Human Factors Engineering Aspects of Modifications in Control Room Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques; Clefton, Gordon; Joe, Jeffrey
This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by variousmore » resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.« less
Human performance models for computer-aided engineering
NASA Technical Reports Server (NTRS)
Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)
1989-01-01
This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.
ERIC Educational Resources Information Center
Fitzpatrick, John J.
2017-01-01
This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the…
Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)
NASA Technical Reports Server (NTRS)
Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine
2012-01-01
Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.
Applying the design-build-test paradigm in microbiome engineering.
Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook
2017-12-01
The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan
2011-01-01
We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
The bibliography contains citations concerning human factors engineering, anthropometry, and ergonomics as they relate to human comfort in the office and home. Human requirements, including ventilation, temperature control, and lighting, are considered. Research regarding environmental architecture, and engineering, safety, and convenience aspects are discussed. (Contains a minimum of 142 citations and includes a subject term index and title list.)
The good engineer: giving virtue its due in engineering ethics.
Harris, Charles E
2008-06-01
During the past few decades, engineering ethics has been oriented towards protecting the public from professional misconduct by engineers and from the harmful effects of technology. This "preventive ethics" project has been accomplished primarily by means of the promulgation of negative rules. However, some aspects of engineering professionalism, such as (1) sensitivity to risk (2) awareness of the social context of technology, (3) respect for nature, and (4) commitment to the public good, cannot be adequately accounted for in terms of rules, certainly not negative rules. Virtue ethics is a more appropriate vehicle for expressing these aspects of engineering professionalism. Some of the unique features of virtue ethics are the greater place it gives for discretion and judgment and also for inner motivation and commitment. Four of the many professional virtues that are important for engineers correspond to the four aspects of engineering professionalism listed above. Finally, the importance of the humanities and social sciences in promoting these virtues suggests that these disciplines are crucial in the professional education of engineers.
The ability to manipulate an organism's genetic substance offers benefits to many aspects of human health and well-being. oupled with this positive aspect of genetic engineering, however, is a concern about potential adverse effects on human welfare and environmental quality. ive...
The predicament of aeronautical engineering education and what we can do about it
NASA Technical Reports Server (NTRS)
Bryson, A. E., Jr.
1975-01-01
An analysis of the aeronautical engineering situation and the relationship to the U.S. aircraft industry is presented. Some of the problems encountered in undergraduate aeronautical engineering education are explained. A reorganization of the educational structure for aeronautical engineering is proposed. The human factors aspect of aeronautical engineering discipline is described.
Automation and Engineering Psychology: A Look to the Future.
ERIC Educational Resources Information Center
Parsons, H. McIlvaine
Various aspects of automation are explained to differentiate it from technology and mechanization and to show the difference between using equipment to help humans and using equipment to replace humans. Five reasons are given for engineering psychology to focus its attention on automation. Automation issues in a number of areas are discussed,…
PhD Topic Arrangement in "D"iscourse Communities of Engineers and Social Sciences/Humanities
ERIC Educational Resources Information Center
Hasrati, Mostafa; Street, Brian
2009-01-01
This article is the result of a grounded theory investigation into the ways PhD topics are assigned by supervisors in engineering and selected by students in the social sciences/humanities in UK universities, broadly referred to as "topic arrangement", which can be regarded as one aspect of academic socialisation into academic Discourse…
Information visualization: Beyond traditional engineering
NASA Technical Reports Server (NTRS)
Thomas, James J.
1995-01-01
This presentation addresses a different aspect of the human-computer interface; specifically the human-information interface. This interface will be dominated by an emerging technology called Information Visualization (IV). IV goes beyond the traditional views of computer graphics, CADS, and enables new approaches for engineering. IV specifically must visualize text, documents, sound, images, and video in such a way that the human can rapidly interact with and understand the content structure of information entities. IV is the interactive visual interface between humans and their information resources.
Mesenchymal Stem Cells for Osteochondral Tissue Engineering
Ng, Johnathan; Bernhard, Jonathan; Vunjak-Novakovic, Gordana
2017-01-01
Summary Mesenchymal stem cells (MSC) are of major interest to regenerative medicine, because of the ease of harvesting from a variety of sources (including bone marrow and fat aspirates) and ability to form a range of mesenchymal tissues, in vitro and in vivo. We focus here on the use of MSCs for engineering of cartilage, bone, and complex osteochondral tissue constructs, using protocols that replicate some aspects of the natural mesodermal development. For engineering of human bone, we discuss some of the current advances, and highlight the use of perfusion bioreactors for supporting anatomically exact human bone grafts. For engineering of human cartilage, we discuss limitations of current approaches, and highlight engineering of stratified, mechanically functional human cartilage interfaced with bone by mesenchymal condensation of MSCs. Taken together, the current advances enable engineering physiologically relevant bone, cartilage and osteochondral composites, and physiologically relevant studies of osteochondral development and disease. PMID:27236665
Borescope Inspection Management for Engine
NASA Astrophysics Data System (ADS)
Zhongda, Yuan
2018-03-01
In this paper, we try to explain the problems need to be improved from the two perspectives of maintenance program management and maintenance human risk control. On the basis of optimization analysis of borescope inspection maintenance scheme, the defect characteristics and expansion rules of engine heat terminal components are summarized, and some optimization measures are introduced. This paper analyses human risk problem of engine hole from the aspects of qualification management, training requirements and perfection of system, and puts forward some suggestions on management.
System Engineering Concept Demonstration, System Engineering Needs. Volume 2
1992-12-01
changeability, and invisibility. "Software entities are perhaps more complex for their size than any other human construct..." In addition, software is... human actions and interactions that often fail or insufficient in large organizations. Specific needs in this area include the following: " Each...needed to accomplish incremental review and critique of information. * Automi ..-’ metrics support is needed for the measuring ikey quality aspects of
NASA Astrophysics Data System (ADS)
Guo, Shijun; Lyu, Jie; Zhang, Peiming
2017-08-01
In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.
Humans vs Hardware: The Unique World of NASA Human System Risk Assessment
NASA Technical Reports Server (NTRS)
Anton, W.; Havenhill, M.; Overton, Eric
2016-01-01
Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.
Nanotechnology: emerging tool for diagnostics and therapeutics.
Chakraborty, Mainak; Jain, Surangna; Rani, Vibha
2011-11-01
Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.
VASCULAR RESPONSE TO TRAFFIC-DERIVED INHALATION IN HUMANS
By coordinating closely with Center Projects 1-3, we will determine whether specific aspects of traffic-derived exposure (primary vs. secondary organics, particulate vs. gases, spark-ignition vs. diesel engine vs. a mixture) enhance the human vascular response to pollutants. W...
MIT January Operational Internship Experience 2011
NASA Technical Reports Server (NTRS)
DeLatte, Danielle; Furhmann, Adam; Habib, Manal; Joujon-Roche, Cecily; Opara, Nnaemeka; Pasterski, Sabrina Gonzalez; Powell, Christina; Wimmer, Andrew
2011-01-01
This slide presentation reviews the 2011 January Operational Internship experience (JOIE) program which allows students to study operational aspects of spaceflight, how design affects operations and systems engineering in practice for 3 weeks. Topics include: (1) Systems Engineering (2) NASA Organization (3) Workforce Core Values (4) Human Factors (5) Safety (6) Lean Engineering (7) NASA Now (8) Press, Media, and Outreach and (9) Future of Spaceflight.
NASA Technical Reports Server (NTRS)
Johnson, Eric N.
2012-01-01
Function allocation assigns work functions to all agents in a team, both human and automation. Efforts to guide function allocation systematically have been studied in many fields such as engineering, human factors, team and organization design, management science, cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary aspects of function allocation. Four distinctive perspectives have emerged from this comprehensive review of literature on those fields: the technology-centered, human-centered, team-oriented, and work-oriented perspectives. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), structure and strategy of a team, and work structure and environment. This report offers eight issues with function allocation that can be used to assess the extent to which each of issues exist on a given function allocation. A modeling framework using formal models and simulation was developed to model work as described by the environment, agents, their inherent dynamics, and relationships among them. Finally, to validate the framework and metrics, a case study modeled four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight.
Search and rescue in collapsed structures: engineering and social science aspects.
El-Tawil, Sherif; Aguirre, Benigno
2010-10-01
This paper discusses the social science and engineering dimensions of search and rescue (SAR) in collapsed buildings. First, existing information is presented on factors that influence the behaviour of trapped victims, particularly human, physical, socioeconomic and circumstantial factors. Trapped victims are most often discussed in the context of structural collapse and injuries sustained. Most studies in this area focus on earthquakes as the type of disaster that produces the most extensive structural damage. Second, information is set out on the engineering aspects of urban search and rescue (USAR) in the United States, including the role of structural engineers in USAR operations, training and certification of structural specialists, and safety and general procedures. The use of computational simulation to link the engineering and social science aspects of USAR is discussed. This could supplement training of local SAR groups and USAR teams, allowing them to understand better the collapse process and how voids form in a rubble pile. A preliminary simulation tool developed for this purpose is described. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.
ERIC Educational Resources Information Center
National Academies Press, 2011
2011-01-01
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's…
NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
OHara J. M.; Higgins, J.C.
Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and themore » operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).« less
NASA Astrophysics Data System (ADS)
Fitzpatrick, John J.
2017-11-01
This paper questions if engineering educators are producing engineers that are accelerating humanity along an unsustainable path. Even though technology and engineering are important drivers in trying to move humanity towards an environmentally sustainable paradigm, the paper suggests that maybe the most important levers and challenges lie in the economic and social domains. Short case studies of energy efficiency, the experience of the industrialist Ray Anderson and the authors own reflection of teaching chemical engineering students are used to highlight this. Engineering/technological innovation may not be enough and is often counteracted by the rebound effect and the current dominant neoclassical economic paradigm. The paper discusses what engineering educators can do to produce sustainability informed engineers who are better able to engage with the economic and social dimensions of sustainability. Some suggestions for engaging engineering students with the economic and social dimensions of environmental sustainability are provided. Engineers must somehow find ways, not just to influence technological levers (which are very important) but also to influence economic and social levers so that changes in economic and social behaviours can complement and facilitate technological change in moving humanity to an environmentally sustainable paradigm.
Engineering Large Animal Species to Model Human Diseases.
Rogers, Christopher S
2016-07-01
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum
NASA Astrophysics Data System (ADS)
Iveland, Ashley
In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories their ideas fit within, the more complex their understanding was thought to be). I found that the most commonly referenced aspects of engineering design were in line with the three main dimensions described in the Next Generation Science Standards (NGSS Lead States, 2013). I also found that the practicing teacher participants overall conveyed the most complex and integrated understandings of engineering design, with the undergraduate, prospective teachers not far behind. One of the most important factors related to a more integrated understanding of engineering design was having formal engineering experience, especially in the form of conducting engineering research or having been a professional engineer. Further, I found that female participants were more likely than their male counterparts to view engineering as having a human element--recognizing the need to collaborate with others throughout the process and the need to think about the potential user of the product the engineer is solving the problem for. These findings suggest that prior experience with engineering, and not experience in the classroom or with engineering education, tends to lead to a deeper, more authentic view of engineering. Finally, I close with a discussion of the overall findings, limitations of the study, potential implications, and future work.
NASA Astrophysics Data System (ADS)
Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.
2016-09-01
A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.
Genetically Engineered Pig Models for Human Diseases
Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric
2015-01-01
Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017
Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications
NASA Astrophysics Data System (ADS)
Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina
This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.
2005-06-01
cognitive task analysis , organizational information dissemination and interaction, systems engineering, collaboration and communications processes, decision-making processes, and data collection and organization. By blending these diverse disciplines command centers can be designed to support decision-making, cognitive analysis, information technology, and the human factors engineering aspects of Command and Control (C2). This model can then be used as a baseline when dealing with work in areas of business processes, workflow engineering, information management,
HOW DO RADIOLOGISTS USE THE HUMAN SEARCH ENGINE?
Wolfe, Jeremy M; Evans, Karla K; Drew, Trafton; Aizenman, Avigael; Josephs, Emilie
2016-06-01
Radiologists perform many 'visual search tasks' in which they look for one or more instances of one or more types of target item in a medical image (e.g. cancer screening). To understand and improve how radiologists do such tasks, it must be understood how the human 'search engine' works. This article briefly reviews some of the relevant work into this aspect of medical image perception. Questions include how attention and the eyes are guided in radiologic search? How is global (image-wide) information used in search? How might properties of human vision and human cognition lead to errors in radiologic search? © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ethics in biomedical engineering.
Morsy, Ahmed; Flexman, Jennifer
2008-01-01
This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.
Modelling decision-making by pilots
NASA Technical Reports Server (NTRS)
Patrick, Nicholas J. M.
1993-01-01
Our scientific goal is to understand the process of human decision-making. Specifically, a model of human decision-making in piloting modern commercial aircraft which prescribes optimal behavior, and against which we can measure human sub-optimality is sought. This model should help us understand such diverse aspects of piloting as strategic decision-making, and the implicit decisions involved in attention allocation. Our engineering goal is to provide design specifications for (1) better computer-based decision-aids, and (2) better training programs for the human pilot (or human decision-maker, DM).
Building a Narrative Based Requirements Engineering Mediation Model
NASA Astrophysics Data System (ADS)
Ma, Nan; Hall, Tracy; Barker, Trevor
This paper presents a narrative-based Requirements Engineering (RE) mediation model to help RE practitioners to effectively identify, define, and resolve conflicts of interest, goals, and requirements. Within the SPI community, there is a common belief that social, human, and organizational issues significantly impact on the effectiveness of software process improvement in general and the requirements engineering process in particularl. Conflicts among different stakeholders are an important human and social issue that need more research attention in the SPI and RE community. By drawing on the conflict resolution literature and IS literature, we argue that conflict resolution in RE is a mediated process, in which a requirements engineer can act as a mediator among different stakeholders. To address socio-psychological aspects of conflict in RE and SPI, Winslade and Monk (2000)'s narrative mediation model is introduced, justified, and translated into the context of RE.
Human Factors and Information Operation for a Nuclear Power Space Vehicle
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Brown-VanHoozer, S. Alenka
2002-01-01
This paper describes human-interactive systems needed for a crewed nuclear-enabled space mission. A synthesis of aircraft engine and nuclear power plant displays, biofeedback of sensory input, virtual control, brain mapping for control process and manipulation, and so forth are becoming viable solutions. These aspects must maintain the crew's situation awareness and performance, which entails a delicate function allocation between crew and automation.
Ethical aspects of tissue engineering: a review.
de Vries, Rob B M; Oerlemans, Anke; Trommelmans, Leen; Dierickx, Kris; Gordijn, Bert
2008-12-01
Tissue engineering (TE) is a promising new field of medical technology. However, like other new technologies, it is not free of ethical challenges. Identifying these ethical questions at an early stage is not only part of science's responsibility toward society, but also in the interest of the field itself. In this review, we map which ethical issues related to TE have already been documented in the scientific literature. The issues that turn out to dominate the debate are the use of human embryonic stem cells and therapeutic cloning. Nevertheless, a variety of other ethical aspects are mentioned, which relate to different phases in the development of the field. In addition, we discuss a number of ethical issues that have not yet been raised in the literature.
3D Miniaturization of Human Organs for Drug Discovery.
Park, Joseph; Wetzel, Isaac; Dréau, Didier; Cho, Hansang
2018-01-01
"Engineered human organs" hold promises for predicting the effectiveness and accuracy of drug responses while reducing cost, time, and failure rates in clinical trials. Multiorgan human models utilize many aspects of currently available technologies including self-organized spherical 3D human organoids, microfabricated 3D human organ chips, and 3D bioprinted human organ constructs to mimic key structural and functional properties of human organs. They enable precise control of multicellular activities, extracellular matrix (ECM) compositions, spatial distributions of cells, architectural organizations of ECM, and environmental cues. Thus, engineered human organs can provide the microstructures and biological functions of target organs and advantageously substitute multiscaled drug-testing platforms including the current in vitro molecular assays, cell platforms, and in vivo models. This review provides an overview of advanced innovative designs based on the three main technologies used for organ construction leading to single and multiorgan systems useable for drug development. Current technological challenges and future perspectives are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)
1999-01-01
Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.
ERIC Educational Resources Information Center
Caron, Daniel W.; Fuller, Jeremy; Watson, Janice; St. Hilaire, Katherine
2007-01-01
In May 2005, the International Technology Education Association (ITEA) was funded by the National Aeronautics and Space Administration (NASA) to develop curricular units for Grades K-12 on Space Exploration. The units focus on aspects of the themes that NASA Engineers and Scientists--as well as future generations of explorers--must consider, such…
Short-Term Memory; An Annotated Bibliography. Supplement 1.
ERIC Educational Resources Information Center
Fisher, Dennis F.
A compilation of 165 references dealing with short term memory, this bibliography supplements "Short-Term Memory: An Annotated Bibliography" (August 1968). The time period covered is predominantly June 1968 to June 1969. Such aspects and topics as psychometrics, motivation, human engineering, vision, auditory perception, verbal and nonverbal…
Towards a framework of human factors certification of complex human-machine systems
NASA Technical Reports Server (NTRS)
Bukasa, Birgit
1994-01-01
As far as total automation is not realized, the combination of technical and social components in man-machine systems demands not only contributions from engineers but at least to an equal extent from behavioral scientists. This has been neglected far too long. The psychological, social and cultural aspects of technological innovations were almost totally overlooked. Yet, along with expected safety improvements the institutionalization of human factors is on the way. The introduction of human factors certification of complex man-machine systems will be a milestone in this process.
Aspects of the BPRIM Language for Risk Driven Process Engineering
NASA Astrophysics Data System (ADS)
Sienou, Amadou; Lamine, Elyes; Pingaud, Hervé; Karduck, Achim
Nowadays organizations are exposed to frequent changes in business environment requiring continuous alignment of business processes on business strategies. This agility requires methods promoted in enterprise engineering approaches. Risk consideration in enterprise engineering is getting important since the business environment is becoming more and more competitive and unpredictable. Business processes are subject to the same quality requirements as material and human resources. Thus, process management is supposed to tackle value creation challenges but also the ones related to value preservation. Our research considers risk driven business process design as an integral part of enterprise engineering. A graphical modelling language for risk driven business process engineering was introduced in former research. This paper extends the language and handles questions related to modelling risk in organisational context.
Engineering management of large scale systems
NASA Technical Reports Server (NTRS)
Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.
1989-01-01
The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.
NASA Astrophysics Data System (ADS)
Nasution, M. K. M.
2018-02-01
Technically, a definition is at the heart of all forms of understanding. However, in the engineering aspect, the introduction becomes a first step that expands the meaning and function of definitions used for something, especially a particular study. SumutSiana is a term specifically constructed to understand not only North Sumatra culture, but the natural wealth required in social engineering, and this paper becomes infrastructure for it. SumutSiana is disclosed as a scope of discussion on natural resources, culture, human resources, and all related to North Sumatra.
Colossal Tooling Design: 3D Simulation for Ergonomic Analysis
NASA Technical Reports Server (NTRS)
Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid
2003-01-01
The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.
Applying Systems Engineering Methodologies to the Creative Process
2014-09-01
Carrasco, and Ranee A. Flores. 2013. “The Structure of Creative Cognition in the Human Brain .” Frontiers in Human Neuroscience 7: 1–13. doi: 10.3389/fnhum...The place aspect of creativity will be addressed in a limited fashion to raise awareness of possible prescriptive methods to enhance creativity...threshold theory states, “…creativity and intelligence are correlated up to a certain threshold [around an intelligence quotient ( IQ ) of 120] after which
Human Factors Engineering. A Self-Paced Text, Lessons 36-40,
1981-08-01
proposed contract does not involve ’significant human interface for operation/ maintenance /control,’ the selection guide should not be used. Turn to Page 98... work space configuration, packaging, and labeling. These are all aspects of maintenance which need to be incorporated into the original design plans... work done. An ROC is a ’Required Operational Capability’ statement that is required by the Army during the system acquisition process . Return to Page
The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
Marti-Figueroa, Carlos R; Ashton, Randolph S
2017-05-01
Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis to generate organoids with biomimicry at all scales. Such advancements would enable the use of organoids as a basis for 'next-generation' tissue engineering of functional, anatomically mimetic human tissues and potentially novel organ transplants. Here, we discuss critical aspects of organoid morphogenesis where application of innovative tissue engineering methodologies would yield significant advancement towards this goal. Copyright © 2017. Published by Elsevier Ltd.
Smith, Alec S.T.; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A.; Kim, Deok-Ho
2016-01-01
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. PMID:28007615
Water Matters: Every Day, Everywhere, Every Way. Teacher's Handbook.
ERIC Educational Resources Information Center
Hirschland, Roger B., Ed.
This booklet examines the subject of fresh water and the ways in which it affects every aspect of human life. The document includes an introduction and seven sections: (1) "Agriculture"; (2) "Transportation"; (3) "Culture"; (4) "Engineering"; (5) "Health and Domestic Use"; (6) "Politics and Economics"; and (7) "Industry." Inside each section is an…
[Applications of synthetic biology in materials science].
Zhao, Tianxin; Zhong, Chao
2017-03-25
Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.
NASA Astrophysics Data System (ADS)
Naor, Omer; Krupa, Steve; Shoham, Shy
2016-06-01
Ultrasonic waves can be non-invasively steered and focused into mm-scale regions across the human body and brain, and their application in generating controlled artificial modulation of neuronal activity could therefore potentially have profound implications for neural science and engineering. Ultrasonic neuro-modulation phenomena were experimentally observed and studied for nearly a century, with recent discoveries on direct neural excitation and suppression sparking a new wave of investigations in models ranging from rodents to humans. In this paper we review the physics, engineering and scientific aspects of ultrasonic fields, their control in both space and time, and their effect on neuronal activity, including a survey of both the field’s foundational history and of recent findings. We describe key constraints encountered in this field, as well as key engineering systems developed to surmount them. In closing, the state of the art is discussed, with an emphasis on emerging research and clinical directions.
1980-11-01
health effects. That aspect of the problem is being investigated by the Center for Disease Control in Atlanta. 2.0 EXTENT OF THE PROBLEM Historically...AIR POLLUTION CONTROL ACT OF 1971 111-85 8.12 OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION 111-85 8.13 EXECUTIVE ORDER 11988 111-85 8.14 EXECUTIVE...that was specifically excluded from this study was human health effects. That aspect of the problem is being investigated by the Center for Disease
Engineering sustainable development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prendergast, J.
1993-10-01
This article discusses sustainable development, a policy which attempts to balance environmental preservation and economic growth, and promises a way to provide a decent life for Earth's human inhabitants without destroying the global ecosystem. Sustainable development is an effort to use technology to help clean up the mess it helped make, and engineers will be central players in its success or failure. Key aspects include more efficient energy use through conservation measures and switching to renewable sources, waste minimization, much greater recycling and reuse of materials, more comprehensive economic/environmental assessments employing life-cycle analyses, and better management of resources.
Could positive affect help engineer robot control systems?
Quirin, Markus; Hertzberg, Joachim; Kuhl, Julius; Stephan, Achim
2011-11-01
Emotions have long been seen as counteracting rational thought, but over the last decades, they have been viewed as adaptive processes to optimize human (but also animal) behaviour. In particular, positive affect appears to be a functional aspect of emotions closely related to that. We argue that positive affect as understood in Kuhl's PSI model of the human cognitive architecture appears to have an interpretation in state-of-the-art hybrid robot control architectures, which might help tackle some open questions in the field.
1983-12-01
factors aspects of systems and equipments. 6. Identify the human factors principles which must be applied during the evaluation of a workspace and control...Curriculum Development Expert Questionnaires Three proven specialists in the field of curriculum evaluation who regularly apply the standards and criteria 67...which each terminal objective met each of the six criteria listed in Appendix E. Ordinal values ranging from 1 through 4, were applied to the verbal
"Data characterizing microfabricated human blood vessels created via hydrodynamic focusing".
DiVito, Kyle A; Daniele, Michael A; Roberts, Steven A; Ligler, Frances S; Adams, André A
2017-10-01
This data article provides further detailed information related to our research article titled "Microfabricated Blood Vessels Undergo Neovascularization" (DiVito et al., 2017) [1], in which we report fabrication of human blood vessels using hydrodynamic focusing (HDF). Hydrodynamic focusing with advection inducing chevrons were used in concert to encase one fluid stream within another, shaping the inner core fluid into 'bullseye-like" cross-sections that were preserved through click photochemistry producing streams of cellularized hollow 3-dimensional assemblies, such as human blood vessels (Daniele et al., 2015a, 2015b, 2014, 2016; Roberts et al., 2016) [2], [3], [4], [5], [6]. Applications for fabricated blood vessels span general tissue engineering to organ-on-chip technologies, with specific utility in in vitro drug delivery and pharmacodynamics studies. Here, we report data regarding the construction of blood vessels including cellular composition and cell positioning within the engineered vascular construct as well as functional aspects of the tissues.
Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans
Arora, Pooja; Sindhu, Annu; Dilbaghi, Neeraj; Chaudhury, Ashok; Rajakumar, Govindasamy; Rahuman, Abdul Abdul
2012-01-01
Nanotechnology is a fast growing area of research that aims to create nanomaterials or nanostructures development in stem cell and tissue-based therapies. Concepts and discoveries from the fields of bio nano research provide exciting opportunities of using stem cells for regeneration of tissues and organs. The application of nanotechnology to stem-cell biology would be able to address the challenges of disease therapeutics. This review covers the potential of nanotechnology approaches towards regenerative medicine. Furthermore, it focuses on current aspects of stem- and tissue-cell engineering. The magnetic nanoparticles-based applications in stem-cell research open new frontiers in cell and tissue engineering. PMID:22260258
NASA Technical Reports Server (NTRS)
Mount, Frances; Foley, Tico
1999-01-01
Human Factors Engineering, often referred to as Ergonomics, is a science that applies a detailed understanding of human characteristics, capabilities, and limitations to the design, evaluation, and operation of environments, tools, and systems for work and daily living. Human Factors is the investigation, design, and evaluation of equipment, techniques, procedures, facilities, and human interfaces, and encompasses all aspects of human activity from manual labor to mental processing and leisure time enjoyments. In spaceflight applications, human factors engineering seeks to: (1) ensure that a task can be accomplished, (2) maintain productivity during spaceflight, and (3) ensure the habitability of the pressurized living areas. DSO 904 served as a vehicle for the verification and elucidation of human factors principles and tools in the microgravity environment. Over six flights, twelve topics were investigated. This study documented the strengths and limitations of human operators in a complex, multifaceted, and unique environment. By focusing on the man-machine interface in space flight activities, it was determined which designs allow astronauts to be optimally productive during valuable and costly space flights. Among the most promising areas of inquiry were procedures, tools, habitat, environmental conditions, tasking, work load, flexibility, and individual control over work.
Educating the humanitarian engineer.
Passino, Kevin M
2009-12-01
The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.
How Genetically Engineered Mouse Tumor Models Provide Insights Into Human Cancers
Politi, Katerina; Pao, William
2011-01-01
Genetically engineered mouse models (GEMMs) of human cancer were first created nearly 30 years ago. These early transgenic models demonstrated that mouse cells could be transformed in vivo by expression of an oncogene. A new field emerged, dedicated to generating and using mouse models of human cancer to address a wide variety of questions in cancer biology. The aim of this review is to highlight the contributions of mouse models to the diagnosis and treatment of human cancers. Because of the breadth of the topic, we have selected representative examples of how GEMMs are clinically relevant rather than provided an exhaustive list of experiments. Today, as detailed here, sophisticated mouse models are being created to study many aspects of cancer biology, including but not limited to mechanisms of sensitivity and resistance to drug treatment, oncogene cooperation, early detection, and metastasis. Alternatives to GEMMs, such as chemically induced or spontaneous tumor models, are not discussed in this review. PMID:21263096
Smith, Alec S T; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A; Kim, Deok-Ho
Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. Published by Elsevier Inc.
Biomimetic approach to cardiac tissue engineering.
Radisic, M; Park, H; Gerecht, S; Cannizzaro, C; Langer, R; Vunjak-Novakovic, G
2007-08-29
Here, we review an approach to tissue engineering of functional myocardium that is biomimetic in nature, as it involves the use of culture systems designed to recapitulate some aspects of the actual in vivo environment. To mimic the capillary network, subpopulations of neonatal rat heart cells were cultured on a highly porous elastomer scaffold with a parallel array of channels perfused with culture medium. To mimic oxygen supply by haemoglobin, the culture medium was supplemented with a perfluorocarbon (PFC) emulsion. Constructs cultivated in the presence of PFC contained higher amounts of DNA and cardiac markers and had significantly better contractile properties than control constructs cultured without PFC. To induce synchronous contractions of cultured constructs, electrical signals mimicking those in native heart were applied. Over only 8 days of cultivation, electrical stimulation induced cell alignment and coupling, markedly increased the amplitude of synchronous construct contractions and resulted in a remarkable level of ultrastructural organization. The biomimetic approach is discussed in the overall context of cardiac tissue engineering, and the possibility to engineer functional human cardiac grafts based on human stem cells.
Synthetic Ecology of Microbes: Mathematical Models and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zomorrodi, Ali R.; Segre, Daniel
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
Synthetic Ecology of Microbes: Mathematical Models and Applications
Zomorrodi, Ali R.; Segre, Daniel
2015-11-11
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Lastly, we present our outlook on key aspects of microbial ecosystems andmore » synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.« less
Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis
DOE Office of Scientific and Technical Information (OSTI.GOV)
OHara, J.M.; Higgins, J.C.
Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation.more » The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.« less
NASA Technical Reports Server (NTRS)
Carr, Daniel; Ellenberger, Rich
2008-01-01
The Human Factors Implementation Team (HFIT) process has been used to verify human factors requirements for NASA International Space Station (ISS) payloads since 2003, resulting in $2.4 million in avoided costs. This cost benefit has been realized by greatly reducing the need to process time-consuming formal waivers (exceptions) for individual requirements violations. The HFIT team, which includes astronauts and their technical staff, acts as the single source for human factors requirements integration of payloads. HFIT has the authority to provide inputs during early design phases, thus eliminating many potential requirements violations in a cost-effective manner. In those instances where it is not economically or technically feasible to meet the precise metric of a given requirement, HFIT can work with the payload engineers to develop common sense solutions and formally document that the resulting payload design does not materially affect the astronaut s ability to operate and interact with the payload. The HFIT process is fully ISO 9000 compliant and works concurrently with NASA s formal systems engineering work flow. Due to its success with payloads, the HFIT process is being adapted and extended to ISS systems hardware. Key aspects of this process are also being considered for NASA's Space Shuttle replacement, the Crew Exploration Vehicle.
Emotional engineers: toward morally responsible design.
Roeser, Sabine
2012-03-01
Engineers are normally seen as the archetype of people who make decisions in a rational and quantitative way. However, technological design is not value neutral. The way a technology is designed determines its possibilities, which can, for better or for worse, have consequences for human wellbeing. This leads various scholars to the claim that engineers should explicitly take into account ethical considerations. They are at the cradle of new technological developments and can thereby influence the possible risks and benefits more directly than anybody else. I have argued elsewhere that emotions are an indispensable source of ethical insight into ethical aspects of risk. In this paper I will argue that this means that engineers should also include emotional reflection into their work. This requires a new understanding of the competencies of engineers: they should not be unemotional calculators; quite the opposite, they should work to cultivate their moral emotions and sensitivity, in order to be engaged in morally responsible engineering. © The Author(s) 2010. This article is published with open access at Springerlink.com
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.
2008-01-01
In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; McCarthy, M.; Lin, Y-H
2006-01-01
In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.
MSFC Skylab Orbital Workshop, volume 3. [design and development of waste disposal system
NASA Technical Reports Server (NTRS)
1974-01-01
The waste management system for the Skylab Orbital Workshop is discussed. The general requirements of the system are presented. Illustrations of the components of the system are provided. Data concerning maximum expected performance capabilities are developed. The results of performance tests on the system components are reported. Emphasis is placed on the human factors engineering aspects of the system.
Microbial engineering for the production of fatty acids and fatty acid derivatives
Stephanopoulos, Gregory; Abidi, Syed Hussain Imam
2014-07-01
Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this invention relate to the discovery of a key regulator of lipid metabolism in microbes. Some aspects of this invention relate to engineered microbes for biofuel or biofuel precursor production.
Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866
Kranzfelder, Michael; Schneider, Armin; Fiolka, Adam; Koller, Sebastian; Wilhelm, Dirk; Reiser, Silvano; Meining, Alexander; Feussner, Hubertus
2015-08-01
To investigate why natural orifice translumenal endoscopic surgery (NOTES) has not yet become widely accepted and to prove whether the main reason is still the lack of appropriate platforms due to the deficiency of applicable interfaces. To assess expectations of a suitable interface design, we performed a survey on human-machine interfaces for NOTES mechatronic support systems among surgeons, gastroenterologists, and medical engineers. Of 120 distributed questionnaires, each consisting of 14 distinct questions, 100 (83%) were eligible for analysis. A mechatronic platform for NOTES was considered "important" by 71% of surgeons, 83% of gastroenterologist,s and 56% of medical engineers. "Intuitivity" and "simple to use" were the most favored aspects (33% to 51%). Haptic feedback was considered "important" by 70% of participants. In all, 53% of surgeons, 50% of gastroenterologists, and 33% of medical engineers already had experience with NOTES platforms or other surgical robots; however, current interfaces only met expectations in just more than 50%. Whereas surgeons did not favor a certain working posture, gastroenterologists and medical engineers preferred a sitting position. Three-dimensional visualization was generally considered "nice to have" (67% to 72%); however, for 26% of surgeons, 17% of gastroenterologists, and 7% of medical engineers it did not matter (P = 0.018). Requests and expectations of human-machine interfaces for NOTES seem to be generally similar for surgeons, gastroenterologist, and medical engineers. Consensus exists on the importance of developing interfaces that should be both intuitive and simple to use, are similar to preexisting familiar instruments, and exceed current available systems. © The Author(s) 2014.
Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.
ERIC Educational Resources Information Center
Gero, Aharon
2017-01-01
A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…
Murine genetically engineered and human xenograft models of chronic lymphocytic leukemia.
Chen, Shih-Shih; Chiorazzi, Nicholas
2014-07-01
Chronic lymphocytic leukemia (CLL) is a genetically complex disease, with multiple factors having an impact on onset, progression, and response to therapy. Genetic differences/abnormalities have been found in hematopoietic stem cells from patients, as well as in B lymphocytes of individuals with monoclonal B-cell lymphocytosis who may develop the disease. Furthermore, after the onset of CLL, additional genetic alterations occur over time, often causing disease worsening and altering patient outcomes. Therefore, being able to genetically engineer mouse models that mimic CLL or at least certain aspects of the disease will help us understand disease mechanisms and improve treatments. This notwithstanding, because neither the genetic aberrations responsible for leukemogenesis and progression nor the promoting factors that support these are likely identical in character or influences for all patients, genetically engineered mouse models will only completely mimic CLL when all of these factors are precisely defined. In addition, multiple genetically engineered models may be required because of the heterogeneity in susceptibility genes among patients that can have an effect on genetic and environmental characteristics influencing disease development and outcome. For these reasons, we review the major murine genetically engineered and human xenograft models in use at the present time, aiming to report the advantages and disadvantages of each. Copyright © 2014 Elsevier Inc. All rights reserved.
Systems Engineering and Integration for Advanced Life Support System and HST
NASA Technical Reports Server (NTRS)
Kamarani, Ali K.
2005-01-01
Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.
Guidance, Navigation and Control (GN&C): Best Practices for Human-Rated Spacecraft Systems
NASA Technical Reports Server (NTRS)
Lebsock, Ken; West, John
2008-01-01
In 2007 the NESC completed an in-depth assessment to identify, define and document engineering considerations for the Design Development Test and Evaluation (DDT&E) of human-rated spacecraft systems. This study had been requested by the Astronaut Office at JSC to help them to better understand what is required to ensure safe, robust, and reliable human-rated spacecraft systems. The 22 GN&C engineering Best Practices described in this paper are a condensed version of what appears in the NESC Technical Report. These Best Practices cover a broad range from fundamental system architectural considerations to more specific aspects (e.g., stability margin recommendations) of GN&C system design and development. 15 of the Best Practices address the early phases of a GN&C System development project and the remaining 7 deal with the later phases. Some of these Best Practices will cross-over between both phases. We recognize that this set of GN&C Best Practices will not be universally applicable to all projects and mission applications.
Model-based metrics of human-automation function allocation in complex work environments
NASA Astrophysics Data System (ADS)
Kim, So Young
Function allocation is the design decision which assigns work functions to all agents in a team, both human and automated. Efforts to guide function allocation systematically has been studied in many fields such as engineering, human factors, team and organization design, management science, and cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary issues with function allocation. Four distinctive perspectives emerged from a review of these fields: technology-centered, human-centered, team-oriented, and work-oriented. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), team structure and processes, and work structure and the work environment. Together, these perspectives identify the following eight issues with function allocation: 1) Workload, 2) Incoherency in function allocations, 3) Mismatches between responsibility and authority, 4) Interruptive automation, 5) Automation boundary conditions, 6) Function allocation preventing human adaptation to context, 7) Function allocation destabilizing the humans' work environment, and 8) Mission Performance. Addressing these issues systematically requires formal models and simulations that include all necessary aspects of human-automation function allocation: the work environment, the dynamics inherent to the work, agents, and relationships among them. Also, addressing these issues requires not only a (static) model, but also a (dynamic) simulation that captures temporal aspects of work such as the timing of actions and their impact on the agent's work. Therefore, with properly modeled work as described by the work environment, the dynamics inherent to the work, agents, and relationships among them, a modeling framework developed by this thesis, which includes static work models and dynamic simulation, can capture the issues with function allocation. Then, based on the eight issues, eight types of metrics are established. The purpose of these metrics is to assess the extent to which each issue exists with a given function allocation. Specifically, the eight types of metrics assess workload, coherency of a function allocation, mismatches between responsibility and authority, interruptive automation, automation boundary conditions, human adaptation to context, stability of the human's work environment, and mission performance. Finally, to validate the modeling framework and the metrics, a case study was conducted modeling four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight. A range of pilot cognitive control modes and maximum human taskload limits were also included in the model. The metrics were assessed for these four function allocations and analyzed to validate capability of the metrics to identify important issues in given function allocations. In addition, the design insights provided by the metrics are highlighted. This thesis concludes with a discussion of mechanisms for further validating the modeling framework and function allocation metrics developed here, and highlights where these developments can be applied in research and in the design of function allocations in complex work environments such as aviation operations.
Automation of Shuttle Tile Inspection - Engineering methodology for Space Station
NASA Technical Reports Server (NTRS)
Wiskerchen, M. J.; Mollakarimi, C.
1987-01-01
The Space Systems Integration and Operations Research Applications (SIORA) Program was initiated in late 1986 as a cooperative applications research effort between Stanford University, NASA Kennedy Space Center, and Lockheed Space Operations Company. One of the major initial SIORA tasks was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. This effort has adopted a systems engineering approach consisting of an integrated set of rapid prototyping testbeds in which a government/university/industry team of users, technologists, and engineers test and evaluate new concepts and technologies within the operational world of Shuttle. These integrated testbeds include speech recognition and synthesis, laser imaging inspection systems, distributed Ada programming environments, distributed relational database architectures, distributed computer network architectures, multimedia workbenches, and human factors considerations.
Career Goals and Decisions: An Intersectionality Approach
NASA Astrophysics Data System (ADS)
Bardon, Emma
This project explores the career paths to date of seven graduates of the University of Waterloo's Mechanical Engineering program, and examines the influences that led them to choose their university program. I particularly considered the participants' status as members of underrepresented or overrepresented groups, using the contexts of the history of the profession of Mechanical Engineering and prior research on underrepresentation in Science, Technology, Engineering, and Mathematics fields. I used semi-structured interviews and an intersectionality framework to investigate aspects of identity, interests, and career influences. I found three key themes among the participants: human influences, including information sources, role models, and mentors; influences of educational and outreach activities; and personal interests and aptitudes. I use the uncovered themes to recommend a combination of future studies and outreach programs.
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation is presented of the operational and engineering aspects of the second Skylab flight. Other areas described include: the performance of experimental hardware; the crew's evaluation of the flight; medical aspects; and hardware anomalies.
Diazepam and Its Effects on Psychophysiological Measures of Performance.
1985-04-01
effects and outlines recent research using diazepam to induce performance decrements. Results of the experiment showed no generalized substan- tive effect...or aspect of the evoked response at a time. To change, for example, from studying the evoked response to patterned stimuli to an experiment designed...tions in terms of the clinical assessment of neurological integrity and diagnosis. In experimental /human engineering settings, it is possible to
12th Man in Space Symposium: The Future of Humans in Space. Abstract Volume
NASA Technical Reports Server (NTRS)
1997-01-01
The National Aeronautics and Space Administration (NASA) is pleased to host the 12th IAA Man in Space Symposium. A truly international forum, this symposium brings together scientists, engineers, and managers interested in all aspects of human space flight to share the most recent research results and space agency planning related to the future of humans in space. As we look out at the universe from our own uniquely human perspective, we see a world that we affect at the same time that it affects us. Our tomorrows are highlighted by the possibilities generated by our knowledge, our drive, and our dreams. This symposium will examine our future in space from the springboard of our achievements.
Spectrally queued feature selection for robotic visual odometery
NASA Astrophysics Data System (ADS)
Pirozzo, David M.; Frederick, Philip A.; Hunt, Shawn; Theisen, Bernard; Del Rose, Mike
2011-01-01
Over the last two decades, research in Unmanned Vehicles (UV) has rapidly progressed and become more influenced by the field of biological sciences. Researchers have been investigating mechanical aspects of varying species to improve UV air and ground intrinsic mobility, they have been exploring the computational aspects of the brain for the development of pattern recognition and decision algorithms and they have been exploring perception capabilities of numerous animals and insects. This paper describes a 3 month exploratory applied research effort performed at the US ARMY Research, Development and Engineering Command's (RDECOM) Tank Automotive Research, Development and Engineering Center (TARDEC) in the area of biologically inspired spectrally augmented feature selection for robotic visual odometry. The motivation for this applied research was to develop a feasibility analysis on multi-spectrally queued feature selection, with improved temporal stability, for the purposes of visual odometry. The intended application is future semi-autonomous Unmanned Ground Vehicle (UGV) control as the richness of data sets required to enable human like behavior in these systems has yet to be defined.
Cognitive engineering and health informatics: Applications and intersections.
Hettinger, A Zachary; Roth, Emilie M; Bisantz, Ann M
2017-03-01
Cognitive engineering is an applied field with roots in both cognitive science and engineering that has been used to support design of information displays, decision support, human-automation interaction, and training in numerous high risk domains ranging from nuclear power plant control to transportation and defense systems. Cognitive engineering provides a set of structured, analytic methods for data collection and analysis that intersect with and complement methods of Cognitive Informatics. These methods support discovery of aspects of the work that make performance challenging, as well as the knowledge, skills, and strategies that experts use to meet those challenges. Importantly, cognitive engineering methods provide novel representations that highlight the inherent complexities of the work domain and traceable links between the results of cognitive analyses and actionable design requirements. This article provides an overview of relevant cognitive engineering methods, and illustrates how they have been applied to the design of health information technology (HIT) systems. Additionally, although cognitive engineering methods have been applied in the design of user-centered informatics systems, methods drawn from informatics are not typically incorporated into a cognitive engineering analysis. This article presents a discussion regarding ways in which data-rich methods can inform cognitive engineering. Copyright © 2017 Elsevier Inc. All rights reserved.
Integration of MSFC Usability Lab with Usability Testing
NASA Technical Reports Server (NTRS)
Cheng, Yiwei; Richardson, Sally
2010-01-01
As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.
Laursen, Esben Skov; Møller, Louise
2015-01-01
This paper describes a case study comparing the understanding of design intent between industrial designers and design engineers. The study is based on the hypothesis that it is not all aspects of the design intent that are equally difficult to share between industrial designers and design engineers in the product development process. The study builds on five semi-structured interviews, where two industrial designers and three design engineers were interviewed about different aspects of the design intent. Based on our results, there seem to be indications that the more complex and abstract elements of industrial design knowledge such as the meaning, semantics, values, emotions and social aspects of the product are less shared by the design engineers. Moreover, the results also indicate that the different aspects of the design intent are perceived separately, rather than as part of a whole by the design engineers. The connection between the different aspects of the design intent is not shared between the industrial designer and design engineer making the shared knowledge less meaningful to the design engineers. The results of this study cannot be claimed to be conclusive due to the limited empirical material. Further investigation and analytically richer data are required in order to verify and broaden the findings. More case studies have therefore been planned in order to understand the area better.
Understanding immunology via engineering design: the role of mathematical prototyping.
Klinke, David J; Wang, Qing
2012-01-01
A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.
Stem Cells and Scaffolds for Vascularizing Engineered Tissue Constructs
NASA Astrophysics Data System (ADS)
Luong, E.; Gerecht, S.
The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.
Human Factors Engineering Integration Project, Phase 1 Report
1976-07-01
HFE. ESSEX CORPORATION Essex Corporation, Alexandria, Virginia, was selected to be the integration contractor. The primary role of the integration...having primary cognizance for the individual phases of the process. u PAS-75-52 ■ fay^a^^ja^^ aiiijlaiiaiiiig^^ a W’IPlJW’wi’UlWBII» ^■JWrtB^r...alternative ships. Implication for HFEI The design aspects of this stage can be characterized as addressing primary payload and performance features (speed
Innovate or Die: Innovation and Technology for Special Operations
2010-12-01
in Physics, Astronomy , and Nuclear Engineering. Dr. Spulak has been an adjunct professor of Political Science at the University of New Mexico in U.S...objectives, creativity is the ability to rapidly change the operational method to something different from what conventional forces can use: the ability to...emphasizes the importance of friction:7 There are other aspects of human conflict that will not change no matter what advances in technology or
An Undergraduate Electrical Engineering Course on Computer Organization.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…
Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly.
Schiele, Nathan R; Koppes, Ryan A; Chrisey, Douglas B; Corr, David T
2013-05-01
Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon, ligament, and other fibrous soft tissues.
Building an experimental model of the human body with non-physiological parameters.
Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi
2017-03-01
New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.
Building an experimental model of the human body with non-physiological parameters
Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi
2017-01-01
New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851
Current Technologies Based on the Knowledge of the Stem Cells Microenvironments.
Mawad, Damia; Figtree, Gemma; Gentile, Carmine
2017-01-01
The stem cell microenvironment or niche plays a critical role in the regulation of survival, differentiation and behavior of stem cells and their progenies. Recapitulating each aspect of the stem cell niche is therefore essential for their optimal use in in vitro studies and in vivo as future therapeutics in humans. Engineering of optimal conditions for three-dimensional stem cell culture includes multiple transient and dynamic physiological stimuli, such as blood flow and tissue stiffness. Bioprinting and microfluidics technologies, including organs-on-a-chip, are among the most recent approaches utilized to replicate the three-dimensional stem cell niche for human tissue fabrication that allow the integration of multiple levels of tissue complexity, including blood flow. This chapter focuses on the physico-chemical and genetic cues utilized to engineer the stem cell niche and provides an overview on how both bioprinting and microfluidics technologies are improving our knowledge in this field for both disease modeling and tissue regeneration, including drug discovery and toxicity high-throughput assays and stem cell-based therapies in humans.
Introducing future engineers to sustainable ecology problems: a case study
NASA Astrophysics Data System (ADS)
Filipkowski, A.
2011-12-01
The problem of Earth environmental destruction by human activities is becoming dangerous. Engineers responsible for the production of any goods should be well aware of the negative influence of their activities on the state of the planet. This is why the understanding of ecological problems is essential for people responsible for production and industrial design. The energy, which they consume, is increasing the greenhouse effect and the waste poisons the environment. So far, most courses on ecology are offered to specialists in environmental engineering. These courses are filled with many details. The Warsaw Academy of Computer Science, Management and Administration teaches students in the direction of management and production engineering. Upon completion, the students receive the degree of 'engineer'. Their future work will mainly concern management of different types of industrial enterprises and they will be responsible for organising it in such a way as to avoid a dangerous contribution to environmental pollution and climate change. This is why it was decided to introduce a new course entitled 'Principles of Ecology and Environmental Management'. This course is quite broad, concerning almost all technical, law and organisational aspects of the problem. The presentation is made in a spectacular way, aiming to convince students that their future activity must be environmentally friendly. It contains information about international activities in ecology, legal aspects concerning pollution, technical and information methods of monitoring and, finally, the description of 'green' solutions. Altogether, 27 hours of lectures and 15 hours of discussions and students' presentations complete the course. Details of this course are described in this paper.
HFE safety reviews of advanced nuclear power plant control rooms
NASA Technical Reports Server (NTRS)
Ohara, John
1994-01-01
Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.
Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds
Bonkowski, Michael S.; Sinclair, David A.
2016-01-01
The sirtuins (SIRT1–7) are a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacylases with remarkable abilities to prevent diseases and even reverse aspects of ageing. Mice engineered to express additional copies of SIRT1 or SIRT6, or treated with sirtuin-activating compounds (STACs) such as resveratrol and SRT2104 or with NAD+ precursors, have improved organ function, physical endurance, disease resistance and longevity. Trials in non-human primates and in humans have indicated that STACs may be safe and effective in treating inflammatory and metabolic disorders, among others. These advances have demonstrated that it is possible to rationally design molecules that can alleviate multiple diseases and possibly extend lifespan in humans. PMID:27552971
Human Engineering Aspects of a Deep Dive Facility.
1977-03-01
Whit" Sectin " DDC Buff S ection r UNANNO¶!’CV D r , JUSTI’ IC .", ,",ON ........ .. . . . . . . . . ............................... DYIlSIRIDtI !fla...would consist mainly of coffee, tea, hot chocolate, or soup and cookies , crackers or other dried food that can be kept without refrigeration. It is...should be used in the Living Chamber. Age..-.. . • :YLi 13 The final recommended decor is based on the use of three basic shades: cream (Munsell 5Y 9/1
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.
Engineered nanomaterials: exposures, hazards, and risk prevention
2011-01-01
Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public in industrialized nations) are either developing or using engineered nanomaterials (ENMs) or ENM-containing products. However, our understanding of the occupational, health and safety aspects of ENMs is still in its formative stage. A survey of the literature indicates the available information is incomplete, many of the early findings have not been independently verified, and some may have been over-interpreted. This review describes ENMs briefly, their application, the ENM workforce, the major routes of human exposure, some examples of uptake and adverse effects, what little has been reported on occupational exposure assessment, and approaches to minimize exposure and health hazards. These latter approaches include engineering controls such as fume hoods and personal protective equipment. Results showing the effectiveness - or lack thereof - of some of these controls are also included. This review is presented in the context of the Risk Assessment/Risk Management framework, as a paradigm to systematically work through issues regarding human health hazards of ENMs. Examples are discussed of current knowledge of nanoscale materials for each component of the Risk Assessment/Risk Management framework. Given the notable lack of information, current recommendations to minimize exposure and hazards are largely based on common sense, knowledge by analogy to ultrafine material toxicity, and general health and safety recommendations. This review may serve as an overview for health and safety personnel, management, and ENM workers to establish and maintain a safe work environment. Small start-up companies and research institutions with limited personnel or expertise in nanotechnology health and safety issues may find this review particularly useful. PMID:21418643
The MEOW lunar project for education and science based on concurrent engineering approach
NASA Astrophysics Data System (ADS)
Roibás-Millán, E.; Sorribes-Palmer, F.; Chimeno-Manguán, M.
2018-07-01
The use of concurrent engineering in the design of space missions allows to take into account in an interrelated methodology the high level of coupling and iteration of mission subsystems in the preliminary conceptual phase. This work presents the result of applying concurrent engineering in a short time lapse to design the main elements of the preliminary design for a lunar exploration mission, developed within ESA Academy Concurrent Engineering Challenge 2017. During this program, students of the Master in Space Systems at Technical University of Madrid designed a low cost satellite to find water on the Moon south pole as prospect of a future human lunar base. The resulting mission, The Moon Explorer And Observer of Water/Ice (MEOW) compromises a 262 kg spacecraft to be launched into a Geostationary Transfer Orbit as a secondary payload in the 2023/2025 time frame. A three months Weak Stability Boundary transfer via the Sun-Earth L1 Lagrange point allows for a high launch timeframe flexibility. The different aspects of the mission (orbit analysis, spacecraft design and payload) and possibilities of concurrent engineering are described.
Machine metaphors and ethics in synthetic biology.
Boldt, Joachim
2018-06-04
The extent to which machine metaphors are used in synthetic biology is striking. These metaphors contain a specific perspective on organisms as well as on scientific and technological progress. Expressions such as "genetically engineered machine", "genetic circuit", and "platform organism", taken from the realms of electronic engineering, car manufacturing, and information technology, highlight specific aspects of the functioning of living beings while at the same time hiding others, such as evolutionary change and interdependencies in ecosystems. Since these latter aspects are relevant for, for example, risk evaluation of uncontained uses of synthetic organisms, it is ethically imperative to resist the thrust of machine metaphors in this respect. In addition, from the perspective of the machine metaphor viewing an entity as a moral agent or patient becomes dubious. If one were to regard living beings, including humans, as machines, it becomes difficult to justify ascriptions of moral status. Finally, the machine metaphor reinforces beliefs in the potential of synthetic biology to play a decisive role in solving societal problems, and downplays the role of alternative technological, and social and political measures.
Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping
Klinke, David J.; Wang, Qing
2012-01-01
A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412
Guidelines and Capabilities for Designing Human Missions
NASA Technical Reports Server (NTRS)
2002-01-01
The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.
Guidelines and Capabilities for Designing Human Missions
NASA Astrophysics Data System (ADS)
2002-03-01
The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.
Space operations and the human factor
NASA Astrophysics Data System (ADS)
Brody, Adam R.
1993-10-01
Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.
Introduction to System Health Engineering and Management in Aerospace
NASA Technical Reports Server (NTRS)
Johnson, Stephen B.
2005-01-01
This paper provides a technical overview of Integrated System Health Engineering and Management (ISHEM). We define ISHEM as "the paper provides a techniques, and technologies used to design, analyze, build, verify, and operate a system to prevent faults and/or minimize their effects." This includes design and manufacturing techniques as well operational and managerial methods. ISHEM is not a "purely technical issue" as it also involves and must account for organizational, communicative, and cognitive f&ms of humans as social beings and as individuals. Thus the paper will discuss in more detail why all of these elements, h m the technical to the cognitive and social, are necessary to build dependable human-machine systems. The paper outlines a functional homework and architecture for ISHEM operations, describes the processes needed to implement ISHEM in the system life-cycle, and provides a theoretical framework to understand the relationship between the different aspects of the discipline. It then derives from these and the social and cognitive bases a set of design and operational principles for ISHEM.
NASA Technical Reports Server (NTRS)
Bradshaw, Jeffrey M.
2005-01-01
Detailed results of this three-year project are available in 37 publications, including 7 book chapters, 3 journal articles, and 27 refereed conference proceedings. In addition, various aspects of the project were the subject of 31 invited presentations and 6 tutorials at international conferences and workshops. Good descriptions of prior and ongoing work on foundational technologies in Brahms, KAoS, NOMADS, and the PSA project can be found in numerous publications not listed here.
An autonomous payload controller for the Space Shuttle
NASA Technical Reports Server (NTRS)
Hudgins, J. I.
1979-01-01
The Autonomous Payload Control (APC) system discussed in the present paper was designed on the basis of such criteria as minimal cost of implementation, minimal space required in the flight-deck area, simple operation with verification of the results, minimal additional weight, minimal impact on Orbiter design, and minimal impact on Orbiter payload integration. In its present configuration, the APC provides a means for the Orbiter crew to control as many as 31 autononous payloads. The avionics and human engineering aspects of the system are discussed.
Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco
2018-01-02
A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.
Pilot factors guidelines for the operational inspection of navigation systems
NASA Technical Reports Server (NTRS)
Sadler, J. F.; Boucek, G. P.
1988-01-01
A computerized human engineered inspection technique is developed for use by FAA inspectors in evaluating the pilot factors aspects of aircraft navigation systems. The short title for this project is Nav Handbook. A menu-driven checklist, computer program and data base (Human Factors Design Criteria) were developed and merged to form a self-contained, portable, human factors inspection checklist tool for use in a laboratory or field setting. The automated checklist is tailored for general aviation navigation systems and can be expanded for use with other aircraft systems, transports or military aircraft. The Nav Handbook inspection concept was demonstrated using a lap-top computer and an Omega/VLF CDU. The program generates standardized inspection reports. Automated checklists for LORAN/C and R NAV were also developed. A Nav Handbook User's Guide is included.
Hierarchical Micro-/Nanostructures from Human Hair for Biomedical Applications.
Zheng, Di-Wei; Hong, Sheng; Xu, Lu; Li, Chu-Xin; Li, Ke; Cheng, Si-Xue; Zhang, Xian-Zheng
2018-05-21
With the prominent progress of biomedical engineering, materials with high biocompatibility and versatile functions are urgently needed. So far, hierarchical structures in nature have shed some light on the design of high performance materials both in concept and implementation. Inspired by these, the hierarchical micro-/nanostructures of human hair are explored and human hair is further broken into hierarchical microparticles (HMP) and hierarchical nanoparticles (HNP) with top-down procedures. Compared with commercialized carriers, such as liposomes or albumin nanoparticles, the obtained particles exhibit high hemocompatibility and negligible immunogenicity. Furthermore, these materials also display attentional abilities in the aspects of light absorption and free radical scavenging. It is found that HMP and HNP can prevent skin from UV-induced damage and relieve symptoms of cataract in vitro. Besides, both HMP and HNP show satisfactory photothermal conversion ability. By using microcomputed tomography and intravital fluorescence microscopy, it is found that warfarin-loaded HMP can rescue mice from vein thrombosis. In another aspect, HNP modified with tumor targeted aptamers exhibit dramatic antineoplastic effect, and suppress 96.8% of tumor growth in vivo. Thus, the multifaceted materials described here might provide a new tool for addressing biomedical challenges. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces
NASA Technical Reports Server (NTRS)
Ellman, Alvin; Carlton, Magdi
1993-01-01
The technical challenges, engineering solutions, and results of the NOCC computer-human interface design are presented. The use-centered design process was as follows: determine the design criteria for user concerns; assess the impact of design decisions on the users; and determine the technical aspects of the implementation (tools, platforms, etc.). The NOCC hardware architecture is illustrated. A graphical model of the DSN that represented the hierarchical structure of the data was constructed. The DSN spacecraft summary display is shown. Navigation from top to bottom is accomplished by clicking the appropriate button for the element about which the user desires more detail. The telemetry summary display and the antenna color decision table are also shown.
Kuligowski, Erica
2017-01-01
The traditional social science disciplines can provide many benefits to the field of human behavior in fire (HBiF). First, the social sciences delve further into insights only marginally examined by HBiF researchers, in turn, expanding the depth of HBiF research. In this paper, I present examples of studies from the fields of social psychology and sociology that would expand HBiF research into non-engineering or "unobservable" aspects of behavior during a fire event. Second, the social sciences can provide insight into new areas of research; in turn, expanding the scope of HBiF research. In this section, I introduce pre- and post-fire studies and explore potential research questions that fall outside of the response period of a fire, the phase upon which most focus is currently placed. Third, the social sciences elucidate the value of research methods available to study human behavior. Qualitative research methods are specifically highlighted. These three benefits will allow HBiF researchers to collect a wider range of data, further develop and expand current behavioral knowledge, and increase the impact of this research for both social and engineering applications. Finally, I end with a discussion on possible ways to better integrate the social sciences within human behavior in fire.
Aeronautical engineering: A continuing bibliography with indexes (supplement 277)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 467 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1992. Subject coverage includes: the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines); and associated aircraft components, equipment, and systems. It also includes research and development in ground support systems, theoretical and applied aspects of aerodynamics, and general fluid dynamics.
Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.
Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio
2013-07-01
Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.
NASA Technical Reports Server (NTRS)
Dischinger, H. Charles, Jr.
2017-01-01
The development of models to represent human characteristics and behaviors in human factors is broad and general. The term "model" can refer to any metaphor to represent any aspect of the human; it is generally used in research to mean a mathematical tool for the simulation (often in software, which makes the simulation digital) of some aspect of human performance and for the prediction of future outcomes. This section is restricted to the application of human models in physical design, e.g., in human factors engineering. This design effort is typically human interface design, and the digital models used are anthropometric. That is, they are visual models that are the physical shape of humans and that have the capabilities and constraints of humans of a selected population. They are distinct from the avatars used in the entertainment industry (movies, video games, and the like) in precisely that regard: as models, they are created through the application of data on humans, and they are used to predict human response; body stresses workspaces. DHM enable iterative evaluation of a large number of concepts and support rapid analysis, as compared with use of physical mockups. They can be used to evaluate feasibility of escape of a suited astronaut from a damaged vehicle, before launch or after an abort (England, et al., 2012). Throughout most of human spaceflight, little attention has been paid to worksite design for ground workers. As a result of repeated damage to the Space Shuttle which adversely affected flight safety, DHM analyses of ground assembly and maintenance have been developed over the last five years for the design of new flight systems (Stambolian, 2012, Dischinger and Dunn Jackson, 2014). The intent of these analyses is to assure the design supports the work of the ground crew personnel and thereby protect the launch vehicle. They help the analyst address basic human factors engineering questions: can a worker reach the task site from the work platform provided; can she or he see the task site; can she or he control tools, which, if dropped, might damage the system? Figure 7.3.1 provides an example of such analysis for a future NASA launch vehicle. [figure 7.3.1 here] In-space systems for operation by astronauts have long been targets for DHM analysis, given the focus on mission success and concerns for astronaut safety. Figure 7.3.2 illustrates the analysis of the design to support astronaut tasks for an International Space Station glovebox. [Figure 7.3.2 here] Use by
Stern-Straeter, Jens; Bonaterra, Gabriel Alejandro; Kassner, Stefan S; Zügel, Stefanie; Hörmann, Karl; Kinscherf, Ralf; Goessler, Ulrich Reinhart
2011-08-01
Tissue engineering of skeletal muscle is an encouraging possibility for the treatment of muscle loss through the creation of functional muscle tissue in vitro from human stem cells. Currently, the preferred stem cells are primary, non-immunogenic satellite cells ( = myoblasts). The objective of this study was to determine the expression patterns of myogenic markers within the human satellite cell population during their differentiation into multinucleated myotubes for an accurate characterization of stem cell behaviour. Satellite cells were incubated (for 1, 4, 8, 12 or 16 days) with a culture medium containing either a low [ = differentiation medium (DM)] or high [ = growth medium (GM)] concentration of growth factors. Furthermore, we performed a quantitative gene expression analysis of well-defined differentiation makers: myogenic factor 5 (MYF5), myogenin (MYOG), skeletal muscle αactin1 (ACTA1), embryonic (MYH3), perinatal (MYH8) and adult skeletal muscle myosin heavy chain (MYH1). Additionally, the fusion indices of forming myotubes of MYH1, MYH8 and ACTA1 were calculated. We show that satellite cells incubated with DM expressed multiple characteriztic features of mature skeletal muscles, verified by time-dependent upregulation of MYOG, MYH1, MYH3, MYH8 and ACTA1. However, satellite cells incubated with GM did not reveal all morphological aspects of muscle differentiation. Immunocytochemical investigations with antibodies directed against the differentiation markers showed correlations between the gene expression and differentiation. Our data provide information about time-dependent gene expression of differentiation markers in human satellite cells, which can be used for maturation analyses in skeletal muscle tissue-engineering applications. Copyright © 2011 John Wiley & Sons, Ltd.
A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials
2011-01-01
Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost-effective platform to evaluate the potential of engineered high aspect ratio nanomaterials, including carbon nanotubes, nanofibers, nanorods and metallic nanowires, to induce granulomas following inhalation. PMID:21592387
Sustainable and responsible design from a Christian worldview.
Eisenbarth, Steven R; Van Treuren, Kenneth W
2004-04-01
Many aspects of design require engineers to make choices based on non-quantifiable personal perspectives. These decisions touch issues in aesthetics, ethics, social impact, and responsibility and sustainability. Part of Baylor University's mission is to provide a learning community in which Christian life values and worldviews might be integrated into academic disciplines. In view of this institutional commitment, members of the Engineering faculty are investigating how Christian worldviews might interact with elements of engineering design in such a way as to produce uniquely Christian insights and inform the non-quantifiable aspects of the engineering process.
Opportunities in Civil Engineering. [VGM Career Horizons Series].
ERIC Educational Resources Information Center
Hagerty, D. Joseph; Heer, John E., Jr.
This book presents information on career opportunities in civil engineering. Chapter 1 focuses on the scope of civil engineering, discussing: role of scientist, engineer, and technologists; engineering and engineering technology; civil engineer's role and obligations; and other information. Chapter 2 considers such aspects of the education for…
Tissue engineering strategies to study cartilage development, degeneration and regeneration.
Bhattacharjee, Maumita; Coburn, Jeannine; Centola, Matteo; Murab, Sumit; Barbero, Andrea; Kaplan, David L; Martin, Ivan; Ghosh, Sourabh
2015-04-01
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm. Copyright © 2014 Elsevier B.V. All rights reserved.
Scientific Allocation of Water Resources.
ERIC Educational Resources Information Center
Buras, Nathan
Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…
Historical aspects of the early Soviet/Russian manned space program.
West, J B
2001-10-01
Human spaceflight was one of the great physiological and engineering triumphs of the 20th century. Although the history of the United States manned space program is well known, the Soviet program was shrouded in secrecy until recently. Konstantin Edvardovich Tsiolkovsky (1857-1935) was an extraordinary Russian visionary who made remarkable predictions about space travel in the late 19th century. Sergei Pavlovich Korolev (1907-1966) was the brilliant "Chief Designer" who was responsible for many of the Soviet firsts, including the first artificial satellite and the first human being in space. The dramatic flight of Sputnik 1 was followed within a month by the launch of the dog Laika, the first living creature in space. Remarkably, the engineering work for this payload was all done in less than 4 wk. Korolev's greatest triumph was the flight of Yuri Alekseyevich Gagarin (1934-1968) on April 12, 1961. Another extraordinary feat was the first extravehicular activity by Aleksei Arkhipovich Leonov (1934-) using a flexible airlock that emphasized the entrepreneurial attitude of the Soviet engineers. By the mid-1960s, the Soviet program was overtaken by the United States program and attempts to launch a manned mission to the Moon failed. However, the early Soviet manned space program has a preeminent place in the history of space physiology.
Aspects of human biometeorology in past, present and future.
Höppe, P
1997-02-01
Human biometeorology is quite an old science: during the times of Hippokrates in ancient Greece the influence of weather changes on physiological processes in the human body were considered to exist. However, not until the progress in modern statistics, physics and physiology in the course of this century provided quantitative methods did human-biometeorology become an acknowledged natural science. In the first half of this century primarily the explanation of the phenomena of reactions of the body to weather changes was the general objective. In the second half of this century quantitative descriptions of thermal interchanges between the human body and the environment by means of energy balance models of the human body have gained increasing importance. The methods of modern human biometeorology increasingly are acknowledged by workers in disciplines of potential application, such as urban or regional planners or air conditioning engineers. Human biometeorology tries to assess all atmospheric influences in its entirety, including the air pollution pattern. The discipline considers itself as branch of science which is tied closely to environmental meteorology and environmental medicine.
Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.
Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon
2010-06-01
Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.
Hodge, Russ; Narayanavari, Suneel A; Izsvák, Zsuzsanna; Ivics, Zoltán
2017-10-01
Gene therapies will only become a widespread tool in the clinical treatment of human diseases with the advent of gene transfer vectors that integrate genetic information stably, safely, effectively, and economically. Two decades after the discovery of the Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is fulfilling these requirements. SB may well overcome some of the limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are being used in the majority of ongoing clinical trials. The SB system has achieved a high level of stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, representing crucial steps that may permit its clinical use in the near future. This article reviews the most important aspects of SB as a tool for gene therapy, including aspects of its vectorization and genomic integration. As an illustration, the clinical development of the SB system toward gene therapy of age-related macular degeneration and cancer immunotherapy is highlighted.
ERIC Educational Resources Information Center
Blanco, Monica; Ginovart, Marta
2010-01-01
Little has been explored with regard to introducing historical aspects in the undergraduate statistics classroom in engineering studies. This article focuses on the design, implementation and assessment of a specific activity concerning the introduction of the normal probability curve and related aspects from a historical dimension. Following a…
Engineering and Ecological Aspects of Dam Removal-An Overview
2006-09-01
indicated. Figure 3. Teton Dam failure, Idaho, 1976 BENEFITS AND COSTS OF DAMS Dams have provided and continue to provide a diverse...ERDC TN-EMRRP-SR-80 1 Engineering and Ecological Aspects of Dam Removal—An Overview September 2006 By Jock Conyngham1, J. Craig Fischenich1...High ______________________________________________________________________ OVERVIEW Decommissioning and removing dams has
Micro- and nanotechnology in cardiovascular tissue engineering.
Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica
2011-12-09
While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.
An animal welfare perspective on animal testing of GMO crops.
Kolar, Roman; Rusche, Brigitte
2008-01-01
The public discussion on the introduction of agro-genetic engineering focuses mainly on economical, ecological and human health aspects. The fact is neglected that laboratory animals must suffer before either humans or the environment are affected. However, numerous animal experiments are conducted for toxicity testing and authorisation of genetically modified plants in the European Union. These are ethically questionable, because death and suffering of the animals for purely commercial purposes are accepted. Therefore, recent political initiatives to further increase animal testing for GMO crops must be regarded highly critically. Based on concrete examples this article demonstrates that animal experiments, on principle, cannot provide the expected protection of users and consumers despite all efforts to standardise, optimise or extend them.
The present and future of nanotechnology in human health care.
Sahoo, S K; Parveen, S; Panda, J J
2007-03-01
Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. The burgeoning new field of nanotechnology, opened up by rapid advances in science and technology, creates myriad new opportunities for advancing medical science and disease treatment in human health care. Applications of nanotechnology to medicine and physiology imply materials and devices designed to interact with the body at subcellular (i.e., molecular) scales with a high degree of specificity. This can be potentially translated into targeted cellular and tissue-specific clinical applications designed to achieve maximal therapeutic efficacy with minimal side effects. In this review the chief scientific and technical aspects of nanotechnology are introduced, and some of its potential clinical applications are discussed.
Engineering healthcare as a service system.
Tien, James M; Goldschmidt-Clermont, Pascal J
2010-01-01
Engineering has and will continue to have a critical impact on healthcare; the application of technology-based techniques to biological problems can be defined to be technobiology applications. This paper is primarily focused on applying the technobiology approach of systems engineering to the development of a healthcare service system that is both integrated and adaptive. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components - people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.
Exploring the Art and Science of Systems Engineering
NASA Technical Reports Server (NTRS)
Jansma, P. A.
2012-01-01
There has been much discussion of late in the NASA systems engineering community about the fact that systems engineering cannot be just about process and technical disciplines. The belief is that there is both an art and science to systems engineering, and that both aspects are necessary for designing and implementing a successful system or mission. How does one go about differentiating between and characterizing these two aspects? Some say that the art of systems engineering is about designing systems that not only function well, but that are also elegant, beautiful and engaging. What does that mean? How can you tell when a system has been designed with that holistic "art" component? This paper attempts to answer these questions by exploring various ways of looking at the Art and Science of Systems Engineering.
Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.
Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T
2013-11-01
Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
NASA Technical Reports Server (NTRS)
Arvidson, R.; Foing, B. H.; Plescial, J.; Cohen, B.; Blamont, J. E.
2010-01-01
We report on the Beijing Lunar Declaration endorsed by the delegates of the Global Lunar Conference/11th ILEWG Conference on Exploration and Utilisation of the Moon, held at Beijing on 30 May- 3 June 2010. Specifically we focus on Part B:Technologies and resources; Infrastructures and human aspects; Moon, Space, Society and Young Explorers. We recommend continued and enhanced development and implementation of sessions about lunar exploration, manned and robotic, at key scientific and engineering meetings. A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential.
ERIC Educational Resources Information Center
Mena, Irene B.; Diefes-Dux, Heidi A.
2012-01-01
Students' perceptions of engineering have been documented through studies involving interviews, surveys, and word associations that take a direct approach to asking students about various aspects of their understanding of engineering. Research on perceptions of engineering rarely focuses on how students would portray engineering to others.…
48 CFR 1436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with architect-engineer firms. 1436.209 Section 1436.209 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1436.209 Construction contracts with architect-engineer...
48 CFR 436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with architect-engineer firms. 436.209 Section 436.209 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 436.209 Construction contracts with architect-engineer...
48 CFR 1436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with architect-engineer firms. 1436.209 Section 1436.209 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1436.209 Construction contracts with architect-engineer...
48 CFR 1436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with architect-engineer firms. 1436.209 Section 1436.209 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1436.209 Construction contracts with architect-engineer...
48 CFR 436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with architect-engineer firms. 436.209 Section 436.209 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 436.209 Construction contracts with architect-engineer...
48 CFR 2936.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with architect-engineer firms. 2936.209 Section 2936.209 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 2936.209 Construction contracts with architect-engineer firms. As...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
48 CFR 436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with architect-engineer firms. 436.209 Section 436.209 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 436.209 Construction contracts with architect-engineer...
48 CFR 436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with architect-engineer firms. 436.209 Section 436.209 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 436.209 Construction contracts with architect-engineer...
48 CFR 2936.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with architect-engineer firms. 2936.209 Section 2936.209 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 2936.209 Construction contracts with architect-engineer firms. As...
48 CFR 436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with architect-engineer firms. 436.209 Section 436.209 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 436.209 Construction contracts with architect-engineer...
48 CFR 1436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with architect-engineer firms. 1436.209 Section 1436.209 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1436.209 Construction contracts with architect-engineer...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer firms. (a...
48 CFR 2936.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with architect-engineer firms. 2936.209 Section 2936.209 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 2936.209 Construction contracts with architect-engineer firms. As...
48 CFR 1436.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with architect-engineer firms. 1436.209 Section 1436.209 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1436.209 Construction contracts with architect-engineer...
48 CFR 2936.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with architect-engineer firms. 2936.209 Section 2936.209 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 2936.209 Construction contracts with architect-engineer firms. As...
48 CFR 1536.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with architect-engineer firms. 1536.209 Section 1536.209 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 1536.209 Construction contracts with architect-engineer...
The necessity of a theory of biology for tissue engineering: metabolism-repair systems.
Ganguli, Suman; Hunt, C Anthony
2004-01-01
Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.
NASA Astrophysics Data System (ADS)
Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz
2017-01-01
The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy levels are assigned in accordance with the CO-PO mapping. Finally, the course has to fulfill the International Engineering Alliance (IEA) Graduate Attributes of the Washington Accord.
Tinkering and Technical Self-Efficacy of Engineering Students at the Community College
ERIC Educational Resources Information Center
Baker, Dale R.; Wood, Lorelei; Corkins, James; Krause, Stephen
2015-01-01
Self-efficacy in engineering is important because individuals with low self-efficacy have lower levels of achievement and persistence in engineering majors. To examine self-efficacy among community college engineering students, an instrument to specifically measure two important aspects of engineering, tinkering and technical self-efficacy, was…
Teacher-to-Teacher: An Annotated Bibliography on DNA and Genetic Engineering.
ERIC Educational Resources Information Center
Mertens, Thomas R., Comp.
1984-01-01
Presented is an annotated bibliography of 24 books on DNA and genetic engineering. Areas considered in these books include: basic biological concepts to help understand advances in genetic engineering; applications of genetic engineering; social, legal, and moral issues of genetic engineering; and historical aspects leading to advances in…
NASA Astrophysics Data System (ADS)
Gero, Aharon
2017-05-01
A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.
Phage display-derived human antibodies in clinical development and therapy
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-01-01
ABSTRACT Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years. PMID:27416017
Phage display-derived human antibodies in clinical development and therapy.
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-10-01
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of "fully" human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.
48 CFR 36.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with architect-engineer firms. 36.209 Section 36.209 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 36.209 Construction contracts with architect-engineer firms. No...
48 CFR 636.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with architect-engineer firms. 636.209 Section 636.209 Federal Acquisition Regulations System DEPARTMENT OF STATE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 636.209 Construction contracts with architect-engineer firms. The...
48 CFR 636.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with architect-engineer firms. 636.209 Section 636.209 Federal Acquisition Regulations System DEPARTMENT OF STATE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 636.209 Construction contracts with architect-engineer firms. The...
48 CFR 636.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with architect-engineer firms. 636.209 Section 636.209 Federal Acquisition Regulations System DEPARTMENT OF STATE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 636.209 Construction contracts with architect-engineer firms. The...
48 CFR 636.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with architect-engineer firms. 636.209 Section 636.209 Federal Acquisition Regulations System DEPARTMENT OF STATE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 636.209 Construction contracts with architect-engineer firms. The...
48 CFR 36.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with architect-engineer firms. 36.209 Section 36.209 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 36.209 Construction contracts with architect-engineer firms. No...
48 CFR 636.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with architect-engineer firms. 636.209 Section 636.209 Federal Acquisition Regulations System DEPARTMENT OF STATE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 636.209 Construction contracts with architect-engineer firms. The...
48 CFR 2936.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2013 CFR
2013-10-01
... architect-engineer firms. 2936.209 Section 2936.209 Federal Acquisition Regulations System DEPARTMENT OF LABOR GENERAL CONTRACTING REQUIREMENTS CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 2936.209 Construction contracts with architect-engineer firms. As required by FAR...
48 CFR 36.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with architect-engineer firms. 36.209 Section 36.209 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 36.209 Construction contracts with architect-engineer firms. No...
48 CFR 36.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with architect-engineer firms. 36.209 Section 36.209 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 36.209 Construction contracts with architect-engineer firms. No...
48 CFR 36.209 - Construction contracts with architect-engineer firms.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with architect-engineer firms. 36.209 Section 36.209 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 36.209 Construction contracts with architect-engineer firms. No...
Some Notes on Gasoline-Engine Development
NASA Technical Reports Server (NTRS)
Ricardo, H R
1927-01-01
Experiments were carried out using a special engine with small glass windows and a stroboscope to record various aspects of engine performance. Valve position, supercharging, and torque recoil were all investigated with this experimental apparatus.
Engine systems and methods of operating an engine
Scotto, Mark Vincent
2015-08-25
One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Engine systems and methods of operating an engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotto, Mark Vincent
One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
NASA Technical Reports Server (NTRS)
Kohlman, D. L.
1982-01-01
An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.
University teachers' perspectives on the role of the Laplace transform in engineering education
NASA Astrophysics Data System (ADS)
Holmberg née González Sampayo, Margarita; Bernhard, Jonte
2017-07-01
The Laplace transform is an important tool in many branches of engineering, for example, electric and control engineering, but is also regarded as a difficult topic for students to master. We have interviewed 22 university teachers from five universities in three countries (Mexico, Spain and Sweden) about their views on relationships among mathematics, physics and technology/application aspects in the process of learning the Laplace transform in engineering education. Strikingly, the teachers held a spectrum of qualitatively differing views, ranging from seeing virtually no connection (e.g. some thought the Laplace transform has no relevance in engineering), through to regarding the aspects as intimately, almost inseparably linked. The lack of awareness of the widely differing views among teachers might lead to a lack of constructive alignment among different courses that is detrimental to the quality of engineering education.
Metabolic engineering of higher plants and algae for isoprenoid production.
Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe
2015-01-01
Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.
A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology
NASA Astrophysics Data System (ADS)
Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi
2014-03-01
The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.
De Wilde, Bram; Beckers, Anneleen; Lindner, Sven; Kristina, Althoff; De Preter, Katleen; Depuydt, Pauline; Mestdagh, Pieter; Sante, Tom; Lefever, Steve; Hertwig, Falk; Peng, Zhiyu; Shi, Le-Ming; Lee, Sangkyun; Vandermarliere, Elien; Martens, Lennart; Menten, Björn; Schramm, Alexander; Fischer, Matthias; Schulte, Johannes; Vandesompele, Jo; Speleman, Frank
2018-02-02
Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems ( ALK, Th- MYCN, Dbh- MYCN and Lin28b ). The murine tumors revealed a low number of genomic alterations - in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.
Vogeley, Kai; Bente, Gary
2010-01-01
"Artificial humans", so-called "Embodied Conversational Agents" and humanoid robots, are assumed to facilitate human-technology interaction referring to the unique human capacities of interpersonal communication and social information processing. While early research and development in artificial intelligence (AI) focused on processing and production of natural language, the "new AI" has also taken into account the emotional and relational aspects of communication with an emphasis both on understanding and production of nonverbal behavior. This shift in attention in computer science and engineering is reflected in recent developments in psychology and social cognitive neuroscience. This article addresses key challenges which emerge from the goal to equip machines with socio-emotional intelligence and to enable them to interpret subtle nonverbal cues and to respond to social affordances with naturally appearing behavior from both perspectives. In particular, we propose that the creation of credible artificial humans not only defines the ultimate test for our understanding of human communication and social cognition but also provides a unique research tool to improve our knowledge about the underlying psychological processes and neural mechanisms. Copyright © 2010. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Kodate, Naonori; Kodate, Kashiko; Kodate, Takako
2014-01-01
The phenomenon of women's underrepresentation in engineering is well known. However, the slow progress in achieving better gender equality here compared with other domains has accentuated the "numbers" issue, while the quality aspects have been largely ignored. This study aims to shed light on both these aspects via the lens of mentors,…
Code of Federal Regulations, 2013 CFR
2013-10-01
... Office of the Chief of Engineers, Naval Facilities Engineering Command, or Air Force Directorate of Civil Engineering. Marshallese firm is defined in the provision at 252.236-7012, Military Construction on Kwajalein... that— (1) Is responsible for the architectural, engineering, and other related technical aspects of the...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Office of the Chief of Engineers, Naval Facilities Engineering Command, or Air Force Directorate of Civil Engineering. Marshallese firm is defined in the provision at 252.236-7012, Military Construction on Kwajalein... that— (1) Is responsible for the architectural, engineering, and other related technical aspects of the...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Office of the Chief of Engineers, Naval Facilities Engineering Command, or Air Force Directorate of Civil Engineering. Marshallese firm is defined in the provision at 252.236-7012, Military Construction on Kwajalein... that— (1) Is responsible for the architectural, engineering, and other related technical aspects of the...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Office of the Chief of Engineers, Naval Facilities Engineering Command, or Air Force Directorate of Civil Engineering. Marshallese firm is defined in the provision at 252.236-7012, Military Construction on Kwajalein... that— (1) Is responsible for the architectural, engineering, and other related technical aspects of the...
Engineering the Future: Embedding Engineering Permanently across the School-University Interface
ERIC Educational Resources Information Center
MacBride, G.; Hayward, E. L.; Hayward, G.; Spencer, E.; Ekevall, E.; Magill, J.; Bryce, A. C.; Stimpson, B.
2010-01-01
This paper describes the design, implementation, and evaluation of an educational program. Engineering the Future (EtF) sought to promote a permanent, informed awareness within the school community of high-level engineering by embedding key aspects of engineering within the education curriculum. The Scottish education system is used for a case…
Faculty's Perceptions of Teaching Ethics and Leadership in Engineering Education
ERIC Educational Resources Information Center
AlSagheer, Abdullah; Al-Sagheer, Areej
2011-01-01
This paper addressed the faculty's perception of engineering ethics and leadership training. The study looks into the present state of and methodologies for teaching engineering ethics and leadership and aims to determine the faculty's perception of an identified gap in this aspect of engineering education. Engineering education has strong ethics…
Artificial consciousness and the consciousness-attention dissociation.
Haladjian, Harry Haroutioun; Montemayor, Carlos
2016-10-01
Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to implement sophisticated forms of human intelligence in machines. This research attempts to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable once we overcome short-term engineering challenges. We believe, however, that phenomenal consciousness cannot be implemented in machines. This becomes clear when considering emotions and examining the dissociation between consciousness and attention in humans. While we may be able to program ethical behavior based on rules and machine learning, we will never be able to reproduce emotions or empathy by programming such control systems-these will be merely simulations. Arguments in favor of this claim include considerations about evolution, the neuropsychological aspects of emotions, and the dissociation between attention and consciousness found in humans. Ultimately, we are far from achieving artificial consciousness. Copyright © 2016 Elsevier Inc. All rights reserved.
Positive displacement type general-aviation engines: Summary and concluding remarks
NASA Technical Reports Server (NTRS)
Kempke, E. E., Jr.
1980-01-01
The activities of programs investigating various aspects of aircraft internal combustion engines are briefly described including developments in fuel injection technology, cooling systems and drag reduction, turbocharger technology, and stratified-charge rotary engines.
ERIC Educational Resources Information Center
Moore, David G., Jr.
2013-01-01
Aspect-oriented software design (AOSD) enables better and more complete separation of concerns in software-intensive systems. By extracting aspect code and relegating crosscutting functionality to aspects, software engineers can improve the maintainability of their code by reducing code tangling and coupling of code concerns. Further, the number…
Mixed-Initiative Activity Planning for Mars Rovers
NASA Technical Reports Server (NTRS)
Bresina, John; Jonsson, Ari; Morris, Paul; Rajan, Kanna
2005-01-01
One of the ground tools used to operate the Mars Exploration Rovers is a mixed-initiative planning system called MAPGEN. The role of the system is to assist operators building daily plans for each of the rovers, maximizing science return, while maintaining rover safety and abiding by science and engineering constraints. In this paper, we describe the MAPGEN system, focusing on the mixed-initiative planning aspect. We note important challenges, both in terms of human interaction and in terms of automated reasoning requirements. We then describe the approaches taken in MAPGEN, focusing on the novel methods developed by our team.
Some aspects of cadmium flow in the U.S.
Yost, K J
1979-01-01
A team of Purdue University engineers and scientists has been involved in studying sources, translocation mechanisms, and fate of cadmium in the environment. One of the principal results of this work has been the development of a cadmium flow model for the U. S. which involves simulating sources, use patterns, waste treatment and recovery techniques, waste disposal options, and environmental flow mechanisms. A series of model calculations performed specify cadmium environmental flow, fate, and human exposure for a variety of use pattern, waste treatment/recovery, and disposal scenarios over a ten-year-simulation period. PMID:488047
NASA Astrophysics Data System (ADS)
Preetha, K. Mary Anne; Devasena, T.
2018-06-01
The complex disease, cancer is caused by genetic uncertainty and various molecular alterations. Due to the present ineffective diagnostic and prognostic classifications, the complete heterogeneity of a tumor is not revealed which in turn affects the selection of suitable treatment and patient outcome. Cancer nanotechnology is an emerging interdisciplinary research field that covers important aspects of chemistry, engineering, biology and medicine, leading to the advancement of cancer diagnosis and treatment. Hence the main aim of this study is to develop lycopene loaded gelatin nanoparticles and evaluate its in vitro anticancer activity using breast adenocarcinoma cells.
Grounding Robot Autonomy in Emotion and Self-awareness
NASA Astrophysics Data System (ADS)
Sanz, Ricardo; Hernández, Carlos; Hernando, Adolfo; Gómez, Jaime; Bermejo, Julita
Much is being done in an attempt to transfer emotional mechanisms from reverse-engineered biology into social robots. There are two basic approaches: the imitative display of emotion —e.g. to intend more human-like robots— and the provision of architectures with intrinsic emotion —in the hope of enhancing behavioral aspects. This paper focuses on the second approach, describing a core vision regarding the integration of cognitive, emotional and autonomic aspects in social robot systems. This vision has evolved as a result of the efforts in consolidating the models extracted from rat emotion research and their implementation in technical use cases based on a general systemic analysis in the framework of the ICEA and C3 projects. The desire for generality of the approach intends obtaining universal theories of integrated —autonomic, emotional, cognitive— behavior. The proposed conceptualizations and architectural principles are then captured in a theoretical framework: ASys — The Autonomous Systems Framework.
The Systems Test Architect: Enabling The Leap From Testable To Tested
2016-09-01
engineering process requires an interdisciplinary approach, involving both technical and managerial disciplines applied to the synthesis and integration...relationship between the technical and managerial aspects of systems engineering. TP-2003-020-01 describes measurement as having the following...it is evident that DOD makes great strides to tackle both the managerial and technical aspects of test and evaluation within the systems
Biological aspects of tissue-engineered cartilage.
Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko
2018-04-01
Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.
Advancing biomaterials of human origin for tissue engineering
Chen, Fa-Ming; Liu, Xiaohua
2015-01-01
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials. PMID:27022202
On Roles of Models in Information Systems
NASA Astrophysics Data System (ADS)
Sølvberg, Arne
The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.
Science, ethics and war: a pacifist's perspective.
Kovac, Jeffrey
2013-06-01
This article considers the ethical aspects of the question: should a scientist engage in war-related research, particularly use-inspired or applied research directed at the development of the means for the better waging of war? Because scientists are simultaneously professionals, citizens of a particular country, and human beings, they are subject to conflicting moral and practical demands. There are three major philosophical views concerning the morality of war that are relevant to this discussion: realism, just war theory and pacifism. In addition, the requirements of professional codes of ethics and common morality contribute to an ethical analysis of the involvement of scientists and engineers in war-related research and technology. Because modern total warfare, which is facilitated by the work of scientists and engineers, results in the inevitable killing of innocents, it follows that most, if not all, war-related research should be considered at least as morally suspect and probably as morally prohibited.
Early Impacts of a Human-in-the-Loop Evaluation in a Space Vehicle Mock-up Facility
NASA Technical Reports Server (NTRS)
Byrne, Vicky; Vos, Gordon; Whitmore, Mihriban
2008-01-01
The development of a new space vehicle, the Orion Crew Exploration Vehicle (CEV), provides Human Factors engineers an excellent opportunity to have an impact early in the design process. This case study highlights a Human-in-the-Loop (HITL) evaluation conducted in a Space Vehicle Mock-Up Facility and will describe the human-centered approach and how the findings are impacting design and operational concepts early in space vehicle design. The focus of this HITL evaluation centered on the activities that astronaut crewmembers would be expected to perform within the functional internal volume of the Crew Module (CM) of the space vehicle. The primary objective was to determine if there are aspects of a baseline vehicle configuration that would limit or prevent the performance of dynamically volume-driving activities (e.g. six crewmembers donning their suits in an evacuation scenario). A second objective was to step through concepts of operations for known systems and evaluate them in integrated scenarios. The functional volume for crewmember activities is closely tied to every aspect of system design (e.g. avionics, safety, stowage, seats, suits, and structural support placement). As this evaluation took place before the Preliminary Design Review of the space vehicle with some designs very early in the development, it was not meant to determine definitely that the crewmembers could complete every activity, but rather to provide inputs that could improve developing designs and concepts of operations definition refinement.
Science & Engineering Indicators. National Science Board. NSB 14-01
ERIC Educational Resources Information Center
National Science Foundation, 2014
2014-01-01
The "Science and Engineering Indicators" series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2014" contains analyses of key aspects of the scope, quality, and…
The Use of Web Search Engines in Information Science Research.
ERIC Educational Resources Information Center
Bar-Ilan, Judit
2004-01-01
Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…
ERIC Educational Resources Information Center
Gilbert, Amy; Wade, Katherine
2014-01-01
For an introductory engineering class at an all-girls urban high school in the Southeast, the authors planned an experience that would align with the engineering aspects of the "Next Generation Science Standards" (NGSS Lead States 2013). The goal was to better relate science, technology, engineering, and mathematics (STEM) to everyday…
40 CFR 1042.655 - Special certification provisions for-Category 3 engines with aftertreatment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... devices) comply with applicable emission standards. You must use good engineering judgment for all aspects... points. This catalyst or aftertreatment testing may be performed on a benchscale. (c) Engineering analysis. Include with your application a detailed engineering analysis describing how the test data...
40 CFR 1042.655 - Special certification provisions for-Category 3 engines with aftertreatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... devices) comply with applicable emission standards. You must use good engineering judgment for all aspects... points. This catalyst or aftertreatment testing may be performed on a benchscale. (c) Engineering analysis. Include with your application a detailed engineering analysis describing how the test data...
Investigating Engineering Practice Is Valuable for Mathematics Learning
ERIC Educational Resources Information Center
Goold, Eileen
2015-01-01
While engineering mathematics curricula often prescribe a fixed body of mathematical knowledge, this study takes a different approach; second-year engineering students are additionally required to investigate and document an aspect of mathematics used in engineering practice. A qualitative approach is used to evaluate the impact that students'…
A Phenomenographic Investigation of the Ways Engineering Students Experience Innovation
NASA Astrophysics Data System (ADS)
Fila, Nicholas David
Innovation has become an important phenomenon in engineering and engineering education. By developing novel, feasible, viable, and valued solutions to complex technical and human problems, engineers support the economic competitiveness of organizations, make a difference in the lives of users and other stakeholders, drive societal and scientific progress, and obtain key personal benefits. Innovation is also a complex phenomenon. It occurs across a variety of contexts and domains, encompasses numerous phases and activities, and requires unique competency profiles. Despite this complexity, many studies in engineering education focus on specific aspects (e.g., engineering students' abilities to generate original concepts during idea generation), and we still know little about the variety of ways engineering students approach and understand innovation. This study addresses that gap by asking: 1. What are the qualitatively different ways engineering students experience innovation during their engineering projects? 2. What are the structural relationships between the ways engineering students experience innovation? This study utilized phenomenography, a qualitative research method, to explore the above research questions. Thirty-three engineering students were recruited to ensure thorough coverage along four factors suggested by the literature to support differences related to innovation: engineering project experience, academic major, year in school, and gender. Each participant completed a 1-2 hour, semi-structured interview that focused on experiences with and conceptions of innovation. Whole transcripts were analyzed using an eight-stage, iterative, and comparative approach meant to identify a limited number of categories of description (composite ways of experiencing innovation comprised of the experiences of several participants), and the structural relationships between these categories. Phenomenographic analysis revealed eight categories of description that were structured in a semi-hierarchical, two-dimensional outcome space. The first four categories demonstrated a progression toward greater comprehensiveness in both process and focus dimensions. In the process dimension, subsequent categories added increasingly preliminary innovation phases: idea realization, idea generation, problem scoping, and problem finding. In the focus dimension, subsequent categories added key areas engineers considered during innovation: technical, human, and enterprise. The final four categories each incorporated all previous process phases and focus areas, but prioritized different focus areas in sophisticated ways and acknowledged a macro-iterative cycle, i.e., an understanding of how the processes within a single innovation project built upon and contributed to past and future innovation projects. These results demonstrate important differences between engineering students and suggest how they may come to experience innovation in increasingly comprehensive ways. A framework based on the results can be used by educators and researchers to support more robust educational offerings and nuanced research designs that reflect these differences.
NASA Astrophysics Data System (ADS)
Schiele, Nathan R.; Koppes, Ryan A.; Corr, David T.; Ellison, Karen S.; Thompson, Deanna M.; Ligon, Lee A.; Lippert, Thomas K. M.; Chrisey, Douglas B.
2009-03-01
The ability to control cell placement and to produce idealized cellular constructs is essential for understanding and controlling intercellular processes and ultimately for producing engineered tissue replacements. We have utilized a novel intra-cavity variable aperture excimer laser operated at 193 nm to reproducibly direct write mammalian cells with micrometer resolution to form a combinatorial array of idealized cellular constructs. We deposited patterns of human dermal fibroblasts, mouse myoblasts, rat neural stem cells, human breast cancer cells, and bovine pulmonary artery endothelial cells to study aspects of collagen network formation, breast cancer progression, and neural stem cell proliferation, respectively. Mammalian cells were deposited by matrix assisted pulsed laser evaporation direct write from ribbons comprised of a UV transparent quartz coated with either a thin layer of extracellular matrix or triazene as a dynamic release layer using CAD/CAM control. We demonstrate that through optical imaging and incorporation of a machine vision algorithm, specific cells on the ribbon can be laser deposited in spatial coherence with respect to geometrical arrays and existing cells on the receiving substrate. Having the ability to direct write cells into idealized cellular constructs can help to answer many biomedical questions and advance tissue engineering and cancer research.
2010-06-01
1999 Submitted in partial fulfillment of the requirements for the degrees of MECHANICAL ENGINEER and MASTERS OF SCIENCE IN MECHANICAL...Advisor Dr. Anthony Gannon Second Reader Dr. Knox Milsaps Chairman, Department of Mechanical and Aerospace Engineering iv THIS...within high aspect ratio regions of advanced propellant grain designs and how this behavior affects flow through the combustion chamber and impacts
ECSIN's methodological approach for hazard evaluation of engineered nanomaterials
NASA Astrophysics Data System (ADS)
Bregoli, Lisa; Benetti, Federico; Venturini, Marco; Sabbioni, Enrico
2013-04-01
The increasing production volumes and commercialization of engineered nanomaterials (ENM), together with data on their higher biological reactivity when compared to bulk counterpart and ability to cross biological barriers, have caused concerns about their potential impacts on the health and safety of both humans and the environment. A multidisciplinary component of the scientific community has been called to evaluate the real risks associated with the use of products containing ENM, and is today in the process of developing specific definitions and testing strategies for nanomaterials. At ECSIN we are developing an integrated multidisciplinary methodological approach for the evaluation of the biological effects of ENM on the environment and human health. While our testing strategy agrees with the most widely advanced line of work at the European level, the choice of methods and optimization of protocols is made with an extended treatment of details. Our attention to the methodological and technical details is based on the acknowledgment that the innovative characteristics of matter at the nano-size range may influence the existing testing methods in a partially unpredictable manner, an aspect which is frequently recognized at the discussion level but oftentimes disregarded at the laboratory bench level. This work outlines the most important steps of our testing approach. In particular, each step will be briefly discussed in terms of potential technical and methodological pitfalls that we have encountered, and which are often ignored in nanotoxicology research. The final aim is to draw attention to the need of preliminary studies in developing reliable tests, a crucial aspect to confirm the suitability of the chosen analytical and toxicological methods to be used for the specific tested nanoparticle, and to express the idea that in nanotoxicology,"devil is in the detail".
Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Diem, H. G.
1980-01-01
The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.
2003-01-01
Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.
The Accuracy of Student Grading in First-Year Engineering Courses
ERIC Educational Resources Information Center
Van Hattum-Janssen, Natascha; Pacheco, Jose Augusto; Vasconcelos, Rosa Maria
2004-01-01
Assessment has become a powerful tool to change student learning. In a project of the Council of Engineering Courses of the University of Minho, Portugal, students of textile engineering, apparel engineering and industrial electronics increased their participation in every aspect of their assessment process. The traditional exam was changed to…
Engineering Education for Leadership in the 21st Century.
ERIC Educational Resources Information Center
Wirasinghe, Chan
The engineering profession and, consequently, the education process for engineers must respond to several new realities in order to be successful in the 21st century. Some aspects of the new reality that are relevant to engineering education are as follows: the globalization of commerce; the information revolution; innovations in technology; the…
The Engineering Design Process: Conceptions along the Learning-To-Teach Continuum
ERIC Educational Resources Information Center
Iveland, Ashley
2017-01-01
In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering…
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
40 CFR 1039.230 - How do I select engine families?
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Certifying.... (b) Group engines in the same engine family if they are the same in all the following aspects: (1...) Combustion chamber design. (6) Bore and stroke. (7) Cylinder arrangement (such as in-line vs. vee...
NASA Technical Reports Server (NTRS)
Gallaway, Glen R.
1987-01-01
Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.
Requirements Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case Study
NASA Astrophysics Data System (ADS)
Mussbacher, Gunter; Amyot, Daniel; Araújo, João; Moreira, Ana
The User Requirements Notation (URN) is a recent ITU-T standard that supports requirements engineering activities. The Aspect-oriented URN (AoURN) adds aspect-oriented concepts to URN, creating a unified framework that allows for scenario-based, goal-oriented, and aspect-oriented modeling. AoURN is applied to the car crash crisis management system (CCCMS), modeling its functional and non-functional requirements (NFRs). AoURN generally models all use cases, NFRs, and stakeholders as individual concerns and provides general guidelines for concern identification. AoURN handles interactions between concerns, capturing their dependencies and conflicts as well as the resolutions. We present a qualitative comparison of aspect-oriented techniques for scenario-based and goal-oriented requirements engineering. An evaluation carried out based on the metrics adapted from literature and a task-based evaluation suggest that AoURN models are more scalable than URN models and exhibit better modularity, reusability, and maintainability.
An overlooked alliance: using human factors engineering to reduce patient harm.
Perry, Shawna J
2004-08-01
Although human factors engineering (HFE) is considered only in relationship to the design of medical devices or information systems technology, human factors issues arise in many aspects of work in health care organizations. In one scenario, the resuscitation stretcher would not pass through the ED door closest to radiology. Many clinical work spaces were never formally designed for the work currently being performed in them; instead, they were adapted from existing space originally designed for a different use. In a second scenario, infusion pump malfunction was not apparent. The patient experienced a near miss secondary to poor design; users thought that the infusion pump had been turned off when it was not. Health care can significantly benefit from the incorporation of HFE into the workplace. Introductory classes in medical and nursing schools on HFE will assist students in detecting HFE-related issues, making them less likely to suffer with them or overlook them once in clinical practice. More extensive training for patient safety and risk managers, that is, at a minimum, a certificate-level course from an HFE program, would enhance case and root cause analyses since these issues are rarely factored in. Collaboration with HFE experts and use of HFE principles may not make health care fool-proof, but it will make it less dependent on improvisation and ingenuity to protect patients from the system's vulnerabilities.
NASA Astrophysics Data System (ADS)
Cała, Marek; Borowski, Marek
2018-03-01
The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.
Concurrent Software Engineering Project
ERIC Educational Resources Information Center
Stankovic, Nenad; Tillo, Tammam
2009-01-01
Concurrent engineering or overlapping activities is a business strategy for schedule compression on large development projects. Design parameters and tasks from every aspect of a product's development process and their interdependencies are overlapped and worked on in parallel. Concurrent engineering suffers from negative effects such as excessive…
The Effect of AOP on Software Engineering, with Particular Attention to OIF and Event Quantification
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Filman, Robert; Korsmeyer, David (Technical Monitor)
2003-01-01
We consider the impact of Aspect-Oriented Programming on Software Engineering, and, in particular, analyze two AOP systems, one of which does component wrapping and the other, quantification over events, for their software engineering effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelli, M.; Gadomski, A. M.; Sepiellis, M.
In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safetymore » Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)« less
Kopitz, Jürgen; Vértesy, Sabine; André, Sabine; Fiedler, Sabine; Schnölzer, Martina; Gabius, Hans-Joachim
2014-09-01
Many human proteins have a modular design with receptor and structural domains. Using adhesion/growth-regulatory galectin-3 as model, we describe an interdisciplinary strategy to define the functional significance of its tail established by nine non-triple helical collagen-like repeats (I-IX) and the N-terminal peptide. Genetic engineering with sophisticated mass spectrometric product analysis provided the tools for biotesting, i.e. eight protein variants with different degrees of tail truncation. Evidently,various aspects of galectin-3 activity (cis binding and cell bridging) are affected by tail shortening in a different manner. Thus, this combined approach reveals an unsuspected complexity of structure-function relationship, encouraging further application beyond this chimera-type galectin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, J.S.
1994-01-01
The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.
Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering
He, Fei; Murabito, Ettore; Westerhoff, Hans V.
2016-01-01
Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000
Development of engineering drawing ability for emerging engineering education
NASA Astrophysics Data System (ADS)
Guo, Jian-Wen; Cao, Xiao-Chang; Xie, Li; Jin, Jian-Jun; Wang, Chu-Diao
2017-09-01
Students majoring in engineering is required by the emerging engineering education (3E) in the aspect of their ability of engineering drawing. This paper puts forward training mode of engineering drawing ability for 3E. This mode consists of three kinds of training including training in courses, training in competitions and training in actual demand. We also design the feasible implementation plan and supplies viable references to carry out the mode.
Naujokat, H; Açil, Y; Gülses, A; Birkenfeld, F; Wiltfang, J
2018-05-26
In 2016, we reported the world's first reconstruction of a mandibular discontinuity defect using a custom-made bone transplant that had been prefabricated in the gastrocolic omentum using tissue engineering strategies. However, the tissue of an engineered human neomandible has not been evaluated histologically until now. The current study assessed the long-term histological characteristics of biopsies of the neomandible 9months after transplantation. Histological analysis showed an increased amount of vital mineralized bone tissue after 10months, in comparison to biopsies obtained earlier. The engineered bone covered the surface of the bone substitute material but also grew out typical structures of cancellous bone tissue without a core of BioOss. The amount of induced bone tissue was 32% in the biopsy. In addition, the soft tissue showed an alignment of the connective tissue fibres parallel to the trabecular bone. Increasing time and mechanical forces at the mandible led to an increased amount of mineralized tissue and remodelling of the connective tissue fibres after transplantation. Further research should focus on developing advanced scaffold materials, as the outer titanium mesh cage leads to complications. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Aeronautical Engineering: A Continuing Bibliography with indexes
NASA Technical Reports Server (NTRS)
1984-01-01
This bibliography lists 426 reports, articles and other documents introduced into the NASA scientific and technical information system in August 1984. Reports are cited in the area of Aeronautical Engineering. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems.
Aeronautical engineering. A continuing bibliography with indexes, supplement 127, October 1980
NASA Technical Reports Server (NTRS)
1980-01-01
A bibliography containing 431 abstracts addressing various topics in aeronautical engineering is given. The coverage includes engineering and theoretical aspects of design. construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Engineering nucleases for gene targeting: safety and regulatory considerations.
Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe
2014-01-25
Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight. Copyright © 2013 Elsevier B.V. All rights reserved.
Swimming and other activities: applied aspects of fish swimming performance
Castro-Santos, Theodore R.; Farrell, A.P.
2011-01-01
Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.
Rexin-G, a targeted genetic medicine for cancer.
Gordon, Erlinda M; Hall, Frederick L
2010-05-01
Rexin-G, a tumor-targeted retrovector bearing a cytocidal cyclin G1 construct, is the first targeted gene therapy vector to gain fast track designation and orphan drug priorities for multiple cancer indications in the US. This review describes the major milestones in the clinical development of Rexin-G: from the molecular cloning and characterization of the human cyclin G1 proto-oncogene in 1994, to the design of the first knockout constructs and genetic engineering of the targeted delivery system from 1995 to 1997, through the initial proofs-of-concept, molecular pharmacology and toxicology studies of Rexin-G in preclinical cancer models from 1997 to 2001, to the pioneering clinical studies in humans from 2002 to 2004, which--together with the advancements in bioprocess development of high-potency clinical grade vectors circa 2005 - 2006--led to the accelerated approval of Rexin-G for all solid tumors by the Philippine FDA in 2007 and the rapid progression of clinical studies from 2007 to 2009 to the cusp of pivotal Phase III trials in the US. In recording the development of Rexin-G as a novel form of targeted biological therapy, this review also highlights important aspects of vector design engineering which served to overcome the physiological barriers to gene delivery as it addresses the key regulatory issues involved in the development of a targeted gene therapy product. Progressive clinical development of Rexin-G demonstrates the potential safety and efficacy of targeted genetic medicine, while validating the design engineering of the molecular biotechnology platform.
ERIC Educational Resources Information Center
Olds, Barbara M.; Miller, Ronald L.
The "HumEn" (Humanities/Engineering Integration) program developed at the Colorado School of Mines integrates humanities and engineering through reading and writing. Through integrative reading and writing engineering students are led to make appropriate connections between the humanities and their technical work, connections that will…
Visual optics: an engineering approach
NASA Astrophysics Data System (ADS)
Toadere, Florin
2010-11-01
The human eyes' visual system interprets the information from the visible light in order to build a representation of the world surrounding the body. It derives color by comparing the responses to light from the three types of photoreceptor cones in the eyes. These long medium and short cones are sensitive to blue, green and red portions of the visible spectrum. We simulate the color vision for the normal eyes. We see the effects of the dyes, filters, glasses and windows on color perception when the test image is illuminated with the D65 light sources. In addition to colors' perception, the human eyes can suffer from diseases and disorders. The eye can be seen as an optical instrument which has its own eye print. We present aspects of some nowadays methods and technologies which can capture and correct the human eyes' wavefront aberrations. We focus our attention to Siedel aberrations formula, Zenike polynomials, Shack-Hartmann Sensor, LASIK, interferograms fringes aberrations and Talbot effect.
Upgrading the Space Shuttle Caution and Warning System
NASA Technical Reports Server (NTRS)
McCandless, Jeffrey W.; McCann, Robert S.; Hilty, Bruce T.
2005-01-01
A report describes the history and the continuing evolution of an avionic system aboard the space shuttle, denoted the caution and warning system, that generates visual and auditory displays to alert astronauts to malfunctions. The report focuses mainly on planned human-factors-oriented upgrades of an alphanumeric fault-summary display generated by the system. Such upgrades are needed because the display often becomes cluttered with extraneous messages that contribute to the difficulty of diagnosing malfunctions. In the first of two planned upgrades, the fault-summary display will be rebuilt with a more logical task-oriented graphical layout and multiple text fields for malfunction messages. In the second upgrade, information displayed will be changed, such that text fields will indicate only the sources (that is, root causes) of malfunctions; messages that are not operationally useful will no longer appear on the displays. These and other aspects of the upgrades are based on extensive collaboration among astronauts, engineers, and human-factors scientists. The report describes the human-factors principles applied in the upgrades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, J.W.
1983-03-10
A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.
Science and Engineering Indicators 2010
ERIC Educational Resources Information Center
National Science Foundation, 2010
2010-01-01
The Science Indicators series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2010" contains analyses of key aspects of the scope, quality, and vitality of the Nation's science…
Thasler, Wolfgang E.; Weiss, Thomas S.; Schillhorn, Kerrin; Stoll, Peter-Tobias; Irrgang, Bernhard; Jauch, Karl-Walter
2003-01-01
Tissue engineering using human cells and tissue has one of the greatest scientific and economical potential in the coming years. There are public concerns during the ongoing discussion about future trends in life sciences and if ethic boundaries might be respected sufficiently in the course of striving for industrial profit and scientific knowledge. Until now, the legal situation of using human tissue material for research is not clear. Accordingly, transparency of action and patients' information are a central component when handling patient material inside and outside of the patient-specific treatment. Whereas in the field of therapeutic use of tissue (e.g. transplantation) there is an emergency situation by the shortage of organs with the risk of the premature death of the potential recipient, this cannot be claimed for tissue donation for research. The basis of every surgical operation is the treatment contract, which places the doctor under obligation to the careful exercise of medical treatment containing the patient's informed consent. This contract only covers the treatment that is intended to cure the patient and the medical measures that are necessary therefor. The further scientific use of body-substances, which are discarded after an operation, are not included. Therefore a personal and independent written enlightenment of the patient and a declaration of informed consent is necessary. Examples of guidelines for tissue supply, Patients information and consent were worked out by theologists, lawyers, scientists and physicians reflecting their practical experience in transplant surgery and liver cell research. As a consequence to cover the ethical and legal aspect of tissue donation in Germany a charitable state-controlled foundation Human Tissue and Cell Research (HTCR) was introduced and established.
Gas Turbine Engine with Air/Fuel Heat Exchanger
NASA Technical Reports Server (NTRS)
Krautheim, Michael Stephen (Inventor); Chouinard, Donald G. (Inventor); Donovan, Eric Sean (Inventor); Karam, Michael Abraham (Inventor); Vetters, Daniel Kent (Inventor)
2017-01-01
One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954
Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin
2014-01-01
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
Saari, Ryan J; Cooper, David K C
2017-07-01
When clinical xenotransplantation is introduced, the costs associated with acquisition of a genetically engineered pig organ are as yet unknown. How will these costs compare with those currently associated with the acquisition of deceased human organs? An understanding of the financial aspects of deceased organ and tissue procurement in the USA is therefore worthwhile. We have therefore attempted to review certain economic aspects of non-profit and for-profit organizations that provide cadaveric organs and/or tissues for purposes of transplantation into patients with end-stage organ failure, cellular deficiencies, or in need of reconstructive procedures. We briefly consider the laws, organizations, and business practices that govern the acquisition, processing, and/or distribution of cadaveric organs and tissues, and the economic implications of industry practices. In particular, we explore and highlight what we perceive as a lack of transparency and oversight with regard to financial practices, and we question whether donor families would be entirely happy with the business environment that has developed from their altruistic donations. Until xenotransplantation becomes established clinically, which will negate the need for any system of organ procurement and allocation, we suggest that those involved in organ and cell transplantation, as well as those who participate in reconstructive surgery, should take responsibility to ensure that the financial practices associated with procurement are transparent, and overseen/regulated by a responsible authority. We suggest the major transplant societies should take a lead in this respect. The ability to acquire a genetically engineered pig organ whenever required through a simple commercial transaction (as in the acquisition of a life-saving drug) will be greatly to the patient's benefit. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Connecting Primary Health Care: A Comprehensive Pilot Study.
Maghsoudloo, Mehran; Abolhassani, Farid; Lotfibakhshaiesh, Nasrin
2016-07-01
The collection of data within the primary health care facilities in Iran is essentially paper-based. It is focused on family's health, monitoring of non-infectious and infectious diseases. Clearly due to the paper-based nature of the tasks, timely decision making at most can be difficult if not impossible. As part of an on-going electronic health record implementation project at Tehran University of Medical Sciences, for the first time in the region, based on a comprehensive pilot project, four urban healthcare facilities are connected to their headquarters and beyond, covering all aspects of primary health care, for the last four years. Without delving into the technical aspects of its software engineering processes, the progress of the implementation is reported, selection of summarized data is presented, and experience gained thus far are discussed. Four years passed and if time is any important reason to go by, then it is safe to accept that the software architecture and electronic health record structural model implemented are robust and yet extensible. Aims and duration of a pilot study should be clearly defined prior to start and managed till its completion. Resistance to change and particularly to information technology, apart from its technical aspects, is also based on human factors.
Stucki, Gerold; Grimby, Gunnar
2007-05-01
There is a need to organize rehabilitation and related research into distinct scientific fields in order to overcome the current limitations of rehabilitation research. Based on the general distinction in basic, applied and professional sciences applicable to research in general, and the rehabilitation relevant distinction between the comprehensive perspective based on WHO's integrative model of human functioning (ICF) and the partial perspective focusing on the biomedical aspects of functioning, it is possible to identify 5 distinct scientific fields of human functioning and rehabilitation research. These are the emerging human functioning sciences and integrative rehabilitation sciences from the comprehensive perspective, the established biosciences and biomedical rehabilitation sciences and engineering from the partial perspective, and the professional rehabilitation sciences at the cutting edge of research and practice. The human functioning sciences aim to understand human functioning and to identify targets for comprehensive interventions, with the goal of contributing to the minimization of the experience of disability in the population. The biosciences in rehabilitation aim to explain body injury and repair and to identify targets for biomedical interventions. The integrative rehabilitation sciences design and study comprehensive assessments and interventions that integrate biomedical, personal factor and environmental approaches suited to optimize people's performance. The biomedical rehabilitation sciences and engineering study diagnostic measures and interventions suitable to minimize impairment, including symptom control, and to optimize people's capacity. The professional rehabilitation sciences study how to provide best care with the goal of enabling people with health conditions experiencing or likely to experience disability to achieve and maintain optimal functioning in interaction with the environment. The organization of human functioning and rehabilitation research into the 5 distinct scientific fields facilitates the development of academic training programs and career building as well as the development of research structures dedicated to human functioning and rehabilitation research.
3D bioprinting of functional human skin: production and in vivo analysis.
Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L
2016-12-05
Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.
Linear aerospike engine. [for reusable single-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Kirby, F. M.; Martinez, A.
1977-01-01
A description is presented of a dual-fuel modular split-combustor linear aerospike engine concept. The considered engine represents an approach to an integrated engine for a reusable single-stage-to-orbit (SSTO) vehicle. The engine burns two fuels (hydrogen and a hydrocarbon) with oxygen in separate combustors. Combustion gases expand on a linear aerospike nozzle. An engine preliminary design is discussed. Attention is given to the evaluation process for selecting the optimum number of modules or divisions of the engine, aspects of cooling and power cycle balance, and details of engine operation.
What kind of students should be developed through aeronautical engineering education?
NASA Technical Reports Server (NTRS)
Holloway, R. B.
1975-01-01
The educational requirements for future aeronautical engineering students are postulated. The change in aeronautical engineering from increasing aircraft performance without regard to cost is compared with the cost effective aspects of future research. The capabilities of future engineers are discussed with respect to the following areas: (1) problem solving, (2) planning and organizing, (3) communication, and (4) professionalism.
New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community
NASA Technical Reports Server (NTRS)
Cutright, Amanda; Shaughnessy, Brendan
2010-01-01
The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.
Examining Young Students' Problem Scoping in Engineering Design
ERIC Educational Resources Information Center
Watkins, Jessica; Spencer, Kathleen; Hammer, David
2014-01-01
Problem scoping--determining the nature and boundaries of a problem--is an essential aspect of the engineering design process. Some studies from engineering education suggest that beginning students tend to skip problem scoping or oversimplify a problem. However, the ways these studies often characterize students' problem scoping often do not…
Integrating Innovation Skills in an Introductory Engineering Design-Build Course
ERIC Educational Resources Information Center
Liebenberg, Leon; Mathews, Edward Henry
2012-01-01
Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…
Teaching Problem-Solving Skills to Nuclear Engineering Students
ERIC Educational Resources Information Center
Waller, E.; Kaye, M. H.
2012-01-01
Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…
Aeronautical Engineering: A continuing bibliography with indexes (supplement 188)
NASA Technical Reports Server (NTRS)
1985-01-01
This bibliography lists 477 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1985. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems.
ERIC Educational Resources Information Center
Huckaba, Charles E.; Griffin, Ann
1983-01-01
Describes development of an interdisciplinary engineering course called "Social Aspects of the Technical Decision Process." Course content includes such interdisciplinary topics as alternative energy, ecology, and urban planning, which represent traditional engineering concepts. However, social and historical dimensions are built into topics.…
Lawn and Garden Equipment Repair.
ERIC Educational Resources Information Center
Hardway, Jack; And Others
This publication is designed to supplement the Comprehensive Small Engine Rapair guide by covering in detail all aspects of lawn and garden equipment repair not included in general engine repair or the repair of other small engines. It consists of instructional materials for both teachers and students, written in terms of student performance using…
Aspect-Oriented Model-Driven Software Product Line Engineering
NASA Astrophysics Data System (ADS)
Groher, Iris; Voelter, Markus
Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.
The Mathematical Education of Engineers.
ERIC Educational Resources Information Center
Gnedenko, B. V.; Khalil, Z.
1979-01-01
Several general aspects are discussed. These include the role of mathematics in scientific and technical progress, some deficiencies in training, the role of mathematics in engineering faculties, and methods of improving mathematical training. (MP)
Human factors opportunities to improve Ohio's transportation system : executive summary report.
DOT National Transportation Integrated Search
2005-06-01
Human factors engineering or ergonomics is the : area of engineering concerned with the humanmachine : interface. As Ohios road systems are : driven on by people, human factors engineering : is certainly relevant. However, human factors : have oft...
Salvemini, Anthony V; Piza, Eric L; Carter, Jeremy G; Grommon, Eric L; Merritt, Nancy
2015-06-01
Evaluations are routinely conducted by government agencies and research organizations to assess the effectiveness of technology in criminal justice. Interdisciplinary research methods are salient to this effort. Technology evaluations are faced with a number of challenges including (1) the need to facilitate effective communication between social science researchers, technology specialists, and practitioners, (2) the need to better understand procedural and contextual aspects of a given technology, and (3) the need to generate findings that can be readily used for decision making and policy recommendations. Process and outcome evaluations of technology can be enhanced by integrating concepts from human factors engineering and information processing. This systemic approach, which focuses on the interaction between humans, technology, and information, enables researchers to better assess how a given technology is used in practice. Examples are drawn from complex technologies currently deployed within the criminal justice system where traditional evaluations have primarily focused on outcome metrics. Although this evidence-based approach has significant value, it is vulnerable to fully account for human and structural complexities that compose technology operations. Guiding principles for technology evaluations are described for identifying and defining key study metrics, facilitating communication within an interdisciplinary research team, and for understanding the interaction between users, technology, and information. The approach posited here can also enable researchers to better assess factors that may facilitate or degrade the operational impact of the technology and answer fundamental questions concerning whether the technology works as intended, at what level, and cost. © The Author(s) 2015.
Lee, Abraham; Wirtanen, Erik
2012-07-01
The growth of biomedical engineering at The Henry Samueli School of Engineering at the University of California, Irvine (UCI) has been rapid since the Center for Biomedical Engineering was first formed in 1998 [and was later renamed as the Department of Biomedical Engineering (BME) in 2002]. Our current mission statement, “Inspiring Engineering Minds to Advance Human Health,” serves as a reminder of why we exist, what we do, and the core principles that we value and by which we abide. BME exists to advance the state of human health via engineering innovation and practices. To attain our goal, we are empowering our faculty to inspire and mobilize our students to address health problems. We treasure the human being, particularly the human mind and health. We believe that BME is where minds are nurtured, challenged, and disciplined, and it is also where the health of the human is held as a core mission value that deserves our utmost priority (Figure 1). Advancing human health is not a theoretical practice; it requires bridging between disciplines (engineering and medicine) and between communities (academic and industry).
[Pilot plant for microbiological synthesis. Engineer and technological aspects].
Lukanin, A V
2007-01-01
A biotechnological pilot plant (National Research Centre of Antibiotics) and its technical potentialities in production of various biosynthetic products are described. Some engineer and technological aspects of the fermentation equipment and particularly sterilization of the media and apparatus, fermentation broth aeration under sterile conditions and control of biosynthesis technological parameters (t degrees, pO2, P, pH, foaming, etc.) are considered. The pilot plant is designed for fermentation processes under aseptic conditions with the use practically of any object, from bacteria to tissue cultures.
Airfield construction (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Goretskii, Leonid I.; Boguslavskii, Adol'f. M.; Serebrenikov, Vadim A.; Barzdo, V. I.; Leshchitskaia, T. P.; Polosin-Nikitin, S. M.
The principal engineering aspects of airfield construction are discussed. In particular, attention is given to the fundamental principles and organizational aspects of airfield construction; excavation work and airfield layout; construction of drainage systems; foundations and pavements; and quality control and safety engineering. The discussion also covers the operation of various support plants, including concrete production and mixing, production of asphalt-concrete mixtures and organic binders, production of structural steel and reinforced concrete components, and operation of stone quarries and gravel pits.
ERIC Educational Resources Information Center
Boticki, I.; Katic, M.; Martin,S.
2013-01-01
This paper explores the educational benefits of introducing the aspect-oriented programming paradigm into a programming course in a study on a sample of 75 undergraduate software engineering students. It discusses how using the aspect-oriented paradigm, in addition to the object-oriented programming paradigm, affects students' programs, their exam…
Engineering Technical Review Planning Briefing
NASA Technical Reports Server (NTRS)
Gardner, Terrie
2012-01-01
The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.
A Methodology for Investigating Adaptive Postural Control
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Riccio, G. E.
1999-01-01
Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of overt goals. It follows that an essential characteristic of postural behavior is the effective maintenance of the orientation and stability of the sensory and motor "platforms" (e.g., head or shoulders) over variations in the human, the environment and the task. This general skill suggests that individuals should be sensitive to the functional consequences of body configuration and stability. In other words, individuals should perceive the relation between configuration, stability, and performance so that they can adaptively control their interaction with the surroundings. Human-environment interactions constitute robust systems in that individuals can maintain the stability of such interactions over uncertainty about and variations in the dynamics of the interaction. Robust interactions allow individuals to adopt orientations and configurations that are not optimal with respect to purely energetic criteria. Individuals can tolerate variation in postural states, and such variation can serve an important function in adaptive systems. Postural variability generates stimulation which is "textured" by the dynamics of the human-environment system. The texture or structure in stimulation provides information about variation in dynamics, and such information can be sufficient to guide adaption in control strategies. Our method were designed to measure informative patterns of movement variability.
Reusability aspects for space transportation rocket engines: programmatic status and outlook
NASA Astrophysics Data System (ADS)
Preclik, D.; Strunz, R.; Hagemann, G.; Langel, G.
2011-09-01
Rocket propulsion systems belong to the most critical subsystems of a space launch vehicle, being illustrated in this paper by comparing different types of transportation systems. The aspect of reusability is firstly discussed for the space shuttle main engine, the only rocket engine in the world that has demonstrated multiple reuses. Initial projections are contrasted against final reusability achievements summarizing three decades of operating the space shuttle main engine. The discussion is then extended to engines employed on expendable launch vehicles with an operational life requirement typically specifying structural integrities up to 20 cycles (start-ups) and an accumulated burning time of about 6,000 s (Vulcain engine family). Today, this life potential substantially exceeds the duty cycle of an expendable engine. It is actually exploited only during the development and qualification phase of an engine when system reliability is demonstrated on ground test facilities with a reduced number of hardware sets that are subjected to an extended number of test cycles and operation time. The paper will finally evaluate the logic and effort necessary to qualify a reusable engine for a required reliability and put this result in context of possible cost savings realized from reuse operations over a time span of 25 years.
NASA Astrophysics Data System (ADS)
Mena, Irene B.; Diefes-Dux, Heidi A.
2012-04-01
Students' perceptions of engineering have been documented through studies involving interviews, surveys, and word associations that take a direct approach to asking students about various aspects of their understanding of engineering. Research on perceptions of engineering rarely focuses on how students would portray engineering to others. First-year engineering student teams proposed a museum exhibit, targeted to middle school students, to explore the question "What is engineering?" The proposals took the form of a poster. The overarching research question focuses on how these students would portray engineering to middle school students as seen through their museum exhibit proposals. A preliminary analysis was done on 357 posters to determine the overall engineering themes for the proposed museum exhibits. Forty of these posters were selected and, using open coding, more thoroughly analyzed to learn what artifacts/objects, concepts, and skills student teams associate with engineering. These posters were also analyzed to determine if there were any differences by gender composition of the student teams. Building, designing, and teamwork are skills the first-year engineering students link to engineering. Regarding artifacts, students mentioned those related to transportation and structures most often. All-male teams were more likely to focus on the idea of space and to mention teamwork and designing as engineering skills; equal-gender teams were more likely to focus on the multidisciplinary aspect of engineering. This analysis of student teams' proposals provides baseline data, positioning instructors to develop and assess instructional interventions that stretch students' self-exploration of engineering.
Anti-Ebola therapies based on monoclonal antibodies: Current state and challenges ahead
González-González, E; Alvarez, MM; Márquez-Ipiña, AR; Santiago, G Trujillo-de; Rodríguez-Martínez, LM; Annabi, N; Khademhosseini, A
2017-01-01
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization (WHO) declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the Ebola virus glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly. PMID:26611830
Mediodorsal thalamus and cognition in non-human primates
Baxter, Mark G.
2013-01-01
Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits. PMID:23964206
Beta-propellers: associated functions and their role in human diseases.
Pons, Tirso; Gómez, Raú; Chinea, Glay; Valencia, Alfonso
2003-03-01
The beta-propeller fold appears as a very fascinating architecture based on four-stranded antiparallel and twisted beta-sheets, radially arranged around a central tunnel. Similar to the alpha/beta-barrel (TIM-barrel) fold, the beta-propeller has a wide range of different functions, and is gaining substantial attention. Some proteins containing beta-propeller domains have been implicated in the pathogenesis of a variety of diseases such as cancer, Alzheimer, Huntington, arthritis, familial hypercholesterolemia, retinitis pigmentosa, osteogenesis, hypertension, and microbial and viral infections. This article reviews some aspects of 3D structure, amino acids sequence regularities, and biological functions of the proteins containing beta-propeller domains. Major emphasis has been laid on beta-propellers whose functions are associated to human diseases. Recent research efforts reported in the fields of protein engineering, drug design, and protein structure-function relationship studies, concerning the beta-propeller architecture, have also been discussed.
Mediodorsal thalamus and cognition in non-human primates.
Baxter, Mark G
2013-01-01
Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits.
Ultrathin conformal devices for precise and continuous thermal characterization of human skin
Webb, R. Chad; Bonifas, Andrew P.; Behnaz, Alex; Zhang, Yihui; Yu, Ki Jun; Cheng, Huanyu; Shi, Mingxing; Bian, Zuguang; Liu, Zhuangjian; Kim, Yun-Soung; Yeo, Woon-Hong; Park, Jae Suk; Song, Jizhou; Li, Yuhang; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.
2013-01-01
Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples. PMID:24037122
Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead.
González-González, Everardo; Alvarez, Mario Moisés; Márquez-Ipiña, Alan Roberto; Trujillo-de Santiago, Grissel; Rodríguez-Martínez, Luis Mario; Annabi, Nasim; Khademhosseini, Ali
2017-02-01
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.
Ultrathin conformal devices for precise and continuous thermal characterization of human skin
NASA Astrophysics Data System (ADS)
Webb, R. Chad; Bonifas, Andrew P.; Behnaz, Alex; Zhang, Yihui; Yu, Ki Jun; Cheng, Huanyu; Shi, Mingxing; Bian, Zuguang; Liu, Zhuangjian; Kim, Yun-Soung; Yeo, Woon-Hong; Park, Jae Suk; Song, Jizhou; Li, Yuhang; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.
2013-10-01
Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.
Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?
Burnouf, Thierry; Strunk, Dirk; Koh, Mickey B C; Schallmoser, Katharina
2016-01-01
The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flexible manufacturing of aircraft engine parts
NASA Astrophysics Data System (ADS)
Hassan, Ossama M.; Jenkins, Douglas M.
1992-06-01
GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.
Health Assessment Document for Diesel Exhaust (Revised ...
This External Review Draft version of this assessment updates three earlier drafts (1999, 1998 and 1994) that were reviewed by the Clean Air Scientific Advisory Committee (CASAC) of the Agency's Science Advisory Board (SAB). The assessment characterizes the possible human health hazards and related exposure-response aspects of those hazards related to environmental exposure to diesel exhaust. The final assessment will incorporate peer review comments provided by the CASAC in 2000 and will take acount of public comments received during the public review period. This is a health hazard assessment. The purpose of the assessment is to identify the key health hazards associated with environmental exposure to diesel exhaust. Information from earlier draft versions of this assessment were used to support EPA regulatory decision making about emission controls for On Road Heavy Duty Diesel Engines and Off Road Diesel Engine Emissions. Also information from the assessment contributes to a nationwide analysis of air toxics to determine the highest public health priorities for future air pollution control programs.
ERIC Educational Resources Information Center
Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia
2014-01-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…
Shape Memory Alloy Actuator Design: CASMART Collaborative Best Practices
NASA Technical Reports Server (NTRS)
Benafan, Othmane; Brown, Jeff; Calkins, F. Tad; Kumar, Parikshith; Stebner, Aaron; Turner, Travis; Vaidyanathan, Raj; Webster, John; Young, Marcus L.
2011-01-01
Upon examination of shape memory alloy (SMA) actuation designs, there are many considerations and methodologies that are common to them all. A goal of CASMART's design working group is to compile the collective experiences of CASMART's member organizations into a single medium that engineers can then use to make the best decisions regarding SMA system design. In this paper, a review of recent work toward this goal is presented, spanning a wide range of design aspects including evaluation, properties, testing, modeling, alloy selection, fabrication, actuator processing, design optimization, controls, and system integration. We have documented each aspect, based on our collective experiences, so that the design engineer may access the tools and information needed to successfully design and develop SMA systems. Through comparison of several case studies, it is shown that there is not an obvious single, linear route a designer can adopt to navigate the path of concept to product. SMA engineering aspects will have different priorities and emphasis for different applications.
Computational structural mechanics engine structures computational simulator
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1989-01-01
The Computational Structural Mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures.
ERIC Educational Resources Information Center
Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline
2006-01-01
Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…
Motivational and Adaptational Factors of Successful Women Engineers
ERIC Educational Resources Information Center
Bornsen, Susan Edith
2012-01-01
It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged…
Discovering English with the Sketch Engine
ERIC Educational Resources Information Center
Thomas, James
2014-01-01
"Discovering English with the Sketch Engine" is the title of a new book (Thomas, 2014) which introduces the use of corpora in language study, teaching, writing and translating. It focuses on using the Sketch Engine to identify patterns of normal usage in many aspects of English ranging from morphology to discourse and pragmatics. This…
Towards a Controlled Vocabulary on Software Engineering Education
ERIC Educational Resources Information Center
Pizard, Sebastián; Vallespir, Diego
2017-01-01
Software engineering is the discipline that develops all the aspects of the production of software. Although there are guidelines about what topics to include in a software engineering curricula, it is usually unclear which are the best methods to teach them. In any science discipline the construction of a classification schema is a common…
How to Address the Volitional Dimension of the Engineer's Social Responsibility
ERIC Educational Resources Information Center
Heikkero, T.
2008-01-01
In this paper I argue that volitional aspects, i.e. ethos, attitude, pathos, will, underlying emotion, in engineering action need to be addressed when teaching social responsibility within the engineering curriculum. After presenting reasons for this claim, I look at two different, but not mutually exclusive, approaches to address volitional…
Incorporating Critical Thinking into an Engineering Undergraduate Learning Environment
ERIC Educational Resources Information Center
Adair, Desmond; Jaeger, Martin
2016-01-01
Critical thinking extends to all aspects of professional engineering, especially in technical development, and, since the introduction of the ABET 2000 criteria, there has been an increased emphasis in engineering education on the development of critical thinking skills. What is hoped for is that the students obtain critical thinking skills to…
Discovery Camp Excites Students about Engineering and Technology Careers
ERIC Educational Resources Information Center
Massiha, G. H.
2011-01-01
In the United States and elsewhere, there is a dramatic shortage of engineers and technologists. And, unfortunately, these professions often suffer from a lack of awareness among K-12 students. Clearly, educators need to show students the very exciting and lucrative aspects of these fields. Engineering and technology are consistently listed by…
Engineer's Needs for Scientific and Technical Information.
ERIC Educational Resources Information Center
David, A., Ed.; And Others
This study has as its main object the formulation of an approach, as global and comprehensive as possible, to the multiple aspects of the engineer's needs for scientific and technical information. The basis of the study is an analysis of the engineer's role, its characteristics, different specialties, levels of training, and categories of…
NASA Astrophysics Data System (ADS)
Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.
2015-04-01
The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.
He, Fei; Murabito, Ettore; Westerhoff, Hans V
2016-04-01
Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).
The Human Side of Information's Converging Technology.
ERIC Educational Resources Information Center
Williams, Berney
1982-01-01
Discusses current issues in the design of information systems, noting contributions from three professions--computer science, human factors engineering, and information science. The eclectic nature of human factors engineering and the difficulty of drawing together studies with human engineering or software psychological components from diverse…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Jesse Rebol
The engineering discipline is a profession of acquiring and applying technical knowledge, and the focus of engineering psychology is to optimize the effectiveness and efficiency with which human activities are conducted. Having human factors and engineering psychology be a permanent part of the engineering curriculum will make students aware of them, so they can learn from past experiences and avoid making the same mistakes their peers made. (Should be close to 200 words)
de Langre, Emmanuel
2012-03-15
The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.
Strategy for preventing the waste of human resources
NASA Astrophysics Data System (ADS)
Jones, William E.
1992-05-01
Rapid technological advances and the declining educational preparedness of industrial workers has established a need for new training strategies and initiatives regarding human resource development. The productivity, competitiveness, motivation, and creativity of our people determines whether our business enterprises succeed or fail during the next decade. Due to a change process that many organizations have undertaken to become more competitive toward the year 2000, many of the previous styles of engineering leadership that involves the management of projects and human resources require new approaches. It is also important to recognize that technology has its limits and a broader focus to include the human aspects of accomplishing jobs over the long term is more critical than ever before. More autonomy and the responsibility for broader practices by the professional staff requires that the professional worker operate differently. Business planning and development of the organization's future strategic intent requires a high priority on the human resource linkage to the business plans and strategies. A review of past practices to motivate the worker toward higher productivity clearly shows that past techniques are not as effective in today's work environment. Many practices of organizational and individual leadership don't fit today's approach of worker involvement because they were designed for administrative supervisory control processes. Therefore, if we are going to organize a business strategy that prevents the `waste of human resources,' we need to develop a strategy that is appropriate for the times which considers the attitude of the employees and their work environment. Having worked with scientists and engineers for the majority of my twenty-five year career, I know they see and appreciate the logic of a formula. A formula fits when developing a future strategy because a formula can become a model to enhance balanced planning. In this paper, I want to share this simple formula and illustrate how I have utilized it as a tool for workshop discussions, and human resources planning purposes.
Air Force Human Systems Integration (HSI) in Test and Evaluation (T&E)
2012-08-01
allow human aspects related to system design to be tested and evaluated. 15. SUBJECT TERMS Air Force, Human Systems Integration, HSI, Test and...Community that would allow human aspects related to system design to be tested and evaluated. The intent was to identify and develop means for greater...related documentation in order to monitor the human related aspects for system development and design . To address these work areas, the team adopted
International Space Station Research Benefits for Humanity
NASA Technical Reports Server (NTRS)
Thumm, Tracy; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Kamigaichi, Shigeki; Sorokin, Igor V.; Zell, Martin; Fuglesang, Christer;
2012-01-01
The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth -- not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.
International Space Station Benefits for Humanity
NASA Technical Reports Server (NTRS)
Thumm, Tracy L.; Robinson, Julie A.; Buckley, Nicole; Johnson-Green, Perry; Kamigaichi, Shigeki; Karabadzhak, George; Nakamura, Tai; Sabbagh, Jean; Sorokin, Igor; Zell, Martin
2012-01-01
The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth--not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.
The Role of Leadership in the Development of the Creative School in Palestine
ERIC Educational Resources Information Center
Sabbah, Suheir Sulieman
2017-01-01
The world faces a great developmental revolution in all scientific fields which in its turn affects different aspects of life, such as: the medical, engineering and educational fields, etc. The educational school's aspect in particular will be the topic of this research. It tries to assist in developing the different aspects of the educational…
Understanding safety and production risks in rail engineering planning and protection.
Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia
2009-07-01
Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.
A Review: Characteristics of Noise Absorption Material
NASA Astrophysics Data System (ADS)
Amares, S.; Sujatmika, E.; Hong, T. W.; Durairaj, R.; Hamid, H. S. H. B.
2017-10-01
Noise is always treated as a nuisance to human and even noise pollution appears in the environmental causing discomfort. This also concerns the engineering design that tends to cultivate this noise propagation. Solution such as using material to absorb the sound have been widely used. The fundamental of the sound absorbing propagation, sound absorbing characteristics and its factors are minimally debated. Furthermore, the method in order to pertain sound absorbing related to the sound absorption coefficient is also limited, as many studies only contributes in result basis and very little in literature aspect. This paper revolves in providing better insight on the importance of sound absorption and the materials factors in obtaining the sound absorption coefficient.
A review of standardized metabolic phenotyping of animal models.
Rozman, Jan; Klingenspor, Martin; Hrabě de Angelis, Martin
2014-10-01
Metabolic phenotyping of genetically modified animals aims to detect new candidate genes and related metabolic pathways that result in dysfunctional energy balance regulation and predispose for diseases such as obesity or type 2 diabetes mellitus. In this review, we provide a comprehensive overview on the technologies available to monitor energy flux (food uptake, bomb calorimetry of feces and food, and indirect calorimetry) and body composition (qNMR, DXA, and MRI) in animal models for human diseases with a special focus on phenotyping methods established in genetically engineered mice. We use an energy flux model to illustrate the principles of energy allocation, describe methodological aspects how to monitor energy balance, and introduce strategies for data analysis and presentation.
Aeronautical Engineering: A continuing bibliography with indexes (supplement 175)
NASA Technical Reports Server (NTRS)
1984-01-01
This bibliography lists 467 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1984. Topics cover varied aspects of aeronautical engineering, geoscience, physics, astronomy, computer science, and support facilities.
Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup
2016-01-01
This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.
Workstations in Higher Education.
ERIC Educational Resources Information Center
Weissman, Ronald F. E.; And Others
1988-01-01
Five articles discuss various aspects of workstations and their applications in higher education. Highlights include microcomputers and workstations; UNIX operating system; campus-wide networks; software; Project SOCRATES and the interdisciplinary aspect of engineering; mechanical system design and simulation; and the Creation Station, a…
Human Factors Engineering Program Review Model
2004-02-01
Institute, 1993). ANSI HFS-100: American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (American National... American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI HFS-100-1988). Santa Monica, California
2006-07-01
31 July 1995 3. Human Engineering Guide to Equipment Design, Department of Defense, Washington D.C., 1972 4. American National Standard for Human Factors Engineering of Visual Display Terminal Workstations , ANSI
NASA Astrophysics Data System (ADS)
Kannape, Oliver Alan; Lenggenhager, Bigna
2016-03-01
From brain-computer interfaces to wearable robotics and bionic prostheses - intelligent assistive devices have already become indispensable in the therapy of people living with reduced sensorimotor functioning of their physical body, be it due to spinal cord injury, amputation or brain lesions [1]. Rapid technological advances will continue to fuel this field for years to come. As Pazzaglia and Molinari [2] rightly point out, progress in this domain should not solely be driven by engineering prowess, but utilize the increasing psychological and neuroscientific understanding of cortical body-representations and their plasticity [3]. We argue that a core concept for such an integrated embodiment framework was introduced with the formalization of the forward model for sensorimotor control [4]. The application of engineering concepts to human movement control paved the way for rigorous computational and neuroscientific analysis. The forward model has successfully been adapted to investigate principles underlying aspects of bodily awareness such as the sense of agency in the comparator framework [5]. At the example of recent advances in lower limb prostheses, we propose a cross-disciplinary, integrated embodiment framework to investigate the sense of agency and the related sense of body ownership for such devices. The main onus now is on the engineers and cognitive scientists to embed such an approach into the design of assistive technology and its evaluation battery.
11 things a geologist thinks an engineer should know about carbonate beaches
Halley, R.B.; ,
2000-01-01
A review is given on the geological aspects of carbonate beaches that a geologist thinks may be useful for an engineer. Though, Geologists not involved in engineering problems may find it difficult to know what an engineer should understand about carbonate beaches. Nevertheless, there are at least eleven topics that are potentially very useful for engineers to keep in mind. This paper emits the discussions of certain kinds of carbonate shorelines that are beyond the scope of engineering issues, and focuses on sand-sized coastal carbonate deposits.
Small Engine Repair Modules (Workbook) = Reparacion de Motores Pequenos (Guia de Trabajo)
ERIC Educational Resources Information Center
New York State Dept. of Correctional Services, Albany.
This package contains an English-Language set of task procedure sheets dealing with small-engine repair and a Spanish translation of the same material. Addressed in the individual sections of the manual are the following aspects of engine tune-up, reconditioning, and troubleshooting: servicing air cleaners; cleaning gas tanks, fuel lines, and fuel…
The Curiosity Mars Rover's Fault Protection Engine
NASA Technical Reports Server (NTRS)
Benowitz, Ed
2014-01-01
The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.
Using the Two-Stroke Engine to Develop Technological Literacy
ERIC Educational Resources Information Center
Preble, Brian C.
2018-01-01
The two-stroke engine is an engineering marvel that has been incorporated into many aspects of modern-day life. While many seek to eliminate the two-stroke, others seek to revive this simple and effective power plant, aiming to make it more environmentally friendly and fuel-efficient. If successful, improvements could be far-reaching and…
Aeronautical Engineering: A continuing bibliography
NASA Technical Reports Server (NTRS)
1982-01-01
This bibliography lists 347 reports, articles and other documents introduced into the scientific and technical information system. Documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated compounds, equipment, and systems are included. Research and development in aerodynamics, aeronautics and ground support equipment for aeronautical vehicles are also included.
Engineering aspects of seismological studies in Peru
Ocola, L.
1982-01-01
In retrospect, the Peruvian national long-range earthquake-study program began after the catastrophic earthquake of May 31, 1970. This earthquake triggered a large snow avalanche from Huascaran mountain, killing over 60,000 people, and covering with mud small cities and tens of villages in the Andean valley of Callejon de Huaylas, Huaraz. Since then, great efforts have been made to learn about the natural seismic environment and its engineering and social aspects. The Organization of American States (OAS)has been one of the most important agencies in the development of the program.
NASA Technical Reports Server (NTRS)
Sokhey, Jagdish S. (Inventor); Pierluissi, Anthony F. (Inventor)
2017-01-01
One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
ERIC Educational Resources Information Center
Alden, John D.
Contained in this booklet are the speeches given at the annual joint meeting of the Engineering Manpower Commission and the Scientific Manpower Commission. Each dealt with some problem aspect of the engineer-scientist interface. The presentation by Rear Admiral W. C. Hushing of the U. S. Navy was entitled "The Impact of High Performance Science…
Engineered nanomaterials: Exposures, hazards and risk prevention.
Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public) are either developing or using engineered nanomaterials (ENMs). However, understanding of the health and sa...
Civil engineering in the Arctic offshore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, F.L.; Machemehl, J.L.
1985-01-01
This book presents the current state of practice and theory in the civil engineering aspects of offshore development in the Arctic. It also covers the emerging concepts and requirements, research and development needs, and a critique of present undergraduate programmes.
Aeronautical Engineering: A Continuing Bibliography. Supplement 421
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP#2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Engine Component Retirement for Cause. Volume 1. Executive Summary
1987-08-01
components of all future engines. A mejor factor in the success of this progrm in taking Retirement for Cause from a concept to reality was the high level of...engine was chosen as the demonstration/validation vehicle for the Retirement for Cause (RCF) program. It is an augmented turbofan engine in the...inspections using surface replication; aspect ratios were determined from post test fractography . The crack size observed from the testing was compared to
NASA Astrophysics Data System (ADS)
Emond, Claude; Kouassi, Serge; Schuster, Frédéric
2013-04-01
Nanomaterials are widely present in many industrial sectors (e.g., chemical, biomedical, environment), and their application is expected to significantly expand in the coming years. However, nanomaterial use raises many questions about the potential risks to human health and the environment and, more specifically, to occupational health. The available literature supports the ability of the lung, gastrointestinal tract, and skin to act as significant barriers against systemic exposure to many nanomaterials. However, because a potential risk issue exists about the toxicity of nanomaterials to the biological material, tools need to be developed for improving the risk management of the regulators. The goal is to develop a tool that examines the current knowledge base regarding the health risks posed by engineered nanoparticles to improve nanotechnology safety prior to the marketing phase. The approach proposed during this work was to establish a safety assessment constructed on a decision-control pathway regarding nanomaterial production and consumer's product to integrate different aspects. These aspects include: (1) primarily research and identification of the nanomaterial base of physicochemical properties, toxicity, and application; (2) the occupational exposure risk during the manufacturing process; (3) and the engineered nanomaterial upon the consumer product. This approach provides important parameters to reduce the uncertainty related to the production of nanomaterials prior their commercialization, reduce the reluctance from the industry, and provide a certification tool of sanitary control for the regulators. This work provides a better understanding of a critical issue of nanomaterials and consumer safety.
Human Factors Engineering and Ergonomics in Systems Engineering
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban
2017-01-01
The study, discovery, and application of information about human abilities, human limitations, and other human characteristics to the design of tools, devices, machines, systems, job tasks and environments for effective human performance.
Demonstration of a Safety Analysis on a Complex System
NASA Technical Reports Server (NTRS)
Leveson, Nancy; Alfaro, Liliana; Alvarado, Christine; Brown, Molly; Hunt, Earl B.; Jaffe, Matt; Joslyn, Susan; Pinnell, Denise; Reese, Jon; Samarziya, Jeffrey;
1997-01-01
For the past 17 years, Professor Leveson and her graduate students have been developing a theoretical foundation for safety in complex systems and building a methodology upon that foundation. The methodology includes special management structures and procedures, system hazard analyses, software hazard analysis, requirements modeling and analysis for completeness and safety, special software design techniques including the design of human-machine interaction, verification, operational feedback, and change analysis. The Safeware methodology is based on system safety techniques that are extended to deal with software and human error. Automation is used to enhance our ability to cope with complex systems. Identification, classification, and evaluation of hazards is done using modeling and analysis. To be effective, the models and analysis tools must consider the hardware, software, and human components in these systems. They also need to include a variety of analysis techniques and orthogonal approaches: There exists no single safety analysis or evaluation technique that can handle all aspects of complex systems. Applying only one or two may make us feel satisfied, but will produce limited results. We report here on a demonstration, performed as part of a contract with NASA Langley Research Center, of the Safeware methodology on the Center-TRACON Automation System (CTAS) portion of the air traffic control (ATC) system and procedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal Radar Approach CONtrol). CTAS is an automated system to assist controllers in handling arrival traffic in the DFW area. Safety is a system property, not a component property, so our safety analysis considers the entire system and not simply the automated components. Because safety analysis of a complex system is an interdisciplinary effort, our team included system engineers, software engineers, human factors experts, and cognitive psychologists.
Lateral support systems and underpinning, volume III : construction methods.
DOT National Transportation Integrated Search
1976-04-01
This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...
Lateral support systems and underpinning, volume II : design fundamentals.
DOT National Transportation Integrated Search
1976-04-01
This report provides current information and design guidelines on cut-and-cover : tunneling for practicing engineers. The main emphasis is on the geotechnical : aspects of engineering. Included in this volume is a state-of-the-art summary of : displa...
Lateral Support Systems And Underpinning. Volume II. Design Fundamentals
DOT National Transportation Integrated Search
1976-04-01
This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...
Experimental identification and analytical modelling of human walking forces: Literature review
NASA Astrophysics Data System (ADS)
Racic, V.; Pavic, A.; Brownjohn, J. M. W.
2009-09-01
Dynamic forces induced by humans walking change simultaneously in time and space, being random in nature and varying considerably not only between different people but also for a single individual who cannot repeat two identical steps. Since these important aspects of walking forces have not been adequately researched in the past, the corresponding lack of knowledge has reflected badly on the quality of their mathematical models used in vibration assessments of pedestrian structures such as footbridges, staircases and floors. To develop better force models which can be used with more confidence in the structural design, an adequate experimental and analytical approach must be taken to account for their complexity. This paper is the most comprehensive review published to date, of 270 references dealing with different experimental and analytical characterizations of human walking loading. The source of dynamic human-induced forces is in fact in the body motion. To date, human motion has attracted a lot of interest in many scientific branches, particularly in medical and sports science, bioengineering, robotics, and space flight programs. Other fields include biologists of various kinds, physiologists, anthropologists, computer scientists (graphics and animation), human factors and ergonomists, etc. It resulted in technologically advanced tools that can help understanding the human movement in more detail. Therefore, in addition to traditional direct force measurements utilizing a force plate and an instrumented treadmill, this review also introduces methods for indirect measurement of time-varying records of walking forces via combination of visual motion tracking (imaging) data and known body mass distribution. The review is therefore an interdisciplinary article that bridges the gaps between biomechanics of human gait and civil engineering dynamics. Finally, the key reason for undertaking this review is the fact that human-structure dynamic interaction and pedestrian synchronization when walking on more or less perceptibly moving structures are increasingly giving serious cause for concern in vibration serviceability design. There is a considerable uncertainty about how excessive structural vibrations modify walking and hence affect pedestrian-induced forces, significantly in many cases. Modelling of this delicate mechanism is one of the challenges that the international civil structural engineering community face nowadays and this review thus provides a step toward understanding better the problem.
Li, Nan; Stein, Richard S L; He, Wei; Komives, Elizabeth; Wang, Wei
2013-10-01
Methylation is one of the important post-translational modifications that play critical roles in regulating protein functions. Proteomic identification of this post-translational modification and understanding how it affects protein activity remain great challenges. We tackled this problem from the aspect of methylation mediating protein-protein interaction. Using the chromodomain of human chromobox protein homolog 6 as a model system, we developed a systematic approach that integrates structure modeling, bioinformatics analysis, and peptide microarray experiments to identify lysine residues that are methylated and recognized by the chromodomain in the human proteome. Given the important role of chromobox protein homolog 6 as a reader of histone modifications, it was interesting to find that the majority of its interacting partners identified via this approach function in chromatin remodeling and transcriptional regulation. Our study not only illustrates a novel angle for identifying methyllysines on a proteome-wide scale and elucidating their potential roles in regulating protein function, but also suggests possible strategies for engineering the chromodomain-peptide interface to enhance the recognition of and manipulate the signal transduction mediated by such interactions.
Human Factors for Nursing: From In-Situ Testing to Mobile Usability Engineering.
Kushniruk, Andre W; Borycki, Elizabeth M; Solvoll, Terje; Hullin, Carola
2016-01-01
The tutorial goal is to familiarize participants with human aspects of health informatics and human-centered approaches to the design, evaluation and deployment of both usable and safe healthcare information systems. The focus will be on demonstrating and teaching practical and low-cost methods for evaluating mobile applications in nursing. Basic background to testing methods will be provided, followed by live demonstration of the methods. Then the audience will break into small groups to explore the application of the methods to applications of interest (there will be a number of possible applications that will be available for applications in areas such as electronic health records and decision support, however, if the groups have applications of specific interest to them that will be possible). The challenges of conducting usability testing, and in particular mobile usability testing will be discussed along with practical solutions. The target audience includes practicing nurses and nurse researchers, nursing informatics specialists, nursing students, nursing managers and health informatics professionals interested in improving the usability and safety of healthcare applications.
Physical intelligence does matter to cumulative technological culture.
Osiurak, François; De Oliveira, Emmanuel; Navarro, Jordan; Lesourd, Mathieu; Claidière, Nicolas; Reynaud, Emanuelle
2016-08-01
Tool-based culture is not unique to humans, but cumulative technological culture is. The social intelligence hypothesis suggests that this phenomenon is fundamentally based on uniquely human sociocognitive skills (e.g., shared intentionality). An alternative hypothesis is that cumulative technological culture also crucially depends on physical intelligence, which may reflect fluid and crystallized aspects of intelligence and enables people to understand and improve the tools made by predecessors. By using a tool-making-based microsociety paradigm, we demonstrate that physical intelligence is a stronger predictor of cumulative technological performance than social intelligence. Moreover, learners' physical intelligence is critical not only in observational learning but also when learners interact verbally with teachers. Finally, we show that cumulative performance is only slightly influenced by teachers' physical and social intelligence. In sum, human technological culture needs "great engineers" to evolve regardless of the proportion of "great pedagogues." Social intelligence might play a more limited role than commonly assumed, perhaps in tool-use/making situations in which teachers and learners have to share symbolic representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Organic Creativity for Well-Being in the Post-Information Society.
Corazza, Giovanni Emanuele
2017-11-01
The editorial dwells upon the technology-driven evolution from the Industrial to the Post-Information Society, indicating that this transition will bring about drastic transformations in our way of living, starting from the job market and then pervading all aspects at both individual and social levels. Great opportunities will come together with unprecedented challenges to living as we have always known it. In this innovation-filled scenario, it is argued that human creativity becomes the distinctive ability to provide dignity at first and survival in the long term. The term organic creativity is introduced to indicate those conditions, attitudes, and actions that bear the potential to be at the same time productive in socio-economic terms and conducive to human well-being. As a consequence, the role of psychologists in an open cooperation with sociologists, economists, computer scientists, engineers and others, will be as central as ever in establishing healthy collaboration modes between humans and machines, and large investments in related multidisciplinary scientific research are advocated to establish organic creativity as a discipline that should permeate every educational level, as well as our professional and everyday lives.
Organic Creativity for Well-Being in the Post-Information Society
Corazza, Giovanni Emanuele
2017-01-01
The editorial dwells upon the technology-driven evolution from the Industrial to the Post-Information Society, indicating that this transition will bring about drastic transformations in our way of living, starting from the job market and then pervading all aspects at both individual and social levels. Great opportunities will come together with unprecedented challenges to living as we have always known it. In this innovation-filled scenario, it is argued that human creativity becomes the distinctive ability to provide dignity at first and survival in the long term. The term organic creativity is introduced to indicate those conditions, attitudes, and actions that bear the potential to be at the same time productive in socio-economic terms and conducive to human well-being. As a consequence, the role of psychologists in an open cooperation with sociologists, economists, computer scientists, engineers and others, will be as central as ever in establishing healthy collaboration modes between humans and machines, and large investments in related multidisciplinary scientific research are advocated to establish organic creativity as a discipline that should permeate every educational level, as well as our professional and everyday lives. PMID:29358976
Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets
Sun, Xingshen; Yan, Ziying; Yi, Yaling; Li, Ziyi; Lei, Diana; Rogers, Christopher S.; Chen, Juan; Zhang, Yulong; Welsh, Michael J.; Leno, Gregory H.; Engelhardt, John F.
2008-01-01
Somatic cell gene targeting combined with nuclear transfer cloning presents tremendous potential for the creation of new, large-animal models of human diseases. Mouse disease models often fail to reproduce human phenotypes, underscoring the need for the generation and study of alternative disease models. Mice deficient for CFTR have been poor models for cystic fibrosis (CF), lacking many aspects of human CF lung disease. In this study, we describe the production of a CFTR gene–deficient model in the domestic ferret using recombinant adeno-associated virus–mediated gene targeting in fibroblasts, followed by nuclear transfer cloning. As part of this approach, we developed a somatic cell rejuvenation protocol using serial nuclear transfer to produce live CFTR-deficient clones from senescent gene-targeted fibroblasts. We transferred 472 reconstructed embryos into 11 recipient jills and obtained 8 healthy male ferret clones heterozygous for a disruption in exon 10 of the CFTR gene. To our knowledge, this study represents the first description of genetically engineered ferrets and describes an approach that may be of substantial utility in modeling not only CF, but also other genetic diseases. PMID:18324338
Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin
2018-01-01
Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.
A porcine model of osteosarcoma
Saalfrank, A; Janssen, K-P; Ravon, M; Flisikowski, K; Eser, S; Steiger, K; Flisikowska, T; Müller-Fliedner, P; Schulze, É; Brönner, C; Gnann, A; Kappe, E; Böhm, B; Schade, B; Certa, U; Saur, D; Esposito, I; Kind, A; Schnieke, A
2016-01-01
We previously produced pigs with a latent oncogenic TP53 mutation. Humans with TP53 germline mutations are predisposed to a wide spectrum of early-onset cancers, predominantly breast, brain, adrenal gland cancer, soft tissue sarcomas and osteosarcomas. Loss of p53 function has been observed in >50% of human cancers. Here we demonstrate that porcine mesenchymal stem cells (MSCs) convert to a transformed phenotype after activation of latent oncogenic TP53R167H and KRASG12D, and overexpression of MYC promotes tumorigenesis. The process mimics key molecular aspects of human sarcomagenesis. Transformed porcine MSCs exhibit genomic instability, with complex karyotypes, and develop into sarcomas on transplantation into immune-deficient mice. In pigs, heterozygous knockout of TP53 was sufficient for spontaneous osteosarcoma development in older animals, whereas homozygous TP53 knockout resulted in multiple large osteosarcomas in 7–8-month-old animals. This is the first report that engineered mutation of an endogenous tumour-suppressor gene leads to invasive cancer in pigs. Unlike in Trp53 mutant mice, osteosarcoma developed in the long bones and skull, closely recapitulating the human disease. These animals thus promise a model for juvenile osteosarcoma, a relatively uncommon but devastating disease. PMID:26974205
A first vascularized skin equivalent as an alternative to animal experimentation.
Groeber, Florian; Engelhardt, Lisa; Lange, Julia; Kurdyn, Szymon; Schmid, Freia F; Rücker, Christoph; Mielke, Stephan; Walles, Heike; Hansmann, Jan
2016-01-01
Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.
Aeronautical Engineering: A Continuing Bibliography with Indexes. SUPPL-422
NASA Technical Reports Server (NTRS)
2000-01-01
This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 405
NASA Technical Reports Server (NTRS)
1999-01-01
This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 392
NASA Technical Reports Server (NTRS)
1999-01-01
This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
ERIC Educational Resources Information Center
Howard, Sarah K.; Khosronejad, Maryam; Calvo, Rafael A.
2017-01-01
To be fully prepared for the professional workplace, Engineering students need to be able to effectively communicate. However, there has been a growing concern in the field about students' preparedness for this aspect of their future work. It is argued that online writing tools, to engage numbers of students in the writing process, can support…
Aeronautical engineering: A continuing bibliography with indexes (supplement 319)
NASA Technical Reports Server (NTRS)
1995-01-01
This report lists 349 reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
ERIC Educational Resources Information Center
Periago, M. Cristina; Bohigas, Xavier
2005-01-01
The aim of this research was to evaluate and analyse second-year industrial engineering and chemical engineering students prior knowledge of conceptual aspects of "circuit theory". Specifically, we focused on the basic concepts of electric potential and current intensity and on the fundamental relationship between them as expressed by Ohm's law.…
Human Flesh Search Engine and Online Privacy.
Zhang, Yang; Gao, Hong
2016-04-01
Human flesh search engine can be a double-edged sword, bringing convenience on the one hand and leading to infringement of personal privacy on the other hand. This paper discusses the ethical problems brought about by the human flesh search engine, as well as possible solutions.
NASA Astrophysics Data System (ADS)
Kodate, Naonori; Kodate, Kashiko; Kodate, Takako
2014-11-01
The phenomenon of women's underrepresentation in engineering is well known. However, the slow progress in achieving better gender equality here compared with other domains has accentuated the 'numbers' issue, while the quality aspects have been largely ignored. This study aims to shed light on both these aspects via the lens of mentors, who are at the coalface of guiding female engineers through their education and subsequent careers. Based on data collected from 25 mentors (8 men and 17 women from 8 countries), the paper explores their experiences of being mentors, as well as their views on recommended actions for nurturing female engineers. The findings reveal that the primary motivation for becoming a mentor was personal for men and women. Many mentors from countries with relatively lower female labour participation rates perceive their roles as guarantors of their mentees' successful future career paths, and a similar trend can be found in mentors in academia. The study underscores the need for invigorating mentors' roles in order to secure a more equitable future for engineering education.
48 CFR 936.202-70 - Specifications charges.
Code of Federal Regulations, 2011 CFR
2011-10-01
... payments, the invitations for bids should so state, and the architect-engineer or construction management... CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 936.202-70 Specifications charges. (a) To support all invitations for bids, plans and...
48 CFR 936.202-70 - Specifications charges.
Code of Federal Regulations, 2012 CFR
2012-10-01
... payments, the invitations for bids should so state, and the architect-engineer or construction management... CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 936.202-70 Specifications charges. (a) To support all invitations for bids, plans and...
48 CFR 936.202-70 - Specifications charges.
Code of Federal Regulations, 2013 CFR
2013-10-01
... payments, the invitations for bids should so state, and the architect-engineer or construction management... CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 936.202-70 Specifications charges. (a) To support all invitations for bids, plans and...
48 CFR 936.202-70 - Specifications charges.
Code of Federal Regulations, 2014 CFR
2014-10-01
... payments, the invitations for bids should so state, and the architect-engineer or construction management... CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 936.202-70 Specifications charges. (a) To support all invitations for bids, plans and...
Pathway-engineering for highly-aligned block copolymer arrays
Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi; ...
2017-12-06
While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.
Pathway-engineering for highly-aligned block copolymer arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choo, Youngwoo; Majewski, Paweł W.; Fukuto, Masafumi
While kinetic aspects of self-assembly can hinder ordering, non-equilibirum effects can also be exploited to enforce a particular kind of order. We develop a pathway-engineering approach, using it to select a particular arrangement of a block copolymer cylinder phase.
Facilities Engineering in NASA
NASA Technical Reports Server (NTRS)
Pagluiso, M. A.
1970-01-01
An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.
48 CFR 936.202-70 - Specifications charges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... payments, the invitations for bids should so state, and the architect-engineer or construction management... CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Special Aspects of Contracting for Construction 936.202-70 Specifications charges. (a) To support all invitations for bids, plans and...
Engine health monitoring systems: Tools for improved maintenance management in the 1980's
NASA Technical Reports Server (NTRS)
Kimball, J. C.
1981-01-01
The performance monitoring aspect of maintenance, characteristic of the engine health monitoring system are discussed. An overview of the system activities is presented and a summary of programs for improved monitoring in the 1980's are discussed.
The Engineered Adjustment Classroom: Parent Manual.
ERIC Educational Resources Information Center
Heater, Jim
Presented is a manual for parents of children in the Papillion (Nebraska) Title III elementary level "engineered classroom" program which stresses accomplishment of academic goals by emotionally disturbed students. Explained are the concept of behavioral modification, how children learn, practical aspects of negative and positive…
Architectural considerations for lunar long duration habitat
NASA Astrophysics Data System (ADS)
Bahrami, Payam
The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.
Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Allen, Christopher S.; Barshi, Immanuel; Billman, Dorrit; Holden, Kritina L.
2010-01-01
As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities. Historically, engineering-dominated organizations have tended to view good Human Factors (HF) as a desire rather than a requirement in system design and development. Our field has made significant gains in the past decade, however; the Department of Defense, for example, now recognizes Human-System Integration (HSI), of which HF is a component, as an integral part of their divisions hardware acquisition processes. And our own agency was far more accepting of HF/HSI requirements during the most recent vehicle systems definition than in any prior cycle. Nonetheless, HF subject matter experts at NASA often find themselves in catch up mode... coping with legacy systems (hardware and software) and procedures that were designed with little regard for the human element, and too often with an attitude of we can deal with any operator issues during training. Our challenge, then, is to segregate the true knowledge gaps in Space Human Factors from the prior failures to incorporate best (or even good) HF design principles. Further, we strive to extract the overarching core HF issues from the point-design-specific concerns that capture the operators (and managers) attention. Generally, our approach embraces a 3M approach to Human Factors: Measurement, Modeling, and Mitigation. Our first step is to measure human performance, to move from subjective anecdotes to objective, quantified data. Next we model the phenomenon, using appropriate methods in our field, modifying them to suit the unique aspects of the space environment. Finally, we develop technologies, tools, and procedures to mitigate the decrements in human performance and capabilities that occur in space environments. When successful, we decrease risks to crew safety and to mission success. When extremely successful (or lucky), we devise generalizable solutions that advance the state of our practice. Our panel is composed of researchers from diverse domains of our project... from different boxes, if you will, of the Human Factors Analysis and Classification System (HFACS).
NASA Astrophysics Data System (ADS)
Gold, Zachary Samuel
Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive associations between engineering play and planning, executive function, and geometry for only a subgroup of children (n = 27) who had individualized education program (IEP) status. This was the first of a series of studies planned to evaluate the potential of the engineering play perspective as a tool for understanding young children's development and learning across multiple developmental domains. Although most hypotheses regarding engineering play and cognitive skills were not supported, the study provided partial evidence for the reliability and validity of the engineering play observation measure. Future research should include larger sample sizes with more statistical power, continued refinement of the engineering play observation measure, examination of potential associations with specific early learning domains, including spatial ability and language, and more comparisons of engineering play between typically developing children and children with disabilities.
Some engineering aspects of insulin delivery systems.
Spencer, W J; Bair, R E; Carlson, G A; Love, J T; Urenda, R S; Eaton, R P; Schade, D S
1980-01-01
The characteristics of electronically controlled insulin delivery systems are presented. Early experiments with an external system have shown promise in providing improved glycemic control over conventional methods of single or multiple subcutaneous insulin injections. The encouraging results with external insulin delivery systems have led to the development and early testing in dogs of an implantable system with remote controls to permit variable insulin flow rates. A number of questions remain to be answered before widespread experimentation with external and implanted insulin delivery systems is possible. There appears to be no major development problems with the engineering aspects of such systems.
Safety of novel projects, the battle against Murphy's law.
Schmidt, R
2001-01-01
With great pleasure and respect I have accepted the offer to speak in this congress. Medicine was a dream for me sometime ago and my second choice for studies. I remained with my first choice engineering and I am still happy with it; but I never forgot my love and enthusiasm for medicine. My career brought me in contact with many countries and technologies, but the development towards safety management became a dominant trend. At CERN I am a Group Leader in Matters of Safety for the Compact Muon Solenoid (CMS) experiment. In the last few years my attention has been increasingly focused on human and institutional safety aspects, besides the technical ones. My paper deals with three major topics: Safety management at CERN-CMS Murphy's law and the growing importance of institutional and human factors in safety Future outlook for safety and conclusions. In the conclusions the commonalities between different technologies become more evident as the importance of the human nature and man's role and enticement to actively and intelligently contribute to safety are presented. Based on experience and references an appeal is launched to pay more attention to the human factor in safety and recognize the rules and regularities of human behaviour in order to better combat Murphy's law.
Development of biomechanical models for human factors evaluations
NASA Technical Reports Server (NTRS)
Woolford, Barbara; Pandya, Abhilash; Maida, James
1993-01-01
Computer aided design (CAD) techniques are now well established and have become the norm in many aspects of aerospace engineering. They enable analytical studies, such as finite element analysis, to be performed to measure performance characteristics of the aircraft or spacecraft long before a physical model is built. However, because of the complexity of human performance, CAD systems for human factors are not in widespread use. The purpose of such a program would be to analyze the performance capability of a crew member given a particular environment and task. This requires the design capabilities to describe the environment's geometry and to describe the task's requirements, which may involve motion and strength. This in turn requires extensive data on human physical performance which can be generalized to many different physical configurations. PLAID is developing into such a program. Begun at Johnson Space Center in 1977, it was started to model only the geometry of the environment. The physical appearance of a human body was generated, and the tool took on a new meaning as fit, access, and reach could be checked. Specification of fields-of-view soon followed. This allowed PLAID to be used to predict what the Space Shuttle cameras or crew could see from a given point.
Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta
2009-08-01
Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.
Development of versatile non-homologous end joining-based knock-in module for genome editing.
Sawatsubashi, Shun; Joko, Yudai; Fukumoto, Seiji; Matsumoto, Toshio; Sugano, Shigeo S
2018-01-12
CRISPR/Cas9-based genome editing has dramatically accelerated genome engineering. An important aspect of genome engineering is efficient knock-in technology. For improved knock-in efficiency, the non-homologous end joining (NHEJ) repair pathway has been used over the homology-dependent repair pathway, but there remains a need to reduce the complexity of the preparation of donor vectors. We developed the versatile NHEJ-based knock-in module for genome editing (VIKING). Using the consensus sequence of the time-honored pUC vector to cut donor vectors, any vector with a pUC backbone could be used as the donor vector without customization. Conditions required to minimize random integration rates of the donor vector were also investigated. We attempted to isolate null lines of the VDR gene in human HaCaT keratinocytes using knock-in/knock-out with a selection marker cassette, and found 75% of clones isolated were successfully knocked-in. Although HaCaT cells have hypotetraploid genome composition, the results suggest multiple clones have VDR null phenotypes. VIKING modules enabled highly efficient knock-in of any vectors harboring pUC vectors. Users now can insert various existing vectors into an arbitrary locus in the genome. VIKING will contribute to low-cost genome engineering.
The Genus Cladophora Kützing (Ulvophyceae) as a Globally Distributed Ecological Engineer.
Zulkifly, Shahrizim B; Graham, James M; Young, Erica B; Mayer, Robert J; Piotrowski, Michael J; Smith, Izak; Graham, Linda E
2013-02-01
The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer. © 2013 Phycological Society of America.
European early modern humans and the fate of the Neandertals
Trinkaus, Erik
2007-01-01
A consideration of the morphological aspects of the earliest modern humans in Europe (more than ≈33,000 B.P.) and the subsequent Gravettian human remains indicates that they possess an anatomical pattern congruent with the autapomorphic (derived) morphology of the earliest (Middle Paleolithic) African modern humans. However, they exhibit a variable suite of features that are either distinctive Neandertal traits and/or plesiomorphic (ancestral) aspects that had been lost among the African Middle Paleolithic modern humans. These features include aspects of neurocranial shape, basicranial external morphology, mandibular ramal and symphyseal form, dental morphology and size, and anteroposterior dental proportions, as well as aspects of the clavicles, scapulae, metacarpals, and appendicular proportions. The ubiquitous and variable presence of these morphological features in the European earlier modern human samples can only be parsimoniously explained as a product of modest levels of assimilation of Neandertals into early modern human populations as the latter dispersed across Europe. This interpretation is in agreement with current analyses of recent and past human molecular data. PMID:17452632
Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis
NASA Technical Reports Server (NTRS)
Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige
2005-01-01
We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.
Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis
NASA Technical Reports Server (NTRS)
Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige
2006-01-01
We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.
Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering
Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.
2015-01-01
A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972
Aeronautical engineering: A continuing bibliography with indexes (supplement 119)
NASA Technical Reports Server (NTRS)
1980-01-01
This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1980. Abstracts on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems are presented. Research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles are also presented.
Aeronautical engineering: A continuing bibliography with indexes (supplement 282)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system in Aug. 1992. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Special issue: engineering toxins for 21st-century therapies: introduction.
Acharya, K Ravi
2011-12-01
This special issue on 'Engineering toxins for 21st century therapies' provides a critical review of the current state of multifaceted aspects of toxin research by some of the leading researchers in the field. It also highlights the clinical potential and challenges for development of novel biologics based on engineered toxin derived products. © 2011 The Author Journal compilation © 2011 FEBS.
Aeronautical Engineering: A Continuing Bibliography with Indexes
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 193 reports, journal articles, and other documents introduced in the NASA scientific and technical system in Aug. 1995. Subject coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles
Aeronautical engineering: A continuing bibliography with indexes (supplement 324)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 149 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1995. Subject coverage includes engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Aeronautical engineering: A continuing bibliography with indexes (supplement 267)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences.
Aeronautical engineering: A special bibliography with indexes, supplement 49
NASA Technical Reports Server (NTRS)
1974-01-01
The bibliography contains 368 abstract citations of reports, journal articles, and other documents concerned with the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. Research and development in aerodynamics, aeronautics, and ground support equipment are also treated. Subject, personal, and contract number indexes are included for ease of access.
Aeronautical engineering: A continuing bibliography with indexes (supplement 313)
NASA Technical Reports Server (NTRS)
1995-01-01
This bibliography lists 179 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jan. 1995. Subject coverage includes: engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
Aeronautical engineering: A continuing bibliography with indexes (supplement 310)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 29 reports, articles, and other documents introduced into the NASA scientific and technical information system in Nov. 1994. Subject coverage includes: engineering and theoretical aspects of design, construction,evaluation testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
42 CFR 65a.4 - What are the program requirements?
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Basic biological, chemical, and/or physical methods to reduce the amount and toxicity of these... occupational health and safety and in public health and engineering aspects of hazardous waste control; and/or (2) Graduate training in the geosciences, including hydrogeology, geological engineering, geophysics...
ENGINEERING ASPECTS OF WATERBORNE DISEASE INVESTIGATIONS
As part of a disease outbreak investigation involving drinking water, an engineering investigation may be necessary to determine how or why the pathogen of concern was able to get to the consumer. In many of the US outbreaks, the survival of the pathogen was dependent on multiple...
Patzel-Mattern, Katja
2005-01-01
The 20th Century is the century of of technical artefacts. With their existance and use they create an artificial reality, within which humans have to position themselves. Psychotechnik is an attempt to enable humans for this positioning. It gained importance in Germany after World War I and had its heyday between 1919 and 1926. On the basis of the activity of the engineer and supporter of Psychotechnik Georg Schlesinger, whose particular interest were disabled soldiers, the essay on hand will investigate the understanding of the body and the human being of Psychotechnik as an applied science. It turned out, that the biggest achievement of Psychotechnik was to establish a new view of the relation between human being and machine. Thus it helped to show that the human-machine-interface is a shapable unit. Psychotechnik sees the human body and its physique as the last instance for the design of machines. Its main concern is to optimize the relation between human being and machine rather than to standardize human beings according to the construction of machines. After her splendid rise during the Weimar Republic and her rapid decline since the late 1920s Psychotechnik nowadays gains scientifical attention as a historical phenomenon. The main attention in the current discourse lies on the aspects conserning philosophy of science: the unity of body and soul, the understanding of the human-machine-interface as a shapable unit and the human being as a last instance of this unit.
Coolant Design System for Liquid Propellant Aerospike Engines
NASA Astrophysics Data System (ADS)
McConnell, Miranda; Branam, Richard
2015-11-01
Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.
Heidari, Raheleh; Elger, Bernice S; Stutzki, Ralf
2016-01-01
Molecular Systems Engineering (MSE) is a paradigm shift in both engineering and life sciences. While the field is still in its infancy the perspectives of MSE in revolutionising technology is promising. MSE will offer a wide range of applications in clinical, biotechnological and engineering fields while simultaneously posing serious questions on the ethical and societal aspects of such technology. The moral and societal aspects of MSE need systematic investigation from scientific and social perspectives. In a democratic setting, the societal outcomes of MSE's cutting-edge technology need to be consulted and influenced by society itself. For this purpose MSE needs inclusive public engagement strategies that bring together the public, ethicists, scientists and policy makers for optimum flow of information that maximizes the impact of public engagement. In this report we present an MSE consortium and its ethics framework for establishing a proactive approach in the study of the ethics of MSE technology.
Sociotechnical Resilience: A Preliminary Concept.
Amir, Sulfikar; Kant, Vivek
2018-01-01
This article presents the concept of sociotechnical resilience by employing an interdisciplinary perspective derived from the fields of science and technology studies, human factors, safety science, organizational studies, and systems engineering. Highlighting the hybrid nature of sociotechnical systems, we identify three main constituents that characterize sociotechnical resilience: informational relations, sociomaterial structures, and anticipatory practices. Further, we frame sociotechnical resilience as undergirded by the notion of transformability with an emphasis on intentional activities, focusing on the ability of sociotechnical systems to shift from one form to another in the aftermath of shock and disturbance. We propose that the triad of relations, structures, and practices are fundamental aspects required to comprehend the resilience of sociotechnical systems during times of crisis. © 2017 Society for Risk Analysis.
Guidelines for the welfare and use of animals in cancer research
Workman, P; Aboagye, E O; Balkwill, F; Balmain, A; Bruder, G; Chaplin, D J; Double, J A; Everitt, J; Farningham, D A H; Glennie, M J; Kelland, L R; Robinson, V; Stratford, I J; Tozer, G M; Watson, S; Wedge, S R; Eccles, S A
2010-01-01
Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice. PMID:20502460
Water Safety and Lead Regulation: Physicians' Community Health Responsibilities.
Jennings, Bruce; Duncan, Leslie Lyons
2017-10-01
This article reviews the regulation of lead in drinking water, highlighting its epidemiological, engineering, and ethical aspects with a focus on the Flint water crisis. We first discuss water quality policy and its implementation with a focus on lead contamination of water, primarily from pipe systems between a water treatment facility and a tap. We then discuss physicians' roles and ethical responsibilities regarding safe drinking water using a human rights framework. We argue that physicians can play an important role in safeguarding drinking water in their communities by being vigilant, honoring the community's trust in them, and warning, educating, and empowering patients and broader communities so as to protect tap water safety and public health. © 2017 American Medical Association. All Rights Reserved.
Large Liquid Rocket Testing: Strategies and Challenges
NASA Technical Reports Server (NTRS)
Rahman, Shamim A.; Hebert, Bartt J.
2005-01-01
Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.
Biological and mechanical interplay at the Macro- and Microscales Modulates the Cell-Niche Fate.
Sarig, Udi; Sarig, Hadar; Gora, Aleksander; Krishnamoorthi, Muthu Kumar; Au-Yeung, Gigi Chi Ting; de-Berardinis, Elio; Chaw, Su Yin; Mhaisalkar, Priyadarshini; Bogireddi, Hanumakumar; Ramakrishna, Seeram; Boey, Freddy Yin Chiang; Venkatraman, Subbu S; Machluf, Marcelle
2018-03-02
Tissue development, regeneration, or de-novo tissue engineering in-vitro, are based on reciprocal cell-niche interactions. Early tissue formation mechanisms, however, remain largely unknown given complex in-vivo multifactoriality, and limited tools to effectively characterize and correlate specific micro-scaled bio-mechanical interplay. We developed a unique model system, based on decellularized porcine cardiac extracellular matrices (pcECMs)-as representative natural soft-tissue biomaterial-to study a spectrum of common cell-niche interactions. Model monocultures and 1:1 co-cultures on the pcECM of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) were mechano-biologically characterized using macro- (Instron), and micro- (AFM) mechanical testing, histology, SEM and molecular biology aspects using RT-PCR arrays. The obtained data was analyzed using developed statistics, principal component and gene-set analyses tools. Our results indicated biomechanical cell-type dependency, bi-modal elasticity distributions at the micron cell-ECM interaction level, and corresponding differing gene expression profiles. We further show that hMSCs remodel the ECM, HUVECs enable ECM tissue-specific recognition, and their co-cultures synergistically contribute to tissue integration-mimicking conserved developmental pathways. We also suggest novel quantifiable measures as indicators of tissue assembly and integration. This work may benefit basic and translational research in materials science, developmental biology, tissue engineering, regenerative medicine and cancer biomechanics.
Seeking perfection: a Kantian look at human genetic engineering.
Gunderson, Martin
2007-01-01
It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.
Gender Aspects of Human Security
ERIC Educational Resources Information Center
Moussa, Ghada
2008-01-01
The chapter deals with the gender dimensions in human security through focusing on the relationship between gender and human security, first manifested in international declarations and conventions, and subsequently evolving in world women conferences. It aims at analysing the various gender aspects in its relation to different human security…
1983-02-01
aspect ratio is relatively small. Brooks (ref. 1) worked with rectangular fins of 0.62 and 1.24 aspect ratio in a water medium and showed very large ...airflow rates. Lloyd (ref. 3) worked with an aspect ratio 2.0 rectangular wing using a very wide range of jet momentum coefficient; his results were in...D-A1i35 688 EFFECTS OF BLOWING SPANWISE FROM THE TIPS OF LOW ASPECT in, RATIO WINGS OF VA .(U) NIELSEN ENGINEERING AND RESEARCH INC MOUNTAIN VIEW CA
An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States
2015-12-22
AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a. CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a
War-gaming application for future space systems acquisition
NASA Astrophysics Data System (ADS)
Nguyen, Tien M.; Guillen, Andy T.
2016-05-01
Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.
U.S. Spacesuit Knowledge Capture Series Catalog
NASA Technical Reports Server (NTRS)
Bitterly, Rose; Oliva, Vladenka
2012-01-01
The National Aeronautics and Space Administration (NASA) and other organizations have been performing U.S. Spacesuit Knowledge Capture (USSKC) since the beginning of space exploration through published reports, conference presentations, specialized seminars, and classes instructed by veterans in the field. The close physical interaction between spacesuit systems and human beings makes them among the most personally evocative pieces of space hardware. Consequently, spacesuit systems have required nearly constant engineering refinements to do their jobs without impinging on human activity. Since 2008, spacesuit knowledge capture has occurred through video recording, engaging both current and former specialists presenting technical scope specifically to educate individuals and preserve knowledge. These archives of spacesuit legacy reflect its rich history and will provide knowledge that will enhance the chances for the success of future and more ambitious spacesuit system programs. The scope and topics of USSKC have included lessons learned in spacesuit technology; experience from the Gemini, Apollo, Skylab, and Shuttle Programs; the process of hardware certification, design, development, and other program components; spacesuit evolution and experience; failure analysis and resolution; and aspects of program management. USSKC activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive way to organize and archive intra-agency information related to the development of spacesuit systems. These video recordings are currently being reviewed for public release using NASA export control processes. After a decision is made for either public or non-public release (internal NASA only), the videos and presentations will be available through the NASA Johnson Space Center Engineering Directorate (EA) Engineering Academy, the NASA Technical Reports Server (NTRS), the NASA Aeronautics & Space Database (NA&SD), or NASA YouTube. Event availability is duly noted in this catalog.
Terraf, Panieh; Kouhsari, Shideh Montasser; Ai, Jafar; Babaloo, Hamideh
2017-09-01
Loss of motor and sensory function as a result of neuronal cell death and axonal degeneration are the hallmarks of spinal cord injury. To overcome the hurdles and achieve improved functional recovery multiple aspects, it must be taken into account. Tissue engineering approaches by coalescing biomaterials and stem cells offer a promising future for treating spinal cord injury. Here we investigated human endometrial stem cells (hEnSCs) as our cell source. Electrospun poly ε-caprolactone (PCL) scaffolds were used for hEnSC adhesion and growth. Scanning electron microscopy (SEM) confirmed the attachment and survival of stem cells on the PCL scaffolds. The scaffold-stem cell construct was transplanted into the hemisected spinal cords of adult male rats. Crocin, an ethanol-extractable component of Crocus sativus L., was administered to rats for 15 consecutive days post injury. Neurite outgrowth and axonal regeneration were investigated using immunohistochemical staining for neurofilament marker NF-H and luxol-fast blue (LFB) staining, respectively. TNF-α staining was performed to determine the inflammatory response in each group. Functional recovery was assessed via the Basso-Beattie-Bresnahan (BBB) scale. Results showed that PCL scaffolds seeded with hEnSCs restored the continuity of the damaged spinal cord and decreased cavity formation. Additionally, hEnSC-seeded scaffolds contributed to the functional recovery of the spinal cord. Hence, hEnSC-seeded PCL scaffolds may serve as promising transplants for spinal cord tissue engineering purposes. Furthermore, crocin had an augmenting effect on spinal cord regeneration and proved to exert neuroprotective effects on damaged neurons and may be further studied as a promising drug for spinal cord injury.
Discovery of novel biomarkers and phenotypes by semantic technologies
2013-01-01
Background Biomarkers and target-specific phenotypes are important to targeted drug design and individualized medicine, thus constituting an important aspect of modern pharmaceutical research and development. More and more, the discovery of relevant biomarkers is aided by in silico techniques based on applying data mining and computational chemistry on large molecular databases. However, there is an even larger source of valuable information available that can potentially be tapped for such discoveries: repositories constituted by research documents. Results This paper reports on a pilot experiment to discover potential novel biomarkers and phenotypes for diabetes and obesity by self-organized text mining of about 120,000 PubMed abstracts, public clinical trial summaries, and internal Merck research documents. These documents were directly analyzed by the InfoCodex semantic engine, without prior human manipulations such as parsing. Recall and precision against established, but different benchmarks lie in ranges up to 30% and 50% respectively. Retrieval of known entities missed by other traditional approaches could be demonstrated. Finally, the InfoCodex semantic engine was shown to discover new diabetes and obesity biomarkers and phenotypes. Amongst these were many interesting candidates with a high potential, although noticeable noise (uninteresting or obvious terms) was generated. Conclusions The reported approach of employing autonomous self-organising semantic engines to aid biomarker discovery, supplemented by appropriate manual curation processes, shows promise and has potential to impact, conservatively, a faster alternative to vocabulary processes dependent on humans having to read and analyze all the texts. More optimistically, it could impact pharmaceutical research, for example to shorten time-to-market of novel drugs, or speed up early recognition of dead ends and adverse reactions. PMID:23402646
Metstoich--Teaching Quantitative Metabolism and Energetics in Biochemical Engineering
ERIC Educational Resources Information Center
Wong, Kelvin W. W.; Barford, John P.
2010-01-01
Metstoich, a metabolic calculator developed for teaching, can provide a novel way to teach quantitative metabolism to biochemical engineering students. It can also introduce biochemistry/life science students to the quantitative aspects of life science subjects they have studied. Metstoich links traditional biochemistry-based metabolic approaches…
Learning Theories and Assessment Methodologies--An Engineering Educational Perspective
ERIC Educational Resources Information Center
Hassan, O. A. B.
2011-01-01
This paper attempts to critically review theories of learning from the perspective of engineering education in order to align relevant assessment methods with each respective learning theory, considering theoretical aspects and practical observations and reflections. The role of formative assessment, taxonomies, peer learning and educational…
Status of Research in Biomedical Engineering 1968.
ERIC Educational Resources Information Center
National Inst. of General Medical Sciences (NIH), Bethesda, MD.
This status report is divided into eight sections. The first four represent the classical engineering or building aspects of bioengineering and deal with biomedical instrumentation, prosthetics, man-machine systems and computer and information systems. The next three sections are related to the scientific, intellectual and academic influence of…
The engineering investigation of aircraft accidents
NASA Technical Reports Server (NTRS)
Anderson, S. B.
1982-01-01
The organization and plan for an investigation, procedures used at the scene of the accident, engineering aspects covered in the main investigation, use of special analytical techniques and simulation tools, and use of flight recorder data are discussed. Examples of investigations are used to illustrate the processes used.
Misconceptions about Sound among Engineering Students
ERIC Educational Resources Information Center
Pejuan, Arcadi; Bohigas, Xavier; Jaen, Xavier; Periago, Cristina
2012-01-01
Our first objective was to detect misconceptions about the microscopic nature of sound among senior university students enrolled in different engineering programmes (from chemistry to telecommunications). We sought to determine how these misconceptions are expressed (qualitative aspect) and, only very secondarily, to gain a general idea of the…
Aeronautical Engineering: A Continuing Bibliography. Supplement 384
NASA Technical Reports Server (NTRS)
1998-01-01
This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical Engineering: A Continuing Bibliography. Supplement 383
NASA Technical Reports Server (NTRS)
1998-01-01
This bibliography lists reports, articles and other documents announced in the NASA science and technical information system. Subject coverage includes: Design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
NASA Astrophysics Data System (ADS)
Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena
2017-08-01
Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.
The Systems Engineering Process for Human Support Technology Development
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.
Innovations in Science Education in Europe
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2001-12-01
At many European Universities, the retention of skilled science graduates is hindered mainly by organisational structures. In particular, women students are often under-represented in sciences, and career progression is in general difficult. The linear system of knowhow transfer is inefficient from the pedagogical point of view and unsatisfactory for many students. Owing to fast changes in society and the working environment, a re-building of curricula in tertiary education (including University Education) has begun. Conceptual visions aim at influencing the investment in the largely untapped human capital and preparing the students for quick adaptation and enhanced flexiblity. Traditional methods of classroom teaching and knowhow transfer are increasingly complemented by New Learning Technologies and Mentoring. The EU Project INDECS (Potentials of Interdisciplinary Degree Courses in Engineering, Information Technology, Natural and Socio-Economic Sciences in a Changing Society) examines such pedagogical aspects in European degree courses combining engineering, IT, physical sciences and socio-economic sciences. Inclusion of specific IT and social science topics in modular form is examined. How innovation in University Teaching will meet the attractiveness to both students and employers in Europe is major focus of the study.
Sitzia, Clementina; Farini, Andrea; Jardim, Luciana; Razini, Paola; Belicchi, Marzia; Cassinelli, Letizia; Villa, Chiara; Erratico, Silvia; Parolini, Daniele; Bella, Pamela; da Silva Bizario, Joao Carlos; Garcia, Luis; Dias-Baruffi, Marcelo; Meregalli, Mirella; Torrente, Yvan
2016-01-01
Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin. PMID:27506452
Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.
Kabadi, Ami M; Gersbach, Charles A
2014-09-01
Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Willis, Charles E. (Editor)
1987-01-01
The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, J.S.
For over fifteen years Sandia National Laboratories has been involved in laboratory testing of biometric identification devices. The key concept of biometric identification devices is the ability for the system to identify some unique aspect of the individual rather than some object a person may be carrying or some password they are required to know. Tests were conducted to verify manufacturer`s performance claims, to determine strengths/weaknesses of devices, and to determine devices that meet the US Department of energy`s needs. However, during recent field installation, significantly different performance was observed than was predicted by laboratory tests. Although most people usingmore » the device believed it operated adequately, the performance observed was over an order of magnitude worse than predicted. The search for reasons behind this gap between the predicted and the actual performance has revealed many possible contributing factors. As engineers, the most valuable lesson to be learned from this experience is the value of scientists and engineers with (1) common sense, (2) knowledge of human behavior, (3) the ability to observe the real world, and (4) the capability to realize the significant differences between controlled experiments and actual installations.« less
Manual control models of industrial management
NASA Technical Reports Server (NTRS)
Crossman, E. R. F. W.
1972-01-01
The industrial engineer is often required to design and implement control systems and organization for manufacturing and service facilities, to optimize quality, delivery, and yield, and minimize cost. Despite progress in computer science most such systems still employ human operators and managers as real-time control elements. Manual control theory should therefore be applicable to at least some aspects of industrial system design and operations. Formulation of adequate model structures is an essential prerequisite to progress in this area; since real-world production systems invariably include multilevel and multiloop control, and are implemented by timeshared human effort. A modular structure incorporating certain new types of functional element, has been developed. This forms the basis for analysis of an industrial process operation. In this case it appears that managerial controllers operate in a discrete predictive mode based on fast time modelling, with sampling interval related to plant dynamics. Successive aggregation causes reduced response bandwidth and hence increased sampling interval as a function of level.
Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future
Liu, Zhengzhao; Hu, Wenbao; He, Tian; Dai, Yifan; Hara, Hidetaka; Bottino, Rita; Cooper, David K. C.; Cai, Zhiming; Mou, Lisha
2017-01-01
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes. PMID:28155815
Interfacing with the Brain using Organic Electronics
NASA Astrophysics Data System (ADS)
Malliaras, George
One of the most important scientific and technological frontiers of our time lies in the interface between electronics and the human brain. Interfacing the most advanced human engineering endeavor with nature's most refined creation promises to help elucidate aspects of the brain's working mechanism and deliver new tools for diagnosis and treatment of a host of pathologies including epilepsy and Parkinson's disease. Current solutions, however, are limited by the materials that are brought in contact with the tissue and transduce signals across the biotic/abiotic interface. The field of organic electronics has made available materials with a unique combination of attractive properties, including mechanical flexibility, mixed ionic/electronic conduction, enhanced biocompatibility, and capability for drug delivery. I will present examples of organic-based devices for recording and stimulation of brain activity, highlighting the connection between materials properties and device performance. I will show that organic electronic materials provide unparalleled opportunities to design devices that improve our understanding of brain physiology and pathology, and can be used to deliver new therapies.
An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2013-01-01
Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.
An Engineering Student's Guide to the Humanities & Social Sciences.
ERIC Educational Resources Information Center
Association of American Colleges, Washington, DC.
Undergraduate engineering students and their advisors are provided with a handbook to help improve the quality and coherence of the humanities and social sciences (H&SS) component of undergraduate engineering education (fostering more purposeful H&SS course selection). The first of this handbook's three sections has an engineering major…
Applications for Compact Portable Pulsed Power: Rocket Science, Cancer Therapy, and the Movies
2006-05-01
include workshops at the American Film Institute for teaching scriptwriting and other aspects of the film industry to scientists and engineers. 1...oriented comedy feature film, “Real Genius”, which provided an introduction to many interesting aspects of the film industry , not the least of
Tiny Device Mimics Human Lung Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. “We breathe in and out thousands of times every day. And while we have control over what we eat or drink, we don’t always have control over what we breathe in,” said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so we’re making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamedmore » “PuLMo” for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unit—just like the human lung. The units are primarily made from various polymers and are connected by a microfluidic “circuit board” that manages fluid and air flow. “When we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,” said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.« less
Tiny Device Mimics Human Lung Function
McDonald, Rebecca; Harris, Jennifer; Nath, Pulak
2018-01-16
Scientists at Los Alamos National Laboratory are developing a miniature, tissue-engineered artificial lung that mimics the response of the human lung to drugs, toxins and other agents. âWe breathe in and out thousands of times every day. And while we have control over what we eat or drink, we donât always have control over what we breathe in,â said Jennifer Harris of Biosecurity and Public Health at Los Alamos, "and so weâre making this miniature lung to be able to test on actual human cells whether something in the environment, or a drug, is toxic or harmful to us." Nicknamed âPuLMoâ for Pulmonary Lung Model (Pulmo is also the Latin word for "lung")the device consists of two major parts, the bronchiolar unit and the alveolar unitâjust like the human lung. The units are primarily made from various polymers and are connected by a microfluidic âcircuit boardâ that manages fluid and air flow. âWhen we build our lung, we not only take into account the aspects of different cell types, the tissues that are involved, we also take into account that a lung is supposed to breathe, so PuLMo actually breathes,â said Pulak Nath of Applied Modern Physics, who leads engineering efforts for the project. The most exciting application of PuLMo is a potentially revolutionary improvement in the reliability of drug-toxicity assessments and the prediction of new pharmaceutical success in humans, according to Harris. The PuLMo may also be designed to mimic lung disease conditions, such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, and may be used to study lung air-flow dynamics to better understand the mechanisms of toxins and drug delivery and the effects of smoking, particularly the less-understood effects of e-cigarettes.
An overview of NASA ISS human engineering and habitability: past, present, and future.
Fitts, D; Architecture, B
2000-09-01
The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.
Engineered microbes and methods for microbial oil production
Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar
2015-02-10
Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.
Engine Structures Modeling Software System (ESMOSS)
NASA Technical Reports Server (NTRS)
1991-01-01
Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.
Aeronautical Engineering: A special bibliography with indexes, supplement 13
NASA Technical Reports Server (NTRS)
1972-01-01
This special bibliography lists 283 reports, articles, and other documents introduced into the NASA scientific and technical information system in December, 1971. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines), and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.
Aeronautical Engineering, a special bibliography with indexes, supplement 15
NASA Technical Reports Server (NTRS)
1972-01-01
This special bibliography lists 363 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1972. Emphasis is placed on engineering and theoretical aspects for design, construction, evaluation, testing, operation and performance of aircraft (including aircraft engines) and associated components, equipment and systems. Also included are entries on research and development in aeronautics and aerodynamics and research and ground support for aeronautical vehicles.
Human Factors Interface with Systems Engineering for NASA Human Spaceflights
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2009-01-01
This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.
Launch Deployment Assembly Human Engineering Analysis
NASA Technical Reports Server (NTRS)
Loughead, T.
1996-01-01
This report documents the human engineering analysis performed by the Systems Branch in support of the 6A cargo element design. The human engineering analysis is limited to the extra vehicular activities (EVA) which are involved in removal of various cargo items from the LDA and specific activities concerning deployment of the Space Station Remote Manipulator System (SSRMS).
Genome scale engineering techniques for metabolic engineering.
Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T
2015-11-01
Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Environmental Engineering in the Slovak Republic
NASA Astrophysics Data System (ADS)
Stevulova, N.; Balintova, M.; Zelenakova, M.; Estokova, A.; Vilcekova, S.
2017-10-01
The fundamental role of environmental engineering is to protect human population and environment from impacts of human activities and to ensure environmental quality. It relates to achieving the environmental sustainability goals through advanced technologies for pollutants removing from air, water and soil in order to minimize risk in ecosystem and ensuring favourable conditions for life of humans and organisms. Nowadays, a critical analysis of the environment quality and innovative approaches to problem solving in order to achieve sustainability in environmental engineering, are necessary. This article presents an overview of the quality of the environment and progress in environmental engineering in Slovakia and gives information regarding the environmental engineering education at Faculty of Civil Engineering at Technical University in Kosice.
Integrated Earth System Model (iESM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying
2016-12-02
The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.
Human Factors Engineering #2 Crewstation Assessment for the OH-58F Helicopter
2013-03-01
1 ARMY RSCH LABORATORY – HRED (HC) HUMAN RSRCH AND ENGRNG DIRCTRT MCOE FIELD ELEMENT RDRL HRM DW C CARSTENS 6450 WAY ST BLDG 2839 RM... Human Factors Engineering #2 Crewstation Assessment for the OH-58F Helicopter by David B. Durbin, Jamison S. Hicks, Michael Sage Jessee...Research Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6355 March 2013 Human Factors Engineering #2 Crewstation Assessment for the
Charles, Rhonda; Sakurai, Takeshi; Takahashi, Nagahide; Elder, Gregory A.; Gama Sosa, Miguel A.; Young, Larry J.; Buxbaum, Joseph D.
2014-01-01
Central arginine vasopressin receptor 1A (AVPR1A) modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC) transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory regions surrounding the AVPR1A locus are responsible for differential receptor protein expression patterns across species and that they are likely to contribute to species-specific behavioral variation. The humanized AVPR1A mouse is a potential preclinical model for further understanding the regulation of receptor gene expression and the impact of variation in receptor expression on behaviors, and should be useful for screening drugs targeting human AVPR1A, taking advantage of the expression of human AVPR1A in human-relevant brain regions. PMID:24924430
The Impact of Information Technology on Research in Science and Engineering.
ERIC Educational Resources Information Center
Morell, Jonathan A.
Several bodies of literature that shed light on some aspects of the relationship between information technology (IT) and research practice in science and engineering are reviewed. Subjects include: (1) the importance of calculation in research endeavors; (2) productivity in science and technology; (3) the philosophical differences between science…
Macromodels of digital integrated circuits for program packages of circuit engineering design
NASA Astrophysics Data System (ADS)
Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.
1984-04-01
Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.
Engaging Robots: Innovative Outreach for Attracting Cybernetics Students
ERIC Educational Resources Information Center
Mitchell, R.; Warwick, K.; Browne, W. N.; Gasson, M. N.; Wyatt, J.
2010-01-01
Cybernetics is a broad subject, encompassing many aspects of electrical, electronic, and computer engineering, which suffers from a lack of understanding on the part of potential applicants and teachers when recruiting students. However, once the engineering values, fascinating science, and pathways to rewarding, diverse careers are communicated,…
The Duke Engineering Living Technology Advancement (DELTA) Project began as a multidisciplinary endeavor to engage engineering students by having them design aspects/attributes of a new learning and living space. In the next few years, the vision will be realized when the DEL...
Be(com)ing an Excellent Student: A Qualitative Study with Engineering Undergraduates
ERIC Educational Resources Information Center
Monteiro, Sílvia; Almeida, Leandro S.; Vasconcelos, Rosa M.; Cruz, José Fernando A.
2014-01-01
This study explores the factors affecting the development of academic excellence on a group of 33 high-achieving engineering students. Participants were interviewed individually to explore several personal and contextual aspects of their past and current academic pathways. The results obtained reflect three main contributions to the…
Air Force Institute of Technology, Civil Engineering School: Environmental Protection Course.
ERIC Educational Resources Information Center
Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.
This document contains information assembled by the Civil Engineering School to meet the initial requirements of NEPA 1969 and Executive Orders which required the Air Force to implement an effective environmental protection program. This course presents the various aspects of Air Force environmental protection problems which military personnel…
Aeronautical engineering: A continuing bibliography with indexes (supplement 306)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 181 reports, articles, and other documents recently introduced into the NASA STI Database. Subject coverage includes the following: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Aeronautical engineering: A continuing bibliography with indexes (supplement 302)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 152 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
Getting Answers to Natural Language Questions on the Web.
ERIC Educational Resources Information Center
Radev, Dragomir R.; Libner, Kelsey; Fan, Weiguo
2002-01-01
Describes a study that investigated the use of natural language questions on Web search engines. Highlights include query languages; differences in search engine syntax; and results of logistic regression and analysis of variance that showed aspects of questions that predicted significantly different performances, including the number of words,…
Engineered nanomaterials (ENM) are a growing aspect of the global economy, and their safe and sustainable development, use and eventual disposal requires the capability to forecast and avoid potential problems. This review is concerned with the releases of ENM into the environmen...
Summer Program Introduces High School Students to Engineering.
ERIC Educational Resources Information Center
Worthy, Ward
1989-01-01
Discusses how, in two three-week sessions, the Terre Haute (Indiana) college offers selected students a hands-on approach to all aspects of engineering from design and lab work to technical writing. Describes a group project requiring students to study and experiment with simple research problems. Lists 20 project ideas. (MVL)
Liquid rocket valve assemblies
NASA Technical Reports Server (NTRS)
1973-01-01
The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.
Aeronautical engineering: A continuing bibliography with indexes (supplement 303)
NASA Technical Reports Server (NTRS)
1994-01-01
This bibliography lists 211 reports, articles, and other documents introduced into the NASA scientific and technical information database. Subject coverage includes: design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics.
ERIC Educational Resources Information Center
Pavlu, Virgil
2008-01-01
Today, search engines are embedded into all aspects of digital world: in addition to Internet search, all operating systems have integrated search engines that respond even as you type, even over the network, even on cell phones; therefore the importance of their efficacy and efficiency cannot be overstated. There are many open possibilities for…
Performing Verification and Validation in Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1999-01-01
The implementation of reuse-based software engineering not only introduces new activities to the software development process, such as domain analysis and domain modeling, it also impacts other aspects of software engineering. Other areas of software engineering that are affected include Configuration Management, Testing, Quality Control, and Verification and Validation (V&V). Activities in each of these areas must be adapted to address the entire domain or product line rather than a specific application system. This paper discusses changes and enhancements to the V&V process, in order to adapt V&V to reuse-based software engineering.
NASA Astrophysics Data System (ADS)
Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia
2014-05-01
While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.
Development of NASA Technical Standards Program Relative to Enhancing Engineering Capabilities
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Vaughan, William W.
2003-01-01
The enhancement of engineering capabilities is an important aspect of any organization; especially those engaged in aerospace development activities. Technical Standards are one of the key elements of this endeavor. The NASA Technical Standards Program was formed in 1997 in response to the NASA Administrator s directive to develop an Agencywide Technical Standards Program. The Program s principal objective involved the converting Center-unique technical standards into Agency wide standards and the adoption/endorsement of non-Government technical standards in lieu of government standards. In the process of these actions, the potential for further enhancement of the Agency s engineering capabilities was noted relative to value of being able to access Agencywide the necessary full-text technical standards, standards update notifications, and integration of lessons learned with technical standards, all available to the user from one Website. This was accomplished and is now being enhanced based on feedbacks from the Agency's engineering staff and supporting contractors. This paper addresses the development experiences with the NASA Technical Standards Program and the enhancement of the Agency's engineering capabilities provided by the Program s products. Metrics are provided on significant aspects of the Program.
Engineering the System and Technical Integration
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.
2011-01-01
Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.
Tobin, Bret D.; Weary, David J.
2004-01-01
These data are digital facsimiles of the original 1984 Engineering Aspects of Karst map by Davies and others. This data set was converted from a printed map to a digital GIS coverage to provide users with a citable national scale karst data set to use for graphic and demonstration purposes until new, improved data are developed. These data may be used freely with proper citation. Because it has been converted to GIS format, these data can be easily projected, displayed and queried for multiple uses in GIS. The karst polygons of the original map were scanned from the stable base negatives of the original, vectorized, edited and then attributed with unit descriptions. All of these processes potentially introduce small errors and distortions to the geography. The original map was produced at a scale of 1:7,500,000; this coverage is not as accurate, and should be used for broad-scale purposes only. It is not intended for any site-specific studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosemann, Peter; Kaoumi, Djamel
Nuclear materials are an essential aspect of nuclear engineering. While great effort is spent on designing more advanced reactors or enhancing a reactor’s safety, materials have been the bottleneck of most new developments. The designs of new reactor concepts are driven by neutronic and thermodynamic aspects, leading to unusual coolants (liquid metal, liquid salt, gases), higher temperatures, and higher radiation doses than conventional light water reactors have. However, any (nuclear) engineering design must consider the materials used in the anticipated application in order to ever be realized. Designs which may look easy, simple and efficient considering thermodynamics or neutronic aspectsmore » can show their true difficulty in the materials area, which then prevents them from being deployed. In turn, the materials available are influencing the neutronic and thermodynamic designs and therefore must be considered from the beginning, requiring close collaborations between different aspects of nuclear engineering. If a particular design requires new materials, the licensing of the reactor must be considered, but licensing can be a costly and time consuming process that results in long lead times to realize true materials innovation.« less
A Novel Human Adipocyte-derived Basement Membrane for Tissue Engineering Applications
NASA Astrophysics Data System (ADS)
Damm, Aaron
Tissue engineering strategies have traditionally focused on the use of synthetic polymers as support scaffolds for cell growth. Recently, strategies have shifted towards a natural biologically derived scaffold, with the main focus on decellularized organs. Here, we report the development and engineering of a scaffold naturally secreted by human preadipocytes during differentiation. During this differentiation process, the preadipocytes remodel the extracellular matrix by releasing new extracellular proteins. Finally, we investigated the viability of the new basement membrane as a scaffold for tissue engineering using human pancreatic islets, and as a scaffold for soft tissue repair. After identifying the original scaffold material, we sought to improve the yield of material, treating the cell as a bioreactor, through various nutritional and cytokine stimuli. The results suggest that adipocytes can be used as bioreactors to produce a designer-specified engineered human extracellular matrix scaffold for specific tissue engineering applications.
Rasmussen's legacy: A paradigm change in engineering for safety.
Leveson, Nancy G
2017-03-01
This paper describes three applications of Rasmussen's idea to systems engineering practice. The first is the application of the abstraction hierarchy to engineering specifications, particularly requirements specification. The second is the use of Rasmussen's ideas in safety modeling and analysis to create a new, more powerful type of accident causation model that extends traditional models to better handle human-operated, software-intensive, sociotechnical systems. Because this new model has a formal, mathematical foundation built on systems theory (as was Rasmussen's original model), new modeling and analysis tools become possible. The third application is to engineering hazard analysis. Engineers have traditionally either omitted human from consideration in system hazard analysis or have treated them rather superficially, for example, that they behave randomly. Applying Rasmussen's model of human error to a powerful new hazard analysis technique allows human behavior to be included in engineering hazard analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2011-12-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
Influence of marine engine simulator training to marine engineer's competence
NASA Astrophysics Data System (ADS)
Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai
2012-01-01
Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.
How smart is your BEOL? productivity improvement through intelligent automation
NASA Astrophysics Data System (ADS)
Schulz, Kristian; Egodage, Kokila; Tabbone, Gilles; Garetto, Anthony
2017-07-01
The back end of line (BEOL) workflow in the mask shop still has crucial issues throughout all standard steps which are inspection, disposition, photomask repair and verification of repair success. All involved tools are typically run by highly trained operators or engineers who setup jobs and recipes, execute tasks, analyze data and make decisions based on the results. No matter how experienced operators are and how good the systems perform, there is one aspect that always limits the productivity and effectiveness of the operation: the human aspect. Human errors can range from seemingly rather harmless slip-ups to mistakes with serious and direct economic impact including mask rejects, customer returns and line stops in the wafer fab. Even with the introduction of quality control mechanisms that help to reduce these critical but unavoidable faults, they can never be completely eliminated. Therefore the mask shop BEOL cannot run in the most efficient manner as unnecessary time and money are spent on processes that still remain labor intensive. The best way to address this issue is to automate critical segments of the workflow that are prone to human errors. In fact, manufacturing errors can occur for each BEOL step where operators intervene. These processes comprise of image evaluation, setting up tool recipes, data handling and all other tedious but required steps. With the help of smart solutions, operators can work more efficiently and dedicate their time to less mundane tasks. Smart solutions connect tools, taking over the data handling and analysis typically performed by operators and engineers. These solutions not only eliminate the human error factor in the manufacturing process but can provide benefits in terms of shorter cycle times, reduced bottlenecks and prediction of an optimized workflow. In addition such software solutions consist of building blocks that seamlessly integrate applications and allow the customers to use tailored solutions. To accommodate for the variability and complexity in mask shops today, individual workflows can be supported according to the needs of any particular manufacturing line with respect to necessary measurement and production steps. At the same time the efficiency of assets is increased by avoiding unneeded cycle time and waste of resources due to the presence of process steps that are very crucial for a given technology. In this paper we present details of which areas of the BEOL can benefit most from intelligent automation, what solutions exist and the quantification of benefits to a mask shop with full automation by the use of a back end of line model.
Using human factors engineering to improve the effectiveness of infection prevention and control.
Anderson, Judith; Gosbee, Laura Lin; Bessesen, Mary; Williams, Linda
2010-08-01
Human factors engineering is a discipline that studies the capabilities and limitations of humans and the design of devices and systems for improved performance. The principles of human factors engineering can be applied to infection prevention and control to study the interaction between the healthcare worker and the system that he or she is working with, including the use of devices, the built environment, and the demands and complexities of patient care. Some key challenges in infection prevention, such as delayed feedback to healthcare workers, high cognitive workload, and poor ergonomic design, are explained, as is how human factors engineering can be used for improvement and increased compliance with practices to prevent hospital-acquired infections.
Robertson, Isabelle L
2017-09-01
Precise editing of the human germline has been considered an unlikely and an unethical proposition. Recently, tools to edit the human germline have been developed and it is now a realistic prospect. Consequently, the ethical arguments around prohibiting human genome editing need to be re-evaluated. It is anticipatable that using it to eradicate disease-causing mutations will be acceptable if clinical risks can be shown to be sufficiently low. Some go further and advocate that genetically 'enhancing' humans will also be permissible. Here I argue that there are instances where human germline editing should be prohibited because harms can be anticipated from the results of studies of aspects of human psychology. The example I have chosen to illustrate this argument is prolongation of the human lifespan. Cohort and longitudinal studies demonstrate that a vital ingredient of human contentment and health is being integrated into a cohort of similarly aged people and experiencing life's trials and tribulations contemporaneously. A person genetically engineered to live longer than their peers will experience the loss of their cohort and many from the generation following them-an established risk factor for discontentment and ill health. Since germline genome editing precludes obtaining the consent of the individual in question, and that such a predictable harm will be commonly encountered, it is questionable that human germline editing to extend lifespan can ever be considered an ethical practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Human Engineering Modeling and Performance Lab Study Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.
Tactical Airspace Integration System Situation Awareness Integration Into the Cockpit: Phase 2
2013-03-01
ARL-TR-6371 March 2013 prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field...Situation Awareness Integration Into the Cockpit: Phase II Michael Sage Jessee and Anthony Morris Human Research and Engineering Directorate, ARL...prepared by U.S. Army Research Laboratory Human Research and Engineering Directorate (AMCOM Field Element) Bldg 5400, Room C236
ERIC Educational Resources Information Center
Phillips, John
1973-01-01
Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)
Generation of genetically-engineered animals using engineered endonucleases.
Lee, Jong Geol; Sung, Young Hoon; Baek, In-Jeoung
2018-05-17
The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.
Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.
Rahmanudin, Aiman; Sivula, Kevin
2017-06-28
Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.
The reflective diary as a method for the formative assessment of self-regulated learning
NASA Astrophysics Data System (ADS)
Wallin, Patric; Adawi, Tom
2018-07-01
An increasingly desired outcome of engineering education is the ability to engage in self-regulated learning (SRL). One promising method for the formative assessment of SRL is the reflective diary. There is, however, a paucity of research on the use of reflective diaries in engineering education. To mitigate this gap, we report on a case study where reflective diaries were implemented in a master's course on tissue engineering. The objective of this paper is to explore the potential of reflective diaries for the formative assessment of three central aspects of SRL: conceptions of knowledge, conceptions of learning, and strategies for monitoring and regulating learning. Based on a theoretical thematic analysis of the diary entries, we show that reflective diaries can be used to assess these three aspects of SRL. We discuss ways of providing feedback to students, with a focus on dialogic feedback.
Design and development of a cross-cultural disposition inventory
NASA Astrophysics Data System (ADS)
Davies, Randall; Zaugg, Holt; Tateishi, Isaku
2015-01-01
Advances in technology have increased the likelihood that engineers will have to work in a global, culturally diverse setting. Many schools of engineering are currently revising their curricula to help students to develop cultural competence. However, our ability to measure cultural dispositions can be a challenge. The purpose of this project was to develop and test an instrument that measures the various aspects of cultural disposition. The results of the validation process verified that the hypothesised model adequately represented the data. The refined instrument produced a four-factor model for the overall construct. The validation process for the instrument verified the existence of specific subcomponents that form the overall cultural disposition construct. There also seems to be a hierarchical relationship within the subcomponents of cultural disposition. Additional research is needed to explore which aspects of cultural disposition affect an individual's ability to work effectively in a culturally diverse engineering team.
Engineering Students' Experiences from Physics Group Work in Learning Labs
ERIC Educational Resources Information Center
Mellingsaeter, Magnus Strøm
2014-01-01
Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…
The Interdisciplinary Course in the Legal Aspects of Noise Pollution at Columbia University.
ERIC Educational Resources Information Center
Harris, Cyril M.; Rosenthal, Albert J.
1981-01-01
A course in the legal aspects of noise pollution, cross-listed for students in Columbia University's Law and Engineering Schools, is described. Although noise is used as the major source of environmental pollution in this course, the principles and methodology discussed apply to other forms of environmental law. (MLW)
ERIC Educational Resources Information Center
Schreier, Hans; And Others
1990-01-01
The University of Florida's efforts to include aspects of genetically engineered drugs into undergraduate teaching and develop a graduate program focusing on the pharmaceutical aspects of technology are outlined, including constituent contributions, attendance, and evaluation. The program's current status and plans for a lab course are discussed.…
Human Genetic Engineering: A Survey of Student Value Stances
ERIC Educational Resources Information Center
Wilson, Sara McCormack; And Others
1975-01-01
Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)
Recent progresses in gene delivery-based bone tissue engineering.
Lu, Chia-Hsin; Chang, Yu-Han; Lin, Shih-Yeh; Li, Kuei-Chang; Hu, Yu-Chen
2013-12-01
Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches. © 2013.
Ada Software Engineering Education and Training Requirements Within the U.S. Army
1988-12-01
Services and DoD. DoD Directive 3405.1 requires the use of Ada in all applications and DoD Directive 3405.2 establishes the policy of using Ada in...covers DoD structure and procedures, Army policies , and all aspects of software engineering theory, systems engineering, and software development and...acquisition policy , concept development, workload requirements, contracting, and maintenance. The second course covers many of the same areas
Predicting on-site environmental impacts of municipal engineering works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu
2014-01-15
The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering projectmore » documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also help contractors to implement environmental management systems.« less
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 387
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
NASA Technical Reports Server (NTRS)
1972-01-01
The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.
Fundamentals of biomechanics in tissue engineering of bone.
Athanasiou, K A; Zhu, C; Lanctot, D R; Agrawal, C M; Wang, X
2000-08-01
The objective of this review is to provide basic information pertaining to biomechanical aspects of bone as they relate to tissue engineering. The review is written for the general tissue engineering reader, who may not have a biomechanical engineering background. To this end, biomechanical characteristics and properties of normal and repair cortical and cancellous bone are presented. Also, this chapter intends to describe basic structure-function relationships of these two types of bone. Special emphasis is placed on salient classical and modern testing methods, with both material and structural properties described.
Aeronautical Engineering: A Continuing Bibliography with Indexes, Supplement 410. Supplement 410
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aeronautical Engineering: A Continuing Bibliography. Supplment 385
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
NASA Technical Reports Server (NTRS)
Lubenetsky, W S
1936-01-01
This report presents investigations into the design and construction of fuel pumps for diesel engines. The results of the pump tests on the engines showed that, with a good cut-off, accurate injection, assured by the proper adjustment of the pump elements, there is a decrease in the consumption of fuel and hence an increase in the rated power of the engine. Some of the aspects investigated include: cam profile, coefficient of discharge, and characteristics of the injection system.
On the dynamical vs. thermodynamical performance of a β-type Stirling engine
NASA Astrophysics Data System (ADS)
Reséndiz-Antonio, Margarita; Santillán, Moisés
2014-09-01
In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 386
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 389
NASA Technical Reports Server (NTRS)
1998-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1998-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 391
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.
Fault Management Guiding Principles
NASA Technical Reports Server (NTRS)
Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan
2011-01-01
Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.
Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.
Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P
2014-09-01
Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. © 2014 by the Society for Experimental Biology and Medicine.