomelli, G.; Mandrioli, G.; Margiotta-Neri, A.; Patrizii, L.; Popa, V.; Serra-Lugaresi, P.; Spurio, M.; Togo, V.; Hong, J.T.; Kearns, E.; Okada, C.; Orth, C.; Stone, J.L.; Sulak, L.R.; Barish, B.C.; Goretti, M.; Katsavounidis, E.; Kyriazopoulou, S.; Michael, D.G.; Nolty, R.; Peck, C.W.; Scholberg, K.; Walter, C.W.; Lane, C.; Steinberg, R.; Battistoni, G.; Bilokon, H.; Bloise, C.; Carboni, M.; Chiarella, V.; Forti, C.; Iarocci, E.; Marini, A.; Patera, V.; Ronga, F.; Satta, L.; Sciubba, A.; Spinetti, M.; Valente, V.; Antolini, R.; Bosio, T.; Di Credico, A.; Grillo, A.; Gustavino, C.; Mikheyev, S.; Parlati, S.; Reynoldson, J.; Scapparone, E.; Bower, C.; Habig, A.; Hawthorne, A.; Heinz, R.; Miller, L.; Mufson, S.; Musser, J.; De Mitri, I.; Monacelli, P.; Bernardini, P.; Mancarella, G.; Martello, D.; Palamara, O.; Petrera, S.; Pistilli, P.; Ricciardi, M.; Surdo, A.; Baker, R.; and others

    1997-08-01

    In this paper, the first of a two-part work, we present the reconstruction and measurement of muon events detected underground by the MACRO experiment at Gran Sasso (E{sub {mu}}{ge} 1.3 TeV in atmosphere). The main aim of this work is to discuss the muon multiplicity distribution as measured in the detector. The data sample analyzed consists of 4.4{times}10{sup 6} muon events, of which {approximately} 263000 are multiple muons, corresponding to a total live time of 5850 h. In this sample, the observed multiplicities extend above N{sub {mu}}=35, with intermuon separations up to 50 m and beyond. Additional complementing measurements, such as the inclusive muon flux, the angular distribution, and the muon separation distribution (decoherence), are also included. The physical interpretation of the results presented here is reported in the following companion paper. {copyright} {ital 1997} {ital The American Physical Society}

  6. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    PubMed

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P < 0.01). Taken together, these data suggest that acute lower limb heating improves both macro- and microvascular dilator function in an age dependent manner.

  7. Hepatitis E virus ORF1 encoded macro domain protein interacts with light chain subunit of human ferritin and inhibits its secretion.

    PubMed

    Ojha, Nishant Kumar; Lole, Kavita S

    2016-06-01

    Hepatitis E Virus (HEV) is the major causative agent of acute hepatitis in developing countries. Its genome has three open reading frames (ORFs)-called as ORF1, ORF2, and ORF3. ORF1 encodes nonstructural polyprotein having multiple domains, namely: Methyltransferase, Y domain, Protease, Macro domain, Helicase, and RNA-dependent RNA polymerase. In the present study, we show that HEV-macro domain specifically interacts with light chain subunit of human ferritin (FTL). In cultured hepatoma cells, HEV-macro domain reduces secretion of ferritin without causing any change in the expression levels of FTL. This inhibitory effect was further enhanced upon Brefeldin-A treatment. The levels of transferrin Receptor 1 or ferroportin, two important proteins in iron metabolism, remained unchanged in HEV-macro domain expressing cells. Similarly, there were no alterations in the levels of cellular labile iron pool and reactive oxygen species, indicating that HEV-macro domain does not influence cellular iron homeostasis/metabolism. As ferritin is an acute-phase protein, secreted in higher level in infected persons and HEV-macro domain has the property of reducing synthesis of inflammatory cytokines, we propose that by directly binding to FTL, macro domain prevents ferritin from entering into circulation and helps in further attenuation of the host immune response.

  8. The Macro and Micro of it Is that Entropy Is the Spread of Energy

    NASA Astrophysics Data System (ADS)

    Phillips, Jeffrey A.

    2016-09-01

    While entropy is often described as "disorder," it is better thought of as a measure of how spread out energy is within a system. To illustrate this interpretation of entropy to introductory college or high school students, several activities have been created. Students first study the relationship between microstates and macrostates to better understand the probabilities involved. Then, each student observes how a system evolves as energy is allowed to move within it. By studying how the class's ensemble of systems evolves, the tendency of energy to spread, rather than concentrate, can be observed. All activities require minimal equipment and provide students with a tactile and visual experience with entropy.

  9. Characterization of the Effects of the Human Dura on Macro- and Micro-Electrocorticographic Recordings

    PubMed Central

    Bundy, David T.; Zellmer, Erik; Gaona, Charles M.; Sharma, Mohit; Szrama, Nicholas; Hacker, Carl; Freudenburg, Zachary V.; Daitch, Amy; Moran, Daniel W.; Leuthardt, Eric C.

    2014-01-01

    Objective Electrocorticography (ECoG) electrodes implanted on the surface of the brain have recently emerged as a potential signal platform for brain-computer interface (BCI) systems. While clinical ECoG electrodes are currently implanted beneath the dura, epidural electrodes could reduce the invasiveness and the potential impact of a surgical site infection. Subdural electrodes, on the other hand, while slightly more invasive, may have better signals for BCI application. Because of this balance between risk and benefit between the two electrode positions, the effect of the dura on signal quality must be determined in order to define the optimal implementation for an ECoG BCI system. Approach This study utilized simultaneously acquired baseline recordings from epidural and subdural ECoG electrodes while patients rested. Both macro-scale (2 mm diameter electrodes with 1 cm inter-electrode distance, 1 patient) and micro-scale (75 μm diameter electrodes with 1 mm inter-electrode distance, 4 patients) ECoG electrodes were tested. Signal characteristics were evaluated to determine differences in the spectral amplitude and noise floor. Furthermore, the experimental results were compared to theoretical effects produced by placing epidural and subdural ECoG contacts of different sizes within a finite element model. Main Results The analysis demonstrated that for micro-scale electrodes, subdural contacts have significantly higher spectral amplitudes and reach the noise floor at a higher frequency than epidural contacts. For macro-scale electrodes, while there are statistical differences, these differences are small in amplitude and likely do not represent differences relevant to the ability of the signals to be used in a BCI system. Conclusions Our findings demonstrate an important trade-off that should be considered in developing a chronic BCI system. While implanting electrodes under the dura is more invasive, it is associated with increased signal quality when recording

  10. Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings

    NASA Astrophysics Data System (ADS)

    Bundy, David T.; Zellmer, Erik; Gaona, Charles M.; Sharma, Mohit; Szrama, Nicholas; Hacker, Carl; Freudenburg, Zachary V.; Daitch, Amy; Moran, Daniel W.; Leuthardt, Eric C.

    2014-02-01

    Objective. Electrocorticography (ECoG) electrodes implanted on the surface of the brain have recently emerged as a potential signal platform for brain-computer interface (BCI) systems. While clinical ECoG electrodes are currently implanted beneath the dura, epidural electrodes could reduce the invasiveness and the potential impact of a surgical site infection. Subdural electrodes, on the other hand, while slightly more invasive, may have better signals for BCI application. Because of this balance between risk and benefit between the two electrode positions, the effect of the dura on signal quality must be determined in order to define the optimal implementation for an ECoG BCI system. Approach. This study utilized simultaneously acquired baseline recordings from epidural and subdural ECoG electrodes while patients rested. Both macro-scale (2 mm diameter electrodes with 1 cm inter-electrode distance, one patient) and micro-scale (75 µm diameter electrodes with 1 mm inter-electrode distance, four patients) ECoG electrodes were tested. Signal characteristics were evaluated to determine differences in the spectral amplitude and noise floor. Furthermore, the experimental results were compared to theoretical effects produced by placing epidural and subdural ECoG contacts of different sizes within a finite element model. Main results. The analysis demonstrated that for micro-scale electrodes, subdural contacts have significantly higher spectral amplitudes and reach the noise floor at a higher frequency than epidural contacts. For macro-scale electrodes, while there are statistical differences, these differences are small in amplitude and likely do not represent differences relevant to the ability of the signals to be used in a BCI system. Conclusions. Our findings demonstrate an important trade-off that should be considered in developing a chronic BCI system. While implanting electrodes under the dura is more invasive, it is associated with increased signal quality when

  11. The Macro and Micro of It Is That Entropy Is the Spread of Energy

    ERIC Educational Resources Information Center

    Phillips, Jeffrey A.

    2016-01-01

    While entropy is often described as "disorder," it is better thought of as a measure of how spread out energy is within a system. To illustrate this interpretation of entropy to introductory college or high school students, several activities have been created. Students first study the relationship between microstates and macrostates to…

  12. Mechanisms of micro-macro energy exchange and dynamic strength of solids

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, Yu. I.; Divakov, A. K.; Zhigacheva, N. I.; Makarevich, I. P.; Mushnikova, S. Yu.; Kalinin, G. Yu.

    2010-06-01

    Two kinds of steel—30CrNi4Mo armor steel and austenitic 04Cr20Ni6Mn11Mo2NVNb (nitrogen) steel—have been taken for comparative experimental studying a shock-wave behavior under uniaxial strain conditions. For the first kind of steel, transferring energy from load to deformed body is found to be realized through intermediate structural scale (mesoscale), whereas for the second kind—directly, i.e. with-out intermediate scale level.

  13. A Crude Reality; Exploring the Interdependencies of Energy (Oil), the Macro-Economy, and National Security

    DTIC Science & Technology

    2012-04-11

    imported oil rather than on the more stable and available domestic energy resources such as coal, natural gas, hydroelectric , nuclear, and renewable...This is difficult to determine with certainty. Wide variations are reported, and politicians from all persuasions use statistics and terms to suit...attractive, have the potential to speed along the transformation. Like it or not, our economy is tied to oil for the near- and mid-term future. The

  14. Going "Macro": Exploring the Careers of Macro Practitioners.

    PubMed

    Pritzker, Suzanne; Applewhite, Steven R

    2015-07-01

    Important benefits accrue to the profession and to its vulnerable clientele when social workers hold positions with substantial community or policy influence. However, fewer social workers are holding these positions than in the past, and student preferences to pursue macro-specific training have declined. To improve the social work profession's ability to recruit and educate students interested in competing for leadership positions in human services organizations, this article analyzes data from a survey of MSW graduates of a public school of social work located in the southwestern United States and currently working as macro practitioners. Findings indicate that macro social workers can successfully compete for mid-level and top-level administrative and policy positions, and provide evidence contrary to many of the concerns students express when deciding whether to pursue a macro concentration or career. The article concludes with a discussion of the implications for supporting and educating social work students interested in pursuing a macro practice career.

  15. Improvement of RNA fingerprinting efficiency for the analysis of differential gene expression in human cardiac macro- and microvascular endothelial cells.

    PubMed

    Bongrazio, M; Gräfe, M; Pries, A R; Gaehtgens, P; Zakrzewicz, A

    2001-06-01

    RNA fingerprinting by arbitrarily primed PCR (RAP-PCR) is a powerful tool to screen differential gene expression. However, PCR-based screening techniques show a high incidence of false positive results (40-90%). In order to increase the efficiency and feasibility of RAP-PCR, the original protocol was modified and applied to analyse differential gene expression in human coronary macro- (HCEC) and microvascular (HCMEC) endothelial cells. The major modifications introduced were: (i) the use of two primers for PCR amplification, instead of reverse-transcription primer alone; (ii) the use of three cycles at low stringency followed by further amplification at high stringency; (iii) optimization of amplification cycle number, template amount, and concentration of primers, dNTP, Mg(2+); (iv) detection of fingerprints by silver staining; and (v) direct sequencing using RAP-PCR primers. Analysis of untreated and TNF alpha -stimulated (100 U ml(-1)for 1, 4, and 24 h) HCEC and HCMEC displayed 11 differentially expressed products by 18 primer combinations. Confirmation of results by RT-PCR showed that the rate of false positives attributable to our screening method was less than 20%. Among detected RAP-PCR products, the expression of Mn-superoxide dismutase, A20 zinc finger protein, and three novel genes (A/a, 4/d, 7/c) was more strongly modulated by TNF in HCEC than HCMEC. A further novel gene (B/e) was strongly expressed in HCMEC while only barely detectable in HCEC. In conclusion, modification of RAP-PCR strongly reduced the incidence of false positives, eliminated a radioactive requirement, and allowed sequencing without prior cloning, supplying an improved technology able to identify new differentially expressed genes between macro- and microvascular endothelial cells.

  16. Design and application of a technologically explicit hybrid energy-economy policy model with micro and macro economic dynamics

    NASA Astrophysics Data System (ADS)

    Bataille, Christopher G. F.

    2005-11-01

    Are further energy efficiency gains, or more recently greenhouse gas reductions, expensive or cheap? Analysts provide conflicting advice to policy makers based on divergent modelling perspectives, a 'top-down/bottom-up debate' in which economists use equation based models that equilibrate markets by maximizing consumer welfare, and technologists use technology simulation models that minimize the financial cost of providing energy services. This thesis summarizes a long term research project to find a middle ground between these two positions that is more useful to policy makers. Starting with the individual components of a behaviourally realistic and technologically explicit simulation model (ISTUM---Inter Sectoral Technology Use Model), or "hybrid", the individual sectors of the economy are linked using a framework of micro and macro economic feedbacks. These feedbacks are taken from the economic theory that informs the computable general equilibrium (CGE) family of models. Speaking in the languages of both economists and engineers, the resulting "physical" equilibrium model of Canada (CIMS---Canadian Integrated Modeling System), equilibrates energy and end-product markets, including imports and exports, for seven regions and 15 economic sectors, including primary industry, manufacturing, transportation, commerce, residences, governmental infrastructure and the energy supply sectors. Several different policy experiments demonstrate the value-added of the model and how its results compare to top-down and bottom-up practice. In general, the results show that technical adjustments make up about half the response to simulated energy policy, and macroeconomic demand adjustments the other half. Induced technical adjustments predominate with minor policies, while the importance of macroeconomic demand adjustment increases with the strength of the policy. Results are also shown for an experiment to derive estimates of future elasticity of substitution (ESUB) and

  17. From MEMS to macro-world: a micro-milling machined wideband vibration piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Iannacci, J.; Sordo, G.

    2015-05-01

    In this work, we discuss a novel mechanical resonator design for the realization of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys Worbench™, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The sole FLC mechanical structure is realized by micro-milling an Aluminum foil, while a cantilevered test structure also including PolyVinyliDene Fluoride (PVDF) film sheet is assembled in order to collect first experimental feedback on generated power levels. The first lab based tests show peak-to-peak voltages of several Volts when the cantilever is stimulated with a mechanical pulse. Further developments of this work will comprise the assembly of an FLC demonstrator with PVDF pads, and its experimental testing in order to validate the simulated results.

  18. Energy metabolism during human pregnancy.

    PubMed

    Forsum, Elisabet; Löf, Marie

    2007-01-01

    This review summarizes information regarding how human energy metabolism is affected by pregnancy, and current estimates of energy requirements during pregnancy are presented. Such estimates can be calculated using either increases in basal metabolic rate (BMR) or increases in total energy expenditure (TEE). The two modes of calculation give similar results for a complete pregnancy but different distributions of energy requirements in the three trimesters. Recent information is presented regarding the effect of pregnancy on BMR, TEE, diet-induced thermogenesis, and physical activity. The validity of energy intake (EI) data recently assessed in well-nourished pregnant women was evaluated using information regarding energy metabolism during pregnancy. The results show that underreporting of EI is common during pregnancy and indicate that additional longitudinal studies, taking the total energy budget during pregnancy into account, are needed to satisfactorily define energy requirements during the three trimesters of gestation.

  19. Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior

    NASA Astrophysics Data System (ADS)

    Formentín, Pilar; Alba, María; Catalán, Úrsula; Fernández-Castillejo, Sara; Pallarès, Josep; Solà, Rosà; Marsal, Lluís F.

    2014-08-01

    Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo . To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation.

  20. High performance of macro-flexible piezoelectric energy harvester using a 0.3PIN-0.4Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 flake array

    NASA Astrophysics Data System (ADS)

    Zeng, Zhou; Xia, Rongyu; Gai, Linlin; Wang, Xian; Lin, Di; Luo, Haosu; Li, Faxin; Wang, Dong

    2016-12-01

    Harvesting energy from human motion to power wearable devices using flexible piezoelectric energy harvesters is becoming a hot research topic, since this approach could fix the charging problem related to batteries and would do no harm to the environment. Unlike nano-generators, which have a piezoelectric material thickness at the level of a few nm to a few μm, we present a high-performance macro-flexible piezoelectric energy harvester (MF-PEH) with a piezoelectric material thickness of 45 μm, based on a 0.3PIN-0.4PMN-0.3PT (PIMNT) long flake array with an optimized cut. The piezoelectric properties of (110)-oriented PIMNT were studied as a function of thickness and compared to those of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMNT). The electrical properties of this device under different strain and load resistances are studied systematically. The results of our experiment show that under a strain of 0.225%, the open-circuit voltage and short-circuit current of MF-PEH reach levels as high as 23.2 V and 0.105 mA (at an excitation frequency of 1.1 Hz), respectively, with a maximum electric output power of 245 μW across a piezoelectric materials area of 400 mm2. We have also used the device to harvest mechanical energy from the motion of human knees and charge a battery successfully. Efficient conversion from mechanical energy to electric energy and large output power demonstrate that our MF-PEH is an important complement to flexible energy harvesters and a potential candidate as a self-powered source for wearable low-power electronics.

  1. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano.

    PubMed

    Tu, Lv-Ying; Bai, Hai-Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-11-01

    Kaempferol has been identified as a potential cancer therapeutic agent by an increasing amount of evidences. However, the changes in the topography of cell membrane induced by kaempferol at subcellular- or nanometer-level were still unclear. In this work, the topographical changes of cytomembrane in human cervical cancer cell (SiHa) induced by kaempferol, as well as the role of kaempferol in apoptosis induction and its possible mechanisms, were investigated. At the macro level, MTT assays showed that kaempferol inhibited the proliferation of SiHa cells in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that kaempferol could induce SiHa cell apoptosis, mitochondrial membrane potential disruption, and intracellular free calcium elevation. At the micro level, fluorescence imaging by laser scanning confocal microscopy (LSCM) indicated that kaempferol could also destroy the networks of microtubules. Using high resolution atomic force microscopy (AFM), we determined the precise changes of cellular membrane induced by kaempferol at subcellular or nanometer level. The spindle-shaped SiHa cells shrank after kaempferol treatment, with significantly increased cell surface roughness. These data showed structural characterizations of cellular topography in kaempferol-induced SiHa cell apoptosis and might provide novel integrated information from macro to nano level to assess the impact of kaempferol on cancer cells, which might be important for the understanding of the anti-cancer mechanisms of drugs. SCANNING 38:644-653, 2016. © 2016 Wiley Periodicals, Inc.

  2. Why Macro Practice Matters

    ERIC Educational Resources Information Center

    Reisch, Michael

    2016-01-01

    This article asserts that macro practice is increasingly important in today's rapidly changing and complex practice environment. It briefly explores the history of macro practice in U.S. social work, summarizes its major contributions to the profession and to U.S. society, and provides some suggestions for how social work programs can expand…

  3. Macro-motion detection using ultra-wideband impulse radar.

    PubMed

    Xin Li; Dengyu Qiao; Ye Li

    2014-01-01

    Radar has the advantage of being able to detect hidden individuals, which can be used in homeland security, disaster rescue, and healthcare monitoring-related applications. Human macro-motion detection using ultra-wideband impulse radar is studied in this paper. First, a frequency domain analysis is carried out to show that the macro-motion yields a bandpass signal in slow-time. Second, the FTFW (fast-time frequency windowing), which has the advantage of avoiding the measuring range reduction, and the HLF (high-pass linear-phase filter), which can preserve the motion signal effectively, are proposed to preprocess the radar echo. Last, a threshold decision method, based on the energy detector structure, is presented.

  4. Distant energy transfer for artificial human implants.

    PubMed

    Theodoridis, Michael P; Mollov, Stefan V

    2005-11-01

    The powering of human implants via inductive coupling has been an object of interest for the past two decades. This paper discusses some of the issues concerning a distant energy link used for supplying artificial human implants, operating at the frequency of 13.56 MHz. A procedure for the design of an energy-receiving coil is given for general applications. A design procedure is also developed, with focus on coils used for supplying human implants. The correctness of the analysis of this later design procedure has been verified by experimental results. Measurements with a human tissue simulant also show little deviation from the predictions.

  5. Human Settlements, Energy, and Industry

    SciTech Connect

    Scott, Michael J.; Gupta, Sujata; Jauregui, Ernesto; Nwafor, James; Satterthwaite, David; Wanasinghe, Yapa; Wilbanks, Thomas; Yoshino, Masatoshi; Kelkar, Ulka

    2001-01-15

    Human settlements are integrators of many of the climate impacts initially felt in other sectors, and differ from each other in geographic location, size, economic circumstances, and political and social capacity. The most wide-spread serious potential impact is flooding and landslides, followed by tropical cyclones. A growing literature suggests that a very wide variety of settlements in nearly every climate zone may be affected, although the specific evidence is still very limited. Settlements with little economic diversification and where a high percentage of incomes derive from climate sensitive primary resource industries (agriculture, forestry and fisheries) are more sensitive than more diversified settlements

  6. Energy and sociality in human populations.

    PubMed

    Cabrera, Santander; Fuster, Vicente

    2002-01-01

    In order to characterize and define human populations from a thermodynamic point of view, and considering that human societies are complex systems whose global description can be obtained by their energetic balance, the relationship was evaluated between individual energy consumption and the demographic and social-economic variables in all provinces of Spain. Pearson bivariate correlation, lineal regression analysis, and the coefficient of determination were applied. The results obtained show that individual energy consumption is associated with almost all the variables considered, in provinces with fewer than 400,000 inhabitants. However, in provinces having a population larger than 400,000, the association is reduced to about 50 percent. The positive or negative association between individual energy consumption and certain variables, especially those that determine reproductive success, suggests that the consumption of energy is explained both by the irreversible thermodynamics in relatively small populations and by the optimization principle in relatively large populations.

  7. Flat inductors for human motion energy harvesting

    NASA Astrophysics Data System (ADS)

    Blums, Juris; Terlecka, Galina; Gornevs, Ilgvars; Vilumsone, Ausma

    2013-05-01

    The human motion energy harvesting is under investigation. The aim of this investigation: to develop electromagnetic human motion energy harvester that will consist only from flat elements and is integrable into the apparel. Main parts of the developed human motion energy harvester are flat, spiral-shaped inductors. Voltage pulses in such flat inductors can be induced during the motion of a permanent magnet along it. Due to the flat structure, inductors can be completely integrated into the parts of the clothes and it is not necessary to keep empty place for the movement of the magnet, as in usual electromagnetic harvesters. The prototype of the clothing, jacket with integrated electromagnetic human motion energy harvester with flat inductors is tested. The theoretical model for the induction of the electromotive force due to the magnet's movement is created for the basic shapes (round, rhombic, square) of the inductive elements and the results (shape of voltage pulse and generated energy) of the calculations are in a good qualitative and quantitative coincidence with an experimental research.

  8. Human action recognition using motion energy template

    NASA Astrophysics Data System (ADS)

    Shao, Yanhua; Guo, Yongcai; Gao, Chao

    2015-06-01

    Human action recognition is an active and interesting research topic in computer vision and pattern recognition field that is widely used in the real world. We proposed an approach for human activity analysis based on motion energy template (MET), a new high-level representation of video. The main idea for the MET model is that human actions could be expressed as the composition of motion energy acquired in a three-dimensional (3-D) space-time volume by using a filter bank. The motion energies were directly computed from raw video sequences, thus some problems, such as object location and segmentation, etc., are definitely avoided. Another important competitive merit of this MET method is its insensitivity to gender, hair, and clothing. We extract MET features by using the Bhattacharyya coefficient to measure the motion energy similarity between the action template video and the tested video, and then the 3-D max-pooling. Using these features as input to the support vector machine, extensive experiments on two benchmark datasets, Weizmann and KTH, were carried out. Compared with other state-of-the-art approaches, such as variation energy image, dynamic templates and local motion pattern descriptors, the experimental results demonstrate that our MET model is competitive and promising.

  9. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    PubMed

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs.

  10. Assessment of human energy exchange: historical overview.

    PubMed

    Heymsfield, S B; Bourgeois, B; Thomas, D M

    2017-03-01

    Energy exchange is fundamental to life and is a cornerstone in the study of human physiology, metabolism and nutrition. A global effort is underway to further our understanding of human energy exchange and its components as a means of establishing the mechanistic underpinnings of the evolving obesity and chronic disease epidemics. The current report establishes a conceptual historical framework for examining the evolution of energy exchange concepts and measurement methods. We review developments taking place over more than 2000 years during which humans endeavored to establish the source of body heat, the 'fire of life'. Major conceptual and methodological advances over the past three centuries have incrementally advanced the field and created the energy exchange paradigm within which we now work. As in the past, innovative experimental ideas and measurement methods are now needed to answer important questions brought to light by the obesity and chronic disease epidemics. Nevertheless, older classical measurement methods based on calorimetry techniques still hold a strong position in the field as many diet and weight-related questions remain unanswered.

  11. MARKAL-MACRO: An overview

    SciTech Connect

    Hamilton, L.D.; Goldstein, G.A.; Lee, J.; Marcuse, W.; Morris, S.C. ); Manne, A.S. ); Wene, C.O. Chalmers Univ. of Technology, Goeteborg )

    1992-11-12

    MARKAL-MACRO is an experiment in model linkage. This new tool is intended as an improvement over existing methods for energy policy assessment. It is designed specifically for estimating the costs and analyzing alternative technologies and policies proposed for reducing environmental risks such as global climate change or regional air pollution. The greenhouse gas debate illustrates the usefulness of linked energy-economy models. A central issue is the coupling between economic growth, the level of energy demands, and the evolution of an energy system to supply these demands. The debate is often connected with alternative modeling approaches. The competing philosophies may be labeled [open quotes]top-down macroeconomic[close quotes] and [open quotes]bottom-up engineering[close quotes] perspectives. Do macroeconomic models, with their descriptions of effects within the total economy but few technical details on the energy system, tend to overestimate future energy demands Conversely, do engineering models, ignoring feedbacks to the general economy and non-technical market factors but containing rich descriptions of technology options, tend to take too optimistic a view of conservation and the use of renewable energy sources Or is the principal difference that the engineering models ignore new sources of energy demands, and that the macroeconomic models ignore saturation effects for old categories of demands An efficient modeling tool must have the scope and detail to match the width and depth of the policy problem being analyzed. In order to respond to major environmental risks (e.g., the possibility of global climate changes), there must be long-range, fundamental changes in the energy system. For an analysis of these changes and an understanding of their nature, the modeling tool must be able to capture the complex network of relations within the energy system, as well as the opportunities of new or improved technologies.

  12. MARKAL-MACRO: An overview

    SciTech Connect

    Hamilton, L.D.; Goldstein, G.A.; Lee, J.; Marcuse, W.; Morris, S.C.; Manne, A.S.; Wene, C.O. |

    1992-11-12

    MARKAL-MACRO is an experiment in model linkage. This new tool is intended as an improvement over existing methods for energy policy assessment. It is designed specifically for estimating the costs and analyzing alternative technologies and policies proposed for reducing environmental risks such as global climate change or regional air pollution. The greenhouse gas debate illustrates the usefulness of linked energy-economy models. A central issue is the coupling between economic growth, the level of energy demands, and the evolution of an energy system to supply these demands. The debate is often connected with alternative modeling approaches. The competing philosophies may be labeled {open_quotes}top-down macroeconomic{close_quotes} and {open_quotes}bottom-up engineering{close_quotes} perspectives. Do macroeconomic models, with their descriptions of effects within the total economy but few technical details on the energy system, tend to overestimate future energy demands? Conversely, do engineering models, ignoring feedbacks to the general economy and non-technical market factors but containing rich descriptions of technology options, tend to take too optimistic a view of conservation and the use of renewable energy sources? Or is the principal difference that the engineering models ignore new sources of energy demands, and that the macroeconomic models ignore saturation effects for old categories of demands? An efficient modeling tool must have the scope and detail to match the width and depth of the policy problem being analyzed. In order to respond to major environmental risks (e.g., the possibility of global climate changes), there must be long-range, fundamental changes in the energy system. For an analysis of these changes and an understanding of their nature, the modeling tool must be able to capture the complex network of relations within the energy system, as well as the opportunities of new or improved technologies.

  13. Human factors by descent energy management

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1979-01-01

    This paper describes some of the results of a human factors study of energy management during descent using standard aircraft displays. Discussions with pilots highlighted the practical constraints involved and the techniques (algorithms) used to accomplish the descent. The advantages and disadvantages of these algorithms are examined with respect to workload and their sensitivity to disturbances. Vertical navigation and flight performance computers are discussed in terms of the information needed for effective pilot monitoring and takeover

  14. Energy, evolution, and human diseases: an overview.

    PubMed

    Roth, Jesse; Szulc, Alessandra L; Danoff, Ann

    2011-04-01

    In the symposium entitled "Transcriptional controls of energy sensing," the authors presented recent advances on 1) AMP kinase, an intracellular energy sensor; 2) PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α), a transcriptional co-activator that has powerful effects on mitochondria; 3) methylation and demethylation in response to metabolic fluctuations; and 4) FGF21 (fibroblast growth factor 21) as an emerging hormone-like intercellular metabolic coordinator. This introduction places these advances within a broad overview of energy sensing and energy balance, with a focus on human evolution and disease. Four key elements of human biology are analyzed: 1) elevated body temperature; 2) complex prolonged reproductive pathways; 3) emergence of 4 large, well-defined fat depots, each with its own functional role; and 4) an immune system that is often up-regulated by nutrition-related signals, independent of the actual presence of a pathogen. We propose that an overactive immune system, including the "metabolic syndrome," was adopted evolutionarily in the distant past to help hold out against unconquerable infections such as tuberculosis, malaria, and trypanosomiasis. This immune activation is advantageous in the absence of other disease management methods, especially under conditions in which life expectancy is short. The inflammation has become a major agent of pathology in wealthy populations in whom the pathogens are a minor threat and life expectancy is long. The "Conclusions" section sketches cautiously how understanding the molecules involved in energy sensing and energy balance may lead to specific therapies for obesity and diabetes and for their complications.

  15. Dielectric polymer: scavenging energy from human motion

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, Claire; Basrour, Skandar; Chaillout, Jean-Jacques

    2008-03-01

    More and more sensors are embedded in human body for medical applications, for sport. The short lifetime of the batteries, available on the market, reveals a real problem of autonomy of these systems. A promising alternative is to scavenge the ambient energy such as the mechanical one. Up to now, few scavenging structures have operating frequencies compatible with ambient one. And, most of the developed structures are rigid and use vibration as mechanical source. For these reasons, we developed a scavenger that operates in a large frequency spectrum from quasi-static to dynamic range. This generator is fully flexible, light and does not hamper the human motion. Thus, we report in this paper an analytical model for dielectric generator with news electrical and mechanical characterization, and the development of an innovating application: scavenging energy from human motion. The generator is located on the knee and design to scavenge 0.1mJ per scavenging cycle at a frequency of 1Hz, enough to supply a low consumption system and with a poling voltage as low as possible to facilitate the power management. Our first prototype is a membrane with an area of 5*3cm and 31µm in thickness which scavenge 0.1mJ under 170V at constant charge Q.

  16. Human Energy Field: A Concept Analysis.

    PubMed

    Shields, Deborah; Fuller, Ann; Resnicoff, Marci; Butcher, Howard K; Frisch, Noreen

    2016-11-23

    The human energy field (HEF) as a phenomenon of interest across disciplines has gained increased attention over the 20th and 21st centuries. However, a concern has arisen that there is a lack of evidence to support the concept of the HEF as a phenomenon of interest to professional nurses and nursing practice. Using Chinn and Kramer's method of creating conceptual meaning, a concept analysis was conducted for the purpose of developing a conceptual definition of HEF. A systematic review of the literature using the CINAHL database yielded a total of 81 articles and text sources that were determined to be relevant to the concept analysis. The HEF is defined as a luminous field of energy that comprises a person, extends beyond the physical body, and is in a continuous mutual process with the environmental energy field. It is a vital energy that is a continuous whole and is recognized by its unique pattern; it is dynamic, creative, nonlinear, unpredictable, and flows in lower and higher frequencies. The balanced HEF is characterized by flow, rhythm, symmetry, and gentle vibration.

  17. Virtual reality as a human factors design analysis tool: Macro-ergonomic application validation and assessment of the Space Station Freedom payload control area

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P.

    1994-01-01

    A virtual reality (VR) Applications Program has been under development at MSFC since 1989. Its objectives are to develop, assess, validate, and utilize VR in hardware development, operations development and support, missions operations training, and science training. A variety of activities are under way within many of these areas. One ongoing macro-ergonomic application of VR relates to the design of the Space Station Freedom Payload Control Area (PCA), the control room from which onboard payload operations are managed. Several preliminary conceptual PCA layouts have been developed and modeled in VR. Various managers and potential end users have virtually 'entered' these rooms and provided valuable feedback. Before VR can be used with confidence in a particular application, it must be validated, or calibrated, for that class of applications. Two associated validation studies for macro-ergonomic applications are under way to help characterize possible distortions of filtering of relevant perceptions in a virtual world. In both studies, existing control rooms and their 'virtual counterparts will be empirically compared using distance and heading estimations to objects and subjective assessments. Approaches and findings of the PCA activities and details of the studies are presented.

  18. Energy Metabolism of Human Neutrophils during Phagocytosis

    PubMed Central

    Borregaard, Niels; Herlin, Troels

    1982-01-01

    Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose. In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell. Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism. PMID:7107894

  19. d Macro and (3)He macro production in square root of s(NN) = 130 GeV Au+Au collisions.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; DeMello, M; Deng, W S; Derevschikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grabski, J; Grachov, O; Greiner, D; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lakehal-Ayat, L; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lynn, D; Majka, R; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; McShane, T S; Meissner, F; Melnick, Y; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Platner, E; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Sumbera, M; Symons, T J; de Toledo, A S; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T A; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Wenaus, T; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-12-24

    The first measurements of light antinucleus production in Au+Au collisions at the Relativistic Heavy-Ion Collider are reported. The observed production rates for d macro and (3)He macro are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at CERN SPS energy. These analyses also indicate that the (3)He macro freeze-out volume is smaller than the d macro freeze-out volume.

  20. Primordial 4He constraints on inelastic macro dark matter revisited

    NASA Astrophysics Data System (ADS)

    Jacobs, David M.; Allwright, Gwyneth; Mafune, Mpho; Manikumar, Samyukta; Weltman, Amanda

    2016-11-01

    At present, the best model for the evolution of the cosmos requires that dark matter make up approximately 25% of the energy content of the Universe. Most approaches to explain the microscopic nature of dark matter, to date, have assumed its composition to be of intrinsically weakly interacting particles; however, this need not be the case to have consistency with all extant observations. Given decades of inconclusive evidence to support any dark matter candidate, there is strong motivation to consider alternatives to the standard particle scenario. One such example is macro dark matter, a class of candidates (macros) that could interact strongly with the particles of the Standard Model, have large masses and physical sizes, and yet behave as dark matter. Macros that scatter completely inelastically could have altered the primordial production of the elements, and macro charge-dependent constraints have been obtained previously. Here we reconsider the phenomenology of inelastically interacting macros on the abundance of primordially produced 4He and revise previous constraints by also taking into account improved measurements of the primordial 4He abundance. The constraints derived here are limited in applicability to only leptophobic macros that have a surface potential V (RX)≳0.5 MeV . However, an important conclusion from our analysis is that even neutral macros would likely affect the abundance of the light elements. Therefore, constraints on that scenario are possible and are currently an open question.

  1. Molecular insight into the specific binding of ADP-ribose to the nsP3 macro domains of chikungunya and Venezuelan equine encephalitis viruses: molecular dynamics simulations and free energy calculations.

    PubMed

    Rungrotmongkol, Thanyada; Nunthaboot, Nadtanet; Malaisree, Maturos; Kaiyawet, Nopporn; Yotmanee, Pathumwadee; Meeprasert, Arthitaya; Hannongbua, Supot

    2010-11-01

    The outbreaks of chikungunya (CHIKV) and venezuelan equine encephalitis (VEEV) viral infections in humans have emerged or re-emerged in various countries of "Africa and southeast Asia", and "central and south America", respectively. At present, no drug or vaccine is available for the treatment and therapy of both viral infections, but the non-structural protein, nsP3, is a potential target for the design of potent inhibitors that fit at the adenosine-binding site of its macro domain. Here, so as to understand the fundamental basis of the particular interactions between the ADP-ribose bound to the nsP3 amino acid residues at the binding site, molecular dynamics simulations were applied. The results show that these two nsP3 domains share a similar binding pattern for accommodating the ADP-ribose. The ADP-ribose phosphate unit showed the highest degree of stabilization through hydrogen bond interactions with the nsP3 V33 residue and the consequent amino acid residues 110-114. The adenine base of ADP-ribose was specifically recognized by the conserved nsP3 residue D10. Additionally, the ribose and the diphosphate units were found to play more important roles in the CHIKV nsP3-ADP-ribose complex, while the ter-ribose was more important in the VEEV complex. The slightly higher binding affinity of ADP-ribose toward the nsP3 macro domain of VEEV, as predicted by the simulation results, is in good agreement with previous experimental data. These simulation results provide useful information to further assist in drug design and development for these two important viruses.

  2. Forensic Analysis of Human Autopsy Tissue for the Presence of Polydimethylsiloxane (Silicone) and Volatile Cyclic Siloxanes using Macro FT-IR, FT-IR Spectroscopic Imaging and Headspace GC-MS.

    PubMed

    Lanzarotta, Adam; Kelley, Caroline Machal

    2016-05-01

    This study describes effective and straightforward primary and secondary methods for the detection of silicone in human autopsy tissue. The primary method is polydimethylsiloxane (PDMS) specific and employs either macro-attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy for samples with a high PDMS concentration (relative to that of the matrix) or micro-FT-IR spectroscopic imaging in a reflection/absorption modality for samples with a low PDMS concentration. Although the secondary method is not PDMS specific, it employs headspace gas chromatography with mass spectrometric detection (HS/GC-MS) for the detection of low molecular weight volatile cyclic siloxanes (VCS), which are characteristic marker compounds for PDMS. Overall, the combined results from the primary and secondary analyses provide reliable evidence for the presence of silicone.

  3. 'Energy landscapes': Meeting energy demands and human aspirations.

    PubMed

    Blaschke, Thomas; Biberacher, Markus; Gadocha, Sabine; Schardinger, Ingrid

    2013-08-01

    Renewable energy will play a crucial role in the future society of the 21st century. The various renewable energy sources need to be balanced and their use carefully planned since they are characterized by high temporal and spatial variability that will pose challenges to maintaining a well balanced supply and to the stability of the grid. This article examines the ways that future 'energy landscapes' can be modelled in time and space. Biomass needs a great deal of space per unit of energy produced but it is an energy carrier that may be strategically useful in circumstances where other renewable energy carriers are likely to deliver less. A critical question considered in this article is whether a massive expansion in the use of biomass will allow us to construct future scenarios while repositioning the 'energy landscape' as an object of study. A second important issue is the utilization of heat from biomass energy plants. Biomass energy also has a larger spatial footprint than other carriers such as, for example, solar energy. This article seeks to provide a bridge between energy modelling and spatial planning while integrating research and techniques in energy modelling with Geographic Information Science. This encompasses GIS, remote sensing, spatial disaggregation techniques and geovisualization. Several case studies in Austria and Germany demonstrate a top-down methodology and some results while stepwise calculating potentials from theoretical to technically feasible potentials and setting the scene for the definition of economic potentials based on scenarios and assumptions.

  4. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  5. Viral Macro Domains Reverse Protein ADP-Ribosylation

    PubMed Central

    Li, Changqing; Debing, Yannick; Jankevicius, Gytis; Neyts, Johan; Ahel, Ivan

    2016-01-01

    ABSTRACT ADP-ribosylation is a posttranslational protein modification in which ADP-ribose is transferred from NAD+ to specific acceptors to regulate a wide variety of cellular processes. The macro domain is an ancient and highly evolutionarily conserved protein domain widely distributed throughout all kingdoms of life, including viruses. The human TARG1/C6orf130, MacroD1, and MacroD2 proteins can reverse ADP-ribosylation by acting on ADP-ribosylated substrates through the hydrolytic activity of their macro domains. Here, we report that the macro domain from hepatitis E virus (HEV) serves as an ADP-ribose-protein hydrolase for mono-ADP-ribose (MAR) and poly(ADP-ribose) (PAR) chain removal (de-MARylation and de-PARylation, respectively) from mono- and poly(ADP)-ribosylated proteins, respectively. The presence of the HEV helicase in cis dramatically increases the binding of the macro domain to poly(ADP-ribose) and stimulates the de-PARylation activity. Abrogation of the latter dramatically decreases replication of an HEV subgenomic replicon. The de-MARylation activity is present in all three pathogenic positive-sense, single-stranded RNA [(+)ssRNA] virus families which carry a macro domain: Coronaviridae (severe acute respiratory syndrome coronavirus and human coronavirus 229E), Togaviridae (Venezuelan equine encephalitis virus), and Hepeviridae (HEV), indicating that it might be a significant tropism and/or pathogenic determinant. IMPORTANCE Protein ADP-ribosylation is a covalent posttranslational modification regulating cellular protein activities in a dynamic fashion to modulate and coordinate a variety of cellular processes. Three viral families, Coronaviridae, Togaviridae, and Hepeviridae, possess macro domains embedded in their polyproteins. Here, we show that viral macro domains reverse cellular ADP-ribosylation, potentially cutting the signal of a viral infection in the cell. Various poly(ADP-ribose) polymerases which are notorious guardians of cellular

  6. Energy monitoring based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.

    2014-04-01

    Human behavior is the most important factor in order to manage energy usage. Nowadays, smart house technology offers a better quality of life by introducing automated appliance control and assistive services. However, human behaviors will contribute to the efficiency of the system. This paper will focus on monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior atb the workplace. Then, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy in efficient ways based on human behaviours. This scenario will lead to the positive impact in order to achieve the energy saving in the building and support the green environment.

  7. Control of energy expenditure in humans.

    PubMed

    Westerterp, K R

    2017-03-01

    Energy expenditure is determined by body size and body composition and by food intake and physical activity. Body size and body composition are the determinants of resting energy expenditure. Higher weight results in higher energy requirement through a higher resting requirement because of a higher maintenance cost of a larger body. Activity-induced energy expenditure is the most variable component of total energy expenditure. Smaller and leaner subjects generally move more as activity energy expenditure in larger subjects is not higher in proportion to the cost of moving with a higher body weight. Food intake induces changes in energy expenditure as a function of changes in body size and body composition. In addition, energy restriction induces an adaptive reduction of energy expenditure through a lowering of tissue metabolism and a reduction of body movement. An exercise-induced increase in activity expenditure is a function of the training status. In untrained subjects, exercise induces a larger increase in total energy expenditure than can be attributed to the energy cost of a training program. Trained subjects have a higher performance at the same expenditure through a higher exercise economy.

  8. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may ‘eat up’ parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential ‘psychological rebound effects.’ It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough “rule of thumb”, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  9. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    NASA Astrophysics Data System (ADS)

    Santarius, Tilman

    2015-03-01

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may `eat up' parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential `psychological rebound effects.' It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough "rule of thumb", in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  10. Multiple muons in MACRO

    NASA Technical Reports Server (NTRS)

    Heinz, R.

    1985-01-01

    An analysis of the multiple muon events in the Monopole Astrophysics and Cosmic Ray Observatory detector was conducted to determine the cosmic ray composition. Particular emphasis is placed on the interesting primary cosmic ray energy region above 2000 TeV/nucleus. An extensive study of muon production in cosmic ray showers has been done. Results were used to parameterize the characteristics of muon penetration into the Earth to the location of a detector.

  11. Nano/macro porous bioactive glass scaffold

    NASA Astrophysics Data System (ADS)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  12. The Macro - TIPS Course Package.

    ERIC Educational Resources Information Center

    Heriot-Watt Univ., Edinburgh (Scotland). Esmee Fairbairn Economics Research Centre.

    The TIPS (Teaching Information Processing System) Course Package was designed to be used with the Macro-Games Course Package (SO 011 930) in order to train college students to apply the tools of economic analysis to current problems. TIPS is used to provide feedback and individualized assignments to students, as well as information about the…

  13. Editing with Macros on Micros.

    ERIC Educational Resources Information Center

    Robbins, Joel

    1994-01-01

    Argues that evaluating electronic versions of students' writing saves time and makes grading easier. Explains how the author uses custom-designed macros to provide comments and guidance to students with more elaboration than is possible by writing comments on the margins of the papers. (PA)

  14. NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV).

    PubMed

    Huang, Yi-Ping; Cho, Chao-Cheng; Chang, Chi-Fon; Hsu, Chun-Hua

    2016-10-01

    The newly emerging human pathogen, Middle East respiratory syndrome coronavirus (MERS-CoV), contains a macro domain in the highly conserved N-terminal region of non-structural protein 3. Intense research has shown that macro domains bind ADP-ribose and other derivatives, but it still remains intangible about their exact function. In this study we report the preliminary structural analysis through solution NMR spectroscopy of the MERS-CoV macro domain. The near complete NMR assignments of MERS-CoV macro domain provide the basis for subsequent structural and biochemical investigation in the context of protein function.

  15. Determinants of Structure in Arts, Science, and Humanities Colleges in Major Universities: A Macro-Sociological Approach. ASHE Annual Meeting 1979 Paper.

    ERIC Educational Resources Information Center

    Creswell, John; Jones, Larry R.

    Deans from 53 colleges of arts, science, and humanities at major U.S. universities provided data about the structure of their colleges. These colleges were studied because structural changes are occurring and baseline data is needed. Forty-two percent of the deans reported that a formal study of reorganization of their colleges had taken place in…

  16. Laboratory and field methods for measuring human energy expenditure.

    PubMed

    Leonard, William R

    2012-01-01

    Energetics research is central to the field of human biology. Energy is an important currency for measuring adaptation, because both its acquisition and allocation for biological processes have important implications for survival and reproduction. Recent technological and methodological advances are now allowing human biologists to study variation in energy dynamics with much greater accuracy in a wide variety of ecological contexts. This article provides an overview of the methods used for measuring human energy expenditure (EE) and considers some of the important ecological and evolutionary questions that can be explored from an energetics perspective. Basic principles of calorimetry are first presented, followed by an overview of the equipment used for measuring human EE and work capacity. Methods for measuring three important dimensions of human EE-resting metabolic rate, working/exercising EE, and total EE-are then presented, highlighting key areas of ongoing research.

  17. Students' Conceptions about Energy and the Human Body

    ERIC Educational Resources Information Center

    Mann, Michael; Treagust, David F.

    2010-01-01

    Students' understanding of energy has been primarily within the domain of physics. This study sought to examine students' understanding of concepts relating to energy and the human body using pencil and paper questionnaires administered to 610 students in Years 8-12. From students' responses to the questionnaires, conceptual patterns were…

  18. At the Limit: Introducing Energy with Human Senses

    NASA Astrophysics Data System (ADS)

    Stinken, Lisa; Heusler, Stefan; Carmesin, Hans-Otto

    2016-12-01

    Energy belongs to the core ideas of the physics curriculum. But at the same time, energy is one of the most complex topics in science education since it occurs in multiple ways, such as motion, sound, light, and thermal energy. It can neither be destroyed nor created, but only converted. Due to the variety of relevant scales and abstractness of the term energy, the question arises how to introduce energy at the introductory physics level. The aim of this article is to demonstrate how the concept of energy can become meaningful in the context of the human senses. Three simple experiments to investigate the minimal amount of energy that is required to generate a sensory perception are presented. In this way students can learn that even different sensory perceptions can be compared by using energy as the unifying concept.

  19. Development of enhanced piezoelectric energy harvester induced by human motion.

    PubMed

    Minami, Y; Nakamachi, E

    2012-01-01

    In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever and a couple of permanent magnets. One magnet was attached at the end of cantilever, and the counterpart magnet was set at the end of the pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous presence of vibration, is converted to the electric energy via the piezoelectric cantilever vibration system. At first, we studied the energy convert mechanism and the performance of our energy harvester, where the resonance free vibration of unimorph cantilever with one permanent magnet under a rather high frequency was induced by the artificial low frequency vibration. The counterpart magnet attached on the pendulum. Next, we equipped the counterpart permanent magnet pendulum, which was fluctuated under a very low frequency by the human walking, and the piezoelectric cantilever, which had the permanent magnet at the end. The low-to-high frequency convert "hybrid system" can be characterized as an enhanced energy harvest one. We examined and obtained maximum values of voltage and power in this system, as 1.2V and 1.2 µW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.

  20. Understanding the human dimensions of a sustainable energy transition

    PubMed Central

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people’s perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705

  1. Understanding the human dimensions of a sustainable energy transition.

    PubMed

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes.

  2. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  3. Human Motion Energy Harvesting for AAL Applications

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Becker, P.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    Research and development into the topic of ambient assisted living has led to an increasing range of devices that facilitate a person's life. The issue of the power supply of these modern mobile systems however has not been solved satisfactorily yet. In this paper a flat inductive multi-coil harvester for integration into the shoe sole is presented. The device is designed for ambient assisted living (AAL) applications and particularly to power a self-lacing shoe. The harvester exploits the horizontal swing motion of the foot to generate energy. Stacks of opposing magnets move through a number of equally spaced coils to induce a voltage. The requirement of a flat structure which can be integrated into the shoe sole is met by a reduced form factor of the magnet stack. In order to exploit the full width of the shoe sole, supporting structures are used to parallelize the harvester and therefore increase the number of active elements, i.e. magnets and coils. The development and characterization of different harvester variations is presented with the best tested design generating an average power of up to 2.14 mW at a compact device size of 75 × 41.5 × 15 mm3 including housing.

  4. An Excel macro for generating trilinear plots.

    PubMed

    Shikaze, Steven G; Crowe, Allan S

    2007-01-01

    This computer note describes a method for creating trilinear plots in Microsoft Excel. Macros have been created in MS Excel's internal language: Visual Basic for Applications (VBA). A simple form has been set up to allow the user to input data from an Excel worksheet. The VBA macro is used to convert the triangular data (which consist of three columns of percentage data) into X-Y data. The macro then generates the axes, labels, and grid for the trilinear plot. The X-Y data are plotted as scatter data in Excel. By providing this macro in Excel, users can create trilinear plots in a quick, inexpensive manner.

  5. Energy harvesting from human motion: materials and techniques.

    PubMed

    Invernizzi, F; Dulio, S; Patrini, M; Guizzetti, G; Mustarelli, P

    2016-10-10

    Energy harvesting from human motion is a research field under rapid development. In this tutorial review we address the main physical and physico-chemical processes which can lead to energy generation, including electromagnetism, piezoelectricity, and electrostatic generation. Emphasis is put on the relationships among material properties and device efficiency. Some new and relatively less known approaches, such as triboelectric nanogeneration (TENG) and reverse electrowetting (REWOD), are reported in more detail.

  6. Serum Macro TSH Level is Associated with Sleep Quality in Patients with Cardiovascular Risks - HSCAA Study.

    PubMed

    Kadoya, Manabu; Koyama, Sachie; Morimoto, Akiko; Miyoshi, Akio; Kakutani, Miki; Hamamoto, Kae; Kurajoh, Masafumi; Shoji, Takuhito; Moriwaki, Yuji; Koshiba, Masahiro; Yamamoto, Tetsuya; Inaba, Masaaki; Namba, Mitsuyoshi; Koyama, Hidenori

    2017-03-13

    Macro thyroid-stimulating hormone (TSH) has been reported to be associated with seasonality and regulated by changes in day length in rodents, different from free TSH. In the present study, we investigated structural differences between macro TSH and free TSH levels in human serum, as well as the association of macro TSH with sleep quality. We enrolled 314 patients registered in the Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA) study. Sleep quality shown by actigraphy, sleep physical activity, and percent sleep in all and TSH closely matched subjects were significantly associated with high macro TSH levels. Macro and free TSH were similarly increased following thyrotropin-releasing hormone (TRH) stimulation, while circadian changes associated with those were distinct. To further analyze the structure of macro TSH, serum samples were separated by gel filtration chromatography. Although treatment with glycosidase did not affect morbidity, the macro TSH fraction had a markedly low affinity to the Con A column as compared with free TSH, indicating a distinct glycosylation structure. In conclusion, an increase in serum macro TSH is associated with low sleep quality and regulated in a manner distinct from free TSH, potentially due to an altered glycosylation structure.

  7. Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Fan, Kangqi; Yu, Bo; Zhu, Yingmin; Liu, Zhaohui; Wang, Liansong

    2017-03-01

    Scavenging energy from human motion through piezoelectric transduction has been considered as a feasible alternative to batteries for powering portable devices and realizing self-sustained devices. To date, most piezoelectric energy harvesters (PEHs) developed can only collect energy from the uni-directional mechanical vibration. This deficiency severely limits their applicability to human motion energy harvesting because the human motion involves diverse mechanical motions. In this paper, a novel PEH is proposed to harvest energy from the motion of human lower limbs. This PEH is composed of two piezoelectric cantilever beams, a sleeve and a ferromagnetic ball. The two beams are designed to sense the vibration along the tibial axis and conduct piezoelectric conversion. The ball senses the leg swing and actuates the two beams to vibrate via magnetic coupling. Theoretical and experimental studies indicate that the proposed PEH can scavenge energy from both the vibration and the swing. During each stride, the PEH can produce multiple peaks in voltage output, which is attributed to the superposition of different excitations. Moreover, the root-mean-square (RMS) voltage output of the PEH increases when the walking speed ranges from 2 to 8 km/h. In addition, the ultra-low frequencies of human motion are also up-converted by the proposed design.

  8. The Mass Flux of Non-renewable Energy for Humanity

    NASA Astrophysics Data System (ADS)

    Solomon, Edwin

    The global energy supply relies on non-renewable energy sources, coal, crude oil, and natural gas, along with nuclear power from uranium and these finite resources are located within the upper few kilometers of the Earth's crust. The total quantity of non-renewable energy resources consumed relative to the total quantity available is an essential question facing humanity. Analyses of energy consumption was conducted for the period 1800--2014 using data from the U. S. Energy Information Administration (EIA) and World Energy Production, 1800--1985 to determine the balance between non-renewable energy resources consumed and ultimately recoverable reserves. Annual energy consumption was plotted for each non-renewable resource followed by analyses to determine annual growth rates of consumption. Results indicated total energy consumption grew approximately exponentially 3.6% per year from 1800--1975 and was linear from 1975--2014. The ultimately recoverable reserves (URR) plus the total quantity consumed to date equals the total energy resource reserve prior to exploitation (7.15 x 1018 grams). Knowing the original resource quantity and the annual consumption and growth rates, we can forecast the duration of remaining resources using different scenarios. Alternatively, we can use population growth models and consumption trends to determine the per capita allocation trends and model that into the future. Alternative modeling of future resource allocation on a per capita bases suggests that resource lifetime may be significantly less than that predicted from consumption and production dynamics alone.

  9. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-09

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  10. The gut microbiota in human energy homeostasis and obesity

    PubMed Central

    Knight, Rob; Leibel, Rudolph L.

    2016-01-01

    Numerous studies of rodents suggest that the gut micro-biota populations are sensitive to genetic and environmental influences, and can produce or influence afferent signals that directly or indirectly impinge on energy homeostatic systems affecting both energy balance (weight gain or loss) and energy stores. Fecal transplants from obese and lean human, and from mouse donors to gnotobiotic mice, result in adoption of the donor so-matotype by the formerly germ-free rodents. Thus, the microbiota is certainly implicated in the development of obesity, adiposity-related comorbidities, and the response to interventions designed to achieve sustained weight reduction in mice. More studies are needed to determine whether the microbiota plays a similarly potent role in human body-weight regulation and obesity. PMID:26257300

  11. Energy.

    ERIC Educational Resources Information Center

    Online-Offline, 1998

    1998-01-01

    This issue focuses on the theme of "Energy," and describes several educational resources (Web sites, CD-ROMs and software, videos, books, activities, and other resources). Sidebars offer features on alternative energy, animal energy, internal combustion engines, and energy from food. Subthemes include harnessing energy, human energy, and…

  12. Role of leptin in energy homeostasis in humans

    PubMed Central

    Rosenbaum, Michael; Leibel, Rudolph L

    2015-01-01

    The hyperphagia, low sympathetic nervous system tone, and decreased circulating concentrations of bioactive thyroid hormones that are common to states of congenital leptin deficiency and hypoleptinemia following and during weight loss suggest that the major physiological function of leptin is to signal states of negative energy balance and decreased energy stores. In weight-reduced humans, these phenotypes together with pronounced hypometabolism and increased parasympathetic nervous system tone create the optimal circumstance for weight regain. Based on the weight loss induced by leptin administration in states of leptin deficiency (obese) and observed similarity of phenotypes in states of congenital and dietary-induced states of hypoleptinemia (reduced obese), it has been suggested that exogenous leptin could potentially be useful in initiating, promoting, and sustaining weight reduction. However, the responses of human beings to exogenous leptin administration are dependent not only on extant energy stores but also on energy balance. Leptin administration to humans at usual weight has little, if any, effect on body weight while leptin administration during weight loss mitigates hunger, especially if given in supraphysiological doses during severe caloric restriction. Leptin repletion is most effective following weight loss by dietary restriction. In this state of weight stability but reduced energy stores, leptin at least partially reverses many of the metabolic, autonomic, neuroendocrine, and behavioral adaptations that favor weight regain. The major physiological function of leptin is to signal states of negative energy balance and decreased energy stores. Leptin, and pharmacotherapies affecting leptin signaling pathways, is likely to be most useful in sustaining weight loss. PMID:25063755

  13. Thirst for Power: Energy, Water and Human Survival

    NASA Astrophysics Data System (ADS)

    Webber, M.

    2015-12-01

    Energy and water are precious resources, and they are interconnected. The energy sector uses a lot of water -- the thermoelectric power sector alone is the largest user of water in the U.S., withdrawing 200 billion gallons daily for powerplant cooling. Conversely, the water sector is responsible for over twelve percent of national energy consumption for moving, pumping, treating, and heating water. This interdependence means that droughts can cause energy shortages, and power outages can bring the water system to a halt. It also means that water efficiency is a pathway to energy efficiency and vice versa. This talk will give a big-picture overview of global energy and water trends to describe how they interact, what conflicts are looming, and how they can work together. This talk will include the vulnerabilities and cross-cutting solutions such as efficient markets and smart technologies that embed more information about resource management. It will include discussion of how population growth, economic growth, climate change, and short-sighted policies are likely to make things worse. Yet, more integrated planning with long-term sustainability in mind along with cultural shifts, advanced technologies, and better design can avert such a daunting future. Combining anecdotes and personal stories with insights into the latest science of energy and water, this talk will identify a hopeful path toward wise, long-range water-energy decisions and a more reliable and abundant future for humanity.

  14. Human energy expenditure in lowland rice cultivation in Malaysia.

    PubMed

    Nawi, N M; Yahya, A; Chen, G; Bockari-Gevao, S M; Maraseni, T N

    2012-01-01

    A study was undertaken to evaluate the human energy consumption of various field operations involved in lowland rice cultivation in Malaysia. Based on recorded average heart rates, fertilizing was found to be the most strenuous operation, with an average heart rate of 138 beats min(-1). There were no significant differences in the average heart rates of the subjects among the individual tasks within the first plowing, second plowing, and harvesting operations, with the average heart rates for these three tasks being 116, 106, and 106 beats min(-1), respectively. The corresponding energy expenditures were 3.90, 3.43, and 3.35 kcal min(-1). Loading the seed into the blower tank and broadcasting the seed were the most critical tasks for the seed broadcasting operation, with average heart rates of 124 and 136 beats min(-1), respectively. The highest energy expenditure of 418.38 kcal ha(-1) was observed for seed broadcasting, and the lowest energy expenditure of 127.96 kcal ha(-1) was for second plowing. The total seasonal human energy expenditure for rice cultivation was estimated to be 5810.71 kcal ha(-1), 55.7% of which was spent on pesticide spraying. Although the sample size in this study was relatively small, the results indicated that human energy expenditure per unit area (kcal ha(-1)) was positively linked to the average heart rate of the subjects and negatively linked to the field capacity. Thus, mechanization of certain tasks could decrease worker physical effort and fatigue and increase production.

  15. Human energy and work in a European village.

    PubMed

    Freudenberger, H

    1998-09-01

    In order to understand the problem of poverty its historical background must be elucidated. Since in the past most people in Europe were peasants living in small villages, a useful, initial way to examine the question of poverty is to investigate the villagers' condition of life. A basic contribution to this endeavor is to compile a food balance sheet that includes the food energy necessary for a healthy population, the amount of food in terms of calories that was available and the human energy required for the production of the nutriments. This essay is a case-study, incorporating these variables for the village Unterfinning (Bavaria) in 1721.

  16. CFD development for macro particle simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Glenn, Chance; Xiao, Zhigang; Zhang, Sijun

    2014-05-01

    Numerous industrial operations involve fluid-particle systems, in which both phases display very complex behaviour. Some examples include fluidisation technology in catalytic reactors, pneumatic transportation of grain or powder materials, carbon nanotube alignment in the nano-devices and circuit integration and so on. In this paper, a macro particle method is developed to model the fluid-particle flows. The macro particle is formed by a collection of micro-sized particles so that the number of macro particles to be tracked is much less than the number of smaller particles. Unlike the calculations of instantaneous point variables of fluid phase with moving discrete boundaries of the smaller particles with direct numerical simulation, the boundary of each macro particle is just dealt with the blocked-off approach. On the other hand, the flow fields based on the present method is solved by original Navier-Stokes, rather than the modified ones based on the locally averaged theorem. The flow fields are solved on the length scale of computational cells, while the resolutions of solid particles are the size of macro particle, which is determined as needed in specific applications. The macro particle method is validated by several selected cases, which demonstrate that the macro particle method could accurately resolve fluid-particle systems in an efficient, robust and flexible fashion.

  17. [Energy saving and LED lamp lighting and human health].

    PubMed

    Deĭnego, V N; Kaptsov, V A

    2013-01-01

    The appearance of new sources of high-intensity with large proportion of blue light in the spectrum revealed new risks of their influence on the function of the eye and human health, especially for children and teenagers. There is an urgent need to reconsider the research methods of vision hygiene in conditions of energy-saving and LED bulbs lighting. On the basis of a systematic approach and knowledge of the newly discovered photosensitive receptors there was built hierarchical model of the interaction of "light environment - the eye - the system of formation of visual images - the hormonal system of the person - his psycho-physiological state." This approach allowed us to develop a range of risk for the negative impact of spectrum on the functions of the eye and human health, as well as to formulate the hygiene requirements for energy-efficient high-intensity light sources.

  18. Macros help solve common petroleum engineering calculations

    SciTech Connect

    Muchmore, D.

    1995-11-06

    A toolkit consisting of macros provides petroleum engineers an easy method for incorporating petroleum fluid properties into spreadsheets. Published correlations were used to write the macros, defined as Microsoft Excel functions. Engineers can call these functions when constructing spreadsheets and eliminate having to access external sources for many common fluid property correlations. The Excel functions also allow the correlations to be easily incorporated into existing spreadsheets. A collection of spreadsheets is included with the toolkit that use these functions for the solution of common petroleum engineering problems. Functions, terms, spreadsheets are listed in the accompany box. The article also explains how to obtain a diskette containing the macros.

  19. The Human Genome Initiative of the Department of Energy

    SciTech Connect

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative. 34 refs.

  20. The Human Genome Initiative of the Department of Energy

    DOE R&D Accomplishments Database

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  1. Loss of histone variant macroH2A2 expression associates with progression of anal neoplasm

    PubMed Central

    Hu, Wan-Hsiang; Miyai, Katsumi; Sporn, Judith C; Luo, Linda; Wang, Jean Y J; Cosman, Bard; Ramamoorthy, Sonia

    2016-01-01

    Aims The macroH2A histone variants are epigenetic marks for inactivated chromatin. In this study, we examined the expression of macroH2A2 in anal neoplasm from anal intraepithelial neoplasia (AIN) to anal squamous cell carcinoma (SCC). Methods AIN and anal SCC samples were analysed for macroH2A2 expression, HIV and human papilloma virus (HPV). The association of macroH2A2 expression with clinical grade, disease recurrence, overall survival and viral involvement was determined. Results macroH2A2 was expressed in normal squamous tissue and lower grade AIN (I and II). Expression was lost in 38% of high-grade AIN (III) and 71% of anal SCC (p=0.002). Patients with AIN with macroH2A2-negative lesions showed earlier recurrence than those with macroH2A2-positive neoplasm (p=0.017). With anal SCC, macroH2A2 loss was more prevalent in the HPV-negative tumours. Conclusions Loss of histone variant macroH2A2 expression is associated with the progression of anal neoplasm and can be used as a prognostic biomarker for high-grade AIN and SCC. PMID:26658220

  2. Measurement of neutrino oscillations in MACRO experiment

    NASA Technical Reports Server (NTRS)

    Musser, J.

    1985-01-01

    The possibility of investigating neutrino oscillations in the proposed MACRO experiment are considered. Its sensitivity taking into account the theoretical uncertainties coming from flux calculations, geomagnetic effects and propagation through matter, and the experimental limitations.

  3. Bracing micro/macro manipulators control

    SciTech Connect

    Lew, J.Y.; Book, W.J.

    1994-05-01

    This paper proposes a bracing strategy for micro/macro manipulators. The bracing micro/macro manipulator can provide advantages in accurate positioning, large work-space, and contact-task capability however, in exchange for improvement in performance one must accept the complex control problem along wit the complex dynamics. This research develops a control scheme for a bracing manipulator which makes multiple contacts with the environment. Experimental results show the feasibility of the proposed ideas for real world applications.

  4. Crowd macro state detection using entropy model

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Yuan, Mengqi; Su, Guofeng; Chen, Tao

    2015-08-01

    In the crowd security research area a primary concern is to identify the macro state of crowd behaviors to prevent disasters and to supervise the crowd behaviors. The entropy is used to describe the macro state of a self-organization system in physics. The entropy change indicates the system macro state change. This paper provides a method to construct crowd behavior microstates and the corresponded probability distribution using the individuals' velocity information (magnitude and direction). Then an entropy model was built up to describe the crowd behavior macro state. Simulation experiments and video detection experiments were conducted. It was verified that in the disordered state, the crowd behavior entropy is close to the theoretical maximum entropy; while in ordered state, the entropy is much lower than half of the theoretical maximum entropy. The crowd behavior macro state sudden change leads to the entropy change. The proposed entropy model is more applicable than the order parameter model in crowd behavior detection. By recognizing the entropy mutation, it is possible to detect the crowd behavior macro state automatically by utilizing cameras. Results will provide data support on crowd emergency prevention and on emergency manual intervention.

  5. The macro domain as fusion tag for carrier-driven crystallization.

    PubMed

    Wild, Rebekka; Hothorn, Michael

    2017-02-01

    Obtaining well-ordered crystals remains a significant challenge in protein X-ray crystallography. Carrier-driven crystallization can facilitate crystal formation and structure solution of difficult target proteins. We obtained crystals of the small and highly flexible SPX domain from the yeast vacuolar transporter chaperone 4 (Vtc4) when fused to a C-terminal, non-cleavable macro tag derived from human histone macroH2A1.1. Initial crystals diffracted to 3.3 Å resolution. Reductive protein methylation of the fusion protein yielded a new crystal form diffracting to 2.1 Å. The structures were solved by molecular replacement, using isolated macro domain structures as search models. Our findings suggest that macro domain tags can be employed in recombinant protein expression in E. coli, and in carrier-driven crystallization.

  6. Human Behavior & Low Energy Architecture: Linking Environmental Adaptation, Personal Comfort, & Energy Use in the Built Environment

    NASA Astrophysics Data System (ADS)

    Langevin, Jared

    Truly sustainable buildings serve to enrich the daily sensory experience of their human inhabitants while consuming the least amount of energy possible; yet, building occupants and their environmentally adaptive behaviors remain a poorly characterized variable in even the most "green" building design and operation approaches. This deficiency has been linked to gaps between predicted and actual energy use, as well as to eventual problems with occupant discomfort, productivity losses, and health issues. Going forward, better tools are needed for considering the human-building interaction as a key part of energy efficiency strategies that promote good Indoor Environmental Quality (IEQ) in buildings. This dissertation presents the development and implementation of a Human and Building Interaction Toolkit (HABIT), a framework for the integrated simulation of office occupants' thermally adaptive behaviors, IEQ, and building energy use as part of sustainable building design and operation. Development of HABIT begins with an effort to devise more reliable methods for predicting individual occupants' thermal comfort, considered the driving force behind the behaviors of focus for this project. A long-term field study of thermal comfort and behavior is then presented, and the data it generates are used to develop and validate an agent-based behavior simulation model. Key aspects of the agent-based behavior model are described, and its predictive abilities are shown to compare favorably to those of multiple other behavior modeling options. Finally, the agent-based behavior model is linked with whole building energy simulation in EnergyPlus, forming the full HABIT program. The program is used to evaluate the energy and IEQ impacts of several occupant behavior scenarios in the simulation of a case study office building for the Philadelphia climate. Results indicate that more efficient local heating/cooling options may be paired with wider set point ranges to yield up to 24

  7. The human component of sustainability: a study for assessing "human performances" of energy efficient construction blocks.

    PubMed

    Attaianese, Erminia; Duca, Gabriella

    2012-01-01

    This paper presents an applied research aimed at understanding the relevance and the applicability of human related criteria in sustainability assessment of construction materials. Under a theoretical perspective, human factors consideration is strongly encouraged by building sustainability assessment methods, but the practice demonstrates that current models for building sustainability assessment neglect ergonomic issues, especially those ones concerning the construction phase. The study starts from the observation that new construction techniques for high energy efficient external walls are characterized by elements generally heavier and bigger than traditional materials. In this case, high sustainability performances connected with energy saving could be reached only consuming high, and then not very much sustainable, human efforts during setting-up operations. The paper illustrates a practical approach for encompassing human factors in sustainability assessment of four block types for energy efficient external walls. Research steps, from block selections to bricklaying task analysis, human factors indicators and metrics formulation, data gathering and final assessment are going to be presented. Finally, open issues and further possible generalizations from the particular case study will be discussed.

  8. Modeling of human movement monitoring using Bluetooth Low Energy technology.

    PubMed

    Mokhtari, G; Zhang, Q; Karunanithi, M

    2015-01-01

    Bluetooth Low Energy (BLE) is a wireless communication technology which can be used to monitor human movements. In this monitoring system, a BLE signal scanner scans signal strength of BLE tags carried by people, to thus infer human movement patterns within its monitoring zone. However to the extent of our knowledge one main aspect of this monitoring system which has not yet been thoroughly investigated in literature is how to build a sound theoretical model, based on tunable BLE communication parameters such as scanning time interval and advertising time interval, to enable the study and design of effective and efficient movement monitoring systems. In this paper, we proposed and developed a statistical model based on Monte-Carlo simulation, which can be utilized to assess impacts of BLE technology parameters in terms of latency and efficiency, on a movement monitoring system, and can thus benefit a more efficient system design.

  9. Scavenging energy from human motion with tubular dielectric polymer

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, Claire; Basrour, Skandar

    2010-04-01

    Scavenging energy from human motion is a challenge to supply low consumption systems for sport or medical applications. A promising solution is to use electroactive polymers and especially dielectric polymers to scavenge mechanical energy during walk. In this paper, we present a tubular dielectric generator which is the first step toward an integration of these structures into textiles. For a 10cm length and under a strain of 100%, the structure is able to scavenge 1.5μJ for a poling voltage of 200V and up to 40μJ for a poling voltage of 1000V. A 30cm length structure is finally compared to our previous planar structure, and the power management module for those structures is discussed.

  10. Low Energy Defibrillation in Human Cardiac Tissue: A Simulation Study

    PubMed Central

    Morgan, Stuart W.; Plank, Gernot; Biktasheva, Irina V.; Biktashev, Vadim N.

    2009-01-01

    We aim to assess the effectiveness of feedback-controlled resonant drift pacing as a method for low energy defibrillation. Antitachycardia pacing is the only low energy defibrillation approach to have gained clinical significance, but it is still suboptimal. Low energy defibrillation would avoid adverse side effects associated with high voltage shocks and allow the application of implantable cardioverter defibrillator (ICD) therapy, in cases where such therapy is not tolerated today. We present results of computer simulations of a bidomain model of cardiac tissue with human atrial ionic kinetics. Reentry was initiated and low energy shocks were applied with the same period as the reentry, using feedback to maintain resonance. We demonstrate that such stimulation can move the core of reentrant patterns, in the direction that depends on the location of the electrodes and the time delay in the feedback. Termination of reentry is achieved with shock strength one-order-of-magnitude weaker than in conventional single-shock defibrillation. We conclude that resonant drift pacing can terminate reentry at a fraction of the shock strength currently used for defibrillation and can potentially work where antitachycardia pacing fails, due to the feedback mechanisms. Success depends on a number of details that these numerical simulations have uncovered. PMID:19217854

  11. Energy Harvesting from Human Motion Using Footstep-Induced Airflow

    NASA Astrophysics Data System (ADS)

    Fu, H.; Xu, R.; Seto, K.; Yeatman, E. M.; Kim, S. G.

    2015-12-01

    This paper presents an unobtrusive in-shoe energy harvester converting foot-strike energy into electricity to power wearable or portable devices. An air-pumped turbine system is developed to address the issues of the limited vertical deformation of shoes and the low frequency of human motion that impede harvesting energy from this source. The air pump is employed to convert the vertical foot-strike motion into airflow. The generated airflow passes through the miniaturized wind turbine whose transduction is realized by an electromagnetic generator. Energy is extracted from the generator with a higher frequency than that of footsteps, boosting the output power of the device. The turbine casing is specifically designed to enable the device to operate continuously with airflow in both directions. A prototype was fabricated and then tested under different situations. A 6 mW peak power output was obtained with a 4.9 Ω load. The achievable power from this design was estimated theoretically for understanding and further improvement.

  12. Exploring the Links Between Macro-Level Contextual Factors and Their Influence on Nursing Workforce Composition

    PubMed Central

    Squires, Allison; Beltrán-Sánchez, Hiram

    2012-01-01

    Research that links macro-level socioeconomic development variables to healthcare human resources workforce composition is scarce at best. The purpose of this study was to explore the links between non-nursing factors and nursing workforce composition through a secondary, descriptive analysis of year 2000, publicly available national nursing human resources data from Mexico. Building on previous research, the authors conducted multiple robust regression analysis by federal typing of nursing human resources from 31 Mexican states against macro-level socioeconomic development variables. Average education in a state was significantly associated in predicting all types of formally educated nurses in Mexico. Other results suggest that macro level indicators have a different association with each type of nurse. Context may play a greater role in determining nursing workforce composition than previously thought. Further studies may help to explain differences both within and between countries. PMID:22513839

  13. Harvesting energy from the natural vibration of human walking.

    PubMed

    Yang, Weiqing; Chen, Jun; Zhu, Guang; Yang, Jin; Bai, Peng; Su, Yuanjie; Jing, Qingsheng; Cao, Xia; Wang, Zhong Lin

    2013-12-23

    The triboelectric nanogenerator (TENG), a unique technology for harvesting ambient mechanical energy based on the triboelectric effect, has been proven to be a cost-effective, simple, and robust approach for self-powered systems. However, a general challenge is that the output current is usually low. Here, we demonstrated a rationally designed TENG with integrated rhombic gridding, which greatly improved the total current output owing to the structurally multiplied unit cells connected in parallel. With the hybridization of both the contact-separation mode and sliding electrification mode among nanowire arrays and nanopores fabricated onto the surfaces of two contact plates, the newly designed TENG produces an open-circuit voltage up to 428 V, and a short-circuit current of 1.395 mA with the peak power density of 30.7 W/m(2). Relying on the TENG, a self-powered backpack was developed with a vibration-to-electric energy conversion efficiency up to 10.62(±1.19) %. And it was also demonstrated as a direct power source for instantaneously lighting 40 commercial light-emitting diodes by harvesting the vibration energy from natural human walking. The newly designed TENG can be a mobile power source for field engineers, explorers, and disaster-relief workers.

  14. Ultrafast pulse lasers jump to macro applications

    NASA Astrophysics Data System (ADS)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten

    2016-03-01

    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  15. Serum Macro TSH Level is Associated with Sleep Quality in Patients with Cardiovascular Risks – HSCAA Study

    PubMed Central

    Kadoya, Manabu; Koyama, Sachie; Morimoto, Akiko; Miyoshi, Akio; Kakutani, Miki; Hamamoto, Kae; Kurajoh, Masafumi; Shoji, Takuhito; Moriwaki, Yuji; Koshiba, Masahiro; Yamamoto, Tetsuya; Inaba, Masaaki; Namba, Mitsuyoshi; Koyama, Hidenori

    2017-01-01

    Macro thyroid-stimulating hormone (TSH) has been reported to be associated with seasonality and regulated by changes in day length in rodents, different from free TSH. In the present study, we investigated structural differences between macro TSH and free TSH levels in human serum, as well as the association of macro TSH with sleep quality. We enrolled 314 patients registered in the Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA) study. Sleep quality shown by actigraphy, sleep physical activity, and percent sleep in all and TSH closely matched subjects were significantly associated with high macro TSH levels. Macro and free TSH were similarly increased following thyrotropin-releasing hormone (TRH) stimulation, while circadian changes associated with those were distinct. To further analyze the structure of macro TSH, serum samples were separated by gel filtration chromatography. Although treatment with glycosidase did not affect morbidity, the macro TSH fraction had a markedly low affinity to the Con A column as compared with free TSH, indicating a distinct glycosylation structure. In conclusion, an increase in serum macro TSH is associated with low sleep quality and regulated in a manner distinct from free TSH, potentially due to an altered glycosylation structure. PMID:28287185

  16. Dialogue on Climate, Water, Energy and Human Security in Africa

    DTIC Science & Technology

    2014-07-01

    DIALOGUE ON CLIMATE,  WATER , ENERGY AND HUMAN SECURITY  IN AFRICA  The Africa Center for Security Studies, US Africa Command, and the US Army Corps of...organizations  responsible  for managing  water   resources  in  these  basins/regions  on  a  transboundry basis, and  to  launch more  robust co‐operation...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Dialogue on Climate, Water , Energy and Human Security in Africa 5a. CONTRACT NUMBER W911NF

  17. On the scaling problem and micro-macro derivation of crowd models. Comment on "Human behaviours in evacuation crowd dynamics: From modelling to "big data" toward crisis management" by Nicola Bellomo et al.

    NASA Astrophysics Data System (ADS)

    Chouhad, Nadia

    2016-09-01

    A personal comment on a scientific paper is unavoidably related to the personal education and bias. This statement allows me to apologize about the fact that my comment mainly focuses on a somewhat narrow field, namely to analytic topics related to modeling behavioral crowds. The remarks in the following aim also to induce further research suggestions from the authors of paper [3]. In more detail I bring to the attention of the authors of [3] and I look forward to their reply in view of future activity in this field: The micro-macro derivation of hydrodynamic type models should lead to hyperbolic type models, where the propagation speed of perturbation is finite, see [4]. However, it would be interesting understanding how far parabolic type models [6], and their possible modifications, can be accepted as an approximation of physical reality [8].

  18. Energy harvesting from human motion: exploiting swing and shock excitations

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Willmann, A.; Becker, P.; Folkmer, B.; Manoli, Y.

    2015-02-01

    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm3 a power density of 40 μW cm-3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm-3 for the total device volume of 48 cm3. Difficulties and potential improvements are discussed briefly.

  19. A SAS IML Macro for Loglinear Smoothing

    ERIC Educational Resources Information Center

    Moses, Tim; von Davier, Alina

    2011-01-01

    Polynomial loglinear models for one-, two-, and higher-way contingency tables have important applications to measurement and assessment. They are essentially regarded as a smoothing technique, which is commonly referred to as loglinear smoothing. A SAS IML (SAS Institute, 2002a) macro was created to implement loglinear smoothing according to…

  20. Scaling of free-ranging primate energetics with body mass predicts low energy expenditure in humans.

    PubMed

    Simmen, Bruno; Darlu, Pierre; Hladik, Claude Marcel; Pasquet, Patrick

    2015-01-01

    Studies of how a mammal's daily energy expenditure scales with its body mass suggest that humans, whether Westerners, agro-pastoralists, or hunter-gatherers, all have much lower energy expenditures for their body mass than other mammals. However, non-human primates also differ from other mammals in several life history traits suggestive of low energy use. Judging by field metabolic rates of free-ranging strepsirhine and haplorhine primates with different lifestyle and body mass, estimated using doubly labeled water, primates have lower energy expenditure than other similar-sized eutherian mammals. Daily energy expenditure in humans fell along the regression line of non-human primates. The results suggest that thrifty energy use could be an ancient strategy of primates. Although physical activity is a major component of energy balance, our results suggest a need to revise the basis for establishing norms of energy expenditure in modern humans.

  1. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics.

    PubMed

    Manohara, S R; Hanagodimath, S M; Gerward, L

    2011-11-15

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Z(eff). These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues. With the proper knowledge of buildup factors of human organs and tissues, energy absorption in the human body can be carefully controlled. The present results will help in estimating safe dose levels for radiotherapy patients and also useful in diagnostics and dosimetry. The tissue-equivalent materials for skeletal muscle, adipose tissue, cortical bone, and lung tissue are also discussed. It is observed that water and MS20 are good tissue equivalent materials for skeletal muscle in the extended energy range.

  2. Wordperfect's toolbox: Formatting documents using styles and macros

    SciTech Connect

    May, W.E. )

    1990-01-01

    An automated system for formatting documents provides the technical communicator with tools to increase productivity, provide consistent document appearance, and decrease hassle and error. This paper demonstrates such a system, which uses WordPerfect's styles and macros, and illustrates the keystrokes necessary to format procedures and tables. Levels of automation will be discussed, progressing from manual application of styles, to applying styles with macros, to repeating macros with the escape key and through a parent macro. 3 refs.

  3. Soft tissues store and return mechanical energy in human running.

    PubMed

    Riddick, R C; Kuo, A D

    2016-02-08

    During human running, softer parts of the body may deform under load and dissipate mechanical energy. Although tissues such as the heel pad have been characterized individually, the aggregate work performed by all soft tissues during running is unknown. We therefore estimated the work performed by soft tissues (N=8 healthy adults) at running speeds ranging 2-5 m s(-1), computed as the difference between joint work performed on rigid segments, and whole-body estimates of work performed on the (non-rigid) body center of mass (COM) and peripheral to the COM. Soft tissues performed aggregate negative work, with magnitude increasing linearly with speed. The amount was about -19 J per stance phase at a nominal 3 m s(-1), accounting for more than 25% of stance phase negative work performed by the entire body. Fluctuations in soft tissue mechanical power over time resembled a damped oscillation starting at ground contact, with peak negative power comparable to that for the knee joint (about -500 W). Even the positive work from soft tissue rebound was significant, about 13 J per stance phase (about 17% of the positive work of the entire body). Assuming that the net dissipative work is offset by an equal amount of active, positive muscle work performed at 25% efficiency, soft tissue dissipation could account for about 29% of the net metabolic expenditure for running at 5 m s(-1). During running, soft tissue deformations dissipate mechanical energy that must be offset by active muscle work at non-negligible metabolic cost.

  4. Embodied energy of construction materials: integrating human and capital energy into an IO-based hybrid model.

    PubMed

    Dixit, Manish K; Culp, Charles H; Fernandez-Solis, Jose L

    2015-02-03

    Buildings alone consume approximately 40% of the annual global energy and contribute indirectly to the increasing concentration of atmospheric carbon. The total life cycle energy use of a building is composed of embodied and operating energy. Embodied energy includes all energy required to manufacture and transport building materials, and construct, maintain, and demolish a building. For a systemic energy and carbon assessment of buildings, it is critical to use a whole life cycle approach, which takes into account the embodied as well as operating energy. Whereas the calculation of a building's operating energy is straightforward, there is a lack of a complete embodied energy calculation method. Although an input-output-based (IO-based) hybrid method could provide a complete and consistent embodied energy calculation, there are unresolved issues, such as an overdependence on price data and exclusion of the energy of human labor and capital inputs. This paper proposes a method for calculating and integrating the energy of labor and capital input into an IO-based hybrid method. The results demonstrate that the IO-based hybrid method can provide relatively complete results. Also, to avoid errors, the total amount of human and capital energy should not be excluded from the calculation.

  5. Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion.

    PubMed

    Liu, Yong; Lan, Kun; Bagabas, Abdulaziz A; Zhang, Pengfei; Gao, Wenjun; Wang, Jingxiu; Sun, Zhenkun; Fan, Jianwei; Elzatahry, Ahmed A; Zhao, Dongyuan

    2016-02-17

    Well ordered, uniform 3D open macro/mesoporous TiO2 hollow microspheres with highly crystalline anatase thin shells have been successfully synthesized by a simple solvent evaporation-driven confined self-assembly method. The 3D open macro/mesoporous TiO2 hollow microspheres show high energy-conversion efficiency (up to 9.5%) and remarkable photocatalytic activity (with photodegradation of 100% for methylene blue in 12 min under UV light irradiation).

  6. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  7. Enhanced stopping of macro-particles in particle-in-cell simulations

    SciTech Connect

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2014-05-15

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q{sup 2}/m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles.

  8. Biological Systems, Energy Sources, and Biology Teaching. Biology and Human Welfare.

    ERIC Educational Resources Information Center

    Tribe, Michael; Pritchard, Alan J.

    This five-chapter document (part of a series on biology and human welfare) focuses on biological systems as energy sources and on the teaching of this subject area. Chapter 1 discusses various topics related to energy and ecology, including biomass, photosynthesis and world energy balances, energy flow through ecosystems, and others. Chapter 2…

  9. Solar Energy Education. Humanities: activities and teacher's guide. Field test edition

    SciTech Connect

    Not Available

    1982-01-01

    Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

  10. Expression, purification and crystallization of the SARS-CoV macro domain

    SciTech Connect

    Malet, Hélène; Dalle, Karen; Brémond, Nicolas; Tocque, Fabienne; Blangy, Stéphanie; Campanacci, Valérie; Coutard, Bruno; Grisel, Sacha; Lichière, Julie; Lantez, Violaine; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre

    2006-04-01

    The SARS-CoV macro domain was expressed, purified and crystallized. Selenomethionine-labelled crystals diffracted to 1.8 Å resolution. Macro domains or X domains are found as modules of multidomain proteins, but can also constitute a protein on their own. Recently, biochemical and structural studies of cellular macro domains have been performed, showing that they are active as ADP-ribose-1′′-phosphatases. Macro domains are also present in a number of positive-stranded RNA viruses, but their precise function in viral replication is still unknown. The major human pathogen severe acute respiratory syndrome coronavirus (SARS-CoV) encodes 16 non-structural proteins (nsps), one of which (nsp3) encompasses a macro domain. The SARS-CoV nsp3 gene region corresponding to amino acids 182–355 has been cloned, expressed in Escherichia coli, purified and crystallized. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 37.5, b = 55.6, c = 108.9 Å, β = 91.4°, and the asymmetric unit contains either two or three molecules. Both native and selenomethionine-labelled crystals diffract to 1.8 Å.

  11. Three-dimensional macro-structures of two-dimensional nanomaterials.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng

    2016-10-21

    If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.

  12. Applications of MACRO Photogrammetry in Archaeology

    NASA Astrophysics Data System (ADS)

    Gajski, D.; Solter, A.; Gašparovic, M.

    2016-06-01

    Many valuable archaeological artefacts have the size of a few centimetres or less. The production of relevant documentation of such artefacts is mainly limited to subjective interpretation and manual drawing techniques using a magnifier. Most of the laser scanners available for the archaeological purposes cannot reach sufficient space resolution to gather all relevant features of the artefact, such as the shape, the relief, the texture and any damage present. Digital photogrammetric techniques make measuring with high accuracy possible and such techniques can be used to produce the relevant archaeometric documentation with a high level of detail. The approaches for shooting a good macro photograph (in the photogrammetric sense) will be explored and discussed as well as the design of a calibration test-field and the self-calibration methods suitable for macro photogrammetry. Finally, the method will be tested by producing a photorealistic 3D-model of an ancient figurine.

  13. Macro-Fiber Composite Based Transduction

    DTIC Science & Technology

    2016-03-01

    Canada); Julliere, B. Source: Smart Materials and Structures, v 16, n 6, p 2315-2322, December 1,2007 Active Shape control - [0/903]T composite...August 1, 2014 Control of a space rigidizable inflatable boom using macro-fiber composite actuators Tarazaga, Pablo A. (Center for Intelligent Material ...Structural Dynamics and Controls Lab., Pennsylvania State University, 157E Hammond Building , University Park, PA 16802, United States); Wang, K.W

  14. Introduction to macro-econophysics and finance

    NASA Astrophysics Data System (ADS)

    Mimkes, Jürgen

    2012-11-01

    Closed integrals in physics lead to equations for sources and vortices in fluid mechanics, electrodynamics and thermodynamics. In economics, the Stokes integral of economic circuits leads to new fundamental equations of macro-econophysics. These equations differ significantly from the laws of neoclassical theory. Entropy of markets replaces of the economic Cobb Douglas function and leads to stochastic processes and micro-econophysics of financial markets.

  15. Substructure Discovery of Macro-Operators

    DTIC Science & Technology

    1988-05-01

    Specifically, the PLAND (PLAN Discovery) system discovers macro-operators ( macrops ) of action subsequences by searching for interesting substructures in...construction in two important areas. Unlike [Andreae84] and [Minton85], PLAND discovers macrops from observation and does not use examples to learn the new...structures . The another difference is that PLAND does not use a problem solver to determine what the macrops for a task should be (as is done in

  16. Parallel-coupled micro-macro actuators

    SciTech Connect

    Morrell, J.B.; Salisbury, J.K.

    1998-07-01

    This paper presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the parallel-coupled micro-macro actuator, or PaCMMA. In this system, the micro-actuator is capable of high-bandwidth force control owing to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft, and increases the dynamic range of force. Performance improvement over single-actuator systems was expected in force control, impedance control, force distortion, and transient impact force reduction. Several theoretical performance limits are derived from the saturation limits of the system. A control law is presented. A prototype test bed was built and an experimental comparison was performed between this actuator concept and two single-actuator systems. A set of quantitative measures is proposed and the actuator system is evaluated against them with the following results: force bandwidth of 56 Hz, torque dynamic range of 800:1, peak torque of 1,040 mNm, and minimum torque of 1.3 mNm. Peak impact force, force distortion, and back-driven impedance of the PaCMMA system are shown to be better than either of the single-actuator configurations considered.

  17. [Effects of macro-jellyfish abundance dynamics on fishery resource structure in the Yangtze River estuary and its adjacent waters].

    PubMed

    Shan, Xiu-Juan; Zhuang, Zhi-Meng; Jin, Xian-Shi; Dai, Fang-Qun

    2011-12-01

    Based on the bottom trawl survey data in May 2007 and May and June 2008, this paper analyzed the effects of the abundance dynamics of macro-jellyfish on the species composition, distribution, and abundance of fishery resource in the Yangtze River estuary and its adjacent waters. From May 2007 to June 2008, the average catch per haul and the top catch per haul of macro-jellyfish increased, up to 222.2 kg x h(-1) and 1800 kg x h(-1) in June 2008, respectively. The macro-jellyfish were mainly distributed in the areas around 50 m isobath, and not beyond 100 m isobath where was the joint front of the coastal waters of East China Sea, Yangtze River runoff, and Taiwan Warm Current. The main distribution area of macro-jellyfish in June migrated northward, as compared with that in May, and the highest catches of macro-jellyfish in May 2007 and May 2008 were found in the same sampling station (122.5 degrees E, 28.5 degrees N). In the sampling stations with higher abundance of macro-jellyfish, the fishery abundance was low, and the fishery species also changed greatly, mainly composed by small-sized species (Trachurus japonicus, Harpadon nehereus, and Acropoma japonicum) and pelagic species (Psenopsis anomala, Octopus variabilis) and Trichiurus japonicus, and P. anomala accounted for 23.7% of the total catch in June 2008. Larimichthys polyactis also occupied higher proportion of the total catch in sampling stations with higher macro-jellyfish abundance, but the demersal species Lophius litulon was not found, and a few crustaceans were collected. This study showed that macro-jellyfish had definite negative effects on the fishery community structure and abundance in the Yangtze River estuary fishery ecosystem, and further, changed the energy flow patterns of the ecosystem through cascading trophic interactions. Therefore, macro-jellyfish was strongly suggested to be an independent ecological group when the corresponding fishery management measures were considered.

  18. At the Limit: Introducing Energy with Human Senses

    ERIC Educational Resources Information Center

    Stinken, Lisa; Heusler, Stefan; Carmesin, Hans-Otto

    2016-01-01

    Energy belongs to the core ideas of the physics curriculum. But at the same time, energy is one of the most complex topics in science education since it occurs in multiple ways, such as motion, sound, light, and thermal energy. It can neither be destroyed nor created, but only converted. Due to the variety of relevant scales and abstractness of…

  19. Nonhomeostatic control of human appetite and physical activity in regulation of energy balance.

    PubMed

    Borer, Katarina T

    2010-07-01

    Ghrelin and leptin, putative controllers of human appetite, have no effect on human meal-to-meal appetite but respond to variations in energy availability. Nonhomeostatic characteristics of appetite and spontaneous activity stem from inhibition by leptin and ghrelin of brain reward circuit that is responsive to energy deficit, but refractory in obesity, and from the operation of a meal-timing circadian clock.

  20. Revolutions in energy input and material cycling in Earth history and human history

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga

    2016-04-01

    Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.

  1. Emergent Behavior in the Macro World: Rigidity of Granular Solids

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bulbul

    2015-03-01

    Diversity in the natural world emerges from the collective behavior of large numbers of interacting objects. The origin of collectively organized structures over the vast range of length scales from the subatomic to colloidal is the competition between energy and entropy. Thermal motion provides the mechanism for organization by allowing particles to explore the space of configurations. This well-established paradigm of emergent behavior breaks down for collections of macroscopic objects ranging from grains of sand to asteroids. In this macro-world of particulate systems, thermal motion is absent, and mechanical forces are all important. We lack understanding of the basic, unifying principles that underlie the emergence of order in this world. In this talk, I will explore the origin of rigidity of granular solids, and present a new paradigm for emergence of order in these athermal systems. This work has been supported by NSF-DMR 1409093 and by the W. M. Keck foundation

  2. A survey on human behavior towards energy efficiency for office worker in malaysia

    NASA Astrophysics Data System (ADS)

    Mustafa, N. H.; Husain, M. N.; Abd Aziz, M. Z. A.; Othman, M. A.; Malek, F.

    2014-04-01

    Green environment has become an important topic around the world. This campaign can be realized if everybody understands and shares similar objectives on managing energy in an efficient way. This paper will present and analyse the survey on energy usage by office workers in Malaysia. The survey will focus on the workers in government sector. In social science surveys, it is important to support the tested data for a project. For issues related to human behaviour we must compare with real situations to verify the tested data and the results in energy monitoring system. The energy monitoring system will improve energy usage efficiency for the basic human activities in different situations and environments.

  3. Pyrolysis and gasification of typical components in wastes with macro-TGA.

    PubMed

    Meng, Aihong; Chen, Shen; Long, Yanqiu; Zhou, Hui; Zhang, Yanguo; Li, Qinghai

    2015-12-01

    The pyrolysis and gasification of typical components of solid waste, cellulose, hemicellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and poly(ethylene terephthalate) (PET) were performed and compared in a macro thermogravimetric analyzer (macro-TGA). Three model biomasses, poplar stem, orange peel and Chinese cabbage, were applied to pyrolysis and gasification simulation by their components based on TG curves. Compared to those from TGA, peaks temperature of the differential thermogravimetric (DTG) curves of each samples pyrolysis on macro-TGA delayed 30-55°C due to heat transferring effect. CO2 promoted the thermal decomposition of hemicellulose, lignin, starch, pectin and model biomasses significantly by Boudouard reaction, and enhanced slightly the decomposition of PET. The activation energy (AE) of biomass components pyrolysis on macro-TGA was 167-197 kJ/mol, while that of plastic samples was 185-235 kJ/mol. The activation energy of 351-377 kJ/mol was corresponding to the Boudouard reaction in CO2 gasification. All overlap ratios in pseudo-components simulation were higher than 0.98 to indicate that pseudo-components model could be applied to both pyrolysis and CO2 gasification, and the mass fractions of components derived from pyrolysis and gasification were slightly different but not brought in obvious difference in simulating curves when they were applied across.

  4. An Energy Model for Viewing Embodied Human Capital Theory

    ERIC Educational Resources Information Center

    Kaufman, Neil A.; Geroy, Gary D.

    2007-01-01

    Human capital development is one of the emerging areas of study with regard to social science theory, practice, and research. A relatively new concept, human capital is described in terms of individual knowledge skills and experience. It is currently expressed as a function of education as well as a measure of economic activity. Little theory…

  5. Energy Management for Human Service Agencies. Second Edition.

    ERIC Educational Resources Information Center

    Academy for Educational Development, Washington, DC.

    Concerned about the effect rising energy costs would have on their local affiliates, building consultants for national social welfare agencies have been advocating the initiation of energy management and conservation programs. This manual, a three-part educational and planning tool, is a key element in a program developed to help local agencies…

  6. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression

    PubMed Central

    Borghesan, Michela; Fusilli, Caterina; Rappa, Francesca; Panebianco, Concetta; Rizzo, Giovanni; Oben, Jude A.; Mazzoccoli, Gianluigi; Faulkes, Chris; Pata, Illar; Agodi, Antonella; Rezaee, Farhad; Minogue, Shane; Warren, Alessandra; Peterson, Abigail; Sedivy, John M.; Douet, Julien; Buschbeck, Marcus; Cappello, Francesco; Mazza, Tommaso; Pazienza, Valerio; Vinciguerra, Manlio

    2016-01-01

    Aging is a major risk factor for progression of liver diseases to hepatocellular carcinoma (HCC). Cellular senescence contributes to age-related tissue dysfunction, but the epigenetic basis underlying drug-induced senescence remains unclear.macroH2A1, a variant of histone H2A, is a marker of senescence-associated heterochromatic foci that synergizes with DNA methylation to silence tumor-suppressor genes in human fibroblasts. In this study, we investigated the relationship between macroH2A1 splice variants, macroH2A1.1 and macroH2A1.2, and liver carcinogenesis. We found that protein levels of both macroH2A1 isoforms were increased in the livers of very elderly rodents and humans, and were robust immunohistochemical markers of human cirrhosis and HCC. In response to the chemotherapeutic and DNA-demethylating agent 5-aza-deoxycytidine (5-aza-dC), transgenic expression of macroH2A1 isoforms in HCC cell lines prevented the emergence of a senescent-like phenotype and induced synergistic global DNA hypomethylation. Conversely, macroH2A1 depletion amplified the antiproliferative effects of 5-aza-dC in HCC cells, but failed to enhance senescence. Senescence-associated secretory phenotype and whole-transcriptome analyses implicated the p38 MAPK/IL8 pathway in mediating macroH2A1-dependent escape of HCC cells from chemotherapy-induced senescence. Furthermore, chromatin immunoprecipitation sequencing revealed that this hepatic antisenescence state also required active transcription that could not be attributed to genomic occupancy of these histones. Collectively, our findings reveal a new mechanism by which drug-induced senescence is epigenetically regulated by macroH2A1 and DNA methylation and suggest macroH2A1 as a novel biomarker of hepatic senescence that could potentially predict prognosis and disease progression. PMID:26772755

  7. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect

    Engel, R. A.' Zoellick, J J.

    2007-07-31

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  8. Machining Challenges: Macro to Micro Cutting

    NASA Astrophysics Data System (ADS)

    Shunmugam, M. S.

    2016-04-01

    Metal cutting is an important machining operation in the manufacture of almost all engineering components. Cutting technology has undergone several changes with the development of machine tools and cutting tools to meet challenges posed by newer materials, complex shapes, product miniaturization and competitive environments. In this paper, challenges in macro and micro cutting are brought out. Conventional and micro end-milling are included as illustrative examples and details are presented along with discussion. Lengthy equations are avoided to the extent possible, as the emphasis is on the basic concepts.

  9. Energy landscapes’: Meeting energy demands and human aspirations

    PubMed Central

    Blaschke, Thomas; Biberacher, Markus; Gadocha, Sabine; Schardinger, Ingrid

    2013-01-01

    Renewable energy will play a crucial role in the future society of the 21st century. The various renewable energy sources need to be balanced and their use carefully planned since they are characterized by high temporal and spatial variability that will pose challenges to maintaining a well balanced supply and to the stability of the grid. This article examines the ways that future ‘energy landscapes’ can be modelled in time and space. Biomass needs a great deal of space per unit of energy produced but it is an energy carrier that may be strategically useful in circumstances where other renewable energy carriers are likely to deliver less. A critical question considered in this article is whether a massive expansion in the use of biomass will allow us to construct future scenarios while repositioning the ‘energy landscape’ as an object of study. A second important issue is the utilization of heat from biomass energy plants. Biomass energy also has a larger spatial footprint than other carriers such as, for example, solar energy. This article seeks to provide a bridge between energy modelling and spatial planning while integrating research and techniques in energy modelling with Geographic Information Science. This encompasses GIS, remote sensing, spatial disaggregation techniques and geovisualization. Several case studies in Austria and Germany demonstrate a top-down methodology and some results while stepwise calculating potentials from theoretical to technically feasible potentials and setting the scene for the definition of economic potentials based on scenarios and assumptions. PMID:26109751

  10. Human-motion energy harvester for autonomous body area sensors

    NASA Astrophysics Data System (ADS)

    Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.

    2017-03-01

    This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm‑3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.

  11. A visual basic spreadsheet macro for geochemical background analysis.

    PubMed

    Nakić, Zoran; Posavec, Kristijan; Bacani, Andrea

    2007-01-01

    A Visual Basic macro entitled BACKGROUND calculates geochemical background values of chemical parameters and estimates threshold values separating background data from anomalies. The macro uses two statistical methods, the iterative 2-sigma technique and the calculated distribution function, and integrates these model-based objective methods into a widely accessible platform (i.e., MS Excel). The macro offers the possibility for automated processing of geochemical data and enables an automated generation of background range and threshold values for chemical parameters.

  12. Micro manipulator motion control to counteract macro manipulator structural vibrations

    SciTech Connect

    Lew, J.Y.; Trudnowski, D.J.; Evans, M.S.; Bennett, D.W.

    1995-02-01

    Inertial force damping control by micro manipulator modulation is proposed to suppress the vibrations of a micro/macro manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro manipulator system using micro-manipulator-based inertial active damping control.

  13. Macro Domain from Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES.

    PubMed

    Cho, Chao-Cheng; Lin, Meng-Hsuan; Chuang, Chien-Ying; Hsu, Chun-Hua

    2016-03-04

    The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) encodes the conserved macro domain within non-structural protein 3. However, the precise biochemical function and structure of the macro domain is unclear. Using differential scanning fluorimetry and isothermal titration calorimetry, we characterized the MERS-CoV macro domain as a more efficient adenosine diphosphate (ADP)-ribose binding module than macro domains from other CoVs. Furthermore, the crystal structure of the MERS-CoV macro domain was determined at 1.43-Å resolution in complex with ADP-ribose. Comparison of macro domains from MERS-CoV and other human CoVs revealed structural differences in the α1 helix alters how the conserved Asp-20 interacts with ADP-ribose and may explain the efficient binding of the MERS-CoV macro domain to ADP-ribose. This study provides structural and biophysical bases to further evaluate the role of the MERS-CoV macro domain in the host response via ADP-ribose binding but also as a potential target for drug design.

  14. Consequences of inadequate food energy and negative energy balance in humans.

    PubMed

    Kurpad, A V; Muthayya, S; Vaz, M

    2005-10-01

    Energy deficiency is probably best measured in adults by the body mass index (BMI). Acute energy deficiency (AED) is associated with body weight loss, along with changes in body composition, as well as a reduced BMR and physical activity. Chronic energy deficiency (CED) is an inadequacy in food to which individuals adapt, at some cost. Individuals with this have never 'lost' weight: they have simply grown less. They adapt to the decreased food energy by reductions in their total energy expenditure (TEE), linked mainly to a lower body size, and to their physical activity. It seems unlikely that enhanced metabolic efficiency contributes substantially to energy saving in CED. Supplementation of energy deficient individuals is accompanied by significant fat deposition; this may have deleterious consequences. Women in many developing countries achieve a successful outcome to pregnancy in spite of being chronically undernourished. Reductions in basal metabolism and behavioural changes in the form of diminished physical activity could meet most of the extra energy needed for pregnancy. Milk energy output is maintained within the expected range in undernourished lactating mothers. Energy deficiency in children is best measured by height-for-age for stunting, and weight-for-height for wasting. Deficits in behavioural and functional parameters in children exist with undernutrition, and can be reduced by early nutritional supplementation along with the appropriate environment.

  15. Final Report: Human Capacity Building Grant for Renewable Energy Development

    SciTech Connect

    Sando, Wil

    2010-01-03

    Warm Springs Power and Water Enterprise (WSPWE), a Corporate Entity of the Confederated Tribes of Warm Springs Oregon, developed and distributed written materials, held workshops and field trips to educate tribal members on renewable energy projects that are a possibility utilizing resources on reservation. In order to build stronger public and Tribal Council support for the development of renewable energy projects on the reservation, WSPWE conducted a 12 month public education and technical expertise development program. The objectives of this program were to: To build a knowledge base within the tribal community regarding renewable energy development potential and opportunities on reservation lands. To educate the tribal community regarding development process, impacts and benefits. To increase the technical expertise of tribal government and Tribal Council.

  16. Human Genome Program Image Gallery (from genomics.energy.gov)

    DOE Data Explorer

    This collection contains approximately 240 images from the genome programs of DOE's Office of Science. The images are divided into galleries related to biofuels research, systems biology, and basic genomics. Each image has a title, a basic citation, and a credit or source. Most of the images are original graphics created by the Genome Management Information System (GMIS). GMIS images are recognizable by their credit line. Permission to use these graphics is not needed, but please credit the U.S. Department of Energy Genome Programs and provide the website http://genomics.energy.gov. Other images were provided by third parties and not created by the U.S. Department of Energy. Users must contact the person listed in the credit line before using those images. The high-resolution images can be downloaded.

  17. Macro material flow modeling for analyzing solid waste management options

    SciTech Connect

    Holter, G.M.; Pennock, K.A.; Shaver, S.R.

    1993-06-01

    A Macro Material Flow Modeling (MMFM) concept and approach are being adopted to develop a predictive modeling capability. This capability is intended to provide part of the basis for evaluating potential impacts from various solid waste management system configurations and operating scenarios, as well as evaluating the impacts of various policies on solid waste quantities and compositions. The MMFM capability, as part of a broader Solid Waste Initiative at Pacific Northwest Laboratory, is intended to provide an increased understanding of solid waste as a disposal, energy, and resource problem on a national and global scale, particularly over the long term. This model is a macro-level simulation of the flows of the various materials through the solid waste management system, and also through the associated materials production and use system. Inclusion of materials production and use within the modeling context allows a systems approach to be used, providing a much more complete understanding of the origins of the solid waste materials and also of possible options for materials recovery and reuse than if a more traditional ``end-of-pipe`` view of solid waste is adopted. The MMFM is expected to be useful in evaluating longer-term, broader-ranging solid waste impacts than are traditionally evaluated by decision-makers involved in implementing solutions to local or regional solid waste management problems. This paper discusses the types of questions of interest in evaluating long-term, broad-range impacts from solid waste. It then identifies the basic needs for predictive modeling capabilities like the MMFM, and provides a basic description of the conceptual framework for the model and the associated data. Status of the MMFM implementation is also discussed.

  18. Macro material flow modeling for analyzing solid waste management options

    SciTech Connect

    Holter, G.M.; Pennock, K.A.; Shaver, S.R.

    1993-06-01

    A Macro Material Flow Modeling (MMFM) concept and approach are being adopted to develop a predictive modeling capability. This capability is intended to provide part of the basis for evaluating potential impacts from various solid waste management system configurations and operating scenarios, as well as evaluating the impacts of various policies on solid waste quantities and compositions. The MMFM capability, as part of a broader Solid Waste Initiative at Pacific Northwest Laboratory, is intended to provide an increased understanding of solid waste as a disposal, energy, and resource problem on a national and global scale, particularly over the long term. This model is a macro-level simulation of the flows of the various materials through the solid waste management system, and also through the associated materials production and use system. Inclusion of materials production and use within the modeling context allows a systems approach to be used, providing a much more complete understanding of the origins of the solid waste materials and also of possible options for materials recovery and reuse than if a more traditional end-of-pipe'' view of solid waste is adopted. The MMFM is expected to be useful in evaluating longer-term, broader-ranging solid waste impacts than are traditionally evaluated by decision-makers involved in implementing solutions to local or regional solid waste management problems. This paper discusses the types of questions of interest in evaluating long-term, broad-range impacts from solid waste. It then identifies the basic needs for predictive modeling capabilities like the MMFM, and provides a basic description of the conceptual framework for the model and the associated data. Status of the MMFM implementation is also discussed.

  19. Control over speeded actions: a common processing locus for micro- and macro-trade-offs?

    PubMed

    Jentzsch, Ines; Leuthold, Hartmut

    2006-08-01

    Cognitive control processes associated with long- and short-term adjustments of human behaviour have attracted much interest recently. It is still unclear, however, whether the mechanisms underlying these adjustments share a common locus within the chain of stimulus-response processing. In order to address this issue, the present study employed a speed-accuracy instruction producing a macro-trade-off, whereas micro-trade-off was studied by means of posterror slowing in reaction time (RT). Participants performed a spatially compatible or incompatible four-stimuli-to-two-response alternative choice RT task. Reliable variations in micro-and macro-trade-off as well as effects of spatial compatibility were found in RT and error rate. Most importantly, posterror slowing was larger when instruction stressed accuracy rather than speed, an effect being independent of spatial compatibility. Because the influence of speed-accuracy instruction and posterror slowing on performance was strongest for response alternations, together present findings suggest that the mechanisms underlying micro- and macro-trade-offs have one common locus at the level of motor processing. Additional influences of macro-trade-off on premotoric processing are likely.

  20. Investigation of Intermediary Metabolism and Energy Exchange Following Human Trauma.

    DTIC Science & Technology

    1979-07-01

    afebrile, hospitalized patients (9), and with values fram normal subjects C13).. In the present study, values for in- sensible water loss were...supplementation of wheat gluten at adequate and restricted energy intakes in young men. Am J Clin Nutr 26:965, 1973 19. Mizro HN, Wikramanayake TW: Absence of

  1. Energy demand and supply in human skeletal muscle.

    PubMed

    Barclay, C J

    2017-03-12

    The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min(-1) during isometric contractions of various intensity to as much as 400 mM min(-1) during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min(-1) which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min(-1). During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min(-1) over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.

  2. A Human Systems Integration Approach to Energy Efficiency in Ground Transportation

    DTIC Science & Technology

    2015-12-01

    COVERED Master’s thesis 4. TITLE AND SUBTITLE A HUMAN SYSTEMS INTEGRATION APPROACH TO ENERGY EFFICIENCY IN GROUND TRANSPORTATION 5. FUNDING NUMBERS...distribution is unlimited A HUMAN SYSTEMS INTEGRATION APPROACH TO ENERGY EFFICIENCY IN GROUND TRANSPORTATION Keith R. Robison Lieutenant, United...policies for the successful use of telematics systems in the Marine Corps that will make it a more fuel- efficient fighting force. As a result, the

  3. Macro cell placement with neural net algorithms

    NASA Astrophysics Data System (ADS)

    Storti-Gajani, Giancarlo

    Placement of VLSI (Very Large Scale Integration) macro cells is one of the hard problems encountered in the process of integrated circuits design. Since the problem is essentially NP-complete a solution must be searched for with the aid of heuristics using, maybe, non deterministic strategies. A new algorithm for cell preplacement based on neural nets that may be very well extended to find solution of the final placement problem is presented. Simulations for the part of the algorithm concerning preplacement are carried out on several different examples giving always a sharply decreasing cost function (where cost is evaluated essentially on total length of wires given a rectangular boundary). The direct mapping between neural units and VLSI blocks that is adopted in the algorithm makes the extension to the final placement problem quite simple. Simulation programs are implemented in a interpreted mathematical simulation language and a C language implementation is currently under way.

  4. Macro influencers of electronic health records adoption.

    PubMed

    Raghavan, Vijay V; Chinta, Ravi; Zhirkin, Nikita

    2015-01-01

    While adoption rates for electronic health records (EHRs) have improved, the reasons for significant geographical differences in EHR adoption within the USA have remained unclear. To understand the reasons for these variations across states, we have compiled from secondary sources a profile of different states within the USA, based on macroeconomic and macro health-environment factors. Regression analyses were performed using these indicator factors on EHR adoption. The results showed that internet usage and literacy are significantly associated with certain measures of EHR adoption. Income level was not significantly associated with EHR adoption. Per capita patient days (a proxy for healthcare need intensity within a state) is negatively correlated with EHR adoption rate. Health insurance coverage is positively correlated with EHR adoption rate. Older physicians (>60 years) tend to adopt EHR systems less than their younger counterparts. These findings have policy implications on formulating regionally focused incentive programs.

  5. Pulsed radio frequency energy (PRFE) use in human medical applications.

    PubMed

    Guo, Lifei; Kubat, Nicole J; Isenberg, Richard A

    2011-03-01

    A number of electromagnetic field-based technologies are available for therapeutic medical applications. These therapies can be broken down into different categories based on technical parameters employed and type of clinical application. Pulsed radio frequency energy (PRFE) therapy is a non invasive, electromagnetic field-based therapeutic that is based on delivery of pulsed, shortwave radio frequency energy in the 13-27.12 MHz carrier frequency range, and designed for local application to a target tissue without the intended generation of deep heat. It has been studied for use in a number of clinical applications, including as a palliative treatment for both postoperative and non postoperative pain and edema, as well as in wound healing applications. This review provides an introduction to the therapy, a summary of clinical efficacy studies using the therapy in specific applications, and an overview of treatment-related safety.

  6. Human Motion Energy Harvester for Biometric Data Monitoring

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Folkmer, B.; Manoli, Y.

    2013-12-01

    In this paper we present an energy autonomous sensor system fully integrated into the heel of a shoe for biometric data monitoring. For powering the wireless sensor system a pulse-driven energy harvester was developed, which uses the acceleration-impulses from heel-strike during walking. In preparation of the device development acceleration measurements were carried out. The pulse-driven energy harvester is based on the electromagnetic conversion principle and incorporates a 4×4 coil matrix. A beam fixed at both ends is used for suspending the magnetic circuit. The geometric parameters of coil and magnetic circuit were optimized for maximum power output. For an idealized acceleration pulse with a width of 5 ms and a height of 200 m/s2 an average power output of 0.7 mW was generated using a step frequency of 1 Hz. The functionality of the self-sustained sensor system is demonstrated by measuring the temperature and step-frequency of a walking person and transmitting the data to a base station. We also found that the implementation of the suspension can have a significant impact on the harvester performance reducing the power output.

  7. Quantifying causal emergence shows that macro can beat micro.

    PubMed

    Hoel, Erik P; Albantakis, Larissa; Tononi, Giulio

    2013-12-03

    Causal interactions within complex systems can be analyzed at multiple spatial and temporal scales. For example, the brain can be analyzed at the level of neurons, neuronal groups, and areas, over tens, hundreds, or thousands of milliseconds. It is widely assumed that, once a micro level is fixed, macro levels are fixed too, a relation called supervenience. It is also assumed that, although macro descriptions may be convenient, only the micro level is causally complete, because it includes every detail, thus leaving no room for causation at the macro level. However, this assumption can only be evaluated under a proper measure of causation. Here, we use a measure [effective information (EI)] that depends on both the effectiveness of a system's mechanisms and the size of its state space: EI is higher the more the mechanisms constrain the system's possible past and future states. By measuring EI at micro and macro levels in simple systems whose micro mechanisms are fixed, we show that for certain causal architectures EI can peak at a macro level in space and/or time. This happens when coarse-grained macro mechanisms are more effective (more deterministic and/or less degenerate) than the underlying micro mechanisms, to an extent that overcomes the smaller state space. Thus, although the macro level supervenes upon the micro, it can supersede it causally, leading to genuine causal emergence--the gain in EI when moving from a micro to a macro level of analysis.

  8. Energy Utilization and Environmental Health: Methods for Prediction and Evaluation of Impact on Human Health.

    ERIC Educational Resources Information Center

    Wadden, Richard A., Ed.

    A variety of socio-economic criteria are suggested for the choice of how best to utilize energy resources. One of the most significant of these criteria is the prediction and evaluation of existing and potential human health effects of recovery and usage of various energy resources. Suggestions are made for incorporation of these methods in site…

  9. LARCMACS: A TEX macro set for typesetting NASA reports

    NASA Technical Reports Server (NTRS)

    Woessner, Linda H.; Mccaskill, Mary K.

    1988-01-01

    This LARCMACS user's manual describes the February 1988 version of LARCMACS, the TEX macro set used by the Technical Editing Branch (TEB) at NASA Langley Research Center. These macros were developed by the authors to facilitate the typesetting of NASA formal reports. They are also useful, however, for informal NASA reports and other technical documents such as meeting papers. LARCMACS are distributed by TEB for the convenience of the Langley TEX user community. LARCMACS contain macros for obtaining the standard double-column format for NASA reports, for typesetting tables in the ruled format traditional in NASA reports, and for typesetting difficult mathematical expressions. Each macro is described and numerous examples are included. Definitions of the LARCMACS macros are also included.

  10. Energy Harvesting & Recapture from Human Subjects: Dual-Stage MEMS Cantilever Energy Harvester

    DTIC Science & Technology

    2015-03-01

    percentage of past thermal energy harvesting research examines Seebeck devices. The Seebeck Effect describes a material property that produces a voltage...which simplifies the fabrication process. Both the aluminum strips and 24 the substrate itself are intentionally thin by design to prevent thermal ...forced to evoke quantum material properties to surpass the figure of merit ZT ~ 1. Consequently, research concerning non-Seebeck thermal energy

  11. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans.

    PubMed

    Pontzer, Herman; Durazo-Arvizu, Ramon; Dugas, Lara R; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Cooper, Richard S; Schoeller, Dale A; Luke, Amy

    2016-02-08

    Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.

  12. HEPNet: A Knowledge Base Model of Human Energy Pool Network for Predicting the Energy Availability Status of an Individual.

    PubMed

    Sengupta, Abhishek; Grover, Monendra; Chakraborty, Amlan; Saxena, Sarika

    2015-01-01

    HEPNet is an electronic representation of metabolic reactions occurring within human cellular organization focusing on inflow and outflow of the energy currency ATP, GTP and other energy associated moieties. The backbone of HEPNet consists of primary bio-molecules such as carbohydrates, proteins and fats which ultimately constitute the chief source for the synthesis and obliteration of energy currencies in a cell. A series of biochemical pathways and reactions constituting the catabolism and anabolism of various metabolites are portrayed through cellular compartmentalization. The depicted pathways function synchronously toward an overarching goal of producing ATP and other energy associated moieties to bring into play a variety of cellular functions. HEPNet is manually curated with raw data from experiments and is also connected to KEGG and Reactome databases. This model has been validated by simulating it with physiological states like fasting, starvation, exercise and disease conditions like glycaemia, uremia and dihydrolipoamide dehydrogenase deficiency (DLDD). The results clearly indicate that ATP is the master regulator under different metabolic conditions and physiological states. The results also highlight that energy currencies play a minor role. However, the moiety creatine phosphate has a unique character, since it is a ready-made source of phosphoryl groups for the rapid synthesis of ATP from ADP. HEPNet provides a framework for further expanding the network diverse age groups of both the sexes, followed by the understanding of energetics in more complex metabolic pathways that are related to human disorders.

  13. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs.

    PubMed

    Mullis, Rebecca A; Witzel, Angela L; Price, Joshua

    2015-01-01

    Despite their important role in security, little is known about the energy requirements of working dogs such as odor, explosive and human detection dogs. Previous researchers have evaluated the energy requirements of individual canine breeds as well as dogs in exercise roles such as sprint racing. This study is the first to evaluate the energy requirements of working dogs trained in odor, explosive and human detection. This retrospective study evaluated twenty adult dogs who maintained consistent body weights over a six month period. During this time, the average energy consumption was [Formula: see text] or two times the calculated resting energy requirement ([Formula: see text]). No statistical differences were found between breeds, age or sex, but a statistically significant association (p = 0.0033, R-square = 0.0854) was seen between the number of searches a dog performs and their energy requirement. Based on this study's population, it appears that working dogs have maintenance energy requirements similar to the 1974 National Research Council's (NRC) maintenance energy requirement of [Formula: see text] (National Research Council (NRC), 1974) and the [Formula: see text] reported for young laboratory beagles (Rainbird & Kienzle, 1990). Additional research is needed to determine if these data can be applied to all odor, explosive and human detection dogs and to determine if other types of working dogs (tracking, search and rescue etc.) have similar energy requirements.

  14. Mechanical Unloading Promotes Myocardial Energy Recovery in Human Heart Failure

    PubMed Central

    Gupte, Anisha A.; Hamilton, Dale J.; Cordero-Reyes, Andrea M.; Youker, Keith A.; Yin, Zheng; Estep, Jerry D.; Stevens, Robert D.; Wenner, Brett; Ilkayeva, Olga; Loebe, Matthias; Peterson, Leif E.; Lyon, Christopher J.; Wong, Stephen T.C.; Newgard, Christopher B.; Torre-Amione, Guillermo; Taegtmeyer, Heinrich; Hsueh, Willa A.

    2015-01-01

    Background Impaired bioenergetics is a prominent feature of the failing heart, but the underlying metabolic perturbations are poorly understood. Methods and Results We compared metabolomic, gene transcript, and protein data from six paired failing human left ventricular (LV) tissue samples obtained during left ventricular assist device (LVAD) insertion (heart failure (HF) samples) and at heart transplant (post-LVAD samples). Non-failing left ventricular (NFLV) wall samples procured from explanted hearts of patients with right HF served as novel comparison samples. Metabolomic analyses uncovered a distinct pattern in HF tissue: 2.6 fold increased pyruvate concentrations coupled with reduced Krebs cycle intermediates and short-chain acylcarnitines, suggesting a global reduction in substrate oxidation. These findings were associated with decreased transcript levels for enzymes that catalyze fatty acid oxidation and pyruvate metabolism and for key transcriptional regulators of mitochondrial metabolism and biogenesis, peroxisome proliferator-activated receptor gamma co-activator1α (PGC1A, 1.3 fold) and estrogen-related receptor α (ERRA, 1.2 fold) and γ (ERRG, 2.2 fold). Thus, parallel decreases in key transcription factors and their target metabolic enzyme genes can explain the decreases in associated metabolic intermediates. Mechanical support with LVAD improved all of these metabolic and transcriptional defects. Conclusions These observations underscore an important pathophysiologic role for severely defective metabolism in HF, while the reversibility of these defects by LVAD suggests metabolic resilience of the human heart. PMID:24825877

  15. Mechanistic modeling of aberrant energy metabolism in human disease

    PubMed Central

    Sangar, Vineet; Eddy, James A.; Simeonidis, Evangelos; Price, Nathan D.

    2012-01-01

    Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based (CB) models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell. PMID:23112774

  16. Effects of robotic knee exoskeleton on human energy expenditure.

    PubMed

    Gams, Andrej; Petric, Tadej; Debevec, Tadej; Babic, Jan

    2013-06-01

    A number of studies discuss the design and control of various exoskeleton mechanisms, yet relatively few address the effect on the energy expenditure of the user. In this paper, we discuss the effect of a performance augmenting exoskeleton on the metabolic cost of an able-bodied user/pilot during periodic squatting. We investigated whether an exoskeleton device will significantly reduce the metabolic cost and what is the influence of the chosen device control strategy. By measuring oxygen consumption, minute ventilation, heart rate, blood oxygenation, and muscle EMG during 5-min squatting series, at one squat every 2 s, we show the effects of using a prototype robotic knee exoskeleton under three different noninvasive control approaches: gravity compensation approach, position-based approach, and a novel oscillator-based approach. The latter proposes a novel control that ensures synchronization of the device and the user. Statistically significant decrease in physiological responses can be observed when using the robotic knee exoskeleton under gravity compensation and oscillator-based control. On the other hand, the effects of position-based control were not significant in all parameters although all approaches significantly reduced the energy expenditure during squatting.

  17. Data on examining the role of human capital in the energy-growth nexus across countries.

    PubMed

    Fang, Zheng

    2016-12-01

    This article describes two publicly available data sources: the new generation of Penn World Table (www.ggdc.net/pwt) and the BP Statistical Review of World Energy (http://www.bp.com/statisticalreview) which can be used to examine the role of human capital in the energy-growth nexus across countries. The critical human capital measure across countries is for the first time made available in the Penn World Table 8.0 and it enables empirical researchers to conduct cross-country analysis involving human capital much easily than ever before.

  18. A survey on human behavior towards energy saving for office worker in Malaysia

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fared

    2015-05-01

    Green environment is a space and energy efficient household, which can offer coziness and healthy living environment to its occupants. Human behavior is focuses to see the impact toward energy and also into green building. This probe can be taken in if everybody reads and share similar objectives in bringing off the energy in an efficient manner. This paper will present and watched over the survey feedback on energy usage by federal agency workers in Malaysia. The study will focus on the proletarians in the government sector since this population is the majority work in place. It is authoritative to present and support the tested data for a project doing, particularly connected to human existence. The matter is referred to discussing about human behavior to compare with the real situation information. Today, there are many researchers thought that the human activity as the primary ingredient for a monitoring arrangement. As a consequence, the energy monitoring system will improve the energy usage efficiency of the basic human actions in different places and surroundings.

  19. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    SciTech Connect

    Anderson, Temashio

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  20. Extra-metabolic energy use and the rise in human hyper-density

    NASA Astrophysics Data System (ADS)

    Burger, Joseph R.; Weinberger, Vanessa P.; Marquet, Pablo A.

    2017-03-01

    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.

  1. Energy efficiency as a unifying principle for human, environmental, and global health.

    PubMed

    Fontana, Luigi; Atella, Vincenzo; Kammen, Daniel M

    2013-01-01

    A strong analogy exists between over/under consumption of energy at the level of the human body and of the industrial metabolism of humanity. Both forms of energy consumption have profound implications for human, environmental, and global health. Globally, excessive fossil-fuel consumption, and individually, excessive food energy consumption are both responsible for a series of interrelated detrimental effects, including global warming, extreme weather conditions, damage to ecosystems, loss of biodiversity, widespread pollution, obesity, cancer, chronic respiratory disease, and other lethal chronic diseases. In contrast, data show that the efficient use of energy-in the form of food as well as fossil fuels and other resources-is vital for promoting human, environmental, and planetary health and sustainable economic development. While it is not new to highlight how efficient use of energy and food can address some of the key problems our world is facing, little research and no unifying framework exists to harmonize these concepts of sustainable system management across diverse scientific fields into a single theoretical body. Insights beyond reductionist views of efficiency are needed to encourage integrated changes in the use of the world's natural resources, with the aim of achieving a wiser use of energy, better farming systems, and healthier dietary habits. This perspective highlights a range of scientific-based opportunities for cost-effective pro-growth and pro-health policies while using less energy and natural resources.

  2. Extra-metabolic energy use and the rise in human hyper-density.

    PubMed

    Burger, Joseph R; Weinberger, Vanessa P; Marquet, Pablo A

    2017-03-02

    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth's 'energetic equivalence rule' supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.

  3. Extra-metabolic energy use and the rise in human hyper-density

    PubMed Central

    Burger, Joseph R.; Weinberger, Vanessa P.; Marquet, Pablo A.

    2017-01-01

    Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet. PMID:28252010

  4. Atomic energy as an humane endeavor: Retrospective on its development

    SciTech Connect

    Seaborg, G.T.; Stahlkopf, K.E.

    1989-01-01

    This report is a speech delivered in Tokyo, Japan, by the author. It covers the historical aspects of atomic energy, from the pre-fission days until present. Such pioneer experiments conducted by O. Hahn, L. Meitner, and F. Strassmann to describe barium isotopes as the result of bombardment of uranium with neutrons are discussed. The author also discussed in detail the pre-war nuclear research at Berkeley, a leading center of nuclear research. Such important events as the synthesis and identification of cobalt-60, iodine-131, and technetium-99m are also discussed. The author discussed the nuclear power as a source of electricity and the perspective on the future of nuclear power. 32 refs., 19 figs., 5 tabs.

  5. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.

    PubMed

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells.

  6. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    PubMed Central

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  7. Miniature Piezoelectric Macro-Mass Balance

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Trebi-Ollennu, Ashitey; Bonitz, Robert G.; Bar-Cohen, Yoseph

    2010-01-01

    Mass balances usually use a strain gauge that requires an impedance measurement and is susceptible to noise and thermal drift. A piezoelectric balance can be used to measure mass directly by monitoring the voltage developed across the piezoelectric balance, which is linear with weight or it can be used in resonance to produce a frequency change proportional to the mass change (see figure). The piezoelectric actuator/balance is swept in frequency through its fundamental resonance. If a small mass is added to the balance, the resonance frequency shifts down in proportion to the mass. By monitoring the frequency shift, the mass can be determined. This design allows for two independent measurements of mass. Additionally, more than one sample can be verified because this invention allows for each sample to be transported away from the measuring device upon completion of the measurement, if required. A piezoelectric actuator, or many piezoelectric actuators, was placed between the collection plate of the sampling system and the support structure. As the sample mass is added to the plate, the piezoelectrics are stressed, causing them to produce a voltage that is proportional to the mass and acceleration. In addition, a change in mass delta m produces a change in the resonance frequency with delta f proportional to delta m. In a microgravity environment, the spacecraft could be accelerated to produce a force on the piezoelectric actuator that would produce a voltage proportional to the mass and acceleration. Alternatively, the acceleration could be used to force the mass on the plate, and the inertial effects of the mass on the plate would produce a shift in the resonance frequency with the change in frequency related to the mass change. Three prototypes of the mass balance mechanism were developed. These macro-mass balances each consist of a solid base and an APA 60 Cedrat flextensional piezoelectric actuator supporting a measuring plate. A similar structure with 3 APA

  8. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  9. Wearable thermoelectric generator for harvesting human body heat energy

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ki; Kim, Myoung-Soo; Lee, Seok; Kim, Chulki; Kim, Yong-Jun

    2014-10-01

    This paper presents the realization of a wearable thermoelectric generator (TEG) in fabric for use in clothing. A TEG was fabricated by dispenser printing of Bi0.5Sb1.5Te3 and Bi2Se0.3Te2.7 in a polymer-based fabric. The prototype consisted of 12 thermocouples connected by conductive thread over an area of 6 × 25 mm2. The device generated a power of 224 nW for a temperature difference of 15 K. When the TEG was used on the human body, the measured output power was 224 nW in an ambient temperature of 5 °C. The power of the TEG was affected by the movement of the wearer. A higher voltage was maintained while walking than in a stationary state. In addition, the device did not deform after it was bent and stretched several times. The prospect of using the TEG in clothing applications was confirmed under realistic conditions.

  10. Topology, structures, and energy landscapes of human chromosomes

    PubMed Central

    Zhang, Bin; Wolynes, Peter G.

    2015-01-01

    Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward “ideal” chromosome structures that represent hierarchical fibrils of fibrils. PMID:25918364

  11. Energy expenditure, sex, and endogenous fuel availability in humans

    PubMed Central

    Nielsen, Søren; Guo, ZengKui; Albu, Jeanine B.; Klein, Samuel; O’Brien, Peter C.; Jensen, Michael D.

    2003-01-01

    Adipose tissue lipolysis supplies circulating FFAs, which largely meet lipid fuel needs; however, excess FFAs, can contribute to the adverse health consequences of obesity. Because “normal” FFA release has not been well defined, average (mean of 4 days) basal FFA release and its potential regulation factors were measured in 50 lean and obese adults (25 women). Resting energy expenditure (REE), but not body composition, predicted most of the interindividual variation in FFA release. There was a significant, positive linear relationship between palmitate release and REE; however, women released approximately 40% more FFA than men relative to REE. Neither plasma palmitate concentrations nor respiratory quotient by indirect calorimetry differed between men and women. Glucose release rates were not different in men and women whether related to REE or fat free mass. These findings indicate that nonoxidative FFA clearance is greater in women than in men. This could be an advantage at times of increased fuel needs. We conclude that “normal” adipose tissue lipolysis is different in men and women and that the fuel export role of adipose tissue in obesity will need to be reassessed. PMID:12671047

  12. Topology, structures, and energy landscapes of human chromosomes.

    PubMed

    Zhang, Bin; Wolynes, Peter G

    2015-05-12

    Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.

  13. Preterm Human Milk Macronutrient and Energy Composition: A Systematic Review and Meta-Analysis.

    PubMed

    Mimouni, Francis B; Lubetzky, Ronit; Yochpaz, Sivan; Mandel, Dror

    2017-03-01

    This study is a systematic review of the macronutrient and energy composition of preterm human milk to enable the practicing neonatologist to make informed nutritional decisions in preterm infants. Meta-analyses were conducted in all the studies that reported total energy, true protein, fat, and lactose. Protein content decreased massively (by one-half) and significantly from day 1 to 3 at week 10 to 12. There was a significant linear increase in fat, lactose, and energy content during the same timeframe. Theoretic calculations on energy and macronutrient intake of preterm infants must be made according to a lactation time-specific manner.

  14. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    PubMed

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  15. Energy efficiency as a unifying principle for human, environmental, and global health

    PubMed Central

    Fontana, Luigi; Atella, Vincenzo; Kammen, Daniel M

    2013-01-01

    A strong analogy exists between over/under consumption of energy at the level of the human body and of the industrial metabolism of humanity. Both forms of energy consumption have profound implications for human, environmental, and global health. Globally, excessive fossil-fuel consumption, and individually, excessive food energy consumption are both responsible for a series of interrelated detrimental effects, including global warming, extreme weather conditions, damage to ecosystems, loss of biodiversity, widespread pollution, obesity, cancer, chronic respiratory disease, and other lethal chronic diseases. In contrast, data show that the efficient use of energy—in the form of food as well as fossil fuels and other resources—is vital for promoting human, environmental, and planetary health and sustainable economic development. While it is not new to highlight how efficient use of energy and food can address some of the key problems our world is facing, little research and no unifying framework exists to harmonize these concepts of sustainable system management across diverse scientific fields into a single theoretical body. Insights beyond reductionist views of efficiency are needed to encourage integrated changes in the use of the world’s natural resources, with the aim of achieving a wiser use of energy, better farming systems, and healthier dietary habits. This perspective highlights a range of scientific-based opportunities for cost-effective pro-growth and pro-health policies while using less energy and natural resources. PMID:24555053

  16. Determination of equivalent amounts of kinetic energy, work, and heat energy in the human body.

    PubMed

    Cinar, Yildirim

    2002-07-01

    The goal of this study is determine the mechanical equivalent of heat and the functional capacity of metabolism of walking at a slow pace (velocity = 4022m/hour, length of a step=75cm, energy utilization of a 70 kg person is 200kcal/hour). 50 healthy physicians were chosen randomly, and up and down motion of the body were determined as 6cm while stepping. Based on these, the heat equivalent is 37.5kcal/hour for horizontal motion and 52.7kcal/hour for 6cm up-and-down bobbing motions of body, and the functional capacity of metabolism is at least 45% ([37.5+52.7]/200=45%) for slow walking state, that this capacity is twofold more than earlier information. Muscle converts kinetic energy (work) to heat via friction, and heat sources of the body, and the concepts of thermogenesis and the functional capacity of metabolism should be revised.

  17. [Macro- and microelements in canned sprats].

    PubMed

    Polak-Juszczak, Lucyna; Usydus, Zygmunt

    2006-01-01

    The content of macro- and microelements and toxic metals in the most popular canned sprat was described in this paper. The research included the following canned sprat: sprat in tomato, smoked and steamed sprat in oil. The following analyses were carried out: content of calcium, phosphorus, potassium, magnesium, copper, zinc, iron, manganese, chromium, selenium, fluorine, iodine, cadmium, lead, mercury and arsenic. Fluorine, iodine, selenium, and calcium and phosphorous are provided to customer organism in large amount by canned sprat, however canned sprat cannot be considered as a source of copper, chromium, and manganese. On the base of assessment data one canned sprat (weight 170 g) provides to customer organism more than 50% recommended daily intake of calcium and phosphorus, 85-233% fluorine, 62.5% iodine, 43% recommended selenium, more than 25% zinc, about 15% daily intake of magnesium, potassium and iron. It was found that all of the analyzed canned sprat contained relatively low content of cadmium, lead, mercury and arsenic, thus confirming the established safety standards.

  18. Compressed digital holography: from micro towards macro

    NASA Astrophysics Data System (ADS)

    Schretter, Colas; Bettens, Stijn; Blinder, David; Pesquet-Popescu, Béatrice; Cagnazzo, Marco; Dufaux, Frédéric; Schelkens, Peter

    2016-09-01

    signal processing methods from software-driven computer engineering and applied mathematics. The compressed sensing theory in particular established a practical framework for reconstructing the scene content using few linear combinations of complex measurements and a sparse prior for regularizing the solution. Compressed sensing found direct applications in digital holography for microscopy. Indeed, the wave propagation phenomenon in free space mixes in a natural way the spatial distribution of point sources from the 3-dimensional scene. As the 3-dimensional scene is mapped to a 2-dimensional hologram, the hologram samples form a compressed representation of the scene as well. This overview paper discusses contributions in the field of compressed digital holography at the micro scale. Then, an outreach on future extensions towards the real-size macro scale is discussed. Thanks to advances in sensor technologies, increasing computing power and the recent improvements in sparse digital signal processing, holographic modalities are on the verge of practical high-quality visualization at a macroscopic scale where much higher resolution holograms must be acquired and processed on the computer.

  19. Katrina: macro-ethical issues for engineers.

    PubMed

    Newberry, Byron

    2010-09-01

    Hurricane Katrina was one of the worst disasters in United States history. Failures within New Orleans' engineered hurricane protection system (levees and floodwalls) contributed to the severity of the event and have drawn considerable public attention. In the time since Katrina, forensic investigations have uncovered a range of issues and problems related to the engineering work. In this article, my goal is to distill from these investigations, and the related literature that has accumulated, some overarching macro-ethical issues that are relevant for all engineers. I attempt to frame these issues, using illustrative examples taken from Katrina, in a way that might be of pedagogical use and benefit for engineering educators interested in engaging their students in discussions of engineering ethics, societal impact of engineered systems, engineering design, or related topics. Some of the issues discussed are problems of unanticipated failure modes, faulty assumptions, lack or misuse of information, the importance of resiliency, the effects of time, balancing competing interests, attending to the details of interfaces, the fickleness of risk perception, and how the past constrains the present.

  20. Mentat: An object-oriented macro data flow system

    NASA Technical Reports Server (NTRS)

    Grimshaw, Andrew S.; Liu, Jane W. S.

    1988-01-01

    Mentat, an object-oriented macro data flow system designed to facilitate parallelism in distributed systems, is presented. The macro data flow model is a model of computation similar to the data flow model with two principal differences: the computational complexity of the actors is much greater than in traditional data flow systems, and there are persistent actors that maintain state information between executions. Mentat is a system that combines the object-oriented programming paradigm and the macro data flow model of computation. Mentat programs use a dynamic structure called a future list to represent the future of computations.

  1. A force-controllable macro-micro manipulator and its application to medical robots

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1994-01-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.

  2. A force-controllable macro-micro manipulator and its application to medical robots

    NASA Astrophysics Data System (ADS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1994-02-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.

  3. Modeling Manganese Silicate Inclusion Composition Changes during Ladle Treatment Using FactSage Macros

    NASA Astrophysics Data System (ADS)

    Piva, Stephano P. T.; Kumar, Deepoo; Pistorius, P. Chris

    2017-02-01

    This work investigated the use of FactSage macros to simulate steel-slag and steel-inclusion reaction kinetics in silicon-manganese killed steels, and predict oxide inclusion composition changes during ladle treatment. These changes were assessed experimentally using an induction furnace to simulate deoxidation and slag addition. The average steel mass transfer coefficient for the experimental setup was calculated from the analyzed aluminum pick-up by steel. Average oxide inclusion composition was measured using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Confocal laser scanning microscopy was used to assess the physical state (solid or liquid) of oxide inclusions in selected samples. The changes in the chemical compositions of the oxide inclusions and the steel agreed with the FactSage macro simulations.

  4. Water and energy dietary requirements and endocrinology of human space flight.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  5. Water and Energy Dietary Requirements and Endocrinology of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  6. Leveraging Human-environment Systems in Residential Buildings for Aggregate Energy Efficiency and Sustainability

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqi

    Reducing the energy consumed in the built environment is a key objective in many sustainability initiatives. Existing energy saving methods have consisted of physical interventions to buildings and/or behavioral modifications of occupants. However, such methods may not only suffer from their own disadvantages, e.g. high cost and transient effect, but also lose aggregate energy saving potential due to the oftentimes-associated single-building-focused view and an isolated examination of occupant behaviors. This dissertation attempts to overcome the limitations of traditional energy saving research and practical approaches, and enhance residential building energy efficiency and sustainability by proposing innovative energy strategies from a holistic perspective of the aggregate human-environment systems. This holistic perspective features: (1) viewing buildings as mutual influences in the built environment, (2) leveraging both the individual and contextualized social aspects of occupant behaviors, and (3) incorporating interactions between the built environment and human behaviors. First, I integrate three interlinked components: buildings, residents, and the surrounding neighborhood, and quantify the potential energy savings to be gained from renovating buildings at the inter-building level and leveraging neighborhood-contextualized occupant social networks. Following the confirmation of both the inter-building effect among buildings and occupants' interpersonal influence on energy conservation, I extend the research further by examining the synergy that may exist at the intersection between these "engineered" building networks and "social" peer networks, focusing specifically on the additional energy saving potential that could result from interactions between the two components. Finally, I seek to reach an alignment of the human and building environment subsystems by matching the thermostat preferences of each household with the thermal conditions within their

  7. Oleic acid content of a meal promotes oleoylethanolamide response and reduces subsequent energy intake in humans.

    PubMed

    Mennella, Ilario; Savarese, Maria; Ferracane, Rosalia; Sacchi, Raffaele; Vitaglione, Paola

    2015-01-01

    Animal data suggest that dietary fat composition may influence endocannabinoid (EC) response and dietary behavior. This study tested the hypothesis that fatty acid composition of a meal can influence the short-term response of ECs and subsequent energy intake in humans. Fifteen volunteers on three occasions were randomly offered a meal containing 30 g of bread and 30 mL of one of three selected oils: sunflower oil (SO), high oleic sunflower oil (HOSO) and virgin olive oil (VOO). Plasma EC concentrations and appetite ratings over 2 h and energy intake over 24 h following the experimental meal were measured. Results showed that after HOSO and VOO consumption the circulating oleoylethanolamide (OEA) was significantly higher than after SO consumption; a concomitantly significant reduction of energy intake was found. For the first time the oleic acid content of a meal was demonstrated to increase the post-prandial response of circulating OEA and to reduce energy intake at subsequent meals in humans.

  8. Active vertical tail buffeting suppression based on macro fiber composites

    NASA Astrophysics Data System (ADS)

    Zou, Chengzhe; Li, Bin; Liang, Li; Wang, Wei

    2016-04-01

    Aerodynamic buffet is unsteady airflow exerting forces onto a surface, which can lead to premature fatigue damage of aircraft vertical tail structures, especially for aircrafts with twin vertical tails at high angles of attack. In this work, Macro Fiber Composite (MFC), which can provide strain actuation, was used as the actuator for the buffet-induced vibration control, and the positioning of the MFC patches was led by the strain energy distribution on the vertical tail. Positive Position Feedback (PPF) control algorithm has been widely used for its robustness and simplicity in practice, and consequently it was developed to suppress the buffet responses of first bending and torsional mode of vertical tail. However, its performance is usually attenuated by the phase contributions from non-collocated sensor/actuator configuration and plants. The phase lag between the input and output signals of the control system was identified experimentally, and the phase compensation was considered in the PPF control algorithm. The simulation results of the amplitude frequency of the closed-loop system showed that the buffet response was alleviated notably around the concerned bandwidth. Then the wind tunnel experiment was conducted to verify the effectiveness of MFC actuators and compensated PPF, and the Root Mean Square (RMS) of the acceleration response was reduced 43.4%, 28.4% and 39.5%, respectively, under three different buffeting conditions.

  9. Moon and Sun shadowing effect in the MACRO detector

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-11-01

    Using data collected by the MACRO experiment from 1989 to the end of its operations in 2000, we have studied in the underground muon flux the shadowing effects due to both the Moon and the Sun. We have observed the shadow cast by the Moon at its apparent position with a significance of 6.5 σ. The Moon shadowing effect has been used to verify the pointing capability of the detector and to determine the instrument resolution for the search of muon excesses from any direction of the celestial sphere. The dependence of the effect on the geomagnetic field is clearly shown by splitting the data sample in day and night observations. The Sun shadow, observed with a significance of 4.6 σ is displaced by about 0.6° from its apparent position. In this case however the explanation resides in the configuration of the Solar and Interplanetary Magnetic Fields, which affect the propagation of cosmic ray particles between the Sun, and the Earth. The displacement of the Sun shadow with respect to the real Sun position has been used to establish an upper limit on the antimatter flux in cosmic rays of about 48% at 68% c.l. and primary energies of about 20 TeV.

  10. Polyaniline-Supported Atomic Gold Electrodes: Comparison with Macro Electrodes

    SciTech Connect

    Schwartz, Ilana; Jonke, Alex P.; Josowicz, Mira A.; Janata, Jiri

    2012-11-01

    Under precisely controlled conditions, atomic gold electrodes with even or odd number of Au atoms per polyaniline repeat unit (Pt/PANI/AuN for 0 macro gold and PANI coated platinum electrodes by testing electrochemical oxidation of n-propanol and iso-propanol. This study allowed us to separate the behavior dominated by that of macroscopic gold in strongly alkaline medium and by that of the quantized odd–even effect of atomic gold. Within this overarching scope, there is a specific oxidation pattern attributable to the structural differences between the two isomers of propanol. The significance of this research lies in the recognition of high specific catalytic activity of atomic gold, which is at least three orders of magnitude higher than that of bulk gold for the oxidation of alcohols. It points to a substantial saving of the precious metal without the loss of catalytic activity, which is important in fuel cells and in other energy conversion device applications.

  11. Legal Requirements for Human-Health Based Appeals of Wind Energy Projects in Ontario

    PubMed Central

    Engel, Albert M.

    2014-01-01

    In 2009, the government of the province of Ontario, Canada passed new legislation to promote the development of renewable energy facilities, including wind energy facilities in the province. Throughout the legislative process, concerns were raised with respect to the effect of wind energy facilities on human health. Ultimately, the government established setbacks and sound level limits for wind energy facilities and provided Ontario residents with the right to appeal the approval of a wind energy facility on the ground that engaging in the facility in accordance with its approval will cause serious harm to human health. The first approval of a wind facility under the new legislation was issued in 2010 and since then, Ontario’s Environmental Review Tribunal as well as Ontario’s courts has been considering evidence proffered by appellants seeking revocation of approvals on the basis of serious harm to human health. To date, the evidence has been insufficient to support the revocation of a wind facility approval. This article reviews the legal basis for the dismissal of human-health based appeals. PMID:25520946

  12. Legal requirements for human-health based appeals of wind energy projects in ontario.

    PubMed

    Engel, Albert M

    2014-01-01

    In 2009, the government of the province of Ontario, Canada passed new legislation to promote the development of renewable energy facilities, including wind energy facilities in the province. Throughout the legislative process, concerns were raised with respect to the effect of wind energy facilities on human health. Ultimately, the government established setbacks and sound level limits for wind energy facilities and provided Ontario residents with the right to appeal the approval of a wind energy facility on the ground that engaging in the facility in accordance with its approval will cause serious harm to human health. The first approval of a wind facility under the new legislation was issued in 2010 and since then, Ontario's Environmental Review Tribunal as well as Ontario's courts has been considering evidence proffered by appellants seeking revocation of approvals on the basis of serious harm to human health. To date, the evidence has been insufficient to support the revocation of a wind facility approval. This article reviews the legal basis for the dismissal of human-health based appeals.

  13. Breast Cancer Risk Assessment SAS Macro (Gail Model)

    Cancer.gov

    A SAS macro (commonly referred to as the Gail Model) that projects absolute risk of invasive breast cancer according to NCI’s Breast Cancer Risk Assessment Tool (BCRAT) algorithm for specified race/ethnic groups and age intervals.

  14. Usual Dietary Intakes: SAS Macros for the NCI Method

    Cancer.gov

    SAS macros are currently available to facilitate modeling of a single dietary component, whether consumed daily or episodically; ratios of two dietary components that are consumed nearly every day; multiple dietary components, whether consumed daily or episodically.

  15. Cochlear Macro- and Micromechanics—A Moderated Discussion

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Ruggero, Mario A.

    2011-11-01

    A discussion moderated by the authors on the topic "Cochlear Macro- and Micromechanics" was held on 19 July 2011 at the 11th International Mechanics of Hearing Workshop in Williamstown, Massachusetts. The paper provides an edited transcript of the session.

  16. Micro-Macro Analysis of Complex Networks

    PubMed Central

    Marchiori, Massimo; Possamai, Lino

    2015-01-01

    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a “classic” approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (“micro”) to a different scale level (“macro”), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability. PMID:25635812

  17. Tutorial: simulating chromatography with Microsoft Excel Macros.

    PubMed

    Kadjo, Akinde; Dasgupta, Purnendu K

    2013-04-22

    Chromatography is one of the cornerstones of modern analytical chemistry; developing an instinctive feeling for how chromatography works will be invaluable to future generation of chromatographers. Specialized software programs exist that handle and manipulate chromatographic data; there are also some that simulate chromatograms. However, the algorithm details of such software are not transparent to a beginner. In contrast, how spreadsheet tools like Microsoft Excel™ work is well understood and the software is nearly universally available. We show that the simple repetition of an equilibration process at each plate (a spreadsheet row) followed by discrete movement of the mobile phase down by a row, easily automated by a subroutine (a "Macro" in Excel), readily simulates chromatography. The process is readily understood by a novice. Not only does this permit simulation of isocratic and simple single step gradient elution, linear or multistep gradients are also easily simulated. The versatility of a transparent and easily understandable computational platform further enables the simulation of complex but commonly encountered chromatographic scenarios such as the effects of nonlinear isotherms, active sites, column overloading, on-column analyte degradation, etc. These are not as easily simulated by available software. Views of the separation as it develops on the column and as it is seen by an end-column detector are both available in real time. Excel 2010™ also permits a 16-level (4-bit) color gradation of numerical values in a column/row; this permits visualization of a band migrating down the column, much as Tswett may have originally observed, but in a numerical domain. All parameters of relevance (partition constants, elution conditions, etc.) are readily changed so their effects can be examined. Illustrative Excel spreadsheets are given in the Supporting Information; these are easily modified by the user or the user can write his/her own routine.

  18. NREL/Habitat for Humanity Zero Energy Home: A Cold-Climate Case Study for Affordable Zero Energy Homes

    SciTech Connect

    Norton, P.; Christensen, C.; Hancock, E.; Barker, G.; Reeves, P.

    2008-06-01

    The design of this 1,280-square-foot, three-bedroom Habitat for Humanity of Metro Denver zero energy home carefully combines envelope efficiency, efficient equipment, appliances and lighting, and passive and active solar features to reach the zero energy goal. The home was designed with an early version (July 22, 2004) of the BEOpt building optimization software; DOE2 and TRNSYS were used to perform additional analysis. This engineering approach was tempered by regular discussions with Habitat construction staff and volunteers. These discussions weighed the applicability of the optimized solutions to the special needs and economics of a Habitat house--moving the design toward simple, easily maintained mechanical systems and volunteer-friendly construction techniques. A data acquisition system was installed in the completed home to monitor its performance.

  19. Reducing the energy cost of human walking using an unpowered exoskeleton.

    PubMed

    Collins, Steven H; Wiggin, M Bruce; Sawicki, Gregory S

    2015-06-11

    With efficiencies derived from evolution, growth and learning, humans are very well-tuned for locomotion. Metabolic energy used during walking can be partly replaced by power input from an exoskeleton, but is it possible to reduce metabolic rate without providing an additional energy source? This would require an improvement in the efficiency of the human-machine system as a whole, and would be remarkable given the apparent optimality of human gait. Here we show that the metabolic rate of human walking can be reduced by an unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with the user's calf muscles, off-loading muscle force and thereby reducing the metabolic energy consumed in contractions. The device uses a mechanical clutch to hold a spring as it is stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfil one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch sustains force passively. The exoskeleton consumes no chemical or electrical energy and delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 2.6% for healthy human users under natural conditions, comparable to savings with powered devices. Improving upon walking economy in this way is analogous to altering the structure of the body such that it is more energy-effective at walking. While strong natural pressures have already shaped human locomotion, improvements in efficiency are still possible. Much remains to be learned about this seemingly simple behaviour.

  20. Energy efficient reconcentration of diluted human urine using ion exchange membranes in bioelectrochemical systems.

    PubMed

    Tice, Ryan C; Kim, Younggy

    2014-11-01

    Nutrients can be recovered from source separated human urine; however, nutrient reconcentration (i.e., volume reduction of collected urine) requires energy-intensive treatment processes, making it practically difficult to utilize human urine. In this study, energy-efficient nutrient reconcentration was demonstrated using ion exchange membranes (IEMs) in a microbial electrolysis cell (MEC) where substrate oxidation at the MEC anode provides energy for the separation of nutrient ions (e.g., NH4(+), HPO4(2-)). The rate of nutrient separation was magnified with increasing number of IEM pairs and electric voltage application (Eap). Ammonia and phosphate were reconcentrated from diluted human urine by a factor of up to 4.5 and 3.0, respectively (Eap = 1.2 V; 3-IEM pairs). The concentrating factor increased with increasing degrees of volume reduction, but it remained stationary when the volume ratio between the diluate (urine solution that is diluted in the IEM stack) and concentrate (urine solution that is reconcentrated) was 6 or greater. The energy requirement normalized by the mass of nutrient reconcentrated was 6.48 MJ/kg-N (1.80 kWh/kg-N) and 117.6 MJ/kg-P (32.7 kWh/kg-P). In addition to nutrient separation, the examined MEC reactor with three IEM pairs showed 54% removal of COD (chemical oxygen demand) in 47-hr batch operation. The high sulfate concentration in human urine resulted in substantial growth of both of acetate-oxidizing and H2-oxidizing sulfate reducing bacteria, greatly diminishing the energy recovery and Coulombic efficiency. However, the high microbial activity of sulfate reducing bacteria hardly affected the rate of nutrient reconcentration. With the capability to reconcentrate nutrients at a minimal energy consumption and simultaneous COD removal, the examined bioelectrochemical treatment method with an IEM application has a potential for practical nutrient recovery and sustainable treatment of source-separated human urine.

  1. Lemons to Lemonade: How Five Challenges in Teaching Macro Practice Helped to Strengthen Our Course

    ERIC Educational Resources Information Center

    Dooley, Joe; Sellers, Sherril; Gordon-Hempe, Cornelia

    2009-01-01

    Teaching macro practice can be challenging. While students have some concepts of what macro practice entails, their knowledge may be limited and sometimes inaccurate. Moreover, students may be reluctant to engage in macro change efforts. Given the scarcity of literature regarding teaching macro practice and the growing importance of it in social…

  2. Genetic variants in human CLOCK associate with total energy intake and cytokine sleep factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the importance of total energy intake in circadian system regulation, no study has related human CLOCK gene polymorphisms and food intake measures. The aim of this study was to investigate associations of five CLOCK single-nucleotide-polymorphisms (SNPs) with food-intake and to explore the p...

  3. The mass-specific energy cost of human walking is set by stature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolic and mechanical requirements of walking are considered to be of fundamental importance to the health, physiological function and even the evolution of modern humans. Although walking energy expenditure and gait mechanics are clearly linked, a direct quantitative relationship has not eme...

  4. Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications

    NASA Astrophysics Data System (ADS)

    Yayathi, Sandeep; Walker, William; Doughty, Daniel; Ardebili, Haleh

    2016-10-01

    Lithium ion (Li-ion) batteries provide low mass and energy dense solutions necessary for space exploration, but thermal related safety concerns impede the utilization of Li-ion technology for human applications. Experimental characterization of thermal runaway energy release with accelerated rate calorimetry supports safer thermal management systems. 'Standard' accelerated rate calorimetry setup provides means to measure the addition of energy exhibited through the body of a Li-ion cell. This study considers the total energy generated during thermal runaway as distributions between cell body and hot gases via inclusion of a unique secondary enclosure inside the calorimeter; this closed system not only contains the cell body and gaseous species, but also captures energy release associated with rapid heat transfer to the system unobserved by measurements taken on the cell body. Experiments include Boston Power Swing 5300, Samsung 18650-26F and MoliCel 18650-J Li-ion cells at varied states-of-charge. An inverse relationship between state-of-charge and onset temperature is observed. Energy contained in the cell body and gaseous species are successfully characterized; gaseous energy is minimal. Significant additional energy is measured with the heating of the secondary enclosure. Improved calorimeter apparatus including a secondary enclosure provides essential capability to measuring total energy release distributions during thermal runaway.

  5. Changes in Income at Macro Level Predict Sex Ratio at Birth in OECD Countries.

    PubMed

    Kanninen, Ohto; Karhula, Aleksi

    2016-01-01

    The human sex ratio at birth (SRB) is approximately 107 boys for every 100 girls. SRB was rising until the World War II and has been declining slightly after the 1950s in several industrial countries. Recent studies have shown that SRB varies according to exposure to disasters and socioeconomic conditions. However, it remains unknown whether changes in SRB can be explained by observable macro-level socioeconomic variables across multiple years and countries. Here we show that changes in disposable income at the macro level positively predict SRB in OECD countries. A one standard deviation increase in the change of disposable income is associated with an increase of 1.03 male births per 1000 female births. The relationship is possibly nonlinear and driven by extreme changes. The association varies from country to country being particular strong in Estonia. This is the first evidence to show that economic and social conditions are connected to SRB across countries at the macro level. This calls for further research on the effects of societal conditions on general characteristics at birth.

  6. Changes in Income at Macro Level Predict Sex Ratio at Birth in OECD Countries

    PubMed Central

    2016-01-01

    The human sex ratio at birth (SRB) is approximately 107 boys for every 100 girls. SRB was rising until the World War II and has been declining slightly after the 1950s in several industrial countries. Recent studies have shown that SRB varies according to exposure to disasters and socioeconomic conditions. However, it remains unknown whether changes in SRB can be explained by observable macro-level socioeconomic variables across multiple years and countries. Here we show that changes in disposable income at the macro level positively predict SRB in OECD countries. A one standard deviation increase in the change of disposable income is associated with an increase of 1.03 male births per 1000 female births. The relationship is possibly nonlinear and driven by extreme changes. The association varies from country to country being particular strong in Estonia. This is the first evidence to show that economic and social conditions are connected to SRB across countries at the macro level. This calls for further research on the effects of societal conditions on general characteristics at birth. PMID:27437701

  7. Tunable hierarchical macro/mesoporous gold microwires fabricated by dual-templating and dealloying processes.

    PubMed

    Sattayasamitsathit, Sirilak; Gu, Yonge; Kaufmann, Kevin; Minteer, Shelley; Polsky, Ronen; Wang, Joseph

    2013-09-07

    Tailor-made highly ordered macro/mesoporous hierarchical metal architectures have been created by combining sphere lithography, membrane template electrodeposition and alloy-etching processes. The new double-template preparation route involves the electrodeposition of Au/Ag alloy within the interstitial (void) spaces of polystyrene (PS) microspheres which are closely packed within the micropores of a polycarbonate membrane (PC), followed by dealloying of the Ag component and dissolution of the microsphere and membrane templates. The net results of combining such sphere lithography and silver etching is the creation of highly regular three-dimensional macro/mesoporous gold architecture with well-controlled sizes and shapes. The morphology and porosity of the new hierarchical porous structures can be tailored by controlling the preparation conditions, such as the composition of the metal mixture plating solution, the size of the microspheres template, or the dealloying time. Such tunable macro/mesoporous hierarchical structures offer control of the electrochemical reactivity and of the fuel mass transport, as illustrated for the enhanced oxygen reduction reaction (ORR) and hydrogen-peroxide detection. The new double templated electrodeposition method provides an attractive route for preparing highly controllable multiscale porous materials and diverse morphologies based on different materials and hence holds considerable promise for designing electrocatalytic or bioelectrocatalytic surfaces for a variety sensing and energy applications.

  8. Wavelet package frequency-band energy ratios of human EEG signals in sleeping

    NASA Astrophysics Data System (ADS)

    Wang, Li; Han, Qingpeng; Wang, Ping; Wen, Bangchun

    2005-12-01

    Human EEG (Electroencephalogram) signals, including 4 rhythms i.e. δ, θ, α, β, are typically nonlinear. They just coincide with different human sleeping states. The wavelet package decomposition and reconstruction techniques are firstly introduced in order to analyze the nonlinear EEG. A 6 level decomposition of EEG was achieved with "db20" as the mother wavelet, and the above 4 rhythms were combined with specialized 8 frequency sub-bands obtained in wavelet package transform. The four frequency band energy ratios, with normalized values, were calculated from the reconstructed signals. These frequency band energy ratios are used as quantify estimation indexes for human sleeping states. The experimental results confirm the proposed method to be effective.

  9. Energy-efficient human body communication receiver chipset using wideband signaling scheme.

    PubMed

    Song, Seong-Jun; Cho, Namjun; Kim, Sunyoung; Yoo, Hoi-Jun

    2007-01-01

    This paper presents an energy-efficient wideband signaling receiver for communication channels using the human body as a data transmission medium. The wideband signaling scheme with the direct-coupled interface provides the energy-efficient transmission of multimedia data around the human body. The wideband signaling receiver incorporates with a receiver AFE exploiting wideband symmetric triggering technique and an all-digital CDR circuit with quadratic sampling technique. The AFE operates at 10-Mb/s data rate with input sensitivity of -27dBm and the operational bandwidth of 200-MHz. The CDR recovers clock and data of 2-Mb/s at a bit error rate of 10(-7). The receiver chipset consumes only 5-mW from a 1-V supply, thereby achieving the bit energy of 2.5-nJ/bit.

  10. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  11. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions

    PubMed Central

    2011-01-01

    Background Biomechanical energy harvesting from human motion presents a promising clean alternative to electrical power supplied by batteries for portable electronic devices and for computerized and motorized prosthetics. We present the theory of energy harvesting from the human body and describe the amount of energy that can be harvested from body heat and from motions of various parts of the body during walking, such as heel strike; ankle, knee, hip, shoulder, and elbow joint motion; and center of mass vertical motion. Methods We evaluated major motions performed during walking and identified the amount of work the body expends and the portion of recoverable energy. During walking, there are phases of the motion at the joints where muscles act as brakes and energy is lost to the surroundings. During those phases of motion, the required braking force or torque can be replaced by an electrical generator, allowing energy to be harvested at the cost of only minimal additional effort. The amount of energy that can be harvested was estimated experimentally and from literature data. Recommendations for future directions are made on the basis of our results in combination with a review of state-of-the-art biomechanical energy harvesting devices and energy conversion methods. Results For a device that uses center of mass motion, the maximum amount of energy that can be harvested is approximately 1 W per kilogram of device weight. For a person weighing 80 kg and walking at approximately 4 km/h, the power generation from the heel strike is approximately 2 W. For a joint-mounted device based on generative braking, the joints generating the most power are the knees (34 W) and the ankles (20 W). Conclusions Our theoretical calculations align well with current device performance data. Our results suggest that the most energy can be harvested from the lower limb joints, but to do so efficiently, an innovative and light-weight mechanical design is needed. We also compared the

  12. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin.

    PubMed

    Salvalaglio, Matteo; Muscionico, Isabella; Cavallotti, Carlo

    2010-11-25

    Structure and energies of the binding sites of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to human serum albumin (HSA) were determined through molecular modeling. The calculations consisted of a compound approach based on docking, followed by molecular dynamics simulations and by the estimation of the free binding energies adopting WHAM-umbrella sampling and semiempirical methodologies. The binding sites so determined are common either to known HSA fatty acids sites or to other HSA sites known to bind to pharmaceutical compounds such as warfarin, thyroxine, indole, and benzodiazepin. Among the PFOA binding sites, five have interaction energies in excess of -6 kcal/mol, which become nine for PFOS. The calculated binding free energy of PFOA to the Trp 214 binding site is the highest among the PFOA complexes, -8.0 kcal/mol, in good agreement with literature experimental data. The PFOS binding site with the highest energy, -8.8 kcal/mol, is located near the Trp 214 binding site, thus partially affecting its activity. The maximum number of ligands that can be bound to HSA is 9 for PFOA and 11 for PFOS. The calculated data were adopted to predict the level of complexation of HSA as a function of the concentration of PFOA and PFOS found in human blood for different levels of exposition. The analysis of the factors contributing to the complex binding energy permitted to outline a set of guidelines for the rational design of alternative fluorinated surfactants with a lower bioaccumulation potential.

  13. The macro response Monte Carlo method for electron transport

    SciTech Connect

    Svatos, M M

    1998-09-01

    The main goal of this thesis was to prove the feasibility of basing electron depth dose calculations in a phantom on first-principles single scatter physics, in an amount of time that is equal to or better than current electron Monte Carlo methods. The Macro Response Monte Carlo (MRMC) method achieves run times that are on the order of conventional electron transport methods such as condensed history, with the potential to be much faster. This is possible because MRMC is a Local-to-Global method, meaning the problem is broken down into two separate transport calculations. The first stage is a local, in this case, single scatter calculation, which generates probability distribution functions (PDFs) to describe the electron's energy, position and trajectory after leaving the local geometry, a small sphere or "kugel" A number of local kugel calculations were run for calcium and carbon, creating a library of kugel data sets over a range of incident energies (0.25 MeV - 8 MeV) and sizes (0.025 cm to 0.1 cm in radius). The second transport stage is a global calculation, where steps that conform to the size of the kugels in the library are taken through the global geometry. For each step, the appropriate PDFs from the MRMC library are sampled to determine the electron's new energy, position and trajectory. The electron is immediately advanced to the end of the step and then chooses another kugel to sample, which continues until transport is completed. The MRMC global stepping code was benchmarked as a series of subroutines inside of the Peregrine Monte Carlo code. It was compared to Peregrine's class II condensed history electron transport package, EGS4, and MCNP for depth dose in simple phantoms having density inhomogeneities. Since the kugels completed in the library were of relatively small size, the zoning of the phantoms was scaled down from a clinical size, so that the energy deposition algorithms for spreading dose across 5-10 zones per kugel could be tested. Most

  14. Energy cost and mechanical efficiency of riding a human-powered recumbent bicycle.

    PubMed

    Capelli, Carlo; Ardigo, Luca Paolo; Schena, Federico; Zamparo, Paola

    2008-10-01

    When dealing with human-powered vehicles, it is important to quantify the capability of converting metabolic energy in useful mechanical work by measuring mechanical efficiency. In this study, net mechanical efficiency (eta) of riding a recumbent bicycle on flat terrain and at constant speeds (v, 5.1-10.0 m/s) was calculated dividing mechanical work (w, J/m) by the corresponding energy cost (C(c), J/m). w and C(c) increased linearly with the speed squared: w = 9.41 + 0.156 . v(2); C(c) = 39.40 + 0.563 . v(2). eta was equal to 0.257 +/- 0.0245, i.e. identical to that of concentric muscular contraction. Hence, i) eta seems unaffected by the biomechanical arrangement of the human-vehicle system; ii) the efficiency of transmission seems to be close to 100%, suggesting that the particular biomechanical arrangement does not impair the transformation of metabolic energy in mechanical work. When dealing with human-powered vehicles, it is important to quantify mechanical efficiency (eta) of locomotion. eta of riding a recumbent bicycle was calculated dividing the mechanical work to the corresponding energy cost of locomotion; it was practically identical to that of concentric muscular contraction (0.257 +/- 0.0245), suggesting that the power transmission from muscles to pedals is unaffected by the biomechanical arrangement of the vehicle.

  15. Human radiation experiments associated with the US Department of Energy and its predecessors

    SciTech Connect

    1995-07-01

    This document contains a listing, description, and selected references for documented human radiation experiments sponsored, supported, or performed by the US Department of Energy (DOE) or its predecessors, including the US Energy Research and Development Administration (ERDA), the US Atomic Energy Commission (AEC), the Manhattan Engineer District (MED), and the Off ice of Scientific Research and Development (OSRD). The list represents work completed by DOE`s Off ice of Human Radiation Experiments (OHRE) through June 1995. The experiment list is available on the Internet via a Home Page on the World Wide Web (http://www.ohre.doe.gov). The Home Page also includes the full text of Human Radiation Experiments. The Department of Energy Roadmap to the Story and the Records (DOE/EH-0445), published in February 1995, to which this publication is a supplement. This list includes experiments released at Secretary O`Leary`s June 1994 press conference, as well as additional studies identified during the 12 months that followed. Cross-references are provided for experiments originally released at the press conference; for experiments released as part of The DOE Roadmap; and for experiments published in the 1986 congressional report entitled American Nuclear Guinea Pigs: Three Decades of Radiation Experiments on US Citizens. An appendix of radiation terms is also provided.

  16. Scaling up: Assessing social impacts at the macro-scale

    SciTech Connect

    Schirmer, Jacki

    2011-04-15

    Social impacts occur at various scales, from the micro-scale of the individual to the macro-scale of the community. Identifying the macro-scale social changes that results from an impacting event is a common goal of social impact assessment (SIA), but is challenging as multiple factors simultaneously influence social trends at any given time, and there are usually only a small number of cases available for examination. While some methods have been proposed for establishing the contribution of an impacting event to macro-scale social change, they remain relatively untested. This paper critically reviews methods recommended to assess macro-scale social impacts, and proposes and demonstrates a new approach. The 'scaling up' method involves developing a chain of logic linking change at the individual/site scale to the community scale. It enables a more problematised assessment of the likely contribution of an impacting event to macro-scale social change than previous approaches. The use of this approach in a recent study of change in dairy farming in south east Australia is described.

  17. Fuelling Insecurity? Sino-Myanmar Energy Cooperation and Human Security in Myanmar

    NASA Astrophysics Data System (ADS)

    Botel, Gabriel

    This thesis examines the relationship between energy, development and human security in Sino-Myanmar relations. Rapid economic growth and increased urbanisation have intensified China's industrial and domestic energy consumption, drastically increasing demand and overwhelming national supply capacities. Chinese foreign policy has responded by becoming more active in securing and protecting foreign energy resources and allowing Chinese companies more freedom and opportunities for investment abroad. Consequently, Chinese foreign investment and policies have become increasing sources of scrutiny and debate, typically focusing on their (presumed) intentions and the social, economic, environmental and political impacts they have on the rest of the world. Within this debate, a key issue has been China's engagement with so-called pariah states. China has frequently received substantial international criticism for its unconditional engagement with such countries, often seen as a geopolitical pursuit of strategic national (energy) interests, unconcerned with international opprobrium. In the case of Myanmar, traditional security analyses interpret this as, at best, undermining (Western) international norms and, at worst, posing a direct challenge to international security. However, traditional security analyses rely on state-centric concepts of security, and tend to over-simply Sino-Myanmar relations and the dynamics which inform it. Conversely, implications for human security are overlooked; this is in part because human security remains poorly defined and also because there are questions regarding its utility. However, human security is a critical tool in delineating between state, corporate and 'civilian' interests, and how these cleavages shape the security environment and potential for instability in the region. This thesis takes a closer look at some of the entrenched and changing security dynamics shaping this Sino-Myanmar energy cooperation, drawing on an extensive

  18. ERICA: intake of macro and micronutrients of Brazilian adolescents

    PubMed Central

    Souza, Amanda de Moura; Barufaldi, Laura Augusta; Abreu, Gabriela de Azevedo; Giannini, Denise Tavares; de Oliveira, Cecília Lacroix; dos Santos, Marize Melo; Leal, Vanessa Sá; Vasconcelos, Francisco de Assis Guedes

    2016-01-01

    ABSTRACT OBJECTIVE To describe food and macronutrient intake profile and estimate the prevalence of inadequate micronutrient intake of Brazilian adolescents. METHODS Data from 71,791 adolescents aged from 12 to 17 years were evaluated in the 2013-2014 Brazilian Study of Cardiovascular Risks in Adolescents (ERICA). Food intake was estimated using 24-hour dietary recall (24-HDR). A second 24-HDR was collected in a subsample of the adolescents to estimate within-person variability and calculate the usual individual intake. The prevalence of food/food group intake reported by the adolescents was also estimated. For sodium, the prevalence of inadequate intake was estimated based on the Tolerable Upper Intake Level (UL). The Estimated Average Requirement (EAR) method used as cutoff was applied to estimate the prevalence of inadequate nutrient intake. All the analyses were stratified according to sex, age group and Brazilian macro-regions. All statistical analyses accounted for the sample weight and the complex sampling design. RESULTS Rice, beans and other legume, juice and fruit drinks, breads and meat were the most consumed foods among the adolescents. The average energy intake ranged from 2,036 kcal (girls aged from 12 to 13 years) to 2,582 kcal (boy aged from14 to 17 years). Saturated fat and free sugar intake were above the maximum limit recommended (< 10.0%). Vitamins A and E, and calcium were the micronutrients with the highest prevalence of inadequate intake (> 50.0%). Sodium intake was above the UL for more than 80.0% of the adolescents. CONCLUSIONS The diets of Brazilian adolescents were characterized by the intake of traditional Brazilian food, such as rice and beans, as well as by high intake of sugar through sweetened beverages and processed foods. This food pattern was associated with an excessive intake of sodium, saturated fatty acids and free sugar. PMID:26910551

  19. ERICA: intake of macro and micronutrients of Brazilian adolescents.

    PubMed

    Souza, Amanda de Moura; Barufaldi, Laura Augusta; Abreu, Gabriela de Azevedo; Giannini, Denise Tavares; de Oliveira, Cecília Lacroix; dos Santos, Marize Melo; Leal, Vanessa Sá; Vasconcelos, Francisco de Assis Guedes

    2016-02-01

    OBJECTIVE To describe food and macronutrient intake profile and estimate the prevalence of inadequate micronutrient intake of Brazilian adolescents. METHODS Data from 71,791 adolescents aged from 12 to 17 years were evaluated in the 2013-2014 Brazilian Study of Cardiovascular Risks in Adolescents (ERICA). Food intake was estimated using 24-hour dietary recall (24-HDR). A second 24-HDR was collected in a subsample of the adolescents to estimate within-person variability and calculate the usual individual intake. The prevalence of food/food group intake reported by the adolescents was also estimated. For sodium, the prevalence of inadequate intake was estimated based on the Tolerable Upper Intake Level (UL). The Estimated Average Requirement (EAR) method used as cutoff was applied to estimate the prevalence of inadequate nutrient intake. All the analyses were stratified according to sex, age group and Brazilian macro-regions. All statistical analyses accounted for the sample weight and the complex sampling design. RESULTS Rice, beans and other legume, juice and fruit drinks, breads and meat were the most consumed foods among the adolescents. The average energy intake ranged from 2,036 kcal (girls aged from 12 to 13 years) to 2,582 kcal (boy aged from14 to 17 years). Saturated fat and free sugar intake were above the maximum limit recommended (< 10.0%). Vitamins A and E, and calcium were the micronutrients with the highest prevalence of inadequate intake (> 50.0%). Sodium intake was above the UL for more than 80.0% of the adolescents. CONCLUSIONS The diets of Brazilian adolescents were characterized by the intake of traditional Brazilian food, such as rice and beans, as well as by high intake of sugar through sweetened beverages and processed foods. This food pattern was associated with an excessive intake of sodium, saturated fatty acids and free sugar.

  20. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    PubMed Central

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-01-01

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply. PMID:26151204

  1. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    PubMed

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  2. Evidence for a relationship between body mass and energy metabolism in the human brain.

    PubMed

    Schmoller, André; Hass, Torben; Strugovshchikova, Olga; Melchert, Uwe H; Scholand-Engler, Harald G; Peters, Achim; Schweiger, Ulrich; Hohagen, Fritz; Oltmanns, Kerstin M

    2010-07-01

    Cerebral energy metabolism has been suggested to have an important function in body weight regulation. We therefore examined whether there is a relationship between body mass and adenosine triphosphate (ATP) metabolism in the human brain. On the basis of our earlier findings indicating a neuroprotective preferential energy supply of the brain, as compared with peripheral muscle on experimentally induced hypoglycemia, we examined whether this physiological response is preserved also in low-weight and obese participants. We included 45 healthy male subjects with a body mass index (BMI) ranging from 17 to 44 kg/m(2). Each participant underwent a hypoglycemic glucose-clamp intervention, and the ATP metabolism, that is, the content of high-energy phosphates phosphocreatine (PCr) and ATP, was measured repeatedly by (31)phosphor magnetic resonance spectroscopy ((31)P-MRS) in the cerebral cortex and skeletal muscle. Results show an inverse correlation between BMI and high-energy phosphate content in the brain (P<0.01), whereas there was no such relationship found between skeletal muscle and BMI. The hypoglycemic clamp intervention did not affect the ATP metabolism in both tissues. Our data show an inverse correlation between BMI and cerebral high-energy phosphate content in healthy humans, suggesting a close relationship between energetic supply of the brain and body weight regulation.

  3. U.S. Department of Energy Human Subjects Research Database (HSRD) A model for internal oversight and external transparency

    SciTech Connect

    Oak Ridge Institute for Science and Education

    2012-12-12

    This poster introduces the Department of Energy (DOE) Human Subjects Research Database (HSRD), which contains information on all Department of Energy research projects involving human subjects that: are funded by DOE; are conducted in DOE facilities; are performed by DOE personnel; include current or former DOE or contract personnel.

  4. Changes in Energy Expenditure with Weight Gain and Weight Loss in Humans.

    PubMed

    Müller, Manfred J; Enderle, Janna; Bosy-Westphal, Anja

    2016-12-01

    Metabolic adaptation to weight changes relates to body weight control, obesity and malnutrition. Adaptive thermogenesis (AT) refers to changes in resting and non-resting energy expenditure (REE and nREE) which are independent from changes in fat-free mass (FFM) and FFM composition. AT differs in response to changes in energy balance. With negative energy balance, AT is directed towards energy sparing. It relates to a reset of biological defence of body weight and mainly refers to REE. After weight loss, AT of nREE adds to weight maintenance. During overfeeding, energy dissipation is explained by AT of the nREE component only. As to body weight regulation during weight loss, AT relates to two different set points with a settling between them. During early weight loss, the first set is related to depleted glycogen stores associated with the fall in insulin secretion where AT adds to meet brain's energy needs. During maintenance of reduced weight, the second set is related to low leptin levels keeping energy expenditure low to prevent triglyceride stores getting too low which is a risk for some basic biological functions (e.g., reproduction). Innovative topics of AT in humans are on its definition and assessment, its dynamics related to weight loss and its constitutional and neuro-endocrine determinants.

  5. Micro and Macro Element Composition of Kalanchoe integra Leaves: An Adjuvant Treatment for Hypertension in Ghana

    PubMed Central

    Frimpong-Manso, S.; Asiedu-Gyekye, I. J.; Naadu, J. P.; Magnus-Aryitey, G. T.; Nyarko, A. K.; Boamah, D.; Awan, M.

    2015-01-01

    Two samples, water extract and blended whole leaves, of fresh Kalanchoe integra leaves (Crassulaceae), a traditional antihypertensive medicine used in Ghana, were analyzed with Energy Dispersive X-Ray Fluorescence spectroscopy (EDXRF). Analysis revealed 12 macro and 26 micro elements in both extracts. Further quantitative assessment of the results for amounts of elements that are pharmacologically significant revealed that the amounts of calcium, potassium, and magnesium present in the extracts could be correlated to its traditional usage in managing hypertension and arrhythmias. However, heavy metals (lead and inorganic arsenic) detected in the extracts may pose a threat at doses normally used traditionally for the treatment of hypertension. PMID:26495138

  6. A macro-micro robot for precise force applications

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Wang, Yulun

    1993-01-01

    This paper describes an 8 degree-of-freedom macro-micro robot capable of performing tasks which require accurate force control. Applications such as polishing, finishing, grinding, deburring, and cleaning are a few examples of tasks which need this capability. Currently these tasks are either performed manually or with dedicated machinery because of the lack of a flexible and cost effective tool, such as a programmable force-controlled robot. The basic design and control of the macro-micro robot is described in this paper. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system.

  7. Persistent human Borna disease virus infection modifies the acetylome of human oligodendroglia cells towards higher energy and transporter levels

    SciTech Connect

    Liu, Xia; Liu, Siwen; Bode, Liv; Liu, Chengyu; Zhang, Liang; Wang, Xiao; Li, Dan; Lei, Yang; Peng, Xiaojun; Cheng, Zhongyi; and others

    2015-11-15

    Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteins and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.

  8. Spherical, rolling magnet generators for passive energy harvesting from human motion

    NASA Astrophysics Data System (ADS)

    Bowers, Benjamin J.; Arnold, David P.

    2009-09-01

    In this work, non-resonant, vibrational energy harvester architectures intended for human-motion energy scavenging are researched. The basic design employs a spherical, unidirectionally magnetized permanent magnet (NdFeB) ball that is allowed to move arbitrarily in a spherical cavity wrapped with copper coil windings. As the ball rotates and translates within the cage, the time-varying magnetic flux induces a voltage in the coil according to Faraday's Law. Devices ranging from 1.5 cm3 to 4 cm3 in size were tested under human activity scenarios—held in the user's hand or placed in the user's pocket while walking (4 km h-1) and running (14.5 km h-1). These harvesters have demonstrated rms voltages ranging from ~80 mV to 700 mV and time-averaged power densities up to 0.5 mW cm-3.

  9. Current Status and Future Perspective of Nuclear Energy Human Resource Development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shinji

    In recent years, expectations for nuclear energy have been increasing in Japan because of its role and responsibility as a key power source, the contribution it can make to a global nuclear renaissance, the need for energy security, and the importance of combating global warming. Ensuring and fostering good human resources is essential if the nuclear industry is to maintain itself and expand its scale. There are obstacles, however, in doing so : a declining birth rate, job-hunting problem, the wave of retirements in 2007, the declining popularity of engineering departments and particularly nuclear-related subjects, a weakening of nuclear education, and deteriorating research facilities and equipment. While nuclear-related academic, industrial and governmental parties share this recognition and are cooperating and collaborating, all organizations are expected similarly to continue their own wholehearted efforts at human resource development.

  10. Efficient Human Action and Gait Analysis Using Multiresolution Motion Energy Histogram

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Chang; Cheng, Hsu-Yung; Cheng, Chien-Hung; Fan, Kuo-Chin

    2010-12-01

    Average Motion Energy (AME) image is a good way to describe human motions. However, it has to face the computation efficiency problem with the increasing number of database templates. In this paper, we propose a histogram-based approach to improve the computation efficiency. We convert the human action/gait recognition problem to a histogram matching problem. In order to speed up the recognition process, we adopt a multiresolution structure on the Motion Energy Histogram (MEH). To utilize the multiresolution structure more efficiently, we propose an automated uneven partitioning method which is achieved by utilizing the quadtree decomposition results of MEH. In that case, the computation time is only relevant to the number of partitioned histogram bins, which is much less than the AME method. Two applications, action recognition and gait classification, are conducted in the experiments to demonstrate the feasibility and validity of the proposed approach.

  11. Novel validated spectrofluorimetric methods for the determination of taurine in energy drinks and human urine.

    PubMed

    Sharaf El Din, M K; Wahba, M E K

    2015-03-01

    Two sensitive, selective, economic and validated spectrofluorimetric methods were developed for the determination of taurine in energy drinks and spiked human urine. Method Ι is based on fluorimetric determination of the amino acid through its reaction with Hantzsch reagent to form a highly fluorescent product measured at 490 nm after excitation at 419 nm. Method ΙΙ is based on the reaction of taurine with tetracyanoethylene yielding a fluorescent charge transfer complex, which was measured at λex /em of (360 nm/450 nm). The proposed methods were subjected to detailed validation procedures, and were statistically compared with the reference method, where the results obtained were in good agreement. Method Ι was further applied to determine taurine in energy drinks and spiked human urine giving promising results. Moreover, the stoichiometry of the reactions was studied, and reaction mechanisms were postulated.

  12. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Pingping; Zhao, Xin; Li, Yingzhi; Zhang, Qinghua

    2017-01-01

    Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile "templating and embossing" technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g-1. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg-1 and 103.2 kW kg-1, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.

  13. The role of mitochondria in energy production for human sperm motility.

    PubMed

    Piomboni, P; Focarelli, R; Stendardi, A; Ferramosca, A; Zara, V

    2012-04-01

    Mitochondria of spermatozoa are different from the corresponding organelles of somatic cells, in both their morphology and biochemistry. The biochemical differences are essentially related to the existence of specific enzyme isoforms, which are characterized by peculiar kinetic and regulatory properties. As mitochondrial energy metabolism is a key factor supporting several sperm functions, these organelles host critical metabolic pathways during germ cell development and fertilization. Furthermore, spermatozoa can use different substrates, and therefore activate different metabolic pathways, depending on the available substrates and the physico-chemical conditions in which they operate. This versatility is critical to ensure fertilization success. However, the most valuable aspect of mitochondria function in all types of cells is the production of chemical energy in the form of ATP which can be used, in the case of spermatozoa, for sustaining sperm motility. The latter, on the other hand, represents one of the major determinants of male fertility. Accordingly, the presence of structural and functional alterations in mitochondria from asthenozoospermic subjects confirms the important role played by these organelles in energy maintenance of sperm motility. The present study gives an overview of the current knowledge on the energy-producing metabolic pathways operating inside human sperm mitochondria and critically analyse the differences with respect to somatic mitochondria. Such a comparison has also been carried out between the functional characteristics of human sperm mitochondria and those of other mammalian species. A deeper understanding of mitochondrial energy metabolism could open up new avenues of investigation in bioenergetics of human sperm mitochondria, both in physiological and pathological conditions.

  14. Body mass, energy intake, and water consumption of rats and humans during space flight.

    PubMed

    Wade, C E; Miller, M M; Baer, L A; Moran, M M; Steele, M K; Stein, T P

    2002-10-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  15. Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy.

    PubMed

    Nishino, S; Ripley, B; Overeem, S; Nevsimalova, S; Lammers, G J; Vankova, J; Okun, M; Rogers, W; Brooks, S; Mignot, E

    2001-09-01

    Hypocretins (orexins) are hypothalamic neuropeptides involved in sleep and energy homeostasis. Hypocretin mutations produce narcolepsy in animal models. In humans, narcolepsy is rarely due to hypocretin mutations, but this system is deficient in the cerebrospinal fluid (CSF) and brain of a small number of patients. A recent study also indicates increased body mass index (BMI) in narcolepsy. The sensitivity of low CSF hypocretin was examined in 38 successive narcolepsy-cataplexy cases [36 human leukocyte antigen (HLA)-DQB1*0602-positive] and 34 matched controls (15 controls and 19 neurological patients). BMI and CSF leptin levels were also measured. Hypocretin-1 was measurable (169 to 376 pg/ml) in all controls. Levels were unaffected by freezing/thawing or prolonged storage and did not display any concentration gradient. Hypocretin-1 was dramatically decreased (<100 pg/ml) in 32 of 38 patients (all HLA-positive). Four patients had normal levels (2 HLA-negative). Two HLA-positive patients had high levels (609 and 637 pg/ml). CSF leptin and adjusted BMI were significantly higher in patients versus controls. We conclude that the hypocretin ligand is deficient in most cases of human narcolepsy, providing possible diagnostic applications. Increased BMI and leptin indicate altered energy homeostasis. Sleep and energy metabolism are likely to be functionally connected through the hypocretin system.

  16. Body mass, energy intake, and water consumption of rats and humans during space flight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  17. What balance do countries exhibit between the central human resources: water, energy and food

    NASA Astrophysics Data System (ADS)

    Kossak, Julian; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-04-01

    Sufficient water, food and energy is a precondition for human activities. The water, energy and food nexus states that to some extend, these resources can replace each another: land can be used to produce food or energy crops; water can be used as direct water supply, to produce energy or for irrigation; and energy supports water treatment and agricultural yield. We present an overview of the major components of the trade-off together with a set of indicators and data sources to assess these components. The different indicators of the trade-off are summarized and plotted in a novel way on a triangle, which we discuss in view of the resource availability of different countries. Comparing different countries in view of their balance between water, food and energy will inform the discussion about the transition towards more sustainable societies and highlighting alternative strategies for development. This is important in view of possible synergies between the different sectors and as a tool for better coordinated governance approaches.

  18. A miniaturized human-motion energy harvester using flux-guided magnet stacks

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Park, J. Y.

    2016-11-01

    We present a miniaturized electromagnetic energy harvester (EMEH) using two flux-guided magnet stacks to harvest energy from human-generated vibration such as handshaking. Each flux-guided magnet stack increases (40%) the magnetic flux density by guiding the flux lines through a soft magnetic material. The EMEH has been designed to up-convert the applied human-motion vibration to a high-frequency oscillation by mechanical impact of a spring-less structure. The high-frequency oscillator consists of the analyzed 2-magnet stack and a customized helical compression spring. A standard AAA battery sized prototype (3.9 cm3) can generate maximum 203 μW average power from human hand-shaking vibration. It has a maximum average power density of 52 μWcm-3 which is significantly higher than the current state-of-the-art devices. A 6-stage multiplier and rectifier circuit interfaces the harvester with a wearable electronic load (wrist watch) to demonstrate its capability of powering small- scale electronic systems from human-generated vibration.

  19. Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks

    PubMed Central

    Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad

    2015-01-01

    The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633

  20. Investigation of Pendulum Structures for Rotational Energy Harvesting from Human Motion

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2015-12-01

    Energy Harvesting from human motion as a means of powering body-worn devices has been in the focus of research groups for several years now. This work presents a rotational inductive energy harvester that can generate a sufficient amount of energy during normal walking to power small electronic systems. Three pendulum structures and their geometrical parameters are investigated in detail through a system model and system simulations. Based on these results a prototype device is fabricated. The masses and angles between pendulum arms can be changed for the experiments. The device is tested under real-world conditions and generates an average power of up to 23.39 mW across a resistance equal to the coil resistance of the optimal pendulum configuration. A regulated power output of the total system including power management of 3.3 mW is achieved.

  1. Departure Energies, Trip Times and Entry Speeds for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.

    1999-01-01

    The study examines how the mission design variables departure energy, entry speed, and trip time vary for round-trip conjunction-class Mars missions. These three parameters must be balanced in order to produce a mission that is acceptable in terms of mass, cost, and risk. For the analysis, a simple, massless- planet trajectory program was employed. The premise of this work is that if the trans-Mars and trans-Earth injection stages are designed for the most stringent opportunity in the energy cycle, then there is extra energy capability in the "easier" opportunities which can be used to decrease the planetary entry speed, or shorten the trip time. Both of these effects are desirable for a human exploration program.

  2. Departure Energies, Trip Times and Entry Speeds for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.

    1999-01-01

    The study examines how the mission design variables departure energy, entry speed, and trip time vary for round-trip conjunction-class Mars missions. These three parameters must be balanced in order to produce a mission that is acceptable in terms of mass, cost, and risk. For the analysis, a simple, massless-planet trajectory program was employed. The premise of this work is that if the trans-Mars and trans-Earth injection stages are designed for the most stringent opportunity in the energy cycle, then there is extra energy capability in the "easier" opportunities which can be used to decrease the planetary entry speed, or shorten the trip time. Both of these effects are desirable for a human exploration program.

  3. Expected Satiety: Application to Weight Management and Understanding Energy Selection in Humans.

    PubMed

    Forde, Ciarán G; Almiron-Roig, Eva; Brunstrom, Jeffrey M

    2015-03-01

    Recent advances in the approaches used to quantify expectations of satiation and satiety have led to a better understanding of how humans select and consume food, and the associated links to energy intake regulation. When compared calorie for calorie some foods are expected to deliver several times more satiety than others, and multiple studies have demonstrated that people are able to discriminate between similar foods reliably and with considerable sensitivity. These findings have implications for the control of meal size and the design of foods that can be used to lower the energy density of diets. These methods and findings are discussed in terms of their implications for weight management. The current paper also highlights why expected satiety may also play an important role beyond energy selection, in moderating appetite sensations after a meal has been consumed, through memory for recent eating and the selection of foods across future meals.

  4. Expected Satiety: Application to Weight Management and Understanding Energy Selection in Humans

    PubMed Central

    Forde, Ciarán G.; Almiron-Roig, Eva; Brunstrom, Jeffrey M.

    2016-01-01

    Recent advances in the approaches used to quantify expectations of satiation and satiety have led to a better understanding of how humans select and consume food, and the associated links to energy intake regulation. When compared calorie for calorie some foods are expected to deliver several times more satiety than others, and multiple studies have demonstrated that people are able to discriminate between similar foods reliably and with considerable sensitivity. These findings have implications for the control of meal size and the design of foods that can be used to lower the energy density of diets. These methods and findings are discussed in terms of their implications for weight management. The current paper also highlights why expected satiety may also play an important role beyond energy selection, in moderating appetite sensations after a meal has been consumed, through memory for recent eating and the selection of foods across future meals. PMID:26627096

  5. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism.

    PubMed

    van Beek, Johannes H G M; Supandi, Farahaniza; Gavai, Anand K; de Graaf, Albert A; Binsl, Thomas W; Hettling, Hannes

    2011-11-13

    The human physiological system is stressed to its limits during endurance sports competition events. We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We calculated heat transfer by conduction and blood flow inside the body, and heat transfer from the skin by radiation, convection and sweat evaporation, resulting in temperature changes in 25 body compartments. We simulated a mountain time trial to Alpe d'Huez during the Tour de France. To approach the time realized by Lance Armstrong in 2004, very high oxygen uptake must be sustained by the simulated cyclist. Temperature was predicted to reach 39°C in the brain, and 39.7°C in leg muscle. In addition to the macroscopic simulation, we analysed the buffering of bursts of high adenosine triphosphate hydrolysis by creatine kinase during cyclical muscle activity at the biochemical pathway level. To investigate the low oxygen to carbohydrate ratio for the brain, which takes up lactate during exercise, we calculated the flux distribution in cerebral energy metabolism. Computational modelling of the human body, describing heat exchange and energy metabolism, makes simulation of endurance sports events feasible.

  6. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism

    PubMed Central

    van Beek, Johannes H. G. M.; Supandi, Farahaniza; Gavai, Anand K.; de Graaf, Albert A.; Binsl, Thomas W.; Hettling, Hannes

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events. We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We calculated heat transfer by conduction and blood flow inside the body, and heat transfer from the skin by radiation, convection and sweat evaporation, resulting in temperature changes in 25 body compartments. We simulated a mountain time trial to Alpe d'Huez during the Tour de France. To approach the time realized by Lance Armstrong in 2004, very high oxygen uptake must be sustained by the simulated cyclist. Temperature was predicted to reach 39°C in the brain, and 39.7°C in leg muscle. In addition to the macroscopic simulation, we analysed the buffering of bursts of high adenosine triphosphate hydrolysis by creatine kinase during cyclical muscle activity at the biochemical pathway level. To investigate the low oxygen to carbohydrate ratio for the brain, which takes up lactate during exercise, we calculated the flux distribution in cerebral energy metabolism. Computational modelling of the human body, describing heat exchange and energy metabolism, makes simulation of endurance sports events feasible. PMID:21969677

  7. Charge dependent condensation of macro-ions at air-water interfaces

    NASA Astrophysics Data System (ADS)

    Bera, Mrinal; Antonio, Mark

    2015-03-01

    Ordering of ions at and near air-water interfaces is a century old problem for researchers and has implications on a host of physical, chemical and biological processes. The dynamic nature of water surface and the surface fluctuations created by thermally excited capillary waves have always limited measurement of near surface ionic-distributions. We demonstrate that this limitation can be overcome by using macro-ions of sizes larger than the capillary wave roughness ~3Å. Our attempts to measure distributions of inorganic macro-ions in the form of Keggin heteropolyanions (HPAs) of sizes ~10Å have unraveled novel charge-dependent condensation of macro-ions beneath air-water interfaces. Our results demonstrate that HPAs with -3 charges condense readily beneath air-water interfaces. This is in contrast to the absence of surface preference for HPAs with -4 charges. The similarity of HPA-HPA separations near air-water interfaces and in bulk crystal structures suggests the presence of the planar Zundel ions (H5O2+), which interact with HPAs and the water surface to facilitate the charge dependent condensation beneath the air-water interfaces.This work and the use of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility at Argonne National Laboratory, is based upon work supported by the U.S. DOE, Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357.

  8. AGE-RELATED FACTORS AFFECTING THE POST-YIELD ENERGY DISSIPATION OF HUMAN CORTICAL BONE

    PubMed Central

    Nyman, Jeffry S.; Roy, Anuradha; Tyler, Jerrod H.; Acuna, Rae L.; Gayle, Heather J.; Wang, Xiaodu

    2007-01-01

    The risk of bone fracture depends in part on the quality of the tissue, not just the size and mass. This study assessed the post-yield energy dissipation of cortical bone in tension as a function of age and composition. Tensile specimens were prepared from tibiae of human cadavers in which male and female donors were divided into two age groups: middle aged (51 to 56 years old, n = 9) and elderly (72 to 90 years old, n = 8). By loading, unloading, and reloading a specimen with rest period inserted in between, tensile properties at incremental strain levels were assessed. In addition, the post-yield toughness was estimated and partitioned as follows: plastic strain energy related to permanent deformation, released elastic strain energy related to stiffness loss, and hysteresis energy related to viscous behavior. Porosity, mineral and collagen content, and collagen crosslinks of each specimen were also measured to determine the micro and ultrastructural properties of the tissue. It was found that age affected all the energy terms plus strength but not elastic stiffness. The post-yield energy terms were correlated with porosity, pentosidine (a marker of non-enzymatic crosslinks), and collagen content, all of which significantly varied with age. General linear models with the highest possible R2 value suggested that the pentosidine concentration and collagen content provided the best explanation of the age-related decrease in the post-yield energy dissipation of bone. Among them, pentosidine concentration had the greatest contribution to plastic strain energy and was the best explanatory variable of damage accumulation. PMID:17266142

  9. Human Capital Development: Comparative Analysis of BRICs

    ERIC Educational Resources Information Center

    Ardichvili, Alexandre; Zavyalova, Elena; Minina, Vera

    2012-01-01

    Purpose: The goal of this article is to conduct macro-level analysis of human capital (HC) development strategies, pursued by four countries commonly referred to as BRICs (Brazil, Russia, India, and China). Design/methodology/approach: This analysis is based on comparisons of macro indices of human capital and innovativeness of the economy and a…

  10. A comprehensive framework to assess, model, and enhance the human role in conserving energy in commercial buildings

    NASA Astrophysics Data System (ADS)

    Azar, Elie

    Energy conservation and sustainability are subjects of great interest today, especially in the commercial building sector which is witnessing a very high and growing demand for energy. Traditionally, efforts to reduce energy consumption in this sector consisted of researching and developing energy efficient building technologies and systems. On the other hand, recent studies indicate that human actions are major determinants of building energy performance and can lead to excessive energy use even in advanced low-energy buildings. As a result, it is essential to determine if the approach to future energy reduction initiatives should remain solely technology-focused, or if a human-focused approach is also needed to complement advancements in technology and improve building operation and performance. In practice, while technology-focused solutions have been extensively researched, promoted, and adopted in commercial buildings, research efforts on the role of human actions and energy use behaviors in energy conservation remain very limited. This study fills the missing gap in literature by presenting a comprehensive framework to (1) understand and quantify the influence of human actions on building energy performance, (2) model building occupants' energy use behaviors and account for potential changes in these behaviors over time, and (3) test and optimize different human-focused energy reduction interventions to increase their adoption in commercial buildings. Results are significant and prove that human actions have a major role to play in reducing the energy intensity of the commercial building sector. This sheds the light on the need for a shift in how people currently use and control different buildings systems, as this is crucial to ensure efficient building operation and to maximize the return on investment in energy-efficient technologies. Furthermore, this study proposes methods and tools that can be applied on any individual or groups of commercial buildings

  11. Exploring the Macro-Micro Dynamic in Data Use Practice

    ERIC Educational Resources Information Center

    Moss, Pamela A.

    2012-01-01

    In their opening comments to this special issue on data use, Coburn and Turner point to "one of the most central questions in social theory: the interrelationship between macro-social structure and micro-level action." Questions about data use--which entail social phenomena that range from federal policy to moment-to-moment interactions…

  12. A macro for producing graphs used in assessing a spectrum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is intended for those familiar with the discrete Fourier transform and PROC SPECTRA from SAS/ETS®1. The procedure is called through a macro and the output variables are used to develop three diagnostic graphs and a montage. The first graph displays the log10 of the spectra, a Hanning weig...

  13. Reclaiming and Reimagining Macro Social Work Education: A Collective Biography

    ERIC Educational Resources Information Center

    Netting, F. Ellen; O'Connor, Mary Katherine; Cole, Portia L.; Hopkins, Karen; Jones, Jenny L.; Kim, Youngmi; Leisey, Monica; Mulroy, Elizabeth A.; Rotabi, Karen Smith; Thomas, M. Lori; Weil, Marie O.; Wike, Traci L.

    2016-01-01

    The authors focus on a collective biography of 12 women social work educators, all either tenured or in tenure lines, from five different universities at the time of the study. The participants represent several aspects of macro practice including administration, planning, community practice, and policy. Beginning with reflections about coming…

  14. Portraying Monsters: Framing School Bullying through a Macro Lens

    ERIC Educational Resources Information Center

    Horton, Paul

    2016-01-01

    This article critically considers the discourse on school bullying through the conceptual framework of lenses and argues that a macro lens has been utilised by school bullying researchers to bring into focus the characteristics of the individuals involved and the types of actions used. By considering earlier understandings of bullying, the article…

  15. A temperature dependent SPICE macro-model for power MOSFETs

    SciTech Connect

    Pierce, D.G.

    1991-01-01

    The power MOSFET SPICE Macro-Model has been developed suitable for use over the temperature range {minus}55 to 125 {degrees}C. The model is comprised of a single parameter set with temperature dependence accessed through the SPICE .TEMP card. SPICE parameter extraction techniques for the model and model predictive accuracy are discussed. 7 refs., 8 figs., 1 tab.

  16. A Calculus of Macro-Events: Progress Report

    DTIC Science & Technology

    2000-01-01

    1410, USA iliano@itd.nrl.navy.mil Angelo Montanari Dipartimento di Matematica e Informatica Universita di Udine Via delle Scienze, 206 { 33100 Udine...nition of ECTD-structure only by the following points: M MT is a set of macro-events over T . The codomain of [jji and hjj] are rede ned to be

  17. Incorporating human-triggered earthquake risks into energy and water policies

    NASA Astrophysics Data System (ADS)

    Klose, C. D.; Seeber, L.; Jacob, K. H.

    2010-12-01

    A comprehensive understanding of earthquake risks in urbanized regions requires an accurate assessment of both urban vulnerabilities and hazards from earthquakes, including ones whose timing might be affected by human activities. Socioeconomic risks associated with human-triggered earthquakes are often misconstrued and receive little scientific, legal, and public attention. Worldwide, more than 200 damaging earthquakes, associated with industrialization and urbanization, were documented since the 20th century. Geomechanical pollution due to large-scale geoengineering activities can advance the clock of earthquakes, trigger new seismic events or even shot down natural background seismicity. Activities include mining, hydrocarbon production, fluid injections, water reservoir impoundments and deep-well geothermal energy production. This type of geohazard has impacts on human security on a regional and national level. Some planned or considered future engineering projects raise particularly strong concerns about triggered earthquakes, such as for instance, sequestration of carbon dioxide by injecting it deep underground and large-scale natural gas production in the Marcellus shale in the Appalacian basin. Worldwide examples of earthquakes are discussed, including their associated losses of human life and monetary losses (e.g., 1989 Newcastle and Volkershausen earthquakes, 2001 Killari earthquake, 2006 Basel earthquake, 2010 Wenchuan earthquake). An overview is given on global statistics of human-triggered earthquakes, including depths and time delay of triggering. Lastly, strategies are described, including risk mitigation measures such as urban planning adaptations and seismic hazard mapping.

  18. Purine and pyrimidine nucleosides preserve human astrocytoma cell adenylate energy charge under ischemic conditions.

    PubMed

    Balestri, Francesco; Giannecchini, Michela; Sgarrella, Francesco; Carta, Maria Caterina; Tozzi, Maria Grazia; Camici, Marcella

    2007-02-01

    The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.

  19. Microscopic energy transfer spectroscopy to determine mitochondrial malfunction in human myotubes

    NASA Astrophysics Data System (ADS)

    Gschwend, Michael H.; Strauss, Wolfgang S. L.; Brinkmeier, H.; Ruedel, R.; Steiner, Rudolf W.; Schneckenburger, Herbert

    1996-12-01

    A microscopic equipment is reported for examination of cellular autofluorescence and determination of energy transfer in vitro, which is proposed to be an appropriate tool to investigate mitochondrial malfunction. The method includes fluorescence microscopy combined with time-gated (nanosecond) fluorescence emission spectroscopy and is presently used to study mitochondrial metabolism of human myotube primary cultures Enzyme complexes of the respiratory chain, located at the inner mitochondrial membrane, were inhibited by various drugs, and fluorescence of the mitochondrial coenzyme nicotinamide adenine dinucleotide (NADH) as well as of the mitochondrial marker rhodamine 123 (R123) was examined. After inhibition of enzyme complex I (NADH-coenzyme Q reductase) by rotenone or enzyme complex III (coenzyme QH2-cytochrome c reductase) by antimycin a similar or increased NADH fluorescence was observed. In addition, energy transfer from excited states of NADH (energy donor) to R123 (energy acceptor) was deduced from a decrease of NADH fluorescence after coincubation with these inhibitors and R123. Application of microscopic energy transfer spectroscopy for diagnosis of congenital mitochondrial deficiencies is currently in preparation.

  20. Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone?

    PubMed

    Zerlin, R A; Henry, R

    2014-05-01

    Benthic macro-invertebrates are important components of freshwater ecosystems which are involved in ecological processes such as energy transfer between detritus and consumers and organic matter recycling. The aim of this work was to investigate the variation in organism richness, diversity and density of benthic fauna during the annual cycle in Camargo Lake, a lake marginal to Paranapanema River, southeast Brazil. The correlation of environmental factors with community attributes of the macro-benthic fauna was assessed. Since Camargo Lake is connected to the river, we tested the hypothesis that water level variation is the main regulating factor of environmental variables and of the composition and abundance of benthic macro-invertebrates. The results indicated that lake depth varied with rainfall, being the highest at the end of the rising water period and the lowest at the beginning of this period. The sediment granulometry was more heterogeneous at the bottom of the lake by the end of the high water period. The benthic macro-invertebrate fauna was composed by 15 taxa. The Diptera order was represented by seven taxa and had greater richness in relation to other taxa. This group was responsible for 60% of the total abundance of organisms, followed by Ephemeroptera (22%) and Anellida (16%). Significant differences were observed over time in total richness and, in density of Narapa bonettoi, Chaoborus, Ablabesmyia gr. annulata, Chironomus gigas, Larsia fittkau, and Procladius sp. 2. Total taxa richness correlated negatively with water pH, transparency, conductivity, and bottom water oxygen. Higher positive correlations were found between the densities of some taxa and bottom water oxygen, conductivity and very fine sand, silt + clay of sediment, while negative correlations were recorded with organic matter, and fine, medium and coarse sand, bottom water temperature, mean temperature and rainfall. The significant temporal difference in water level was associated

  1. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    NASA Astrophysics Data System (ADS)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  2. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis

    PubMed Central

    Sidossis, Labros; Kajimura, Shingo

    2015-01-01

    Brown adipose tissue (BAT), a specialized fat that dissipates energy to produce heat, plays an important role in the regulation of energy balance. Two types of thermogenic adipocytes with distinct developmental and anatomical features exist in rodents and humans: classical brown adipocytes and beige (also referred to as brite) adipocytes. While classical brown adipocytes are located mainly in dedicated BAT depots of rodents and infants, beige adipocytes sporadically reside with white adipocytes and emerge in response to certain environmental cues, such as chronic cold exposure, a process often referred to as “browning” of white adipose tissue. Recent studies indicate the existence of beige adipocytes in adult humans, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, including type 2 diabetes. This Review aims to cover recent progress in our understanding of the anatomical, developmental, and functional characteristics of brown and beige adipocytes and discuss emerging questions, with a special emphasis on adult human BAT. PMID:25642708

  3. Early influences on human energy regulation: thrifty genotypes and thrifty phenotypes.

    PubMed

    Prentice, Andrew M

    2005-12-15

    Early influences on human ingestive behavior and other aspects of energy homeostasis can be defined according to two very different time scales: the evolutionary time frame responsible for selection of behavioral and metabolic traits embedded within the genome; and the life-course time frame responsible for setting the phenotype. Evolutionary influences: Famine has been a constant threat to human survival leading to the selection of thrifty genes. Thriftiness can take many forms: metabolic (an 'energy-sparing' super-efficient metabolism); adipogenic (a propensity to rapid fat gain); physiologic (an ability to switch off non-essential processes); gluttony (a tendency to gorge when food is available); sloth (a tendency to conserve energy through inactivity); or behavioral (hoarding, meanness, theft, etc). Life-course influences: The nutritional environment of the early embryo can have a major impact on its survival, and its immediate and later physiology. Subsequently, the fetus is sensitive to its nutrient supply that in turn is affected by maternal fuel supply and by the constraints of the utero-placental unit. Adaptive plasticity also continues through infancy. Ingestive behavior in terms of appetite and satiety could theoretically be affected by some of these metabolic adaptations. This paper will describe the key elements of the thrifty genotype and phenotype and review the evidence base relating these early effects to differences in ingestive behavior.

  4. Folded Elastic Strip-Based Triboelectric Nanogenerator for Harvesting Human Motion Energy for Multiple Applications.

    PubMed

    Kang, Yue; Wang, Bo; Dai, Shuge; Liu, Guanlin; Pu, Yanping; Hu, Chenguo

    2015-09-16

    A folded elastic strip-based triboelectric nanogenerator (FS-TENG) made from two folded double-layer elastic strips of Al/PET and PTFE/PET can achieve multiple functions by low frequency mechanical motion. A single FS-TENG with strip width of 3 cm and length of 27 cm can generate a maximum output current, open-circuit voltage, and peak power of 55 μA, 840 V, and 7.33 mW at deformation frequency of 4 Hz with amplitude of 2.5 cm, respectively. This FS-TENG can work as a weight sensor due to its good elasticity. An integrated generator assembled by four FS-TENGs (IFS-TENG) can harvest the energy of human motion like flapping hands and walking steps. In addition, the IFS-TENG combined with electromagnetically induced electricity can achieve a completely self-driven doorbell with flashing lights. Moreover, a box-like generator integrated by four IFS-TENGs inside can work in horizontal or random motion modes and can be improved to harvest energy in all directions. This work promotes the research of completely self-driven systems and energy harvesting of human motion for applications in our daily life.

  5. Short and long-term energy intake patterns and their implications for human body weight regulation.

    PubMed

    Chow, Carson C; Hall, Kevin D

    2014-07-01

    Adults consume millions of kilocalories over the course of a few years, but the typical weight gain amounts to only a few thousand kilocalories of stored energy. Furthermore, food intake is highly variable from day to day and yet body weight is remarkably stable. These facts have been used as evidence to support the hypothesis that human body weight is regulated by active control of food intake operating on both short and long time scales. Here, we demonstrate that active control of human food intake on short time scales is not required for body weight stability and that the current evidence for long term control of food intake is equivocal. To provide more data on this issue, we emphasize the urgent need for developing new methods for accurately measuring energy intake changes over long time scales. We propose that repeated body weight measurements can be used along with mathematical modeling to calculate long-term changes in energy intake and thereby quantify adherence to a diet intervention and provide dynamic feedback to individuals that seek to control their body weight.

  6. Performance analysis of frequency up-converting energy harvesters for human locomotion

    NASA Astrophysics Data System (ADS)

    Anderson, Brittany; Wickenheiser, Adam

    2012-04-01

    Energy harvesting from human locomotion is a challenging problem because the low frequencies involved are incompatible with small, light-weight transducers. Furthermore, frequency variations during changing levels of activity greatly reduce the effectiveness of tuned resonant devices. This paper presents the performance analysis and parameter study of energy harvesters utilizing magnetic interactions for frequency up-conversion. Ferrous structures are used to periodically attract a magnetic tip mass during low-frequency oscillations, producing a series of impulses. This technique allows resonant structures to be designed for much higher natural frequencies and reduces the effects of excitation frequency variation. Measured vibrational data from several human activities are used to provide a time-varying, broadband input to the energy harvesting system and are recreated in a laboratory setting for experimental validation. Optimal load resistances are calculated under several assumptions including sinusoidal, white noise, and band-limited noise base excitations. These values are tested using simulations with real-world accelerations and compared to steady-state power optimization results. The optimal load is presented for each input signal, and an estimation of the maximum average power harvested under idealized conditions is given. The frequency up-conversion technique is compared to linear, resonant structures to determine the impact of the nonlinearities. Furthermore, an analysis is performed to study the discrepancies between the simulated results and the predicted performance derived from frequency response functions to determine the importance of transients.

  7. Usual Dietary Intakes: SAS Macros for Fitting Multivariate Measurement Error Models & Estimating Multivariate Usual Intake Distributions

    Cancer.gov

    The following SAS macros can be used to create a multivariate usual intake distribution for multiple dietary components that are consumed nearly every day or episodically. A SAS macro for performing balanced repeated replication (BRR) variance estimation is also included.

  8. Visual compression of workflow visualizations with automated detection of macro motifs.

    PubMed

    Maguire, Eamonn; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Davies, Jim; Chen, Min

    2013-12-01

    This paper is concerned with the creation of 'macros' in workflow visualization as a support tool to increase the efficiency of data curation tasks. We propose computation of candidate macros based on their usage in large collections of workflows in data repositories. We describe an efficient algorithm for extracting macro motifs from workflow graphs. We discovered that the state transition information, used to identify macro candidates, characterizes the structural pattern of the macro and can be harnessed as part of the visual design of the corresponding macro glyph. This facilitates partial automation and consistency in glyph design applicable to a large set of macro glyphs. We tested this approach against a repository of biological data holding some 9,670 workflows and found that the algorithmically generated candidate macros are in keeping with domain expert expectations.

  9. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    PubMed

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  10. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.

    PubMed

    Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F

    2010-07-01

    Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.

  11. A micro-macro coupling approach of MD-SPH method for reactive energetic materials

    NASA Astrophysics Data System (ADS)

    Liu, Gui Rong; Wang, Guang Yu; Peng, Qing; De, Suvranu

    2017-01-01

    The simulation of reactive energetic materials has long been the interest of researchers because of the extensive applications of explosives. Much research has been done on the subject at macro scale in the past and research at micro scale has been initiated recently. Equation of state (EoS) is the relation between physical quantities (pressure, temperature, energy and volume) describing thermodynamic states of materials under a given set of conditions. It plays a significant role in determining the characteristics of energetic materials, including Chapman-Jouguet point and detonation velocity. Furthermore, EoS is the key to connect microscopic and macroscopic phenomenon when simulating the macro effects of an explosion. For instance, an ignition and growth model for high explosives uses two JWL EoSs, one for solid explosive and the other for gaseous products, which are often obtained from experiments that can be quite expensive and hazardous. Therefore, it is ideal to calculate the EoS of energetic materials through computational means. In this paper, the EoSs for both solid and gaseous products of β-HMX are calculated using molecular dynamics simulation with ReaxFF-d3, a reactive force field obtained from quantum mechanics. The microscopic simulation results are then compared with experiments and the continuum ignition and growth model. Good agreement is observed. Then, the EoSs obtained through micro-scale simulation is applied in a smoothed particle hydrodynamics (SPH) code to simulate the macro effects of explosions. Simulation results are compared with experiments.

  12. Effects of high-energy shockwaves on normal human fibroblasts in suspension.

    PubMed

    Kaulesar Johannes, E J; Sukul, D M; Bijma, A M; Mulder, P G

    1994-12-01

    To gain insight in the effects of shockwaves on human cells the relationship between the energy density and the number of shockwaves as well as their effect on suspensions of normal cells was studied. At energy densities of 0.37, 0.6, 0.78, and 1.20 mJ/mm2 fibroblasts were subjected to 50, 100, 250, 500, and 1,000 shockwaves. Each test was performed three times and one sample was used as control. A decrease in viability related to the logarithm of both the number (P = 0.0000) and the energy density (P = 0.001) of the shockwaves was statistically demonstrable 1 hr after the shockwave application. The energy density of the shockwaves has less influence on the viability than the number of applied shockwaves. Seeding of viable cells 1 hr after the shockwave application showed that the decrease in the 48-hr growth potential was statistically dependent of the number of applied shockwaves only (P = 0.0007). After 24 hr no difference in the 48-hr growth potential could be demonstrated between viable shockwave-treated cells and control cells. The literature as well as our own investigations in vitro and in vivo indicate that shockwaves have a logarithmic dose-dependent destructive effect on cells in suspension, but they also seem to have a dose-dependent stimulating influence on the healing process in damaged tissues. Due to the logarithmic relationship between the viability and both the number and energy density of the applied shockwaves it might be expected that even excessive numbers of high-energy-density shockwaves don't soon lead to total destruction of all cells in the suspension.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. DOE Zero Energy Ready Home Case Study: Manatee County Habitat for Humanity, Ellenton, Florida

    SciTech Connect

    none,

    2013-09-01

    In this 18-home community, all homes are LEED Platinum and meet ENERGY STAR for Homes Version 3 requirements, HERS 23–53. Half way through the project, Habitat for Humanity heard about the DOE Challenge Home program and signed on, committing to build the next home, a three-bedroom, two-bath, 1,143 ft2 duplex, to Challenge Home criteria. The home is the first DOE Challenge Home in Manatee County, and was awarded a 2013 Housing Innovation Award in the affordable builder category.

  14. The Doubly Labeled Water Method for Measuring Human Energy Expenditure: Adaptations for Spaceflight

    NASA Technical Reports Server (NTRS)

    Schulz, Leslie O.

    1991-01-01

    It is essential to determine human energy requirements in space, and the doubly labeled water method has been identified as the most appropriate means of indirect calorimetry to meet this need. The method employs naturally occurring, stable isotopes of hydrogen (H-2, deuterium) and oxygen (O-18) which, after dosing, mix with body water. The deuterium is lost from the body as water while the O-18 is eliminated as both water and CO2. The difference between the two isotope elimination rates is therefore a measure of CO2 production and hence energy expenditure. Spaceflight will present a unique challenge to the application of the doubly labeled water method. Specifically, interpretation of doubly labeled water results assumes that the natural abundance or 'background' levels of the isotopes remain constant during the measurement interval. To address this issue, an equilibration model will be developed in an ongoing ground-based study. As energy requirements of women matched to counterparts in the Astronauts Corps are being determined by doubly labeled water, the baseline isotope concentration will be changed by consumption of 'simulated Shuttle water' which is artificially enriched. One group of subjects will be equilibrated on simulated Shuttle water prior to energy determinations by doubly labeled water while the others will consume simulated Shuttle water after dosing. This process will allow us to derive a prediction equation to mathematically model the effect of changing background isotope concentrations.

  15. Energy-Aware Topology Control Strategy for Human-Centric Wireless Sensor Networks

    PubMed Central

    Meseguer, Roc; Molina, Carlos; Ochoa, Sergio F.; Santos, Rodrigo

    2014-01-01

    The adoption of mobile and ubiquitous solutions that involve participatory or opportunistic sensing increases every day. This situation has highlighted the relevance of optimizing the energy consumption of these solutions, because their operation depends on the devices' battery lifetimes. This article presents a study that intends to understand how the prediction of topology control messages in human-centric wireless sensor networks can be used to help reduce the energy consumption of the participating devices. In order to do that, five research questions have been defined and a study based on simulations was conducted to answer these questions. The obtained results help identify suitable mobile computing scenarios where the prediction of topology control messages can be used to save energy of the network nodes. These results also allow estimating the percentage of energy saving that can be expected, according to the features of the work scenario and the participants behavior. Designers of mobile collaborative applications that involve participatory or opportunistic sensing, can take advantage of these findings to increase the autonomy of their solutions. PMID:24514884

  16. Kinship and seasonal migration among the Aymara of southern Peru: human adaptation to energy scarcity

    SciTech Connect

    Collins, J.L.

    1981-01-01

    The people of the southern Peruvian highlands have adapted to a condition of energy scarcity through seasonal migration to lowland areas. In the disrict of Sarata (a fictitious name for a real district on the northeastern shore of Lake Titicaca) people spend three to seven months of every year growing coffee in the Tambopata Valley of the eastern Andes. This migratory pattern, which is hundreds of years old, provides the context for an investigation of human adaptive processes. This study presents models of the flow of energy through high-altitude households and shows that energy is a limiting factor for the population. There are two periods when energy subsidies from lowland regions become crucial to the continued survival of highland households. These are the periods of peak growth and reproduction experienced by households early in their developmental cycles, and times of sharply lowered productivity caused by environmental crises such as drought or killing frosts. Seasonal migration provides the subsidies that households rely on during these periods.

  17. Human risky choice under temporal constraints: tests of an energy-budget model.

    PubMed Central

    Pietras, Cynthia J; Locey, Matthew L; Hackenberg, Timothy D

    2003-01-01

    Risk-sensitive foraging models predict that choice between fixed and variable food delays should be influenced by an organism's energy budget. To investigate whether the predictions of these models could be extended to choice in humans, risk sensitivity in 4 adults was investigated under laboratory conditions designed to model positive and negative energy budgets. Subjects chose between fixed and variable trial durations with the same mean value. An energy requirement was modeled by requiring that five trials be completed within a limited time period for points delivered at the end of the period (block of trials) to be exchanged later for money. Manipulating the duration of this time period generated positive and negative earnings budgets (or, alternatively, "time budgets"). Choices were consistent with the predictions of energy-budget models: The fixed-delay option was strongly preferred under positive earnings-budget conditions and the variable-delay option was strongly preferred under negative earnings-budget conditions. Within-block (or trial-by-trial) choices were also frequently consistent with the predictions of a dynamic optimization model, indicating that choice was simultaneously sensitive to the temporal requirements, delays associated with fixed and variable choices on the upcoming trial, cumulative delays within the block of trials, and trial position within a block. PMID:13677609

  18. Diagnosis and characterization of mania: Quantifying increased energy and activity in the human behavioral pattern monitor.

    PubMed

    Perry, William; McIlwain, Meghan; Kloezeman, Karen; Henry, Brook L; Minassian, Arpi

    2016-06-30

    Increased energy or activity is now an essential feature of the mania of Bipolar Disorder (BD) according to DSM-5. This study examined whether objective measures of increased energy can differentiate manic BD individuals and provide greater diagnostic accuracy compared to rating scales, extending the work of previous studies with smaller samples. We also tested the relationship between objective measures of energy and rating scales. 50 hospitalized manic BD patients were compared to healthy subjects (HCS, n=39) in the human Behavioral Pattern Monitor (hBPM) which quantifies motor activity and goal-directed behavior in an environment containing novel stimuli. Archival hBPM data from 17 schizophrenia patients were used in sensitivity and specificity analyses. Manic BD patients exhibited higher motor activity than HCS and higher novel object interactions. hBPM activity measures were not correlated with observer-rated symptoms, and hBPM activity was more sensitive in accurately classifying hospitalized BD subjects than observer ratings. Although the findings can only be generalized to inpatient populations, they suggest that increased energy, particularly specific and goal-directed exploration, is a distinguishing feature of BD mania and is best quantified by objective measures of motor activity. A better understanding is needed of the biological underpinnings of this cardinal feature.

  19. Macro-Language Planning for Multilingual Education: Focus on Programmes and Provision

    ERIC Educational Resources Information Center

    Taylor-Leech, Kerry; Liddicoat, Anthony J.

    2014-01-01

    This overview identifies some common features of macro-level language planning and briefly summarises the changing approaches to the analysis of macro-planning in the field. It previews six cases of language-in-education planning in response to linguistic diversity presented by the contributors to this issue. The cases show how macro-planning can…

  20. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans.

    PubMed

    Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola

    2016-11-10

    Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter ingredient (EBI) with a core of bitter Gentiana lutea root extract and a coating of ethylcellulose-stearate was developed and included in a vanilla microencapsulated bitter ingredient-enriched pudding (EBIP). The coating masked bitterness in the mouth, allowing the release of bitter secoiridoids in the gastrointestinal tract. A cross-over randomised study was performed: twenty healthy subjects consumed at breakfast EBIP (providing 100 mg of secoiridoids) or the control pudding (CP) on two different occasions. Blood samples, glycaemia and appetite ratings were collected at baseline and 30, 60, 120 and 180 min after breakfast. Gastrointestinal peptides, endocannabinoids (EC) and N-acylethanolamines (NAE) were measured in plasma samples. Energy intakes were measured at an ad libitum lunch 3 h after breakfast and over the rest of the day (post lunch) through food diaries. No significant difference in postprandial plasma responses of gastrointestinal hormones, glucose, EC and NAE and of appetite between EBIP and CP was found. However, a trend for a higher response of glucagon-like peptide-1 after EBIP than after CP was observed. EBIP determined a significant 30 % lower energy intake over the post-lunch period compared with CP. These findings were consistent with the tailored release of bitter-tasting compounds from EBIP along the gastrointestinal tract. This study demonstrated that microencapsulated bitter secoiridoids were effective in reducing daily energy intake in humans.

  1. Influence of trace elements in human tissue in low-energy photon brachytherapy dosimetry

    NASA Astrophysics Data System (ADS)

    White, Shane A.; Landry, Guillaume; van Gils, Francis; Verhaegen, Frank; Reniers, Brigitte

    2012-06-01

    The aim of this paper is to determine the dosimetric impact of trace elements in human tissues for low-energy photon sources used in brachytherapy. Monte Carlo dose calculations were used to investigate the dosimetric effect of trace elements present in normal or cancerous human tissues. The effect of individual traces (atomic number Z = 11-30) was studied in soft tissue irradiated by low-energy brachytherapy sources. Three other tissue types (prostate, adipose and mammary gland) were also simulated with varying trace concentrations to quantify the contribution of each trace to the dose distribution. The dose differences between cancerous and healthy prostate tissues were calculated in single- and multi-source geometries. The presence of traces in a tissue produces a difference in the dose distribution that is dependent on Z and the concentration of the trace. Low-Z traces (Na) have a negligible effect (<0.3%) in all tissues, while higher Z (K) had a larger effect (>3%). There is a potentially significant difference in the dose distribution between cancerous and healthy prostate tissues (4%) and even larger if compared to the trace-free composition (15%) in both single- and multi-sourced geometries. Trace elements have a non-negligible (up to 8% in prostate D90) effect on the dose in tissues irradiated with low-energy photon sources. This study underlines the need for further investigation into accurate determination of the trace composition of tissues associated with low-energy brachytherapy. Alternatively, trace elements could be incorporated as a source of uncertainty in dose calculations. This work was part of an invited presentation at the ‘International Workshop on Recent Advances in Monte Carlo Techniques for Radiation Therapy’, held in Montreal, June 8-10, 2011.

  2. Impedance control of flexible macro/mini manipulators

    NASA Astrophysics Data System (ADS)

    Schubert, Heidi Christine

    Construction and maintenance of on-orbit crew-operated hardware is currently done mostly by extra-vehicular astronauts. Use of robotics for some of these tasks provides the opportunity for both increased safety for the astronauts and major cost savings. An effective space robotic manipulator must be lightweight, have a large workspace, and be capable of fine dexterous control. A large lightweight manipulator will necessarily be quite flexible, limiting the achievable end-point bandwidth. One way to achieve all of the objectives is via advanced control of a macro/mini manipulator: a large lightweight manipulator carrying a small dexterous manipulator, such as is planned for the International Space Station. The goal of this work is to control a flexible-joint macro carrying a two-arm mini manipulator. For ease of use, a low-level controller should be designed such that the user or automated planner need only command the desired end-point motions and forces. Designing an end-point controller for a macro/mini manipulator presents many challenges. Such a manipulator system is non-linear, has low frequency flexibility, and has dynamic coupling between the macro and mini. A smart method for controlling manipulators is impedance control, which specifies a desired force-velocity relationship at the end-point of the manipulator, enabling smooth contact with the environment. Using operational space control, the dynamics of the manipulator are transformed into operational coordinates for implementation of the impedance law. The operational space method also enables a secondary control of the redundant degrees of freedom, without degrading the end-point impedance task. This thesis presents new theoretical advances that enable extending the concepts of operational space and impedance control to redundant joint-flexible robots. Important advances include a new method for choosing the end-point impedance and a null-space controller that performs much better. The new control

  3. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  4. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins.

    PubMed

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, C T; Surjit, Milan

    2016-04-26

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66(th),67(th) isoleucine and 101(st),102(nd) leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV.

  5. NEQ and task in dual-energy imaging: from cascaded systems analysis to human observer performance

    NASA Astrophysics Data System (ADS)

    Richard, Samuel; Siewerdsen, Jeffrey H.; Tward, Daniel J.

    2008-03-01

    The relationship between theoretical descriptions of imaging performance (Fourier-based cascaded systems analysis) and the performance of real human observers was investigated for various detection and discrimination tasks. Dual-energy (DE) imaging provided a useful basis for investigating this relationship, because it presents a host of acquisition and processing parameters that can significantly affect signal and noise transfer characteristics and, correspondingly, human observer performance. The detectability index was computed theoretically using: 1) cascaded systems analysis of the modulation transfer function (MTF), and noise-power spectrum (NPS) for DE imaging; 2) a Fourier description of imaging task; and 3.) integration of MTF, NPS, and task function according to various observer models, including Fisher-Hotelling and non-prewhitening with and without an eye filter and internal noise. Three idealized tasks were considered: sphere detection, shape discrimination (sphere vs. disk), and texture discrimination (uniform vs. textured disk). Using images of phantoms acquired on a prototype DE imaging system, human observer performance was assessed in multiple-alternative forced choice (MAFC) tests, giving an estimate of area under the ROC curve (A Ζ). The degree to which the theoretical detectability index correlated with human observer performance was investigated, and results agreed well over a broad range of imaging conditions, depending on the choice of observer model. Results demonstrated that optimal DE image acquisition and decomposition parameters depend significantly on the imaging task. These studies provide important initial validation that the detectability index derived theoretically by Fourier-based cascaded systems analysis correlates well with actual human observer performance and represents a meaningful metric for system optimization.

  6. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?

    PubMed Central

    Henderson, Theodore A; Morries, Larry D

    2015-01-01

    Traumatic brain injury (TBI) is a growing health concern effecting civilians and military personnel. Research has yielded a better understanding of the pathophysiology of TBI, but effective treatments have not been forthcoming. Near-infrared light (NIR) has shown promise in animal models of both TBI and stroke. Yet, it remains unclear if sufficient photonic energy can be delivered to the human brain to yield a beneficial effect. This paper reviews the pathophysiology of TBI and elaborates the physiological effects of NIR in the context of this pathophysiology. Pertinent aspects of the physical properties of NIR, particularly in regards to its interactions with tissue, provide the background for understanding this critical issue of light penetration through tissue. Our recent tissue studies demonstrate no penetration of low level NIR energy through 2 mm of skin or 3 cm of skull and brain. However, at 10–15 W, 0.45%–2.90% of 810 nm light penetrated 3 cm of tissue. A 15 W 810 nm device (continuous or non-pulsed) NIR delivered 2.9% of the surface power density. Pulsing at 10 Hz reduced the dose of light delivered to the surface by 50%, but 2.4% of the surface energy reached the depth of 3 cm. Approximately 1.22% of the energy of 980 nm light at 10–15 W penetrated to 3 cm. These data are reviewed in the context of the literature on low-power NIR penetration, wherein less than half of 1% of the surface energy could reach a depth of 1 cm. NIR in the power range of 10–15 W at 810 and 980 nm can provide fluence within the range shown to be biologically beneficial at 3 cm depth. A companion paper reviews the clinical data on the treatment of patients with chronic TBI in the context of the current literature. PMID:26346298

  7. From micro-correlations to macro-correlations

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-11-01

    Random vectors with a symmetric correlation structure share a common value of pair-wise correlation between their different components. The symmetric correlation structure appears in a multitude of settings, e.g. mixture models. In a mixture model the components of the random vector are drawn independently from a general probability distribution that is determined by an underlying parameter, and the parameter itself is randomized. In this paper we study the overall correlation of high-dimensional random vectors with a symmetric correlation structure. Considering such a random vector, and terming its pair-wise correlation "micro-correlation", we use an asymptotic analysis to derive the random vector's "macro-correlation" : a score that takes values in the unit interval, and that quantifies the random vector's overall correlation. The method of obtaining macro-correlations from micro-correlations is then applied to a diverse collection of frameworks that demonstrate the method's wide applicability.

  8. An Integrated Planning Representation Using Macros, Abstractions, and Cases

    NASA Technical Reports Server (NTRS)

    Baltes, Jacky; MacDonald, Bruce

    1992-01-01

    Planning will be an essential part of future autonomous robots and integrated intelligent systems. This paper focuses on learning problem solving knowledge in planning systems. The system is based on a common representation for macros, abstractions, and cases. Therefore, it is able to exploit both classical and case based techniques. The general operators in a successful plan derivation would be assessed for their potential usefulness, and some stored. The feasibility of this approach was studied through the implementation of a learning system for abstraction. New macros are motivated by trying to improve the operatorset. One heuristic used to improve the operator set is generating operators with more general preconditions than existing ones. This heuristic leads naturally to abstraction hierarchies. This investigation showed promising results on the towers of Hanoi problem. The paper concludes by describing methods for learning other problem solving knowledge. This knowledge can be represented by allowing operators at different levels of abstraction in a refinement.

  9. Macro Trends and the Future of Public Health Practice.

    PubMed

    Erwin, Paul Campbell; Brownson, Ross C

    2017-03-20

    Public health practice in the twenty-first century is in a state of significant flux. Several macro trends are impacting the current practice of governmental public health and will likely have effects for many years to come. These macro trends are described as forces of change, which are changes that affect the context in which the community and its public health system operate. This article focuses on seven such forces of change: the Patient Protection and Affordable Care Act, public health agency accreditation, climate change, health in all policies, social media and informatics, demographic transitions, and globalized travel. Following the description of each of these, this article then turns to possible approaches to measuring, tracking, and understanding the impact of these forces of change on public health practice, including the use of evidence-based public health, practice-based research, and policy surveillance.

  10. Philosophy of technology and macro-ethics in engineering.

    PubMed

    Son, Wha-Chul

    2008-09-01

    The purpose of this paper is to diagnose and analyze the gap between philosophy of technology and engineering ethics and to suggest bridging them in a constructive way. In the first section, I will analyze why philosophy of technology and engineering ethics have taken separate paths so far. The following section will deal with the so-called macro-approach in engineering ethics. While appreciating the initiative, I will argue that there are still certain aspects in this approach that can be improved. In the third, fourth, and fifth sections, I will point out three shortcomings of engineering ethics in terms of its macro-level discourse and argue that a number of certain insights taken from the study of philosophy of technology could be employed in overcoming those problems. In the concluding section, a final recommendation is made that topics of philosophy of technology be included in the curriculum of engineering ethics.

  11. Macro System Model (MSM) User Guide, Version 1.3

    SciTech Connect

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.

    2011-09-01

    This user guide describes the macro system model (MSM). The MSM has been designed to allow users to analyze the financial, environmental, transitional, geographical, and R&D issues associated with the transition to a hydrogen economy. Basic end users can use the MSM to answer cross-cutting questions that were previously difficult to answer in a consistent and timely manner due to various assumptions and methodologies among different models.

  12. Lead macro-encapsulation conceptual and experimental studies. Final report

    SciTech Connect

    Orebaugh, E.G.

    1993-01-31

    Macro-encapsulation, the regulatory treatment for radioactively contaminated lead (mixed) waste has been conceptually and experimentally evaluated for practical application. Epoxy encapsulants molded around lead billets have proven to be exceptionally rugged, easily applied, have high radiation and chemical stability, and minimize required process equipment and production of secondary wastes. This technology can now be considered developed, and can be applied as discussed in this report.

  13. Lead macro-encapsulation conceptual and experimental studies

    SciTech Connect

    Orebaugh, E.G.

    1993-01-31

    Macro-encapsulation, the regulatory treatment for radioactively contaminated lead (mixed) waste has been conceptually and experimentally evaluated for practical application. Epoxy encapsulants molded around lead billets have proven to be exceptionally rugged, easily applied, have high radiation and chemical stability, and minimize required process equipment and production of secondary wastes. This technology can now be considered developed, and can be applied as discussed in this report.

  14. Application of macro material flow modeling to the decision making process for integrated waste management systems

    SciTech Connect

    Vigil, S.A.; Holter, G.M.

    1995-04-01

    Computer models have been used for almost a decade to model and analyze various aspects of solid waste management Commercially available models exist for estimating the capital and operating costs of landfills, waste-to-energy facilities and compost systems and for optimizing system performance along a single dimension (e.g. cost or transportation distance). An alternative to the use of currently available models is the more flexible macro material flow modeling approach in which a macro scale or regional level approach is taken. Waste materials are tracked through the complete integrated waste management cycle from generation through recycling and reuse, and finally to ultimate disposal. Such an approach has been applied by the authors to two different applications. The STELLA simulation language (for Macintosh computers) was used to model the solid waste management system of Puerto Rico. The model incorporated population projections for all 78 municipalities in Puerto Rico from 1990 to 2010, solid waste generation factors, remaining life for the existing landfills, and projected startup time for new facilities. The Pacific Northwest Laboratory has used the SimScript simulation language (for Windows computers) to model the management of solid and hazardous wastes produced during cleanup and remediation activities at the Hanford Nuclear Site.

  15. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells

    PubMed Central

    Wang, Zhi-qiang; Zhao, Jun; Zeng, Jin; Wu, Kai-jie; Chen, Yu-le; Wang, Xin-yang; Chang, Luke S; He, Da-lin

    2011-01-01

    Aim: Survivin molecular beacons can be used to detect bladder cancer cells in urine samples non-invasively. The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair. Methods: Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed, which had no overlap with the other genes in the apoptosis inhibitor protein family. Human bladder cancer cell lines 5637, 253J and T24, as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined. Images of cells were taken using a laser scanning confocal fluorescence microscope. For assays using dual FRET MBs, the excitation wavelength was 488 nm, and the emission detection wavelengths were 520±20 nm and 560±20 nm, respectively. Results: The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals. In contrast, no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs. Conclusion: The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer. PMID:22019956

  16. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry.

    PubMed

    Hobbs, Robert F; Song, Hong; Huso, David L; Sundel, Margaret H; Sgouros, George

    2012-07-07

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  17. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    PubMed Central

    Hobbs, Robert F; Song, Hong; Huso, David L; Sundel, Margaret; Sgouros, George

    2013-01-01

    Objective Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction –based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply the model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. Methods We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin go those used in the Cristy-Eckermann phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured, ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus vs. proximal tubule vs. distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. Results The S-values were calculated for the α-emitters and their descendants between the different nephron compartments

  18. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  19. Within-host competition and diversification of macro-parasites.

    PubMed

    Guilhem, Rascalou; Simková, Andrea; Morand, Serge; Gourbière, Sébastien

    2012-11-07

    Although competitive speciation is more and more regarded as a plausible mechanism for sympatric speciation of non-parasite species, virtually no empirical or theoretical study has considered this evolutionary process to explain intra-host diversification of parasites. We expanded the theory of competitive speciation to parasite species looking at the effect of macro-parasite life history on the conditions for sympatric speciation under the so-called pleiotropic scenario. We included within-host competition in the classical Anderson and May framework assuming that individuals exploit within-host resources according to a quantitative trait. We derived the invasion fitness function of mutants considering different distributions of individuals among hosts. Although the mutant fitness depends on parameters describing the key features of macro-parasite life history, and on the relative distributions of mutant and residents in hosts, the conditions for competitive speciation of macro-parasites are exactly the same as those previously established for free-living species. As an interesting by-product, within-host competitive speciation is expected not to depend on the aggregation level of the parasites. This theoretical pattern is confirmed by comparing the speciation rate of weakly and strongly aggregated monogenean parasites.

  20. Formulation of controlled release gellan gum macro beads of amoxicillin.

    PubMed

    Babu, R Jayachandra; Sathigari, Sateesh; Kumar, M Thilek; Pandit, J K

    2010-01-01

    Gellan gum has been reported to have wide pharmaceutical applications such as tablet binder, disintegrant, gelling agent and as a controlled release polymer. Multiparticulate delivery systems spread out more uniformly in the gastrointestinal tract and reduce the local irritation. The purpose of this study is to explore possible applicability of gellan macro beads as an oral controlled release system of a sparingly soluble drug, amoxicillin. Gellan gum beads were prepared by ionotropic gelation with calcium ions. The effect of drug loading, stirring time, polymer concentration, electrolyte (CaCl2) concentration, curing time etc. influencing the preparation of the gellan gum macro beads and the drug release from gellan gum beads were investigated in this study. Optimal preparation conditions allowed very high incorporation efficiency for amoxicillin (91%) The release kinetics of amoxicillin from gellan beads followed the diffusion model for an inert porous matrix in the order: 0.1 N HCl > phosphate buffer > distilled water. Change in curing time did not significantly affect the release rate constant, but drug concentration, polymer concentration and electrolyte concentration significantly affect the release rate of amoxicillin from the beads. The gellan macro beads may be suitable for gastro retentive controlled delivery of amoxicillin.

  1. Human radiation experiments: The Department of Energy roadmap to the story and the records

    SciTech Connect

    Not Available

    1995-02-01

    The role of the US Government in conducting or sponsoring human radiation experiments has become the subject of public debate. Questions have been raised about the purpose, extent, and health consequences of these studies, and about how subjects were selected. The extent to which subjects provided informed consent is also under scrutiny. To respond to these questions, the Clinton administration has directed the US Department of Energy (DOE), along with other Federal agencies, to retrieve and inventory all records that document human radiation experiments. Many such records are now publicly available and will permit an open accounting and understanding of what took place. This report summarizes the Department`s ongoing search for records about human radiation experiments. It is also a roadmap to the large universe of pertinent DOE information. DOE is working to instill greater openness--consistent with national security and other appropriate considerations--throughout its operations. A key aspect of this effort is opening DOE`s historical records to independent research and analysis.

  2. The clinical importance of the anaerobic energy system and its assessment in human performance.

    PubMed

    Cahill, B R; Misner, J E; Boileau, R A

    1997-01-01

    The anaerobic energy system is involved in providing energy for all forms of physical activity. The relevance of this system to human performance and physical fitness throughout the age spectrum is underscored here and contrasted with the aerobic energy system. The anaerobic system responds to high-intensity training with biochemical, neural, and anatomic adaptations. Unlike the aerobic system, this response tends to be primarily a local phenomenon with little systemic adaptation. An important factor distinguishing anaerobic training from aerobic training is the intensity of the exercise dose. For anaerobic training to occur, the dose must be of high intensity and performed to near-exhaustion. The anaerobic system can be indirectly assessed by performance tests, such as a vertical jump or stair climb, or more directly by supramaximal bicycle tests. The impact of recent research regarding the trainability of the anaerobic system, particularly in the elderly population, is encouraging. The elderly respond to anaerobic training and, as a result, their independence, quality of life, and safety from falls can be improved. While little is known about anaerobic rehabilitation after injury, it is known that isokinetic and performance tests may be considered normal after rehabilitation, despite incomplete rehabilitation of the anaerobic system. Thus, appropriate application of the anaerobic system assessments and training principles is an important aspect of sports medicine practice.

  3. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells

    PubMed Central

    Zhang, Jin; Khvorostov, Ivan; Hong, Jason S; Oktay, Yavuz; Vergnes, Laurent; Nuebel, Esther; Wahjudi, Paulin N; Setoguchi, Kiyoko; Wang, Geng; Do, Anna; Jung, Hea-Jin; McCaffery, J Michael; Kurland, Irwin J; Reue, Karen; Lee, Wai-Nang P; Koehler, Carla M; Teitell, Michael A

    2011-01-01

    It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O2 at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F1F0 ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential. PMID:22085932

  4. Accumulated Bending Energy Elicits Neutral Sphingomyelinase Activity in Human Red Blood Cells

    PubMed Central

    López, David J.; Egido-Gabas, Meritxell; López-Montero, Iván; Busto, Jon V.; Casas, Josefina; Garnier, Marie; Monroy, Francisco; Larijani, Banafshé; Goñi, Félix M.; Alonso, Alicia

    2012-01-01

    We propose that accumulated membrane bending energy elicits a neutral sphingomyelinase (SMase) activity in human erythrocytes. Membrane bending was achieved by osmotic or chemical processes, and SMase activity was assessed by quantitative thin-layer chromatography, high-performance liquid chromatography, and electrospray ionization-mass spectrometry. The activity induced by hypotonic stress in erythrocyte membranes had the pH dependence, ion dependence, and inhibitor sensitivity of mammalian neutral SMases. The activity caused a decrease in SM contents, with a minimum at 6 min after onset of the hypotonic conditions, and then the SM contents were recovered. We also elicited SMase activity by adding lysophosphatidylcholine externally or by generating it with phospholipase A2. The same effect was observed upon addition of chlorpromazine or sodium deoxycholate at concentrations below the critical micellar concentration, and even under hypertonic conditions. A unifying factor of the various agents that elicit this SMase activity is the accumulated membrane bending energy. Both hypo-and hypertonic conditions impose an increased curvature, whereas the addition of surfactants or phospholipase A2 activation increases the outer monolayer area, thus leading to an increased bending energy. The fact that this latent SMase activity is tightly coupled to the membrane bending properties suggests that it may be related to the general phenomenon of stress-induced ceramide synthesis and apoptosis. PMID:22824271

  5. Determination of lipid asymmetry in human red cells by resonance energy transfer

    SciTech Connect

    Connor, J.; Schroit, A.J.

    1987-08-11

    This report describes the application of a resonance energy transfer assay to determine the transbilayer distribution of /sup 125/I-labelled 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labelled lipid analogues. The validity of this technique was established by determining the relationship between the distance of separation of lissamine rhodamine B labeled phosphatidylethanolamine (N-Rho-PE) acceptor lipid and NBD-labeled donor lipid and energy transfer efficiency. By determination of the distance between probes at 50% transfer efficiency (R/sub 0/), the distance between fluorophores distributed symmetrically (outer leaflet label) and asymmetrically in artificially generated vesicles was determined. Calculation of the average distance between probes revealed a 14-A difference between NBD-lipid and N-Rho-PE localized in the same leaflet and in opposing leaflets, respectively. Application of this technique to the study of the transbilayer distribution of NBD-lipid in human red blood cells (RBC) showed that exogenously supplied NBD-phosphatidylserine (NBD-PS) was selectively transported to the inner leaflet, whereas NBD-phosphatidylcholine remained in outer leaflet. In contrast, pretreatment of the RBC with diamide (a SH cross-linking reagent) blocked the transport of NBD-PS. The absence or presence of NBD-PS in the outer leaflet was independently verified by employing back-exchange, trinitrobenzenesulfonic acid derivatization, and decarboxylation with PS decarboxylase experiments. These control experiments yielded results which confirmed the lipid distributions determined by the resonance energy transfer assay.

  6. Energy, wealth, and human development: why and how biomass pretreatment research must improve.

    PubMed

    Dale, Bruce E; Ong, Rebecca G

    2012-07-01

    A high level of human development is dependent on energy consumption (roughly 4 kW per person), and most developed countries that have reached this level have done so through the extensive use of fossil energy. However, given that fossil resources are finite, in order for developed countries to maintain their level of development and simultaneously allow developing countries to reach their potential, it is essential to develop viable renewable energy alternatives. Of particular importance are liquid fuel replacements for petroleum, the fossil resource that primarily drives commerce and economic growth. The intent of this article is to remind our fellow biofuel researchers, particularly those involved in lignocellulosic pretreatment, of these global issues and the serious nature of our work. We hope that this will inspire us to generate and report higher quality and more thorough data than has been done in the past. Only in this way can accurate comparisons and technoeconomic evaluations be made for the many different pretreatment technologies that are currently being researched. The data that primarily influence biorefinery economics can be subdivided into three main categories: yield, concentration, and rate. For these three categories we detail the specific data that should be reported for pretreatment research. In addition, there is other information that is needed to allow for a thorough comparison of pretreatment technologies. An overview of these criteria and our comparison of the current state of a number of pretreatment technologies with respect to these criteria are covered in the last section.

  7. Laser hard tissue interactions: energy transmission through human dental tissue using a holmium:YAG laser

    NASA Astrophysics Data System (ADS)

    Chen, Wei R.; Holt, Raleigh A.; Nordquist, Robert E.

    1995-05-01

    Laser energy transmission through hard tissue was investigated using a pulsed Holmium:YAG laser (2.12 micrometers wavelength). The surface of extracted human dental tissue, 200 micrometers to 700 micrometers in thickness, was irradiated by a laser beam of various fluences between 3 J/cm2 to 28 J/cm2. The transmitted energy through different dentinal components of the tooth was measured. For the mature teeth, the region of the dentinoenamel junction showed the least transmission and the coronal the most; the difference between the two regions could be as large as 20%. The unerupted or young teeth revealed the opposite transmission characteristics. Repeated laser treatment revealed an enhanced transmissibility and the transmitted energy reached a plateau after certain irradiation exposure. Also studied were the effects of various media on the dental transmissibility. For example, surface application of a smear layer of unfilled resin did not change the transmissibility but appeared to slow down the temperature build-up. Visible surface damage -- a yellow or a white spot on the treatment site -- appeared when the fluence reached beyond 20 J/cm2. SEM samples revealed three different surface structural changes: melting with tubule closures, surface removal with tubule exposures, and surface cracking with crater formation, depending on the level of irradiation.

  8. Accumulated bending energy elicits neutral sphingomyelinase activity in human red blood cells.

    PubMed

    López, David J; Egido-Gabas, Meritxell; López-Montero, Iván; Busto, Jon V; Casas, Josefina; Garnier, Marie; Monroy, Francisco; Larijani, Banafshé; Goñi, Félix M; Alonso, Alicia

    2012-05-02

    We propose that accumulated membrane bending energy elicits a neutral sphingomyelinase (SMase) activity in human erythrocytes. Membrane bending was achieved by osmotic or chemical processes, and SMase activity was assessed by quantitative thin-layer chromatography, high-performance liquid chromatography, and electrospray ionization-mass spectrometry. The activity induced by hypotonic stress in erythrocyte membranes had the pH dependence, ion dependence, and inhibitor sensitivity of mammalian neutral SMases. The activity caused a decrease in SM contents, with a minimum at 6 min after onset of the hypotonic conditions, and then the SM contents were recovered. We also elicited SMase activity by adding lysophosphatidylcholine externally or by generating it with phospholipase A(2). The same effect was observed upon addition of chlorpromazine or sodium deoxycholate at concentrations below the critical micellar concentration, and even under hypertonic conditions. A unifying factor of the various agents that elicit this SMase activity is the accumulated membrane bending energy. Both hypo-and hypertonic conditions impose an increased curvature, whereas the addition of surfactants or phospholipase A(2) activation increases the outer monolayer area, thus leading to an increased bending energy. The fact that this latent SMase activity is tightly coupled to the membrane bending properties suggests that it may be related to the general phenomenon of stress-induced ceramide synthesis and apoptosis.

  9. ASHTABULA SUCCESSES--MACRO NOW OR FOREVER HOLD YOUR PIECES!

    SciTech Connect

    Altmayer, S.A.; Forschner, J.A.; Kulpa, J. P.; Spoerner, M.T.

    2003-02-27

    As facility demolition and remediation continued at the DOE Ashtabula Environmental Management Project (AEMP), a DOE closure site located in Ashtabula, OH, the quantity of mixed waste increased by approximately twenty-fold from the original Site Treatment Plan estimates to over 567 m3 (20,000 cubic feet). Also, a greater variety of low-level mixed waste (MW) was identified that was suitable for alternate debris treatment like macroencapsulation (MACRO) instead of traditional shredding, stabilization, and solidification to improve the overall safety and cost-effectiveness. Macroencapsulation is required for lead and authorized for hazardous debris under the alternate debris treatment standards per 40 CFR 268.45. Several polymer encapsulation processes were being explored, developed, and deployed in the mid-1990's by various groups including the DOE Mixed Waste Focus Area, DOE EM-50 Office of Science and Technology, Brookhaven National Laboratory, DOE Macro Working Group, DOE-Albuquerque Mixed Waste/Mobile Treatment Unit, and Envirocare of Utah, Inc. As a result, technically-proven macroencapsulation and microencapsulation processes using extruded polyethylene beads were verified as being technically acceptable for waste treatment to RCRA standards. The AEMP had a variety of waste forms where technically-proven systems were needed to perform on-site treatment of challenging mixed wastes (MW) from production operations (i.e. HEPA filters, barium salt contaminated steel) containing high concentrations of enriched uranium, graphite, salts, and RCRA metals. The AEMP continued with a technology development and deployment process to license, permit, install, and safely operate two proven polymer encapsulation systems for both RCRA microencapsulation and RCRA macroencapsulation using surplus DOE equipment from Rocky Flats to establish cost-effective mobile treatment capability. The AEMP treated approximately 16 m3 (= 579 cf) of challenging mixed wastes onsite at

  10. High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy

    PubMed Central

    Imasawa, Toshiyuki; Obre, Emilie; Bellance, Nadège; Lavie, Julie; Imasawa, Tomoko; Rigothier, Claire; Delmas, Yahsou; Combe, Christian; Lacombe, Didier; Benard, Giovanni; Claverol, Stéphane; Bonneu, Marc; Rossignol, Rodrigue

    2017-01-01

    Podocytes play a key role in diabetic nephropathy pathogenesis, but alteration of their metabolism remains unknown in human kidney. By using a conditionally differentiating human podocyte cell line, we addressed the functional and molecular changes in podocyte energetics during in vitro development or under high glucose conditions. In 5 mM glucose medium, we observed a stepwise activation of oxidative metabolism during cell differentiation that was characterized by peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)–dependent stimulation of mitochondrial biogenesis and function, with concomitant reduction of the glycolytic enzyme content. Conversely, when podocytes were cultured in high glucose (20 mM), stepwise oxidative phosphorylation biogenesis was aborted, and a glycolytic switch occurred, with consecutive lactic acidosis. Expression of the master regulators of oxidative metabolism transcription factor A mitochondrial, PGC-1α, AMPK, and serine–threonine liver kinase B1 was altered by high glucose, as well as their downstream signaling networks. Focused transcriptomics revealed that myocyte-specific enhancer factor 2C (MEF2C) and myogenic factor 5 (MYF5) expression was inhibited by high glucose levels, and endoribonuclease-prepared small interfering RNA–mediated combined inhibition of those transcription factors phenocopied the glycolytic shift that was observed in high glucose conditions. Accordingly, a reduced expression of MEF2C, MYF5, and PGC-1α was found in kidney tissue sections that were obtained from patients with diabetic nephropathy. These findings obtained in human samples demonstrate that MEF2C-MYF5–dependent bioenergetic dedifferentiation occurs in podocytes that are confronted with a high-glucose milieu.—Imasawa, T., Obre, E., Bellance, N., Lavie, J., Imasawa, T., Rigothier, C., Delmas, Y., Combe, C., Lacombe, D., Benard, G., Claverol, S., Bonneu, M., Rossignol, R. High glucose repatterns human podocyte energy

  11. [Human life and energy production. Prospects opened up by controlled thermonuclear fusion].

    PubMed

    Escande, D

    1997-03-18

    The massive and presently increasing energy production is going to confront mankind with a very important problem in the forthcoming decades, in particular due to the vanishing of resources and to the greenhouse effect. The share of fossil fuels in the energy production will have to decrease, and other energy sources will be needed. Among them controlled thermonuclear fusion has may assets due to its non-radioactive fuel with plentiful supply, its non radioactive and non polluting ashes, its safety, its weak environmental impact, and its irrelevance to nuclear proliferation in a normal setting. During the last three decades, physicists have made a series of steps toward the peaceful use of the dominant source of energy in the Universe. They have learned how to confine by magnetic fields plasmas at temperatures of 200 millions degrees centigrade, and they have developed several specific technologies. This way, they produced 11 million watts of nuclear power by fusing two isotopes of hydrogen. These investigations are conducted in a responsible spirit, that of ecoproduction, where possible negative consequences are anticipated, are made as low as reasonably achievable, and their management is studied. Yet several fundamental issues still have to be solved before on economically efficient industrial thermonuclear power plant be operated. A huge international collaboration involving Japan, the USA, the Russian Federation, and the European Union joined with Switzerland and Canada, is presently designing the first experimental thermonuclear reactor, the International Thermonuclear Experimental Reactor (ITER). It would cost 9 billion dollars, a cost similar to other large scientific projects. This is an important step toward an electricity producing thermonuclear reactor that would be both safe and respectful of human health and of environment.

  12. Unifying the Micro and Macro Properties of AGN Feeding and Feedback

    NASA Astrophysics Data System (ADS)

    Gaspari, Massimo; Sądowski, Aleksander

    2017-03-01

    We unify the feeding and feedback of supermassive black holes with the global properties of galaxies, groups, and clusters by linking for the first time the physical mechanical efficiency at the horizon and megaparsec scale. The macro hot halo is tightly constrained by the absence of overheating and overcooling as probed by X-ray data and hydrodynamic simulations ({\\varepsilon }{BH}≃ {10}-3 {T}{{x},7.4}). The micro flow is shaped by general-relativistic effects tracked by state-of-the-art GR-RMHD simulations ({\\varepsilon }\\bullet ≃ 0.03). The supermassive black hole properties are tied to the X-ray halo temperature {T}{{x}}, or related cosmic scaling relation (as {L}{{x}}). The model is minimally based on first principles, such as conservation of energy and mass recycling. The inflow occurs via chaotic cold accretion (CCA), the rain of cold clouds condensing out of the quenched cooling flow and then recurrently funneled via inelastic collisions. Within 100s gravitational radii, the accretion energy is transformed into ultrafast 104 km s‑1 outflows (UFOs) ejecting most of the inflowing mass. At larger radii, the energy-driven outflow entrains progressively more mass: at roughly kiloparsec scale, the velocities of the hot/warm/cold outflows are a few 103, 1000, and 500 km s‑1, with median mass rates ∼ 10, 100, and several 100 {M}ȯ yr‑1, respectively. The unified CCA model is consistent with the observations of nuclear UFOs and ionized, neutral, and molecular macro outflows. We provide step-by-step implementation for subgrid simulations, (semi)analytic works, or observational interpretations that require self-regulated AGN feedback at coarse scales, avoiding the a-posteriori fine-tuning of efficiencies.

  13. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  14. Energy

    DTIC Science & Technology

    2003-01-01

    Canada, Britain, and Spain. We found that the energy industry is not in crisis ; however, U.S. government policies, laws, dollars, and even public...CEIMAT (Centro de Investagaciones Energeticas , Medioambeintales y Tecnologicas) Research and development Page 3 of 28ENERGY 8/10/04http://www.ndu.edu...procurement or storage of standard, common use fuels. NATURAL GAS Natural gas, abundant globally and domestically, offers energy versatility among

  15. A philosophical theory on human communication and modern physics: e(,2)c(,2)H('2)T energy-exchange and consciousness-change toward humanism, healing, and transformation

    NASA Astrophysics Data System (ADS)

    Jenkins-Tate, Marnishia Laverne

    This dissertation addresses the need for a body of human communication theory that can be useful toward advancing personal and social transformation. Of the humanistic genre, it suggests that there is a need to promote humanism, healing, and personal transformation in the non-clinical settings of everyday living. Three questions guide the effort. First, it asks: what kind of human communication theory might describe some of the underlying dynamics of human interaction, while also suggesting ways to improve the quality of interactions of any related philosophical theory be grounded by some scientific discipline? Then finally, it asks: how might these proposed concepts be captured in a manner that can be useful to human beings in everyday human interaction? Extending the work of modern physics to the realm of human communication, the theory integrates conceptual aspects of quantum theory, relativity theory, communication accommodation theory, and various nonverbal communication theory. Then, it proposes the philosophical framework for a new body of theory which it calls the energy-exchange theory of human communication. Treating human beings as living forms of matter, it suggests that ``energy'' is the life-force that sustains all human beings, and that ``consciousness'' is that qualitative level of development at which energy manifests itself in the human experience. It proposes that human beings have the capacity to exchange energy and influence consciousness during the human communication process, and that these interactions can advance humanism, healing, and transformation-which it proposes are the higher states and levels of human consciousness. Thus, this research effort sought to know and to describe a phenomenon that is the interactive human being; and to suggest useful ways that this volitional being can know and transform itself through human interaction. With verisimilitude as a driving factor in describing human beings as communicators, the research is

  16. Energy Conservation Curriculum for Secondary and Post-Secondary Students. Module 9: Human Comfort and Energy Conservation.

    ERIC Educational Resources Information Center

    Navarro Coll., Corsicana, TX.

    This module is the ninth in a series of eleven modules in an energy conservation curriculum for secondary and postsecondary vocational students. It is designed for use by itself or as part of a sequence of four modules on energy conservation in building construction and operation (see also modules 8, 10, and 11). The objective of this module is to…

  17. Accurate Human Tissue Characterization for Energy-Efficient Wireless On-Body Communications

    PubMed Central

    Vallejo, Mónica; Recas, Joaquín; del Valle, Pablo García; Ayala, José L.

    2013-01-01

    The demand for Wireless Body Sensor Networks (WBSNs) is rapidly increasing due to the revolution in wearable systems demonstrated by the penetration of on-the-body sensors in hospitals, sports medicine and general health-care practices. In WBSN, the body acts as a communication channel for the propagation of electromagnetic (EM) waves, where losses are mainly due to absorption of power in the tissue. This paper shows the effects of the dielectric properties of biological tissues in the signal strength and, for the first time, relates these effects with the human body composition. After a careful analysis of results, this work proposes a reactive algorithm for power transmission to alleviate the effect of body movement and body type. This policy achieves up to 40.8% energy savings in a realistic scenario with no performance overhead. PMID:23752565

  18. Detection of Human Impacts by an Adaptive Energy-Based Anisotropic Algorithm

    PubMed Central

    Prado-Velasco, Manuel; Ortiz Marín, Rafael; del Rio Cidoncha, Gloria

    2013-01-01

    Boosted by health consequences and the cost of falls in the elderly, this work develops and tests a novel algorithm and methodology to detect human impacts that will act as triggers of a two-layer fall monitor. The two main requirements demanded by socio-healthcare providers—unobtrusiveness and reliability—defined the objectives of the research. We have demonstrated that a very agile, adaptive, and energy-based anisotropic algorithm can provide 100% sensitivity and 78% specificity, in the task of detecting impacts under demanding laboratory conditions. The algorithm works together with an unsupervised real-time learning technique that addresses the adaptive capability, and this is also presented. The work demonstrates the robustness and reliability of our new algorithm, which will be the basis of a smart falling monitor. This is shown in this work to underline the relevance of the results. PMID:24157505

  19. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  20. Accurate human tissue characterization for energy-efficient wireless on-body communications.

    PubMed

    Vallejo, Mónica; Recas, Joaquín; del Valle, Pablo García; Ayala, José L

    2013-06-10

    The demand for Wireless Body Sensor Networks (WBSNs) is rapidly increasing due to the revolution in wearable systems demonstrated by the penetration of on-the-body sensors in hospitals, sports medicine and general health-care practices. In WBSN, the body acts as a communication channel for the propagation of electromagnetic (EM) waves, where losses are mainly due to absorption of power in the tissue. This paper shows the effects of the dielectric properties of biological tissues in the signal strength and, for the first time, relates these effects with the human body composition. After a careful analysis of results, this work proposes a reactive algorithm for power transmission to alleviate the effect of body movement and body type. This policy achieves up to 40.8% energy savings in a realistic scenario with no performance overhead.

  1. QKI5-mediated alternative splicing of the histone variant macroH2A1 regulates gastric carcinogenesis

    PubMed Central

    Li, Feng; Yi, Ping; Pi, Jingnan; Li, Lanfang; Hui, Jingyi; Wang, Fang; Liang, Aihua; Yu, Jia

    2016-01-01

    Alternative pre-mRNA splicing is a key mechanism for increasing proteomic diversity and modulating gene expression. Emerging evidence indicated that the splicing program is frequently dysregulated during tumorigenesis. Cancer cells produce protein isoforms that can promote growth and survival. The RNA-binding protein QKI5 is a critical regulator of alternative splicing in expanding lists of primary human tumors and tumor cell lines. However, its biological role and regulatory mechanism are poorly defined in gastric cancer (GC) development and progression. In this study, we demonstrated that the downregulation of QKI5 was associated with pTNM stage and pM state of GC patients. Re-introduction of QKI5 could inhibit GC cell proliferation, migration, and invasion in vitro and in vivo, which might be due to the altered splicing pattern of macroH2A1 pre-mRNA, leading to the accumulation of macroH2A1.1 isoform. Furthermore, QKI5 could inhibit cyclin L1 expression via promoting macroH2A1.1 production. Thus, this study identified a novel regulatory axis involved in gastric tumorigenesis and provided a new strategy for GC therapy. PMID:27092877

  2. Cost, energy, global warming, eutrophication and local human health impacts of community water and sanitation service options.

    PubMed

    Schoen, Mary E; Xue, Xiaobo; Wood, Alison; Hawkins, Troy R; Garland, Jay; Ashbolt, Nicholas J

    2017-02-01

    We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options' strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options.

  3. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    PubMed Central

    Moffett, John; Fray, Linley M; Kubat, Nicole J

    2012-01-01

    Background Pulsed radiofrequency energy (PRFE) fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s) responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways. Methods and Results Using cultured human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin) and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types. Conclusion These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting. PMID:23055776

  4. Health sensor for human body by using infrared, acoustic energy and magnetic signature

    NASA Astrophysics Data System (ADS)

    Wu, Jerry

    2013-05-01

    There is a general chain of events that applies to infections. Human body infection could causes by many different types of bacteria and virus in different areas or organ systems. In general, doctor can't find out the right solution/treatment for infections unless some certain types of bacteria or virus are detected. These detecting processes, usually, take few days to one week to accomplish. However, some infections of the body may not be able to detect at first round and the patient may lose the timing to receive the proper treatment. In this works, we base on Chi's theory which is an invisible circulation system existed inside the body and propose a novel health sensor which summarizes human's infrared, acoustic energy and magnetic signature and find out, in minutes, the most possible area or organ system that cause the infection just like what Chi-Kung master can accomplish. Therefore, the detection process by doctor will be shortened and it raises the possibility to give the proper treatment to the patient in the earliest timing.

  5. Micronuclei Induction in Human Fibroblasts Exposed In Vitro to Los Alamos High-Energy Neutrons

    NASA Technical Reports Server (NTRS)

    Gersey, Brad; Sodolak, John; Hada, Megumi; Saganti, Prem; Wilkins, Richard; Cucinotta, Francis; Wu, Honglu

    2006-01-01

    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays with the atmosphere, spacecraft structure and planetary surfaces, contribute to a significant fraction to the dose equivalent in crew members and passengers during commercial aviation travel, and astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility#s ICE House 30L beamline is known to generate neutrons that simulate the secondary neutron spectra of earth#s atmosphere. The neutron spectrum is also similar to that measured onboard spacecraft like the MIR and International Space Station (ISS). To evaluate the biological damage, we exposed human fibroblasts in vitro to the LANSCE neutron beams without degrader at an entrance dose rate of 25 mGy/hr and analyzed the micronuclei (MN) induction. The cells were also placed behind a 9.9 cm water column to study effect of shielding in the protection of neutron induced damages. It was found that the dose response in the MN frequency was linear for the samples with and without shielding and the slope of the MN yield behind the shielding was reduced by a factor of 3.5. Compared to the MN induction in human fibroblasts exposed to a gamma source at a low dose rate, the RBE was found to be 16.7 and 10.0 for the neutrons without and with 9.9 cm water shielding, respectively.

  6. Gait recognition based on Gabor wavelets and modified gait energy image for human identification

    NASA Astrophysics Data System (ADS)

    Huang, Deng-Yuan; Lin, Ta-Wei; Hu, Wu-Chih; Cheng, Chih-Hsiang

    2013-10-01

    This paper proposes a method for recognizing human identity using gait features based on Gabor wavelets and modified gait energy images (GEIs). Identity recognition by gait generally involves gait representation, extraction, and classification. In this work, a modified GEI convolved with an ensemble of Gabor wavelets is proposed as a gait feature. Principal component analysis is then used to project the Gabor-wavelet-based gait features into a lower-dimension feature space for subsequent classification. Finally, support vector machine classifiers based on a radial basis function kernel are trained and utilized to recognize human identity. The major contributions of this paper are as follows: (1) the consideration of the shadow effect to yield a more complete segmentation of gait silhouettes; (2) the utilization of motion estimation to track people when walkers overlap; and (3) the derivation of modified GEIs to extract more useful gait information. Extensive performance evaluation shows a great improvement of recognition accuracy due to the use of shadow removal, motion estimation, and gait representation using the modified GEIs and Gabor wavelets.

  7. Measurement of human energy expenditure, with particular reference to field studies: an historical perspective.

    PubMed

    Shephard, Roy J; Aoyagi, Yukitoshi

    2012-08-01

    Over the years, techniques for the study of human movement have ranged in complexity and precision from direct observation of the subject through activity diaries, questionnaires, and recordings of body movement, to the measurement of physiological responses, studies of metabolism and indirect and direct calorimetry. This article reviews developments in each of these domains. Particular reference is made to their impact upon the continuing search for valid field estimates of activity patterns and energy expenditures, as required by the applied physiologist, ergonomist, sports scientist, nutritionist and epidemiologist. Early observers sought to improve productivity in demanding employment. Direct observation and filming of workers were supplemented by monitoring of heart rates, ventilation and oxygen consumption. Such methods still find application in ergonomics and sport, but many investigators are now interested in relationships between habitual physical activity and chronic disease. Even sophisticated questionnaires still do not provide valid information on the absolute energy expenditures associated with good health. Emphasis has thus shifted to use of sophisticated pedometer/accelerometers, sometimes combining their output with GPS and other data. Some modern pedometer/accelerometers perform well in the laboratory, but show substantial systematic errors relative to laboratory reference criteria such as the metabolism of doubly labeled water when assessing the varied activities of daily life. The challenge remains to develop activity monitors that are sufficiently inexpensive for field use, yet meet required accuracy standards. Possibly, measurements of oxygen consumption by portable respirometers may soon satisfy part of this need, although a need for valid longer term monitoring will remain.

  8. Energy landscape and dynamics of brain activity during human bistable perception.

    PubMed

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-08-28

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception.

  9. Common raven occurrence in relation to energy transmission line corridors transiting human-altered sagebrush steppe

    USGS Publications Warehouse

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    Energy-related infrastructure and other human enterprises within sagebrush steppe of the American West often results in changes that promote common raven (Corvus corax; hereafter, raven) populations. Ravens, a generalist predator capable of behavioral innovation, present a threat to many species of conservation concern. We evaluate the effects of detailed features of an altered landscape on the probability of raven occurrence using extensive raven survey (n= 1045) and mapping data from southern Idaho, USA. We found nonlinear relationships between raven occurrence and distances to transmission lines, roads, and facilities. Most importantly, raven occurrence was greater with presence of transmission lines up to 2.2 km from the corridor.We further explain variation in raven occurrence along anthropogenic features based on the amount of non-native vegetation and cover type edge, such that ravens select fragmented sagebrush stands with patchy, exotic vegetative introgression. Raven occurrence also increased with greater length of edge formed by the contact of big sagebrush (Artemisia tridentate spp.) with non-native vegetation cover types. In consideration of increasing alteration of sagebrush steppe, these findings will be useful for planning energy transmission corridor placement and other management activities where conservation of sagebrush obligate species is a priority.

  10. A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance.

    PubMed

    Lee, Yung Seng; Challis, Ben G; Thompson, Darren A; Yeo, Giles S H; Keogh, Julia M; Madonna, Michael E; Wraight, Vicki; Sims, Matthew; Vatin, Vincent; Meyre, David; Shield, Julian; Burren, Christine; Ibrahim, Zala; Cheetham, Tim; Swift, Peter; Blackwood, Anthea; Hung, Chiao-Chien Connie; Wareham, Nicholas J; Froguel, Philippe; Millhauser, Glenn L; O'Rahilly, Stephen; Farooqi, I Sadaf

    2006-02-01

    The melanocortin-4 receptor (MC4R) plays a critical role in the control of energy balance. Of its two pro-opiomelanocortin (POMC)-derived ligands, alpha- and beta-MSH, the majority of attention has focused on alpha-MSH, partly reflecting the absence of beta-MSH in rodents. We screened the POMC gene in 538 patients with severe, early-onset obesity and identified five unrelated probands who were heterozygous for a rare missense variant in the region encoding beta-MSH, Tyr221Cys. This frequency was significantly increased (p < 0.001) compared to the general UK Caucasian population and the variant cosegregated with obesity/overweight in affected family members. Compared to wild-type beta-MSH, the variant peptide was impaired in its ability to bind to and activate signaling from the MC4R. Obese children carrying the Tyr221Cys variant were hyperphagic and showed increased linear growth, both of which are features of MC4R deficiency. These studies support a role for beta-MSH in the control of human energy homeostasis.

  11. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael D.; Wilson, Bobby; Wu, Honglu

    2015-01-01

    Lung cancer induced from exposures to space radiation is one of the most significant health risks for long-term space travels. Evidences show that low- and high- Linear energy transfer (LET)-induced transformation of normal human bronchial epithelial cells (HBEC) that are immortalized through the expression of Cdk4 and hTERT. The cells were exposed to gamma rays and high-energy Fe ions for the selection of transformed clones. Transformed HBEC are identified and analyzed chromosome aberrations (i.e. genomic instability) using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. Our results show chromosomal translocations between different chromosomes and several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed and the parental HBEC regardless of the exposure conditions. We observed chromosomal aberrations in the lowand high-LET radiation-induced transformed clones and they are imperfectly different from clones obtain in spontaneous soft agar growth.

  12. Single fiber EMG Fiber density and its relationship to Macro EMG amplitude in reinnervation.

    PubMed

    Sandberg, Arne

    2014-12-01

    The objective was to elucidate the relation between the Macro EMG parameters fiber density (FD) and Macro amplitude in reinnervation in the purpose to use the FD parameter as a surrogate marker for reinnervation instead of the Macro amplitude. Macro EMG with FD was performed in 278 prior polio patients. The Biceps Brachii and the Tibialis anterior muscles were investigated. FD was more sensitive for detection of signs of reinnervation but showed lesser degree of abnormality than the Macro amplitude. FD and Macro MUP amplitude showed a non-linear relation with a great variation in FD for given Macro amplitude level. The relatively smaller increase in FD compared to Macro amplitude in addition to the non-linear relationship between the FD and the Macro amplitude regarding reinnervation in prior polio can be due to technical reasons and muscle fiber hypertrophy. The FD parameter has a relation to Macro MUP amplitude but cannot alone be used as a quantitative marker of the degree of reinnervation.

  13. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients.

  14. Analysis and control of macro - and microorganisms interactions for missions of different duration

    NASA Astrophysics Data System (ADS)

    Somova, L.; Pechurkin, N.

    In developing different t pes of life support systems for use in space or extremey environments Earth, researchers should pay attention to the functional state and stability of such systems. Special attention has been given to the interactions between macro- and microorganisms. Microorganisms are considered the most suitable indicators of a system's health and its component links. We can divide all space missions into types by which the behavior of man microbe interactions may be categorized: short missions and long ones. For short missions sanitary and hygiene procedures can be used to control the microflora of open and / or physico -chemical systems of life support. F r more prolonged missions hygieneo provisions may become inadequate and opportunistic infection occur rapidly. In general we should understand that the task of maintaining the heals of human being under conditions of stress is not only a question of sanitation and hygiene, but also a problem of the ecological balance within the habitat.

  15. Fatigue study on the actuation performance of macro fiber composite (MFC): theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Pandey, Akash; Arockiarajan, A.

    2017-03-01

    Macro fiber composite (MFC) is extensively used in vibration control and actuation applications due to its high flexibility and enhanced coupling coefficients. During these applications, MFCs are subjected to the continuous cyclic electrical loading, which may lead to the degradation in its actuation performance. In order to predict the life cycle of MFCs, an experimental setup has been devised and experiments are performed under cyclic loading condition. Efforts involved in the experiments are huge in terms of time and cost. Hence, an attempt has been made to develop a theoretical model to predict the fatigue behavior of MFCs. A nonlinear finite element method has been formulated based on Kirchhoff plate theory wherein the fatigue failure criterion based on strain energy is embedded. Simulated results based on the proposed model is compared with experimental observation and are in good agreement with each other. Variation in the life cycle of MFCs are also studied for different operating temperatures as well as structural/geometric configurations.

  16. Multifractal analysis of macro- and microcerebral circulation in rats

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Sindeeva, Olga S.; Sindeev, Sergey S.; Pavlova, Olga N.; Abdurashitov, Arkady S.; Rybalova, Elena V.; Semyachkina-Glushkovskaya, Oxana V.

    2016-04-01

    Application of noninvasive optical coherent-domain methods and advanced data processing tools such as the wavelet-based multifractal formalism allows revealing effective markers of early stages of functional distortions in the dynamics of cerebral vessels. Based on experiments performed in rats we discuss a possibility to diagnose a hidden stage of the development of intracranial hemorrhage (ICH). We also consider responses of the cerebrovascular dynamics to a pharmacologically induced increase in the peripheral blood pressure. We report distinctions occurring at the levels of macro- and microcerebral circulation.

  17. Variational formulation of macro-particle plasma simulation algorithms

    SciTech Connect

    Shadwick, B. A. Stamm, A. B.; Evstatiev, E. G.

    2014-05-15

    A variation formulation of macro-particle kinetic plasma models is discussed. In the electrostatic case, the use of symplectic integrators is investigated and found to offer advantages over typical generic methods. For the electromagnetic case, gauge invariance and momentum conservation are considered in detail. It is shown that, while the symmetries responsible for these conservation laws are broken in the presence of a spatial grid, the conservation laws hold in an average sense. The requirements for exact invariance are explored and it is shown that one viable option is to represent the potentials with a truncated Fourier basis.

  18. A temperature dependent SPICE macro-model for power MOSFETs

    SciTech Connect

    Pierce, D.G.

    1992-05-01

    A power MOSFET macro-model for use with the circuit simulator SPICE has been developed suitable for use over the temperature range of {minus}55 to 125{degrees}C. The model is comprised of a single parameter set with the temperature dependence accessed through the SPICE TEMP card. This report describes in detail the development of the model and the extraction algorithms used to obtain model parameters. The extraction algorithms are described in sufficient detail to allow for automated measurements which in turn allows for rapid and cost effective development of an accurate SPICE model for any power MOSFET. 22 refs.

  19. Effects of alcohol on food and energy intake in human subjects: evidence for passive and active over-consumption of energy.

    PubMed

    Yeomans, Martin R

    2004-08-01

    The effects of alcohol on food and energy intake in human subjects have been the subject of a number of controlled studies recently. Unlike the evidence for other macronutrients, there is minimal evidence for any compensatory reduction in food intake in response to energy ingested as alcohol. In contrast, all studies testing intake within 1 h of preload ingestion report a higher intake of food following alcohol relative to energy-matched controls, although this short-term stimulatory effect is not evident if the test meal is delayed beyond 1 h. This time-course suggests that short-term stimulation of appetite may be mediated by the pharmacological action of alcohol on the appetite control system, either through enhanced orosensory reward or impaired satiety. In the long term, energy ingested as alcohol is additive to energy from other sources, suggesting that moderate alcohol consumption results in long-term passive over-consumption alongside short-term active over-consumption of energy through appetite stimulation. Despite the consistency of enhanced energy intake after moderate alcohol, evidence of an association between alcohol in the diet and obesity remains contentious, although the most recent results suggest that alcohol intake correlates with BMI. Future research needs to address this issue and clarify the mechanisms underlying appetite stimulation by alcohol.

  20. The asymmetric effect of coal price on the China's macro economy using NARDL model

    NASA Astrophysics Data System (ADS)

    Hou, J. C.; Yang, M. C.

    2016-08-01

    The present work endeavors to explore the asymmetric effect of coal price on the China's macro economy by applying nonlinear autoregressive distributed lag (NARDL) model for the period of January 2005 to June 2015. The obtained results indicate that the coal price has a strong asymmetric effect on China's macro economy in the long-run. Namely one percent increase in coal price leads to 0.6194 percent of the China's macro economy increase; and while the coal price is reduces by 1 percent, the China's macro economy will decrease by 0.008 percent. These data indicate that when coal price rises, the effect on China's macro economy is far greater than the price decline. In the short-run, coal price fluctuation has a positive effect on the China's macro economy.

  1. Energy intake from human milk covers the requirement of 6-month-old Senegalese exclusively breast-fed infants.

    PubMed

    Agne-Djigo, Anta; Kwadjode, Komlan M; Idohou-Dossou, Nicole; Diouf, Adama; Guiro, Amadou T; Wade, Salimata

    2013-11-01

    Exclusive breast-feeding until 6 months is advised by the WHO as the best practice to feed infants. Yet, some studies have suggested a gap between energy requirements and the energy provided by human milk for many infants at 6 months. In order to assess the adequacy of WHO recommendations in 6-month-old Senegalese lactating infants, a comprehensive study was designed to measure human milk intake by the dose-to-the mother 2H2O turnover method. Infants’ energy intakes were calculated using daily breast milk intake and the energy content of milk was estimated on the basis of creamatocrit. Of the fifty-nine mother–infant pairs enrolled, fifteen infants were exclusively breast-fed (Ex) while forty-four were partially breast-fed (Part). Infants’ breast milk intake was significantly higher in the Ex group (993 (SD 135) g/d, n 15) compared with the Part group (828 (SD 222) g/d, n 44, P¼0·009). Breast milk energy content as well as infants' growth was comparable in both groups. However, infants’ energy intake from human milk was significantly higher (364 (SD 50) kJ/kg per d (2586 (SD 448) kJ/d)) in the Ex group than in the Part group (289 (SD 66) kJ/kg per d (2150 (SD 552) kJ/d), P,0·01). Compared with WHO recommendations, the results demonstrate that energy intake from breast milk was low in partially breast-fed infants while exclusively breast-fed 6-month-old Senegalese infants received adequate energy from human milk alone, the most complete food for infants. Therefore, advocacy of exclusive breast-feeding until 6 months should be strengthened.

  2. Different macro- and micro-rheological properties of native porcine respiratory and intestinal mucus.

    PubMed

    Bokkasam, Harish; Ernst, Matthias; Guenther, Marco; Wagner, Christian; Schaefer, Ulrich F; Lehr, Claus-Michael

    2016-08-20

    Aim of this study was to investigate the similarities and differences at macro- and microscale in the viscoelastic properties of mucus that covers the epithelia of the intestinal and respiratory tract. Natural mucus was collected from pulmonary and intestinal regions of healthy pigs. Macro-rheological investigations were carried out through conventional plate-plate rheometry. Microrheology was investigated using optical tweezers. Our data revealed significant differences both in macro- and micro-rheological properties between respiratory and intestinal mucus.

  3. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    PubMed Central

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  4. Macro Security Methodology for Conducting Facility Security and Sustainability Assessments

    SciTech Connect

    Herdes, Greg A.; Freier, Keith D.; Wright, Kyle A.

    2007-07-09

    Pacific Northwest National Laboratory (PNNL) has developed a macro security strategy that not only addresses traditional physical protection systems, but also focuses on sustainability as part of the security assessment and management process. This approach is designed to meet the needs of virtually any industry or environment requiring critical asset protection. PNNL has successfully demonstrated the utility of this macro security strategy through its support to the NNSA Office of Global Threat Reduction implementing security upgrades at international facilities possessing high activity radioactive sources that could be used in the assembly of a radiological dispersal device, commonly referred to as a “dirty bomb”. Traditional vulnerability assessments provide a snap shot in time of the effectiveness of a physical protection system without significant consideration to the sustainability of the component elements that make up the system. This paper describes the approach and tools used to integrate technology, plans and procedures, training, and sustainability into a simple, quick, and easy-to-use security assessment and management tool.

  5. High-resolution simulations of the thermophysiological effects of human exposure to 100 MHz RF energy

    NASA Astrophysics Data System (ADS)

    Nelson, David A.; Curran, Allen R.; Nyberg, Hans A.; Marttila, Eric A.; Mason, Patrick A.; Ziriax, John M.

    2013-03-01

    Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm-2) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (Tamb = 31 °C, PD = 8 mW cm-2). Skin temperature increases attributable to RF exposure were modest, with the exception of a ‘hot spot’ in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature.

  6. Concentration-dependent Sildenafil citrate (Viagra) effects on ROS production, energy status, and human sperm function.

    PubMed

    Sousa, Maria Inês; Amaral, Sandra; Tavares, Renata Santos; Paiva, Carla; Ramalho-Santos, João

    2014-04-01

    Literature regarding the effects of sildenafil citrate on sperm function remains controversial. In the present study, we specifically wanted to determine if mitochondrial dysfunction, namely membrane potential, reactive oxygen species production, and changes in energy content, are involved in in vitro sildenafil-induced alterations of human sperm function. Sperm samples of healthy men were incubated in the presence of 0.03, 0.3, and 3 μM sildenafil citrate in a phosphate buffered saline (PBS)-based medium for 2, 3, 12, and 24 hours. Sperm motility and viability were evaluated and mitochondrial function, i.e., mitochondrial membrane potential and mitochondrial superoxide production were assessed using flow-cytometry. Additionally, adenosine triphosphate (ATP) levels were determined by high performance liquid chromatography (HPLC) analysis. Results show a decrease in sperm motility correlated with the level of mitochondria-generated superoxide, without a visible effect on mitochondrial membrane potential or viability upon exposure to sildenafil. The effect on both motility and superoxide production was higher for the intermediate concentration of sildenafil (0.3 µM) indicating that the in vitro effects of sildenafil on human sperm do not vary linearly with drug concentration. Adenosine triphosphate levels also decreased following sildenafil exposure, but this decrease was only detected after a decrease in motility was already evident. These results suggest that along with the level of ATP and mitochondrial function other factors are involved in the early sildenafil-mediated decline in sperm motility. However, the further decrease in ATP levels and increase in mitochondria-generated reactive oxygen species after 24 hours of exposure might further contribute towards declining sperm motility.

  7. Human skin permeation of neutral species and ionic species: extended linear free-energy relationship analyses.

    PubMed

    Zhang, Keda; Chen, Ming; Scriba, Gerhard K E; Abraham, Michael H; Fahr, Alfred; Liu, Xiangli

    2012-06-01

    The permeability, K(p), of some ionized solutes (including nine acids and nine bases) through human epidermis membrane was measured in this work. Combined with the experimental K(p) data set for neutral species created by Abraham and Martins and reliable K(p) data for ionic species from the literature, a linear free-energy relationship (LFER) analysis was conducted. The values of log K(p) for 118 compounds have been correlated with solute descriptors to yield an LFER equation that incorporates neutral species and ionic species, with R(2) = 0.861 and SD = 0.462 log units. The equation can be used to predict K(p) for neutral species and ionic species, as well as partly ionized solutes. Predicted values for the passive permeation of the sodium ion and the tetraethylammonium ion are in good accord with the experimental values. It was observed that neutral acids and bases are more permeable than their ionized forms, and that the ratio depends on the actual structure. The correlation between human skin permeation and water-organic solvent/artificial membrane partitions was investigated by comparison of the coefficients in the LFER equations. Partition into cerasome is a reasonable model for partition into skin, and using cerasome as a surrogate for the partitioning process, we separate permeation into partition and diffusion processes. We show that the poor permeability of ionic species is largely due to slow diffusion through the stratum corneum. This is especially marked for a number of protonated base cations.

  8. Computational model of in vivo human energy metabolism during semi-starvation and re-feeding

    PubMed Central

    Hall, Kevin D.

    2008-01-01

    Changes of body weight and composition are the result of complex interactions among metabolic fluxes contributing to macronutrient balances. To better understand these interactions, a mathematical model was constructed that used the measured dietary macronutrient intake during semi-starvation and re-feeding as model inputs and computed whole-body energy expenditure, de novo lipogenesis, gluconeogenesis, as well as turnover and oxidation of carbohydrate, fat and protein. Published in vivo human data provided the basis for the model components which were integrated by fitting a few unknown parameters to the classic Minnesota human starvation experiment. The model simulated the measured body weight and fat mass changes during semi-starvation and re-feeding and predicted the unmeasured metabolic fluxes underlying the body composition changes. The resting metabolic rate matched the experimental measurements and required a model of adaptive thermogenesis. Re-feeding caused an elevation of de novo lipogenesis which, along with increased fat intake, resulted in a rapid repletion and overshoot of body fat. By continuing the computer simulation with the pre-starvation diet and physical activity, the original body weight and composition was eventually restored, but body fat mass was predicted to take more than one additional year to return to within 5% of its original value. The model was validated by simulating a recently published short-term caloric restriction experiment without changing the model parameters. The predicted changes of body weight, fat mass, resting metabolic rate, and nitrogen balance matched the experimental measurements thereby providing support for the validity of the model. PMID:16449298

  9. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  10. The Human Dimension of Energy Conservation and Sustainability: A Case Study of the University of Michigan's Energy Conservation Program

    ERIC Educational Resources Information Center

    Marans, Robert W.; Edelstein, Jack Y.

    2010-01-01

    Purpose: The purpose of this paper is to determine the behaviors, attitudes, and levels of understanding among faculty, staff, and students in efforts to design programs aimed at reducing energy use in University of Michigan (UM) buildings. Design/methodology/approach: A multi-method approach is used in five diverse pilot buildings including focus…

  11. Fish and macro-crustacean communities and their dynamics in the Severn Estuary.

    PubMed

    Henderson, P A; Bird, D J

    2010-01-01

    The species of fish and macro-crustacean living within the Severn Estuary are reviewed. The fish community is notably species rich and exceeds 100 species in total for the estuary. Standardised long-term sampling at Hinkley Point in Bridgwater Bay gives a total complement of 83 for a single locality and this number is increasing by about one new species every two years. Most of these new species are moving in from centres of population lying to the south of the estuary. Almost all species of fish and macro-crustacean living within the estuary undertake regular migrations so that they tend to move seasonally in waves up and down the estuary. For fish, both species richness and the total abundance reach a maximum in late summer and autumn. The timing of this peak varies between the upper and lower estuary. This seasonal maximum is primarily caused by the arrival of the new recruits which use the estuary as a nursery. In contrast, crustaceans tend to be at their most diverse and abundant in early to mid summer. Using a 30-year time series of fish and crustacean abundance collected at Hinkley Point it is shown that major changes in the structure of the community are now underway and there are considerable recent changes in the abundance. However, some abundant species, including sand goby, Pomatoschistus spp., whiting, Merlangius merlangus and sprat, Sprattus sprattus, the three most abundant species in the estuary, have shown no long-term trend. At present, approximately 20% of the fish and macro-crustaceans observed in Bridgwater Bay are undergoing rapid, typically exponential, change in abundance. For a numerically abundant, diverse, fauna composed of approximately 90 species such levels of change are unexpected and suggest that the system is presently far from equilibrium. In some cases, the observed changes can be related to recent warming and the North Atlantic Oscillation. The overall increase in fish abundance observed may reflect a general improvement in water

  12. Insight into the modified Ibalizumab-human CD4 receptor interactions: using a computational binding free energy approach.

    PubMed

    Wang, Yeng-Tseng; Chuang, Lea-Yea

    2015-01-01

    Antibody drugs are very useful tools for the treatment of many chronic diseases. Recently, however, patients and doctors have encountered the problem of drug resistance. How to improve the affinity of antibody drugs has therefore become a pressing issue. Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1. This study investigates the mutation residues of the complementarity determining regions of Ibalizumab. We propose using the wild and mutations of Ibalizumab-human CD4 receptor complex structures, molecular dynamics techniques, alanine-scanning mutagenesis calculations and solvated interaction energies methods to predict the binding free energy of the Ibalizumab-human CD4 receptor complex structures. This work found that revealed three key positions (31th, 32th and 33th in HCDR-1) of the residues may play an important role in Ibalizumab-human CD4 receptor complex interactions. Therefore, bioengineering substitutions of the three key positions and increasing number of intermolecular interactions (HCDR-1 of Ibalizumab/human CD4 receptor) might improve the binding affinities of this complex structure.

  13. Insight into the modified Ibalizumab-human CD4 receptor interactions: using a computational binding free energy approach

    NASA Astrophysics Data System (ADS)

    Wang, Yeng-Tseng; Chuang, Lea-Yea

    2015-01-01

    Antibody drugs are very useful tools for the treatment of many chronic diseases. Recently, however, patients and doctors have encountered the problem of drug resistance. How to improve the affinity of antibody drugs has therefore become a pressing issue. Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1. This study investigates the mutation residues of the complementarity determining regions of Ibalizumab. We propose using the wild and mutations of Ibalizumab-human CD4 receptor complex structures, molecular dynamics techniques, alanine-scanning mutagenesis calculations and solvated interaction energies methods to predict the binding free energy of the Ibalizumab-human CD4 receptor complex structures. This work found that revealed three key positions (31th, 32th and 33th in HCDR-1) of the residues may play an important role in Ibalizumab-human CD4 receptor complex interactions. Therefore, bioengineering substitutions of the three key positions and increasing number of intermolecular interactions (HCDR-1 of Ibalizumab/human CD4 receptor) might improve the binding affinities of this complex structure.

  14. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    SciTech Connect

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  15. Energy.

    ERIC Educational Resources Information Center

    Shanebrook, J. Richard

    This document describes a course designed to acquaint students with the many societal and technological problems facing the United States and the world due to the increasing demand for energy. The course begins with a writing assignment that involves readings on the environmental philosophy of Native Americans and the Chernobyl catastrophe.…

  16. Effects of fructose-containing caloric sweeteners on resting energy expenditure and energy efficiency: a review of human trials

    PubMed Central

    2013-01-01

    Epidemiological studies indicate that the consumption of fructose-containing caloric sweeteners (FCCS: mainly sucrose and high-fructose corn syrup) is associated with obesity. The hypothesis that FCCS plays a causal role in the development of obesity however implies that they would impair energy balance to a larger extent than other nutrients, either by increasing food intake, or by decreasing energy expenditure. We therefore reviewed the literature comparing a) diet-induced thermogenesis (DIT) after ingestion of isocaloric FCCS vs glucose meals, and b) basal metabolic rate (BMR) or c) post-prandial energy expenditure after consuming a high FCCS diet for > 3 days vs basal,weight-maintenance low FCCS diet. Nine studies compared the effects of single isocaloric FCCS and glucose meals on DIT; of them, six studies reported that DIT was significantly higher with FCCS than with glucose, 2 reported a non-significant increase with FCCS, and one reported no difference. The higher DIT with fructose than glucose can be explained by the low energy efficiency associated with fructose metabolism. Five studies compared BMR after consumption of a high FCCS vs a low FCCS diet for > 3 days. Four studies reported no change after 4–7 day on a high FCCS diet, and only one study reported a 7% decrease after 12 week on a high FCCS diet. Three studies compared post-prandial EE after consumption of a high FCCS vs a low FCCS diet for > 3 days, and did not report any significant difference. One study compared 24-EE in subjects fed a weight-maintenance diet and hypercaloric diets with 50% excess energy as fructose, sucrose and glucose during 4 days: 24-EE was increased with all 3 hypercaloric diets, but there was no difference between fructose, sucrose and glucose. We conclude that fructose has lower energy efficiency than glucose. Based on available studies, there is presently no hint that dietary FCCS may decrease EE. Larger, well controlled studies are however needed to assess the longer

  17. Effects of fructose-containing caloric sweeteners on resting energy expenditure and energy efficiency: a review of human trials.

    PubMed

    Tappy, Luc; Egli, Leonie; Lecoultre, Virgile; Schneider, Pascal

    2013-08-13

    Epidemiological studies indicate that the consumption of fructose-containing caloric sweeteners (FCCS: mainly sucrose and high-fructose corn syrup) is associated with obesity. The hypothesis that FCCS plays a causal role in the development of obesity however implies that they would impair energy balance to a larger extent than other nutrients, either by increasing food intake, or by decreasing energy expenditure. We therefore reviewed the literature comparing a) diet-induced thermogenesis (DIT) after ingestion of isocaloric FCCS vs glucose meals, and b) basal metabolic rate (BMR) or c) post-prandial energy expenditure after consuming a high FCCS diet for > 3 days vs basal,weight-maintenance low FCCS diet. Nine studies compared the effects of single isocaloric FCCS and glucose meals on DIT; of them, six studies reported that DIT was significantly higher with FCCS than with glucose, 2 reported a non-significant increase with FCCS, and one reported no difference. The higher DIT with fructose than glucose can be explained by the low energy efficiency associated with fructose metabolism. Five studies compared BMR after consumption of a high FCCS vs a low FCCS diet for > 3 days. Four studies reported no change after 4-7 day on a high FCCS diet, and only one study reported a 7% decrease after 12 week on a high FCCS diet. Three studies compared post-prandial EE after consumption of a high FCCS vs a low FCCS diet for > 3 days, and did not report any significant difference. One study compared 24-EE in subjects fed a weight-maintenance diet and hypercaloric diets with 50% excess energy as fructose, sucrose and glucose during 4 days: 24-EE was increased with all 3 hypercaloric diets, but there was no difference between fructose, sucrose and glucose. We conclude that fructose has lower energy efficiency than glucose. Based on available studies, there is presently no hint that dietary FCCS may decrease EE. Larger, well controlled studies are however needed to assess the longer

  18. Modeling energy expenditure and oxygen consumption in human exposure models: accounting for fatigue and EPOC.

    PubMed

    Isaacs, Kristin; Glen, Graham; Mccurdy, Thomas; Smith, Luther

    2008-05-01

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled individual's physical activity level as described in an activity diary. Activity level is quantified via standardized values of metabolic equivalents of work (METS) for the activity being performed and converted into activity-specific oxygen consumption estimates. However, oxygen consumption remains elevated after a moderate- or high-intensity activity is completed. This effect, which is termed excess post-exercise oxygen consumption (EPOC), requires upward adjustment of the METS estimates that follow high-energy expenditure events, to model subsequent increased ventilation and intake dose rates. In addition, since an individual's capacity for work decreases during extended activity, methods are also required to adjust downward those METS estimates that exceed physiologically realistic limits over time. A unified method for simultaneously performing these adjustments is developed. The method simulates a cumulative oxygen deficit for each individual and uses it to impose appropriate time-dependent reductions in the METS time series and additions for EPOC. The relationships between the oxygen deficit and METS limits are nonlinear and are derived from published data on work capacity and oxygen consumption. These modifications result in improved modeling of ventilation patterns, and should improve intake dose estimates associated with exposure to airborne environmental contaminants.

  19. Human motion energy harvesting: numerical analysis of electromagnetic swing-excited structures

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2016-09-01

    Energy harvesting from human motion has constantly attracted scientific interest over recent years. A location where a harvesting device can easily and unobtrusively be integrated is the shoe sole, which also protects the device from exterior influences. In this work a numerical system model is developed, which can be used to simulate different inductive harvester geometries and predict their power output. Real world acceleration data is used as a model input. The model is implemented in Matlab/Simulink and subdivided into a mechanical and an electromagnetic model. The key features including the motion model and the calculation of the electromagnetic coupling coefficient are explained in detail and the model is briefly evaluated experimentally. A total of six inductive architectures, i.e. different cylindrical and rectangular magnet-coil arrangements, are then investigated in detail. The geometrical parameters are optimized for each architecture to find the best geometry within the size of 71 mm × 37.5 mm × 12.5 mm, which can be integrated into the sole. With the best overall design an average power output of 42.7 mW is simulated across an ohmic load of 41 Ohms. In addition to the respective best designs, the (dis-)advantages of each architecture are explained.

  20. Molecular interaction and energy transfer between human serum albumin and bioactive component Aloe dihydrocoumarin

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Li, Lin; Tang, Ya-Lin

    2008-10-01

    Aloe dihydrocoumarin is an antioxidant and a candidate of immunomodulatory drug on the immune system and can balance physiological reactive oxygen species (ROS) levels which may be useful to maintain homeostasis. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydrocoumarin with human serum albumin (HSA) has been investigated by fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydrocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. A Förster type fluorescence resonance energy transfer mechanism is involved in this quenching of Trp fluorescence by Aloe dihydrocoumarin. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydrocoumarin with HSA causes a conformational change of the protein, with the loss of α-helix stability and the gain of β-sheet and β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FT-IR experiments along with the docking studies suggest that Aloe dihydrocoumarin binds to residues located in subdomain IIA of HSA.

  1. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    PubMed

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications.

  2. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  3. Karyotyping of Chromosomes in Human Bronchial Epithelial Cells Transformed by High Energy Fe Ions

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit; Zhang, Ye; Park, Seongmi; Story, Michael T.; Wilson, Bobby; Wu, Honglu

    2014-01-01

    Lung cancer induced from exposure to space radiation is believed to be one of the most significant health risks for long-term space travels. In a previous study, normal human bronchial epithelial cells (HBECs), immortalized through the expression of Cdk4 and hTERT, were exposed to gamma rays and high energy Fe ions for the selection of transformed clones induced by low- and high-LET radiation. In this research, we analyzed chromosome aberrations in these selected clones for genomic instability using the multi-color fluorescent in situ hybridization (mFISH), as well as the multi-banding in situ hybridization (mBAND) techniques. In most of the clones, we found chromosomal aberrations involving translocations between different chromosomes, with several of the breaks occurred in the q-arm of chromosome 3. We also identified copy number variations between the transformed clones and the parental HBEC cells regardless of the exposure condition. Our results indicated that the chromosomal aberrations in low- and high radiation-induced transformed clones are inadequately different from spontaneous soft agar growth. Further analysis is underway to reveal the genomic instability in more transformed clones

  4. The dependence of EM energy absorption upon human head modeling at 900 MHz

    SciTech Connect

    Hombach, V.; Kuehn, E.; Meier, K.; Burkhardt, M.; Kuster, N.

    1996-10-01

    In this paper the dependence of electromagnetic energy absorption at 900 MHz in the human head on its anatomy and its modeling are investigated for RF-sources operating in the very close proximity of the head. Different numerical head phantoms based on MRI scans of three different adults were used with voxel sizes down to 1 mm{sup 3}. Simulations of the absorption were performed by distinguishing the electrical properties of up to 13 tissue types. In addition simulations with modified electric parameters and reduced degrees of complexity were performed. Thus, the phantoms greatly differ from each other in terms of shape, size, and internal anatomy. The numerical results are compared with those of measurements in a multitissue phantom and two homogeneous phantoms of different shapes and sizes. The results demonstrate that size and shape are of minor importance. Although local SAR values depend significantly on local inhomogeneities and electric properties, the volume-averaged spatial peak SAR obtained with the homogeneous phantoms only slightly overestimates that of the worst-case exposure in the inhomogeneous phantoms.

  5. A nonlinear MEMS electrostatic kinetic energy harvester for human-powered biomedical devices

    SciTech Connect

    Lu, Y.; Cottone, F.; Marty, F.; Basset, P.; Galayko, D.

    2015-12-21

    This article proposes a silicon-based electrostatic kinetic energy harvester with an ultra-wide operating frequency bandwidth from 1 Hz to 160 Hz. This large bandwidth is obtained, thanks to a miniature tungsten ball impacting with a movable proof mass of silicon. The motion of the silicon proof mass is confined by nonlinear elastic stoppers on the fixed part standing against two protrusions of the proof mass. The electrostatic transducer is made of interdigited-combs with a gap-closing variable capacitance that includes vertical electrets obtained by corona discharge. Below 10 Hz, the e-KEH offers 30.6 nJ per mechanical oscillation at 2 g{sub rms}, which makes it suitable for powering biomedical devices from human motion. Above 10 Hz and up to 162 Hz, the harvested power is more than 0.5 μW with a maximum of 4.5 μW at 160 Hz. The highest power of 6.6 μW is obtained without the ball at 432 Hz, in accordance with a power density of 142 μW/cm{sup 3}. We also demonstrate the charging of a 47-μF capacitor to 3.5 V used to power a battery-less wireless temperature sensor node.

  6. Understanding Historical Human Migration Patterns and Interbreeding (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Willerslev, Eske [University of Copenhagen

    2016-07-12

    Eske Willerslev from the University of Copenhagen on "Understanding Historical Human Migration Patterns and Interbreeding Using the Ancient Genomes of a Palaeo-Eskimo and an Aboriginal Australian" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.

  7. Evaluating Potential Human Health Risks Associated with the Development of Utility-Scale Solar Energy Facilities on Contaminated Sites

    SciTech Connect

    Cheng, J. -J.; Chang, Y. -S.; Hartmann, H.; Wescott, K.; Kygeris, C.

    2013-09-01

    This report presents a general methodology for obtaining preliminary estimates of the potential human health risks associated with developing a utility-scale solar energy facility on a contaminated site, based on potential exposures to contaminants in soils (including transport of those contaminants into the air).

  8. Laser modulation of human immune system: inhibition of lymphocyte proliferation by a gallium-arsenide laser at low energy

    SciTech Connect

    Ohta, A.; Abergel, R.P.; Uitto, J.

    1987-01-01

    Cultured human lymphocytes were subjected to irradiation with a gallium-arsenide laser at energy fluence varying from 2.17 to 651 mJ/cm2, and the cell proliferation was assessed by (/sup 3/H)thymidine incorporation. Both mitogenic proliferation in response to phytohemagglutinin and spontaneous cell proliferation were markedly inhibited by the laser irradiation at energy fluence as low as 10.85 mJ/cm2. Similarly, the functional response of cells to antigen stimulation in a one-way mixed-lymphocyte reaction was also diminished as a result of laser irradiation. The results indicate that laser irradiation at low energy can interfere with immune system in vitro, and similar modulation could potentially occur in human subjects exposed to laser irradiation in vivo.

  9. Pattern recognition by wavelet transforms using macro fibre composites transducers

    NASA Astrophysics Data System (ADS)

    Ruiz de la Hermosa González-Carrato, Raúl; García Márquez, Fausto Pedro; Dimlaye, Vichaar; Ruiz-Hernández, Diego

    2014-10-01

    This paper presents a novel pattern recognition approach for a non-destructive test based on macro fibre composite transducers applied in pipes. A fault detection and diagnosis (FDD) method is employed to extract relevant information from ultrasound signals by wavelet decomposition technique. The wavelet transform is a powerful tool that reveals particular characteristics as trends or breakdown points. The FDD developed for the case study provides information about the temperatures on the surfaces of the pipe, leading to monitor faults associated with cracks, leaks or corrosion. This issue may not be noticeable when temperatures are not subject to sudden changes, but it can cause structural problems in the medium and long-term. Furthermore, the case study is completed by a statistical method based on the coefficient of determination. The main purpose will be to predict future behaviours in order to set alarm levels as a part of a structural health monitoring system.

  10. Bovine meroanencephaly and gastroschisis: a macro and microscopic study.

    PubMed

    Alberto, M L V; Trujillo, H A G; Riveros, A C G; Lima, E B; Miglino, M A; Santos, J M

    2008-06-01

    Congenital malformations correspond to one of the main causes of embryonic loss during the gestational process. They result from interaction of several factors such as multifactor heredity, chromosomal and genetic alterations and environmental agents; however, unknown aetiology also can be present. In this article, we have used 10 embryos, from a frigorific area of Dracena, SP, Brazil, which were fixed in Bouin solution for a macro- and micro-scopic description. We could verify the presence of an encephalic tissue mass on the embryo's dorsal cranial area, resulting from the non-formation of part of the cranial cap and from the non-closing of cephalic neuropore and consequent neuroepithelial cells disorganization. In the abdominal area, the embryos did not show the complete fusion of the body lateral pleats during the abdominal wall formation, and the liver extruded into the amniotic cavity without involvement of the intestine.

  11. Tunable interdigital transducers made of piezoelectric macro-fiber composite

    NASA Astrophysics Data System (ADS)

    Mańka, Michał; Martowicz, Adam; Rosiek, Mateusz; Stepinski, Tadeusz; Uhl, Tadeusz

    2016-11-01

    The number of applications of Lamb waves (LWs) based structural health monitoring (SHM) has significantly increased in recent decades. The growth of interest results from several advantages of this diagnostic technique, that is, considerable mode selectivity and directivity that allow for the assessment of the technical condition of a monitored structure. Successful applications of LWs in the field of SHM stimulate continuous improvement of the transducers’ design to enable capturing more reliable diagnostic data. The paper introduces a new type of transducer that may be used in the LWs based SHM systems, namely tunable-interdigital transducer (T-IDT) based on macro-fiber composites (MFC). The authors provide a short overview on different types of transducers that may be used in SHM applications, followed by a detailed description of the structure of proposed T-IDT. Finally, the results of numerical and experimental tests carried out employing the proposed transducer are discussed and compared to those obtained with a traditional IDT.

  12. Micro and macro benefits of random investments in financial markets

    NASA Astrophysics Data System (ADS)

    Biondo, A. E.; Pluchino, A.; Rapisarda, A.

    2014-10-01

    In this paper, making use of recent statistical physics techniques and models, we address the specific role of randomness in financial markets, both at the micro and the macro level. In particular, we review some recent results obtained about the effectiveness of random strategies of investment, compared with some of the most used trading strategies for forecasting the behaviour of real financial indexes. We also push forward our analysis by means of a self-organised criticality model, able to simulate financial avalanches in trading communities with different network topologies, where a Pareto-like power law behaviour of wealth spontaneously emerges. In this context, we present new findings and suggestions for policies based on the effects that random strategies can have in terms of reduction of dangerous financial extreme events, i.e. bubbles and crashes.

  13. Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging.

    PubMed

    Kime, Ryotaro; Kaneko, Yasuhisa; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    Previous studies have reported significant region-dependent differences in the fiber-type composition of human skeletal muscle. It is therefore hypothesized that there is a difference between the deep and superficial parts of muscle energy metabolism during exercise. We hypothesized that the inorganic phosphate (Pi)/phosphocreatine (PCr) ratio of the superficial parts would be higher, compared with the deep parts, as the work rate increases, because the muscle fiber-type composition of the fast-type may be greater in the superficial parts compared with the deep parts. This study used two-dimensional 31Phosphorus Chemical Shift Imaging (31P-CSI) to detect differences between the deep and superficial parts of the human leg muscles during dynamic knee extension exercise. Six healthy men participated in this study (age 27±1 year, height 169.4±4.1 cm, weight 65.9±8.4 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed dynamic one-legged knee extension exercise in the prone position, with the transmit-receive coil placed under the right quadriceps muscles in the magnet. The subjects pulled down an elastic rubber band attached to the ankle at a frequency of 0.25, 0.5 and 1 Hz for 320 s each. The intracellular pH (pHi) was calculated from the median chemical shift of the Pi peak relative to PCr. No significant difference in Pi/PCr was observed between the deep and the superficial parts of the quadriceps muscles at rest. The Pi/PCr of the superficial parts was not significantly increased with increasing work rate. Compared with the superficial areas, the Pi/PCr of the deep parts was significantly higher (p<0.05) at 1 Hz. The pHi showed no significant difference between the two parts. These results suggest that muscle oxidative metabolism is different between deep and superficial parts of quadriceps muscles during dynamic exercise.

  14. Energy expenditure during level human walking: seeking a simple and accurate predictive solution.

    PubMed

    Ludlow, Lindsay W; Weyand, Peter G

    2016-03-01

    Accurate prediction of the metabolic energy that walking requires can inform numerous health, bodily status, and fitness outcomes. We adopted a two-step approach to identifying a concise, generalized equation for predicting level human walking metabolism. Using literature-aggregated values we compared 1) the predictive accuracy of three literature equations: American College of Sports Medicine (ACSM), Pandolf et al., and Height-Weight-Speed (HWS); and 2) the goodness-of-fit possible from one- vs. two-component descriptions of walking metabolism. Literature metabolic rate values (n = 127; speed range = 0.4 to 1.9 m/s) were aggregated from 25 subject populations (n = 5-42) whose means spanned a 1.8-fold range of heights and a 4.2-fold range of weights. Population-specific resting metabolic rates (V̇o2 rest) were determined using standardized equations. Our first finding was that the ACSM and Pandolf et al. equations underpredicted nearly all 127 literature-aggregated values. Consequently, their standard errors of estimate (SEE) were nearly four times greater than those of the HWS equation (4.51 and 4.39 vs. 1.13 ml O2·kg(-1)·min(-1), respectively). For our second comparison, empirical best-fit relationships for walking metabolism were derived from the data set in one- and two-component forms for three V̇o2-speed model types: linear (∝V(1.0)), exponential (∝V(2.0)), and exponential/height (∝V(2.0)/Ht). We found that the proportion of variance (R(2)) accounted for, when averaged across the three model types, was substantially lower for one- vs. two-component versions (0.63 ± 0.1 vs. 0.90 ± 0.03) and the predictive errors were nearly twice as great (SEE = 2.22 vs. 1.21 ml O2·kg(-1)·min(-1)). Our final analysis identified the following concise, generalized equation for predicting level human walking metabolism: V̇o2 total = V̇o2 rest + 3.85 + 5.97·V(2)/Ht (where V is measured in m/s, Ht in meters, and V̇o2 in ml O2·kg(-1)·min(-1)).

  15. Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint

    SciTech Connect

    Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

    2010-12-01

    It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

  16. Macro-invertebrate decline in surface water polluted with imidacloprid.

    PubMed

    Van Dijk, Tessa C; Van Staalduinen, Marja A; Van der Sluijs, Jeroen P

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.

  17. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

    PubMed Central

    Van Dijk, Tessa C.; Van Staalduinen, Marja A.; Van der Sluijs, Jeroen P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l−1. For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l−1 (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified. PMID:23650513

  18. A Macro-Micro-Symbolic Teaching to Promote Relational Understanding of Chemical Reactions

    ERIC Educational Resources Information Center

    Jaber, Lama Ziad; Boujaoude, Saouma

    2012-01-01

    The purpose of this research is threefold: (1) to identify the difficulties that Grade 10 students in a Lebanese school have that hinder their conceptual understanding at the micro-macro-symbolic interface in chemistry, (2) to investigate the effect of a macro-micro-symbolic teaching approach on students' relational understanding of chemical…

  19. SPSS Macros for Assessing the Reliability and Agreement of Student Evaluations of Teaching

    ERIC Educational Resources Information Center

    Morley, Donald D.

    2009-01-01

    This article reports and demonstrates two SPSS macros for calculating Krippendorff's alpha and intraclass reliability coefficients in repetitive situations where numerous coefficients are needed. Specifically, the reported SPSS macros were used to evaluate the interrater agreement and reliability of student evaluations of teaching in thousands of…

  20. Engaging Students in Macro Issues through Community-Based Learning: The Policy, Practice, and Research Sequence

    ERIC Educational Resources Information Center

    Sather, Paul; Weitz, Barbara; Carlson, Patricia

    2007-01-01

    This paper describes the revision of a curriculum that was initiated to engage and sustain students' interest in the macro dimension of social work practice. Specifically, we describe how two junior policy courses, a senior macro practice course, and a research methods course were revised to include a service learning approach. This article…

  1. A Force-Controllable Macro-Micro Manipulator and its Application to Medical Robotics

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1993-01-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/sofware implemtation of the algotithms are described in this paper. Initial experimental results are reported.

  2. Why Are Macros Not Used? A Brief Review and an Approach for Improving Training

    ERIC Educational Resources Information Center

    Yechiam, Eldad

    2006-01-01

    Macros are programming scripts that can be generated by recording users' actions. It appears that despite their potential for reducing monotonous work, they are under-used by non-programmers. The present paper reviews the literature on the use of macros. Included is an original study that examines the effect of adding the "search and replace"…

  3. The Micro and Macro Analysis of English and Arabic Religious Texts

    ERIC Educational Resources Information Center

    Al-Araji, Baida Faisal; Al-Azzawi, Sarab Khalil

    2016-01-01

    Religious discourse has been treated differently in various types of studies. In the present study, the English Biblical and Arabic Prophetic Hadiths will be tackled on two bases namely the micro and macro levels. In other words, the data will be analyzed at both micro and macro levels to maintain the organizational status of the religious texts.…

  4. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture.

    PubMed

    Douet, Julien; Corujo, David; Malinverni, Roberto; Renauld, Justine; Sansoni, Viola; Marjanović, Melanija Posavec; Cantari'o, Neus; Valero, Vanesa; Mongelard, Fabien; Bouvet, Philippe; Imhof, Axel; Thiry, Marc; Buschbeck, Marcus

    2017-03-10

    Genetic loss-of-function studies in development, cancer and somatic cell reprogramming have suggested that the group of macroH2A histone variants might function through stabilizing the differentiated state by a yet unknown mechanism. Here, we present results demonstrating that macroH2A variants have a major function in maintaining nuclear organization and heterochromatin architecture. Specifically, we find that a substantial amount of macroH2A is associated with heterochromatic repeat sequences. We further identify macroH2A on sites of interstitial heterochromatin decorated by H3K9me3. Loss of macroH2A leads to major defects in nuclear organization including reduced nuclear circularity, disruption of nucleoli and a global loss of dense heterochromatin. Domains formed by repeat sequences when depleted of macroH2A are disorganized, expanded and fragmented and mildly re-expressed. On the molecular level we find that macroH2A is required for the interaction of repeat sequences with the nucleostructural protein Lamin B1. Taken together our results argue that a major function of macroH2A histone variants is to link nucleosome composition to higher order chromatin architecture.

  5. Teaching Note--Incorporating Social Innovation Content into Macro Social Work Education

    ERIC Educational Resources Information Center

    Pitt-Catsouphes, Marcie; Cosner Berzin, Stephanie

    2015-01-01

    The practice of social innovation offers promising approaches for addressing social issues. Although many social innovation strategies are congruent with macro social work theory and practice, some of the insights and tactics that have emerged in the social innovation field have the potential to strengthen current macro practice. Based on our…

  6. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  7. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  8. Value of energy substrates in HTK and UW to protect human liver endothelial cells against ischemia and reperfusion injury.

    PubMed

    Janssen, Hermann; Janssen, Petra H E; Broelsch, Christoph E

    2004-01-01

    Adenosine 5'-triphosphate (ATP) depletion is a major cause of cellular injury during ischemia and reperfusion in organ transplantation. Therefore, histidine-tryptophan-ketoglutarate solution (HTK; alpha-ketoglutarate) and University of Wisconsin solution (UW; adenosine) were supplied with energy substrates to achieve graft viability. Nevertheless, their efficacy for maintaining the ATP level, particularly in human liver endothelial cells, was uncertain. Furthermore, it is of interest whether a high ATP level is beneficial in human liver endothelial cell viability. We used human liver endothelial cells between the 3rd and 6th passages in a cell culture model. Human liver endothelial cells were exposed to hypothermic preservation (4 degrees C) in HTK and UW for 2, 6, 12, 24 and 48 h with subsequent reperfusion of 6 h. ATP and lactate dehydrogenase (LDH) were measured after each interval. In comparison to HTK, UW demonstrates a statistically significantly higher level of ATP after each interval of ischemia (p < 0.001) and reperfusion (p < 0.002). Additionally, UW-preserved human liver endothelial cells exceed the ATP level of the warm control during all intervals of ischemia. The loss of cell viability (LDH) was statistically significantly higher after ischemia (p < 0.01) and reperfusion (p < 0.01) in HTK than in UW except after the interval of 48 h. In conclusion, adenosine was more effective than alpha-ketoglutarate in maintaining a high ATP level in human liver endothelial cells after ischemia and reperfusion. Different pathways of energy substrate utilization were a contributing factor. The beneficial effect of the higher ATP level caused by adenosine to human liver endothelial cell viability was limited to 24 h of ischemia. Beyond this ischemia time we could not prove a favorable impact of adenosine on human liver endothelial cells.

  9. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi.

    PubMed

    Guo, Ya-Jun; Deng, Gui-Fang; Xu, Xiang-Rong; Wu, Shan; Li, Sha; Xia, En-Qin; Li, Fang; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-11-01

    Edible macro-fungi are widely consumed as food sources for their flavors and culinary features. In order to explore the potential of macro-fungi as a natural resource of bioactive compounds, the antioxidant properties and polysaccharide contents of 49 edible macro-fungi from China were evaluated systematically. A positive correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be main contributors of antioxidant capacities of these macro-fungi. Furthermore, many bioactive compounds such as gallic, homogentisic, protocatechuic, and p-hydroxybenzoic acid were identified and quantified. The macro-fungi species Thelephora ganbajun Zang, Boletus edulis Bull., Volvariella volvacea Sing, Boletus regius Krombh, and Suillus bovinus Kuntze displayed the highest antioxidant capacities and total phenolic contents, indicating their potential as important dietary sources of natural antioxidants.

  10. [24-hour energy metabolism in the human: circadian rhythm, relation to body weight and nutrition].

    PubMed

    Steiniger, J

    1985-04-15

    In 7 men with normal weight and 9 man with overweight and healthy metabolism the resting and fasting energy expenditure was indirectly calorimetrically pursued in the open system over 24 hours. The total energy expenditure over 24 hours revealed an ascertained dependence on body-weight and nutrition. The persons with overweight had a higher absolute energy expenditure, however, the activity of the energy metabolism of the body mass free from fat and the active body mass, respectively, decreased with increasing overweight. The resting and fasting energy expenditure showed in all measured parameters (oxygen consumption, respiratory quotient and nitrogen excretion in the urine) an ascertained daily periodicity (circadian rhythm), which was widely independent of body weight. Only the average daily level C0 (rhythm adjusted level) of the resting and fasting energy expenditure was positively correlated with the body weight and the food energy intake. A negative energy balance (reduction 1.2 MJ/d over 28 days) influenced only the total energy and substrate balance over 24 hours and the daily average level, respectively. The circadian conditions remained unchanged (Chossat's phenomenon). The variability in daily rhythm of the energy expenditure of nearly 25% of the daily average should be taken into consideration in the judgment of exogenically stimulated changes in the energy metabolism.

  11. Parametric recursive system identification and self-adaptive modeling of the human energy metabolism for adaptive control of fat weight.

    PubMed

    Őri, Zsolt P

    2016-08-03

    A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.

  12. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies.

    PubMed

    Rogers, P J; Hogenkamp, P S; de Graaf, C; Higgs, S; Lluch, A; Ness, A R; Penfold, C; Perry, R; Putz, P; Yeomans, M R; Mela, D J

    2016-03-01

    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific 'learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (-0.002 kg m(-)(2) per year, 95% confidence interval (CI) -0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95% CI -122 to -66), with no difference versus water (-2 kcal, 95% CI -30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95% CI -2.28 to -0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95% CI -2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also

  13. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    PubMed Central

    Rogers, P J; Hogenkamp, P S; de Graaf, C; Higgs, S; Lluch, A; Ness, A R; Penfold, C; Perry, R; Putz, P; Yeomans, M R; Mela, D J

    2016-01-01

    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (−0.002 kg m−2 per year, 95% confidence interval (CI) −0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (−94 kcal, 95% CI −122 to −66), with no difference versus water (−2 kcal, 95% CI −30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; −1.35 kg, 95% CI –2.28 to −0.42), and a similar relative reduction in BW versus water (three comparisons; −1.24 kg, 95% CI –2.22 to −0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI

  14. An analysis of the possibility of Macro Fiber Composite transducers application in modernized freight wagon

    NASA Astrophysics Data System (ADS)

    Płaczek, M.; Wróbel, A.; Buchacz, A.

    2016-08-01

    Paper presents an analysis of the possibility of application of piezoelectric foils - Macro Fiber Composite (MFC) in modernized freight wagons. It was verified if they can be successfully applied as sensors in developed system for structural health monitoring and in energy harvesting system. It is a part of a research project that aim is to develop a technology of freight wagons modernization. The goal of the project is to elongate the period between periodic repairs (by better corrosion protection) and improve conditions of exploitation of modernized wagons (easier unloading during winter conditions - no freezes of the charge to the freight wagon body shell). The additional aim is to develop system for structural health monitoring of the modernized body of the freight wagon as well as the system supporting management of a fleet of wagons using GPS system with power supply based on the energy recovered by MFC's from the wagon's vibrations during its exploitation. Results of laboratory tests as well as results of measurements on the real freight wagon during observed driving of the wagon are presented. At the same time measurements of the electric voltage generated by the MFC transducers excited by low frequencies harmonic excitation were verified.

  15. Implementation of automated macro after develop inspection in a production lithography process

    NASA Astrophysics Data System (ADS)

    Yanof, Arnold W.; Plachecki, Vincent E.; Fischer, Frank W.; Cusacovich, Marcelo; Nelson, Chris; Merrill, Mark A.

    2000-06-01

    Although the subject of frequent concern, criticism, and attention in the modern semiconductor fabrication facility, human after develop inspection (ADI) does not catch the major scrap and yield events early enough, if at all. The overall success of scrap and photo redo reduction programs over past years has resulted in residual problem levels which are difficult to improve upon -- yet still very costly. Detected 'events' are few and far-between, although evidence of their prevalence is frequently seen at subsequent inspections, or finally at probe. In the ASIC fab, they put on-time delivery to customers at risk, because individual wafer lots in an ASIC facility have a designated customer. The sampled area is limited by human throughput to less than 10% of the wafers in a lot. The visual ADI process step is unpopular among manufacturing technicians. It is often a bottleneck in the photo area. Statistically, in a photo area with capacity of 5000 wafer starts per week, only a few wafers processed per day are destined for scrap. Since wafer events occur in sporadic clusters, the photo area experiences only a few significant incidents per month. The typical operator can expect to intercept such an event less than once during several months of otherwise uneventful ADI inspection haystack.' Hence the stubbornness of our residual problem. Going beyond the statistical problem, our current manual macro-inspection equipment is engineered appropriately to ancient IC generations. A collimated, oblique-oriented light was an effective darkfield illumination source, when line widths were much larger than the wavelength of light. When line width is comparable to, or smaller than, the wavelength, the collimated light source produces scintillating diffracted colors on the wafer. Thus diffraction 'noise' significantly buries the defect 'signal' in the typical bright light visual macro inspection. In addition, there is the problem of variability between human inspectors, and the

  16. Acute effects of mustard, horseradish, black pepper and ginger on energy expenditure, appetite, ad libitum energy intake and energy balance in human subjects.

    PubMed

    Gregersen, N T; Belza, A; Jensen, M G; Ritz, C; Bitz, C; Hels, O; Frandsen, E; Mela, D J; Astrup, A

    2013-02-14

    Chilli peppers have been shown to enhance diet-induced thermogenesis (DIT) and reduce energy intake (EI) in some studies, but there are few data on other pungent spices. The primary aim of the present study was to test the acute effects of black pepper (pepper), ginger, horseradish and mustard in a meal on 4 h postprandial DIT. The secondary aim was to examine the effects on subjective appetite measures, ad libitum EI and energy balance. In a five-way placebo-controlled, single-blind, cross-over trial, twenty-two young (age 24·9 (SD 4·6) years), normal-weight (BMI 21·8 (SD 2·1) kg/m²) males were randomly assigned to receive a brunch meal with either pepper (1·3 g), ginger (20 g), horseradish (8·3 g), mustard (21 g) or no spices (placebo). The amounts of spices were chosen from pre-testing to make the meal spicy but palatable. No significant treatment effects were observed on DIT, but mustard produced DIT, which tended to be larger than that of placebo (14 %, 59 (SE 3) v. 52 (SE 2) kJ/h, respectively, P=0·08). No other spice induced thermogenic effects approaching statistical significance. Subjective measures of appetite (P>0·85), ad libitum EI (P=0·63) and energy balance (P=0·67) also did not differ between the treatments. Finally, horseradish decreased heart rate (P=0·048) and increased diastolic blood pressure (P= 0·049) compared with placebo. In conclusion, no reliable treatment effects on appetite, EI or energy balance were observed, although mustard tended to be thermogenic at this dose. Further studies should explore the possible strength and mechanisms of the potential thermogenic effect of mustard actives, and potential enhancement by, for example, combinations with other food components.

  17. Effects of radiofrequency energy on human chondromalacic cartilage: an assessment of insulation material properties.

    PubMed

    Meyer, Marie L; Lu, Yan; Markel, Mark D

    2005-04-01

    The objective of this study was to establish guidelines for the selection of an insulation material used to surround the electrode of radiofrequency energy (RFE) probes used for thermal chondroplasty. These guidelines were established by identifying which insulation materials resulted in the least amount of chondrocyte death while smoothing the surface of chondromalacic cartilage. RFE causes electrolyte oscillation and molecular friction in the tissue to heat it and subsequently smooth the surface. Material properties investigated included the coefficient of thermal expansion (CTE), thermal conductivity (TC), and volume resistivity (VR). Fresh human chondromalacic cartilage samples of Outerbridge grades II and III were obtained from patients undergoing total knee arthroplasty. Stiffness measurements were taken pretreatment and posttreatment. RFE was applied to a 1-cm2 area for 15 s in a paintbrush treatment pattern. The insulation materials evaluated included Macor (decrease CTE, decrease TC, increase VR; in relation to CTE = 10 x 10(-6)/degrees C at 20 degrees C, TC = 3 W/mK, VR=1 x 10(14) ohm x cm), zirconia toughened alumina (ZTA) and 99.5% alumina (decrease CTE, increase TC, increase VR), aluminum nitride (decrease CTE, increase TC, decrease VR), Teflon (PTFE) (increase CTE, decrease TC, increase VR), partially stabilized zirconia (YTZP) (decrease CTE, decrease TC, decrease VR), and Ultem (increase CTE, decrease TC, decrease VR). There were no significant differences between pretreatment and posttreatment stiffness of the cartilage for any material investigated. Subjectively scored scanning electron microscopy (SEM) images revealed that the surfaces of all samples treated with RFE were relatively smooth with melted fronds. Prototype probes made with Macor, 99.5% alumina, and ZTA had TC < or = 30 W/mol x K and resulted in a mean of 35% less cell death (176+/-56 microm, 130+/-48 microm, and 114+/-33 microm, respectively) than aluminum nitride, PTFE, and YTZP (246

  18. Use of the National Driver Register in the U.S. Department of Energy Human Reliability Program

    SciTech Connect

    Phillip M. Kannan, Center for Human Reliability Studies

    2007-01-01

    The National Driver Register (NDR) is a complex information network established and maintained by the Secretary of the Department of Transportation (DOT) under the National Driver Register Act of 1982. This report analyzes the question of whether information from the NDR is available to officials making Human Reliability Program (HRP) certification and recertification decisions and to Department of Energy (DOE) personnel security specialists making access authorization determinations.

  19. Intersection crash prediction modeling with macro-level data from various geographic units.

    PubMed

    Lee, Jaeyoung; Abdel-Aty, Mohamed; Cai, Qing

    2017-03-21

    There have been great efforts to develop traffic crash prediction models for various types of facilities. The crash models have played a key role to identify crash hotspots and evaluate safety countermeasures. In recent, many macro-level crash prediction models have been developed to incorporate highway safety considerations in the long-term transportation planning process. Although the numerous macro-level studies have found that a variety of demographic and socioeconomic zonal characteristics have substantial effects on traffic safety, few studies have attempted to coalesce micro-level with macro-level data from existing geographic units for estimating crash models. In this study, the authors have developed a series of intersection crash models for total, severe, pedestrian, and bicycle crashes with macro-level data for seven spatial units. The study revealed that the total, severe, and bicycle crash models with ZIP-code tabulation area data performs the best, and the pedestrian crash models with census tract-based data outperforms the competing models. Furthermore, it was uncovered that intersection crash models can be drastically improved by only including random-effects for macro-level entities. Besides, the intersection crash models are even further enhanced by including other macro-level variables. Lastly, the pedestrian and bicycle crash modeling results imply that several macro-level variables (e.g., population density, proportions of specific age group, commuters who walk, or commuters using bicycle, etc.) can be a good surrogate exposure for those crashes.

  20. DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, FL

    SciTech Connect

    none,

    2014-09-01

    This home garnered an award in the Affordable Builder category of the 2014 Housing Innovation Awards, and features 2x4 walls with fiberglass batt inside plus R-3 rigid foam on the exterior, ENERGY STAR lighting, appliances, and ceiling fans, a solar water heater, an energy recovery ventilation, and a high efficiency heat pump.

  1. Energy Conservation in Buildings--A Human Factors/Systems Viewpoint. NBS Building Science Series 88.

    ERIC Educational Resources Information Center

    Rubin, Arthur I.

    The current emphasis on energy conservation in buildings must be balanced by a careful consideration of how proposed approaches affect building occupants. A headlong rush toward building designs that conserve energy at the expense of the quality of buildings as judged by occupants would be a very shortsighted approach. There must be a continual…

  2. Lipid metabolism predicts changes in body composition during energy restriction in overweight humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this analysis of a subset from a multi-center 12 wk weight-loss trial was to determine if calcium supplementation or dairy food consumption during energy restriction changed circulating lipids compared with an energy-restricted placebo group. Overweight adults (n = 63) were randomiz...

  3. An aura of confusion: 'seeing auras-vital energy or human physiology?' Part 1 of a three part series.

    PubMed

    Duerden, Tim

    2004-02-01

    The first of three papers that considers claims made for the perception or detection of vital energy. Many systems of Complementary and Alternative Medicine (CAM) assume the existence of a vital force that mediates therapeutic efficacy, for example chi or qi in Traditional Chinese medicine. Vital energy directly perceived or imaged that surrounds living organisms is frequently termed the aura. This paper aims to show how phenomena that arise as a consequence of the normal functioning of the human visual system can be inappropriately offered as support of claims for the direct perception of vital energy or the aura. Specifically, contrast and complementary colour phenomena, entoptic phenomena and the deformation phosphene, the 'flying corpuscle effect', the blind spot and the 'reverse telescope effect' are explained and discussed.

  4. Estimating free-living human energy expenditure: Practical aspects of the doubly labeled water method and its applications

    PubMed Central

    Kazuko, Ishikawa-Takata; Kim, Eunkyung; Kim, Jeonghyun; Yoon, Jinsook

    2014-01-01

    The accuracy and noninvasive nature of the doubly labeled water (DLW) method makes it ideal for the study of human energy metabolism in free-living conditions. However, the DLW method is not always practical in many developing and Asian countries because of the high costs of isotopes and equipment for isotope analysis as well as the expertise required for analysis. This review provides information about the theoretical background and practical aspects of the DLW method, including optimal dose, basic protocols of two- and multiple-point approaches, experimental procedures, and isotopic analysis. We also introduce applications of DLW data, such as determining the equations of estimated energy requirement and validation studies of energy intake. PMID:24944767

  5. The impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution: evidence from Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2017-01-12

    In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, which means that an increase in Ghana's economic growth may lead to a reduction in environmental pollution. The increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%; thus, increasing renewable energy sources in Ghana's energy portfolio will help mitigate carbon dioxide emissions. Increasing enteric emissions by 1% will increase carbon dioxide emissions by 4.22%, and a 1% increase in the nitrogen content of manure management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.

  6. Improved technique for measuring fecal energy loss in normal and malabsorbing humans.

    PubMed

    Zarling, E J; Ruchim, M A; Makino, D

    1986-01-01

    Fecal energy concentration is measured by bomb calorimetry on freeze-dried stool samples. Some of the energy-containing fecal compounds are volatile in the pH ranges of normal stool and hence may be lost during sample preparation. We found that significant amounts of volatile fatty acids and lactic acid are lost during lyophilization. Fecal alkalization caused an increase of 9.8% of measurable energy in stools from normal individuals and 25% in stools from patients with untreated exocrine pancreatic insufficiency. We conclude that previous reports of fecal energy concentration that did not use an alkalization procedure are probably underestimations. We recommend fecal alkalization before lyophilization in future measurements of fecal energy excretion.

  7. The macro domain protein family: structure, functions, and their potential therapeutic implications.

    PubMed

    Han, Weidong; Li, Xiaolei; Fu, Xiaobing

    2011-01-01

    Macro domains are ancient, highly evolutionarily conserved domains that are widely distributed throughout all kingdoms of life. The 'macro fold' is roughly 25kDa in size and is composed of a mixed α-β fold with similarity to the P loop-containing nucleotide triphosphate hydrolases. They function as binding modules for metabolites of NAD(+), including poly(ADP-ribose) (PAR), which is synthesized by PAR polymerases (PARPs). Although there is a high degree of sequence similarity within this family, particularly for residues that might be involved in catalysis or substrates binding, it is likely that the sequence variation that does exist among macro domains is responsible for the specificity of function of individual proteins. Recent findings have indicated that macro domain proteins are functionally promiscuous and are implicated in the regulation of diverse biological functions, such as DNA repair, chromatin remodeling and transcriptional regulation. Significant advances in the field of macro domain have occurred in the past few years, including biological insights and the discovery of novel signaling pathways. To provide a framework for understanding these recent findings, this review will provide a comprehensive overview of the known and proposed biochemical, cellular and physiological roles of the macro domain family. Recent data that indicate a critical role of macro domain regulation for the proper progression of cellular differentiation programs will be discussed. In addition, the effect of dysregulated expression of macro domain proteins will be considered in the processes of tumorigenesis and bacterial pathogenesis. Finally, a series of observations will be highlighted that should be addressed in future efforts to develop macro domains as effective therapeutic targets.

  8. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods123

    PubMed Central

    Byrne, Claire S; Chambers, Edward S; Alhabeeb, Habeeb; Chhina, Navpreet; Preston, Tom; Tedford, Catriona; Fitzpatrick, Julie; Irani, Cherag; Busza, Albert; Garcia-Perez, Isabel; Fountana, Sofia; Holmes, Elaine; Goldstone, Anthony P; Frost, Gary S

    2016-01-01

    Background: Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable. Objectives: We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion. Design: In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level–dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data). Results: Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations. Conclusion: Our results suggest that colonic propionate production may

  9. A systematic review of the effect of oral glucocorticoids on energy intake, appetite, and body weight in humans.

    PubMed

    Berthon, Bronwyn S; MacDonald-Wicks, Lesley K; Wood, Lisa G

    2014-03-01

    Obesity is a serious risk factor for chronic disease, and commonly prescribed oral glucocorticoids (OCS) may be contributing to the prevalence of obesity. The objective of this review was to assess the impact of OCS on obesity in humans through effects on body weight (BW), energy intake, appetite, and body composition. An electronic search of English language peer-reviewed studies from 1973 up to March 2012 was conducted using Medline, CINAHL, EMBASE, and Cochrane databases. Original studies that addressed the effects of OCS on appetite, energy intake, BW, or body composition in adults were considered eligible. Data from 21 studies with objectively measured outcomes were extracted and assessed for quality using standardized tools. The publication year varied from 1986 to 2013, and the sample size, from 6 to 189. Energy intake was measured in 6 studies; BW, in 19 studies; energy expenditure, in 3 studies; body composition, in 6 studies; and appetite was evaluated in 3 studies. Short-term oral glucocorticoid therapy may result in small increases in energy intake but does not appear to result in increased BW, possibly due to an increase in energy expenditure. Long-term therapy may result in clinically significant weight gain. Within-subject variation due to metabolism and physical activity levels confounds the relationship. A dose-response relationship of oral glucocorticoid therapy on energy intake, appetite, BW, or body composition was not found. Additional well-designed, double-blind, placebo-controlled clinical trials that use standardized doses of OCS and assess the effects on appetite, energy intake, BW, and composition are strongly justified to confirm the findings of this review.

  10. Digital macro-photogrammetry in orthodontic tooth movement: case report.

    PubMed

    Hlongwa, P; Sander, F G; Geiger, M

    2007-11-01

    Digital macro-photogrammetry (DMP) method was used to assess the 3-dimensional (3D) movement of the canine during retraction with a Hybrid Retractor (HR) spring (Forestadent, Pforzheim, Germany) following extraction of first premolars. Computer images of the canine were generated from multiple synchronous digital photos of a patient taken during clinical follow-ups. Time intervals were recorded from the begining of the treatment before the insertion of the spring (T0), to the last follow-up session of canine retraction (T8). All movements of the canine were calculated from the generated three dimensional co-ordinates (X,Y, & Z). The results indicated that the canine was distalized about 6,78 mm over a period of 258 days. The maximum velocity of the canine movement was found to be approximately 1 mm/month. In conclusion, it was found that DMP can be applied in clinical orthodontics to monitor orthodontic tooth movement. This technique is cost-effective and measurements can be made on site as the use of computers and digital photographs have been incorporated in the majority of orthodontic practices.

  11. A critical review of macro models for road accidents.

    PubMed

    Hakim, S; Shefer, D; Hakkert, A S; Hocherman, I

    1991-10-01

    This paper presents a critical review of state-of-the-art macro models for road accidents. Such a review is meant to identify and establish the significance of policy and socioeconomic variables affecting the level of road accidents. The aim is to identify those variables associated with effective policies and interventions to enable decision makers to improve the level of road safety. The variables that appear to affect the number of fatalities or injuries are: vehicle miles travelled (VMT), vehicle population, income (in its various forms), percentage of young drivers, intervention policies such as speed limits, periodic vehicle inspection, and minimum alcohol-drinking age. Viewed critically, the state-of-the-art models being used to explain and predict road accidents are still deficient. One possible approach to correcting this deficiency draws from consumer utility theory, using analytical models built on a newly constructed theoretical framework. Success in estimating such models may improve predictions of road accidents, thus demonstrating the comparative cost effectiveness of alternative intervention policies.

  12. Macro Scale Independently Homogenized Subcells for Modeling Braided Composites

    NASA Technical Reports Server (NTRS)

    Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.

    2012-01-01

    An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.

  13. Macro-meso-microsystems integration in LTCC : LDRD report.

    SciTech Connect

    De Smet, Dennis J.; Nordquist, Christopher Daniel; Turner, Timothy Shawn; Rohrer, Brandon Robinson; Walker, Charles A.; Ho, Clifford K..; Patel, Kamlesh D.; Okandan, Murat; Rohde, Steven Barney; Wroblewski, Brian D.; Pfeifer, Kent Bryant; Peterson, Kenneth Allen; Buerger, Stephen P.

    2007-03-01

    Low Temperature Cofired Ceramic (LTCC) has proven to be an enabling medium for microsystem technologies, because of its desirable electrical, physical, and chemical properties coupled with its capability for rapid prototyping and scalable manufacturing of components. LTCC is viewed as an extension of hybrid microcircuits, and in that function it enables development, testing, and deployment of silicon microsystems. However, its versatility has allowed it to succeed as a microsystem medium in its own right, with applications in non-microelectronic meso-scale devices and in a range of sensor devices. Applications include silicon microfluidic ''chip-and-wire'' systems and fluid grid array (FGA)/microfluidic multichip modules using embedded channels in LTCC, and cofired electro-mechanical systems with moving parts. Both the microfluidic and mechanical system applications are enabled by sacrificial volume materials (SVM), which serve to create and maintain cavities and separation gaps during the lamination and cofiring process. SVMs consisting of thermally fugitive or partially inert materials are easily incorporated. Recognizing the premium on devices that are cofired rather than assembled, we report on functional-as-released and functional-as-fired moving parts. Additional applications for cofired transparent windows, some as small as an optical fiber, are also described. The applications described help pave the way for widespread application of LTCC to biomedical, control, analysis, characterization, and radio frequency (RF) functions for macro-meso-microsystems.

  14. Portable Ultrasonic Guided Wave Inspection with MACRO Fiber Composite Actuators

    NASA Astrophysics Data System (ADS)

    Haig, A.; Mudge, P.; Catton, P.; Balachandran, W.

    2010-02-01

    The development of portable ultrasonic guided wave transducer arrays that utilize Macro Fiber Composite actuators (MFCs) is described. Portable inspection equipment can make use of ultrasonic guided waves to rapidly screen large areas of many types of engineering structures for defects. The defect finding performance combined with the difficulty of application determines how much the engineering industry makes use of this non-destructive, non-disruptive technology. The developments with MFCs have the potential to make considerable improvements in both these aspects. MFCs are highly efficient because they use interdigital electrodes to facilitate the extensional, d33 displacement mode. Their fiber composite design allows them to be thin, lightweight, flexible and durable. The flexibility affords them conformance with curved surfaces, which can facilitate good mechanical coupling. The suitability of a given transducer for Long Range Ultrasonic Testing is governed by the nature and amplitude of the displacement that it excites/senses in the contact area of the target structure. This nature is explored for MFCs through directional sensitivity analysis and empirical testing. Housing methods that facilitate non-permanent coupling techniques are discussed. Finally, arrangements of arrays of MFCs for the guided wave inspection of plates and pipes are considered and some broad design criteria are given.

  15. Macro-Fiber Composite actuated simply supported thin airfoils

    NASA Astrophysics Data System (ADS)

    Bilgen, Onur; Kochersberger, Kevin B.; Inman, Daniel J.; Ohanian, Osgar J., III

    2010-05-01

    A piezoceramic composite actuator known as Macro-Fiber Composite (MFC) is used for actuation in the design of a variable camber airfoil intended for a ducted fan aircraft. The study focuses on response characterization under aerodynamic loads for circular arc airfoils with variable pinned boundary conditions. A parametric study of fluid-structure interaction is employed to find pin locations along the chordwise direction that result in high lift generation. Wind tunnel experiments are conducted on a 1.0% thick, 127 mm chord MFC actuated bimorph airfoil that is simply supported at 5% and 50% of the chord. Aerodynamic and structural performance results are presented for a flow rate of 15 m s - 1 and a Reynolds number of 127 000. Non-linear effects due to aerodynamic and piezoceramic hysteresis are identified and discussed. A lift coefficient change of 1.46 is observed, purely due to voltage actuation. A maximum 2D L/D ratio of 17.8 is recorded through voltage excitation.

  16. The micro and macro of nutrients across biological scales.

    PubMed

    Warne, Robin W

    2014-11-01

    During the past decade, we have gained new insights into the profound effects that essential micronutrients and macronutrients have on biological processes ranging from cellular function, to whole-organism performance, to dynamics in ecological communities, as well as to the structure and function of ecosystems. For example, disparities between intake and organismal requirements for specific nutrients are known to strongly affect animal physiological performance and impose trade-offs in the allocations of resources. However, recent findings have demonstrated that life-history allocation trade-offs and even microevolutionary dynamics may often be a result of molecular-level constraints on nutrient and metabolic processing, in which limiting reactants are routed among competing biochemical pathways. In addition, recent work has shown that complex ecological interactions between organismal physiological states such as exposure to environmental stressors and infectious pathogens can alter organismal requirements for, and, processing of, nutrients, and even alter subsequent nutrient cycling in ecosystems. Furthermore, new research is showing that such interactions, coupled with evolutionary and biogeographical constraints on the biosynthesis and availability of essential nutrients and micronutrients play an important, but still under-studied role in the structuring and functioning of ecosystems. The purpose of this introduction to the symposium "The Micro and Macro of Nutrient Effects in Animal Physiology and Ecology" is to briefly review and highlight recent research that has dramatically advanced our understanding of how nutrients in their varied forms profoundly affect and shape ecological and evolutionary processes.

  17. Applying macro design tools to the design of MEMS accelerometers

    SciTech Connect

    Davies, B.R.; Rodgers, M.S.; Montague, S.

    1998-02-01

    This paper describes the design of two different surface micromachined (MEMS) accelerometers and the use of design and analysis tools intended for macro sized devices. This work leverages a process for integrating both the micromechanical structures and microelectronics circuitry of a MEMS accelerometer on the same chip. In this process, the mechanical components of the sensor are first fabricated at the bottom of a trench etched into the wafer substrate. The trench is then filled with oxide and sealed to protect the mechanical components during subsequent microelectronics processing. The wafer surface is then planarized in preparation for CMOS processing. Next, the CMOS electronics are fabricated and the mechanical structures are released. The mechanical structure of each sensor consists of two polysilicon plate masses suspended by multiple springs (cantilevered beam structures) over corresponding polysilicon plates fixed to the substrate to form two parallel plate capacitors. One polysilicon plate mass is suspended using compliant springs forming a variable capacitor. The other polysilicon plate mass is suspended using very stiff springs acting as a fixed capacitor. Acceleration is measured by comparing the variable capacitance with the fixed capacitance during acceleration.

  18. Provision of lipid-based nutrient supplements to Honduran children increases their dietary macro- and micronutrient intake without displacing other foods.

    PubMed

    Flax, Valerie L; Siega-Riz, Anna Maria; Reinhart, Greg A; Bentley, Margaret E

    2015-12-01

    Inadequate energy intake and poor diet quality are important causes of chronic child undernutrition. Strategies for improving diet quality using lipid-based nutrient supplements (LNS) are currently being tested in several countries. To date, information on children's dietary intakes during LNS use is available only from Africa. In this study, we collected 24-h dietary recalls at baseline, 3, 6, 9 and 12 months on Honduran children (n = 298) participating in a cluster-randomised trial of LNS. Generalised estimating equations were used to examine differences in number of servings of 12 food groups in the LNS and control arms, and multi-level mixed effects models were used to compare macro- and micronutrient intakes. Models accounted for clustering and adjusted for child's age, season and breastfeeding status. Mean daily servings of 12 food groups did not differ by study arm at baseline and remained similar throughout the study with the exception of groups that were partially or entirely supplied by LNS (nuts and nut butters, fats, and sweets). Baseline intakes of energy, fat, carbohydrates, protein, folate and vitamin A, but not vitamin B12, iron and zinc were lower in the LNS than control arm. The change in all macro- and micronutrients from baseline to each study visit was larger for the LNS arm than the control, except for carbohydrates from baseline to 9 months. These findings indicate that LNS improved the macro- and micronutrient intakes of young non-malnourished Honduran children without replacing other foods in their diet.

  19. Limits on D0-macro D0 mixing and CP violation from the ratio of lifetimes for decay to K-pi+, K-K+, and pi- pi+.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; McMahon, S; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Grothe, M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Barillari, T; Blanc, F; Bloom, P; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Pastore, F C; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Aspinwall, M L; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Milek, M; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Pulliam, T; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Manfredi, P F; Re, V; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hu, H; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2003-09-19

    We present a measurement of D0-macro D0 mixing parameters using the ratios of lifetimes extracted from samples of D0 mesons decaying to K-pi(+), K-K+, and pi(-)pi(+). Using 91 fb(-1) of data collected by the BABAR detector at the PEP-II asymmetric-energy B Factory, we obtain a value Y=[0.8+/-0.4(stat.)(+0.5)(-0.4)(syst.)]%, which, in the limit of CP conservation, corresponds to the mixing parameter y=Delta Gamma/2 Gamma. Using the difference in lifetimes of D0 and macro D0 mesons, we obtain the CP-violation parameter Delta Y=[-0.8+/-0.6(stat.)+/-0.2(syst.)]%.

  20. MODELING ENERGY EXPENDITURE AND OXYGEN CONSUMPTION IN HUMAN EXPOSURE MODELS: ACCOUNTING FOR FATIGUE AND EPOC

    EPA Science Inventory

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  1. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects.

    PubMed

    Westerterp, Klaas R

    2013-01-01

    Physical activity is defined as any bodily movement produced by skeletal muscles that results in energy expenditure. The doubly labeled water method for the measurement of total energy expenditure (TEE), in combination with resting energy expenditure, is the reference for physical activity under free-living conditions. To compare the physical activity level (PAL) within and between species, TEE is divided by resting energy expenditure resulting in a figure without dimension. The PAL for sustainable lifestyles ranges between a minimum of 1.1-1.2 and a maximum of 2.0-2.5. The average PAL increases from 1.4 at age 1 year to 1.7-1.8 at reproductive age and declines again to 1.4 at age 90 year. Exercise training increases PAL in young adults when energy balance is maintained by increasing energy intake. Professional endurance athletes can reach PAL values around 4.0. Most of the variation in PAL between subjects can be ascribed to predisposition. A higher weight implicates higher movement costs and less body movement but not necessarily a lower PAL. Changes in physical activity primarily affect body composition and to a lesser extent body weight. Modern man has a similar PAL as a wild mammal of a similar body size.

  2. Analysis of radiofrequency energy stored in the altered shapes: Stomatocyte-echinocyte of human erythrocytes.

    PubMed

    Muñoz, Sagrario; Sebastián, José Luis; Sancho, Miguel; Martínez, Genoveva

    2010-02-01

    The aim of this study is to analyze the electromagnetic energy stored in stomatocyte, erythrocyte and echinocyte cells exposed to a linearly polarized electromagnetic plane wave at 900, 1800 and 2450MHz radiofrequency signals. This analysis can provide a better understanding of the order of appearance of altered shapes of erythrocytes (RBC) in the stomatocyte-echinocyte transition under radiofrequency exposure in terms of the deposited electromagnetic energy. For this purpose we use a realistic geometrical cell model based on parametric equations that allow for continuous transformations between normal erythrocytes and three stomatocyte subclasses with different degree of invagination and also between normal erythrocytes and echinocytes with an arbitrary number of spicules. We use a finite element technique with adaptive meshing for calculating the electromagnetic energy deposited on the different regions of the cell models. It is found that the echinocyte cell stores the minimum electromagnetic energy and therefore from an energetic point of view it would be the most stable and preferred cell state when this electromagnetic energy is the predominant energy component.

  3. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    SciTech Connect

    Mo Xiangyin . E-mail: moxiangyin@njnu.edu.cn; Fournier, Benoit

    2007-02-15

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials.

  4. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    PubMed

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities.

  5. Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans.

    PubMed

    Wijngaarden, Marjolein A; Bakker, Leontine E H; van der Zon, Gerard C; 't Hoen, Peter A C; van Dijk, Ko Willems; Jazet, Ingrid M; Pijl, Hanno; Guigas, Bruno

    2014-11-15

    During fasting, rapid metabolic adaptations are required to maintain energy homeostasis. This occurs by a coordinated regulation of energy/nutrient-sensing pathways leading to transcriptional activation and repression of specific sets of genes. The aim of the study was to investigate how short-term fasting affects whole body energy homeostasis and skeletal muscle energy/nutrient-sensing pathways and transcriptome in humans. For this purpose, 12 young healthy men were studied during a 24-h fast. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed at baseline and after 10 and 24 h of fasting. As expected, fasting induced a time-dependent decrease in plasma insulin and leptin levels, whereas levels of ketone bodies and free fatty acids increased. This was associated with a metabolic shift from glucose toward lipid oxidation. At the molecular level, activation of the protein kinase B (PKB/Akt) and mammalian target of rapamycin pathways was time-dependently reduced in skeletal muscle during fasting, whereas the AMP-activated protein kinase activity remained unaffected. Furthermore, we report some changes in the phosphorylation and/or content of forkhead protein 1, sirtuin 1, and class IIa histone deacetylase 4, suggesting that these pathways might be involved in the transcriptional adaptation to fasting. Finally, transcriptome profiling identified genes that were significantly regulated by fasting in skeletal muscle at both early and late time points. Collectively, our study provides a comprehensive map of the main energy/nutrient-sensing pathways and transcriptomic changes during short-term adaptation to fasting in human skeletal muscle.

  6. Man's enduring technological dilemma: Prometheus, Faust, and other macro-engineers

    SciTech Connect

    Schillinger, A.G.

    1984-01-01

    The author notes that we often have no choice but to use a new technology to solve problems created by another; but we must guard against the view that this process will not, in itself, give rise to new problems. What is worse, we have no way of anticipating the ratio of good and bad consequences as we introduce one technology to supersede - or ameliorate - the effects of another. Large scale can add significant additional difficulties, but need not lead to hubris. Some planners have taken advantage of economies of scale to create macroprojects that incorporate a concordance with both the natural and human ecology they touch. A new and deeper understanding of the dynamics of planning, financing, and management of macroprojects is needed. For not only those who are affected by macroprojects be bewildered in the face of change, but the planners and managers themselves are overwhelmed by the increasing unpredictability of the international political, economic and financial environment, which is the critical framework within which planning takes place. The author notes that a great deal of thought needs to be given to how to bring the two sets of considerations - the benefits and the unintended consequences - together. He feels that the founding of The American Society For Macro-Engineering last year may have been a significant step in this direction. 30 references.

  7. Ultrasonic guided wave monitoring of composite bonded joints using macro fiber composite transducers

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Coccia, Stefano; Lanza di Scalea, Francesco; Oliver, Joseph; Kosmatka, John; Park, Gyuhae; Farrar, Charles

    2006-03-01

    The monitoring of adhesively-bonded joints through the use of ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of Unmanned Aerial Vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly-cured adhesive and disbonded interfaces. The guided wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by utilizing macro fiber composite (MFC) transducers which are inexpensive, flexible, highly robust, and viable candidates for application in on-board monitoring systems. Based upon change in energy transmission, the presence of damage is successfully identified through features extracted in both the time domain and discrete wavelet transform domain. A unique "passive" version of the diagnostic system is also demonstrated experimentally, whereby MFC sensors are utilized for detecting and locating simulated active damage in an aluminum plate. By exploiting the directivity behavior of MFC sensors, a damage location algorithm which is independent of wave speed is developed. Application of this approach in CFRP components may alleviate difficulties associated with damage location in highly anisotropic systems.

  8. Understanding the peculiarities of the piezoelectric effect in macro-porous BaTiO3.

    PubMed

    Roscow, James I; Topolov, Vitaly Yu; Bowen, Christopher R; Taylor, John; Panich, Anatoly E

    2016-01-01

    This work demonstrates the potential of porous BaTiO3 for piezoelectric sensor and energy-harvesting applications by manufacture of materials, detailed characterisation and application of new models. Ferroelectric macro-porous BaTiO3 ceramics for piezoelectric applications are manufactured for a range of relative densities, α = 0.30-0.95, using the burned out polymer spheres method. The piezoelectric activity and relevant parameters for specific applications are interpreted by developing two models: a model of a 3-0 composite and a 'composite in composite' model. The appropriate ranges of relative density for the application of these models to accurately predict piezoelectric properties are examined. The two models are extended to take into account the effect of 90° domain-wall mobility within ceramic grains on the piezoelectric coefficients [Formula: see text]. It is shown that porous ferroelectrics provide a novel route to form materials with large piezoelectric anisotropy [Formula: see text] at 0.20 ≤ α ≤ 0.45 and achieve a high squared figure of merit [Formula: see text] [Formula: see text]. The modelling approach allows a detailed analysis of the relationships between the properties of the monolithic and porous materials for the design of porous structures with optimum properties.

  9. Understanding the peculiarities of the piezoelectric effect in macro-porous BaTiO3

    PubMed Central

    Roscow, James I.; Topolov, Vitaly Yu.; Bowen, Christopher R.; Taylor, John; Panich, Anatoly E.

    2016-01-01

    Abstract This work demonstrates the potential of porous BaTiO3 for piezoelectric sensor and energy-harvesting applications by manufacture of materials, detailed characterisation and application of new models. Ferroelectric macro-porous BaTiO3 ceramics for piezoelectric applications are manufactured for a range of relative densities, α = 0.30–0.95, using the burned out polymer spheres method. The piezoelectric activity and relevant parameters for specific applications are interpreted by developing two models: a model of a 3–0 composite and a ‘composite in composite’ model. The appropriate ranges of relative density for the application of these models to accurately predict piezoelectric properties are examined. The two models are extended to take into account the effect of 90° domain-wall mobility within ceramic grains on the piezoelectric coefficients d3j*. It is shown that porous ferroelectrics provide a novel route to form materials with large piezoelectric anisotropy d33*d31*>>1 at 0.20 ≤ α ≤ 0.45 and achieve a high squared figure of merit d33* g33*. The modelling approach allows a detailed analysis of the relationships between the properties of the monolithic and porous materials for the design of porous structures with optimum properties. PMID:27933117

  10. Monopole search below the Parker limit with the MACRO detector at Gran Sasso

    NASA Technical Reports Server (NTRS)

    Tarle, G.

    1985-01-01

    The MACRO detector approved for the Gran Sasso Underground Laboratory in Italy will be the first capable of performing a definitive search for super-massive grand unified theory (GUT) monopoles at a level significantly below the Parker flux limit of 10 to the minus 15th power square centimeters Sr(-1) 5(-1). GUT monopoles will move at very low velocities (V approx. 0.001 c) relative to the Earth and a multifaceted detection technique is required to assume their unambiguous identification. Calculations of scintillator response to slow monopoles and measurements of scintillation efficiency for low energy protons have shown that bare monopoles and electrically charged monopoles moving at velocities as low as 5 x .0001 c will produce detectable scintillation signals. The time-of-flight between two thick (25 cm) liquid scintillation layers separated by 4.3m will be used in conjunction with waveform digitization of signals of extended duration in each thick scintillator to provide a redundant signature for slow penetrating particles. Limited streamer tubes filled with He and n-pentane will detect bare monopoles with velocities as low as 1 x 0.0001 c by exploiting monopole induced level mixing and the Penning effect.

  11. Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta).

    PubMed

    Xie, Xiujun; Gao, Shan; Gu, Wenhui; Pan, Guanghua; Wang, Guangce

    2013-01-01

    For plants and algae, exposure to high light levels is deleterious to their photosynthetic machineries. It also can accelerate water evaporation and thus potentially lead to drought stress. Most photosynthetic organisms protect themselves against high light caused photodamages by xanthophyll cycle-dependent thermal energy dissipation. It is generally accepted that high light activates xanthophyll cycle. However, the relationship between xanthophyll cycle and drought stress remains ambiguous. Herein, Ulva pertusa (Chlorophyta), a representative perennial intertidal macro-algae species with high drought-tolerant capabilities and simple structures, was used to investigate the operation of xanthophyll cycle during desiccation in air. The results indicate that desiccation under dim light induced accumulation of antheraxanthin (Ax) and zeaxanthin (Zx) at the expense of violaxanthin (Vx). This accumulation could be arrested by dithiothreitol completely and by uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) partially, implying the participation of Vx de-epoxidase in conversion of Vx to Ax and Zx. Treatment with inhibitors of electron transport along thylakoid membrane, e.g. DCMU, PG and DBMIB, did not significantly arrest desiccation-induced accumulation of Ax and Zx. We propose that for U. pertusa, besides excess light, desiccation itself could also induce accumulation of Ax and Zx. This accumulation could proceed without electron transport along thylakoid membrane, and is possibly resulting from the reduction of thylakoid lumen volume during desiccation. Considering the pleiotropic effects of Ax and Zx, accumulated Ax and Zx may function in protecting thylakoid membrane and enhancing thermal quenching during emersion in air.

  12. A solid with a hierarchical tetramodal micro-meso-macro pore size distribution

    PubMed Central

    Ren, Yu; Ma, Zhen; Morris, Russell E.; Liu, Zheng; Jiao, Feng; Dai, Sheng; Bruce, Peter G.

    2013-01-01

    Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure. PMID:23764887

  13. Solid waste initiative Macro Material Flow Modeling conceptual description and requirements

    SciTech Connect

    Holter, G.M.; Stapp, D.C.

    1993-01-01

    This report describes a Macro Material Flow Modeling (MMFM) concept and approach that are being adopted to develop a predictive modeling capability that can be used as the basis for evaluating potential impacts from various solid waste management system configurations and operating scenarios, as well as the impacts of various policies on solid waste quantities and compositions. This capability, as part of a broader Solid Waste Initiative at Pacific Northwest Laboratory, is intended to provide an increased understanding of solid waste as a disposal, energy, and resource problem on a national and global scale, particularly over the long term. The results of this increased understanding will eventually have an impact on a variety of US federal government activities, as well as on the activities of other entities. This increased understanding will also help provide the basis for subsequent activities under the Solid Waste Initiative. The report describes current solid waste management practices and their context, defines questions of interest relating to these practices, and proposes an approach that could be employed to analyze these practices and possible alternatives to them. A preliminary review, analysis, and summary of available data to support this approach are also provided.

  14. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation

    PubMed Central

    Pazienza, Valerio; Borghesan, Michela; Mazza, Tommaso; Sheedfar, Fareeba; Panebianco, Concetta; Williams, Roger; Mazzoccoli, Gianluigi; Andriulli, Angelo; Nakanishi, Tomoko; Vinciguerra, Manlio

    2014-01-01

    Non-alcoholic-fatty-liver-disease (NAFLD) encompasses conditions associated to fat deposition in the liver, which are generally deteriorated during the aging process. MacroH2A1, a variant of histone H2A, is a key transcriptional regulator involved in tumorigenic processes and cell senescence, and featuring two alternatively splicing isoforms, macroH2A1.1 and macroH2A1.2. MacroH2A1.1 binds with high affinity O-acetyl ADP ribose, a small metabolite produced by the reaction catalysed by NAD+-dependent deacetylase SIRT1, whereas macroH2A1.2 is unable to do so. The functional significance of this binding is unknown. We previously reported that the hepatic levels of macroH2A1.1 and macroH2A1.2 are differentially expressed in mice models of NAFLD. Here we show that over-expression of macroH2A1.1, but not of macroH2A1.2, is able to protect hepatocytes against lipid accumulation. MacroH2A1.1 over-expressing cells display ameliorated glucose metabolism, reduced expression of lipidogenic genes and fatty acids content. SIRT1/macroH2A1.1-dependent epigenetic regulation of lipid metabolism may be relevant to NAFLD development. PMID:24473773

  15. Rapid Elimination of the Histone Variant MacroH2A from Somatic Cell Heterochromatin after Nuclear Transfer

    PubMed Central

    Chang, Ching-Chien; Gao, Shaorong; Sung, Li-Ying; Corry, Gareth N.; Ma, Yinghong; Nagy, Zsolt Peter; Tian, X. Cindy

    2010-01-01

    Abstract Oocytes contain a maternal store of the histone variant MacroH2A, which is eliminated from zygotes shortly after fertilization. Preimplantation embryos then execute three cell divisions without MacroH2A before the onset of embryonic MacroH2A expression at the 16-cell stage. During subsequent development, MacroH2A is expressed in most cells, where it is assembled into facultative heterochromatin. Because differentiated cells contain heterochromatin rich in MacroH2A, we investigated the fate of MacroH2A during somatic cell nuclear transfer (SCNT). The results show that MacroH2A is rapidly eliminated from the chromosomes of transplanted somatic cell nuclei by a process in which MacroH2A is first stripped from chromosomes, and then degraded. Furthermore, MacroH2A is eliminated from transplanted nuclei by a mechanism requiring intact microtubules and nuclear envelope break down. Preimplantation SCNT embryos express endogenous MacroH2A once they reach the morula stage, similar to the timing observed in embryos produced by natural fertilization. We also show that the ability to reprogram somatic cell heterochromatin by SCNT is tied to the developmental stage of recipient cell cytoplasm because enucleated zygotes fail to support depletion of MacroH2A from transplanted somatic nuclei. Together, the results indicate that nuclear reprogramming by SCNT utilizes the same chromatin remodeling mechanisms that act upon the genome immediately after fertilization. PMID:20132012

  16. Immunoglobulin-associated creatine kinase masquerading as macro-creatine kinase type 2 in a statin user.

    PubMed

    Loh, Tze Ping; Ang, Yan Hoon; Neo, Siew Fong; Yin, Cecilia; Wong, Moh Sim; Leong, Sai Mun; Saw, Sharon; Sethi, Sunil K

    2012-01-01

    Macro-creatine kinase (CK) is a cause of falsely elevated CK. Macro-CK type 1 is immunoglobulin-associated CK; type 2 is polymeric mitochondrial-CK. An elderly asymptomatic lady had an elevated CK level after receiving statin therapy. Her CK gel electrophoresis analysis demonstrated coexisting macro-CK type 1 and type 2 patterns. Further analysis by immunofixation and mixing this patient's serum with CK control material revealed an IgG-associated macro-CK that mimicked the electrophoretic pattern of macro-CK type 2. This highly unusual discovery suggests the possibility of the misinterpretation of macro-CK type 1 as macro-CK type 2. Falsely elevated CK is still common despite modern laboratory instrumentation and should be investigated.

  17. The Effect of Gender, Deceit Orientation and Communicator Style on Macro-Assessments of Honesty.

    ERIC Educational Resources Information Center

    O'Hair, Dan; And Others

    1988-01-01

    Asks whether macro-assessment of honesty has utility for detecting deception. Multiple regression analyses indicate that honesty assessments can be only partially predicted from communication style, characterized by the level of friendliness, attentiveness, preciseness, animation, and dramatic style. (JK)

  18. A SaTScan™ macro accessory for cartography (SMAC) package implemented with SAS® software

    PubMed Central

    Abrams, Allyson M; Kleinman, Ken P

    2007-01-01

    Background SaTScan is a software program written to implement the scan statistic; it can be used to find clusters in space and/or time. It must often be run multiple times per day when doing disease surveillance. Running SaTScan frequently via its graphical user interface can be cumbersome, and the output can be difficult to visualize. Results The SaTScan Macro Accessory for Cartography (SMAC) package consists of four SAS macros and was designed as an easier way to run SaTScan multiple times and add graphical output. The package contains individual macros which allow the user to make the necessary input files for SaTScan, run SaTScan, and create graphical output all from within SAS software. The macros can also be combined to do this all in one step. Conclusion The SMAC package can make SaTScan easier to use and can make the output more informative. PMID:17341310

  19. Macro-Level Approaches to HIV Prevention Among Ethnic Minority Youth

    PubMed Central

    Prado, Guillermo; Lightfoot, Marguerita; Brown, C. Hendricks

    2013-01-01

    The HIV epidemic continues to disproportionately affect ethnic minority youth. These disconcerting health disparities indicate that although existing HIV preventive strategies for ethnic minority youth have been efficacious, they have not significantly reduced the impact of the epidemic in this population. Macro-level interventions, such as structural or policy interventions, have the potential to impact the HIV epidemic at a population level, and thus reduce the HIV health disparities that exist among ethnic minority youth and other segments of the U.S. population. This article calls for a paradigm shift to develop, evaluate, and disseminate interventions that target upstream/macro-level factors or that, at a minimum, integrate both a macro and individual level perspective. The article also discusses the challenges in developing and evaluating such interventions. Psychologists and other behavioral scientists can play a critical role in reducing the impact of HIV on ethnic minority youth by integrating macro-level approaches to future HIV prevention strategies. PMID:23688095

  20. An easy method for diagnosing macro-aspartate aminotransferase: a case series.

    PubMed

    Beşer, Omer Faruk; Laçinel, Sibel; Gülcü, Didem; Kutlu, Tufan; Cullu Çokuğraş, Fügen; Erkan, Tülay

    2014-10-01

    Macro-aspartate transaminase (macro-AST) must be considered when the aspartate transaminase (AST) level is chronically high without any liver, cardiac, or muscle disease. Many specialized laboratory techniques have been recommended for diagnosing macro-AST, including the polyethylene glycol immune precipitate technique, which is simple. This study presents a considerably easier method based on the studies of Davidson and Watson and Castiella et al. Our method is based on the decrease in the plasma AST level after storage of the macroenzyme at 2-8 °C for 5 days, and has the advantages of low cost, reliability, and practicality at any health center. In our eight cases of macro-AST, the AST activity at day 6 had decreased by more than 50% from day 1. This method is practical for primary healthcare facilities because of its easy application and accurate results, and obviated the need for unnecessary tests after diagnosis.

  1. Macro-creatine kinase: a neglected cause of elevated creatine kinase.

    PubMed

    Aljuani, F; Tournadre, A; Cecchetti, S; Soubrier, M; Dubost, J J

    2015-04-01

    Macro-creatine kinase (macro-CK) is a neglected cause of raised CK. Over a 10-year period, we observed five cases. Three patients had macro-CK type 1. One patient with fibromyalgia underwent several explorations to find a muscular pathology; another, who had elevated CK-MB (muscle-brain fraction) activity, was referred to a cardiologist, and statin therapy was erroneously discontinued in two patients. Two patients had macro-CK type 2: a man with a neuroendocrine carcinoma and a woman with rheumatoid arthritis. Diagnosis of type 1 obviates the need to carry out pointless and expensive investigations seeking a neuromuscular or cardiac pathology, and also, the unwarranted discontinuation of statin therapy. Type 2 must prompt investigations for a neoplasm.

  2. Design of macro-filter-lens with simultaneous chromatic and geometric aberration correction.

    PubMed

    Prasad, Dilip K; Brown, Michael S

    2014-01-01

    A macro-filter-lens design that can correct for chromatic and geometric aberrations simultaneously while providing for a long focal length is presented. The filter is easy to fabricate since it involves two spherical surfaces and a planar surface. Chromatic aberration correction is achieved by making all the rays travel the same optical distance inside the filter element (negative meniscus). Geometric aberration is corrected for by the lens element (plano-convex), which makes the output rays parallel to the optic axis. This macro-filter-lens design does not need additional macro lenses and it provides an inexpensive and optically good (aberration compensated) solution for macro imaging of objects not placed close to the camera.

  3. At the intersection of micro and macro: opportunities and challenges for physician-patient communication research.

    PubMed

    Cline, Rebecca J Welch

    2003-05-01

    The health care relationship model is undergoing dramatic change. Micro-level communication patterns yield health care relationship models (e.g. paternalism, mutual participation, consumerism). At the same time, macro-level systems appear increasingly likely to influence the nature of micro-level interaction. The intersections of health care communication micro-level and macro-level phenomena provide important venues for research and interventions. This essay identifies theoretical premises regarding the relationships between communication and health-related behavior; explores three prominent and growing macro-level phenomena that observers argue likely influence the physical-patient relationship and communication therein: complementary and alternative medicine, the Internet, and direct-to-consumer advertising of prescription drugs; and offers a research agenda for exploring macro-level influences on micro-level physician-patient communication.

  4. Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans

    PubMed Central

    Krustrup, Peter; González-Alonso, José; Quistorff, Bjørn; Bangsbo, Jens

    2001-01-01

    The aim of the present study was to examine muscle heat production, oxygen uptake and anaerobic energy turnover throughout repeated intense exercise to test the hypotheses that (i) energy turnover is reduced when intense exercise is repeated and (ii) anaerobic energy production is diminished throughout repeated intense exercise. Five subjects performed three 3 min intense one-legged knee-extensor exercise bouts (EX1, EX2 and EX3) at a power output of 65 ± 5 W (mean ±s.e.m.), separated by 6 min rest periods. Muscle, femoral arterial and venous temperatures were measured continuously during exercise for the determination of muscle heat production. In addition, thigh blood flow was measured and femoral arterial and venous blood were sampled frequently during exercise for the determination of muscle oxygen uptake. Anaerobic energy turnover was estimated as the difference between total energy turnover and aerobic energy turnover. Prior to exercise, the temperature of the quadriceps muscle was passively elevated to 37.02 ± 0.12 °C and it increased 0.97 ± 0.08 °C during EX1, which was higher (P < 0.05) than during EX2 (0.79 ± 0.05 °C) and EX3 (0.77 ± 0.06 °C). In EX1 the rate of muscle heat accumulation was higher (P < 0.05) during the first 120 s compared to EX2 and EX3, whereas the rate of heat release to the blood was greater (P < 0.05) throughout EX2 and EX3 compared to EX1. The rate of heat production, determined as the sum of heat accumulation and release, was the same in EX1, EX2 and EX3, and it increased (P < 0.05) from 86 ± 8 during the first 15 s to 157 ± 7 J s−1 during the last 15 s of EX1. Oxygen extraction was higher during the first 60 s of EX2 and EX3 than in EX 1 and thigh oxygen uptake was elevated (P < 0.05) during the first 120 s of EX2 and throughout EX3 compared to EX1. The anaerobic energy production during the first 105 s of EX2 and 150 s of EX3 was lower (P < 0.05) than in EX1. The present study demonstrates that when intense exercise

  5. Low-energy substitutes for sugars and fats in the human diet: impact on nutritional regulation.

    PubMed

    Bellisle, F; Perez, C

    1994-01-01

    Low-calorie substitutes for dietary sugars and fats are offered to the public as aids in the control of body weight. Their actual influence on food intake and energy regulation has been studied in many acute and longer-term studies. Artificial sweeteners are often presented as preloads, and their effects on subsequent intake are compared to those of sugars or nonsweet vehicles. Preloads are often liquid (drinks) or semisolid (yogurts) and presented as snacks, rather than parts of a meal. Under these conditions, partial or complete compensation for the missing energy is observed most often over the course of a few hours. However, increases in appetite have also been reported. Low-energy fat substitutes also apparently allow energy, but not nutrient (fat) compensation. Short-term, medium-term, and long-term behavioural responses to the use of low-energy substitutes can be different, mainly as a result of learning. Consequently, effects of their chronic use on body weight, body composition, nutritional balance, and various physical parameters are only partially predictable on the basis of present knowledge. The present article reviews recent contributions to this field and delineate open areas of research.

  6. An empirical study of the impact of human activity on long-term temperature change in China: A perspective from energy consumption

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Xinyi

    2012-09-01

    Human activity is an important contributor to local temperature change, especially in urban areas. Energy consumption is treated here as an index of the intensity of human induced local thermal forcing. The relationship between energy consumption and temperature change is analyzed in China by Observation Minus Reanalysis (OMR) method. Temperature trends for observation, reanalysis and OMR are estimated from meteorological records and 2 m-temperature from NCEP/NCAR Reanalysis 1 for the period 1979-2007. A spatial mapping scheme based on the spatial and temporal relationship between energy consumption and Gross Domestic Production (GDP) is developed to derive the spatial distribution of energy consumption of China in 2003. A positive relationship between energy consumption and OMR trends is found in high and mid energy consumption region. OMR trends decline with the decreasing intensity of human activity from 0.20°C/decade in high energy consumption region to 0.13°C/decade in mid energy consumption region. Forty-four stations in high energy consumption region that are exposed to the largest human impact are selected to investigate the impact of energy consumption spatial pattern on temperature change. Results show human impact on temperature trends is highly dependent on spatial pattern of energy consumption. OMR trends decline from energy consumption center to surrounding areas (0.26 to 0.04°C/decade) and get strengthened as the spatial extent of high energy consumption area expands (0.14 to 0.25°C/decade).

  7. Active vibration control of basic structures using macro fiber composites

    NASA Astrophysics Data System (ADS)

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-03-01

    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  8. Geophysical Implications of Macro Variations in Enceladan Eruptions

    NASA Astrophysics Data System (ADS)

    Hurford, Terry; Hedman, Matthew M.; Spitale, Joseph N.; Rhoden, Alyssa R.

    2014-05-01

    Models of the evolution of Saturn's E ring have shown that Enceladus is the likely source of its particles [1]. Particles within this ring are quickly destroyed and must be constantly replenished [2,3]. Until recently the Enceladan source for these particles had been debated, but Cassini observations have tied their source to eruptions from a large fracture system in the south polar region. Cassini observations of the south pole of Enceladus revealed large rifts in the crust, informally called “tiger stripes”, which exhibit higher temperatures than the surrounding terrain and are likely sources of the observed plumes [4,5]. Diurnal tides due to Enceladus' orbital eccentricity were predicted to control the timing of eruptions as tidal stress varied across active faults on an orbital timescale [6]. These tidal stresses are periodic, driving motion along the rifts throughout Enceladus' orbit, influencing the timing and location of eruption as well as the formation and evolution of the E ring. Moreover, recent work has shown that Cassini has detected changes in the plume on orbital timescales [7], confirming the prediction of tidal control. Macro variations in eruptive plumes can be used to probe the conditions under which the eruptions occur [8]. We explore further the links between tidal control of eruptions and their geophysical implications.[1] M. Horanyi, et al., Icarus 97, 248 (1992). [2] P. K. Haff, et al., Icarus 56, 426 (1983). [3] S. Jurac, et al., Icarus 149, 384 (2001). [4] J. R. Spencer, et al., Science 311, 1401 (2006).[5] C. C. Porco, et al., Science 311, 1393 (2006).[6] T.A. Hurford, et al., Nature 447, 292 (2007).[7] M. Hedman, et al., Nature 500, 182 (2013).[8] T.A. Hurford, et al., Icarus 203, 541 (2009).

  9. Water-level controls on macro-tidal rip currents

    NASA Astrophysics Data System (ADS)

    Austin, Martin J.; Masselink, Gerd; Scott, Tim M.; Russell, Paul E.

    2014-03-01

    Field measurements and numerical modelling have been used to investigate the water-level control of rip current dynamics on a macro-tidal beach. Field data collected over 32 complete tidal cycles, spanning a range of wave and tide conditions, demonstrate that rip current strength and behaviour is modulated at the semi-diurnal frequency by tide-induced changes in the water-level over bar/rip morphology. Peak flow speeds in the rip neck correspond to the time of maximum wave breaking 1.5 h before and after low water. Alongshore-directed water surface gradients ∂η/∂y were measured along the feeder channel and around the ends of the inter-tidal bar, with head differences O(0.1 m). The numerical model reproduced ∂η/∂y with a good level of skill and showed that ∂η/∂y and increase with the proportion of breaking waves Qb over the inter-tidal bar; but was maximised during peak Qb, maximum ∂η/∂y occurred when wave breaking moved offshore to the sub-tidal bar and Qb was reduced. Around low water, the forcing of the rip current by the alongshore pressure-driven feeder current was reduced by the decrease in Qb over the bar and feeder regions, but an offshore flow through the rip channel was maintained by a localised intensification of ∂η/∂y around the ends of the inter-tidal bar.

  10. Tensegrity-Based Mechanosensing from Macro to Micro

    PubMed Central

    Ingber, Donald E.

    2008-01-01

    This article is a summary of a lecture on cellular mechanotransduction that was presented at a symposium on “Cardiac Mechano-Electric Feedback and Arrhythmias” that convened at Oxford, England in April 2007. Although critical mechanosensitive molecules and cellular components, such as integrins, stretch-activated ion channels, and cytoskeletal filaments, have been shown to contribute to the response by which cells convert mechanical signals into a biochemical response, little is known about how they function in the structural context of living cells, tissues and organs to produce orchestrated changes in cell behavior in response to stress. Here, studies are reviewed that suggest our bodies use structural hierarchies (systems within systems) composed of interconnected extracellular matrix and cytoskeletal networks that span from the macroscale to the nanoscale to focus stresses on specific mechanotransducer molecules. A key feature of these networks is that they are in a state of isometric tension (i.e., experience a tensile prestress), which ensures that various molecular-scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. These features of living architecture are the same principles that govern tensegrity (tensional integrity) architecture, and mathematical models based on tensegrity are beginning to provide new and useful descriptions of living materials, including mammalian cells. This article reviews how the use of tensegrity at multiple size scales in our bodies guides mechanical force transfer from the macro to the micro, as well as how it facilitates conversion of mechanical signals into changes in ion flux, molecular binding kinetics, signal transduction, gene transcription, cell fate switching and developmental patterning. PMID:18406455

  11. Spending on pharmaceuticals in Italy: macro constraints with local autonomy.

    PubMed

    Mapelli, Vittorio; Lucioni, Carlo

    2003-01-01

    Italy has a national health service (SSN) that is moving toward decentralization and empowerment of local health enterprises (LHEs)-the arms of the regions for delivering health services. Drug policy and spending decisions are both influenced by central government and local authorities. At the "macro" level, the government holds the power to decide the amount of drug expenditure, currently at 13% of total SSN expenditure; the pricing policy, price negotiation, reference price, and price cuts; criteria for reimbursement, inclusion in the positive list, and restrictive notes; and the copayments and exemptions. So far, the government concern has been predominantly on cost containment, and its approach in selecting drugs for reimbursement has been cost minimization. Italy has no centralized office for health technology assessment and this hinders the search for an efficient use of drugs. At the "micro" level, however, the LHEs are showing a great vitality in fostering a better use of drugs by general practitioners. One of the tools employed is local voluntary agreements between LHEs and general practitioners (GPs) that may be supported by economic incentives, in cash or in kind. In 2000 there were 61 agreements in place, 31% of total LHEs, which concerned the respect of drug expenditure ceilings and the local development and implementation of clinical guidelines (47% of LHEs). A traditional and widespread tool for controlling drug expenditure is providing GPs with regular reports on their drug prescriptions (59% of LHEs). Monitoring, moral suasion, and clinical guidelines are the main incentives for efficiency at local level, but focus on health outcomes is limited. The cost-containment mentality still prevails and the use of drug budget for purchasing better health is at its very early stage.

  12. Evaluating Macro and Microscopic Rock Damage from Explosions and the Effects on Shear Wave Generation

    DTIC Science & Technology

    2014-06-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2014-0167 TR-2014-0167 EVALUATING MACRO AND MICROSCOPIC ROCK DAMAGE FROM EXPLOSIONS AND THE EFFECTS ON SHEAR WAVE...Macro and Microscopic Rock Damage from Explosions and the Effects on Shear Wave Generation 5a. CONTRACT NUMBER FA9453-10-C-0257 5b. GRANT NUMBER...the rock was highly pulverized and granulated. Outward and above the emplacement level, the granite was characterized by high angle fractures

  13. Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    High, James W.; Wilkie, W. Keats

    2003-01-01

    The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.

  14. SPICE macro model of a spryton with MOSFETs in the avalanche mode

    SciTech Connect

    Raney, C.W.

    1994-08-01

    A SPICE macro model for a triggered vacuum gap, a sprytron, intended for use in rapid discharge circuits such as Exploding Bridge Wire (EBW) applications, is presented. Power MOSFETs in the avalanche mode are utilized as the active switching elements in the model. The macro model is compared for accuracy in predicting the time dependent switching current, switch resistance and voltage drop across the switch using several test circuits. Techniques for extracting model parameters are discussed.

  15. Parametric Modeling of Human Gradient Walking for Predicting Minimum Energy Expenditure

    PubMed Central

    Saborit, Gerard; Casinos, Adrià

    2015-01-01

    A mathematical model to predict the optimum gradient for a minimum energetic cost is proposed, based on previous results that showed a minimum energetic cost when gradient is −10%. The model focuses on the variation in mechanical energy during gradient walking. It is shown that kinetic energy plays a marginal role in low speed gradient walking. Therefore, the model considers only potential energy. A mathematical parameter that depends on step length was introduced, showing that the optimal gradient is a function of that parameter. Consequently, the optimal negative gradient depends on the individual step length. The model explains why recent results do not suggest a single optimal gradient but rather a range around −10%. PMID:26417377

  16. The effects of red bull energy drink on human performance and mood.

    PubMed

    Alford, C; Cox, H; Wescott, R

    2001-01-01

    The effects of Red Bull Energy Drink, which includes taurine, glucuronolactone, and caffeine amongst the ingredients, were examined over 3 studies in a total of 36 volunteers. Assessments included psychomotor performance (reaction time, concentration, memory), subjective alertness and physical endurance. When compared with control drinks, Red Bull Energy Drink significantly (P < 0.05) improved aerobic endurance (maintaining 65-75% max. heart rate) and anaerobic performance (maintaining max. speed) on cycle ergometers. Significant improvements in mental performance included choice reaction time, concentration (number cancellation) and memory (immediate recall), which reflected increased subjective alertness. These consistent and wide ranging improvements in performance are interpreted as reflecting the effects of the combination of ingredients.

  17. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  18. Electroanalytical sensing of chromium(III) and (VI) utilising gold screen printed macro electrodes.

    PubMed

    Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2012-02-21

    We report the fabrication of gold screen printed macro electrodes which are electrochemically characterised and contrasted to polycrystalline gold macroelectrodes with their potential analytical application towards the sensing of chromium(III) and (VI) critically explored. It is found that while these gold screen printed macro electrodes have electrode kinetics typically one order of magnitude lower than polycrystalline gold macroelectrodes as is measured via a standard redox probe, in terms of analytical sensing, these gold screen printed macro electrodes mimic polycrystalline gold in terms of their analytical performance towards the sensing of chromium(III) and (VI), whilst boasting additional advantages over the macro electrode due to their disposable one-shot nature and the ease of mass production. An additional advantage of these gold screen printed macro electrodes compared to polycrystalline gold is the alleviation of the requirement to potential cycle the latter to form the required gold oxide which aids in the simplification of the analytical protocol. We demonstrate that gold screen printed macro electrodes allow the low micro-molar sensing of chromium(VI) in aqueous solutions over the range 10 to 1600 μM with a limit of detection (3σ) of 4.4 μM. The feasibility of the analytical protocol is also tested through chromium(VI) detection in environmental samples.

  19. Plasma membrane partitioning: from macro-domains to new views on plasmodesmata.

    PubMed

    Boutté, Yohann; Moreau, Patrick

    2014-01-01

    Compartmentalization of cellular functions relies on partitioning of domains of diverse sizes within the plasma membrane (PM). Macro-domains measure several micrometers and contain specific proteins concentrated to specific sides (apical, basal, and lateral) of the PM conferring a polarity to the cell. Cell polarity is one of the driving forces in tissue and growth patterning. To maintain macro-domains within the PM, eukaryotic cells exert diverse mechanisms to counteract the free lateral diffusion of proteins. Protein activation/inactivation, endocytosis, PM recycling of transmembrane proteins and the role of diffusion barriers in macro-domains partitioning at PM will be discussed. Moreover, as plasmodesmata (PDs) are domains inserted within the PM which also mediate tissue and growth patterning, it is essential to understand how segregation of specific set of proteins is maintained at PDs while PDs domains are smaller in size compared to macro-domains. Here, we will present mechanisms allowing restriction of proteins at PM macro-domains, but for which molecular components have been found in PDs proteome. We will explore the hypothesis that partitioning of macro-domains and PDs may be ruled by similar mechanisms.

  20. AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages

    PubMed Central

    Six, E; Lagresle-Peyrou, C; Susini, S; De Chappedelaine, C; Sigrist, N; Sadek, H; Chouteau, M; Cagnard, N; Fontenay, M; Hermine, O; Chomienne, C; Reynier, P; Fischer, A; André-Schmutz, I; Gueguen, N; Cavazzana, M

    2015-01-01

    Reticular dysgenesis is a human severe combined immunodeficiency that is primarily characterized by profound neutropenia and lymphopenia. The condition is caused by mutations in the adenylate kinase 2 (AK2) gene, resulting in the loss of mitochondrial AK2 protein expression. AK2 regulates the homeostasis of mitochondrial adenine nucleotides (ADP, ATP and AMP) by catalyzing the transfer of high-energy phosphate. Our present results demonstrate that AK2-knocked-down progenitor cells have poor proliferative and survival capacities and are blocked in their differentiation toward lymphoid and granulocyte lineages. We also observed that AK2 deficiency impaired mitochondrial function in general and oxidative phosphorylation in particular – showing that AK2 is critical in the control of energy metabolism. Loss of AK2 disrupts this regulation and leads to a profound block in lymphoid and myeloid cell differentiation. PMID:26270350

  1. Comparing human observer performance in detecting microcalcifications with energy weighting and photon counting breast CT

    NASA Astrophysics Data System (ADS)

    Kalluri, Kesava; Mahd, Mufeed; Glick, Stephen J.

    2012-03-01

    Breast CT (BCT) using a photon counting detector (PCD) has a number of advantages that can potentially improve clinical performance. Previous computer simulation studies showed that the signal to noise ratio (SNR) for microcalcifications is higher with energy weighted photon counting BCT as compared to cesium iodide energy integrating detector (CsI-EID) based BCT. CsI-EID inherently weighs the incident x-ray photons in direct proportion to the energy (contradicting the information content) which is not an optimal approach. PCD do not inherently weigh the incident photons. By choosing optimal energy weights, higher SNR can be achieved for microcalcifications and hence better detectability. In this simulation study, forward projection data of a numerical breast phantom with microcalcifications inserted were acquired using CsI-EID and PCD. The PCD projections were optimally weighed, and reconstructed using filtered back-projection. We compared observer performance in identifying microcalcifications in the reconstructed images using ROC analysis. ROC based results show that the average area(s) under curve(s) (AUC) for AUCPCD based methods are higher than the average AUCCsI-EID method.

  2. The measured energy value of pistachio nuts in the human diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have suggested that lipid from nuts is more poorly absorbed than that from other food sources. If lipid from nuts is poorly absorbed, then the metabolizable energy contained in the nuts is less than that predicted by the Atwater general factor for fat of 37 kJ(9 kcal)/g. A crossov...

  3. Breath carbon stable isotope ratios identify changes in energy balance and substrate utilization in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid detection of shifts in substrate utilization and energy balance would provide a compelling biofeedback tool to enable individuals to lose weight. In a pilot study, we tested whether the natural abundance of exhaled carbon stable isotope ratios (breath d13C values) reflects shifts between negat...

  4. Design, fabrication and characterization of an inductive human motion energy harvester for application in shoes

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Folkmer, B.; Manoli, Y.

    2013-12-01

    The concept of energy harvesting has been in the focus of research for more than two decades now and with the continuous device miniaturization and reduction in power consumption of the electronics it has become a viable power source for mobile systems. The increasing desire for mobility and longevity in terms of battery life has eventually led to wearable systems, i.e. electronic circuits with their power supply which are being integrated into textiles and everyday life. This paper reports the development of a cylindrical inductive energy harvesting device which exploits the accelerations available in the plane of the foot during walking. The modeling and characterization of the system is based upon real-world acceleration data recorded during treadmill runs. Although a wider range of test subjects would be required to increase the statistical relevance of the measured data, it is concluded that the energy provided by this system is sufficient to power low energy circuits at comparatively slow walking velocities. Additionally, the obtained knowledge can be used to develop a smaller, parallelized system.

  5. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans

    PubMed Central

    Stephens, Francis B; Wall, Benjamin T; Marimuthu, Kanagaraj; Shannon, Chris E; Constantin-Teodosiu, Dumitru; Macdonald, Ian A; Greenhaff, Paul L

    2013-01-01

    Twelve weeks of daily l-carnitine and carbohydrate feeding in humans increases skeletal muscle total carnitine content, and prevents body mass accrual associated with carbohydrate feeding alone. Here we determined the influence of l-carnitine and carbohydrate feeding on energy metabolism, body fat mass and muscle expression of fuel metabolism genes. Twelve males exercised at 50% maximal oxygen consumption for 30 min once before and once after 12 weeks of twice daily feeding of 80 g carbohydrate (Control, n= 6) or 1.36 g l-carnitine + 80 g carbohydrate (Carnitine, n= 6). Maximal carnitine palmitolytransferase 1 (CPT1) activity remained similar in both groups over 12 weeks. However, whereas muscle total carnitine, long-chain acyl-CoA and whole-body energy expenditure did not change over 12 weeks in Control, they increased in Carnitine by 20%, 200% and 6%, respectively (P < 0.05). Moreover, body mass and whole-body fat mass (dual-energy X-ray absorptiometry) increased over 12 weeks in Control by 1.9 and 1.8 kg, respectively (P < 0.05), but did not change in Carnitine. Seventy-three of 187 genes relating to fuel metabolism were upregulated in Carnitine vs. Control after 12 weeks, with ‘insulin signalling’, ‘peroxisome proliferator-activated receptor signalling’ and ‘fatty acid metabolism’ as the three most enriched pathways in gene functional analysis. In conclusion, increasing muscle total carnitine in healthy humans can modulate muscle metabolism, energy expenditure and body composition over a prolonged period, which is entirely consistent with a carnitine-mediated increase in muscle long-chain acyl-group translocation via CPT1. Implications to health warrant further investigation, particularly in obese individuals who have a reduced reliance on muscle fat oxidation during low-intensity exercise. PMID:23818692

  6. Deformable image registration between pathological images and MR image via an optical macro image.

    PubMed

    Ohnishi, Takashi; Nakamura, Yuka; Tanaka, Toru; Tanaka, Takuya; Hashimoto, Noriaki; Haneishi, Hideaki; Batchelor, Tracy T; Gerstner, Elizabeth R; Taylor, Jennie W; Snuderl, Matija; Yagi, Yukako

    2016-10-01

    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56±0.39mm and 0.87±0.42mm. We can analyze the relationship between tissue information and MR signals using the proposed method.

  7. Deformable image registration between pathological images and MR image via an optical macro image

    PubMed Central

    Ohnishi, Takashi; Nakamura, Yuka; Tanaka, Toru; Tanaka, Takuya; Hashimoto, Noriaki; Haneishi, Hideaki; Batchelor, Tracy T.; Gerstner, Elizabeth R.; Taylor, Jennie W.; Snuderl, Matija; Yagi, Yukako

    2016-01-01

    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56 ± 0.39 mm and 0.87 ± 0.42 mm. We can analyze the relationship between tissue information and MR signals using the proposed method. PMID:27613662

  8. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    PubMed

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-02-24

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U-(13)C]glucose, [U-(13)C]glutamate or [U-(13)C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF(e)96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U-(13)C]Glutamate and [U-(13)C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U-(13)C]glutamate was higher than that from [U-(13)C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was

  9. Long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroaki; Momiyama, Masashi; Tomita, Katsuro; Tsuchiya, Hiroyuki; Hoffman, Robert M.

    2010-11-01

    We demonstrate the development of a long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular. To observe cytoplasmic and nuclear dynamics of cancer cells in the living mouse, 143B human osteosarcoma cells are labeled with green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm. These dual-color cells are injected by a vascular route in an abdominal skin flap in nude mice. The mice are then imaged with the Olympus MVX10 macroview fluorescence microscope. With the MVX10, the nuclear and cytoplasmic behavior of cancer cells trafficking in blood vessels of live mice is observed. We also image lung metastases in live mice from the macro- to the subcellular level by opening the chest wall and imaging the exposed lung in live mice. Injected splenocytes, expressing cyan fluorescent protein, could also be imaged on the lung of live mice. We demonstrate that the MVX10 microscope offers the possibility of full-range in vivo fluorescence imaging from macro- to subcellular and should enable widespread use of powerful imaging technologies enabled by genetic reporters and other fluorophores.

  10. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    PubMed Central

    Jansen, S. W.; Akintola, A. A.; Roelfsema, F.; van der Spoel, E.; Cobbaert, C. M.; Ballieux, B. E.; Egri, P.; Kvarta-Papp, Z.; Gereben, B.; Fekete, C.; Slagboom, P. E.; van der Grond, J.; Demeneix, B. A.; Pijl, H.; Westendorp, R. G. J.; van Heemst, D.

    2015-01-01

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism. PMID:26089239

  11. A frequency up-converted electromagnetic energy harvester using human hand-shaking

    NASA Astrophysics Data System (ADS)

    Halim, M. A.; Park, J. Y.

    2013-12-01

    We present a frequency up-converted electromagnetic (EM) energy harvester that is capable of powering various portable devices and systems by hand-shaking. It consists of a freely movable ball to impact periodically (at low frequency) on the parabolic top surface of a mass of a cantilever beam allowing it to vibrate at higher (resonant) frequency. Relative motion between a magnet attached to the cantilever and a coil induces voltage. A prototype of the energy harvester has been fabricated and characterized by applying vibration from handshaking. The frequency and acceleration of the applied hand-shaking vibration has been experimentally found to be 4.6 Hz and 2g, respectively. With an optimum distance between magnet and coil, a maximum 672 mV peak-peak open circuit voltage of 370 Hz frequency and a maximum 413μW peak power delivered to an 85Ω matched load resistance have been obtained, respectively.

  12. Reduction of Energy Consumption for Air Conditioning While Maintaining Acceptable Human Comfort.

    DTIC Science & Technology

    1988-04-01

    Fanger, 1972). It is not always possible, or, practical, to obtain optimi thermal comfort conditions. Therefore Frofessor Fanger devised an index to...understand the complex interaction of the six key variables that affect human comfort. Thermal comfort is not exclusively a function of air temperature... Thermal comfort also depends on five other, less obvious, parameters: mean radiant temperature, relative air velocity, humidity, activity level, and

  13. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    SciTech Connect

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  14. Development of energy and time parameters in the walking of healthy human infants.

    PubMed

    Kimura, Tasuku; Yaguramaki, Naoko; Fujita, Masaki; Ogiue-Ikeda, Mari; Nishizawa, Satoshi; Ueda, Yutaka

    2005-11-01

    Sixteen infants were analyzed longitudinally from the onset of independent walking to 3 years of age using time parameters, speed and energy recovery. Considerable variation and irregularities were observed in many parameters of infant walking, especially until 13 months of age when infants had difficulty in walking steadily step by step. Infant walking until 3 years of age was characterized by a small braking duration, caused mainly by the forward inclination of the trunk, a large relative stance phase duration, which maintained static balance, short stride length, due to the small range of the lower limb joint angle, and a small recovery of external energy. These characteristics were also predominantly evident until 13 months of age. The small recovery characteristic of infants was caused by flexed lower limb joints, pronounced irregularities in energy output, and in younger infants, slow speed. The maximum recovery up until 2 years of age, though smaller than in adults, appeared at about 0.45 dimensionless speed, which is about the same speed that adults in particular naturally and at which their maximum recovery appeared. The forward inclination of the trunk and the lower limb joint angle, influenced the development of many characteristics of bipedal walking.

  15. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    NASA Astrophysics Data System (ADS)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various

  16. Macro-roughness model of bedrock-alluvial river morphodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Stark, C. P.; Inoue, T.; Viparelli, E.; Fu, X.; Izumi, N.

    2014-05-01

    The 1-D saltation-abrasion model of channel bedrock incision of Sklar and Dietrich, in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation which specifically tracks the spatiotemporal variation of both bedload transport and alluvial thickness. It does so by relating the cover fraction not to a ratio of bedload supply rate to capacity bedload transport, but rather to the ratio of alluvium thickness to a macro-roughness characterizing the bedrock surface. The new formulation predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection-diffusion of a sediment pulse over an alluvial bed. A solution for alluvial-incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, so blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial-bedrock reach downstream

  17. Macro-roughness model of bedrock-alluvial river morphodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Parker, G.; Stark, C. P.; Inoue, T.; Viparelli, E.; Fu, X.; Izumi, N.

    2015-02-01

    The 1-D saltation-abrasion model of channel bedrock incision of Sklar and Dietrich (2004), in which the erosion rate is buffered by the surface area fraction of bedrock covered by alluvium, was a major advance over models that treat river erosion as a function of bed slope and drainage area. Their model is, however, limited because it calculates bed cover in terms of bedload sediment supply rather than local bedload transport. It implicitly assumes that as sediment supply from upstream changes, the transport rate adjusts instantaneously everywhere downstream to match. This assumption is not valid in general, and thus can give rise to unphysical consequences. Here we present a unified morphodynamic formulation of both channel incision and alluviation that specifically tracks the spatiotemporal variation in both bedload transport and alluvial thickness. It does so by relating the bedrock cover fraction to the ratio of alluvium thickness to bedrock macro-roughness, rather than to the ratio of bedload supply rate to capacity bedload transport. The new formulation (MRSAA) predicts waves of alluviation and rarification, in addition to bedrock erosion. Embedded in it are three physical processes: alluvial diffusion, fast downstream advection of alluvial disturbances, and slow upstream migration of incisional disturbances. Solutions of this formulation over a fixed bed are used to demonstrate the stripping of an initial alluvial cover, the emplacement of alluvial cover over an initially bare bed and the advection-diffusion of a sediment pulse over an alluvial bed. A solution for alluvial-incisional interaction in a channel with a basement undergoing net rock uplift shows how an impulsive increase in sediment supply can quickly and completely bury the bedrock under thick alluvium, thus blocking bedrock erosion. As the river responds to rock uplift or base level fall, the transition point separating an alluvial reach upstream from an alluvial-bedrock reach downstream

  18. Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling.

    PubMed

    Kummitha, China M; Kalhan, Satish C; Saidel, Gerald M; Lai, Nicola

    2014-09-01

    Mouse models of human diseases are used to study the metabolic and physiological processes leading to altered whole-body energy expenditure (EE), which is the sum of EE of all body organs and tissues. Isotopic techniques, arterio-venous difference of substrates, oxygen, and blood flow measurements can provide essential information to quantify tissue/organ EE and substrate oxidation. To complement and integrate experimental data, quantitative mathematical model analyses have been applied in the design of experiments and evaluation of metabolic fluxes. In this study, a method is presented to quantify the energy expenditure of the main mouse organs using metabolic flux measurements. The metabolic fluxes and substrate utilization of the main metabolic pathways of energy metabolism in the mouse tissue/organ systems and the whole body are quantified using a mathematical model based on mass and energy balances. The model is composed of six organ/tissue compartments: brain, heart, liver, gastrointestinal tract, muscle, and adipose tissue. Each tissue/organ is described with a distinct system of metabolic reactions. This model quantifies metabolic and energetic characteristics of mice under overnight fasting conditions. The steady-state mass balances of metabolites and energy balances of carbohydrate and fat are integrated with available experimental data to calculate metabolic fluxes, substrate utilization, and oxygen consumption in each tissue/organ. The model serves as a paradigm for designing experiments with the minimal reliable measurements necessary to quantify tissue/organs fluxes and to quantify the contributions of tissue/organ EE to whole-body EE that cannot be easily determined currently.

  19. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells.

    PubMed

    Rhein, V; Baysang, G; Rao, S; Meier, F; Bonert, A; Müller-Spahn, F; Eckert, A

    2009-09-01

    Evidence suggests that amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Here we investigated the specific effects of Abeta on mitochondrial function under physiological conditions. Mitochondrial respiratory functions and energy metabolism were analyzed in control and in human wild-type amyloid precursor protein (APP) stably transfected human neuroblastoma cells (SH-SY5Y). Mitochondrial respiratory capacity of mitochondrial electron transport chain (ETC) in vital cells was measured with a high-resolution respirometry system (Oxygraph-2k). In addition, we determined the individual activities of mitochondrial complexes I-IV that compose ETC and ATP cellular level