Science.gov

Sample records for human enterotoxigenic escherichia

  1. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    PubMed Central

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  2. Adhesion of human enterotoxigenic Escherichia coli to human mucus secreting HT-29 cell subpopulations in culture.

    PubMed Central

    Kerneis, S; Bernet, M F; Coconnier, M H; Servin, A L

    1994-01-01

    Enterotoxigenic Escherichia coli (ETEC) bearing the fimbrial colonisation factor antigens CFA/I, CFA/II, CFA/III, and the non-fimbrial antigen 2230 were tested for their ability to adhere to two cultured human intestinal HT-29 mucus secreting cell subpopulations. These populations are referred to as HT29-MTX and HT29-FU, which differ in the amount of secreted mucins and in their gastric or colonic mucin immunoreactivity respectively. Adherence of radiolabelled bacteria to cell monolayers infected apically was assessed. All ETEC strains adhered to the mucus secreting HT29-FU subpopulation, which secretes mucins of colonic immunoreactivity. Visualisation of bacteria by scanning electron microscopy showed that ETEC bound to the HT29-FU cells possessing a brush border, but not to the mucus and that ETEC binding developed as a function of cell differentiation. The adhesion of ETEC to cells possessing a brush border and to mucus secreting cells was also analysed by indirect immunofluorescence in HT29-MTX cells, which secrete mucins of gastric immunoreactivity. Fluorescein isothiocyanate labelling using specific anti-CFA/I antibody was used to show ETEC; rhodamine isothiocyanate labelling using a monoclonal antibody (designated M1) against purified human gastric mucus was used to detect secreted mucins, and rhodamine isothiocyanate labelling using a monoclonal antibody (designated 4H3) against human dipeptidylpeptidase IV was used to show cells possessing a brush border. Binding of bacteria colocalised with dipeptidylpeptidase IV of enterocytes and not with mucins. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7959203

  3. Chaperone-Usher Pili Loci of Colonization Factor-Negative Human Enterotoxigenic Escherichia coli

    PubMed Central

    Del Canto, Felipe; O'Ryan, Miguel; Pardo, Mirka; Torres, Alexia; Gutiérrez, Daniela; Cádiz, Leandro; Valdés, Raul; Mansilla, Aquiles; Martínez, Rodrigo; Hernández, Daniela; Caro, Benjamin; Levine, Myron M.; Rasko, David A.; Hill, Christopher M.; Pop, Mihai; Stine, O. Colin; Vidal, Roberto

    2017-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea worldwide. Among the 25 different ETEC adhesins, 22 are known as “colonization factors” (CFs), of which 17 are assembled by the chaperone-usher (CU) mechanism. Currently, there is no preventive therapy against ETEC, and CFs have been proposed as components for vaccine development. However, studies of diarrhea-causing ETEC strains worldwide indicate that between 15 and 50% of these are negative for known CFs, hindering the selection of the most widespread structures and suggesting that unknown adhesins remain to be identified. Here, we report the result of a comprehensive analysis of 35 draft genomes of ETEC strains which do not carry known adhesin genes; our goal was to find new CU pili loci. The phylogenetic profiles and serogroups of these strains were highly diverse, a majority of which produced only the heat-labile toxin. We identified 10 pili loci belonging to CU families β (1 locus), γ2 (7 loci), κ (1 locus), and π (1 locus), all of which contained the required number of open reading frames (ORFs) to encode functional structures. Three loci were variants of previously-known clusters, three had been only-partially described, and four are novel loci. Intra-loci genetic variability identified would allow the synthesis of up to 14 different structures. Clusters of putative γ2-CU pili were most common (23 strains), followed by putative β-CU pili (12 strains), which have not yet been fully characterized. Overall, our findings significantly increase the number of ETEC adhesion genes associated with human infections. PMID:28111618

  4. Chaperone-Usher Pili Loci of Colonization Factor-Negative Human Enterotoxigenic Escherichia coli.

    PubMed

    Del Canto, Felipe; O'Ryan, Miguel; Pardo, Mirka; Torres, Alexia; Gutiérrez, Daniela; Cádiz, Leandro; Valdés, Raul; Mansilla, Aquiles; Martínez, Rodrigo; Hernández, Daniela; Caro, Benjamin; Levine, Myron M; Rasko, David A; Hill, Christopher M; Pop, Mihai; Stine, O Colin; Vidal, Roberto

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea worldwide. Among the 25 different ETEC adhesins, 22 are known as "colonization factors" (CFs), of which 17 are assembled by the chaperone-usher (CU) mechanism. Currently, there is no preventive therapy against ETEC, and CFs have been proposed as components for vaccine development. However, studies of diarrhea-causing ETEC strains worldwide indicate that between 15 and 50% of these are negative for known CFs, hindering the selection of the most widespread structures and suggesting that unknown adhesins remain to be identified. Here, we report the result of a comprehensive analysis of 35 draft genomes of ETEC strains which do not carry known adhesin genes; our goal was to find new CU pili loci. The phylogenetic profiles and serogroups of these strains were highly diverse, a majority of which produced only the heat-labile toxin. We identified 10 pili loci belonging to CU families β (1 locus), γ2 (7 loci), κ (1 locus), and π (1 locus), all of which contained the required number of open reading frames (ORFs) to encode functional structures. Three loci were variants of previously-known clusters, three had been only-partially described, and four are novel loci. Intra-loci genetic variability identified would allow the synthesis of up to 14 different structures. Clusters of putative γ2-CU pili were most common (23 strains), followed by putative β-CU pili (12 strains), which have not yet been fully characterized. Overall, our findings significantly increase the number of ETEC adhesion genes associated with human infections.

  5. TleA, a Tsh-Like Autotransporter Identified in a Human Enterotoxigenic Escherichia coli Strain

    PubMed Central

    Gutiérrez, Daniela; Pardo, Mirka; Montero, David; Oñate, Angel; Farfán, Mauricio J.; Ruiz-Pérez, Fernando

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avian E. coli strains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with a tleA mutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression of tleA conferred the capacity for adherence to nonadherent E. coli HB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response. PMID:25712927

  6. Production and characterization of monoclonal antibodies to a pilus colonization factor (colonization factor antigen III) of human enterotoxigenic Escherichia coli.

    PubMed Central

    Honda, T; Wetprasit, N; Arita, M; Miwatani, T

    1989-01-01

    Three monoclonal antibodies (MAbs) to a pilus colonization factor (colonization factor antigen III [CFA/III]) of human enterotoxigenic Escherichia coli (ETEC) were developed and characterized. All of the MAbs isolated belonged to the immunoglobulin G2a subclass. The specificity of these MAbs for CFA/III pili was demonstrated by the immunogold-labeling technique. The presence of more than one epitope in CFA/III pili was suggested. One of the three MAbs appears to recognize a polymeric conformational epitope(s) of CFA/III. CFA/III antigenicity distinct from that of other pilus colonization factors of ETEC was demonstrated by both a bacterial agglutination test and a sandwich enzyme-linked immunosorbent assay using the MAbs. Of the 100 strains of ETEC isolated from persons with traveler's diarrhea, 8% were found to carry CFA/III pili. Two enzyme-linked immunosorbent assay systems which could detect as little as several or 50 ng of CFA/III per ml were developed. Images PMID:2572553

  7. Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain W25K.

    PubMed

    Ren, Wenkai; Liu, Gang; Yin, Jie; Chen, Shuai; Li, Tiejun; Kong, Xiangfeng; Peng, Yuanyi; Yin, Yulong; Hardwidge, Philip R

    2014-06-26

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease in humans and newly weaned pigs. Here, we report the draft genome sequence of ETEC strain W25K, which causes diarrhea in piglets.

  8. Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain W25K

    PubMed Central

    Ren, Wenkai; Liu, Gang; Yin, Jie; Chen, Shuai; Li, Tiejun; Kong, Xiangfeng; Peng, Yuanyi; Hardwidge, Philip R.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease in humans and newly weaned pigs. Here, we report the draft genome sequence of ETEC strain W25K, which causes diarrhea in piglets. PMID:24970825

  9. Crystallization and preliminary X-ray diffraction analysis of CfaE, the adhesive subunit of the CFA/I fimbriae from human enterotoxigenic Escherichia coli

    SciTech Connect

    Li, Yong-Fu; Poole, Steven; Rasulova, Fatima; Esser, Lothar; Savarino, Stephen J.; Xia, Di

    2006-02-01

    The adhesin CfaE of the CFA/I fimbriae from human enterotoxigenic E. coli has been crystallized. CfaE crystals diffracted X-rays to better than 2.4 Å and phasing was solved by the SIRAS method. Enterotoxigenic Escherichia coli (ETEC) represents a formidable food and waterborne diarrheal disease threat of global importance. The first step in ETEC pathogenesis is bacterial attachment to small-intestine epithelial cells via adhesive fimbriae, many of which are genetically related to the prototype colonization factor antigen I (CFA/I). The minor fimbrial subunit CfaE is required for initiation of CFA/I fimbrial assembly and mediates bacterial attachment to host cell-surface receptors. A donor-strand complemented variant of CfaE (dscCfaE) was expressed with a hexahistidine tag, purified to homogeneity and crystallized using the hanging-drop vapor-diffusion method. X-ray diffraction data sets were collected to 2.4 Å resolution for both native and derivatized crystals and showed the symmetry of space group P6{sub 2}22, with unit-cell parameters a = b = 142.9, c = 231.9 Å. Initial phases were derived from the SIRAS approach and electron density showed two molecules in the crystallographic asymmetric unit. Sequence assignments were aided by anomalous signals from the selenium of an SeMet-derivatized crystal and from S atoms of a native crystal.

  10. Intestinal Colonization by Enterotoxigenic Escherichia coli.

    DTIC Science & Technology

    1980-09-01

    E . coli is mediated by specific types of pili. These pili are antigenic and can be used in diagnosing enterotoxigenic E . coli infections. They are also good protective antigens. When pregnant dams are vaccinated parenterally or orally with pili on live piliated bacteria, they secrete antibodies against the pili in their milk. Neonates suckling dams so vaccinated are passively protected against fatal challenge by enterotoxigenic E . coli . Pili are also good candidate protective antigens for the development of vaccines to protect by

  11. Maternal Vaccination with a Fimbrial Tip Adhesin and Passive Protection of Neonatal Mice against Lethal Human Enterotoxigenic Escherichia coli Challenge

    PubMed Central

    Luiz, Wilson B.; Rodrigues, Juliana F.; Crabb, Joseph H.

    2015-01-01

    Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 107 bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. PMID:26371126

  12. Enterotoxigenic Escherichia coli and Vibrio cholerae diarrhea, Bangladesh, 2004.

    PubMed

    Qadri, Firdausi; Khan, Ashraful I; Faruque, Abu Syed G; Begum, Yasmin Ara; Chowdhury, Fahima; Nair, Gopinath B; Salam, Mohammed A; Sack, David A; Svennerholm, Ann-Mari

    2005-07-01

    Flooding in Dhaka in July 2004 caused epidemics of diarrhea. Enterotoxigenic Escherichia coli (ETEC) was almost as prevalent as Vibrio cholerae O1 in diarrheal stools. ETEC that produced heat-stable enterotoxin alone was most prevalent, and 78% of strains had colonization factors. Like V. cholerae O1, ETEC can cause epidemic diarrhea.

  13. Enterotoxigenic Escherichia coli Multilocus Sequence Types in Guatemala and Mexico

    PubMed Central

    Klena, John; Rodas, Claudia; Bourgeois, August Louis; Torres, Olga; Svennerholm, Ann-Mari; Sjöling, Åsa

    2010-01-01

    The genetic backgrounds of 24 enterotoxigenic Escherichia coli (ETEC) strains from Mexico and Guatemala expressing heat-stable toxin (ST) and coli surface antigen 6 (CS6) were analyzed. US travelers to these countries and resident children in Guatemala were infected by ETEC strains of sequence type 398, expressing STp and carrying genetically identical CS6 sequences. PMID:20031063

  14. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332.

    PubMed

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos; Cevallos, Miguel A; Xicohtencatl-Cortes, Juan

    2017-02-23

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México.

  15. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332

    PubMed Central

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos

    2017-01-01

    ABSTRACT   Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México. PMID:28232434

  16. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of CofB, the minor pilin subunit of CFA/III from human enterotoxigenic Escherichia coli.

    PubMed

    Kawahara, Kazuki; Oki, Hiroya; Fukakusa, Shunsuke; Maruno, Takahiro; Kobayashi, Yuji; Motooka, Daisuke; Taniguchi, Tooru; Honda, Takeshi; Iida, Tetsuya; Nakamura, Shota; Ohkubo, Tadayasu

    2015-06-01

    Colonization factor antigen III (CFA/III) is one of the virulence factors of human enterotoxigenic Escherichia coli (ETEC) that forms the long, thin, proteinaceous fibres of type IV pili through assembly of its major and minor subunits CofA and CofB, respectively. The crystal structure of CofA has recently been reported; however, the lack of structural information for CofB, the largest among the known type IV pilin subunits, hampers a comprehensive understanding of CFA/III pili. In this study, constructs of wild-type CofB with an N-terminal truncation and the corresponding SeMet derivative were cloned, expressed, purified and crystallized. The crystals belonged to the rhombohedral space group R32, with unit-cell parameters a = b = 103.97, c = 364.57 Å for the wild-type construct and a = b = 103.47, c = 362.08 Å for the SeMet-derivatized form. Although the diffraction quality of these crystals was initially very poor, dehydration of the crystals substantially improved the resolution limit from ∼ 4.0 to ∼ 2.0 Å. The initial phase was solved by the single-wavelength anomalous dispersion (SAD) method using a dehydrated SeMet CofB crystal, which resulted in an interpretable electron-density map.

  17. Simple method for purification of enterotoxigenic Escherichia coli fimbriae.

    PubMed

    Curtis, Brittany; Grassel, Christen; Laufer, Rachel S; Sears, Khandra T; Pasetti, Marcela F; Barry, Eileen M; Simon, Raphael

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera.

  18. Genotypic Characterization of Egypt Enterotoxigenic Escherichia coli Isolates Expressing Coli Surface Antigen 6

    DTIC Science & Technology

    2013-02-01

    USA Abstract Introduction: One approach to control enterotoxigenic Escherichia coli (ETEC) infections has been to develop vaccines focused on...results show a lack of clonality among Egypt CS6 E. coli isolates and supports the use and the further research on vaccines targeting this cell surface...has received considerable attention as a target for vaccine development [11-14]. CS6 is immunogenic in humans both after natural infection and

  19. Impact of CD4+ T Cell Responses on Clinical Outcome following Oral Administration of Wild-Type Enterotoxigenic Escherichia coli in Humans

    PubMed Central

    Chen, Wilbur H.; Magder, Laurence; Levine, Myron M.; Sztein, Marcelo B.

    2017-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a non-invasive enteric pathogen of considerable public health importance, being one of the most common attributable causes of diarrheal illness in infants and young children in developing countries and the most common cause of traveler’s diarrhea. To enhance study-to-study consistency of our experimental challenge model of ETEC in volunteers, and to allow concomitant multi-site trials to evaluate anti-ETEC immunoprophylactic products, hundreds of vials, each containing a standardized inoculum of virulent wild-type (wt) ETEC strain H10407 (serotype O78:H11 expressing colonization factor antigen I and heat-labile and heat-stable enterotoxins), were prepared under current Good Manufacturing Practices (cGMP) and frozen. Following thawing, the contents of each vial can be used (diluted as necessary) to prepare consistent challenge inoculum, even at different study sites. A preliminary human experimental challenge study using this cGMP inoculum was conducted on a research isolation ward and the clinical and cell-mediated immune responses evaluated. Of the 6 healthy adult volunteers challenged 83% (5/6) developed diarrhea and 50% developed moderate-to-severe diarrhea (MSD). Moderate and severe diarrhea were defined as passage of ≥ 1 liter or ≥ 3 liters of diarrheal stool respectively. We compared the CD4+ T cell responses of volunteers who developed MSD against those who did not and identified significant differences in ETEC-specific cytokine production and gut homing potential. We furthermore demonstrated that increased expression of the gut-homing molecule integrin α4β7 by peripheral T follicular helper cells (pTfh) correlated with decreased stool volume and increased ETEC-specific IgA B memory cell (BM) development. Collectively, despite small numbers of volunteers, our results indicate a potential role for CD4+ T cells, in particular pTfh, in modulating disease outcome following exposure to wt ETEC in a volunteer

  20. Enterotoxigenic Escherichia coli diarrhea of travelers: a prospective study of American Peace Corps volunteers.

    PubMed

    Sack, D A; Kaminsky, D C; Sack, R B; Wamola, I A; Orskov, F; Orskov, I; Slack, R C; Arthur, R R; Kapikian, A Z

    1977-08-01

    Travelers' diarrhea was studied prospectively in a group of 39 American Peace Corps Volunteers (PCVs) during their first five weeks in Kenya. Twenty-seven developed diarrheal disease and 12 remained well. Multiple episodes were documented in 11 of the symptomatic volunteers. Enterotoxigenic Escherichia coli of many serotypes producing heat-labile and/or heat-stable enterotoxin were isolated from 17 of the 27 volunteers with diarrhea and from 1 of the 12 well volunteers. The enterotoxigenic E. coli were more likely to be antibiotic sensitive than the non-enterotoxigenic E. coli. A serum antibody rise to the heat-labile toxin (LT) was detected in six symptomatic volunteers, five of whom had a positive culture for LT-producing E. coli, and from one asymptomatic, culture negative volunteer. Salmonella cubana was isolated from two volunteers, and three volunteers had serologic evidence of infection with human reovirus-like (rotavirus) agent. This study confirms the role of enterotoxigenic E. coli as a major cause of travelers' diarrhea and suggests that the disease is similar in widely separated geographic areas.

  1. Draft Genome Sequence of Enterotoxigenic Escherichia coli Strain E24377A, Obtained from a Tribal Drinking Water Source in India

    PubMed Central

    Nerkar, Sandeep S.; Khadake, Prashant P.; Akolkar, Dadasaheb B.; Apurwa, Sachin R.; Deshpande, Uday; Khedkar, Smita U.; Stålsby-Lundborg, Cecilia

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease in humans and animals. Its dissemination can occur through water sources contaminated by it. Here, we report for the first time the draft genome sequence of ETEC strain E24377A, obtained from a tribal drinking water source in India. PMID:25838484

  2. Enterotoxigenic Escherichia coli infection in captive black-footed ferrets.

    PubMed

    Bradley, G A; Orr, K; Reggiardo, C; Glock, R D

    2001-07-01

    Enterotoxigenic Escherichia coli with genes for heat stabile toxins Sta and STb was isolated from the gastrointestinal tract and multiple visceral organs of three adult and three juvenile black-footed ferrets (Mustela nigripes) that died in a captive breeding colony between 24 May 1998 and 2 July 1998. Similar isolates were obtained from rectal swabs of one adult and one juvenile that were clinically ill. All were fed a diet composed of mink chow, raw rabbit meat, beef liver powder, blood meal and lard. Escherichia coli of the same toxin genotype was isolated from the mixed ration. Clinical signs included sudden death, dehydration, anorexia and diarrhea. Necropsy lesions included acute enteritis with large numbers of rod shaped bacteria microscopically visible on intestinal villi.

  3. Intestinal Colonization by EnterotoxigenicEscherichia Coli’

    DTIC Science & Technology

    1976-12-01

    Growth of enterotoxigenic E . coli in porcine small intestine selects for piliated forms which adhere to the intestinal epithelium. Surface antigen...K99 on enterotoxigenic E . coli is a pilus. Antigen K99 occurs on porcine enterotoxigenic E . coli strains and is produced in pig small intestine.

  4. Quantitative method for enumeration of enterotoxigenic Escherichia coli.

    PubMed Central

    Calderon, R L; Levin, M A

    1981-01-01

    A rapid method was developed to quantify toxigenic Escherichia coli, using a membrane filter procedure. After filtration of samples, the membrane filter was first incubated on a medium selective for E. coli (24 h, 44 degrees C) and then transferred to tryptic soy agar (3%; 6 h, 37 degrees C). To assay for labile toxin-producing colonies, the filter was then transferred to a monolayer of Y-1 cells, the E. coli colonies were marked on the bottom of the petri dish, and the filter was removed after 15 min. The monolayer was observed for a positive rounding effect after a 15- to 24-h incubation. The method has an upper limit of detecting 30 toxigenic colonies per plate and can detect as few as one toxigenic colony per plate. A preliminary screening for these enterotoxigenic strains in polluted waters and known positive fecal samples was performed, and positive results were obtained with fecal samples only. PMID:7007415

  5. Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy.

    PubMed

    Tang, Yulong; Li, Fengna; Tan, Bie; Liu, Gang; Kong, Xiangfeng; Hardwidge, Philip R; Yin, Yulong

    2014-06-25

    The morbidity and mortality in piglets caused by enterotoxigenic Escherichia coli (ETEC) results in large economic losses to the swine industry, but the precise pathogenesis of ETEC-associated diseases remains unknown. Intestinal epithelial cell autophagy serves as a host defense against pathogens. We found that ETEC induced autophagy, as measured by both the increased punctae distribution of GFP-LC3 and the enhanced conversion of LC3-I to LC3-II. Inhibiting autophagy resulted in decreased survival of IPEC-1 cells infected with ETEC. ETEC triggered autophagy in IPEC-1 cells through a pathway involving the mammalian target of rapamycin (mTOR), the extracellular signal-regulated kinases 1/2 (ERK1/2), and the AMP-activated protein kinase (AMPK).

  6. Capsule reduces adherence of enterotoxigenic Escherichia coli to isolated intestinal epithelial cells of pigs.

    PubMed Central

    Runnels, P L; Moon, H W

    1984-01-01

    Previous reports have demonstrated that heat-stable (A-type) capsule on piliated enterotoxigenic Escherichia coli enhances colonization of enterotoxigenic E. coli in the small intestine and enhances virulence of enterotoxigenic E. coli. In this report, four encapsulated enterotoxigenic E. coli strains and one encapsulated nonenterotoxigenic strain of E. coli and their nonencapsulated mutants were tested for adhesion to isolated intestinal epithelial cells or brush borders from neonatal pigs. The enterotoxigenic E. coli also expressed the K99 pilus antigen. The nonencapsulated mutants of the four enterotoxigenic E. coli adhered in higher numbers than did the encapsulated parental strains. Both the encapsulated and nonencapsulated forms of enterotoxigenic E. coli 431 grown at 18 degrees C (K99 production suppressed) adhered poorly to the isolated cells. The nonenterotoxigenic E. coli 1793 which does not express K99 antigen also adhered poorly in both encapsulated and nonencapsulated forms. Fab fragments of anticapsular immunoglobulin G failed to block the effect of capsule on adherence of strain 431. The results indicated that K99 was the principal mediator of in vitro adhesion of the enterotoxigenic E. coli strains and that capsule impedes the in vitro adhesion. They also suggested that the capsular enhancement of colonization by such strains in vivo probably is by some mechanism other than enhanced adhesion to epithelium. PMID:6147310

  7. Capsule reduces adherence of enterotoxigenic Escherichia coli to isolated intestinal epithelial cells of pigs.

    PubMed

    Runnels, P L; Moon, H W

    1984-09-01

    Previous reports have demonstrated that heat-stable (A-type) capsule on piliated enterotoxigenic Escherichia coli enhances colonization of enterotoxigenic E. coli in the small intestine and enhances virulence of enterotoxigenic E. coli. In this report, four encapsulated enterotoxigenic E. coli strains and one encapsulated nonenterotoxigenic strain of E. coli and their nonencapsulated mutants were tested for adhesion to isolated intestinal epithelial cells or brush borders from neonatal pigs. The enterotoxigenic E. coli also expressed the K99 pilus antigen. The nonencapsulated mutants of the four enterotoxigenic E. coli adhered in higher numbers than did the encapsulated parental strains. Both the encapsulated and nonencapsulated forms of enterotoxigenic E. coli 431 grown at 18 degrees C (K99 production suppressed) adhered poorly to the isolated cells. The nonenterotoxigenic E. coli 1793 which does not express K99 antigen also adhered poorly in both encapsulated and nonencapsulated forms. Fab fragments of anticapsular immunoglobulin G failed to block the effect of capsule on adherence of strain 431. The results indicated that K99 was the principal mediator of in vitro adhesion of the enterotoxigenic E. coli strains and that capsule impedes the in vitro adhesion. They also suggested that the capsular enhancement of colonization by such strains in vivo probably is by some mechanism other than enhanced adhesion to epithelium.

  8. Characterization of Mucosal Immune Responses to Enterotoxigenic Escherichia coli Vaccine Antigens in a Human Challenge Model: Response Profiles after Primary Infection and Homologous Rechallenge with Strain H10407.

    PubMed

    Chakraborty, Subhra; Harro, Clayton; DeNearing, Barbara; Ram, Malathi; Feller, Andrea; Cage, Alicia; Bauers, Nicole; Bourgeois, A Louis; Walker, Richard; Sack, David A

    2015-11-18

    Enterotoxigenic Escherichia coli (ETEC) bacteria are the most common bacterial cause of diarrhea in children in resource-poor settings as well as in travelers. Although there are several approaches to develop an effective vaccine for ETEC, no licensed vaccines are currently available. A significant challenge to successful vaccine development is our poor understanding of the immune responses that correlate best with protection against ETEC illness. In this study, ETEC-specific mucosal immune responses were characterized and compared in subjects challenged with ETEC strain H10407 and in subjects rechallenged with the homologous organism. IgA responses to lipopolysaccharide (LPS), heat-labile toxin B subunit (LTB), and colonization factor antigen I (CFA/I) in antibody in lymphocyte supernatant (ALS), feces, lavage fluid, and saliva samples were evaluated. In all assay comparisons, ALS was the most sensitive indicator of a local immune response, but serum IgA was also a useful indirect marker of immune response to oral antigens. Volunteers challenged and then rechallenged with strain H10407 were protected from illness following rechallenge. Comparing mucosal antibody responses after primary and homologous rechallenge, protection against disease was reflected in reduced antibody responses to key ETEC antigens and in reduced fecal shedding of the H10407 challenge strain. Subjects challenged with strain H10407 mounted stronger antibody responses to LPS and LTB than subjects in the rechallenge group, while responses to CFA/I in the rechallenge group were higher than in the challenge group. We anticipate that this study will help provide an immunological benchmark for the evaluation of ETEC vaccines and immunization regimens in the future.

  9. Additive protective effects of colostral antipili antibodies in calves experimentally infected with enterotoxigenic Escherichia coli.

    PubMed Central

    Contrepois, M G; Girardeau, J P

    1985-01-01

    With oral infection of calves by an enterotoxigenic Escherichia coli strain carrying K99, F41, and FY adhesins, colostrums from cows vaccinated against either K99+F41 or FY did not provide protection, but a mixture of the two colostrums did. The association of antibodies directed against the different adhesins is more effective than antibodies directed against one adhesin alone for colostral protection against enterotoxigenic E. coli carrying several adhesins. PMID:2866162

  10. Enterotoxigenic Escherichia coli diarrhea among young children in Jakarta, Indonesia.

    PubMed

    Richie, E; Punjabi, N H; Corwin, A; Lesmana, M; Rogayah, I; Lebron, C; Echeverria, P; Simanjuntak, C H

    1997-07-01

    The incidence of diarrhea and enterotoxigenic Escherichia coli (ETEC) infection was evaluated in children six months to five years of age from an urban community in Jakarta, Indonesia. From January through May 1994, 408 children were monitored in their homes for diarrheal disease. Thirty-six percent (148 of 408) of the study children had at least one episode of diarrhea during the study period. Twenty-nine (19.6%) of the 148 children with diarrhea had ETEC isolated from a rectal swab sample at least once during the surveillance period; five children had ETEC isolated from two distinct episodes of diarrhea, giving a total of 34 episodes of ETEC positive diarrhea in the study group. Ten of 34 episodes were associated with heat-labile toxin, 15 of 34 with heat-stable toxin, and seven of 34 with both toxins. The mean age of children with diarrhea (1.7 years), whether ETEC positive or negative, was significantly lower than those who did not have diarrhea (2.4 years) during the study period; 82% of the children with ETEC were less than two years of age. This study demonstrates a high incidence of ETEC diarrhea among young children in Jakarta, and suggests this site would be suitable for ETEC vaccine efficacy trials.

  11. Preliminary X-ray diffraction analysis of CfaA, a molecular chaperone essential for the assembly of CFA/I fimbriae of human enterotoxigenic Escherichia coli

    SciTech Connect

    Bao, Rui; Esser, Lothar; Poole, Steven; McVeigh, Annette; Chen, Yu-xing; Savarino, Stephen J.; Xia, Di

    2014-01-21

    The molecular chaperone CfaA plays a critical role in the bioassembly of the surface-adhesive CFA/I fimbriae of enterotoxigenic E. coli. Purified CfaA was crystallized and the phase solution was determined by the multiple isomorphous replacement coupled with anomalous scattering method.

  12. Binding of collagens to an enterotoxigenic strain of Escherichia coli

    SciTech Connect

    Visai, L.; Speziale, P.; Bozzini, S. )

    1990-02-01

    An enterotoxigenic strain of Escherichia coli, B34289c, has been shown to bind the N-terminal region of fibronectin with high affinity. We now report that this strain also binds collagen. The binding of 125I-labeled type II collagen to bacteria was time dependent and reversible. Bacteria expressed a limited number of collagen receptors (2.2 x 10(4) per cell) and bound collagen with a Kd of 20 nM. All collagen types tested (I to V) as well as all tested cyanogen bromide-generated peptides (alpha 1(I)CB2, alpha 1(I)CB3, alpha 1(I)CB7, alpha 1(I)CB8, and alpha 2(I)CB4) were recognized by bacterial receptors, as demonstrated by the ability of these proteins to inhibit the binding of 125I-labeled collagen to bacteria. Of several unlabeled proteins tested in competition experiments, fibronectin and its N-terminal region strongly inhibited binding of the radiolabeled collagen to E. coli cells. Conversely, collagen competed with an 125I-labeled 28-kilodalton fibronectin fragment for bacterial binding. Collagen bound to bacteria could be displaced by excess amounts of either unlabeled fibronectin or its N-terminal fragment. Similarly, collagen could displace 125I-labeled N-terminal peptide of fibronectin bound to the bacterial cell surface. Bacteria grown at 41 degrees C or in the presence of glucose did not express collagen or fibronectin receptors. These results indicate the presence of specific binding sites for collagen on the surface of E. coli cells and furthermore that the collagen and fibronectin binding sites are located in close proximity, possibly on the same structure.

  13. Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals.

    PubMed

    Moon, H W; Bunn, T O

    1993-01-01

    Fimbrial vaccines are routinely given parenterally to pregnant cattle, sheep and swine to protect suckling newborn calves, lambs and pigs against enterotoxigenic Escherichia coli (ETEC) infections. Such vaccines are practical and effective because (1) most fatal ETEC infections in farm animals occur in the early neonatal period when the antibody titres in colostrum and milk are highest; (2) more than 90% of the ETEC in farm animals belong to a small family of fimbrial antigen types; (3) fimbriae consist of good protein antigens on the bacterial surface where they are readily accessible to antibody; (4) fimbriae are required for a critical step (adhesion-colonization) early in the pathogenesis of the disease. ETEC infections continue to be a significant clinical problem in farm animals in spite of extensive use of fimbriae-based vaccines. Definitive data on the efficacy of the commercial vaccines in field use are not available. The prevailing perception among animal health professionals is that the vaccines are effective, that the problem occurs chiefly among non-vaccinated animals, and that in some herds vaccination moves peak prevalence of disease from the first to the second or third week after birth, when mortality is lower. It has been suggested that extensive use of vaccines will rapidly select for the emergence of novel or previously low prevalence fimbrial antigen types. There is no evidence that this has happened after a decade of routine vaccine use in the United States. However, there is no active direct surveillance for such emergence.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection.

    PubMed

    Ren, Wenkai; Yin, Jie; Duan, Jielin; Liu, Gang; Zhu, Xiaoping; Chen, Shuai; Li, Tiejun; Wang, Shengping; Tang, Yulong; Hardwidge, Philip R

    2014-11-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of human and porcine morbidity and mortality. The current study was conducted to identify intestinal immunity that is altered in a mouse model of ETEC infection. Innate immune responses and inflammation were analyzed. The activation of signal transduction pathways, including toll like receptor 4 (TLR-4)-nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK), was analyzed using immunoblotting and PCR array analyses. We found that ETEC infection promoted the expression of pro-inflammatory cytokines through the activation of the NF-κB and MAPK pathways. Meanwhile, ETEC infection affected sIgA transportation and Paneth cell function. These data improve our understanding of how ETEC causes disease in animals.

  15. Evaluation of heat-labile enterotoxins type IIa and type IIb in the pathogenicity of enterotoxigenic Escherichia coli for neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type II heat-labile enterotoxins (LT-II) have been reported in Escherichia coli isolates from humans, animals, food and water samples. The roles of the antigenically distinguishable LT-IIa and LT-IIb subtypes in pathogenesis and virulence of enterotoxigenic E. coli (ETEC) have not been previously re...

  16. Identification of enterotoxigenic Escherichia coli isolates with enzyme-labeled synthetic oligonucleotide probes.

    PubMed Central

    Medon, P P; Lanser, J A; Monckton, P R; Li, P; Symons, R H

    1988-01-01

    Commercially available kits containing alkaline phosphatase-labeled oligonucleotide probes for Escherichia coli heat-stable enterotoxins (STI-H, STI-P, and STII) and the heat-labile enterotoxin were compared with bioassays and radiolabeled recombinant DNA probes to identify enterotoxigenic E. coli from 100 clinical isolates. There was very good agreement between the three methods. PMID:3053766

  17. Draft Whole-Genome Sequences of 10 Enterotoxigenic Escherichia coli Serogroup O6 Strains

    PubMed Central

    Bopp, Cheryl A.

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children under the age of 5 years and in adults living in developing countries, as well as in travelers to these countries. In this announcement, we release the draft whole-genome sequences of 10 ETEC serogroup O6 strains. PMID:26044422

  18. Immunization of suckling pigs against enteric enterotoxigenic Escherichia coli infection by vaccinating dams with purified pili.

    PubMed

    Nagy, B; Moon, H W; Isaacson, R E; To, C C; Brinton, C C

    1978-07-01

    Pregnant swine (gilts) were vaccinated parenterally with a suspension of purified pili from the porcine enterotoxigenic Escherichia coli strain 987 (09:K103::NM). Gilts injected with placebo served as controls. Suckling pigs born to gilts in both groups were challenged intragastrically with virulent strain 987. The percentage of deaths, incidence and duration of diarrhea, numbers of E. coli in the ilea, and E. coli attachment to the villous epithelia were significantly less in suckling pigs of vaccinated gilts than in those of controls. These results are consistent with the hypothesis that pili of some enterotoxigenic E. coli facilitate adhesion to intestinal epithelia. Vaccination of dams with pili appears to be a means of immunizing against diarrheal disease caused by enterotoxigenic E. coli in suckling neonates. This work confirms the role of somatic pili as colonization and virulence factors and provides another example of safe and effective purified pilus vaccines.

  19. Clinical manifestations of diarrhea in calves infected with rotavirus and enterotoxigenic Escherichia coli.

    PubMed Central

    Tzipori, S R; Makin, T J; Smith, M L; Krautil, F L

    1981-01-01

    The susceptibility of gnotobiotic, colostrum-derived, or suckling calves to four bovine rotavirus isolates was found to be age dependent. Calves older than 7 days remained clinically normal, although they excreted virus in their feces and subsequently developed antibody against the virus, Enterotoxigenic Escherichia coli, fed to gnotobiotic, colostrum-deprived, or suckling calves ranging in age from a few hours to 26 days old, only caused diarrhea in animals younger than 24 h old. In contrast, diarrhea was consistently induced in 1- and 2-week-old calves infected with both enterotoxigenic E. coli and rotavirus. In general, diarrhea appeared after a rotavirus incubation period of approximately 3 days and was independent of the order in which the two microbial agents were given, the age of the calf, or the level of circulating rotavirus antibodies. The disease episode coincided with the excretion of rotavirus, rather than enterotoxigenic E. coli, in the feces. Infection with enterotoxigenic E. coli became established within 24 h of inoculation, and in older calves enterotoxigenic E. coli was often excreted in very small numbers and for a longer period than rotavirus. PMID:6265493

  20. Detection of enterotoxigenic Escherichia coli colonization factor antigen I in stool specimens by an enzyme-linked immunosorbent assay.

    PubMed Central

    Evans, D G; Evans, D J; Clegg, S

    1980-01-01

    An enzyme-linked immunosorbent assay (ELISA) was employed to detect and quantitate the fimbrial colonization factor antigen (CFA/I) of enterotoxigenic Escherichia coli in stool specimens obtained from adult cases of diarrhea in which CFA/I-positive E. coli was the known causative agent. The inhibition method, or blocking technique, was used. In this method, a standardized dilution of human anti-CFA/I serum was preincubated with dilutions of stool extract before transfer to CFA/I-coated microtiter plate wells, and then ELISA was performed with alkaline phosphatase-conjugated anti-human immunoglobulin. CFA/I purified from E. coli strain H-10407 (O78:H11) was used. Acute-phase diarrheal stool specimens were found to contain approximately 3.0 mg of antigen (mean value) per g stool, whereas control (CFA/I-negative) specimens contained insignificant amounts (less than 0.03 mg/g) of antigen. Also, CFA/I was detected in culture fluids of CFA/I positive enterotoxigenic E. coli belonging to a variety of serotypes and was undetectable in similar preparations from P-strains (spontaneous CFA/I-negative derivatives) of the same test cultures. Equivalent results were obtained in ELISA tests by using bacterial cells taken from isolated colonies grown on CFA agar. These results indicate that the ELISA technique will be useful for the diagnosis of diarrhea caused by CFA/I-positive enterotoxigenic E. coli. PMID:7031075

  1. Molecular homogeneity of heat-stable enterotoxins produced by bovine enterotoxigenic Escherichia coli.

    PubMed Central

    Saeed, A M; Magnuson, N S; Sriranganathan, N; Burger, D; Cosand, W

    1984-01-01

    Heat-stable enterotoxins (STs) from four strains of bovine enterotoxigenic Escherichia coli representing four serogroups were purified to homogeneity by utilizing previously published purification schemata. Biochemical characterization of the purified STs showed that they met the basic criteria for the heat-stable enterotoxins of E. coli. Amino acid analysis of the purified STs revealed that they were peptides of identical amino acid composition. This composition consisted of 18 residues of 10 different amino acids, 6 of which were cysteine. The amino acid composition of the four ST peptides was identical to that reported for the STs of human and porcine E. coli. In addition, complete sequence analysis of two of the ST peptides and partial sequencing of several others revealed strong homology to the sequences of STs from human and porcine E. coli and to the sequence predicted from the last 18 codons of the transposon Tn1681. There was also substantial homology to the sequence predicted from the ST-coding genetic element of human E. coli, which may indicate the existence of identical bioactive configuration among ST peptides of E. coli strains of various host origins. These data support the hypothesis that STs produced by human, bovine, and porcine E. coli are coded by a closely related genetic element which may have originated from a single, widely disseminated transposon. Images PMID:6376355

  2. Immunologic Control of Diarrheal Disease Due to Enterotoxigenic Escherichia coli

    DTIC Science & Technology

    1984-01-01

    CLASSIFICATION OF THIS PAGE ("oen Date Entered) UPAG- READ INSTRUCTIONS REPORT DOCUMENTATION PABEFORE COMPLETTNG FORIM I. REPORT NUMBER ,2. GOVT...oral vaccines. The second approach involves a genetically-engineered (cont. D or’ 13 EDITION Of I NOV 65 IS OWSOLETE secu|ITY CLASSIFICATION OF THIS...PAGE (W’lloe Dote Entered) SZCUftITY CLASSIFICATION OF Tr•4S PAGF.(W7n Data Entreud) .0 20. ABSTRACT: non-enterotoxigenic strain to be used as an oral

  3. Genotypic and Phenotypic Characterization of Enterotoxigenic Escherichia coli Strains Isolated from Peruvian Children

    DTIC Science & Technology

    2010-09-01

    potential coverage of children in Peru by investigational vaccines . Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in...important target for vaccine development (11). Diarrhea due to ETEC develops between 8 and 72 h after initial infection, usually due to the ingestion of...products in clinical specimens. Currently, derivatives of LT and the CFs are targets for the development of vaccines against ETEC. However, the great

  4. Passive immunity in calf diarrhea: vaccination with K99 antigen of enterotoxigenic Escherichia coli and rotavirus.

    PubMed Central

    Snodgrass, D R; Nagy, L K; Sherwood, D; Campbell, I

    1982-01-01

    Twenty-four pregnant cows were vaccinated intramuscularly with K99 extract from enterotoxigenic Escherichia coli and inactivated rotavirus as follows: six cows were injected with 2 ml of oil-adjuvanted vaccine; six cows were injected with 0.5 ml of oil-adjuvanted vaccine; six cows were injected with 4 ml of aluminum hydroxide-adjuvanted vaccine twice with a four-week interval; and six cows were unvaccinated as controls. Calves born to these cows were challenged with enterotoxigenic E. coli at 6 to 18 h after birth. Serum and milk antibodies to K99 and rotavirus in cows vaccinated with either dose of oil vaccine were significantly increased until at least 28 days after calving. In cows vaccinated with alhydrogel vaccine, there was a significant K99 antibody increase in serum and in colostrum but not in milk and a significant rotavirus antibody increase only in colostrum. Five of six calves born to unvaccinated cows developed enterotoxic colibacillosis after challenge, and all excreted the challenge strain of enterotoxigenic E. coli. None of the 18 calves in the three vaccinated groups developed clinical colibacillosis, and fecal excretion of the challenge organism was reduced. A combined enterotoxigenic E. coli-rotavirus vaccine may prove useful in preventing some outbreaks of calf diarrhea. PMID:6288567

  5. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets

    PubMed Central

    Ren, Wenkai; Yin, Jie; Chen, Shuai; Duan, Jielin; Liu, Gang; Li, Tiejun; Li, Nengzhang; Peng, Yuanyi; Tan, Bie; Yin, Yulong

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea in humans and livestock. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) combined with multidimensional liquid chromatography (LC) and MS analysis was used for screening the differentially expressed proteins in piglet jejunum after ETEC infection. Totally 1,897 proteins were identified with quantitative information in piglet jejunum. We identified 92 differentially expressed proteins in ETEC-induced diarrhea, of which 30 were up regulated and 62 down regulated. Most of the differentially expressed proteins were involved in intestinal function of binding, metabolic process, catalytic activity and immune responses. The inhibition of intestinal immune responses in the jejunum in ETEC-induced diarrhea was also validated by immunobloting and RT-PCR. Our study is the first attempt to analyze the protein profile of ETEC-infected piglets by quantitative proteomics, and our findings could provide valuable information with respect to better understanding the host response to ETEC infection. PMID:27157636

  6. Protective Enterotoxigenic Escherichia coli Antigens in a Murine Intranasal Challenge Model

    PubMed Central

    Kumar, Amit; Hays, Mike; Lim, Francis; Foster, Leonard J.; Zhou, Mingxu; Zhu, Guoqiang; Miesner, Tracy; Hardwidge, Philip R.

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an endemic health threat in underdeveloped nations. Despite the significant effort extended to vaccine trials using ETEC colonization factors, these approaches have generally not been especially effective in mediating cross-protective immunity. We used quantitative proteomics to identify 24 proteins that differed in abundance in membrane protein preparations derived from wild-type vs. a type II secretion system mutant of ETEC. We expressed and purified a subset of these proteins and identified nine antigens that generated significant immune responses in mice. Sera from mice immunized with either the MltA-interacting protein MipA, the periplasmic chaperone seventeen kilodalton protein, Skp, or a long-chain fatty acid outer membrane transporter, ETEC_2479, reduced the adherence of multiple ETEC strains differing in colonization factor expression to human intestinal epithelial cells. In intranasal challenge assays of mice, immunization with ETEC_2479 protected 88% of mice from an otherwise lethal challenge with ETEC H10407. Immunization with either Skp or MipA provided an intermediate degree of protection, 68 and 64%, respectively. Protection was significantly correlated with the induction of a secretory immunoglobulin A response. This study has identified several proteins that are conserved among heterologous ETEC strains and may thus potentially improve cross-protective efficacy if incorporated into future vaccine designs. PMID:26244636

  7. Immunochromatographic detection of the heat-labile enterotoxin of enterotoxigenic Escherichia coli with cross-detection of cholera toxin.

    PubMed

    Arimitsu, Hideyuki; Sasaki, Keiko; Tsuji, Takao

    2017-01-01

    Here, we report the development of an immunochromatographic test strip that can detect heat-labile enterotoxin (LT) produced by enterotoxigenic Escherichia coli. Five types of monoclonal antibody (mAb)-producing hybridomas were isolated: three mAbs were A subunit specific and two were B subunit specific. Four mAbs also cross-reacted with both LT proteins derived from swine and human E. coli strains, but only one mAb 57B9 additionally cross-reacted with cholera toxin. Thus, mAb 57B9 was used to form a gold colloid-conjugated antibody for the immunochromatographic test by combination with polyclonal anti-LT rabbit IgG. This test strip detected not only LT in the culture supernatant of LT gene-positive strains, but also cholera toxin in the culture supernatant of Vibrio cholerae. These results indicate that this test strip is suitable for the diagnosis of both enterotoxigenic E. coli and V. cholerae infection.

  8. Pathogenicity of Vietnamese enterotoxigenic Escherichia coli strains in colostrum-deprived one-day-old piglets.

    PubMed

    Do, T N; Wilkie, I; Driesen, S J; Fahy, V A; Trott, D J

    2006-03-01

    Preweaning colibacillosis is a major cause of economic loss to the swine industry in Vietnam. The aim of this study was to examine the enteropathogenicity of representative enterotoxigenic Escherichia coli (ETEC) strains obtained during an earlier epidemiologic survey conducted in five provinces in North Vietnam. This included isolates belonging to serotype O8 that produced heat-stable and heat-labile enterotoxins but did not produce any of the recognized fimbriae (F4, F5, F6, F41, F18). In vitro hemagglutination (unique mannose-resistant hemagglutination activity with guinea pig, sheep, human, and chicken red blood cells at 37 degrees C, but not at 18 degrees C) and enterocyte brush border attachment assays suggested that the F- ETEC strains produced an unidentified colonization factor that promoted adherence to the intestinal epithelium. Colostrum-deprived 1-day-old piglets challenged with an F- strain (1-2 x 10(9) bacteria) developed acute watery diarrhea within 4 hours of inoculation and suffered up to 20% weight loss, with comparable severity to piglets challenged with conventional F4 and F5 strains. At necropsy, viable counts and histopathologic examination of intestinal sections demonstrated colonization of the duodenum, jejunum, and ileum by F4-positive strains. In comparison, the F- and F5-positive strains attached exclusively to the ileum. Transmission electron micrographs of negatively stained F- cells grown at 37 degrees C demonstrated the presence of fimbriae. These results confirm the presence of a potentially new pathogenic ETEC fimbrial type in piggeries in Vietnam, with a unique hemagglutination property and attachment characteristics similar to ETEC bearing F5 fimbriae.

  9. Genome Sequences and Phylogenetic Analysis of K88- and F18-Positive Porcine Enterotoxigenic Escherichia coli

    PubMed Central

    Shepard, Sara M.; Danzeisen, Jessica L.; Isaacson, Richard E.; Seemann, Torsten; Achtman, Mark

    2012-01-01

    Porcine enterotoxigenic Escherichia coli (ETEC) continues to result in major morbidity and mortality in the swine industry via postweaning diarrhea. The key virulence factors of ETEC strains, their serotypes, and their fimbrial components have been well studied. However, most studies to date have focused on plasmid-encoded traits related to colonization and toxin production, and the chromosomal backgrounds of these strains have been largely understudied. Here, we generated the genomic sequences of K88-positive and F18-positive porcine ETEC strains and examined the phylogenetic distribution of clinical porcine ETEC strains and their plasmid-associated genetic content. The genomes of porcine ETEC strains UMNK88 and UMNF18 were both found to contain remarkable plasmid complements containing known virulence factors, potential novel virulence factors, and antimicrobial resistance-associated elements. The chromosomes of these strains also possessed several unique genomic islands containing hypothetical genes with similarity to classical virulence factors, although phage-associated genomic islands dominated the accessory genomes of these strains. Phylogenetic analysis of 78 clinical isolates associated with neonatal and porcine diarrhea revealed that a limited subset of porcine ETEC lineages exist that generally contain common toxin and fimbrial profiles, with many of the isolates belonging to the ST10, ST23, and ST169 multilocus sequencing types. These lineages were generally distinct from existing human ETEC database isolates. Overall, most porcine ETEC strains appear to have emerged from a limited subset of E. coli lineages that either have an increased propensity to carry plasmid-encoded virulence factors or have the appropriate ETEC core genome required for virulence. PMID:22081385

  10. Enterotoxigenic Escherichia coli Subclinical Infection in Pigs: Bacteriological and Genotypic Characterization and Antimicrobial Resistance Profiles.

    PubMed

    Moredo, Fabiana A; Piñeyro, Pablo E; Márquez, Gabriela C; Sanz, Marcelo; Colello, Rocío; Etcheverría, Analía; Padola, Nora L; Quiroga, María A; Perfumo, Carlos J; Galli, Lucía; Leotta, Gerardo A

    2015-08-01

    Enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for neonatal diarrhea, postweaning diarrhea, and edema disease in pigs. Although it can be harmless, ETEC is also present in the intestines of other animal species and humans, causing occasional diarrhea outbreaks. The evaluation of this pathogen's presence in food sources is becoming an increasingly important issue in human health. In order to determine the prevalence of ETEC in nondiarrheic pigs, 990 animals from 11 pig farms were sampled. Using end-time polymerase chain reaction (PCR), eltA, estI genes, or both, were detected in 150 (15.2%) animals. From the positive samples, 40 (26.6%) ETEC strains were isolated, showing 19 antibiotic-resistance patterns; 52.5% of these strains had multiple antibiotic resistances, and 17.5% carried the intI2 gene. The most prevalent genotypes were rfb(O157)/estII/aidA (32.5%) and estI/estII (25.0%). The estII gene was identified most frequently (97.5%), followed by estI (37.5%), astA (20.0%), and eltA (12.5%). The genes coding the fimbriae F5, F6, and F18 were detected in three single isolates. The aidA gene was detected in 20 ETEC strains associated with the estII gene. Among the isolated ETEC strains, stx(2e)/estI, stx(2e)/estI/estII, and stx(2e)/estI/estII/intI2 genotypes were identified. The ETEC belonged to 12 different serogroups; 37.5% of them belonged to serotype O157:H19. Isolates were grouped by enterobacterial repetitive intergenic consensus-PCR into 5 clusters with 100.0% similarity. In this study, we demonstrated that numerous ETEC genotypes cohabit and circulate in swine populations without clinical manifestation of neonatal diarrhea, postweaning diarrhea, or edema disease in different production stages. The information generated is important not only for diagnostic and epidemiological purposes, but also for understanding the dynamics and ecology of ETEC in pigs in different production stages that can be potentially transmitted to humans

  11. Hybrid Shiga Toxin-Producing and Enterotoxigenic Escherichia sp. Cryptic Lineage 1 Strain 7v Harbors a Hybrid Plasmid

    PubMed Central

    Mammel, Mark K.; Rasko, David A.; Lacher, David W.

    2016-01-01

    ABSTRACT Hybrid isolates of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) encoding heat-stable enterotoxin (ST) are being reported with increasing frequency from a variety of sources. However, information regarding the plasmids that these strains harbor is scarce. In this study, we sequence and characterize a plasmid, p7v, from the STEC/ETEC hybrid strain 7v. Whole-genome phylogenetic analyses of STEC/ETEC hybrid strains and prototype E. coli isolates of other pathotypes placed 7v in the Escherichia sp. cryptic lineage 1 (CL1) clade. The complete plasmid, p7v, was determined to be 229,275 bp and encodes putative virulence factors that are typically carried on STEC plasmids as well as those often carried on ETEC plasmids, indicating that the hybrid nature of the strain extends beyond merely encoding the two toxins. Plasmid p7v carries two copies of sta with identical sequences, which were discovered to be divergent from the sta sequences found in the prototype human ETEC strains. Using a nomenclature scheme based on a phylogeny constructed from sta and stb sequences, the sta encoded on p7v is designated STa4. In silico analysis determined that p7v also encodes the K88 fimbria, a colonization factor usually associated with porcine ETEC plasmids. The p7v sequence and the presence of plasmid-encoded virulence factors are compared to those of other STEC/ETEC CL1 hybrid genomes and reveal gene acquisition/loss at the strain level. In addition, the interrogation of 24 STEC/ETEC hybrid genomes for identification of plasmid replicons, colonization factors, Stx and ST subtypes, and other plasmid-encoded virulence genes highlights the diversity of these hybrid strains. IMPORTANCE Hybrid Shiga toxin-producing Escherichia coli/enterotoxigenic Escherichia coli (STEC/ETEC) strains, which have been isolated from environmental, animal, and human clinical samples, may represent an emerging threat as food-borne pathogens. Characterization of these

  12. Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains

    PubMed Central

    Nyholm, Outi; Halkilahti, Jani; Wiklund, Gudrun; Okeke, Uche; Paulin, Lars; Auvinen, Petri; Haukka, Kaisa; Siitonen, Anja

    2015-01-01

    Background Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor. Methods The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied. Results The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only. Conclusions This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which

  13. Immune response in diarrheal patients and asymptomatic carrier with CS6-producing enterotoxigenic Escherichia coli infection.

    PubMed

    Puiprom, Orapim; Chantaroj, Siriporn; Matsuda, Shigeaki; Sawanpanyalert, Pathom; Honda, Takeshi; Iida, Tetsuya; Taniguchi, Tooru

    2012-11-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the major causes of diarrhea in children and travelers in developing countries. ETEC colonization factors (CFs) are virulence determinants considered as protective antigens and major targets for vaccine development against ETEC infections. One of the most prevalent CFs, coli surface antigen 6 (CS6), a non-fimbrial polymeric protein consisting of two major subunits, CssA and CssB, is produced by approximately 25-35% of ETEC worldwide. We could isolate only CS6-producing ETEC strains from two diarrheal patients and one asymptomatic carrier, but we could not detect CssA- or CssB-specific antibodies in the feces and blood of two patients convalescing from natural ETEC infection and of an asymptomatic carrier using western blotting. Therefore, in order to protect against infection with CS6-producing ETEC, protective levels of CS6 immunity should be incorporated in any future vaccines against ETEC.

  14. Serologic responses to somatic O and colonization-factor antigens of enterotoxigenic Escherichia coli in travelers.

    PubMed

    Deetz, T R; Evans, D J; Evans, D G; DuPont, H L

    1979-07-01

    To improve the retrospective diagnoses of enterotoxigenic Escherichia coli (ETEC) as a cause of travelers' diarrhea, as well as to determine the presence of colonization-factor antigens in these infections, a study of serologic responses to antigens of ETEC was done. Paired sera from 60 United States students in Cholula, Puebla, Mexico, were analyzed for rises in titer of antibody to heat-labile toxin, eight somatic antigen O serogroups associated with ETEC, and two colonization-factor antigens, CFA/I and CFA/II. Only 9% had a response to O antigens, while 20% had responses to the colonization-factor antigens. Response to the colonization-factor antigens correlated significantly with response to the heat-labile toxin and with culture evidence of ETEC infection. Serologic studies confirmed that colonization-factor antigen has a role in naturally acquired cases of travelers' diarrhea and that it can be used as an additional determinant of infection with ETEC.

  15. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli.

    PubMed

    Tang, Yulong; Tan, Bie; Xiong, Xia; Li, Fengna; Ren, Wenkai; Kong, Xiangfeng; Qiu, Wei; Hardwidge, Philip R; Yin, Yulong

    2015-10-01

    Infections by enterotoxigenic Escherichia coli (ETEC) result in large economic losses to the swine industry worldwide. Dietary supplementation with amino acids has been considered as a potential mechanism to improve host defenses against infection. The goal of this study was to determine whether methionine deprivation alters ETEC interactions with porcine intestinal epithelial cells. IPEC-1 cells were cultured in media with or without L-methionine. Methionine deprivation resulted in enhanced ETEC adhesion and increased both the cytotoxicity and apoptotic responses of IPEC-1 cells infected with ETEC. Methionine deprivation inhibited IPEC-1 cell autophagic responses, suggesting that the increased cytotoxicity of ETEC to methionine-deprived IPEC-1 cells might be due to defects in autophagy.

  16. Bromelain protects piglets from diarrhoea caused by oral challenge with K88 positive enterotoxigenic Escherichia coli

    PubMed Central

    Chandler, D; Mynott, T

    1998-01-01

    Background—K88 positive enterotoxigenic Escherichia coli (K88+ ETEC) is an important cause of diarrhoea in young piglets. K88+ ETEC pathogenesis relies on attachment to specific glycoprotein receptors located on the intestinal mucosa. Proteolytic treatment of these receptors in vitro and in vivo prevents attachment of K88+ ETEC to piglet small intestines and may be of clinical use to prevent K88+ ETEC pathogenesis. 
Aims—To determine whether bromelain, a proteolytic extract obtained from pineapple stems, would protect piglets against K88+ ETEC diarrhoea and to confirm and extend earlier findings on the effects of bromelain on K88+ ETEC receptors in vivo. 
Methods—Bromelain (0, 12.5, or 125 mg) was orally administered to just weaned piglets for 10 days. One day following commencement of bromelain treatment, piglets were challenged with K88+ ETEC (5 × 1010 K88ac:0149) for seven days. Intestinal contents from unchallenged piglets were obtained via an intestinal fistula, and tested for their ability to bind K88+ ETEC before and after bromelain treatment. 
Results—Both doses of bromelain were successful in reducing the incidence of K88+ ETEC diarrhoea and protected piglets from life threatening disease. Bromelain treated pigs also had significantly increased weight gain compared with untreated pigs. Bromelain only temporarily inhibited K88+ ETEC receptor activity, with receptor activity being regenerated 30 hours following treatment, consistent with the regeneration of new enterocytes. 
Conclusion—Results show that bromelain can temporarily inactivate ETEC receptors in vivo and protect against ETEC induced diarrhoea. Bromelain may therefore be an effective prophylaxis against ETEC infection. 

 Keywords: enterotoxigenic Escherichia coli; K88 ETEC; ETEC receptors; diarrhoea; bromelain PMID:10189844

  17. A new method for the extraction and purification of K99 pili from enterotoxigenic Escherichia coli and their characterization.

    PubMed Central

    Altmann, K; Pyliotis, N A; Mukkur, T K

    1982-01-01

    It was found that K99 pili from enterotoxigenic Escherichia coli (of bovine origin) could be extracted by treatment with 3M-KSCN solution. The K99 pili were purified by preparative isoelectric focusing to apparent homogeneity as judged by the presence of a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the molecular weight of this component was calculated to be 12 600 +/- 300. This indicated that the K99 pili were composed of a single subunit. On analytical ultracentrifugation, a single boundary with an s20,w of 12.2 S at a concentration of 0.42 mg/ml was observed. The average length of purified pili at zero concentration was approx. 160 nm and the diameter was 7.4 +/- 0.6 nm. Amino acid analysis of the purified K99 pili revealed that sulphur-containing amino acids, cysteine and methionine, were absent. Aromatic amino acids, phenylalanine and tyrosine, previously reported to be absent [Isaacson (1977) Infect. Immun. 15. 272-279], constituted 7.14% of the total amino acid residues present. On immunoelectrophoresis, purified K99 pili migrated towards the cathode and caused mannose-resistant haemagglutination of horse, but not of sheep or guinea-pig, red blood cells. Pili from enterotoxigenic E. coli of porcine and human origin and from another bacterial species, namely Fusiformis nodosus, could also be extracted by the treatment of respective micro-organisms with 3 M-KSCN. Images PLATE 1 Fig. 3. Fig. 5. PMID:6124240

  18. Factors Affecting Release of Heat-Labile Enterotoxin by Enterotoxigenic Escherichia coli

    PubMed Central

    Kunkel, Steven L.; Robertson, Donald C.

    1979-01-01

    Various conditions affecting the release of heat-labile enterotoxin (LT) by enterotoxigenic Escherichia coli have been examined. The pH of a defined medium containing three amino acids, M-9 salts, and 0.5% glucose decreased to less than 7.0 in early log phase of growth, and no extracellular LT was detected. Adjustment of the pH at 8 h from 6.0 to 8.0 resulted in a concomitant increase in LT activity in culture supernatants. The release of cell-associated LT was significantly reduced by preincubation with protease inhibitors and increased by preincubation with trypsin. Cell-associated LT was not released by pH adjustment of cells grown at 21°C; however, polymyxin B treatment released a toxin species active in only the pigeon erythrocyte lysate (PEL) assay system. As the growth temperature was increased, polymyxin B released toxin species which exhibited both PEL and Y-1 adrenal tumor cell activity. Polymyxin B extracts of enterotoxigenic E. coli in early log phase grown at 37°C possessed only PEL activity, whereas extracts from cells in late-log and stationary phases had biological activity in both assay systems. Also, LT released by pH adjustment from mid-log to stationary phase was active in both PEL and Y-1 adrenal tumor cell assays. Gel electrophoresis of polymyxin B extracts revealed at least three molecular weight species active in either the PEL (22,000 daltons and 30,000 daltons) or both the PEL and the Y-1 adrenal tumor cell assay (72,000 daltons), depending on the growth temperature. These observations may help to explain the chemical and biological heterogeneity of most LT preparations and facilitate purification of LT by increasing the yield of enterotoxin. PMID:37162

  19. Molecular Characterization of Enterotoxigenic Escherichia coli Strains Isolated from Diarrheal Patients in Korea during 2003–2011

    PubMed Central

    Oh, Kyung-Hwan; Kim, Dong Wook; Jung, Su-Mi; Cho, Seung-Hak

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the major causes of infectious diarrhea in developing countries. In order to characterize the molecular features of human ETEC isolates from Korea, we investigated the profiles of enterotoxin and colonization factor (CF) genes by polymerase chain reaction (PCR) and performed multilocus sequence typing (MLST) with a total of 291 ETEC strains. The specimens comprised 258 domestic strains isolated from patients who had diarrhea and were from widely separated geographic regions in Korea and 33 inflow strains isolated from travelers visiting other Asian countries. Heat-stable toxin (STh)-possessing ETEC strains were more frequent than heat-labile toxin (LT)-possessing ETEC strains in the domestic isolates, while the detection rates of both enterotoxin genes were similar in the inflow isolates. The profile of CF genes of domestic isolates was similar to that of inflow isolates and the major CF types of the strains were CS3-CS21-CS1/PCF071 and CS2-CS3-CS21. Most of these 2 CF types were detected in ETEC strains that possess both lt and sth genes. The major MLSTST types of domestic isolates were ST171 and ST955. Moreover, the 2 major CF types were usually found concomitantly with the 2 major MLST STs, ST171 and ST955. In conclusion, our genotyping results may provide useful information for guiding the development of geographically specific vaccines against human ETEC isolates. PMID:24841334

  20. A biomarker for the identification of swine fecal pollution in water, using the STII toxin gene from enterotoxigenic Escherichia coli.

    PubMed

    Khatib, L A; Tsai, Y L; Olson, B H

    2003-12-01

    This research developed a PCR method to identify swine fecal pollution in water, using a portion of the STII toxin gene from enterotoxigenic Escherichia coli as the target sequence. This method showed the gene to have a wide-spread geographical distribution and temporal stability; and the primers demonstrated high specificity, sensitivity, and reliability. A total of 110 DNA extracts from different animal fecal and human sewage samples were screened using the primers and no positives resulted. Centrifugation and filtration methods for concentrating E. coli seeded into stream, ocean, secondary effluent, and dairy lagoon waters resulted in detection limits at the femtogram and attogram levels. E. coli with the biomarker seeded into stream, ocean, and secondary effluent waters remained stable for approximately 2 weeks for all water types. Of the farm lagoon and waste samples tested, 94% were positive for the STII trait, regardless of the number of E. coli screened and 100% were positive when > or =35 E. coli isolates were screened. As the PCR product of the target sequence yielded a single band, the method is applicable to dot blot detection methodology, yielding great accuracy in determining the presence of swine fecal sources.

  1. A biomarker for the identification of cattle fecal pollution in water using the LTIIa toxin gene from enterotoxigenic Escherichia coli.

    PubMed

    Khatib, L A; Tsai, Y L; Olson, B H

    2002-06-01

    This research describes a method based on PCR to identify cattle fecal pollution in water using a portion of the heat labile toxin IIA (LTIIa) gene from enterotoxigenic Escherichia coli (ETEC). We describe the development of the primers and target. DNA extracts (221) from different animal fecal and human sewage samples were screened and showed no cross-reactivity. Minimum detection limits using centrifugation and filtration methods to concentrate E. coli seeded into stream, ocean, and secondary effluent waters were found to be at femtogram and attogram levels, respectively. Stability of the biomarker in stream, ocean, and secondary effluent waters was 2-4 weeks for all water types. Finally, 33 farm lagoon and waste samples were collected and 31 tested to validate the method; 93% were positive for the LTIIa trait when >1,000 E. coli were screened and 100% positive when >10(5) E. coli were screened. Prevalence of the toxin gene in the E. coli population affected the outcome of the analyses. The cow biomarker can be used in watershed studies to identify cattle waste with great accuracy if the appropriate numbers of E. coli are screened.

  2. Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli clinical isolates from northern Colombia, South America.

    PubMed

    Guerra, Julio A; Romero-Herazo, Yesenia C; Arzuza, Octavio; Gómez-Duarte, Oscar G

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are major causes of childhood diarrhea in low and middle income countries including Colombia, South America. To understand the diversity of ETEC strains in the region, clinical isolates obtained from northern Colombia children were evaluated for multiple locus sequencing typing, serotyping, classical and nonclassical virulence genes, and antibiotic susceptibility. Among 40 ETEC clinical isolates evaluated, 21 (52.5%) were positive for LT gene, 13 (32.5%) for ST gene, and 6 (15%) for both ST and LT. The most prevalent colonization surface antigens (CS) were CS21 and CFA/I identified in 21 (50%) and 13 (32.5%) isolates, respectively. The eatA, irp2, and fyuA were the most common nonclassical virulence genes present in more than 60% of the isolates. Ampicillin resistance (80% of the strains) was the most frequent phenotype among ETEC strains followed by trimethoprim-sulfamethoxazole resistance (52.5%). Based on multiple locus sequencing typing (MLST), we recognize that 6 clonal groups of ETEC clinical isolates circulate in Colombia. ETEC clinical isolates from children in northern Colombia are highly diverse, yet some isolates circulating in the community belong to well-defined clonal groups that share a unique set of virulence factors, serotypes, and MLST sequence types.

  3. Adhesion of enterotoxigenic Escherichia coli strains to neoglycans synthesised with prebiotic galactooligosaccharides.

    PubMed

    Sarabia-Sainz, Hector Manuel; Armenta-Ruiz, Carolina; Sarabia-Sainz, Jose Andre-i; Guzmán-Partida, Ana María; Ledesma-Osuna, Ana Irene; Vázquez-Moreno, Luz; Ramos-Clamont Montfort, Gabriela

    2013-12-01

    Enterotoxigenic (ETEC) Escherichia coli (E. coli) causes traveller's diarrhoea and high mortality among baby animals. ETEC adhesion is mediated by lectins (adhesins) that bind to glycoconjugates on the surface of host cells. Glycans that compete for adhesion could be used for disease prevention. Neoglycans of porcine albumin (PSA) that were conjugated with prebiotic galactooligosaccharides (GOS) were synthesised using the Maillard reaction. PSA glycation was confirmed by a reduction in the number of available free amino groups, decreased tryptophan intrinsic fluorescence, increased molecular mass and Ricinus communis lectin recognition. The adhesion of four ETEC strains (E. coli H10407, CFA(+), K99 and K88) to PSA-GOS was examined by an enzyme-linked lectin assay. E. coli K88 bound to PSA-GOS with greater affinity (P<0.05) than did E. coli H10407, CFA(+) and K99. In addition, PSA-GOS partially inhibited the adherence of the K88 strain to intestinal mucins. Pig ETEC strain was unable to ferment galactooligosaccharide-neoglycans. These results suggest that neoglycans obtained by the Maillard reaction may serve in the prophylaxis of ETEC K88 diarrhoea.

  4. Chitosan Modulates Inflammatory Responses in Rats Infected with Enterotoxigenic Escherichia coli

    PubMed Central

    Tan, Jun

    2016-01-01

    This study aims to investigate the effects of dietary chitosan (COS) on gastrointestinal pathogen resistance in mice model. For two weeks, a control group of ICR mice received a basal diet whilst the intervention group received the basal diet supplemented with 300 mg/kg COS. After two weeks, the mice fed the supplemented diet had a lower body weight. Then enterotoxigenic Escherichia coli (E. coli) was administered to the mice through oral gavage, with each mouse receiving 108 CFU. At day 7 after infection, the bacterial load in the jejunum and faeces was significantly lower in the COS group than that in the control group. Moreover, the mRNA and protein levels of IL-1β, IL-6, IL-17, IL-18, and TNF-α were significantly lower in the group of mice receiving the COS diet; also the jejunal production of toll-like receptor-4 (TLR-4) was suppressed in the COS group. These results indicate the intervention influenced inflammation and controlled E. coli infection. PMID:28100936

  5. Identification of enterotoxigenic Escherichia coli with synthetic alkaline phosphatase-conjugated oligonucleotide DNA probes.

    PubMed Central

    Seriwatana, J; Echeverria, P; Taylor, D N; Sakuldaipeara, T; Changchawalit, S; Chivoratanond, O

    1987-01-01

    Alkaline phosphatase-conjugated (AP) 26-base oligonucleotide DNA probes were compared with the same probes labeled with gamma-32P for the identification of heat-labile (LT) and heat-stable (ST) enterotoxigenic Escherichia coli (ETEC). The AP oligonucleotide probes were as sensitive as the radiolabeled (RL) probes in detecting LT and STA-2 target cell DNA, but the AP ST probe, which differed from STA-1 by two bases, was less sensitive than the RL probe in detecting STA-1 DNA (6.25 versus 0.78 ng). Of 94 ETEC that were identified with the RL probe, the AP probes detected 93% (28 of 30) of ST, 73% (25 of 34) of LT, and 67% (20 of 30) of LTST ETEC. When colony lysates of these ETEC were examined, the AP probes identified all 94 ETEC. In examinations of stool blots, the RL and AP probes were shown to have sensitivities of 71 and 59%, specificities of 91 and 86%, positive predictive values of 87 and 73%, and negative predictive values of 86 and 74%, respectively. AP oligonucleotide probes to detect ETEC were less sensitive in detecting ETEC by colony or stool blot hybridization than the RL probes but could be used by laboratories without access to radioisotopes to examine colony lysates. Images PMID:3305559

  6. Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design

    PubMed Central

    Fleckenstein, James M.; Rasko, David A.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a genetically diverse E. coli pathovar that share in the ability to produce heat-labile toxin and/or heat-stable toxins. While these pathogens contribute substantially to the burden of diarrheal illness in developing countries, at present, there is no suitable broadly protective vaccine to prevent these common infections. Most vaccine development attempts to date have followed a classical approach involving a relatively small group of antigens. The extraordinary underlying genetic plasticity of E. coli has confounded the antigen valency requirements based on this approach. The recent discovery of additional virulence proteins within this group of pathogens, as well as the availability of whole-genome sequences from hundreds of ETEC strains to facilitate identification of conserved molecules, now permits a reconsideration of the classical approaches, and the exploration of novel antigenic targets to complement existing strategies overcoming antigenic diversity that has impeded progress toward a broadly protective vaccine. Progress to date in antigen discovery and methods currently available to explore novel immunogens are outlined here. PMID:27076141

  7. Traveler's diarrhea at sea: three outbreaks of waterborne enterotoxigenic Escherichia coli on cruise ships.

    PubMed

    Daniels, N A; Neimann, J; Karpati, A; Parashar, U D; Greene, K D; Wells, J G; Srivastava, A; Tauxe, R V; Mintz, E D; Quick, R

    2000-04-01

    Enterotoxigenic Escherichia coli (ETEC) has become the leading bacterial cause of gastroenteritis outbreaks on cruise ships. Investigation of recent outbreaks of ETEC gastroenteritis on 3 cruise ships indicated that all were associated with consuming beverages with ice cubes on board the ship (relative risk [RR], 1.4, 95% confidence interval [CI], 1.0-1.9, P=.02; RR, 1.9, 95% CI, 1.3-2. 9, P<.001; and RR, 1.3, 95% CI, 1.0-1.6, P<.01), and 2 were associated with drinking unbottled water (RR, 2.7, 95% CI, 1.8-4.1, P<.001; RR, 1.7, 95% CI, 1.3-2.3, P<.001). Multiple ETEC serotypes were detected in patients' stool specimens in each of the 3 outbreaks, and 12 (38%) of 32 isolates were resistant to > or =3 antimicrobial agents. ETEC appears to be emerging as a waterborne pathogen on cruise ships. Water bunkered in overseas ports was the likely source of ETEC infection in these outbreaks. To ensure passenger safety, cruise ships that take on water in foreign ports must ensure that water treatment and monitoring systems function properly.

  8. Multi-drug-resistant enterotoxigenic and enterohemorrhagic Escherichia coli isolated from children with diarrhea.

    PubMed

    Zeighami, Habib; Haghi, Fakhri; Hajiahmadi, Fahimeh; Kashefiyeh, Mehdi; Memariani, Mojtaba

    2015-06-01

    Multi-drug-resistant (MDR) diarrheagenic Escherichia coli (DEC) has rapidly spread worldwide and represents the most serious threat to the management of diarrhea in developing countries. During the period from March 2011 to January 2012, a total of 450 stool samples of diarrheal children aged 0-60 months were studied. In order to detect enterotoxigenic E. coli (ETEC) and enterohemorrhagic E. coli (EHEC) simultaneously, a mixture of four primer pairs specific for eltB, estA, vt1, and vt2 genes was used in a multiplex PCR. Antimicrobial susceptibility testing was performed as the Clinical and Laboratory Standards Institute (CLSI) guidelines. A total of 140 (31·1%) DEC were isolated from 450 stool samples. Diarrheagenic E. coli exhibited high-level resistance to aztreonam (80·7%), amoxicillin (74·4%), and tetracycline (69·3%). Also, 86·4% of E. coli isolates were resistant to at least three different classes of antimicrobial agents and considered as MDR. The frequency of ETEC and EHEC pathotypes was 46·4 and 12·1%, respectively and all of these isolates were MDR. In conclusion, MDR ETEC continues to be an important agent associated with diarrhea in children from Tabriz, Iran.

  9. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection

    PubMed Central

    Ren, Wenkai; Yin, Jie; Xiao, Hao; Chen, Shuai; Liu, Gang; Tan, Bie; Li, Nengzhang; Peng, Yuanyi; Li, Tiejun; Zeng, Benhua; Li, Wenxia; Wei, Hong; Yin, Zhinan; Wu, Guoyao; Hardwidge, Philip R.; Yin, Yulong

    2017-01-01

    Intestinal microbiota has critical importance in pathogenesis of intestinal infection; however, the role of intestinal microbiota in intestinal immunity during enterotoxigenic Escherichia coli (ETEC) infection is poorly understood. The present study tested the hypothesis that the intestinal microbiota is associated with intestinal interleukin-17 (IL-17) expression in response to ETEC infection. Here, we found ETEC infection induced expression of intestinal IL-17 and dysbiosis of intestinal microbiota, increasing abundance of γ-aminobutyric acid (GABA)-producing Lactococcus lactis subsp. lactis. Antibiotics treatment in mice lowered the expression of intestinal IL-17 during ETEC infection, while GABA or L. lactis subsp. lactis administration restored the expression of intestinal IL-17. L. lactis subsp. lactis administration also promoted expression of intestinal IL-17 in germ-free mice during ETEC infection. GABA enhanced intestinal IL-17 expression in the context of ETEC infection through activating mechanistic target of rapamycin complex 1 (mTORC1)-ribosomal protein S6 kinase 1 (S6K1) signaling. GABA–mTORC1 signaling also affected intestinal IL-17 expression in response to Citrobacter rodentium infection and in drug-induced model of intestinal inflammation. These findings highlight the importance of intestinal GABA signaling in intestinal IL-17 expression during intestinal infection and indicate the potential of intestinal microbiota-GABA signaling in IL-17-associated intestinal diseases. PMID:28138329

  10. Oral administration of protease inhibits enterotoxigenic Escherichia coli receptor activity in piglet small intestine.

    PubMed Central

    Mynott, T L; Luke, R K; Chandler, D S

    1996-01-01

    The virulence of enterotoxigenic Escherichia coli (ETEC) is attributed to their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. A novel approach to preventing ETEC induced diarrhoea would be to prevent attachment of ETEC to intestine by proteolytically modifying the receptor attachment sites. This study aimed to examine the effect of bromelain, a proteolytic extract obtained from pineapple stems, on ETEC receptor activity in porcine small intestine. Bromelain was administered orally to piglets and K88+ ETEC attachment to small intestine was measured at 50 cm intervals using an enzyme immunoassay. K88+ ETEC attachment to intestinal sections that were not treated with bromelain varied appreciably between sampling sites. Variability in receptor activity along the intestinal surface is though to be caused by the localised effects of endogenous proteases. Oral administration of exogenous protease inhibited K88+ ETEC attachment to pig small intestine in a dose dependent manner (p < 0.05). Attachment of K88+ ETEC was negligible after treatment, resembling the levels of attachment of K88 to piglets of the genetically determined non-adhesive phenotype, which are resistant to K88+ ETEC infection. Serum biochemical analysis and histopathological examination of treated piglets showed no adverse effects of the bromelain treatment. It is concluded that administration of bromelain can inhibit ETEC receptor activity in vivo and may therefore be useful for prevention of K88+ ETEC induced diarrhoea. PMID:8566855

  11. Distribution of Enteroinvasive and Enterotoxigenic Escherichia coli across Space and Time in Northwestern Ecuador

    PubMed Central

    Bhavnani, Darlene; de los Ángeles Bayas, Rosa; Lopez, Velma K.; Zhang, Lixin; Trueba, Gabriel; Foxman, Betsy; Marrs, Carl; Cevallos, William; Eisenberg, Joseph N. S.

    2016-01-01

    Although Escherichia coli infections are common throughout the developing world, their prevalence patterns in space and over time are not well characterized. We used serial case control data collected from 16 communities in northwestern Ecuador between 2004 and 2010, to examine the prevalence of enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC). At its peak, the regional prevalence of EIEC was 8.3 infections/100 persons but this decreased to 1 infection/1,000 persons. The regional prevalence of ETEC ranged from 8 infections/1,000 persons to 3.7 infections/100 persons. The prevalence pattern of EIEC resembled that of a large epidemic whereas the prevalence of ETEC was more stable over time. Here, we provide community-based evidence for temporal shifts in the dominant E. coli pathotype from EIEC to ETEC over a multi-year time period. Furthermore, genotype analysis suggests that a given strain of EIEC and ETEC can persist in this region for long periods, up to 24 and 55 months, respectively. PMID:26643532

  12. Phylogenetic background of enterotoxigenic and enteroinvasive Escherichia coli from patients with diarrhea in Sirjan, Iran

    PubMed Central

    Hoseinzadeh, Taifeh; Ghanbarpour, Reza; Rokhbakhsh-Zamin, Farokh

    2016-01-01

    Background and Objectives: Diarrheagenic Escherichia coli (DEC) strains are a major cause of intestinal syndromes in the developing countries. The aim of this study was to determine the prevalence of enterotoxigenic E. coli (ETEC) and enteroinvasive E. coli (EIEC) in relation to phylogenetic background from patients with diarrhea. Materials and Methods: A total of 110 E. coli isolates were obtained from diarrhea patients in Sirjan, southeast of Iran. The E. coli isolates were confirmed using biochemical and bacteriological tests. DNA of E. coli isolates was extracted by boiling method and checked for existence of ETEC (LT and ST genes) and EIEC (ipaH gene) pathotypes and also characterize the phylogenetic groups on the basis of presence or absence of the chuA, yjaA genes and an anonymous DNA fragment, TspE4. C2 by multiplex PCR. Results: Out of 110 E. coli isolates, 32 (29.09%) were positive for ETEC (LT and ST genes) and 6 (5.45%) possessed EIEC (ipaH gene) pathotypes. Isolates fall into four phylogenetic groups: A (39.09%), B1 (20%), B2 (15.45%) and D (25.45%). Phylotyping of isolates of DEC indicated they were distributed in four phylogenetic groups including A (12 isolates), B1 (7), B2 (9) and D (10). Conclusion: In this study, the DEC isolates were segregated into different phylogenetic groups. The majority of isolates belonged to phylo-groups A and D. PMID:27928486

  13. Distribution of Enteroinvasive and Enterotoxigenic Escherichia coli Across Space and Time in Northwestern Ecuador.

    PubMed

    Bhavnani, Darlene; Bayas, Rosa de los Ángeles; Lopez, Velma K; Zhang, Lixin; Trueba, Gabriel; Foxman, Betsy; Marrs, Carl; Cevallos, William; Eisenberg, Joseph N S

    2016-02-01

    Although Escherichia coli infections are common throughout the developing world, their prevalence patterns in space and over time are not well characterized. We used serial case control data collected from 16 communities in northwestern Ecuador between 2004 and 2010, to examine the prevalence of enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC). At its peak, the regional prevalence of EIEC was 8.3 infections/100 persons but this decreased to 1 infection/1,000 persons. The regional prevalence of ETEC ranged from 8 infections/1,000 persons to 3.7 infections/100 persons. The prevalence pattern of EIEC resembled that of a large epidemic whereas the prevalence of ETEC was more stable over time. Here, we provide community-based evidence for temporal shifts in the dominant E. coli pathotype from EIEC to ETEC over a multi-year time period. Furthermore, genotype analysis suggests that a given strain of EIEC and ETEC can persist in this region for long periods, up to 24 and 55 months, respectively.

  14. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children.

    PubMed

    Walker, Richard I

    2015-02-18

    Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas.

  15. Transcriptional Modulation of Enterotoxigenic Escherichia coli Virulence Genes in Response to Epithelial Cell Interactions

    PubMed Central

    Kansal, Rita; Rasko, David A.; Sahl, Jason W.; Munson, George P.; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J.

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  16. Phenotypic and Genotypic Characterization of Enterotoxigenic Escherichia coli Clinical Isolates from Northern Colombia, South America

    PubMed Central

    Guerra, Julio A.; Romero-Herazo, Yesenia C.; Arzuza, Octavio; Gómez-Duarte, Oscar G.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are major causes of childhood diarrhea in low and middle income countries including Colombia, South America. To understand the diversity of ETEC strains in the region, clinical isolates obtained from northern Colombia children were evaluated for multiple locus sequencing typing, serotyping, classical and nonclassical virulence genes, and antibiotic susceptibility. Among 40 ETEC clinical isolates evaluated, 21 (52.5%) were positive for LT gene, 13 (32.5%) for ST gene, and 6 (15%) for both ST and LT. The most prevalent colonization surface antigens (CS) were CS21 and CFA/I identified in 21 (50%) and 13 (32.5%) isolates, respectively. The eatA, irp2, and fyuA were the most common nonclassical virulence genes present in more than 60% of the isolates. Ampicillin resistance (80% of the strains) was the most frequent phenotype among ETEC strains followed by trimethoprim-sulfamethoxazole resistance (52.5%). Based on multiple locus sequencing typing (MLST), we recognize that 6 clonal groups of ETEC clinical isolates circulate in Colombia. ETEC clinical isolates from children in northern Colombia are highly diverse, yet some isolates circulating in the community belong to well-defined clonal groups that share a unique set of virulence factors, serotypes, and MLST sequence types. PMID:24877071

  17. Intestinal Microbiota-Derived GABA Mediates Interleukin-17 Expression during Enterotoxigenic Escherichia coli Infection.

    PubMed

    Ren, Wenkai; Yin, Jie; Xiao, Hao; Chen, Shuai; Liu, Gang; Tan, Bie; Li, Nengzhang; Peng, Yuanyi; Li, Tiejun; Zeng, Benhua; Li, Wenxia; Wei, Hong; Yin, Zhinan; Wu, Guoyao; Hardwidge, Philip R; Yin, Yulong

    2016-01-01

    Intestinal microbiota has critical importance in pathogenesis of intestinal infection; however, the role of intestinal microbiota in intestinal immunity during enterotoxigenic Escherichia coli (ETEC) infection is poorly understood. The present study tested the hypothesis that the intestinal microbiota is associated with intestinal interleukin-17 (IL-17) expression in response to ETEC infection. Here, we found ETEC infection induced expression of intestinal IL-17 and dysbiosis of intestinal microbiota, increasing abundance of γ-aminobutyric acid (GABA)-producing Lactococcus lactis subsp. lactis. Antibiotics treatment in mice lowered the expression of intestinal IL-17 during ETEC infection, while GABA or L. lactis subsp. lactis administration restored the expression of intestinal IL-17. L. lactis subsp. lactis administration also promoted expression of intestinal IL-17 in germ-free mice during ETEC infection. GABA enhanced intestinal IL-17 expression in the context of ETEC infection through activating mechanistic target of rapamycin complex 1 (mTORC1)-ribosomal protein S6 kinase 1 (S6K1) signaling. GABA-mTORC1 signaling also affected intestinal IL-17 expression in response to Citrobacter rodentium infection and in drug-induced model of intestinal inflammation. These findings highlight the importance of intestinal GABA signaling in intestinal IL-17 expression during intestinal infection and indicate the potential of intestinal microbiota-GABA signaling in IL-17-associated intestinal diseases.

  18. Evaluation of antisera used for detecting enterotoxigenic Escherichia coli in Sao Paulo.

    PubMed Central

    Guth, B E; Trabulsi, L R

    1985-01-01

    The usefulness of antisera in detecting enterotoxigenic Escherichia coli (ETEC) strains in Sao Paulo was evaluated. Polyvalent antisera detected 49% of ETEC isolates and were more effective in identifying E. coli that produced heat-labile and heat-stable enterotoxins and in strains that produced only heat-stable enterotoxin. ETEC strains not detected by the antisera belonged to different serogroups not isolated in Sao Paulo before; 34% of these strains had undetermined O antigens, and most of them produced only heat-labile toxin. A variation of serogroups over time was especially observed among strains that produced heat-stable toxin. The importance of H-antigen determinations in the effectiveness of ETEC diagnosis by serological methods became evident, as non-ETEC strains were also detected by polyvalent antisera, but their serotypes were different from those of ETEC strains. Although antisera can be used to identify O:H types of ETEC strains with accuracy, serotyping cannot be recommended for routine diagnosis. However, such a procedure may be useful for studying outbreaks of ETEC diarrhea if the involved serotypes are already known. PMID:3908475

  19. Enterotoxigenic Escherichia coli (ETEC): a recurring decimal in infants' and travelers' diarrhea.

    PubMed

    Okoh, Anthony I; Osode, Augustina N

    2008-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in infants and in travelers from developed to underdeveloped countries, especially in regions of poor sanitation. The ETEC are acquired by the ingestion of contaminated food and water, and adults living in endemic areas develop immunity. The disease condition manifests as a minor discomfort to a severe cholera-like syndrome and requires colonization by the microorganism and the elaboration of one or more enterotoxins. The ETEC attach to the epithelial cells of the gastrointestinal tract and release substances that affect the normal functioning of the tract, thereby resulting in diarrhea, and subsequently millions of deaths everyday, particularly in children. The prevention of the spread of this strain of diarrheagenic E. coli depends on ensuring appropriate sanitary measures; hand-washing and proper preparation of food; chlorination of water supplies; and appropriate sewage treatment and disposal. Parenteral or oral fluid and electrolyte replacement is used to prevent dehydration, and broad-spectrum antibiotics are used in chronic or life-threatening cases, but in most cases, should be avoided because of severe side effects.

  20. Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design.

    PubMed

    Fleckenstein, James M; Rasko, David A

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a genetically diverse E. coli pathovar that share in the ability to produce heat-labile toxin and/or heat-stable toxins. While these pathogens contribute substantially to the burden of diarrheal illness in developing countries, at present, there is no suitable broadly protective vaccine to prevent these common infections. Most vaccine development attempts to date have followed a classical approach involving a relatively small group of antigens. The extraordinary underlying genetic plasticity of E. coli has confounded the antigen valency requirements based on this approach. The recent discovery of additional virulence proteins within this group of pathogens, as well as the availability of whole-genome sequences from hundreds of ETEC strains to facilitate identification of conserved molecules, now permits a reconsideration of the classical approaches, and the exploration of novel antigenic targets to complement existing strategies overcoming antigenic diversity that has impeded progress toward a broadly protective vaccine. Progress to date in antigen discovery and methods currently available to explore novel immunogens are outlined here.

  1. Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.

    PubMed

    Moonens, Kristof; Van den Broeck, Imke; Okello, Emmanuel; Pardon, Els; De Kerpel, Maia; Remaut, Han; De Greve, Henri

    2015-02-24

    Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding.

  2. Zinc influences innate immune responses in children with enterotoxigenic Escherichia coli-induced diarrhea.

    PubMed

    Sheikh, Alaullah; Shamsuzzaman, Sohel; Ahmad, Shaikh Meshbahuddin; Nasrin, Dilruba; Nahar, Setarun; Alam, Mohammad Murshid; Al Tarique, Abdullah; Begum, Yasmin Ara; Qadri, Syed Saleheen; Chowdhury, Mohiul Islam; Saha, Amit; Larson, Charles P; Qadri, Firdausi

    2010-05-01

    Information is limited on the effect of zinc on immune responses in children with diarrhea due to enterotoxigenic Escherichia coli (ETEC), the most common bacterial pathogen in children. We studied the immunological effect of zinc treatment (20 mg/d) and supplementation (10 mg/d) in children with diarrhea due to ETEC. A total of 148 children aged 6-24 mo were followed up for 9 mo after a 10-d zinc treatment (ZT; n = 74) or a 10-d zinc treatment plus 3-mo supplementation (ZT+S; n = 74), as well as 50 children with ETEC-induced diarrhea that were not treated with zinc (UT). Fifty control children (HC) of the same age group from the same location were also studied. Serum zinc concentrations were higher in both the ZT (P < 0.001) and ZT+S groups (P < 0.001) than in the UT group but did not differ from the HC group. We found higher serum complement C3 immediately after zinc administration in both ZT (P < 0.001) and ZT+S (P < 0.001) groups than in the UT group. Phagocytic activity in children in both ZT (P < 0.01) and ZT+S (P < 0.01) groups was greater than in the UT group. However, oxidative burst capacity was lower in zinc-receiving groups (ZT, P < 0.001 and ZT+S, P < 0.001) than in the UT group. The naïve:memory T cell ratio in both ZT (P < 0.05) and ZT+S (P < 0.01) groups was higher than in the UT group from d 2 to 15. Increased responses, including complement C3, phagocytic activity, and changes in T cell phenotypes, suggest that zinc administration enhances innate immunity against ETEC infection in children.

  3. Genetically modified enterotoxigenic Escherichia coli vaccines induce mucosal immune responses without inflammation

    PubMed Central

    Daley, Alexandra; Randall, Roger; Darsley, Michael; Choudhry, Naheed; Thomas, Nicola; Sanderson, Ian R; Croft, Nick M; Kelly, Paul

    2007-01-01

    Objective Enterotoxigenic Escherichia coli (ETEC) is a major cause of acute diarrhoea in children in the developing world, in travellers and in the military. Safe, effective vaccines could reduce morbidity and mortality. As immunity to ETEC is strain specific, the ability to create vaccines in vitro which express multiple antigens would be desirable. It was hypothesised that three genetically attenuated ETEC strains, one with a genetic addition, would be immunogenic and safe, and they were evaluated in the first licensed UK release of genetically modified oral vaccines. Methods Phase 1 studies of safety and immunogenicity were carried out at a Teaching Hospital in London. Varying oral doses of any of three oral vaccines, or placebo, were administered to volunteers of both sexes (n = 98). Peripheral blood responses were measured as serum antibodies (IgG or IgA) by ELISA, antibody‐secreting cell (ASC) responses by enzyme‐linked immunospot (ELISPOT), and antibody in lymphocyte supernatant (ALS) by ELISA. Mucosal antibody secretion was measured by ELISA for specific IgG and IgA in whole gut lavage fluids (WGLFs). Results Significant mucosal IgA responses were obtained to colonisation factors CFA/I, CS1, CS2 and CS3, both when naturally expressed and when genetically inserted. Dose–response relationships were most clearly evident in the mucosal IgA in WGLF. Vaccines were well tolerated and did not elicit interleukin (IL) 8 or IL6 secretion in WGLF. Conclusions Genetically modified ETEC vaccines are safe and induce significant mucosal IgA responses to important colonisation factors. Mucosal IgA responses were clearly seen in WGLF, which is useful for evaluating oral vaccines. PMID:17566016

  4. Immunogenicity of a prototype enterotoxigenic Escherichia coli adhesin vaccine in mice and nonhuman primates.

    PubMed

    Sincock, Stephanie A; Hall, Eric R; Woods, Colleen M; O'Dowd, Aisling; Poole, Steven T; McVeigh, Annette L; Nunez, Gladys; Espinoza, Nereyda; Miller, Milagros; Savarino, Stephen J

    2016-01-04

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of bacterial diarrhea in young children in developing countries and in travelers. Efforts to develop an ETEC vaccine have intensified in the past decade, and intestinal colonization factors (CFs) are somatic components of most investigational vaccines. CFA/I and related Class 5 fimbrial CFs feature a major stalk-forming subunit and a minor, antigenically conserved tip adhesin. We hypothesized that the tip adhesin is critical for stimulating antibodies that specifically inhibit ETEC attachment to the small intestine. To address this, we compared the capacity of donor strand complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, and CFA/I fimbriae to elicit anti-adhesive antibodies in mice, using hemagglutination inhibition (HAI) as proxy for neutralization of intestinal adhesion. When given with genetically attenuated heat-labile enterotoxin LTR192G as adjuvant by intranasal (IN) or orogastric (OG) vaccination, dscCfaE exceeded CFA/I fimbriae in eliciting serum HAI titers and anti-CfaE antibody titers. Based on these findings, we vaccinated Aotus nancymaae nonhuman primates (NHP) with dscCfaE alone or admixed with one of two adjuvants, LTR192G and cholera toxin B-subunit, by IN and OG administration. Only IN vaccination with dscCfaE with either adjuvant elicited substantial serum HAI titers and IgA and IgG anti-adhesin responses, with the latter detectable a year after vaccination. In conclusion, we have shown that dscCfaE elicits robust HAI and anti-adhesin antibody responses in both mice and NHPs when given with adjuvant by IN vaccination, encouraging further evaluation of an ETEC adhesin-based vaccine approach.

  5. Nonstarch polysaccharide hydrolysis products of soybean and canola meal protect against enterotoxigenic Escherichia coli in piglets.

    PubMed

    Kiarie, Elijah G; Slominski, Bogdan A; Krause, Denis O; Nyachoti, Charles M

    2008-03-01

    Infectious diarrhea is a major problem in both children and piglets. Enterotoxigenic Escherichia coli (ETEC) infection results in fluid and electrolyte losses in the small intestine. We investigated the effect of nonstarch polysaccharide (NSP) hydrolysis products of soybean meal (SBM) and canola meal (CM) on net absorption of fluid and solutes during ETEC infection. Products were generated by incubating SBM and CM with a blend of carbohydrase enzymes. Following incubation, slurries were centrifuged and the supernatants mixed with absolute ethanol to produce 2 product types: 80% ethanol-soluble (ES) and 80% ethanol-insoluble (EI). Products from SBM and CM were studied in 2 independent experiments in which 2 factors were investigated: product type (EI vs. ES) and time of ETEC infection (before vs. after perfusion). Pairs of small intestine segments, one noninfected and the other ETEC infected, were perfused simultaneously with different products for 7.5 h. Net absorption of fluid and solutes were determined. In both experiments, ETEC-infected segments perfused with saline control had lower (P < or = 0.05) net fluid and solute absorption compared with SBM and CM products. The interaction (P < or = 0.05) between product type and time of infection on fluid absorption was only evident for SBM, in which case perfusing ES products before infection resulted in higher fluid absorption (735 +/- 22 microL/cm2) compared with ETEC infection before perfusion (428 +/- 34 microL/cm2). In conclusion, NSP hydrolysis products of SBM and CM, particularly ES from SBM, were beneficial in maintaining fluid balance during ETEC infection, suggesting potential for controlling ETEC-induced diarrhea in piglets.

  6. The Structure of the CS1 Pilus of Enterotoxigenic Escherichia coli Reveals Structural Polymorphism

    PubMed Central

    Kolappan, Subramaniapillai; Ng, Dixon; Zong, ZuSheng; Li, Juliana; Yu, Xiong; Egelman, Edward H.

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a bacterial pathogen that causes diarrhea in children and travelers in developing countries. ETEC adheres to host epithelial cells in the small intestine via a variety of different pili. The CS1 pilus is a prototype for a family of related pili, including the CFA/I pili, present on ETEC and other Gram-negative bacterial pathogens. These pili are assembled by an outer membrane usher protein that catalyzes subunit polymerization via donor strand complementation, in which the N terminus of each incoming pilin subunit fits into a hydrophobic groove in the terminal subunit, completing a β-sheet in the Ig fold. Here we determined a crystal structure of the CS1 major pilin subunit, CooA, to a 1.6-Å resolution. CooA is a globular protein with an Ig fold and is similar in structure to the CFA/I major pilin CfaB. We determined three distinct negative-stain electron microscopic reconstructions of the CS1 pilus and generated pseudoatomic-resolution pilus structures using the CooA crystal structure. CS1 pili adopt multiple structural states with differences in subunit orientations and packing. We propose that the structural perturbations are accommodated by flexibility in the N-terminal donor strand of CooA and by plasticity in interactions between exposed flexible loops on adjacent subunits. Our results suggest that CS1 and other pili of this class are extensible filaments that can be stretched in response to mechanical stress encountered during colonization. PMID:23175654

  7. Phenotypic Profiles of Enterotoxigenic Escherichia coli Associated with Early Childhood Diarrhea in Rural Egypt

    PubMed Central

    Shaheen, Hind I.; Khalil, Sami B.; Rao, Malla R.; Elyazeed, Remon Abu; Wierzba, Thomas F.; Peruski, Leonard F.; Putnam, Shannon; Navarro, Armando; Morsy, Badria Z.; Cravioto, Alejandro; Clemens, John D.; Svennerholm, Ann-Mari; Savarino, Stephen J.

    2004-01-01

    Enterotoxigenic Escherichia coli (ETEC) causes substantial diarrheal morbidity and mortality in young children in countries with limited resources. We determined the phenotypic profiles of 915 ETEC diarrheal isolates derived from Egyptian children under 3 years of age who participated in a 3-year population-based study. For each strain, we ascertained enterotoxin and colonization factor (CF) expression, the O:H serotype, and antimicrobial susceptibility. Sixty-one percent of the strains expressed heat-stable enterotoxin (ST) only, 26% expressed heat-labile enterotoxin (LT) alone, and 12% expressed both toxins. The most common CF phenotypes were colonization factor antigen I (CFA/I) (10%), coli surface antigen 6 (CS6) (9%), CS14 (6%), and CS1 plus CS3 (4%). Fifty-nine percent of the strains did not express any of the 12 CFs included in our test panel. Resistance of ETEC strains to ampicillin (63%), trimethoprim-sulfamethoxazole (52%), and tetracycline (43%) was common, while resistance to quinolone antibiotics was rarely detected. As for the distribution of observed serotypes, there was an unusually wide diversity of O antigens and H types represented among the 915 ETEC strains. The most commonly recognized composite ETEC phenotypes were ST CS14 O78:H18 (4%), ST (or LTST) CFA/I O128:H12 (3%), ST CS1+CS3 O6:H16 (2%), and ST CFA/I O153:H45 (1.5%). Temporal plots of diarrheal episodes associated with ETEC strains bearing common composite phenotypes were consistent with discrete community outbreaks either within a single or over successive warm seasons. These data suggest that a proportion of the disease that is endemic to young children in rural Egypt represents the confluence of small epidemics by clonally related ETEC strains that are transiently introduced or that persist in a community reservoir. PMID:15583286

  8. Biomechanical and Structural Features of CS2 Fimbriae of Enterotoxigenic Escherichia coli

    PubMed Central

    Mortezaei, Narges; Singh, Bhupender; Zakrisson, Johan; Bullitt, Esther; Andersson, Magnus

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrhea worldwide, and infection of children in under-developed countries often leads to high mortality rates. Isolated ETEC expresses a plethora of colonization factors (fimbriae/pili), of which CFA/I and CFA/II, which are assembled via the alternate chaperone pathway (ACP), are among the most common. Fimbriae are filamentous structures whose shafts are primarily composed of helically arranged single pilin-protein subunits, with a unique biomechanical ability to unwind and rewind. A sustained ETEC infection, under adverse conditions of dynamic shear forces, is primarily attributed to this biomechanical feature of ETEC fimbriae. Recent understanding about the role of fimbriae as virulence factors points to an evolutionary adaptation of their structural and biomechanical features. In this work, we investigated the biophysical properties of CS2 fimbriae from the CFA/II group. Homology modeling of its major structural subunit, CotA, reveals structural clues related to the niche in which they are expressed. Using optical-tweezers force spectroscopy, we found that CS2 fimbriae unwind at a constant force of 10 pN and have a corner velocity (i.e., the velocity at which the force required for unwinding rises exponentially with increased speed) of 1300 nm/s. The biophysical properties of CS2 fimbriae assessed in this work classify them into a low-force unwinding group of fimbriae together with the CFA/I and CS20 fimbriae expressed by ETEC strains. The three fimbriae are expressed by ETEC, colonize in similar gut environments, and exhibit similar biophysical features, but differ in their biogenesis. Our observation suggests that the environment has a strong impact on the biophysical characteristics of fimbriae expressed by ETEC. PMID:26153701

  9. Age-specific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli.

    PubMed Central

    Dean, E A; Whipp, S C; Moon, H W

    1989-01-01

    Neonatal (less than 1-day-old), 3- and 7-day old, and older (3-week-old postweaning) pigs were challenged by intragastric inoculation with 987P-piliated (987P+) enterotoxigenic Escherichia coli (ETEC) 987. Neonatal pigs were colonized (i.e., there were greater than or equal to 10(8) CFU of test strain per 10-cm ileal segment) and developed diarrhea. Intestinal colonization and the incidence and severity of diarrhea were lower in 3- and 7-day old pigs than in neonates. Older pigs were not colonized and did not develop diarrhea following oral inoculation with five strains of 987P+ ETEC. Strain 987 (987P+) adhered in vitro to intestinal epithelial cell brush borders isolated from both neonatal (sensitive) and older (resistant) pigs. The in vivo growth and expression of 987P pilus by strain 987 in ligated ileal loops created in neonatal and older pigs were similar. The in vivo adherence of 987P+ ETEC to intestinal epithelium in ligated ileal loops in neonatal and older pigs was compared. In neonatal pigs, most of the bacteria were in layers associated with the villous epithelium. In older pigs, most of the bacteria were associated with mucus-like material in the intestinal lumen. We concluded that swine develop an innate resistance to 987P+ ETEC by 3 weeks of age. This resistance does not appear to be due to an absence of 987P-specific receptors in the intestines of the older pig or to an inability of 987P+ bacteria to grow and express pili in the older pig. We hypothesized that the resistance of older pigs to 987P-mediated disease is due to release of 987P-specific receptors into the intestinal lumen, where these receptors facilitate bacterial clearance rather than bacterial adherence to intestinal epithelium and colonization. Images PMID:2562837

  10. Age-specific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli.

    PubMed

    Dean, E A; Whipp, S C; Moon, H W

    1989-01-01

    Neonatal (less than 1-day-old), 3- and 7-day old, and older (3-week-old postweaning) pigs were challenged by intragastric inoculation with 987P-piliated (987P+) enterotoxigenic Escherichia coli (ETEC) 987. Neonatal pigs were colonized (i.e., there were greater than or equal to 10(8) CFU of test strain per 10-cm ileal segment) and developed diarrhea. Intestinal colonization and the incidence and severity of diarrhea were lower in 3- and 7-day old pigs than in neonates. Older pigs were not colonized and did not develop diarrhea following oral inoculation with five strains of 987P+ ETEC. Strain 987 (987P+) adhered in vitro to intestinal epithelial cell brush borders isolated from both neonatal (sensitive) and older (resistant) pigs. The in vivo growth and expression of 987P pilus by strain 987 in ligated ileal loops created in neonatal and older pigs were similar. The in vivo adherence of 987P+ ETEC to intestinal epithelium in ligated ileal loops in neonatal and older pigs was compared. In neonatal pigs, most of the bacteria were in layers associated with the villous epithelium. In older pigs, most of the bacteria were associated with mucus-like material in the intestinal lumen. We concluded that swine develop an innate resistance to 987P+ ETEC by 3 weeks of age. This resistance does not appear to be due to an absence of 987P-specific receptors in the intestines of the older pig or to an inability of 987P+ bacteria to grow and express pili in the older pig. We hypothesized that the resistance of older pigs to 987P-mediated disease is due to release of 987P-specific receptors into the intestinal lumen, where these receptors facilitate bacterial clearance rather than bacterial adherence to intestinal epithelium and colonization.

  11. A FaeG-FedF-LT192 fusion elicits protective anti-adhesin and antitoxin antibodies against porcine enterotoxigenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing anti-adhesin (anti-K88 & anti-F18) and antitoxin (anti-LT & anti-ST) 5 immunity would provide ...

  12. Resistance Pattern and Molecular Characterization of Enterotoxigenic Escherichia coli (ETEC) Strains Isolated in Bangladesh

    PubMed Central

    Begum, Yasmin A.; Talukder, K. A.; Azmi, Ishrat J.; Shahnaij, Mohammad; Sheikh, A.; Sharmin, Salma; Svennerholm, A.-M.; Qadri, Firdausi

    2016-01-01

    Background Enterotoxigenic Escherichia coli (ETEC) is a common cause of bacterial infection leading to acute watery diarrhea in infants and young children as well as in travellers to ETEC endemic countries. Ciprofloxacin is a broad-spectrum antimicrobial agent nowadays used for the treatment of diarrhea. This study aimed to characterize ciprofloxacin resistant ETEC strains isolated from diarrheal patients in Bangladesh. Methods A total of 8580 stool specimens from diarrheal patients attending the icddr,b Dhaka hospital was screened for ETEC between 2005 and 2009. PCR and Ganglioside GM1- Enzyme Linked Immuno sorbent Assay (ELISA) was used for detection of Heat labile (LT) and Heat stable (ST) toxins of ETEC. Antimicrobial susceptibilities for commonly used antibiotics and the minimum inhibitory concentration (MIC) of nalidixic acid, ciprofloxacin and azithromycin were examined. DNA sequencing of representative ciprofloxacin resistant strains was performed to analyze mutations of the quinolone resistance-determining region of gyrA, gyrB, parC and parE. PCR was used for the detection of qnr, a plasmid mediated ciprofloxacin resistance gene. Clonal variations among ciprofloxacin resistant (CipR) and ciprofloxacin susceptible (CipS) strains were determined by Pulsed-field gel electrophoresis (PFGE). Results Among 1067 (12%) ETEC isolates identified, 42% produced LT/ST, 28% ST and 30% LT alone. Forty nine percent (n = 523) of the ETEC strains expressed one or more of the 13 tested colonization factors (CFs) as determined by dot blot immunoassay. Antibiotic resistance of the ETEC strains was observed as follows: ampicillin 66%, azithromycin 27%, ciprofloxacin 27%, ceftriazone 13%, cotrimaxazole 46%, doxycycline 44%, erythromycin 96%, nalidixic acid 83%, norfloxacin 27%, streptomycin 48% and tetracycline 42%. Resistance to ciprofloxacin increased from 13% in 2005 to 34% in 2009. None of the strains was resistant to mecillinam. The MIC of the nalidixic acid and

  13. Pathogenicity of porcine enterotoxigenic Escherichia coli that do not express K88, K99, F41, or 987P adhesins.

    PubMed

    Casey, T A; Nagy, B; Moon, H W

    1992-09-01

    Three-week-old weaned and colostrum-deprived neonatal (less than 1 day old) pigs were inoculated to determine the pathogenicity of 2 enterotoxigenic Escherichia coli isolates that do not express K88, K99, F41, or 987P adhesins (strains 2134 and 2171). Strains 2134 and 2171 were isolated from pigs that had diarrhea after weaning attributable to enterotoxigenic E coli infection. We found that both strains of E coli adhered in the ileum and caused diarrhea in pigs of both age groups. In control experiments, adherent bacteria were not seen in the ileum of pigs less than 1 day old or 3 weeks old that were noninoculated or inoculated with a nonpathogenic strain of E coli. These control pigs did not develop diarrhea. Antisera raised against strains 2134 and 2171 and absorbed with the autologous strain, grown at 18 C, were used for bacterial-agglutination and colony-immunoblot assays. Both absorbed antisera reacted with strains 2134 and 2171, but not with strains that express K99, F41, or 987P adhesins. A cross-reaction was observed with 2 wild-type K88 strains, but not with a K12 strain that expresses K88 pili. Indirect immunofluorescence with these absorbed antisera revealed adherent bacteria in frozen sections of ileum from pigs infected with either strain. We concluded that these strains are pathogenic and express a common surface antigen that may be a novel adhesin in E coli strains that cause diarrhea in weaned pigs.

  14. Contamination of potable water by enterotoxigenic Escherichia coli: qPCR based culture-free detection and quantification.

    PubMed

    Patel, C B; Vajpayee, P; Singh, G; Upadhyay, R S; Shanker, R

    2011-11-01

    Tourists visiting to endemic zones may acquire Enterotoxigenic Escherichia coli (ETEC) infection resulting into diarrhea due to consumption of contaminated potable waters. In this study, a qPCR assay (SYBR Green), targeting LT1 and ST1 genes was designed to quantify ETEC in potable waters derived from civic water supply. The assay could detect lowest 1CFU/PCR targeting LT1/ST1 gene from ten-fold diluted culture of the reference strain (E. coli MTCC 723) and is ten-fold more sensitive than the conventional PCR. The quantification of the ETEC in potable waters collected from civic supply of a major city of the northern India exhibiting high flow of tourists reveals that all the sites that ran along sewage line were contaminated by the ETEC. Contamination was due to percolation of sewage. The assay could be used for the regular monitoring of potable water in places exhibiting heavy flow of tourists to prevent ETEC induced diarrhea.

  15. Patterns of loss of enterotoxigenicity by Escherichia coli isolated from adults with diarrhea: suggestive evidence for an interrelationship with serotype.

    PubMed Central

    Evans, D J; Evans, D G; DuPont, H L; Orskov, F; Orskov, I

    1977-01-01

    Enterotoxigenic Escherichia coli isolates obtained in Mexico from adult subjects with diarrhea and from healthy controls were examined for the production of heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) after serial passage in the laboratory. Isolates were found to be either stable for the production of ST and LT or unstable with respect to ST, LT, or both. Unilateral loss of either ST or LT production allowed classification of E. coli isolates into four groups according to stability/instability of enterotoxin production. Fewer serotypes, with more representative isolates, were in group I (stable) than in group IV (completely unstable). Isolates from Dacca, Bangladesh, could be similarly classified into stability groups. There is an apparent relationship between serotype, stability of enterotoxin production, particularly LT, and isolation from diarrhea cases as opposed to isolation from healthy controls. PMID:328392

  16. Shear-enhanced Binding of Intestinal Colonization Factor Antigen l of Enterotoxigenic Escherichia coli

    DTIC Science & Technology

    2010-01-01

    cells Caco-2 cells were seeded in 12-well plates loaded with tissue culture-treated glass slides and grown for 14-16 days to differentiate in DMEM...express- ing CFA/1 fimbriae with different CfaE adhesins (BL21-SI with various pMAM2’s) were seeded from fresh LBON agar plates (no NaCI to prevent...adhesive fimbriae of enterotoxigenic Escheri- chia coli. Infect /mmun 72: 7190-7201. Anderson , B.N., Ding, A.M., Nilsson, L.M. , Kusuma, K. , Tchesnokova

  17. Concurrent outbreak of norovirus genotype I and enterotoxigenic Escherichia coli on a U.S. Navy ship following a visit to Lima, Peru.

    PubMed

    Gonzaga, Victor E; Ramos, Mariana; Maves, Ryan C; Freeman, Randal; Montgomery, Joel M

    2011-01-01

    An outbreak of norovirus (NoV) genotype I and Enterotoxigenic Escherichia coli (ETEC) occurred among US Navy Ship personnel following a visit to Lima, Peru, in June 2008. Visiting a specific area in Lima was significantly associated with illness. While ETEC and NoV are commonly recognized as causative agents of outbreaks, co-circulation of both pathogens has been rarely observed in shipboard outbreaks.

  18. Occurrence of K99 antigen on Escherichia coli isolated from pigs and colonization of pig ileum by K99+ enterotoxigenic E. coli from calves and pigs.

    PubMed Central

    Moon, H W; Nagy, B; Isaacson, R E; Orskov, I

    1977-01-01

    Several strains of enterotoxigenic Escherichia coli (ETEC) isolated from pigs were found to have an antigen (K99) previously reported only on strains of calf and lamb origin and which facilitates intestinal colonization in the latter two species. Several human ETEC were also tested for K99; however, none were positive. Each of four K99-positive ETEC strains of calf origin and one of pig origin produced K99 in pig ileum in vivo, adhered to villous epithelium in pig ileum, colonized pig ileum, and caused profuse diarrhea in newborn pigs. In contrast to the K99-positive strains above, four K99-negative ETEC from humans and chickens and one K99-positive ETEC from a calf either did not colonize pig ileum or did so inconsistently. When the K99-negative strains did colonize, they had little or no tendency to adhere to intestinal villi. These results are consistent with the hypothesis that K99 facilitates adhesion to and colonization of pig ileum by some ETEC. Images PMID:321356

  19. Occurrence of K99 antigen on Escherichia coli isolated from pigs and colonization of pig ileum by K99+ enterotoxigenic E. coli from calves and pigs.

    PubMed

    Moon, H W; Nagy, B; Isaacson, R E; Orskov, I

    1977-02-01

    Several strains of enterotoxigenic Escherichia coli (ETEC) isolated from pigs were found to have an antigen (K99) previously reported only on strains of calf and lamb origin and which facilitates intestinal colonization in the latter two species. Several human ETEC were also tested for K99; however, none were positive. Each of four K99-positive ETEC strains of calf origin and one of pig origin produced K99 in pig ileum in vivo, adhered to villous epithelium in pig ileum, colonized pig ileum, and caused profuse diarrhea in newborn pigs. In contrast to the K99-positive strains above, four K99-negative ETEC from humans and chickens and one K99-positive ETEC from a calf either did not colonize pig ileum or did so inconsistently. When the K99-negative strains did colonize, they had little or no tendency to adhere to intestinal villi. These results are consistent with the hypothesis that K99 facilitates adhesion to and colonization of pig ileum by some ETEC.

  20. Secretory IgA-mediated protection against V. cholerae and heat-labile enterotoxin-producing enterotoxigenic Escherichia coli by rice-based vaccine

    PubMed Central

    Tokuhara, Daisuke; Yuki, Yoshikazu; Nochi, Tomonori; Kodama, Toshio; Mejima, Mio; Kurokawa, Shiho; Takahashi, Yuko; Nanno, Masanobu; Nakanishi, Ushio; Takaiwa, Fumio; Honda, Takeshi; Kiyono, Hiroshi

    2010-01-01

    Cholera and enterotoxigenic Escherichia coli (ETEC) are among the most common causes of acute infantile gastroenteritis globally. We previously developed a rice-based vaccine that expressed cholera toxin B subunit (MucoRice-CTB) and had the advantages of being cold chain–free and providing protection against cholera toxin (CT)–induced diarrhea. To advance the development of MucoRice-CTB for human clinical application, we investigated whether the CTB-specific secretory IgA (SIgA) induced by MucoRice-CTB gives longstanding protection against diarrhea induced by Vibrio cholerae and heat-labile enterotoxin (LT)–producing ETEC (LT-ETEC) in mice. Oral immunization with MucoRice-CTB stored at room temperature for more than 3 y provided effective SIgA-mediated protection against CT- or LT-induced diarrhea, but the protection was impaired in polymeric Ig receptor–deficient mice lacking SIgA. The vaccine gave longstanding protection against CT- or LT-induced diarrhea (for ≥6 months after primary immunization), and a single booster immunization extended the duration of protective immunity by at least 4 months. Furthermore, MucoRice-CTB vaccination prevented diarrhea in the event of V. cholerae and LT-ETEC challenges. Thus, MucoRice-CTB is an effective long-term cold chain–free oral vaccine that induces CTB-specific SIgA-mediated longstanding protection against V. cholerae– or LT-ETEC–induced diarrhea. PMID:20421480

  1. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli.

    PubMed

    Gheibi Hayat, Seyed-Mohammad; Mousavi Gargari, Seyed-Latif; Nazarian, Shahram

    2016-11-01

    ETEC (Enterotoxigenic Escherichia coli) is a major cause of diarrhea in developing countries and children. ETEC has two virulence factors including colonization factors antigen (CFA) and labile enterotoxins (LTs). CFA/I consists the major pilin subunit CfaB and a minor adhesive subunit, CfaE. In this study a tripartite fusion protein containing CfaB, CfaE and LTB was designed. In silico analysis of the tertiary structure of the chimeric protein showed a protein with three main domains linked together with linkers. Linear and conformational B-cell epitopes were identified. A chimera consisting cfaB, cfaE and ltB(BET)was then synthesized with E. coli codon bias in pUC57 and sub cloned into pET32 vector. Recombinant protein was expressed and purified by affinity chromatography and confirmed by western blotting. Mice were immunized with recombinant protein and the antibody titer and specificity of the sera were analyzed by ELISA. The efficiency of the immune sera against ETEC was evaluated by binding assay and GM1-ELISA. VaxiJen analysis of the protein showed high antigenicity. Post-immune sera contained high titers of anti-BET IgG. Pretreatment of ETEC cells with sera from immunized mice decreased their ability to adhere to cells of the human colon adenocarcinoma cell line HT29.

  2. Detection and sequences of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene in enterotoxigenic E. coli strains isolated from piglets and calves with diarrhea.

    PubMed

    Yamamoto, T; Nakazawa, M

    1997-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains isolated from piglets and calves with diarrhea were tested for the presence of the enteroaggregative E. coli enterotoxin 1 (EAST1) gene sequences by PCR and colony hybridization. The EAST1 gene was found in most porcine ETEC strains with adherence factor K88, especially in those elaborating heat-labile enterotoxin. One porcine ETEC strain with adherence factor K99 was also positive for the EAST1 gene. In contrast, 987P-positive (987P+) ETEC strains from piglets, K99+ ETEC strains from calves, and K99+ F41+ or F41+ ETEC strains from piglets and calves were negative for the EAST1 gene. The K88ab+ or K88ac+ ETEC strains tested possessed the EAST1 gene on a plasmid that was distinct from a K88-encoding plasmid. The EAST1 gene sequences of the K88+ ETEC strains were identical to each other and 99.1 and 98.3% homologous to the previously reported sequences of ETEC strains colonizing humans and enteroaggregative E. coli strains, respectively. The data indicate that the EAST1 gene is distributed among porcine ETEC strains in association with the adherence factor type.

  3. L-Glutamine and L-arginine protect against enterotoxigenic Escherichia coli infection via intestinal innate immunity in mice.

    PubMed

    Liu, Gang; Ren, Wenkai; Fang, Jun; Hu, Chien-An Andy; Guan, Guiping; Al-Dhabi, Naif Abdullah; Yin, Jie; Duraipandiyan, Veeramuthu; Chen, Shuai; Peng, Yuanyi; Yin, Yulong

    2017-03-15

    Dietary glutamine (Gln) or arginine (Arg) supplementation is beneficial for intestinal health; however, whether Gln or Arg may confer protection against Enterotoxigenic Escherichia coli (ETEC) infection is not known. To address this, we used an ETEC-infected murine model to investigate the protective effects of Gln and Arg. Experimentally, we pre-treated mice with designed diet of Gln or Arg supplementation prior to the oral ETEC infection and then assessed mouse mortality and intestinal bacterial burden. We also determined the markers of intestinal innate immunity in treated mice, including secretory IgA response (SIgA), mucins from goblet cells, as well as antimicrobial peptides from Paneth cells. ETEC colonized in mouse small intestine, including duodenum, jejunum, and ileum, and inhibited the mRNA expression of intestinal immune factors, such as polymeric immunoglobulin receptor (pIgR), cryptdin-related sequence 1C (CRS1C), and Reg3γ. We found that dietary Gln or Arg supplementation decreased bacterial colonization and promoted the activation of innate immunity (e.g., the mRNA expression of pIgR, CRS1C, and Reg3γ) in the intestine of ETEC-infected mice. Our results suggest that dietary arginine or glutamine supplementation may inhibit intestinal ETEC infection through intestinal innate immunity.

  4. Improving genome annotation of enterotoxigenic Escherichia coli TW10598 by a label-free quantitative MS/MS approach.

    PubMed

    Pettersen, Veronika Kuchařová; Steinsland, Hans; Wiker, Harald G

    2015-11-01

    The most commonly used genome annotation processes are to a great extent based on computational methods. However, those can only predict genes that have been described earlier or that have sequence signatures indicative of a gene function. Here, we report a synonymous proteogenomic approach for experimentally improving microbial genome annotation based on label-free quantitative MS/MS. The approach is exemplified by analysis of cell extracts from in vitro cultured enterotoxigenic Escherichia coli (ETEC) strain TW10598, as part of an effort to create a new reference ETEC genome sequence. The proteomic analysis yielded identification of 2060 proteins, out of which 312 proteins were originally described as hypothetical. For 84% of the identified proteins we have provided description of their relative quantitative levels, among others, for 20 abundantly expressed ETEC virulence factors. Proteogenomic mapping supported the existence of four protein-coding genes that had not been annotated, and led to correction of translation start positions of another nine. The addition of the proteomic analysis into TW10598 genome re-annotation project improved quality of the annotation, and provided experimental evidence for a significant portion of ETEC expressed proteome. Data are available via ProteomeXchange with identifier PXD002473 (http://proteomecentral.proteomexchange.org/dataset/PXD002473).

  5. An in silico chimeric multi subunit vaccine targeting virulence factors of enterotoxigenic Escherichia coli (ETEC) with its bacterial inbuilt adjuvant.

    PubMed

    Nazarian, Shahram; Mousavi Gargari, Seyed Latif; Rasooli, Iraj; Amani, Jafar; Bagheri, Samane; Alerasool, Masoome

    2012-07-01

    Enteric infections resulting in diarrheal diseases remain as major global health problems. Among bacteria, enterotoxigenic Escherichia coli (ETEC) causes the largest number of diarrheal cases. There is a great interest in developing an effective ETEC vaccine. An ETEC vaccine could focus on virulence factors present in ETEC pathogens and nontoxic Heat-labile B subunit (LTB). Chimeric proteins carrying epitopes, or adjuvant sequences increase the possibility of eliciting a broad cellular or humoral immune response. In-silico tools are highly suited to study, design and evaluate vaccine strategies. Colonization factors are among the virulence factor studied in the present work employing bioinformatic tools. A synthetic chimeric gene, encoding CfaB, CstH, CotA, and LTB was designed. Modeling was done to predict the 3D structure of protein. This model was validated using Ramachandran plot statistics. The predicted B-cell epitopes were mapped on the surface of the model. Validation result showed that 97.2% residues lie in favored or additional allowed region of Ramachandran plot. VaxiJen analysis of the protein showed high antigenicity. Linear and conformational B-cell epitopes were identified. The identified T-cell epitopes are apt to bind MHC molecules. The epitopes in the chimeric protein are likely to induce both the B-cell and T-cell mediated immune responses.

  6. Comparative analysis of antimicrobial resistance in enterotoxigenic Escherichia coli isolates from two paediatric cohort studies in Lima, Peru

    PubMed Central

    Medina, Anicia M.; Rivera, Fulton P.; Pons, Maria J.; Riveros, Maribel; Gomes, Cláudia; Bernal, María; Meza, Rina; Maves, Ryan C.; Huicho, Luis; Chea-Woo, Elsa; Lanata, Claudio F.; Gil, Ana I.; Ochoa, Theresa J.; Ruiz, Joaquim

    2015-01-01

    Background Antibiotic resistance is increasing worldwide, being of special concern in low- and middle-income countries. The aim of this study was to determine the antimicrobial susceptibility and mechanisms of resistance in 205 enterotoxigenic Escherichia coli (ETEC) isolates from two cohort studies in children <24 months in Lima, Peru. Methods ETEC were identified by an in-house multiplex real-time PCR. Susceptibility to 13 antimicrobial agents was tested by disk diffusion; mechanisms of resistance were evaluated by PCR. Results ETEC isolates were resistant to ampicillin (64%), cotrimoxazole (52%), tetracycline (37%); 39% of the isolates were multidrug-resistant. Heat-stable toxin producing (ETEC-st) (48%) and heat-labile toxin producing ETEC (ETEC-lt) (40%) had higher rates of multidrug resistance than isolates producing both toxins (ETEC-lt-st) (21%), p<0.05. Only 10% of isolates were resistant to nalidixic acid and none to ciprofloxacin or cefotaxime. Ampicillin and sulfamethoxazole resistance were most often associated with blaTEM (69%) and sul2 genes (68%), respectively. Tetracycline resistance was associated with tet(A) (49%) and tet(B) (39%) genes. Azithromycin inhibitory diameters were ≤15 mm in 36% of isolates, with 5% of those presenting the mph(A) gene. Conclusions ETEC from Peruvian children are often resistant to older, inexpensive antibiotics, while remaining susceptible to ciprofloxacin, cephalosporins and furazolidone. Fluoroquinolones and azithromycin remain the drugs of choice for ETEC infections in Peru. However, further development of resistance should be closely monitored. PMID:26175267

  7. Faecal contamination and enterotoxigenic Escherichia coli in street-vended chili sauces in Mexico and its public health relevance.

    PubMed Central

    Estrada-Garcia, T.; Cerna, J. F.; Thompson, M. R.; Lopez-Saucedo, C.

    2002-01-01

    The street-vended food industry provides employment and cheap ready-to-eat meals to a large proportion of the population in developing countries like Mexico, yet little is known about its role in the transmission of food borne diseases (FBD). Because of its wide consumption, street-vended chili sauces in Mexico are potential vehicles of FBD. An observational study was performed in Mexico City collecting 43 street-vended chili sauces. These sauces were prepared under poor hygienic conditions of handling and selling. Consumers add 4-8 ml of chili sauce per taco, ingest 2-5 tacos per meal and on average, 50 consumers frequent a stall per day. Seventeen (40%) samples were faecally contaminated and 2(5%) sauces harboured sufficient enterotoxigenic Escherichia coli to cause disease. Weestimate that the consumption of only one of these chili sauces could result in ETEC disease inat least 21,000 consumers per year, making them important potential vehicles of FBD. PMID:12211591

  8. F41 pili as protective antigens of enterotoxigenic Escherichia coli that produce F41, K99, or both pilus antigens.

    PubMed Central

    Runnels, P L; Moseley, S L; Moon, H W

    1987-01-01

    Pigs suckling dams that have been vaccinated with pilus antigen are protected against challenge with enterotoxigenic Escherichia coli (ETEC) strains that express the same pilus antigen. However, some ETEC strains express more than one pilus antigen. Pregnant swine were vaccinated either with E. coli HB101 that harbored a recombinant plasmid coding for F41 expression (F41+) or with the HB101 parent strain that carries the pHC79 vector (F41-). Suckling pigs born to vaccinated dams were challenged with ETEC that expressed either K99, F41, or both pilus antigens. Production of F41 in vivo was demonstrated by immunofluorescence assay of sections of ileum and by seroconversion against F41 antigen by pigs challenged with F41+ and K99+ F41+ ETEC strains. The F41+ vaccine protected against challenge with an F41+ ETEC strain. In contrast, F41+ vaccination did not protect against challenge with K99+ or K99+ F41+ ETEC strains. The F41- vaccine did not protect against challenge with any strain used. The results indicate that K99+ F41+ ETEC strains produce F41 antigen in the small intestine during disease and that F41+ vaccination can be a protective antigen if the challenge strain expresses only F41 antigen, but that F41+ vaccination may not protect against strains that produce both K99 and F41 antigens. PMID:2880807

  9. Saccharomyces cerevisiae decreases inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine intestinal epithelial cells.

    PubMed

    Zanello, Galliano; Meurens, François; Berri, Mustapha; Chevaleyre, Claire; Melo, Sandrine; Auclair, Eric; Salmon, Henri

    2011-05-15

    Probiotic yeasts may provide protection against intestinal inflammation induced by enteric pathogens. In piglets, infection with F4+ enterotoxigenic Escherichia coli (ETEC) leads to inflammation, diarrhea and intestinal damage. In this study, we investigated whether the yeast strains Saccharomyces cerevisiae (Sc, strain CNCM I-3856) and S. cerevisiae variety boulardii (Sb, strain CNCM I-3799) decreased the expression of pro-inflammatory cytokines and chemokines in intestinal epithelial IPI-2I cells cultured with F4+ ETEC. Results showed that viable Sc inhibited the ETEC-induced TNF-α gene expression whereas Sb did not. In contrast, killed Sc failed to inhibit the expression of pro-inflammatory genes. This inhibition was dependent on secreted soluble factors. Sc culture supernatant decreased the TNF-α, IL-1α, IL-6, IL-8, CXCL2 and CCL20 ETEC-induced mRNA. Furthermore, Sc culture supernatant filtrated fraction < 10 kDa displayed the same effects excepted for TNF-α. Thus, our results extended to Sc (strain CNCM I-3856) the inhibitory effects of some probiotic yeast strains onto inflammation.

  10. Comparison of receptors for 987P pili of enterotoxigenic Escherichia coli in the small intestines of neonatal and older pig.

    PubMed Central

    Dean, E A

    1990-01-01

    Enterotoxigenic Escherichia coli isolates that express 987P pili colonize the small intestine and cause diarrhea in neonatal (less than 6-day-old) but not in older (greater than 3-week-old) pigs. However, 987P+ E. coli isolates adhere in vitro to small-intestinal epithelial cells from pigs of both ages. This indicates that older pigs as well as neonatal pigs contain receptors for 987P pili and that resistance in older pigs is not due to a lack of intestinal receptors for 987P pili. In this study, we demonstrated that 3-week-old gnotobiotic pigs, like neonatal pigs, were colonized and developed diarrhea when challenged with 987P+ E. coli. We compared 987P receptors in small-intestinal epithelial cell brush borders and in intestinal washes (luminal contents) from less than 1-day-old, 3-week-old gnotobiotic, and 3- to 4-week-old weaned pigs. Samples were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto nitrocellulose filters, and 987P binding was demonstrated by immunoassay using purified 987P pili. Multiple 987P-binding components ranging from 33 to 40 kDa were found in brush borders from both 987P-susceptible (neonatal and gnotobiotic) and 987P-resistant (older) pigs: 987P binding to these receptors, which we called 987R, did not correlate with 987P susceptibility. A less than 17-kDa 987P receptor, 987M, was found in the mucus fraction of intestinal washes from 987P-resistant older pigs. Only trace amounts of 987M were detected in 987P-susceptible neonatal and gnotobiotic pigs. 987M comigrated with the 987P receptor previously isolated from adult rabbits. Receptors for 987P in the mucus of older pigs may inhibit 987P-mediated intestinal colonization by preventing the attachment of 987P+ enterotoxigenic E. coli to intestinal epithelial receptors for 987P. Images PMID:1979318

  11. In vivo emergence of enterotoxigenic Escherichia coli variants lacking genes for K99 fimbriae and heat-stable enterotoxin.

    PubMed Central

    Mainil, J G; Sadowski, P L; Tarsio, M; Moon, H W

    1987-01-01

    Neonatal pigs were inoculated with porcine enterotoxigenic Escherichia coli 431, which carries genes for K99 fimbriae and STaP enterotoxin. Colonies of strain 431 were recovered from feces of pigs for up to 17 days after inoculation and tested for hybridization with gene probes for K99 and STaP. Variants of strain 431 that did not hybridize with the probes were considered to have lost the genes. Variants were recovered from 10 of 13 suckling pigs that survived the infection. Only 0.4% of the isolates recovered during the first 2 days after inoculation were variants. Of the isolates recovered 3 to 5 days after inoculation, 20 to 36% were variants. Variant colonies were detected more frequently among pigs in some litters than in others. The litter with the highest number of variant-shedding pigs had the dam with the highest titer of K99 antibody in her colostrum. Variants also occurred in colostrum-deprived, artificially reared pigs. However, the number of variants detected was lower and they occurred later in the course of the infection in colostrum-deprived pigs than in suckling pigs. More variants were detected and they were detected earlier in colostrum-deprived pigs fed anti-K99 monoclonal antibody than in controls fed anti-K88 monoclonal antibody. Loss of STaP appeared to be secondary to loss of K99 in that some variants lacked only K99 (K99- STaP+) and some lacked both genes (K99- STaP-), but none was of the K99+ STaP- type. Our results confirmed reports of gene loss from enterotoxigenic E. coli during infection. They are consistent with the hypothesis that variants emerge under in vivo selection pressure of K99 antibody and with the speculation that gene loss may be an important component of protection in vaccinated populations. However, the emergence of variants did not appear to play a major role in the recovery of individual pigs from clinical disease. PMID:2890584

  12. Disruption the Outer Membrane of Enteropathogenic and Enterotoxigenic Escherichia coli using Proanthocyanidins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American cranberry (Vaccinium macrocarpon) proanthocyanidins (PACs) have been reported as a natural antibacterial agent to suppress the growth of pathogenic Escherichia coli. The objective of this study was to investigate the efficacy of cranberry-derived proanthocyanidins on destabilizing the outer...

  13. Homologous and cross-reactive immune responses to enterotoxigenic Escherichia coli colonization factors in Bangladeshi children.

    PubMed

    Qadri, Firdausi; Ahmed, Firoz; Ahmed, Tanvir; Svennerholm, Ann-Mari

    2006-08-01

    We have studied homologous (HoM) and cross-reacting (CR) immunoglobulin A (IgA) antibody responses to colonization factors (CFs) in Bangladeshi children with diarrhea due to enterotoxigenic E. coli (ETEC) strains of the CF antigen I (CFA/I) group (CFA/I, n = 25; coli surface antigen 4 [CS4], n = 8; CS14, n = 11) and the CS5 group (CS5, n = 15; CS7, n = 8), respectively. The responses to the HoM, CR, and heterologous (HeT) CF antigens in each group of patient were studied and compared to that seen in healthy children (n = 20). In the CFA/I group (CFA/I and CS14), patients responded with antibody-secreting cell (ASC) responses to HoM CFs (geometric mean, 156 to 329 ASCs/10(6) peripheral blood mononuclear cells [PBMCs]) and to CR CFs ( approximately 15 to 38 ASCs/10(6) PBMCs) but least of all to the HeT CS5 antigen (2 to 4 ASCs/10(6) PBMCs). For the CS5 group of patients with ETEC (CS5 and CS7), likewise, responses to HoM CFs (230 to 372 ASCs/10(6) PBMCs) and CR CFs (27 to 676 ASCs/10(6) PBMCs) were seen, along with lower responses to the HeT CFA/I antigen (9 to 38 ASCs/10(6) PBMCs). Both groups of patients responded with CF-specific IgA antibodies to HoM and CR antigens in plasma but responded less to the HeT CFs. The responses in patients were seen very soon after the onset of diarrhea and peaked around 1 week after onset. Vaccinees who had received two doses of the oral, killed whole-cell ETEC vaccine (CF-BS-ETEC) responded with plasma IgA antibodies to CFA/I, a component of the vaccine, but also to the CR CS14 antigen, which was not included in the vaccine, showing that antibody responses can be stimulated by a CFA/I-containing ETEC vaccine to a CR-reacting antigen in individuals in countries where ETEC is endemic.

  14. Distribution of colonization factor antigens among enterotoxigenic Escherichia coli strains isolated from patients with diarrhea in Nepal, Indonesia, Peru, and Thailand.

    PubMed Central

    Nirdnoy, W; Serichantalergs, O; Cravioto, A; LeBron, C; Wolf, M; Hoge, C W; Svennerholm, A M; Taylor, D N; Echeverria, P

    1997-01-01

    Samples (1,318) of enterotoxigenic Escherichia coli (ETEC) isolated in 1994-1995 from children with diarrhea from Nepal, Indonesia, Peru, and Thailand were examined for colonization factor antigen (CFA) and coli surface (CS) antigens. Fifty-five percent of 361 heat-labile and heat-stable (LT-ST), 14% of 620 LT-only, and 48% of 337 ST-only ETEC had CFA/CS antigens. LT-ST ETEC strains were predominantly in the CFA II group, and ST only strains were in the CFA IV group. Additional studies are needed to identify ETEC strains that do not have CFA/CS antigens. PMID:9003636

  15. Mucosal and systemic immune responses in patients with diarrhea due to CS6-expressing enterotoxigenic Escherichia coli.

    PubMed

    Qadri, Firdausi; Ahmed, Tanvir; Ahmed, Firoz; Bhuiyan, M Saruar; Mostofa, Mohammad Golam; Cassels, Frederick J; Helander, Anna; Svennerholm, Ann-Mari

    2007-05-01

    Colonization factor CS6 expressed by enterotoxigenic Escherichia coli (ETEC) is a nonfimbrial polymeric protein. A substantial proportion of ETEC strains isolated from patients in endemic settings and in people who travel to regions where ETEC is endemic are ETEC strains expressing CS6, either alone or in combination with fimbrial colonization factor CS5 or CS4. However, relatively little is known about the natural immune responses elicited against CS6 expressed by ETEC strains causing disease. We studied patients who were hospitalized with diarrhea (n = 46) caused by CS6-expressing ETEC (ETEC expressing CS6 or CS5 plus CS6) and had a disease spectrum ranging from severe dehydration (27%) to moderate or mild dehydration (73%). Using recombinant CS6 antigen, we found that more than 90% of the patients had mucosal immune responses to CS6 expressed as immunoglobulin (IgA) antibody-secreting cells (ASC) or antibody in lymphocyte supernatant (ALS) and that about 57% responded with CS6-specific IgA antibodies in feces. More than 80% of the patients showed IgA seroconversion to CS6. Significant increases in the levels of anti-CS6 antibodies of the IgG isotype were also observed in assays for ASC (75%), ALS (100%), and serum (70%). These studies demonstrated that patients hospitalized with the noninvasive enteric pathogen CS6-expressing ETEC responded with both mucosal and systemic antibodies against CS6. Studies are needed to determine if the anti-CS6 responses protect against reinfection and if protective levels of CS6 immunity are induced by vaccination.

  16. Phenotypic and Genotypic Analysis of Enterotoxigenic Escherichia coli in Samples Obtained from Egyptian Children Presenting to Referral Hospitals▿

    PubMed Central

    Shaheen, H. I.; Abdel Messih, I. A.; Klena, J. D.; Mansour, A.; El-Wakkeel, Z.; Wierzba, T. F.; Sanders, J. W.; Khalil, S. B.; Rockabrand, D. M.; Monteville, M. R.; Rozmajzl, P. J.; Svennerholm, A. M.; Frenck, R. W.

    2009-01-01

    Hospital surveillance was established in the Nile River Delta to increase the understanding of the epidemiology of diarrheal disease among Egyptian children. Between September 2000 and August 2003, samples obtained from children less than 5 years of age who had diarrhea and who were seeking hospital care were cultured for enteric bacteria. Colonies from each culture with a morphology typical of that of Escherichia coli were tested for the heat-labile (LT) and heat-stable (ST) toxins by a GM-1-specific enzyme-linked immunosorbent assay and colonization factor (CF) antigens by an immunodot blot assay. Enterotoxigenic E. coli (ETEC) isolates were recovered from 320/1,540 (20.7%) children, and ETEC isolates expressing a known CF were identified in 151/320 (47%) samples. ST CFA/I, ST CS6, ST CS14, and LT and ST CS5 plus CS6 represented 75% of the CFs expressed by ETEC isolates expressing a detectable CF. Year-to-year variability in the proportion of ETEC isolates that expressed a detectable CF was observed (e.g., the proportion that expressed CFA/I ranged from 10% in year 1 to 21% in year 3); however, the relative proportions of ETEC isolates expressing a CF were similar over the reporting period. The proportion of CF-positive ETEC isolates was higher among isolates that expressed ST. ETEC isolates expressing CS6 were isolated significantly less often (P < 0.001) than isolates expressing CFA/I in children less than 1 year of age. Macrorestriction profiling of CFA/I-expressing ETEC isolates by using the restriction enzyme XbaI and pulsed-field gel electrophoresis demonstrated a wide genetic diversity among the isolates that did not directly correlate with the virulence of the pathogen. The genome plasticity demonstrated in the ETEC isolates collected in this work suggests an additional challenge to the development of a globally effective vaccine for ETEC. PMID:18971368

  17. Emergence of a Multidrug-Resistant Shiga Toxin-Producing Enterotoxigenic Escherichia coli Lineage in Diseased Swine in Japan

    PubMed Central

    Hikoda, Yuna; Fujii, Yuki; Murata, Misato; Miyoshi, Hirotsugu; Ogura, Yoshitoshi; Gotoh, Yasuhiro; Iwata, Taketoshi; Hayashi, Tetsuya; Akiba, Masato

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) and Shiga toxin-producing E. coli (STEC) are important causes of diarrhea and edema disease in swine. The majority of swine-pathogenic E. coli strains belong to a limited range of O serogroups, including O8, O138, O139, O141, O147, O149, and O157, which are the most frequently reported strains worldwide. However, the circumstances of ETEC and STEC infections in Japan remain unknown; there have been few reports on the prevalence or characterization of swine-pathogenic E. coli. In the present study, we determined the O serogroups of 967 E. coli isolates collected between 1991 and 2014 from diseased swine in Japan, and we found that O139, O149, O116, and OSB9 (O serogroup of Shigella boydii type 9) were the predominant serogroups. We further analyzed these four O serogroups using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and virulence factor profiling. Most of the O139 and O149 strains formed serogroup-specific PFGE clusters (clusters I and II, respectively), whereas the O116 and OSB9 strains were grouped together in the same cluster (cluster III). All of the cluster III strains belonged to a single sequence type (ST88) and carried genes encoding both enterotoxin and Shiga toxin. This PFGE cluster III/ST88 lineage exhibited a high level of multidrug resistance (to a median of 10 antimicrobials). Notably, these bacteria were resistant to fluoroquinolones. Thus, this lineage should be considered a significant risk to animal production due to the toxigenicity and antimicrobial resistance of these bacteria. PMID:26865687

  18. Administration of probiotics influences F4 (K88)-positive enterotoxigenic Escherichia coli attachment and intestinal cytokine expression in weaned pigs

    PubMed Central

    2011-01-01

    This study evaluated the effect of the probiotics Pediococcus acidilactici and Saccharomyces cerevisiae boulardii on the intestinal colonization of O149 enterotoxigenic Escherichia coli harbouring the F4 (K88) fimbriae (ETEC F4) and on the expression of ileal cytokines in weaned pigs. At birth, different litters of pigs were randomly assigned to one of the following treatments: 1) control without antibiotics or probiotics (CTRL); 2) reference group in which chlortetracycline and tiamulin were added to weanling feed (ATB); 3) P. acidilactici; 4) S. cerevisiae boulardii; or 5) P. acidilactici + S. cerevisiae boulardii. Probiotics were administered daily (1 × 109 CFU per pig) during the lactation period and after weaning (day 21). At 28 days of age, all pigs were orally challenged with an ETEC F4 strain, and a necropsy was performed 24 h later. Intestinal segments were collected to evaluate bacterial colonization in the small intestine and ileal cytokine expressions. Attachment of ETEC F4 to the intestinal mucosa was significantly reduced in pigs treated with P. acidilactici or S. cerevisiae boulardii in comparison with the ATB group (P = 0.01 and P = 0.03, respectively). In addition, proinflammatory cytokines, such as IL-6, were upregulated in ETEC F4 challenged pigs treated with P. acidilactici alone or in combination with S. cerevisiae boulardii compared with the CTRL group. In conclusion, the administration of P. acidilactici or S. cerevisiae boulardii was effective in reducing ETEC F4 attachment to the ileal mucosa, whereas the presence of P. acidilactici was required to modulate the expression of intestinal inflammatory cytokines in pigs challenged with ETEC F4. PMID:21605377

  19. Magnolol and honokiol regulate the calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli-induced diarrhea mice.

    PubMed

    Deng, Yanli; Han, Xuefeng; Tang, Shaoxun; Xiao, Wenjun; Tan, Zhiliang; Zhou, Chuanshe; Wang, Min; Kang, Jinghe

    2015-05-15

    To explore the regulatory mechanisms of magnolol and honokiol on calcium-activated potassium channels signaling pathway in Enterotoxigenic Escherichia coli (ETEC)-induced diarrhea mice, the concentrations of serum chloride ion (Cl(-)), sodium ion (Na(+)), potassium ion (K(+)) and calcium ion (Ca(2+)) were measured. Additionally, the mRNA expressions of calmodulin 1 (CaM), calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) and beta subunit (CaMKIIβ), ryanodine receptor 1, inositol 1,4,5-trisphosphate receptors (IP3 receptors), protein kinases C (PKC), potassium intermediate/small conductance calcium-activated channels (SK) and potassium large conductance calcium-activated channels(BK)were determined. A diarrhea mouse model was established using ETEC suspensions (3.29×10(9)CFU/ml) at a dosage of 0.02ml/g live body weight (BW). Magnolol or honokiol was intragastrically administered at dosages of 100 (M100 or H100), 300 (M300 or H300) and 500 (M500 or H500) mg/kg BW according to a 3×3 factorial arrangement. Magnolol and honokiol increased the Cl(-) and K(+) concentrations, further, upregulated the CaM, BKα1 and BKβ3 mRNA levels but downregulated the IP3 receptors 1, PKC, SK1, SK2, SK3, SK4 and BKβ4 mRNA expressions. Magnolol and honokiol did not alter the CaMKIIα, CaMKIIβ, ryanodine receptor 1, IP3 receptor 2, IP3 receptor 3, BKβ1 and BKβ2 mRNA expressions. These results clarify that magnolol and honokiol, acting through Ca(2+) channel blockade, inhibit the activation of IP3 receptor 1 to regulate the IP3-Ca(2+) store release, activate CaM to inhibit SK channels, and effectively suppress PKC kinases to promote BKα1 and BKβ3 channels opening and BKβ4 channel closing, which modulates the intestinal ion secretion.

  20. Immunogenicity and Protective Efficacy against Enterotoxigenic Escherichia coli Colonization following Intradermal, Sublingual, or Oral Vaccination with EtpA Adhesin

    PubMed Central

    Luo, Qingwei; Vickers, Tim J.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a common cause of diarrhea. Extraordinary antigenic diversity has prompted a search for conserved antigens to complement canonical approaches to ETEC vaccine development. EtpA, an immunogenic extracellular ETEC adhesin relatively conserved in the ETEC pathovar, has previously been shown to be a protective antigen following intranasal immunization. These studies were undertaken to explore alternative routes of EtpA vaccination that would permit use of a double mutant (R192G L211A) heat-labile toxin (dmLT) adjuvant. Here, oral vaccination with EtpA adjuvanted with dmLT afforded significant protection against small intestinal colonization, and the degree of protection correlated with fecal IgG, IgA, or total fecal antibody responses to EtpA. Sublingual vaccination yielded compartmentalized mucosal immune responses with significant increases in anti-EtpA fecal IgG and IgA, and mice vaccinated via this route were also protected against colonization. In contrast, while intradermal (i.d.) vaccination achieved high levels of both serum and fecal antibodies against both EtpA and dmLT, mice vaccinated via the i.d. route were not protected against subsequent colonization and the avidity of serum IgG and IgA EtpA-specific antibodies was significantly lower after i.d. immunization compared to other routes. Finally, we demonstrate that antiserum from vaccinated mice significantly impairs binding of LT to cognate GM1 receptors and shows near complete neutralization of toxin delivery by ETEC in vitro. Collectively, these data provide further evidence that EtpA could complement future vaccine strategies but also suggest that additional effort will be required to optimize its use as a protective immunogen. PMID:27226279

  1. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells.

    PubMed

    Wu, Yunpeng; Zhu, Cui; Chen, Zhuang; Chen, Zhongjian; Zhang, Weina; Ma, Xianyong; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2016-04-01

    Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (P<0.05), inhibited the increased transcript abundances of interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) (P<0.05), decreased expression of claudin-1, occludin and zonula occludens (ZO-1) (P<0.05) and protein expression of occludin (P<0.05) of IPEC-J2 cells caused by ETEC K88. Moreover, the mRNA expression of negative regulators of toll-like receptors (TLRs) [single Ig Il-1-related receptor (SIGIRR), B-cell CLL/lymphoma 3 (Bcl3), and mitogen-activated protein kinase phosphatase-1 (MKP-1)] in IPEC-J2 cells pre-treated with L. plantarum were higher (P<0.05) compared with those in cells just exposed to K88. Furthermore, L. plantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways.

  2. Characterization of monoclonal antibodies against putative colonization factors of enterotoxigenic Escherichia coli and their use in an epidemiological study.

    PubMed Central

    Viboud, G I; Binsztein, N; Svennerholm, A M

    1993-01-01

    Monoclonal antibodies (MAbs) against five putative colonization factors (PCFs), i.e., colonization factor antigen (CFA)/III, coli surface antigen (CS)7 and CS17, PCFO159, and PCFO166 of enterotoxigenic Escherichia coli (ETEC), were produced. Hybridomas (one each) producing specific antibodies against the respective PCFs were selected. All the MAbs reacted with the corresponding fimbriae but not with CFA/I, CFA/II, or CFA/IV or the heterologous PCFs in bacterial agglutination and enzyme-linked immunosorbent assays (ELISAs). In immunoelectron microscopy these MAbs bound along the fimbriae, and they also reacted with the corresponding subunits in immunoblots. The five MAbs were used to evaluate the prevalence of CFA/III, CS7, CS17, PCFO159, and PCFO166 in ETEC strains isolated from children with diarrhea in Argentina. One hundred five ETEC isolates negative for CFA/I, CFA/II, and CFA/IV were tested in slide agglutination or in a dot blot test for spontaneously agglutinating strains; positive results were confirmed by inhibition ELISAs. It was found that 27% of the CFA-negative ETEC strains carried one of the PCFs. The sensitivity of slide agglutination with these MAbs was similar to that with specific polyclonal antisera; however, the specificity was higher. PCFO166 was found in 9.5% of the strains tested, mainly in ETEC of serogroup O78 producing heat-stable toxin alone. CS17 and CS7 were identified in 6.7 and 5.7%, respectively, of strains producing heat-labile toxin only, most of which belonged to serogroup O114. PCFO159 was found in 3.8% of the isolates tested, whereas CFA/III was detected in only one ETEC strain. Images PMID:8096215

  3. Feed Fermentation with Reuteran- and Levan-Producing Lactobacillus reuteri Reduces Colonization of Weanling Pigs by Enterotoxigenic Escherichia coli.

    PubMed

    Yang, Yan; Galle, Sandra; Le, Minh Hong Anh; Zijlstra, Ruurd T; Gänzle, Michael G

    2015-09-01

    This study determined the effect of feed fermentation with Lactobacillus reuteri on growth performance and the abundance of enterotoxigenic Escherichia coli (ETEC) in weanling piglets. L. reuteri strains produce reuteran or levan, exopolysaccharides that inhibit ETEC adhesion to the mucosa, and feed fermentation was conducted under conditions supporting exopolysaccharide formation and under conditions not supporting exopolysaccharide formation. Diets were chosen to assess the impact of organic acids and the impact of viable L. reuteri bacteria. Fecal samples were taken throughout 3 weeks of feeding; at the end of the 21-day feeding period, animals were euthanized to sample the gut digesta. The feed intake was reduced in pigs fed diets containing exopolysaccharides; however, feed efficiencies did not differ among the diets. Quantification of L. reuteri by quantitative PCR (qPCR) detected the two strains used for feed fermentation throughout the intestinal tract. Quantification of E. coli and ETEC virulence factors by qPCR demonstrated that fermented diets containing reuteran significantly (P < 0.05) reduced the copy numbers of genes for E. coli and the heat-stable enterotoxin in feces compared to those achieved with the control diet. Any fermented feed significantly (P < 0.05) reduced the abundance of E. coli and the heat-stable enterotoxin in colonic digesta at 21 days; reuteran-containing diets reduced the copy numbers of the genes for E. coli and the heat-stable enterotoxin below the detection limit in samples from the ileum, the cecum, and the colon. In conclusion, feed fermentation with L. reuteri reduced the level of colonization of weaning piglets with ETEC, and feed fermentation supplied concentrations of reuteran that may specifically contribute to the effect on ETEC.

  4. Prevalence of Pilus Antigens, Enterotoxin Types, and Enteropathogenicity Among K88-Negative Enterotoxigenic Escherichia coli from Neonatal Pigs

    PubMed Central

    Moon, H. W.; Kohler, E. M.; Schneider, R. A.; Whipp, S. C.

    1980-01-01

    Enterotoxigenic Escherichia coli (ETEC) that were isolated from neonatal pigs and that did not react in preliminary tests for pilus antigen K88 were subjected to additional tests for K88 and for pilus antigens K99 and 987P. Four such isolates produced K88, 9 isolates produced K99, 55 isolates produced 987P, and the remaining 43 isolates produced none of the three pilus antigens (3P−). Immunofluorescence tests of ileal sections from pigs were more sensitive for 987P detection than was serum agglutination of bacteria grown from the ileum. Most ETEC that produced K88, K99, or 987P were enteropathogenic (adhered to ileal villi, colonized intensively, and caused profuse diarrhea) when given to neonatal pigs. In contrast, only 3 of the 43 ETEC that produced none of the pilus antigens were enteropathogenic. The isolates were also tested for the type of enterotoxin produced. The K88+ isolates all produced heat-labile enterotoxin (LT) detectable in cultured adrenal cells (i.e., were LT+). None of the 987P+, K99+, or enterpathogenic 3P− isolates produced LT. However (except for a single K99+ isolate), they all produced heat-stable enterotoxin detectable in infant mice (STa+). Sixteen isolates produced neither LT nor STa but did produce enterotoxin detectable in ligated intestinal loops of pigs (STb). Most of these LT− STa− STb+ isolates were also K88−, K99−, and 987P− and non-enteropathogenic. One of them was K99+ and enteropathogenic. Our conclusions are as follows. (i) Most enteropathogenic ETEC from neonatal pigs produce either K88, 987P, or K99; however, there are some that produce none of the three antigens. (ii) Immunofluorescence tests for pilus antigens produced in vivo are recommended for the diagnosis of ETEC infections. (iii) Reports of LT− STa− STb+ swine ETEC are confirmed; furthermore, such isolates can be enteropathogenic. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6102079

  5. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age.

    PubMed Central

    Nagy, B; Casey, T A; Whipp, S C; Moon, H W

    1992-01-01

    Two porcine isolates of enterotoxigenic Escherichia coli (ETEC) (serogroup O157 and O141) derived from fatal cases of postweaning diarrhea and lacking K88, K99, F41, and 987P pili (4P- ETEC) were tested for adhesiveness to small-intestinal epithelia of pigs of different ages. Neither strain adhered to isolated intestinal brush borders of newborn (1-day-old) pigs in the presence of mannose. However, mannose-resistant adhesion occurred when brush borders from 10-day- and 3- and 6-week-old pigs were used. Electron microscopy revealed that both strains produced fine (3.5-nm) and type 1 pili at 37 degrees C but only type 1 pili at 18 degrees C. Mannose-resistant in vitro adhesion to brush borders of older pigs correlated with the presence of fine pili. These strains produced predominantly fine pili in ligated intestinal loops of both older and newborn pigs, but adherence was greater in loops in older pigs. Immunoelectron microscopic studies, using antiserum raised against piliated bacteria and absorbed with nonpiliated bacteria, of samples from brush border adherence studies revealed labelled appendages between adherent bacteria and intestinal microvilli. Orogastric inoculation of pigs weaned at 10 and 21 days of age indicated significantly (P less than 0.001) higher levels of adhesion by the ETEC to the ileal epithelia of older pigs than to that of younger ones. We suggest that small-intestinal adhesion and colonization by these ETEC isolates is dependent on receptors that develop progressively with age during the first 3 weeks after birth. Furthermore, our data are consistent with the hypothesis that the fine pili described mediate intestinal adhesion by the 4P- ETEC strains studied. Images PMID:1347758

  6. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age.

    PubMed

    Nagy, B; Casey, T A; Whipp, S C; Moon, H W

    1992-04-01

    Two porcine isolates of enterotoxigenic Escherichia coli (ETEC) (serogroup O157 and O141) derived from fatal cases of postweaning diarrhea and lacking K88, K99, F41, and 987P pili (4P- ETEC) were tested for adhesiveness to small-intestinal epithelia of pigs of different ages. Neither strain adhered to isolated intestinal brush borders of newborn (1-day-old) pigs in the presence of mannose. However, mannose-resistant adhesion occurred when brush borders from 10-day- and 3- and 6-week-old pigs were used. Electron microscopy revealed that both strains produced fine (3.5-nm) and type 1 pili at 37 degrees C but only type 1 pili at 18 degrees C. Mannose-resistant in vitro adhesion to brush borders of older pigs correlated with the presence of fine pili. These strains produced predominantly fine pili in ligated intestinal loops of both older and newborn pigs, but adherence was greater in loops in older pigs. Immunoelectron microscopic studies, using antiserum raised against piliated bacteria and absorbed with nonpiliated bacteria, of samples from brush border adherence studies revealed labelled appendages between adherent bacteria and intestinal microvilli. Orogastric inoculation of pigs weaned at 10 and 21 days of age indicated significantly (P less than 0.001) higher levels of adhesion by the ETEC to the ileal epithelia of older pigs than to that of younger ones. We suggest that small-intestinal adhesion and colonization by these ETEC isolates is dependent on receptors that develop progressively with age during the first 3 weeks after birth. Furthermore, our data are consistent with the hypothesis that the fine pili described mediate intestinal adhesion by the 4P- ETEC strains studied.

  7. Colonization of the small intestine of weaned pigs by enterotoxigenic Escherichia coli that lack known colonization factors.

    PubMed

    Nagy, B; Arp, L H; Moon, H W; Casey, T A

    1992-05-01

    Intestinal colonization of 3-week-old weaned pigs by enterotoxigenic Escherichia coli (ETEC) strains that were originally isolated from weaned pigs with fatal diarrhea and that lacked K88, K99, F41, and 987P adhesins (4P- ETEC) was studied by histologic, immunofluorescent, and electron microscopic techniques. In the first experiment, 16 principal pigs were inoculated orogastrically with ETEC strain 2134 (serogroup O157: H19) or 2171 (serogroup 0141:H4), and eight control pigs were not inoculated. In the second experiment, 24 principals were inoculated with ETEC strain 2134, and 12 controls were inoculated with a nonenterotoxigenic strain of E. coli. Principal and control pigs were necropsied at intervals from 24 to 72 hours after inoculation of principals to provide the tissues used for this report. Results from the two experiments and with both ETEC strains were similar and therefore were combined. Adhesion by 4P- ETEC was demonstrated in ileum but not in cecum or colon in 22/40 principal pigs sampled at 24 to 72 hours after orogastric inoculation. Adherent bacteria were most apparent on the intestinal villi covering Peyer's patches. Only occasional adherent bacteria were detected in ileal sections from a few (4/20) of the control pigs. Adherence by 4P- ETEC was characterized by "patches" of bacteria closely associated with the lateral surfaces and less frequently with the tips and the bases of intact villi. In most cases, the adherent bacteria were separated from epithelial cell microvilli and other bacterial cells by a 50-400-nm space. Filamentous bacterial appendages bridged this space and formed a network among adjacent bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Genetic probes for enterotoxigenic Escherichia coli isolated from childhood diarrhea in the Central African Republic.

    PubMed Central

    Georges, M C; Wachsmuth, I K; Birkness, K A; Moseley, S L; Georges, A J

    1983-01-01

    Escherichia coli strains were isolated from 778 children with diarrhea and 151 well children in the Central African Republic over a period of 1 year. These 929 strains were assayed for heat-labile and heat-stable enterotoxin production and were hybridized (probed) with structural genes for these enterotoxins. Twenty-four isolates from diarrheal patients and one isolate from a well child were found to be toxigenic by assay and probe. Minor discrepancies were encountered with both assays and probes during initial screening procedures, but the two methodologies were ultimately comparable. Images PMID:6350346

  9. Genetic Characterization and Immunogenicity of Coli Surface Antigen 4 from Enterotoxigenic Escherichia coli when It Is Expressed in a Shigella Live-Vector Strain

    PubMed Central

    Altboum, Zeev; Levine, Myron M.; Galen, James E.; Barry, Eileen M.

    2003-01-01

    The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D′, were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD′). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5α and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine. PMID:12595452

  10. Over-expression of major colonization factors of enterotoxigenic Escherichia coli, alone or together, on non-toxigenic E. coli bacteria.

    PubMed

    Tobias, Joshua; Holmgren, Jan; Hellman, Maria; Nygren, Erik; Lebens, Michael; Svennerholm, Ann-Mari

    2010-10-08

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease and deaths among children in developing countries and the major cause of traveller's diarrhea. Since surface protein colonization factors (CFs) of ETEC are important for pathogenicity and immune protection is mainly mediated by locally produced IgA antibodies in the gut, much effort has focused on the development of an oral CF-based vaccine. We have recently described the development of recombinant strains over-expressing CFA/I; the most prevalent CF among human clinical ETEC isolates. Here, non-toxigenic recombinant E. coli strains over-expressing Coli surface antigen 2 (CS2), CS4, CS5, and CS6, either alone, or each in combination with CFA/I were constructed by cloning the genes required for expression and assembly of each CF into expression vectors harboring a strong promoter. Immunological assays showed that recombinant strains expressing single CFs produced those in significantly larger amounts than did corresponding naturally high producing reference strains. Recombinant strains co-expressing CFA/I together with another CF also expressed significantly larger amounts of both CFs compared with the corresponding references strains. Further, when tested in mice, oral immunization with formalin-killed recombinant bacteria co-expressing one such double-expression CF pair, CFA/I+CS2, induced specific serum IgG+IgM and fecal IgA antibody responses against both CFs exceeding the responses induced by immunizations with natural reference strains expressing CFA/I and CS2, respectively. We conclude that the described type of recombinant bacteria over-expressing major CFs of ETEC, alone or in combination, may be useful as candidate strains for use in an oral whole-cell CF-ETEC vaccine.

  11. Synthesis and application of glycoconjugate-functionalized magnetic nanoparticles as potent anti-adhesion agents for reducing enterotoxigenic Escherichia coli infections

    NASA Astrophysics Data System (ADS)

    Raval, Yash S.; Stone, Roland; Fellows, Benjamin; Qi, Bin; Huang, Guohui; Mefford, O. Thompson; Tzeng, Tzuen-Rong J.

    2015-04-01

    Polyethylene oxide stabilized magnetic nanoparticles (PEO-MNPs) bio-functionalized with glycoconjugate (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp) (GM3-MNPs) are synthesized using click chemistry. Interaction of GM3-MNPs with Enterotoxigenic Escherichia coli (ETEC) strain K99 (EC K99) is investigated using different microscopic techniques. Our results suggest that GM3-MNPs can effectively act as non-antibiotic anti-adhesion agents for treating ETEC infections.Polyethylene oxide stabilized magnetic nanoparticles (PEO-MNPs) bio-functionalized with glycoconjugate (Neu5Ac(α2-3)Gal(β1-4)Glcβ-sp) (GM3-MNPs) are synthesized using click chemistry. Interaction of GM3-MNPs with Enterotoxigenic Escherichia coli (ETEC) strain K99 (EC K99) is investigated using different microscopic techniques. Our results suggest that GM3-MNPs can effectively act as non-antibiotic anti-adhesion agents for treating ETEC infections. Electronic supplementary information (ESI) available: Materials and methods used in the synthesis and characterization of the polymer and particles described in this manuscript. See DOI: 10.1039/c5nr00511f

  12. Pathogenicity and Phenotypic Characterization of Enterotoxigenic Escherichia coli Isolates from a Birth Cohort of Children in Rural Egypt

    PubMed Central

    Shaheen, Hind I.; Amine, Mohamed; Hassan, Khaled; Sanders, John W.; Riddle, Mark S.; Armstrong, Adam W.; Svennerholm, Ann-Mari; Sebeny, Peter J.; Klena, John D.; Young, Sylvia Y. N.; Frenck, Robert W.

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) has consistently been the predominant bacterial cause of diarrhea in many birth cohort- and hospital-based studies conducted in Egypt. We evaluated the pathogenicity of ETEC isolates in a birth cohort of children living in a rural community in Egypt. Between 2004 and 2007, we enrolled and followed 348 children starting at birth until their second year of life. A stool sample and two rectal swabs were collected from children during twice-weekly visits when they presented with diarrhea and were collected every 2 weeks if no diarrhea was reported. From routine stool cultures, five E. coli-like colonies were screened for ETEC enterotoxins using a GM1 enzyme-linked immunosorbent assay (ELISA). The isolates were screened against a panel of 12 colonization factor antigens (CFAs) by a dot blot assay. A nested case-control study evaluated the association between initial or repeat excretion of ETEC and the occurrences of diarrhea. The pathogenicity of ETEC was estimated in symptomatic children compared to that in asymptomatic controls. ETEC was significantly associated with diarrhea (crude odds ratio, 1.37; 95% confidence interval [CI], 1.24 to 1.52). The distribution of ETEC enterotoxins varied between the symptomatic children (44.2% heat-labile toxin [LT], 38.5% heat-stable toxin [ST], and 17.3% LT/ST) and asymptomatic children (55.5% LT, 34.6% ST, and 9.9% LT/ST) (P < 0.001). The CFAs CFA/I (n = 61), CS3 (n = 8), CS1 plus CS3 (n = 24), CS2 plus CS3 (n = 18), CS6 (n = 45), CS5 plus CS6 (n = 11), CS7 (n = 25), and CS14 (n = 32) were frequently detected in symptomatic children, while CS6 (n = 66), CS12 (n = 51), CFA/I (n = 43), and CS14 (n = 20) were detected at higher frequencies among asymptomatic children. While all toxin phenotypes were associated with diarrheal disease after the initial exposure, only ST and LT/ST-expressing ETEC isolates (P < 0.0001) were associated with disease in repeat infections. The role of enterotoxins and

  13. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88.

    PubMed

    Yang, K M; Jiang, Z Y; Zheng, C T; Wang, L; Yang, X F

    2014-04-01

    The present study was performed to investigate the preventative effect of Lactobacillus plantarum on diarrhea in relation to intestinal barrier function in young piglets challenged with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two male piglets (4 d old) were assigned to 2 diets (antibiotic-free basal diet with or without L. plantarum, 5 × 10(10) cfu/kg diet) and subsequently challenged or not with ETEC K88 (1 × 10(8) cfu per pig) on d 15 in a 2 × 2 factorial arrangement of treatments. Feed intake and BW were measured on d 15 and 18 (3 d after challenge) for determination of growth performance. On d 18, 1 piglet from each pen was slaughtered to evaluate small intestinal morphology and expression of tight junction proteins at the mRNA and protein levels while another piglet was used for the intestinal permeability test. Before and after ETEC K88 challenge, piglets fed L. plantarum had greater BW, ADG, and ADFI (P < 0.05) and marginally greater G:F (P < 0.10) compared to piglets fed the unsupplemented diet. After ETEC K88 challenge, the challenged piglets did not show an impaired growth performance but had greater incidence of diarrhea compared to the nonchallenged piglets. There was an interaction between dietary L. plantarum and ETEC K88 challenge (P < 0.05) as L. plantarum prevented the ETEC K88-induced diarrhea. Piglets challenged with ETEC K88 also had greater urinary lactulose:mannitol and plasma concentration of endotoxin, shorter villi, deeper crypt depth, and reduced villous height:crypt depth in the duodenum and jejunum and decreased zonula occludens-1 mRNA and occludin mRNA and protein expression in the jejunum (P < 0.05). These deleterious effects caused by ETEC K88 were inhibited by feeding L. plantarum (P < 0.05). There were no effects of either treatment on the morphology and expression of tight junction proteins in ileum. In conclusion, L. plantarum, given to piglets in early life, improved performance and effectively prevented the

  14. Lactobacillus zeae Protects Caenorhabditis elegans from Enterotoxigenic Escherichia coli-Caused Death by Inhibiting Enterotoxin Gene Expression of the Pathogen

    PubMed Central

    Zhou, Mengzhou; Yu, Hai; Yin, Xianhua; Sabour, Parviz M.; Chen, Wei; Gong, Joshua

    2014-01-01

    Background The nematode Caenorhabditis elegans has become increasingly used for screening antimicrobials and probiotics for pathogen control. It also provides a useful tool for studying microbe-host interactions. This study has established a C. elegans life-span assay to preselect probiotic bacteria for controlling K88+ enterotoxigenic Escherichia coli (ETEC), a pathogen causing pig diarrhea, and has determined a potential mechanism underlying the protection provided by Lactobacillus. Methodology/Principal Findings Life-span of C. elegans was used to measure the response of worms to ETEC infection and protection provided by lactic acid-producing bacteria (LAB). Among 13 LAB isolates that varied in their ability to protect C. elegans from death induced by ETEC strain JG280, Lactobacillus zeae LB1 offered the highest level of protection (86%). The treatment with Lactobacillus did not reduce ETEC JG280 colonization in the nematode intestine. Feeding E. coli strain JFF4 (K88+ but lacking enterotoxin genes of estA, estB, and elt) did not cause death of worms. There was a significant increase in gene expression of estA, estB, and elt during ETEC JG280 infection, which was remarkably inhibited by isolate LB1. The clone with either estA or estB expressed in E. coli DH5α was as effective as ETEC JG280 in killing the nematode. However, the elt clone killed only approximately 40% of worms. The killing by the clones could also be prevented by isolate LB1. The same isolate only partially inhibited the gene expression of enterotoxins in both ETEC JG280 and E. coli DH5α in-vitro. Conclusions/Significance The established life-span assay can be used for studies of probiotics to control ETEC (for effective selection and mechanistic studies). Heat-stable enterotoxins appeared to be the main factors responsible for the death of C. elegans. Inhibition of ETEC enterotoxin production, rather than interference of its intestinal colonization, appears to be the mechanism of protection

  15. Toxins and virulence factors of enterotoxigenic Escherichia coli associated with strains isolated from indigenous children and international visitors to a rural community in Guatemala.

    PubMed

    Torres, O R; González, W; Lemus, O; Pratdesaba, R A; Matute, J A; Wiklund, G; Sack, D A; Bourgeois, A L; Svennerholm, A-M

    2015-06-01

    Diarrhoea remains a common cause of illness in Guatemala, with children suffering most frequently from the disease. This study directly compared the frequency, enterotoxin, and colonization factor (CF) profiles of enterotoxigenic Escherichia coli (ETEC) strains isolated from children living in a rural community in Guatemala and from Western visitors to the same location during the same seasons, using similar detection methodologies. We found that ETEC accounted for 26% of severe cases of diarrhoea in children requiring hospitalization, 15% of diarrhoea in the community, and 29% of travellers' diarrhoea in visitors staying ⩾2 weeks. The toxin and CF patterns of the ETEC strains isolated from both groups differed significantly (P < 0·0005) as determined by χ 2 = 60·39 for CFs and χ 2 = 35 for toxins, while ETEC phenotypes found in Guatemalan children were comparable to those found in children from other areas of the world.

  16. An outbreak of enterotoxigenic Escherichia coli (ETEC) infection in Norway, 2012: a reminder to consider uncommon pathogens in outbreaks involving imported products.

    PubMed

    MacDonald, E; Møller, K E; Wester, A L; Dahle, U R; Hermansen, N O; Jenum, P A; Thoresen, L; Vold, L

    2015-02-01

    We investigated an outbreak of gastroenteritis following a Christmas buffet served on 4-9 December 2012 to ~1300 hotel guests. More than 300 people were reported ill in initial interviews with hotel guests. To identify possible sources of infection we conducted a cohort investigation through which we identified 214 probable cases. Illness was associated with consumption of scrambled eggs (odds ratio 9·07, 95% confidence interval 5·20-15·84). Imported chives added fresh to the scrambled eggs were the suspected source of the outbreak but were unavailable for testing. Enterotoxigenic Escherichia coli (ETEC) infection was eventually confirmed in 40 hotel guests. This outbreak reinforces that ETEC should be considered in non-endemic countries when the clinical picture is consistent and common gastrointestinal pathogens are not found. Following this outbreak, the Norwegian Food Safety Authority recommended that imported fresh herbs should be heat-treated before use in commercial kitchens.

  17. Histopathological features in the small intestine of pigs infected with F4ac+ non-enterotoxigenic or enterotoxigenic strains of Escherichia coli.

    PubMed

    Vijtiuk, N; Curić, S; Lacković, G; Udovicić, I; Vrbanac, I; Valpotić, I

    1995-01-01

    Four porcine strains of Escherichia coli were examined for their effects on the small intestine of 4-week-old weaned pigs infected orogastrically. The strains used experimentally were: strain 1467 (adhesin negative, non-toxigenic); strains 2407 and 1466 (adhesin positive, non-toxigenic), derived by genetical engineering from strain 1467 and containing a wild type plasmid and a recombinant plasmid, respectively, encoding the F4 antigen (adhesin); and strain M1823 (adhesin positive, toxigenic). In addition, 2-week-old pigs that died from natural colibacillosis associated with two strains ("Ihan 1 and 2"; adhesin positive, toxigenic) were examined. Strain M1823 and the Ihan strains produced moderate and marked lesions, respectively. Strain 1467 did not cause mucosal damage or an inflammatory response. Strains 1466 and 2407 caused a mild to moderate leucocyte (mononuclear and polymorphonuclear) infiltration in the jejunal (but not ileal) lamina propria. However, unlike strain 1466, strain 2407 did not cause damage to the small intestinal mucosa and should be further studied as a potential oral vaccine strain for post-weaning E. coli diarrhoea.

  18. Crystal Structure of the Minor Pilin CofB, the Initiator of CFA/III Pilus Assembly in Enterotoxigenic Escherichia coli*

    PubMed Central

    Kolappan, Subramania; Ng, Dixon; Yang, Guixiang; Harn, Tony; Craig, Lisa

    2015-01-01

    Type IV pili are extracellular polymers of the major pilin subunit. These subunits are held together in the pilus filament by hydrophobic interactions among their N-terminal α-helices, which also anchor the pilin subunits in the inner membrane prior to pilus assembly. Type IV pilus assembly involves a conserved group of proteins that span the envelope of Gram-negative bacteria. Among these is a set of minor pilins, so named because they share their hydrophobic N-terminal polymerization/membrane anchor segment with the major pilins but are much less abundant. Minor pilins influence pilus assembly and retraction, but their precise functions are not well defined. The Type IV pilus systems of enterotoxigenic Escherichia coli and Vibrio cholerae are among the simplest of Type IV pilus systems and possess only a single minor pilin. Here we show that the enterotoxigenic E. coli minor pilins CofB and LngB are required for assembly of their respective Type IV pili, CFA/III and Longus. Low levels of the minor pilins are optimal for pilus assembly, and CofB can be detected in the pilus fraction. We solved the 2.0 Å crystal structure of N-terminally truncated CofB, revealing a pilin-like protein with an extended C-terminal region composed of two discrete domains connected by flexible linkers. The C-terminal region is required for CofB to initiate pilus assembly. We propose a model for CofB-initiated pilus assembly with implications for understanding filament growth in more complex Type IV pilus systems as well as the related Type II secretion system. PMID:26324721

  19. Volunteer Challenge With Enterotoxigenic Escherichia coli That Express Intestinal Colonization Factor Fimbriae CS17 and CS19

    DTIC Science & Technology

    2011-07-01

    Levine MM, Merson MM. Serologic differentiation between antitoxin responses to infection with Vibrio cholerae and enterotoxin-producing Escherichia coli...prototype cholera B subunit-colonization factor antigen cnterotoxigenic Escherichia coli vaccine. Vaccine 1993; 1[:929-34. 15. Levine MM, Nalin DR

  20. Identification of a Gene within a Pathogenicity Island of Enterotoxigenic Escherichia coli H10407 Required for Maximal Secretion of the Heat-Labile Enterotoxin

    PubMed Central

    Fleckenstein, James M.; Lindler, Luther E.; Elsinghorst, Eric A.; Dale, James B.

    2000-01-01

    Studies of the pathogenesis of enterotoxigenic Escherichia coli (ETEC) have largely centered on extrachromosomal determinants of virulence, in particular the plasmid-encoded heat-labile (LT) and heat-stable enterotoxins and the colonization factor antigens. ETEC causes illnesses that range from mild diarrhea to severe cholera-like disease. These differences in disease severity are not readily accounted for by our current understanding of ETEC pathogenesis. Here we demonstrate that Tia, a putative adhesin of ETEC H10407, is encoded on a large chromosomal element of approximately 46 kb that shares multiple features with previously described E. coli pathogenicity islands. Further analysis of the region downstream from tia revealed the presence of several candidate open reading frames (ORFs) in the same transcriptional orientation as tia. The putative proteins encoded by these ORFs bear multiple motifs associated with bacterial secretion apparatuses. An in-frame deletion in one candidate gene identified here as leoA (labile enterotoxin output) resulted in marked diminution of secretion of the LT enterotoxin and lack of fluid accumulation in a rabbit ileal loop model of infection. Although previous studies have suggested that E. coli lacks the capacity to secrete LT, our studies show that maximal release of LT from the periplasm of H10407 is dependent on one or more elements encoded on a pathogenicity island. PMID:10768971

  1. Differences in serological responses and excretion patterns of volunteers challenged with enterotoxigenic Escherichia coli with and without the colonization factor antigen.

    PubMed Central

    Evans, D G; Satterwhite, T K; Evans, D J; DuPont, H L

    1978-01-01

    Double-blind studies were performed to compare the virulence of enterotoxigenic Escherichia coli with and without the fimbriate colonization factor antigen (CFA), using young healthy adults (mean age, 23 years) as volunteers. In the first study one group of volunteers ingested 1 X 10(6) E. coli H-10407, the CFA-positive strain, and another group ingested 1 X 10(6) E. coli H-10407-P, the CFA-negative spontaneous derivative of strain H-10407. The second study was similar except that the test strains were administered at a dose of 1 X 10(8) viable cells. Three parameters of infection were monitored: (i) diarrhea and associated symptoms; (ii) excretion pattern of test strains; and (iii) humoral antibody response to CFA, somatic antigen, and heat-labile enterotoxin. Significant signs of illness occurred only in six of seven volunteers who ingested E. coli H-10407 at a dose of 1 X 10(8). At both doses, E. coli H-10407-P appeared in the stool on day 1 postchallenge and disappeared by day 4. In contrast, strain H-10407 was persistently excreted from the first to the last day of the study. Also, only those volunteers in the H-10407 challenge groups (12 of 13 analyzed) responded with a fourfold antibody titer rise to CFA, somatic antigen, and/or heat-labile enterotoxin. No reversion of H-10407-P to H-10407 was detected. PMID:346488

  2. Role of heat-stable enterotoxins in the induction of early immune responses in piglets after infection with enterotoxigenic Escherichia coli.

    PubMed

    Loos, Michaela; Geens, Marisa; Schauvliege, Stijn; Gasthuys, Frank; van der Meulen, Jan; Dubreuil, J Daniel; Goddeeris, Bruno M; Niewold, Theo; Cox, Eric

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains that produce heat-stable (ST) and/or heat-labile (LT) enterotoxins are cause of post-weaning diarrhea in piglets. However, the relative importance of the different enterotoxins in host immune responses against ETEC infection has been poorly defined. In the present study, several isogenic mutant strains of an O149:F4ac(+), LT(+) STa(+) STb(+) ETEC strain were constructed that lack the expression of LT in combination with one or both types of ST enterotoxins (STa and/or STb). The small intestinal segment perfusion (SISP) technique and microarray analysis were used to study host early immune responses induced by these mutant strains 4 h after infection in comparison to the wild type strain and a PBS control. Simultaneously, net fluid absorption of pig small intestinal mucosa was measured 4 h after infection, allowing us to correlate enterotoxin secretion with gene regulation. Microarray analysis showed on the one hand a non-toxin related general antibacterial response comprising genes such as PAP, MMP1 and IL8. On the other hand, results suggest a dominant role for STb in small intestinal secretion early after post-weaning infection, as well as in the induced innate immune response through differential regulation of immune mediators like interleukin 1 and interleukin 17.

  3. Both flagella and F4 fimbriae from F4ac+ enterotoxigenic Escherichia coli contribute to attachment to IPEC-J2 cells in vitro.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Zhu, Xiaofang; Guo, Zhiyan; Li, Yinchau; Hardwidge, Philip R; Zhu, Guoqiang

    2013-05-13

    The role of flagella in the pathogenesis of F4ac+ Enterotoxigenic Escherichia coli (ETEC) mediated neonatal and post-weaning diarrhea (PWD) is not currently understood. We targeted the reference C83902 ETEC strain (O8:H19:F4ac+ LT+ STa+ STb+), to construct isogenic mutants in the fliC (encoding the major flagellin protein), motA (encoding the flagella motor), and faeG (encoding the major subunit of F4 fimbriae) genes. Both the ΔfliC and ΔfaeG mutants had a reduced ability to adhere to porcine intestinal epithelial IPEC-J2 cells. F4 fimbriae expression was significantly down-regulated after deleting fliC, which revealed that co-regulation exists between flagella and F4 fimbriae. However, there was no difference in adhesion between the ΔmotA mutant and its parent strain. These data demonstrate that both flagella and F4 fimbriae are required for efficient F4ac+ ETEC adhesion in vitro.

  4. Presence of Shiga toxin-producing Escherichia coli, Enteroinvasive E. coli, Enteropathogenic E. coli, and Enterotoxigenic E. coli on tomatoes from public markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Torres-Vitela, M Del Refugio; Acevedo-Sandoval, Otilio A; Rangel-Vargas, Esmeralda; Villarruel-López, Angélica; Castro-Rosas, Andjavier

    2013-09-01

    Diarrheagenic Escherichia coli pathotypes (DEP) are important foodborne pathogens in various countries, including Mexico. However, no data exist on the presence of DEP on fresh tomatoes (Solanum lycopericum) from Mexico. The frequency of fecal coliforms (FC), E. coli, and DEP were determined for two tomato varieties. One hundred samples of a saladette tomato variety and 100 samples of a red round tomato variety were collected from public markets in Pachuca, Mexico. Each tomato sample consisted of four whole tomatoes. For the 100 saladette samples, coliform bacterial, FC, E. coli, and DEP were identified in 100, 70, 60, and 10% of samples, respectively. For the 100 red round samples, coliform bacterial, FC, E. coli, and DEP were identified in 100, 75, 65, and 11% of samples, respectively. Identified DEP included Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). STEC were isolated from 6% of saladette samples and 5% of red round samples. ETEC were isolated from 3% of saladette samples and 4% of red round samples. EPEC were isolated from 2% of saladette samples and 3% of red round samples, and EIEC were isolated from 1% of saladette samples. Both STEC and ETEC were identified in two saladette samples and 1 red round sample. E. coli O157:H7 was not detected in any STEC-positive samples.

  5. Behavior of non-O157 Shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli strains on alfalfa sprouts.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Torres-Vitela, M Del Refugio; Villarruel-López, Angélica; Castro-Rosas, Javier

    2013-08-01

    Data about the behavior of non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC), and enteropathogenic E. coli (EPEC) on seeds and alfalfa sprouts are not available. The behavior of STEC, EIEC, ETEC, and EPEC was determined during germination and sprouting of alfalfa seeds at 20 ± 2°C and 30 ± 2°C and on alfalfa sprouts at 3 ± 2°C. When alfalfa seeds were inoculated with STEC, EIEC, ETEC, or EPEC strains, all these diarrheagenic E. coli pathotypes (DEPs) grew during germination and sprouting of seeds, reaching counts of approximately 5 and 6 log CFU/g after 1 day at 20 ± 2°C and 30 ± 2°C, respectively. However, when the sprouts were inoculated after 1 day of seed germination and stored at 20 ± 2°C or 30 ± 2°C, no growth was observed for any DEP during sprouting at 20 ± 2°C or 30 ± 2°C for 9 days. Refrigeration reduced significantly (P < 0.0.5) the number of viable DEPs on sprouts after 20 days in storage; nevertheless, these decreases have no practical significance for the safety of the sprouts.

  6. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2013-11-01

    Coli surface antigen 6 (CS6) is one of the most prevalent colonization factors among enterotoxigenic Escherichia coli (ETEC) isolated in developing countries. Although it is known that CS6 is encoded by a plasmid, there are no reports on the sequence analysis of the CS6-encoding plasmid or genes exhibiting similar behavior to CS6. Here, we report the isolation of the CS6-encoding plasmid, pCss165Kan, from 4266 ΔcssB::kanamycin (Km) and its complete nucleotide sequence. This plasmid consisted of 165,311bp and 222 predicted coding sequences. Remarkably, there were many insertion sequence (IS) elements, which comprised 24.4% of the entire sequence. Virulence-associated genes such as heat-stable enterotoxin, homologues of ATP-binding cassette transporter in enteroaggregative E. coli (EAEC), and ETEC autotransporter A were also present, although the ETEC autotransporter A gene was disrupted by the integration of IS629. We found that 2 transcriptional regulators belonging to the AraC family were not involved in CS6 expression. Interestingly, pCss165 had conjugative transfer genes, as well as 3 toxin-antitoxin systems that potentially exclude other plasmid-free host bacteria. These genes might be involved in the prevalence of CS6 among ETEC isolates.

  7. Preparation and preclinical evaluation of a freeze-dried formulation of a novel combined multivalent whole-cell/B-subunit oral vaccine against enterotoxigenic Escherichia coli diarrhea.

    PubMed

    Borde, Annika; Ekman, Annelie; Larsson, Anette; Carlin, Nils; Holmgren, Jan; Tobias, Joshua

    2016-11-01

    A promising liquid killed multivalent whole-cell plus enterotoxin B-subunit oral vaccine against enterotoxigenic Escherichia coli (ETEC), the primary cause of diarrhea among children in low-income countries and travelers to these areas, has recently been developed and tested in preclinical and phase-I and phase-II clinical studies. The vaccine contains killed E. coli bacteria over-expressing the main ETEC colonization factors (CFs) CFA/I, CS3, C5 and C6, and a recombinant enterotoxin B subunit protein (LCTBA) given together with a recently developed enterotoxin-derived adjuvant, dmLT. A dry-powder vaccine formulation should be advantageous especially for use in low-income countries. Here we describe a method to produce a dry-powder formulation by freeze-drying of the vaccine using inulin as stabilizer. Although not completely preventing aggregation of bacteria during freeze-drying, the stabilizer provided both improved overall bacterial morphology and almost complete recovery of the CF and B subunit antigens. Most importantly, oral-intragastric immunization of mice with the freeze-dried vaccine together with dmLT adjuvant elicited strong intestinal mucosal and serum antibody responses against all vaccine antigens, which were comparable to those achieved with the liquid vaccine. Our results indicate the feasibility to use freeze-drying with inulin as stabilizer for preparing a dry-powder formulation of the novel ETEC vaccine with retained oral-mucosal immunogenicity compared to the liquid formulation.

  8. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli

    PubMed Central

    Andrade, Fernanda B.; Nepomuceno, Roberto; Silva, Anderson; Munhoz, Danielle D.; Yamamoto, Bruno B.; Luz, Daniela; Abreu, Patrícia A. E.; Horton, Denise S. P. Q.; Elias, Waldir P.; Ramos, Oscar H. P.; Piazza, Roxane M. F.

    2015-01-01

    Background Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC) strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv) that were produced in E. coli against enterotoxins of ETEC strains. Methods and Findings Recombinant scFv were developed against ETEC heat-labile toxin (LT) and heat-stable toxin (ST), from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains. Conclusion The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis. PMID:26154103

  9. In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88.

    PubMed

    Wang, Zhilin; Wang, Li; Chen, Zhuang; Ma, Xianyong; Yang, Xuefen; Zhang, Jian; Jiang, Zongyong

    2016-06-28

    Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.

  10. Monoclonal antibody passive hemagglutination and capture enzyme-linked immunosorbent assays for direct detection and quantitation of F41 and K99 fimbrial antigens in enterotoxigenic Escherichia coli.

    PubMed Central

    Raybould, T J; Crouch, C F; Acres, S D

    1987-01-01

    Production of diarrhea in neonatal calves by enterotoxigenic Escherichia coli depends on its ability to attach to the epithelial cells of the intestine via surface adhesins called pili or fimbriae and to secrete enterotoxins. The most important of these fimbriae are designated K99 and F41. We produced and characterized a murine monoclonal antibody specific to F41. This monoclonal antibody and a K99-specific monoclonal antibody were used to develop sensitive and specific passive hemagglutination and capture enzyme-linked immunosorbent assays (ELISAs) for detection and quantitation of F41 and K99 antigens in E. coli cultures and culture supernatants. The capture ELISA systems exhibited excellent sensitivity and specificity, whereas the passive hemagglutination systems appeared to be oversensitive. The ability of the capture ELISAs to detect K99 and F41 fimbrial antigens in fecal specimens from calves was evaluated. Fimbrial antigens were detected in six of six specimens from scouring calves but not in four of four specimens from nonscouring calves. PMID:2880866

  11. Requirement for capsular antigen KX105 and fimbrial antigen CS1541 in the pathogenicity of porcine enterotoxigenic Escherichia coli O8:KX105 strains.

    PubMed Central

    Broes, A; Fairbrother, J M; Jacques, M; Larivière, S

    1989-01-01

    The requirement for capsular antigen KX105 and fimbrial antigen CS1541 in the pathogenicity of porcine enterotoxigenic Escherichia coli O8:KX105 strains lacking the colonization factor antigens K88, K99, 987P and F41 was investigated using two encapsulated strains and their acapsular variants, one of which produced the fimbrial antigen CS1541 in vitro. None of the strains adhered in vitro to enterocytes isolated from newborn colostrum-deprived piglets. All of the strains caused diarrhea in orally infected, hysterotomy-derived, colostrum-deprived piglets although a great variability in the clinical response of the piglets was observed. Colonization of the small intestine of infected piglets by these strains was only moderate and no differences in the ability to colonize the small intestine was noted between the strains. All of the strains reacted in the indirect fluorescent antibody test with both CS1541 and 987P antisera when applied to organisms in the intestines of infected piglets. A control strain expressing the 987P fimbrial adhesin also reacted with the CS1541 antiserum applied to organisms in the intestines of an infected piglet. It was concluded that capsular antigen KX105 was not essential for intestinal colonization and production of diarrhea in hysterotomy-derived colostrum-deprived pigs, and that fimbrial antigen CS1541 does not promote in vitro adherence to enterocyte brush borders but could be important in bacterial colonization in vivo. Images Fig. 1. Fig. 2. Fig. 3. PMID:2563336

  12. Construction of non-toxic Escherichia coli and Vibrio cholerae strains expressing high and immunogenic levels of enterotoxigenic E. coli colonization factor I fimbriae.

    PubMed

    Tobias, Joshua; Lebens, Michael; Bölin, Ingrid; Wiklund, Gudrun; Svennerholm, Ann-Mari

    2008-02-06

    To express high quantities of colonization factor antigen I (CFA/I) derived from enterotoxigenic Escherichia coli (ETEC) for use in ETEC vaccines, the entire CFA/I operon consisting of four genes (cfa-A, -B, -C, -E) was cloned into plasmid expression vectors that could be maintained either with or without antibiotic selection. Expression from the powerful tac promoter was under the control of the lacIq repressor present on the plasmids. Fimbriae were expressed on the surface of both a non-toxigenic E. coli K12 strain and a non-toxigenic strain of Vibrio cholerae following induction with isopropyl-beta-D-thiogalactopyranoside (IPTG). It was found that the recombinant E. coli strains expressed up to 16-fold higher levels of CFA/I fimbriae compared to a reference strain which had previously been shown to be among the highest natural producers of the CFA/I fimbriae among tested wild type ETEC strains. Oral immunization with formalin-killed recombinant E. coli bacteria over-expressing CFA/I induced significantly higher serum IgA and IgG+M antibodies responses compared to the reference strain. Oral immunization with formalin-killed recombinant V. cholerae bacteria also induce strong CFA/I-specific serum IgA and IgG+M responses. We conclude that our constructs may be useful as candidate strains in an oral killed CF-ETEC vaccine.

  13. A novel mass spectrometric strategy "BEMAP" reveals Extensive O-linked protein glycosylation in Enterotoxigenic Escherichia coli.

    PubMed

    Boysen, Anders; Palmisano, Giuseppe; Krogh, Thøger Jensen; Duggin, Iain G; Larsen, Martin R; Møller-Jensen, Jakob

    2016-08-26

    The attachment of sugars to proteins via side-chain oxygen atoms (O-linked glycosylation) is seen in all three domains of life. However, a lack of widely-applicable analytical tools has restricted the study of this process, particularly in bacteria. In E. coli, only four O-linked glycoproteins have previously been characterized. Here we present a glycoproteomics technique, termed BEMAP, which is based on the beta-elimination of O-linked glycans followed by Michael-addition of a phosphonic acid derivative, and subsequent titanium dioxide enrichment. This strategy allows site-specific mass-spectrometric identification of proteins with O-linked glycan modifications in a complex biological sample. Using BEMAP we identified cell surface-associated and membrane vesicle glycoproteins from Enterotoxigenic E. coli (ETEC) and non-pathogenic E. coli K-12. We identified 618 glycosylated Serine and Threonine residues mapping to 140 proteins in ETEC, including several known virulence factors, and 34 in E. coli K-12. The two strains had 32 glycoproteins in common. Remarkably, the majority of the ETEC glycoproteins were conserved in both strains but nevertheless were only glycosylated in the pathogen. Therefore, bacterial O-linked glycosylation is much more extensive than previously thought, and is especially important to the pathogen.

  14. A novel mass spectrometric strategy “BEMAP” reveals Extensive O-linked protein glycosylation in Enterotoxigenic Escherichia coli

    PubMed Central

    Boysen, Anders; Palmisano, Giuseppe; Krogh, Thøger Jensen; Duggin, Iain G.; Larsen, Martin R.; Møller-Jensen, Jakob

    2016-01-01

    The attachment of sugars to proteins via side-chain oxygen atoms (O-linked glycosylation) is seen in all three domains of life. However, a lack of widely-applicable analytical tools has restricted the study of this process, particularly in bacteria. In E. coli, only four O-linked glycoproteins have previously been characterized. Here we present a glycoproteomics technique, termed BEMAP, which is based on the beta-elimination of O-linked glycans followed by Michael-addition of a phosphonic acid derivative, and subsequent titanium dioxide enrichment. This strategy allows site-specific mass-spectrometric identification of proteins with O-linked glycan modifications in a complex biological sample. Using BEMAP we identified cell surface-associated and membrane vesicle glycoproteins from Enterotoxigenic E. coli (ETEC) and non-pathogenic E. coli K-12. We identified 618 glycosylated Serine and Threonine residues mapping to 140 proteins in ETEC, including several known virulence factors, and 34 in E. coli K-12. The two strains had 32 glycoproteins in common. Remarkably, the majority of the ETEC glycoproteins were conserved in both strains but nevertheless were only glycosylated in the pathogen. Therefore, bacterial O-linked glycosylation is much more extensive than previously thought, and is especially important to the pathogen. PMID:27562176

  15. Monoclonal antibodies against enterotoxigenic Escherichia coli colonization factor antigen I (CFA/I) that cross-react immunologically with heterologous CFAs.

    PubMed Central

    Rudin, A; McConnell, M M; Svennerholm, A M

    1994-01-01

    Enterotoxigenic Escherichia coli binds to enterocytes in the small intestine by means of antigenically distinct colonization factors (CFs), usually termed colonization factor antigens (CFAs), coli surface antigens (CS), or putative colonization factor antigens (PCFs). To explore the immunological relationship between different CFs, we dissociated CFA/I fimbriae into subunits and produced monoclonal antibodies (MAbs) against these subunits. We selected three MAbs that cross-reacted immunologically with a number of different, whole purified CFs in a dot blot test and with the corresponding subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One of the MAbs, i.e., subunit CFA/I 17:8 (S-CFA/I 17:8), reacted more strongly with subunits of CFA/I than with whole purified fimbriae. This MAb cross-reacted with whole purified fimbriae and subunits of CS4, PCFO166, CS1, and CS2. Moreover, it bound strongly to a peptide of 25 amino acids corresponding to the N-terminal end of CFA/I. The other two MAbs, i.e., S-CFA/I 5:6 and S-CFA/I 8:11, cross-reacted with CS1, CS2, CS4, PCFO166, and CS17 fimbriae but reacted only slightly or not at all with the CFA/I peptide. MAbs S-CFA/I 17:8 and S-CFA/I 5:6 were shown to inhibit hemagglutination by bacterial strains that express either CFA/I, CS1, or CS4. In addition, the binding of enterotoxigenic E. coli strains expressing CFA/I, CS2, CS4, and PCFO166 to enterocyte-like cell-line Caco-2 was inhibited by both MAbs. These results show that several antigenically different CFs have common epitopes and that among these at least one is located in the N-terminal end of the subunit protein. Moreover, antibodies against the common epitopes seem to block binding of the bacterial strains that express different CFs to both erythrocytes and Caco-2 cells. Images PMID:7927693

  16. Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli serotype O8:KX105 and O8:K"2829" strains isolated from piglets with diarrhea.

    PubMed Central

    Broes, A; Fairbrother, J M; Mainil, J; Harel, J; Lariviere, S

    1988-01-01

    Twelve pathogenic and seven nonpathogenic enterotoxigenic Escherichia coli strains which were previously identified as belonging to serogroup O8:KX105 (A. Broes, J. M. Fairbrother, S. Larivière, M. Jacques, and W. M. Johnson, Infect. Immun. 56:241-246, 1988) were further examined for their phenotypic and genotypic properties. Only the 12 pathogenic strains were confirmed to possess the capsular antigen KX105. The seven nonpathogenic strains did not possess this antigen and thus were incorrectly assigned to have capsular antigen KX105. All seven nonpathogenic strains apparently possessed a previously unrecognized capsular antigen which has been designated K"2829". Studies with antisera prepared against F1 (type 1) fimbriae from three E. coli strains suggested that at least three antigenic subtypes of F1 fimbriae were represented among the O8:KX105 strains examined. By using serotyping, biotyping, and outer membrane protein profile analyses, the O8:KX105 strains were divided into at least two distinct clusters, whereas the O8:K"2829" strains were grouped into a single unique cluster. Most of the strains of the same cluster were further differentiated by testing for antibiotic resistance and colicin production and resistance and by analysis of plasmid content. With the exception of one strain which lost its enterotoxicity during storage, all of the O8:KX105 strains hybridized with the gene probes for the heat-labile (LT) and heat-stable (STb) enterotoxins. For each O8:KX105 strain, a single plasmid ranging in size from 61 to 77 megadaltons carried the LT and STb genes.All of the enterotoxigenic O8: KX105 strains fermented sorbose, whereas the nonenterotoxigenic strain did not. All of the O8:K "2829" strains hybridized with the STb probe only. For each O8:K "2829" strain, the STb genes were located on a single plasmid of 61 or 22 megadaltons. None of the strains demonstrated homology with the genes encoding the F4 (K88), F5 (K99), F6 (987P), and F41 fimbrial antigens

  17. Immunization of suckling pigs against enterotoxigenic Escherichia coli-induced diarrheal disease by vaccinating dams with purified 987 or K99 pili: protection correlates with pilus homology of vaccine and challenge.

    PubMed

    Morgan, R L; Isaacson, R E; Moon, H W; Brinton, C C; To, C C

    1978-12-01

    Pregnant gilts were vaccinated with purified strain 987 pili (987P), strain K99 pili, or a saline-formaldehyde control. Suckling pigs born to vaccinated gilts were allowed to consume colostrum and were then challenged intragastrically with one of three enterotoxigenic Escherichia coli strains: 987 (O9:K103, 987P:NM), 74-5208 (02O:K101, 987P:NM) or 431 (O101:K30, 99:NM). In litters where the dam was vaccinated with the same pilus as that possessed by the challenge organism, the incidence and duration of diarrhea and the degree of intestinal colonization (either duration or extent) were less than those of the other vaccine groups. Surviving pigs in the homologous vaccine groups also had better weight gains than pigs in the other vaccine groups. The experiments extend and confirm previous reports that vaccination of the dam with purified pili confers protection to neonatal suckling pigs against diarrheal disease caused by enterotoxigenic E. coli strains that possess the same pili. Protection did not extend to enterotoxigenic strains possessing different pili.

  18. Enterotoxigenic potential of Staphylococcus intermedius.

    PubMed

    Becker, K; Keller, B; von Eiff, C; Brück, M; Lubritz, G; Etienne, J; Peters, G

    2001-12-01

    Staphylococcal food poisoning (SFP) caused by enterotoxigenic staphylococci is one of the main food-borne diseases. In contrast to Staphylococcus aureus, a systematic screening for the enterotoxins has not yet been performed on the genomic level for the coagulase-positive species S. intermedius. Therefore, the enterotoxigenic potential of 281 different veterinary (canine, n = 247; equine, n = 23; feline, n = 9; other, n = 2) and 11 human isolates of S. intermedius was tested by using a multiplex PCR DNA-enzyme immunoassay system targeting the staphylococcal enterotoxin genes sea, seb, sec, sed, and see. Molecular results were compared by in vitro testing of enterotoxin production by two immunoassays. A total of 33 (11.3%) S. intermedius isolates, including 31 (12.6%) canine isolates, 1 equine isolate, and 1 human isolate, tested positive for the sec gene. In vitro production of the respective enterotoxins was detected in 30 (90.9%) of these isolates by using immunological tests. In contrast, none of 65 veterinary specimen-derived isolates additionally tested and comprising 13 (sub)species of coagulase-negative staphylococci were found to be enterotoxigenic. This study shows on both molecular and immunological levels that a substantial number of S. intermedius isolates harbor the potential for enterotoxin production. Since evidence for noninvasive zoonotic transmission of S. intermedius from animal hosts to humans has been documented, an enterotoxigenic role of this microorganism in SFP via contamination of food products may be assumed.

  19. Alkaline pH Is a signal for optimal production and secretion of the heat labile toxin, LT in enterotoxigenic Escherichia coli (ETEC).

    PubMed

    Gonzales, Lucia; Ali, Zahra Bagher; Nygren, Erik; Wang, Zhiyun; Karlsson, Stefan; Zhu, Baoli; Quiding-Järbrink, Marianne; Sjöling, Åsa

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) cause secretory diarrhea in children and travelers to endemic areas. ETEC spreads through the fecal-oral route. After ingestion, ETEC passes through the stomach and duodenum before it colonizes the lower part of the small intestine, exposing bacteria to a wide range of pH and environmental conditions. This study aimed to determine the impact of external pH and activity of the Cyclic AMP receptor protein (CRP) on the regulation of production and secretion of heat labile (LT) enterotoxin. ETEC strain E2863wt and its isogenic mutant E2863ΔCRP were grown in LBK media buffered to pH 5, 7 and 9. GM1 ELISA, cDNA and cAMP analyses were carried out on bacterial pellet and supernatant samples derived from 3 and 5 hours growth and from overnight cultures. We confirm that CRP is a repressor of LT transcription and production as has been shown before but we show for the first time that CRP is a positive regulator of LT secretion both in vitro and in vivo. LT secretion increased at neutral to alkaline pH compared to acidic pH 5 where secretion was completely inhibited. At pH 9 secretion of LT was optimal resulting in 600 percent increase of secreted LT compared to unbuffered LBK media. This effect was not due to membrane leakage since the bacteria were viable at pH 9. The results indicate that the transition to the alkaline duodenum and/or exposure to high pH close to the epithelium as well as activation of the global transcription factor CRP are signals that induce secretion of the LT toxin in ETEC.

  20. Advanced application of bovine intestinal epithelial cell line for evaluating regulatory effect of lactobacilli against heat-killed enterotoxigenic Escherichia coli-mediated inflammation

    PubMed Central

    2013-01-01

    Background Previously, a bovine intestinal epithelial cell line (BIE cells) was successfully established. This work hypothesized that BIE cells are useful in vitro model system for the study of interactions of microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) with bovine intestinal epithelial cells and for the selection of immunoregulatory lactic acid bacteria (LAB). Results All toll-like receptor (TLR) genes were expressed in BIE cells, being TLR4 one of the most strongly expressed. We demonstrated that heat-stable PAMPs of enterotoxigenic Escherichia coli (ETEC) significantly enhanced the production of IL-6, IL-8, IL-1α and MCP-1 in BIE cells by activating both NF-κB and MAPK pathways. We evaluated the capacity of several lactobacilli strains to modulate heat-stable ETEC PAMPs-mediated inflammatory response in BIE cells. Among these strains evaluated, Lactobacillus casei OLL2768 attenuated heat-stable ETEC PAMPs-induced pro-inflammatory response by inhibiting NF-κB and p38 signaling pathways in BIE cells. Moreover, L. casei OLL2768 negatively regulated TLR4 signaling in BIE cells by up-regulating Toll interacting protein (Tollip) and B-cell lymphoma 3-encoded protein (Bcl-3). Conclusions BIE cells are suitable for the selection of immunoregulatory LAB and for studying the mechanisms involved in the protective activity of immunobiotics against pathogen-induced inflammatory damage. In addition, we showed that L. casei OLL2768 functionally modulate the bovine intestinal epithelium by attenuating heat-stable ETEC PAMPs-induced inflammation. Therefore L. casei OLL2768 is a good candidate for in vivo studying the protective effect of LAB against intestinal inflammatory damage induced by ETEC infection or heat-stable ETEC PAMPs challenge in the bovine host. PMID:23497067

  1. Randomized control trials using a tablet formulation of hyperimmune bovine colostrum to prevent diarrhea caused by enterotoxigenic Escherichia coli in volunteers

    PubMed Central

    Otto, Wlodzimierz; Najnigier, Boguslaw; Stelmasiak, Teodor; Robins-Browne, Roy M

    2011-01-01

    Objective. Enterotoxigenic Escherichia coli (ETEC) is the leading cause of travelers' diarrhea. The aim of this study was to investigate the ability of a powdered extract of hyperimmune bovine colostrum to protect against diarrhea in volunteers challenged with ETEC. Materials and methods. Tablets were manufactured from a colostrum extract from cattle immunized with 14 ETEC strains, including serogroup O78. Two separate randomized, double-blind, placebo-controlled trials involving 90 healthy adult volunteers were performed to investigate the ability of different tablet formulations to protect against diarrhea following an oral challenge with an O78 ETEC strain. Results. The first study with 30 participants evaluated the efficacy of tablets, containing 400 mg of colostrum protein, taken thrice daily with bicarbonate buffer. This regimen conferred 90.9% protection against diarrhea in the group receiving the active preparation compared with the placebo group (p = 0.0005). The second study examined the efficacy of tablets containing 400 mg colostrum protein given with buffer (83.3% protection;p = 0.0004) or without buffer (76.7% protection;p =0.007), and tablets containing 200 mg colostrum protein given without buffer (58.3% protection; p = 0.02), compared with placebo. The difference between buffered and unbuffered treatments was not significant (p > 0.1). Conclusions. Active tablet formulations were significantly more effective than placebo in protecting volunteers against the development of diarrhea caused by ETEC. These results suggest that administration of a tablet formulation of hyperimmune bovine colostrum containing antibodies against ETEC strains may reduce the risk of travelers' diarrhea. PMID:21526980

  2. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    PubMed

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander.

  3. Structural signature of Ser83Leu and Asp87Asn mutations in DNA gyrase from enterotoxigenic Escherichia coli and impact on quinolone resistance.

    PubMed

    Mehla, Kusum; Ramana, Jayashree

    2016-01-15

    Enterotoxigenic Escherichia coli (ETEC) is among the most frequent microorganisms causing traveler's diarrhea (TD). Quinolones are potent antimicrobial agents used for the treatment of TD. Resistance to quinolones is typically caused by substitutions in QRDR region of gyrA subunit of DNA gyrase. The aim of this study was to seek insights into the effect of these substitutions at structural level and their association with observed quinolone resistance. Majority of the ETEC strains have gyrA mutations at amino acid position 83 and 87. To understand the quinolone resistance mechanism at molecular level, we have studied the interaction of wild type and mutant forms of ETEC gyrA with nalidixic acid and ciprofloxacin by molecular modeling using Discovery Studio and LeadIt. All the mutants had reduced affinity towards both ciprofloxacin and nalidixic acid relative to the wild type due to the mutations introduced in gyrA. Besides Ser83 and Asp87, for nalidixic acid binding Arg91 and His45 residues were observed to be critical while in ciprofloxacin binding Lys42 and Arg91 residues played a significant role. Amino acid substitutions contribute to the emergence of drug resistance in sensitive strains by causing structural alterations leading to reduced affinity of the drug towards receptor. Analysis of the effect of amino acid substitutions at structural level is of utmost importance to establish possible associations between mutations and the diseases. These studies accelerate the identification of pharmaceutical targets for relevant treatments and could also be helpful in guiding the design of further experimental research.

  4. Concurrent outbreaks of Shigella sonnei and enterotoxigenic Escherichia coli infections associated with parsley: implications for surveillance and control of foodborne illness.

    PubMed

    Naimi, Timothy S; Wicklund, Julie H; Olsen, Sonja J; Krause, Gerard; Wells, Joy G; Bartkus, Joanne M; Boxrud, David J; Sullivan, Maureen; Kassenborg, Heidi; Besser, John M; Mintz, Eric D; Osterholm, Michael T; Hedberg, Craig W

    2003-04-01

    In recent years, the globalization of the food supply and the development of extensive food distribution networks have increased the risk of foodborne disease outbreaks involving multiple states or countries. In particular, outbreaks associated with fresh produce have emerged as an important public health concern. During July and August 1998, eight restaurant-associated outbreaks of shigellosis caused by a common strain of Shigella sonnei occurred in the United States and Canada. The outbreak strain was characterized by unique pulsed-field gel electrophoresis patterns. Epidemiologic investigation determined that the illness was associated with the ingestion of parsley at four restaurants; at the other four restaurants, the majority of the people who contracted the illness ate parsley. Isolates from patrons in two unrelated restaurant-associated enterotoxigenic Escherichia coli (ETEC) outbreaks in Minnesota shared a common serotype and pulsed-field gel electrophoresis (PFGE) pattern. Parsley was the implicated or suspected source of both ETEC outbreaks. In each of the outbreak-associated restaurants, parsley was chopped, held at room temperature, and used as an ingredient or garnish for multiple dishes. Infected food workers at several restaurants may also have contributed to the propagation of the outbreak. The sources of parsley served in outbreak-associated restaurants were traced, and a 1,600-acre farm in Baja California, Mexico, was identified as a likely source of the parsley implicated in six of the seven Shigella outbreaks and as a possible source of the parsley implicated in the two ETEC outbreaks. Global food supplies and large distribution networks demand strengthened laboratory and epidemiologic capacity to enable state and local public health agencies to conduct foodborne disease surveillance and to promote effective responses to multistate outbreaks.

  5. Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic Escherichia coli F4 (ETEC) post weaning diarrhoea in piglets.

    PubMed

    Niewold, T A; van Dijk, A J; Geenen, P L; Roodink, H; Margry, R; van der Meulen, J

    2007-10-06

    In order to establish the mechanism of spray dried plasma powder (SDPP) in improving pig health and performance, a diet containing either 8% SDPP, spray dried immune plasma powder (SDIPP), or control protein (soybean and whey) ration was fed to piglets in an experimental model of enterotoxigenic Escherichia coli F4 (ETEC) post-weaning diarrhoea (PWD). SDIPP was obtained from pigs immunized with a vaccine containing ETEC fimbrial subunit F4 and heat-labile toxin (LT), and SDPP from non-immunized controls. Average daily growth (ADG) was determined, and daily samples of rectal faeces were assessed for diarrhoea (as percentage of dry matter), and ETEC excretion (in CFU/g). SDPP and SDIPP significantly (p<0.05) reduced diarrhoea, and SDIPP significantly reduced ETEC excretion. ADG was not significantly (p>0.05) affected. After the experiment, 30% of piglets tested F4 receptor positive (F4R+). A significant correlation between F4R status and morbidity was found. In F4R+ animals, SDIPP significantly improved diarrhoea and ADG, and decreased ETEC excretion, and SDPP significantly improved diarrhoea and ADG. Surprisingly, SDPP reduced diarrhoea in F4R+ animals without significant reduction of ETEC excretion, which is most likely related to the presence of anti-LT antibodies in SDPP. The results show that oral protection against ETEC by SDPP is attributable to spontaneous antibodies, in this case anti-LT antibodies. Furthermore, the results indicate that the combination of anti-LT and anti-F4 antibodies as in SDIPP is most effective in ETEC prevention. Finally, the F4R distribution in the herd should be taken into account to correctly assess efficacy.

  6. In vivo therapeutic efficacy and pharmacokinetics of colistin sulfate in an experimental model of enterotoxigenic Escherichia coli infection in weaned pigs.

    PubMed

    Rhouma, Mohamed; Beaudry, Francis; Thériault, William; Bergeron, Nadia; Beauchamp, Guy; Laurent-Lewandowski, Sylvette; Fairbrother, John Morris; Letellier, Ann

    2016-05-27

    Enterotoxigenic Escherichia coli (ETEC: F4) associated with post-weaning diarrhea (PWD) in pigs has developed resistance against several antimicrobial families, leading to increased use of colistin sulfate (CS) for the treatment of this disease. The objective of this study was to determine the efficacy of oral CS treatment in experimental PWD due to ETEC: F4 challenge and determine the effect of this challenge on CS intestinal absorption. In this study, 96 pigs were divided into two trials based on CS dose (100 000 or 50 000 IU/kg). Fecal shedding of ETEC: F4, total E. coli, and CS-resistant E. coli, diarrhea scores, and weight changes were evaluated. Colistin sulfate plasma concentrations were determined by HPLC-MS/MS. Regardless of the dose, CS treatment resulted in a reduction of fecal ETEC: F4 and total E. coli shedding, and in diarrhea scores but only during the treatment period. However, CS treatment resulted in a slight increase in fecal shedding of CS resistant E. coli and did not prevent weight loss in challenged pigs. In addition, challenge with ETEC: F4 resulted in an increase of CS intestinal absorption. Our study is among the first to demonstrate that under controlled conditions, CS was effective in reducing fecal shedding of ETEC: F4 and total E. coli in experimental PWD. However, CS treatment was associated with a slight selection pressure on E. coli and did not prevent pig weight loss. Further studies are needed in field conditions, to better characterize CS therapeutic regimen efficacy and bacterial resistance dissemination.

  7. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A.

    PubMed

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A; Ochoa, Sara A; González-Pedrajo, Bertha; Eslava-Campos, Carlos A; López-Villegas, Edgar O; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells.

  8. Effects of lng Mutations on LngA Expression, Processing, and CS21 Assembly in Enterotoxigenic Escherichia coli E9034A

    PubMed Central

    Saldaña-Ahuactzi, Zeus; Rodea, Gerardo E.; Cruz-Córdova, Ariadnna; Rodríguez-Ramírez, Viridiana; Espinosa-Mazariego, Karina; González-Montalvo, Martín A.; Ochoa, Sara A.; González-Pedrajo, Bertha; Eslava-Campos, Carlos A.; López-Villegas, Edgar O.; Hernández-Castro, Rigoberto; Arellano-Galindo, José; Patiño-López, Genaro; Xicohtencatl-Cortes, Juan

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of morbidity in children under 5 years of age in low- and middle-income countries and a leading cause of traveler's diarrhea worldwide. The ability of ETEC to colonize the intestinal epithelium is mediated by fimbrial adhesins, such as CS21 (Longus). This adhesin is a type IVb pilus involved in adherence to intestinal cells in vitro and bacterial self-aggregation. Fourteen open reading frames have been proposed to be involved in CS21 assembly, hitherto only the lngA and lngB genes, coding for the major (LngA) and minor (LngB) structural subunit, have been characterized. In this study, we investigated the role of the LngA, LngB, LngC, LngD, LngH, and LngP proteins in the assembly of CS21 in ETEC strain E9034A. The deletion of the lngA, lngB, lngC, lngD, lngH, or lngP genes, abolished CS21 assembly in ETEC strain E9034A and the adherence to HT-29 cells was reduced 90%, compared to wild-type strain. Subcellular localization prediction of CS21 proteins was similar to other well-known type IV pili homologs. We showed that LngP is the prepilin peptidase of LngA, and that ETEC strain E9034A has another peptidase capable of processing LngA, although with less efficiency. Additionally, we present immuno-electron microscopy images to show that the LngB protein could be localized at the tip of CS21. In conclusion, our results demonstrate that the LngA, LngB, LngC, LngD, LngH, and LngP proteins are essential for CS21 assembly, as well as for bacterial aggregation and adherence to HT-29 cells. PMID:27536289

  9. Generation of Salmonella ghost cells expressing fimbrial antigens of enterotoxigenic Escherichia coli and evaluation of their antigenicity in a murine model

    PubMed Central

    Kim, Chan Song; Hur, Jin; Eo, Seong Kug; Park, Sang-Youel; Lee, John Hwa

    2016-01-01

    Salmonella Typhimurium ghost cells expressing K88ab, K88ac, K99, and FasA fimbriae of enterotoxigenic Escherichia coli (ETEC) in their envelopes were constructed. The genes encoding the fimbriae were individually cloned into an expression plasmid, pMMP81, carrying the asd gene, which was subsequently electroporated into the Δasd S. Typhimurium mutant. Plasmid pJHLP99, carrying the phiX174 lysis gene E, was also subsequently electroporated into the Salmonella mutant. The presence of the individual fimbriae on the ghost cells was examined by Western blot analysis. Forty BALB/c mice were equally divided into 2 groups of 20 mice each. Group A mice were intramuscularly vaccinated with a mixture of the 4 ghost cells expressing the individual fimbriae. The group B mice were inoculated with sterile phosphate-buffered saline as a control. The antigen-specific serum IgG concentrations were significantly higher in group A than in group B from week 2 until week 6 after inoculation. In addition, the antigen-specific IgA concentrations in fecal samples were significantly higher in group A than in group B at week 2 after inoculation. A large difference between the groups in the number of antigen-specific IgA-secreting cells in the small intestine was observed by immunohistochemical study. Also, the splenic lymphocyte proliferative responses were significantly greater in group A than in the control mice. These results suggest that vaccination with our Salmonella ghost cells can induce both humoral and cell-mediated immune responses and that the increased number of antigen-specific IgA-secreting cells in the small intestine may be correlated with the elevated fecal IgA immune response. PMID:26733731

  10. Pilus Production, Hemagglutination, and Adhesion by Porcine Strains of Enterotoxigenic Escherichia coli Lacking K88, K99, and 987P Antigens

    PubMed Central

    Awad-Masalmeh, M.; Moon, H. W.; Runnels, P. L.; Schneider, R. A.

    1982-01-01

    Three strains of enterotoxigenic Escherichia coli which adhered, colonized intensively, and caused disease in pig intestine, but which did not produce pili of the K88, K99, or 987P antigen types were designated 3P− ETEC. The 3P− ETEC caused mannose-resistant hemagglutination, adhered to porcine intestinal epithelial cells in vitro, and produced pili. However, most bacteria taken directly from the intestine of pigs infected with 3P− ETEC appeared to be nonpiliated. Two preparations were isolated from the 3P− ETEC. One (material A) contained pili, caused mannose-sensitive hemagglutination, and did not inhibit adhesion of whole bacteria to epithelial cells in vitro. The other (material B) had no demonstrable pili, caused mannose-resistant hemagglutination, and blocked ahesion of bacteria to epithelial cells in vitro. Antiserum against an acapsular mutant (K−) of one 3P− ETEC strain was absorbed to remove antibodies directed against somatic (O) antigen. The absorbed antiserum agglutinated all three 3P− ETEC strains grown in the K− form at 37°C, but not when they were grown at 18°C. The absorbed antiserum blocked the hemagglutinating activity of material B, but not of material A. It also reacted (via indirect immunofluorescence) with all of the 3P− ETEC when they were grown in pig intestine. The results were interpreted to indicate that: (i) the epithelial adhesive and mannose-resistant hemagglutinating activities of the 3P− ETEC strains may be mediated by an antigen contained in material B; (ii) this antigen either is not pilus associated or is associated with pili that are not demonstrable by the methods used here; (iii) the 3P− ETEC strains produce type 1 pili which do not mediate their adhesion to intestinal epithelium of pigs. Images PMID:6119295

  11. Use of specific antibody to demonstrate glycocalyx, K99 pili, and the spatial relationships of K99+ enterotoxigenic Escherichia coli in the ileum of colostrum-fed calves.

    PubMed Central

    Chan, R; Acres, S D; Costerton, J W

    1982-01-01

    The attachment of enterotoxigenic Escherichia coli (ETEC) strain B44 (O9:K30:K99:F41:H-) to the ileal epithelium of newborn colostrum-fed calves was studied by electron microscopy. Stabilization of the bacterial glycocalyx (K30) and pili (K99) by fixation of tissue sections in specific antibody and staining with ruthenium red were used so that the bacterial surface structures could be clearly visualized and their spatial relationship to the intestinal brush border defined. When sections of ileum from infected calves were neither fixed in antibody nor stained with ruthenium red, the ETEC cells colonizing the small intestine were separated from each other and from the brush border by an electron-translucent halo; neither the glycocalyx nor the pili could be clearly resolved. When ruthenium red staining was used, the halo was partially filled by a net of electron-dense fibers composed of pili and condensed glycocalyx which extended to the brush border. Tissue sections reacted with anti-K30 antibody before staining with ruthenium red revealed microcolonies of ETEC surrounded by a discrete electron-dense glycocalyx 0.3 to 1.0 micrometers thick and in tight contact with the epithelial cell surface. When ileal tissue was treated with K99 antibody, the K99 pili were visible as discrete fibers extending from the bacterial cell surface through the glycocalyx. We discuss the role of these cell surface components in pathogenic adhesion and in the formation of protected microcolonies at the surface of the infected ileal epithelium. Images PMID:6127313

  12. Surface expression of Helicobacter pylori HpaA adhesion antigen on Vibrio cholerae, enhanced by co-expressed enterotoxigenic Escherichia coli fimbrial antigens.

    PubMed

    Tobias, Joshua; Lebens, Michael; Wai, Sun Nyunt; Holmgren, Jan; Svennerholm, Ann-Mari

    2017-02-17

    Helicobacter pylori infection can cause peptic ulceration and is associated with gastric adenocarcinoma. This study aimed to construct and characterize a non-virulent Vibrio cholerae O1 strain, which grows more rapidly than H. pylori, as vector for H. pylori antigens for possible use as a vaccine strain against H. pylori. This was done by recombinant expression of the H. pylori adhesion antigen HpaA alone or, as a proof of principle, together with different colonization factor (CF) antigens of enterotoxigenic Escherichia coli (ETEC) which may enhance immune responses against HpaA. A recombinant V. cholerae strain co-expressing HpaA and a fimbrial CF antigens CFA/I or CS5, but not the non-fimbrial CF protein CS6, was shown to express larger amounts of HpaA on the surface when compared with the same V. cholerae strain expressing HpaA alone. Mutations in the CFA/I operon showed that the chaperon, possibly together with the usher, was involved in enhancing the surface expression of HpaA. Oral immunization of mice with formaldehyde-inactivated recombinant V. cholerae expressing HpaA alone or together with CFA/I induced significantly higher serum antibody responses against HpaA than mice similarly immunized with inactivated HpaA-expressing H. pylori bacteria. Our results demonstrate that a non-virulent V. cholerae strain can be engineered to allow strong surface expression of HpaA, and that the expression can be further increased by co-expressing it with ETEC fimbrial antigens. Such recombinant V. cholerae strains expressing HpaA, and possibly also other H. pylori antigens, may have the potential as oral inactivated vaccine candidates against H. pylori.

  13. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins.

    PubMed

    Berberov, Emil M; Zhou, You; Francis, David H; Scott, Michael A; Kachman, Stephen D; Moxley, Rodney A

    2004-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains that produce multiple enterotoxins are important causes of severe dehydrating diarrhea in human beings and animals, but the relative importance of these enterotoxins in the pathogenesis is poorly understood. Gnotobiotic piglets were used to study the importance of heat-labile enterotoxin (LT) in infection with an ETEC strain that produces multiple enterotoxins. LT(-) (DeltaeltAB) and complemented mutants of an F4(+) LT(+) STb(+) EAST1(+) ETEC strain were constructed, and the virulence of these strains was compared in gnotobiotic piglets expressing receptors for F4(+) fimbria. Sixty percent of the piglets inoculated with the LT(-) mutant developed severe dehydrating diarrhea and septicemia compared to 100% of those inoculated with the nalidixic acid-resistant (Nal(r)) parent and 100% of those inoculated with the complemented mutant strain. Compared to piglets inoculated with the Nal(r) parent, the mean rate of weight loss (percent per hour) of those inoculated with the LT(-) mutant was 67% lower (P < 0.05) and that of those inoculated with the complemented strain was 36% higher (P < 0.001). Similarly, piglets inoculated with the LT(-) mutant had significant reductions in the mean bacterial colony count (CFU per gram) in the ileum; bacterial colonization scores (square millimeters) in the jejunum and ileum; and clinical pathology parameters of dehydration, electrolyte imbalance, and metabolic acidosis (P < 0.05). These results indicate the significance of LT to the development of severe dehydrating diarrhea and postdiarrheal septicemia in ETEC infections of swine and demonstrate that EAST1, LT, and STb may be concurrently expressed by porcine ETEC strains.

  14. A polyphasic approach to detect enterotoxigenic Staphylococcus aureus and diarrheagenic Escherichia coli in raw milk Italian cheeses by multiplex PCR.

    PubMed

    Bernini, Valentina; Sgarbi, Elisa; Bove, Claudio Giorgio; Gatti, Monica; Neviani, Erasmo

    2010-12-01

    A polyphasic approach was evaluated for the detection of eight staphylococcal enterotoxin (SE)-encoding genes (sea, sec, sed, seg, seh, sei, sej, sel) and the Escherichia coli genes most commonly associated with virulence factors (eae, elt, ipaH, stx) in traditional soft cheeses, manufactured artisanally from whole raw milk in the Lombardy region (northern Italy). To determine the presence of the target genes, two multiplex PCRs were performed on DNA extracted both directly from cheese samples (culture-independent approach) and from whole cultivable cells, formed by harvesting colonies from the first serial dilution agar plates of selective media, as representative of cultivable community ("bulk"). Genes associated with enteroinvasive E. coli, ipaH, and Shiga toxin-producing E. coli, stx, were detected in two of the bulk samples analyzed; no virulence genes were found by amplifying DNA directly extracted from cheeses. SE-encoding genes were found in three cheeses (sea in all three samples, associated with sed and sej in two of these). More SE-encoding genes were detected by amplifying DNA obtained from bulk samples: sea, sed, sej, sec, seg, sel, and sei. No samples harbored the gene encoding for SE type H. The polyphasic approach followed has been useful in enhancing detection of target genes. Our results indicate that some of the artisanal cheeses examined may constitute a potential hazard for consumer health.

  15. Enterotoxigenic Escherichia coli colonization factor types collected from 1997 to 2001 in US military personnel during operation Bright Star in northern Egypt.

    PubMed

    Rockabrand, David M; Shaheen, Hind I; Khalil, Sami B; Peruski, Leonard F; Rozmajzl, Patrick J; Savarino, Stephen J; Monteville, Marshall R; Frenck, Robert W; Svennerholm, Ann-Mari; Putnam, Shannon D; Sanders, John W

    2006-05-01

    Operation Bright Star (OBS) is a biennial, multinational exercise in Egypt involving 15000 US troops. Consistent with past observations in deployed troops, diarrhea is the most significant cause of morbidity. Focused efforts are ongoing to develop vaccines against the most common pathogens affecting our troops. As part of these efforts, diarrhea surveillance was conducted during OBS to monitor pathogens associated with illness and to identify new vaccine targets. A retrospective review was conducted of prior studies with similar methods. Soldiers with diarrhea presenting to the OBS clinic provided a stool sample that was inoculated into Carey-Blair transport media. Within 3 days, the Cary-Blair tubes were transported to the Naval Medical Research Unit no. 3 in Cairo where bacterial culture was performed. As part of the evaluation, 5 Escherichia coli-like colonies were collected and tested for toxin production using the GM1-ELISA. Toxin-positive isolates were further tested for colonization factors (CF) by a dot-blot assay using a standardized panel of monoclonal antibodies against CFA/I, CS1-CS7, CS17, CS8 (CFA/III), CS12 (PCFO159), and CS14 (PCFO166). Enterotoxigenic E. coli (ETEC) was the most frequently isolated pathogen during each OBS from which data were collected. The rate of ETEC-associated diarrhea ranged from 22% to 58%. Over time, there were dramatic shifts in the frequency and distribution of CFs. Over the 5 years of study, an increasing number of ETEC isolates had no known CF identified, and in 2001, only 40% of ETEC was associated with known CFs. The most commonly identified CF was CS6. Diarrheal disease, particularly ETEC, continues to be a common malady among US military personnel deployed to Egypt. We have identified ETEC CF types, especially CS6, which should be considered potential vaccine candidates. However, despite intensive testing, CFs could not be identified in most of the ETEC isolated, highlighting the need for further studies to identify

  16. Modulatory Effects of Vasoactive Intestinal Peptide on Intestinal Mucosal Immunity and Microbial Community of Weaned Piglets Challenged by an Enterotoxigenic Escherichia coli (K88)

    PubMed Central

    Xu, Chunlan; Wang, Youming; Sun, Rui; Qiao, Xiangjin; Shang, Xiaoya; Niu, Weining

    2014-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger immune response, but their regulation by neuropeptide-vasoactive intestinal peptide (VIP) in weaned piglets infected by enterotoxigenic Escherichia coli (ETEC) K88 remains unexplored. Therefore, the study was conducted to investigate its role using a model of early weaned piglets infected by ETEC K88. Male Duroc×Landrace×Yorkshire piglets (n = 24) were randomly divided into control, ETEC K88, VIP, and ETEC K88+VIP groups. On the first three days, ETEC K88 and ETEC K88+VIP groups were orally administrated with ETEC K88, other two groups were given sterile medium. Then each piglet from VIP and ETEC K88+VIP group received 10 nmol VIP intraperitoneally (i.p.) once daily, on day four and six. On the seventh day, the piglets were sacrificed. The results indicated that administration of VIP improved the growth performance, reduced diarrhea incidence of ETEC K88 challenged pigs, and mitigated the histopathological changes of intestine. Serum levels of IL-2, IL-6, IL-12p40, IFN-γ and TNF-α in the ETEC K88+ VIP group were significantly reduced compared with those in the ETEC group. VIP significantly increased IL-4, IL-10, TGF-β and S-IgA production compared with the ETEC K88 group. Besides, VIP could inhibit the expression of TLR2, TLR4, MyD88, NF-κB p65 and the phosphorylation of IκB-α, p-ERK, p-JNK, and p-38 induced by ETEC K88. Moreover, VIP could upregulate the expression of occludin in the ileum mucosa compared with the ETEC K88 group. Colon and caecum content bacterial richness and diversity were lower for pigs in the ETEC group than the unchallenged groups. These results demonstrate that VIP is beneficial for the maturation of the intestinal mucosal immune system and elicited local immunomodulatory activities. The TLR2/4-MyD88 mediated NF-κB and MAPK signaling pathway may be critical to the mechanism underlying the modulatory effect of VIP on intestinal mucosal immune function and

  17. Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli

    PubMed Central

    Debnath, Anusuya; Sabui, Subrata; Wajima, Takeaki; Hamabata, Takashi; Banerjee, Rajat

    2016-01-01

    ABSTRACT CS6 is a common colonization factor expressed by enterotoxigenic Escherichia coli. It is a two-subunit protein consisting of CssA and CssB in an equal stoichiometry, assembled via the chaperone-usher pathway into an afimbrial, oligomeric assembly on the bacterial cell surface. A recent structural study has predicted the involvement of the N- and C-terminal regions of the CS6 subunits in its assembly. Here, we identified the functionally important residues in the N- and C-terminal regions of the CssA and CssB subunits during CS6 assembly by alanine scanning mutagenesis. Bacteria expressing mutant proteins were tested for binding with Caco-2 cells, and the results were analyzed with respect to the surface expression of mutant CS6. In this assay, many mutant proteins were not expressed on the surface while some showed reduced expression. It appeared that some, but not all, of the residues in both the N and C termini of CssA and CssB played an important role in the intermolecular interactions between these two structural subunits, as well as chaperone protein CssC. Our results demonstrated that T20, K25, F27, S36, Y143, and V147 were important for the stability of CssA, probably through interaction of CssC. We also found that I22, V29, and I33 of CssA and G154, Y156, L160, V162, F164, and Y165 of CssB were responsible for CssA-CssB intermolecular interactions. In addition, some of the hydrophobic residues in the C terminus of CssA and the N terminus of CssB were involved in the stabilization of higher-order complex formation. Overall, the results presented here might help in understanding the pathway used to assemble CS6 and predict its structure. IMPORTANCE Unlike most other colonization factors, CS6 is nonfimbrial, and in a sense, its subunit composition and assembly are also unique. Here we report that both the N- and C-terminal amino acid residues of CssA and CssB play a critical role in the intermolecular interactions between them and assembly proteins

  18. Avirulent K88 (F4)+ Escherichia coli strains constructed to express modified enterotoxins protect young piglets from challenge with a virulent enterotoxigenic Escherichia coli strain that expresses the same adhesion and enterotoxins.

    PubMed

    Santiago-Mateo, Kristina; Zhao, Mojun; Lin, Jun; Zhang, Weiping; Francis, David H

    2012-10-12

    Virulence of enterotoxigenic Escherichia coli (ETEC) is associated with fimbrial adhesins and enterotoxins such as heat-labile (LT) and/or heat-stable (ST) enterotoxins. Previous studies using a cell culture model suggest that exclusion of ETEC from attachment to epithelial cells requires expression of both an adhesin such as K88 (F4) fimbriae, and LT. To test the ability of non-pathogenic E. coli constructs to exclude virulent ETEC sufficiently to prevent clinical disease, we utilized a piglet ETEC challenge model. Thirty-nine 5-day-old piglets were inoculated with a placebo (control), or with either of the three K88(+)E. coli strains isogenic with regard to modified LT expression: 8017 (pBR322 plasmid vector control), non-toxigenic mutant 8221 (LT(R192G)) in pBR322, or 8488, with the LT gene fused to the STb gene in pBR322 (LT(R192G)-STb). Piglets were challenged with virulent ETEC Strain 3030-2 (K88(+)/LT/STb) 24h post-inoculation. K88ac receptor-positive piglets in the control group developed diarrhea and became dehydrated 12-24h post-challenge. Piglets inoculated with 8221 or 8488 did not exhibit clinical signs of ETEC disease; most piglets inoculated with 8017 showed diarrhea. Control pigs exhibited significant weight loss, increased blood total protein, and higher numbers of colony-forming units of 3030-2 E. coli in washed ileum and jejunum than treated pigs. This study shows for the first time that pre-inoculation with an avirulent strain expressing adhesive fimbriae and a non-toxic form of LT provides significant short term protection from challenge with a virulent ETEC strain that expresses the same fimbrial adhesion and enterotoxin.

  19. Colonization of porcine intestine by enterotoxigenic Escherichia coli: selection of piliated forms in vivo, adhesion of piliated forms to epithelial cells in vitro, and incidence of a pilus antigen among porcine enteropathogenic E. coli.

    PubMed Central

    Nagy, B; Moon, H W; Isaacson, R E

    1977-01-01

    In contrast to K88-positive porcine enterotoxigenic Escherichia coli (ETEC), K88-negative porcine ETEC strains did not adhere to isolated intestinal epithelial cells in vitro. However, they did adhere to intestinal epithelium in vivo. Growth of one such ETEC (strain 987) in pig small intestine consistently yielded a greater percentage of piliated cells than did growth in vitro. This increase was demonstrable by electron microscopy, by change in colonial morphology, and by agglutination in specific antisera against the pili of strain 987. In contrast to the stored stock culture (which contained very few piliated cells), richly piliated forms of strain 987 did adhere to isolated intestinal epithelial cells in vitro. A series of porcine E. coli strains was tested for agglutinability in antiserum against the pili of strain 987, and several K88-negative ETEC strains were agglutinated. These data are consistent with the hypothesis that pili facilitate intestinal adhesion and colonization by K88-negative ETEC strains. Images PMID:326676

  20. Colonization of porcine intestine by enterotoxigenic Escherichia coli: selection of piliated forms in vivo, adhesion of piliated forms to epithelial cells in vitro, and incidence of a pilus antigen among porcine enteropathogenic E. coli.

    PubMed

    Nagy, B; Moon, H W; Isaacson, R E

    1977-04-01

    In contrast to K88-positive porcine enterotoxigenic Escherichia coli (ETEC), K88-negative porcine ETEC strains did not adhere to isolated intestinal epithelial cells in vitro. However, they did adhere to intestinal epithelium in vivo. Growth of one such ETEC (strain 987) in pig small intestine consistently yielded a greater percentage of piliated cells than did growth in vitro. This increase was demonstrable by electron microscopy, by change in colonial morphology, and by agglutination in specific antisera against the pili of strain 987. In contrast to the stored stock culture (which contained very few piliated cells), richly piliated forms of strain 987 did adhere to isolated intestinal epithelial cells in vitro. A series of porcine E. coli strains was tested for agglutinability in antiserum against the pili of strain 987, and several K88-negative ETEC strains were agglutinated. These data are consistent with the hypothesis that pili facilitate intestinal adhesion and colonization by K88-negative ETEC strains.

  1. Effect of Lactobacillus plantarum CJLP243 on the growth performance and cytokine response of weaning pigs challenged with enterotoxigenic Escherichia coli.

    PubMed

    Lee, J S; Awji, E G; Lee, S J; Tassew, D D; Park, Y B; Park, K S; Kim, M K; Kim, B; Park, S C

    2012-11-01

    The purpose of the present study was to evaluate the effect of diets containing Lactobacillus plantarum CJLP243 on the growth and cytokine response of weaning pigs (Sus scrofa) challenged with enterotoxigenic Escherichia coli (ETEC). In a 28-d experiment (14 d before and 14 d after challenge), a total of 108 pigs at 20 ± 1 d of age were allotted to 1 of 6 diets. These were a control diet without ETEC challenge (CON) and 5 treatment diets with ETEC challenge, including a control diet with ETEC challenge (negative control, NC); a positive control diet containing antibiotics (PC); control diet plus (10(8), 10(9), or 10(10)) cfu/kg L. plantarum CJLP243 (T1, T2, and T3, respectively). After challenge, NC showed the least ADFI, whereas PC and T3 had the greatest ADFI (P = 0.002). The ADG of PC, T2, and T3 were greater (P = 0.001) than that of CON, NC, and T1 during wk 1 to wk 2. During wk 3 to wk 4, a marked decline was seen in NC (P = 0.001) compared with CON, whereas PC and T3 showed increased ADG (P = 0.001). The overall ADG of PC and T3 were greater (P < 0.001) than the remaining groups. The PC and T3 had the greatest G:F during the second 2 wk (P = 0.002), and the overall 4-wk experimental period (P = 0.003). At 3 h after challenge, all groups except CON had greater rectal temperatures (RT; P < 0.05). The RT decreased to prechallenge temperatures at 9 h (PC and T3), 24 h (T1 and T2), and remained increased until d 7 in NC. At 7 and 14 d postinfection, the number of animals detected positive for ETEC by PCR assay was the greatest in NC; however, the PC group had the fewest ETEC-positive animals (P < 0.05), which was similar to T3. All challenged pigs, except T2, had greater concentrations of serum haptoglobin compared with CON, with the greatest concentration observed in NC (P < 0.001). Challenged pigs had increased serum concentrations of tumor necrosis factor alpha (TNF-α) 3 to 48 h postinfection, with the greatest concentration of TNF-α at 48 h observed in NC

  2. Isolation of enterotoxigenic strains of staphylococci from dogs.

    PubMed

    Adesiyun, A A; Usman, B

    1983-10-01

    The ability of 309 staphylococcal isolates from household dogs to produce enterotoxin, coagulase, thermonuclease and hemolysin was investigated. A total of 52 (16.8%) isolates from 45 out of 150 dogs examined were enterotoxigenic when tested for enterotoxin types A, B and C. Based on sites sampled, 33 (20.5%) out of 161 isolates from the anterior nares were enterotoxigenic while from dorsal skins 19 (12.8%) out of 148 isolates were enterotoxigenic. Staphylococcal enterotoxin C(SEC) was predominantly produced as 21 (6.8%) isolates elaborated it and also accounted for 40.4% of all enterotoxins produced by isolates. Staphylococcal enterotoxins A(SEA) and B(SEB) were produced by 10 (3.2%) and 16 (5.2%) strains, respectively. Mixed enterotoxin types AB, AC and BC were produced by 1,3 and 1 strains, respectively. With human plasma, 17.1% of coagulase-positive and 15.0% of coagulase-negative strains were enterotoxigenic. However, using canine plasma, 19.1% and 6.9% of the coagulase-positive and negative isolates, respectively, were enterotoxigenic. The incidence of enterotoxigenicity was 16.9% amongst thermonuclease-positive isolates and 16.3% for thermonuclease-negative strains. Alpha hemolysin was predominantly produced by 180 (60.2%) isolates and 19.9% of these were enterotoxigenic. Beta hemolysin was produced by 36 (11.7%) isolates with 13.9% enterotoxigenic, while 87 (28.2%) exhibited gamma hemolytic pattern amongst which 11.5% were enterotoxigenic. Based on data provided on coagulation of human and canine plasmas and hemolytic patterns, it is concluded that a large proportion of canine isolates from this environment are not of canine biotypes, but are most probably human biotypes.

  3. Effects of the −791(C→T) mutation in the promoter for tumor necrosis factor alpha on gene expression and resistance of Large White pigs to enterotoxigenic Escherichia coli F18

    PubMed Central

    Liu, Ying; Dai, Chaohui; Sun, Li; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2016-01-01

    Tumor necrosis factor alpha (TNF-α) plays an important role in the immune system. In this study, TNF-α expression was analyzed in 11 tissues of 8 piglets resistant to enterotoxigenic Escherichia coli (ETEC) F18 and 8 ETEC F18-susceptible piglets from the Large White breed. The expression levels of TNF-α were high in immune organs (spleen, lung, thymus, and lymph nodes). The levels were higher in ETEC F18-resistant piglets than in ETEC F18-susceptible piglets, with significant differences in spleen, kidney, thymus, lymph node, and duodenum (P < 0.05). The mutation TNF-α −791(C→T) and 3 genotypes (CC, CT, and TT) were identified. The TNF-α expression levels in the spleen, kidney, lymph nodes, and duodenum were significantly higher in the TT pigs than in the CC pigs (P < 0.05). Thus, TNF-α −791(C→T) has significant effects on mRNA expression and may regulate ETEC F18 resistance of weaning piglets. Therefore, the −791(C→T) mutation of the TNF-α gene could be considered an important potential genetic marker of ETEC F18 resistance. PMID:27408333

  4. The chromosomal nature of LT-II enterotoxins solved: a lambdoid prophage encodes both LT-II and one of two novel pertussis-toxin-like toxin family members in type II enterotoxigenic Escherichia coli

    PubMed Central

    Jobling, Michael G.

    2016-01-01

    Heat-labile enterotoxins (LT) of enterotoxigenic Escherichia coli (ETEC) are structurally and functionally related to cholera toxin (CT). LT-I toxins are plasmid-encoded and flanked by IS elements, while LT-II toxins of type II ETEC are chromosomally encoded with flanking genes that appear phage related. Here, I determined the complete genomic sequence of the locus for the LT-IIa type strain SA53, and show that the LT-IIa genes are encoded by a 51 239 bp lambdoid prophage integrated at the rac locus, the site of a defective prophage in E. coli K12 strains. Of 50 LT-IIa and LT-IIc, 46 prophages also encode one member of two novel two-gene ADP-ribosyltransferase toxin families that are both related to pertussis toxin, which I named eplBA or ealAB, respectively. The eplBA and ealAB genes are syntenic with the Shiga toxin loci in their lambdoid prophages of the enteric pathogen enterohemorrhagic E. coli. These novel AB5 toxins show pertussis-toxin-like activity on tissue culture cells, and like pertussis toxin bind to sialic acid containing glycoprotein ligands. Type II ETEC are the first mucosal pathogens known to simultaneously produce two ADP-ribosylating toxins predicted to act on and modulate activity of both stimulatory and inhibitory alpha subunits of host cell heterotrimeric G-proteins. PMID:26755534

  5. Three dimensional modeling of C-terminal loop of CssA subunit in CS6 of Enterotoxigenic Escherichia coli and its interaction with the 70 KDa domain of Fibronectin.

    PubMed

    Chatterjee, Raghunath; Ghosal, Abhisek; Sabui, Subrata; Chatterjee, Nabendu Sekhar

    2011-01-01

    Colonization factor CS6 of enterotoxigenic Escherichia coli (ETEC) helps to establish the adherence of CS6-expressing ETEC in the intestinal wall. CS6 is composed of two structural subunits, known as CssA and CssB. During CS6-expressing ETEC adherence in intestinal wall, 15 amino acid residues containing Cterminal region of CssA subunit, help to bind with N-terminal 70kDa domain of fibronectin (Fn). In this study, we have predicted a theoretical structural model for C-terminal domain of CssA by homology modelling using protein data bank (PDB) file, 1NTY-A as template (66.67% sequence identity) in Discovery Studio. The structural model of N-terminal region of Fn was also determined by homology modelling using PDB files 1FBR and 1E88 as templates. The structure of the model was also validated by Ramachandran plot. The energy minimization for Fn was performed in standard dynamic cascade using Steepest Descent algorithm followed by Adopted Basis NR algorithm in Discovery studio. The docking model between C-terminal domain and fibronectin were generated by using ClusPro algorithm. This docking study would be help for better understanding how CS6 interacts with fibronectin of intestinal extracellular matrix in the host during infection, and would be of great help towards subunit vaccine generation.

  6. Oral administration of synthetic porcine beta-defensin-2 improves growth performance and cecal microbial flora and down-regulates the expression of intestinal toll-like receptor-4 and inflammatory cytokines in weaned piglets challenged with enterotoxigenic Escherichia coli.

    PubMed

    Tang, Zhiru; Xu, Ling; Shi, Baoshi; Deng, Huang; Lai, Xin; Liu, Jingyan; Sun, Zhihong

    2016-10-01

    Synthetic porcine beta-defensin-2 (pBD-2) was tested as an alternative to antimicrobial growth-promoters in pig production. Thirty 21-day weaned piglets were challenged with enterotoxigenic Escherichia coli, and orally dosed with either sterile water (CON), pBD-2 (BD) or neomycin sulphate (NS) twice daily for 21 days. pBD-2 and NS led to higher growth performance, jejunum villus height and increased expression of insulin-like growth factor-I compared with the CON group (P < 0.05). Hemolytic E. coli scores from rectal swabs, and copy numbers of E. coli, Bacteroides fragilis and Streptococcus in the cecal digesta of the BD- or NS-treated piglets were lower than those in the CON group (P < 0.05). Messenger RNA levels of toll-like receptor 4, tumor necrosis factor-α, interleukin (IL)-1β, and IL-8 in the jejunum mucosa of the BD and NS groups were lower than those in the CON group (P < 0.05). Copy numbers of Lactobacilli and Bifidobacteria in the cecal digesta of the BD group were higher than those of the CON and NS groups (P < 0.05). Therefore, pBD-2 has antimicrobial activity in piglets, and it can improve growth performance, reduce inflammatory cytokine expression and affect intestinal morphological indices in the same way as probiotics. © 2015 Japanese Society of Animal Science.

  7. The chromosomal nature of LT-II enterotoxins solved: a lambdoid prophage encodes both LT-II and one of two novel pertussis-toxin-like toxin family members in type II enterotoxigenic Escherichia coli.

    PubMed

    Jobling, Michael G

    2016-04-01

    Heat-labile enterotoxins (LT) of enterotoxigenic Escherichia coli (ETEC) are structurally and functionally related to cholera toxin (CT). LT-I toxins are plasmid-encoded and flanked by IS elements, while LT-II toxins of type II ETEC are chromosomally encoded with flanking genes that appear phage related. Here, I determined the complete genomic sequence of the locus for the LT-IIa type strain SA53, and show that the LT-IIa genes are encoded by a 51 239 bp lambdoid prophage integrated at the rac locus, the site of a defective prophage in E. coli K12 strains. Of 50 LT-IIa and LT-IIc, 46 prophages also encode one member of two novel two-gene ADP-ribosyltransferase toxin families that are both related to pertussis toxin, which I named eplBA or ealAB, respectively. The eplBA and ealAB genes are syntenic with the Shiga toxin loci in their lambdoid prophages of the enteric pathogen enterohemorrhagic E. coli. These novel AB(5) toxins show pertussis-toxin-like activity on tissue culture cells, and like pertussis toxin bind to sialic acid containing glycoprotein ligands. Type II ETEC are the first mucosal pathogens known to simultaneously produce two ADP-ribosylating toxins predicted to act on and modulate activity of both stimulatory and inhibitory alpha subunits of host cell heterotrimeric G-proteins.

  8. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators.

    PubMed

    De la Cruz, Miguel A; Ruiz-Tagle, Alejandro; Ares, Miguel A; Pacheco, Sabino; Yáñez, Jorge A; Cedillo, Lilia; Torres, Javier; Girón, Jorge A

    2016-12-10

    Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals.

  9. Construction of Synthetic Immunogens in View of Developing Orally-Active Anti-Enterotoxigenic E. coli Vaccines

    DTIC Science & Technology

    1989-05-31

    The aim of this research was to build immunogens susceptible of inducing a response against enterotoxigenic E . coli (Escherichia coli) (ETEC...ganglioside which represents the toxin receptor. Two different E . coli peptides have been analyzed by HPLC (high performance liquid chromatography). Eight...enterotoxigenic E . coli immunogens, 3-Muramyl dipeptides, 4-Synthetic cholera toxin receptor, 5-GM1 ganglioside, RA 1.

  10. Behavior of enteroaggregative Escherichia coli, non-O157-shiga toxin-producing E. coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on mung bean seeds and sprout.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Bautista-De León, Haydee; Vázquez-Barrios, Ma Estela; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2013-09-16

    The behavior of enteroaggregative Escherichia coli (EAEC), non-O157 shiga toxin-producing E. coli (non-O157-STEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC) on mung bean seeds at 25±2 °C and during germination and sprouting of mung bean seeds at 20±2 ° and 30±2 °C and on mung bean sprouts at 3±2 °C was determined. When mung bean seeds were inoculated with EAEC, non-O157 STEC, EIEC, EPEC or ETEC strains, all these diarrheagenic E. coli pathotypes (DEPs) survived at least 90 days on mung bean seeds at 25±2 °C. All DEPs grew during germination and sprouting of seeds, reaching counts of approximately 5 Log and 7 Log CFU/g after 2 days at 20±2 ° and 30±2 °C, respectively. However, when the sprouts were inoculated after 1 day of seeds germination and stored at 20±2 ° or 30±2 °C, no growth was observed for any DEPs during sprouting at 20±2 °C per 9 d; however, a significant increase in the concentration of DEPs of approximately 0.7 log CFU/g was observed during sprouting at 30±2 °C after 1 day of sprout contamination. Refrigeration reduced the number of viable DEPs strains on sprouts after 10 days in storage; nevertheless, these decreases have no practical significance in the safety of the sprouts.

  11. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Torres-Vitela, Mdel Refugio; Villarruel-López, Angelica; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-05-01

    The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.

  12. Behavior of shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on whole and sliced jalapeño and serrano peppers.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2014-06-01

    The behavior of enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC) and non-O157 shiga toxin-producing E. coli (non-O157-STEC) on whole and slices of jalapeño and serrano peppers as well as in blended sauce at 25 ± 2 °C and 3 ± 2 °C was investigated. Chili peppers were collected from markets of Pachuca city, Hidalgo, Mexico. On whole serrano and jalapeño stored at 25 ± 2 °C or 3 ± 2 °C, no growth was observed for EPEC, ETEC, EIEC and non-O157-STEC rifampicin resistant strains. After twelve days at 25 ± 2 °C, on serrano peppers all diarrheagenic E. coli pathotypes (DEP) strains had decreased by a total of approximately 3.7 log, whereas on jalapeño peppers the strains had decreased by approximately 2.8 log, and at 3 ± 2 °C they decreased to approximately 2.5 and 2.2 log respectively, on serrano and jalapeño. All E. coli pathotypes grew onto sliced chili peppers and in blended sauce: after 24 h at 25 ± 2 °C, all pathotypes had grown to approximately 3 and 4 log CFU on pepper slices and sauce, respectively. At 3 ± 2 °C the bacterial growth was inhibited.

  13. Attenuated Shigella flexneri 2a ΔguaBA Strain CVD 1204 Expressing Enterotoxigenic Escherichia coli (ETEC) CS2 and CS3 Fimbriae as a Live Mucosal Vaccine against Shigella and ETEC Infection

    PubMed Central

    Altboum, Zeev; Barry, Eileen M.; Losonsky, Genevieve; Galen, James E.; Levine, Myron M.

    2001-01-01

    To construct a prototype hybrid vaccine against Shigella and enterotoxigenic Escherichia coli (ETEC), the genes encoding the production of ETEC CS2 and CS3 fimbriae were isolated and expressed in attenuated Shigella flexneri 2a guaBA strain CVD 1204. The CS2 cotA to -D genes, isolated from ETEC strain C91F, and the CS3 cstA to -H genes, subcloned from plasmid pCS100, were cloned into ∼15-copy-number-stabilized pGA1 behind the osmotically regulated ompC promoter, resulting in high expression of both fimbriae. Under nonselective in vitro growth conditions, pGA1-CS2 and pGA1-CS3 were stable in CVD 1204, exhibiting a plasmid loss of only approximately 1% per duplication. Expression of CS2 and CS3 reduced the invasiveness of Shigella for HeLa cells and slowed the intracellular growth rate. Guinea pigs immunized intranasally with CVD 1204(pGA1-CS2) or CVD 1204(pGA1-CS3), or with a mixture of these strains, developed secretory immunoglobulin A (IgA) in tears and serum IgG antibodies against Shigella lipopolysaccharide, CS2, and CS3 antigens. Moreover, the animals were protected against keratoconjunctivitis following conjunctival challenge with virulent S. flexneri 2a strain 2457T. Animals immunized with Shigella expressing CS2 or CS3 developed serum antibodies that agglutinated Shigella as well as an ETEC strain bearing the homologous fimbriae, whereas animals immunized with combined CVD 1204(pGA1-CS2) and CVD 1204(pGA1-CS3) developed antibodies that agglutinated all three test strains. These observations support the feasibility of a multivalent vaccine against shigellosis and ETEC diarrhea consisting of multiple Shigella live vectors expressing relevant ETEC antigens. PMID:11292735

  14. The Use of Specific Antibodies to Demonstrate the Glycocalyx and Spatial Relationships of a K99-, F41- Enterotoxigenic Strain of Escherichia coli Colonizing the Ileum of Colostrum-deprived Calves

    PubMed Central

    Chan, R.; Lian, C.J.; Costerton, J.W.; Acres, S.D.

    1983-01-01

    Electron microscopy was used to study the interaction between the glycocalyx of enterotoxigenic Escherichia coli strain 210 (09:K30+;K99-;F41-:H-) and the glycocalyx of epithelial cells in then ileum of experimentally infected newborn colostrum-deprived calves. Fixation of tissues in anti-K30 antibody and ruthenium red was used to stabilize the bacterial glycocalyx so that the spatial relationship between the bacteria and the intestinal epithelial cells could be characterized. When strain 210 was grown in vitro and reacted with anti-K30 antibody prior to staining with ruthenium red, the extensive glycocalyx could be clearly visualized surrounding the bacterial cells. By negative staining, an unidentified pilus was also seen. Sections of ileum from infected calves, which were not fixed in antibody nor stained with ruthenium red, revealed attached bacteria which were surrounded by an electron-translucent zone and no visible bacterial glycocalyx. When ruthenium red staining was used, the bacterial glycocalyx partially collapsed during the dehydration steps of fixation, but could be seen as either a fibrous capsule or an electron-dense accretion on the bacterial cell surface. When ileal tissue was reacted for one hour in anti-K30 antibody before staining with ruthenium red, the bacterial glycocalyx was seen as a discrete electron-dense structure up to 1.0µm thick which was in intimate contact with the glycocalyx of the epithelial cells. The importance of the bacterial exopolysaccharide to microcolony formation on the villi could be clearly visualized. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7. PMID:6349756

  15. Seroepidemiology of heat-labile enterotoxigenic Escherichia coli and Norwalk virus infections in Panamanians, Canal Zone residents, Apache Indians, and United States Peace Corps volunteers.

    PubMed

    Ryder, R W; Greenberg, H; Singh, N; Oro, G; de Guardia, A; Sack, R B; Kapikian, A Z

    1982-09-01

    Serum antibody titrations against the heat-labile enterotoxin (LT) of Escherichia coli were carried out on Panamanians, U.S. citizens resident in the Panama Canal Zone, Apache Indians living on the reservation in Whiteriver, Arizona, and Peace Corps volunteers before they traveled overseas. Antibody titers to Norwalk virus were also carried out on serum from Panamanian and Canal Zone residents. A high prevalence of low-titer LT antibodies was found in infants and adults from Panama, the Canal Zone, and Whiteriver. Panamanian children aged 1 to 5 years had the highest LT antibody titers. Peace Corps volunteers had a low prevalence and titer of LT antibodies. Prevalence and titer of antibodies to Norwalk virus were generally higher in Panamanians compared with Canal Zone residents of the same age. In the populations we studied, various modes of transmission and mechanisms of immunity likely explain the differences which we observed in antibody prevalence and titer to these two enteric pathogens.

  16. Real-Time TaqMan PCR Assay for the Detection of Heat-Labile and Heat-Stable Enterotoxin Genes in a Geographically Diverse Collection of Enterotoxigenic Escherichia coli Strains and Stool Specimens.

    PubMed

    Pattabiraman, Vaishnavi; Parsons, Michele B; Bopp, Cheryl A

    2016-04-01

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in children under the age of 5 years in developing countries and are the leading bacterial agent of traveler's diarrhea in persons traveling to these countries. ETEC strains secrete heat-labile (LT) and/or heat-stable (ST) enterotoxins that induce diarrhea by causing water and electrolyte imbalance. We describe the validation of a real-time TaqMan PCR (RT-PCR) assay to detect LT, ST1a, and ST1b enterotoxin genes in E. coli strains and in stool specimens. We validated LT/ST1b duplex and ST1a single-plex RT-PCR assay using a conventional PCR assay as a gold standard with 188 ETEC strains and 42 non-ETEC strains. We validated LT/ST1b duplex and ST1a single-plex RT-PCR assay in stool specimens (n = 106) using traditional culture as the gold standard. RT- PCR assay sensitivities for LT, ST1a, and ST1b detection in strains were 100%, 100%, and 98%; specificities were 95%, 98%, and 99%, and Pearson correlation coefficient r was 0.9954 between RT-PCR assay and the gold standard. In stool specimens, RT-PCR assay sensitivities for LT, ST1a, and ST1b detection were 97%, 100%, and 97%; and specificities were 99%, 94%, and 97%. Pearson correlation coefficient r was 0.9975 between RT-PCR results in stool specimens and the gold standard. Limits of detection of LT, ST1a, and ST1b by RT-PCR assay were 0.1 to1.0 pg/μL and by conventional PCR assay were 100 to1000 pg/μL. The accuracy, rapidity and sensitivity of this RT-PCR assay is promising for ETEC detection in public health/clinical laboratories and for laboratories in need of an independent method to confirm results of other culture independent diagnostic tests.

  17. The different ecological niches of enterotoxigenic E scherichia coli

    PubMed Central

    Gonzales‐Siles, Lucia

    2015-01-01

    Summary Enterotoxigenic E scherichia coli (ETEC) is a water and food‐borne pathogen that infects the small intestine of the human gut and causes diarrhoea. Enterotoxigenic E. coli adheres to the epithelium by means of colonization factors and secretes two enterotoxins, the heat labile toxin and/or the heat stable toxin that both deregulate ion channels and cause secretory diarrhoea. Enterotoxigenic E. coli as all E. coli, is a versatile organism able to survive and grow in different environments. During transmission and infection, ETEC is exposed to various environmental cues that have an impact on survivability and virulence. The ability to cope with exposure to different stressful habitats is probably shaping the pool of virulent ETEC strains that cause both endemic and epidemic infections. This review will focus on the ecology of ETEC in its different habitats and interactions with other organisms as well as abiotic factors. PMID:26522129

  18. Genetic Fusions of a CFA/I/II/IV MEFA (Multiepitope Fusion Antigen) and a Toxoid Fusion of Heat-Stable Toxin (STa) and Heat-Labile Toxin (LT) of Enterotoxigenic Escherichia coli (ETEC) Retain Broad Anti-CFA and Antitoxin Antigenicity

    PubMed Central

    Ruan, Xiaosai; Sack, David A.; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  19. Genetic Relatedness Among Escherichia coli Pathotypes Isolated from Food Products for Human Consumption in Cartagena, Colombia.

    PubMed

    Amézquita-Montes, Zorangel; Tamborski, Maria; Kopsombut, Usa G; Zhang, Chengxian; Arzuza, Octavio S; Gómez-Duarte, Oscar G

    2015-05-01

    Foodborne pathogens are a leading cause of mild-to-severe gastrointestinal illnesses worldwide. Escherichia coli pathotypes have been known to cause gastrointestinal illnesses in children less than 5 years old in Colombia. However, insufficient information is available on the prevalence of E. coli contamination of food products and the kind of E. coli food product reservoirs. The two objectives of this study were designed to address this issue. The first objective was to ascertain coliform, E. coli, and pathogenic E. coli contamination of food products readily available for human consumption in Cartagena, Colombia. The second objective was to evaluate the relationship between pathogenic E. coli isolated from food products and those isolated from cases of diarrhea in children. Food product samples consisting of pasteurized milk, unpasteurized fruit juice, ground beef, cheese, and vegetables were obtained at four retail stores. The food samples were cultured in liquid media and tested for the presence of coliforms and E. coli. E. coli isolates were tested by polymerase chain reaction for the presence of pathogenic E. coli. Coliforms, E. coli, and E. coli intestinal pathotypes contamination were detected in 88.4%, 53%, and 2.1% of food product samples, respectively. Ground beef and cheese were the only food samples contaminated with E. coli intestinal pathotypes including enteropathogenic (EPEC), Shiga toxin-producing (STEC), and enterotoxigenic E. coli (ETEC). Closed multilocus sequencing typing relationships between diarrheagenic E. coli isolates from food products and from individuals with diarrhea suggest that food products readily available at public markets in Cartagena can transmit ETEC and possibly EPEC and STEC. We demonstrated that a high proportion of food products for human consumption available at public markets in Cartagena are contaminated with coliforms, E. coli, and E. coli intestinal pathogens. Furthermore, food products containing E. coli intestinal

  20. Genetic Relatedness Among Escherichia coli Pathotypes Isolated from Food Products for Human Consumption in Cartagena, Colombia

    PubMed Central

    Amézquita-Montes, Zorangel; Tamborski, Maria; Kopsombut, Usa G.; Zhang, Chengxian; Arzuza, Octavio S.

    2015-01-01

    Abstract Foodborne pathogens are a leading cause of mild-to-severe gastrointestinal illnesses worldwide. Escherichia coli pathotypes have been known to cause gastrointestinal illnesses in children less than 5 years old in Colombia. However, insufficient information is available on the prevalence of E. coli contamination of food products and the kind of E. coli food product reservoirs. The two objectives of this study were designed to address this issue. The first objective was to ascertain coliform, E. coli, and pathogenic E. coli contamination of food products readily available for human consumption in Cartagena, Colombia. The second objective was to evaluate the relationship between pathogenic E. coli isolated from food products and those isolated from cases of diarrhea in children. Food product samples consisting of pasteurized milk, unpasteurized fruit juice, ground beef, cheese, and vegetables were obtained at four retail stores. The food samples were cultured in liquid media and tested for the presence of coliforms and E. coli. E. coli isolates were tested by polymerase chain reaction for the presence of pathogenic E. coli. Coliforms, E. coli, and E. coli intestinal pathotypes contamination were detected in 88.4%, 53%, and 2.1% of food product samples, respectively. Ground beef and cheese were the only food samples contaminated with E. coli intestinal pathotypes including enteropathogenic (EPEC), Shiga toxin–producing (STEC), and enterotoxigenic E. coli (ETEC). Closed multilocus sequencing typing relationships between diarrheagenic E. coli isolates from food products and from individuals with diarrhea suggest that food products readily available at public markets in Cartagena can transmit ETEC and possibly EPEC and STEC. We demonstrated that a high proportion of food products for human consumption available at public markets in Cartagena are contaminated with coliforms, E. coli, and E. coli intestinal pathogens. Furthermore, food products containing E. coli

  1. A Tripartite Fusion, FaeG-FedF-LT192A2:B, of Enterotoxigenic Escherichia coli (ETEC) Elicits Antibodies That Neutralize Cholera Toxin, Inhibit Adherence of K88 (F4) and F18 Fimbriae, and Protect Pigs against K88ac/Heat-Labile Toxin Infection ▿

    PubMed Central

    Ruan, Xiaosai; Liu, Mei; Casey, Thomas A.; Zhang, Weiping

    2011-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT192) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT192A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT192A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT192A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea. PMID:21813665

  2. Pre-Clinical Testing of Real-Time PCR Assays for Diarrheal Disease Agents of Genera Escherichia and Shigella

    DTIC Science & Technology

    2014-05-16

    met or exceeded to qualify as a candidate for FDA clearance. In addition to test activities, Enterotoxigenic Escherichia coli Detection Kit and...Enterotoxigenic Escherichia coli Detection Kit and Shigella Detection Kit pre-IDE documents were prepared to serve as a point of departure for discussion...assays for enterotoxigenic Escherichia coli (ETEC) toxin genes, Heat Stable Ia (STIa), Heat Stable Ib (STIb), and Heat Labile (LT) and Shigella

  3. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  4. Effects of the Probiotic Enterococcus faecium and Pathogenic Escherichia coli Strains in a Pig and Human Epithelial Intestinal Cell Model

    PubMed Central

    Lodemann, Ulrike; Strahlendorf, Julia; Schierack, Peter; Klingspor, Shanti; Aschenbach, Jörg R.

    2015-01-01

    The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC) and enteropathogenic Escherichia coli (EPEC). Porcine (IPEC-J2) and human (Caco-2) intestinal epithelial cells were incubated with bacterial strains and epithelial integrity was assessed by measuring transepithelial electrical resistance (TEER) and mannitol flux rates. E. faecium alone increased TEER of Caco-2 cells without affecting mannitol fluxes whereas the E. coli strains decreased TEER and concomitantly increased mannitol flux rates in both cell lines. Preincubation with E. faecium had no effect on the TEER decrease induced by E. coli in preliminary experiments. However, in a second set of experiments using a slightly different protocol, E. faecium ameliorated the TEER decrease induced by ETEC at 4 h in IPEC-J2 and at 2, 4, and 6 h in Caco-2 cells. We conclude that E. faecium positively affected epithelial integrity in monoinfected Caco-2 cells and could ameliorate the damage on TEER induced by an ETEC strain. Reproducibility of the results is, however, limited when experiments are performed with living bacteria over longer periods. PMID:25883829

  5. Insertional inactivation of hblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes.

    PubMed

    Lindbäck, T; Okstad, O A; Rishovd, A L; Kolstø, A B

    1999-11-01

    Haemolysin BL (HBL) is a Bacillus cereus toxin composed of a binding component, B, and two lytic components, L1 and L2. HBL is also the enterotoxin responsible for the diarrhoeal food poisoning syndrome caused by several strains of B. cereus. The three genes encoding the HBL components constitute an operon and are transcribed from a promoter 608 bp upstream of the hblC translational start site. The first gene of the hbl operon, hblC, in the B. cereus type strain, ATCC 14579, was inactivated in this study. Inactivation of hblC strongly reduced both the enterotoxigenic activity of B. cereus ATCC 14579 and the haemolytic activity against sheep erythrocytes, while maintaining full haemolytic activity against human erythrocytes.

  6. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA.

    PubMed

    Nandre, Rahul M; Ruan, Xiaosai; Duan, Qiangde; Sack, David A; Zhang, Weiping

    2016-06-30

    Diarrhea continues to be a leading cause of death in children younger than 5 years in developing countries. Enterotoxigenic Escherichia coli (ETEC) is a leading bacterial cause of children's diarrhea and travelers' diarrhea. ETEC bacteria initiate diarrheal disease by attaching to host receptors at epithelial cells and colonizing in small intestine. Therefore, preventing ETEC attachment has been considered the first line of defense against ETEC diarrhea. However, developing vaccines effectively against ETEC bacterial attachment encounters challenge because ETEC strains produce over 23 immunologically heterogeneous adhesins. In this study, we applied MEFA (multiepitope fusion antigen) approach to integrate epitopes from adhesin tips or adhesive subunits of CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA adhesins and to construct an adhesin tip MEFA peptide. We then examined immunogenicity of this tip MEFA in mouse immunization, and assessed potential application of this tip MEFA for ETEC vaccine development. Data showed that mice intraperitoneally immunized with this adhesin tip MEFA developed IgG antibody responses to all nine ETEC adhesins. Moreover, ETEC and E. coli bacteria expressing these nine adhesins, after incubation with serum of the immunized mice, exhibited significant reduction in attachment to Caco-2 cells. These results indicated that anti-adhesin antibodies induced by this adhesin tip MEFA blocked adherence of the most important ETEC adhesins, suggesting this multivalent tip MEFA may be useful for developing a broadly protective anti-adhesin vaccine against ETEC diarrhea.

  7. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli.

    PubMed

    Kolenda, Rafał; Burdukiewicz, Michał; Schierack, Peter

    2015-01-01

    Escherichia coli bacteria are the most common causes of diarrhea and septicemia in calves. Moreover, calves form a major reservoir for transmission of pathogenic E. coli to humans. Systematic reviews and meta-analyses of publications on E. coli as calf pathogens and the role of calves as reservoir have not been done so far. We reviewed studies between 1951 and 2013 reporting the presence of virulence associated factors (VAFs) in calf E. coli and extracted the following information: year(s) and country of sampling, animal number, health status, isolate number, VAF prevalence, serotypes, diagnostic methods, and biological assays. The prevalence of VAFs or E. coli pathotypes was compared between healthy and diarrheic animals and was analyzed for time courses. Together, 106 papers with 25,982 E. coli isolates from 27 countries tested for VAFs were included. F5, F17, and F41 fimbriae and heat-stable enterotoxin (ST) - VAFs of enterotoxigenic E. coli (ETEC) were significantly associated with calf diarrhea. On the contrary, ETEC VAF F4 fimbriae and heat-labile enterotoxin as well as enteropathogenic (EPEC), Shiga toxin-producing (STEC), and enterohemorrhagic E. coli (EHEC) were not associated with diarrhea. The prevalence increased overtime for ST-positive isolates, but decreased for F5- and STEC-positive isolates. Our study provides useful information about the history of scientific investigations performed in this domain so far, and helps to define etiological agents of calf disease, and to evaluate calves as reservoir hosts for human pathogenic E. coli.

  8. Isolation of enterotoxigenic Staphylococcus aureus from pet dogs and cats: a public health implication.

    PubMed

    Abdel-moein, Khaled A; Samir, Ahmed

    2011-06-01

    Staphylococcus aureus is a globally distributed bacterium causing wide variety of illnesses in humans, which attributed to its ability to produce wide array of virulence factors, including enterotoxins that are responsible for staphylococcal food poisoning outbreaks. The current study was carried out to investigate the prevalence of enterotoxigenic S. aureus among pet dogs and cats and its public health implication. For this purpose, nasal, oral, and wound swabs were collected from 70 dogs and 47 cats, whereas nasal swabs were collected from 26 human contacts. All samples were examined for the presence of enterotoxigenic S. aureus by isolation of S. aureus in culture media and then tested by specific ELISA kits to detect the produced toxins in bacterial cultures. The prevalence of enterotoxigenic S. aureus was 10% and 2.1% for pet dogs and cats, respectively, whereas the nasal carriage rate in human contacts was 7.7%. The majority of animal isolates were obtained from mouth of the apparently healthy animals. All types of staphylococcal enterotoxins were detected in both animal and human isolates. High prevalence of enterotoxigenic S. aureus among pet dogs highlights the possibility of zoonotic transmission to human contacts leading to nasal and/or hand carriage of such strains; thus, pet animals may be incriminated in the epidemiology of household staphylococcal food poisoning outbreaks.

  9. Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut Microbiota and Goblet Cell Function following Escherichia coli Challenge in Newly Weaned Pigs of Genotype MUC4 That Are Supposed To Be Enterotoxigenic E. coli F4ab/ac Receptor Negative.

    PubMed

    Zhang, Wei; Zhu, Yao-Hong; Zhou, Dong; Wu, Qiong; Song, Dan; Dicksved, Johan; Wang, Jiu-Feng

    2017-02-01

    Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. Low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to piglets of genotype MUC4 that are supposed to be F4-expressing enterotoxigenic Escherichia coli strain (F4(+) ETEC) F4ab/ac receptor negative (i.e., MUC4-resistant piglets) for 1 week before F4(+) ETEC challenge. The luminal contents were collected from the mucosa of the colon on day 8 after F4(+) ETEC challenge. The BLS mix attenuated E. coli-induced expansion of Bacteroides uniformis, Eubacterium eligens, Acetanaerobacterium, and Sporobacter populations. Clostridium and Turicibacter populations increased following F4(+) ETEC challenge in pigs pretreated with low-dose BLS mix. Lactobacillus gasseri and Lactobacillus salivarius populations increased after administration of BLS mix during E. coli infection. The beneficial effects of BLS mix were due in part to the expansion of certain Clostridium, Lactobacillus, and Turicibacter populations, with a corresponding increase in the number of goblet cells in the ileum via upregulated Atoh1 expression, in turn increasing MUC2 production and thus preserving the mucus barrier and enhancing host defenses against enteropathogenic bacteria. However, excessive BLS mix consumption may increase the risk for enteritis, partly through disruption of colonic microbial ecology, characterized by expansion of Proteobacteria and impaired goblet cell function in the ileum. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis.

  10. Curli fimbria: an Escherichia coli adhesin associated with human cystitis.

    PubMed

    Cordeiro, Melina Aparecida; Werle, Catierine Hirsch; Milanez, Guilherme Paier; Yano, Tomomasa

    2016-01-01

    Escherichia coli is the major causative agent of human cystitis. In this study, a preliminary molecular analysis carried out by PCR (polymerase chain reaction) demonstrated that 100% of 31 E. coli strains isolated from patients with recurrent UTIs (urinary tract infections) showed the presence of the curli fimbria gene (csgA). Curli fimbria is known to be associated with bacterial biofilm formation but not with the adhesion of human cystitis-associated E. coli. Therefore, this work aimed to study how curli fimbria is associated with uropathogenic E. coli (UPEC) as an adhesion factor. For this purpose, the csgA gene was deleted from strain UPEC-4, which carries three adhesion factor genes (csgA, fimH and ompA). The wild-type UPEC-4 strain and its mutant (ΔcsgA) were analyzed for their adhesion ability over HTB-9 (human bladder carcinoma), Vero (kidney cells of African green monkey) and HUVEC (human umbilical vein) cells in the presence of α-d-mannose. All the wild-type UPEC strains tested (100%) were able to adhere to all three cell types, while the UPEC-4 ΔcsgA mutant lost its adherence to HTB-9 but continued to adhere to the HUVEC and Vero cells. The results suggest that curli fimbria has an important role in the adhesion processes associated with human UPEC-induced cystitis.

  11. Comparison of whole genome sequences from human and non-human Escherichia coli O26 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) O26 is the second leading E. coli serogroup responsible for human illness outbreaks behind E. coli O157:H7. Recent outbreaks have been linked to emerging pathogenic O26:H11 strains harboring stx2 only. Cattle have been recognized as an important reserv...

  12. Recombinant expression of hydroxylated human collagen in Escherichia coli.

    PubMed

    Rutschmann, Christoph; Baumann, Stephan; Cabalzar, Jürg; Luther, Kelvin B; Hennet, Thierry

    2014-05-01

    Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.

  13. Heat-stable Escherichia coli enterotoxin production in vivo.

    PubMed Central

    Whipp, S C; Moon, H W; Lyon, N C

    1975-01-01

    Hysterectomy-derived, colostrum-deprived piglets were infected with enterotoxigenic Escherichia coli on day 4 of life. Samples of feces and intestinal contents were collected and tested in infant mice for enterotoxic activity. Positive enterotoxic responses were observed in mice given filtrates of feces and intestinal contents from piglets infected withe enterotoxigenic E. coli known to produce heat-stable enterotoxin but not heat-liabile enterotoxin in vitro. It is concluded that heat-stable enterotoxigenic E. coli induce diarrhea by production of heat-stable enterotoxin in vivo. PMID:1097335

  14. Evidence for a human-specific Escherichia coli clone.

    PubMed

    Clermont, Olivier; Lescat, Mathilde; O'Brien, Claire L; Gordon, David M; Tenaillon, Olivier; Denamur, Erick

    2008-04-01

    Escherichia coli is a widespread commensal of the vertebrate intestinal tract. Until recently, no strong association between a particular clone and a given host species has been found. However, members of the B2 subgroup VIII clone with an O81 serotype appear to be human host specific. To determine the degree of host specificity exhibited by this clone, a PCR-based assay was used to screen 723 faecal and clinical isolates from humans, and 904 faecal isolates from animals. This clone was not detected among the animal isolates, but was discovered in people living in Africa, Europe and South America. The clone is rarely isolated from people suffering from intestinal or extraintestinal disease and is avirulent in a mouse model of extraintestinal infection. Fine-scale epidemiological analysis suggests that this clone is competitively dominant relative to other members of the B2 phylogenetic group and that it has increased in frequency over the past 20 years. This clone appears to be a good candidate for use as a probiotic, and may be suitable as an indicator of human faecal contamination in microbial source tracking studies.

  15. The discovery of cholera - like enterotoxins produced by Escherichia coli causing secretory diarrhoea in humans

    PubMed Central

    Sack, R. Bradley

    2011-01-01

    Non-vibrio cholera has been recognized as a clinical entity for as long as cholera was known to be caused by Vibrio cholerae. Until 1968, the aetiologic agent of this syndrome was not known. Following a series of studies in patients with non-vibrio cholera it was found that these patients had large concentrations of Escherichia coli in the small bowel and stools which produced cholera toxin-like enterotoxins, and had fluid and electrolyte transport abnormalities in the small bowel similar to patients with documented cholera. Furthermore, these patients developed antibodies to the cholera-like enterotoxin. Later studies showed that these strains, when fed to volunteers produced a cholera-like disease and that two enterotoxins were found to be produced by these organisms: a heat-labile enterotoxin (LT) which is nearly identical to cholera toxin, and a heat-stable enterotoxin (ST), a small molecular weight polypeptide. E. coli that produced one or both of these enterotoxins were designated enterotoxigenic E. coli (ETEC). ETEC are now known not only to cause a severe cholera-like illness, but to be the most common bacterial cause of acute diarrhoea in children in the developing world, and to be the most common cause of travellers’ diarrhoea in persons who visit the developing world. PMID:21415491

  16. Immunization of calves against enterotoxigenic colibacillosis by vaccinating dams with purified K99 antigen and whole cell bacterins.

    PubMed Central

    Acres, S D; Isaacson, R E; Babiuk, L A; Kapitany, R A

    1979-01-01

    Pregnant cattle were either vaccinated subcutaneously with (i) a suspension of purified Escherichia coli K99 pili, (ii) a Formalin-killed whole cell bacterin containing enterotoxigenic E. coli strain B44 (O9:K30;K99:H-), or (iii) a bacterin containing six different strains of bovine enterotoxigenic E. coli (multiple-strain bacterin), or were left as nonvaccinated controls. After birth, calves were allowed to nurse their dams and, at 12 to 14 h of age, were challenged orally with 10(11) cells of enterotoxigenic E. coli strain B44. Colostral antibody titers were determined against K99, K30, and O9 antigens of B44. In the nonvaccinated control group, 9 of 10 calves developed diarrhea and died within 24 to 72 h. Similarly, all six calves in the multiple-strain bacterin group developed diarrhea and four died. In contrast to calves in the two groups mentioned above, calves nursing cows vaccinated with either purified K99 or the homologous whole cell bacterin were protected against fatal diarrhea. There was a highly significant correlation (P less than 0.0005) between protection against fatal diarrhea and K99, but not K30 or O9 colostral antibody titers. Vaccination of cows with either purified pili or whole cell preparations containing sufficient K99 antigen may provide a means of preventing enterotoxigenic colibacillosis in calves. PMID:39031

  17. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  18. Measuring Escherichia coli Gene Expression during Human Urinary Tract Infections

    PubMed Central

    Mobley, Harry L. T.

    2016-01-01

    Extraintestinal Escherichia coli (E. coli) evolved by acquisition of pathogenicity islands, phage, plasmids, and DNA segments by horizontal gene transfer. Strains are heterogeneous but virulent uropathogenic isolates more often have specific fimbriae, toxins, and iron receptors than commensal strains. One may ask whether it is the virulence factors alone that are required to establish infection. While these virulence factors clearly contribute strongly to pathogenesis, bacteria must survive by metabolizing nutrients available to them. By constructing mutants in all major metabolic pathways and co-challenging mice transurethrally with each mutant and the wild type strain, we identified which major metabolic pathways are required to infect the urinary tract. We must also ask what else is E. coli doing in vivo? To answer this question, we examined the transcriptome of E. coli CFT073 in the murine model of urinary tract infection (UTI) as well as for E. coli strains collected and analyzed directly from the urine of patients attending either a urology clinic or a university health clinic for symptoms of UTI. Using microarrays and RNA-seq, we measured in vivo gene expression for these uropathogenic E. coli strains, identifying genes upregulated during murine and human UTI. Our findings allow us to propose a new definition of bacterial virulence. PMID:26784237

  19. Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells.

    PubMed Central

    Runnels, P L; Moon, H W; Schneider, R A

    1980-01-01

    When isolated intestinal epithelial cells from neonatal and older pigs, calves, and mice were tested for adhesion by K99+ enterotoxigenic Escherichia coli, cells from older animals were resistant to adhesion. PMID:6103878

  20. Susceptibility of Gnotobiotic Swine to Escherichia coli Isolated from Nonenteric Human Infections

    PubMed Central

    Meyer, R. C.; Rhoades, H. E.; Simon, J.

    1972-01-01

    Newborn, germfree piglets were susceptible to Escherichia coli associated with human, nonenteric infections and should provide a useful model in the study of generalized E. coli infections. PMID:4557565

  1. Occurrence of enterotoxigenic and nonenterotoxigenic Bacteroides fragilis in calves and evaluation of their antimicrobial susceptibility.

    PubMed

    Almeida, Fernanda S; Nakano, Viviane; Avila-Campos, Mario J

    2007-07-01

    Bacteroides fragilis is considered an important clinical pathogen and the most common anaerobe isolated from human and animal clinical specimens; enterotoxigenic strains produce diarrhea. The presence of enterotoxigenic (ETBF) and nonenterotoxigenic B. fragilis in stool samples from calves with or without acute diarrhea and the antimicrobial susceptibility of the strains were evaluated. The stool samples were plated onto a selective B. fragilis-bile-esculin agar, and incubated anaerobically (10% CO(2)/90% N(2)), at 37 degrees C, for 72 h. Species of the B. fragilis group were identified by using the API 32-A kit. Enterotoxigenic strains were detected by PCR and the cytotoxic assay. From 54 diarrhea and 54 nondiarrhea stools, 124 and 92 members of the B. fragilis group, respectively, were recovered. Only two ETBF strains were isolated from two different diarrhea samples and the bft gene was detected in both. Moreover, the bft gene was detected in DNA from four different diarrheal stools samples but no ETBF strain was recovered. All the bacteria were susceptible to chloramphenicol, imipenem, moxifloxacin, piperacillin/tazobactam, metronidazole and tigecycline. Most of the isolates from both calves with and without diarrhea were resistant to all metals. Our results are of concern, and suggest the need to increase the surveillance of antibiotic and metal resistance of this microbial group isolated from animal production such as calves.

  2. Pathogenic relationships of rotavirus, Escherichia coli, and other agents in mixed infections in calves.

    PubMed

    Moon, H W; McClurkin, A W; Isaacson, R E; Pohlenz, J; Skartvedt, S M; Gillette, K G; Baetz, A L

    1978-09-01

    Infection with agents interpreted as causing or contributing to diarrhea (rotavirus, coronavirus, enterotoxigenic Escherichia coli, and cryptosporidia) were demonstrated in 24 of 32 newborn calves that had naturally occurring diarrheal disease. The calves were from 12 herds in Iowa. Infections as well as enteric lesions and hypoglobulinemia occurred more frequently among diarrheal calves than among nondiarrheal calves from these same herds. In most calves, infections were mixed; ie, both viruses, one or both viruses plus cryptosporidia, or rotavirus plus enterotoxigenic E coli.

  3. In vitro adherence of type 1-fimbriated uropathogenic Escherichia coli to human ureteral mucosa.

    PubMed Central

    Fujita, K; Yamamoto, T; Yokota, T; Kitagawa, R

    1989-01-01

    Type 1-fimbriated Escherichia coli isolated from patients with urinary tract infections adhered in vitro to the epithelial cell surface of an excised human ureter. The bacteria also adhered to a mucous coating and to Formalin-fixed human ureteral mucosa. D-Mannose strongly inhibited such adherence. The bacteria in their nonfimbriated phase lacked the ability to adhere. We concluded that type 1 fimbriae play a role, at least in part, in upper urinary tract infections in humans. Images PMID:2568346

  4. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells.

    PubMed

    Beltrán, Ana R; Carraro-Lacroix, Luciene R; Bezerra, Camila N A; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF-preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (JH+) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and JH+ (~63%), without altering basal pHi (range 7.144-7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and JH+ was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa-decreased dpHi/dt and JH+ was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human

  5. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells

    PubMed Central

    Beltrán, Ana R.; Carraro-Lacroix, Luciene R.; Bezerra, Camila N. A.; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A.

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF–preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (JH+) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and JH+ (~63%), without altering basal pHi (range 7.144–7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and JH+ was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa–decreased dpHi/dt and JH+ was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting

  6. Simple method for purification of enterotoxigenic E. coli fimbriae

    PubMed Central

    Curtis, Brittany; Grassel, Christen; Laufer, Rachel; Sears, Khandra; Pasetti, Marcela F.; Barry, Eileen M.; Simon, Raphael

    2016-01-01

    Enterotoxigenic E. coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera. PMID:26581778

  7. Plant-based oral vaccines: results of human trials.

    PubMed

    Tacket, C O

    2009-01-01

    Vaccines consisting of transgenic plant-derived antigens offer a new strategy for development of safe, inexpensive vaccines. The vaccine antigens can be eaten with the edible part of the plant or purified from plant material. In phase 1 clinical studies of prototype potato- and corn-based vaccines, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. Transgenic plant technology is attractive for vaccine development because these vaccines are needle-less, stable, and easy to administer. This chapter examines some early human studies of oral transgenic plant-derived vaccines against enterotoxigenic Escherichia coli infection, norovirus, and hepatitis B.

  8. Escherichia coli O157:H7 in Ecuador: animal reservoirs, yet no human disease.

    PubMed

    Trueba, Gabriel; Garcés, Verónica; V, Verónica Barragan; Colman, Rebecca E; Seymour, Meagan; Vogler, Amy J; Keim, Paul

    2013-05-01

    Escherichia coli O157:H7 is frequently isolated from cases of diarrhea in many industrialized countries; however, it is seldom found in developing countries. The present manuscript reports the presence of E. coli O157:H7 in Ecuadorian livestock, a country where enterohemorrhagic E. coli disease in humans has never been reported. The Ecuadorian isolates were genetically related to some strains linked to clinical cases in the United States as assessed by multiple-locus variable number tandem repeat (VNTR) analysis.

  9. Chicken as Reservoir for Extraintestinal Pathogenic Escherichia coli in Humans, Canada

    PubMed Central

    Bergeron, Catherine Racicot; Prussing, Catharine; Boerlin, Patrick; Daignault, Danielle; Dutil, Lucie; Reid-Smith, Richard J.; Zhanel, George G.

    2012-01-01

    We previously described how retail meat, particularly chicken, might be a reservoir for extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTIs) in humans. To rule out retail beef and pork as potential reservoirs, we tested 320 additional E. coli isolates from these meats. Isolates from beef and pork were significantly less likely than those from chicken to be genetically related to isolates from humans with UTIs. We then tested whether the reservoir for ExPEC in humans could be food animals themselves by comparing geographically and temporally matched E. coli isolates from 475 humans with UTIs and from cecal contents of 349 slaughtered animals. We found genetic similarities between E. coli from animals in abattoirs, principally chickens, and ExPEC causing UTIs in humans. ExPEC transmission from food animals could be responsible for human infections, and chickens are the most probable reservoir. PMID:22377351

  10. Expression of Escherichia coli heat-labile enterotoxin B subunit (LTB) in Saccharomyces cerevisiae.

    PubMed

    Rezaee, Mohammad Ahangarz; Rezaee, Abbas; Moazzeni, Seyed Mohammad; Salmanian, Ali Hatef; Yasuda, Yoko; Tochikubo, Kunio; Pirayeh, Shahin Najar; Arzanlou, Mohsen

    2005-08-01

    Heat-labile enterotoxin B subunit (LTB) of enterotoxigenic Escherichia coli (ETEC) is both a strong mucosal adjuvant and immunogen. It is a subunit vaccine candidate to be used against ETEC-induced diarrhea. It has already been expressed in several bacterial and plant systems. In order to construct yeast expressing vector for the LTB protein, the eltB gene encoding LTB was amplified from a human origin enterotoxigenic E. coli DNA by PCR. The expression plasmid pLTB83 was constructed by inserting the eltB gene into the pYES2 shuttle vector immediately downstream of the GAL1 promoter. The recombinant vector was transformed into S. cerevisiae and was then induced by galactose. The LTB protein was detected in the total soluble protein of the yeast by SDS-PAGE analysis. Quantitative ELISA showed that the maximum amount of LTB protein expressed in the yeast was approximately 1.9% of the total soluble protein. Immunoblotting analysis showed the yeast-derived LTB protein was antigenically indistinguishable from bacterial LTB protein. Since the whole-recombinant yeast has been introduced as a new vaccine formulation the expression of LTB in S. cerevisiae can offer an inexpensive yet effective strategy to protect against ETEC, especially in developing countries where it is needed most.

  11. Expression and assembly of active human cardiac troponin in Escherichia coli.

    PubMed

    Lassalle, Michael W

    2013-02-01

    Cardiomyopathy-related mutations in human cardiac troponin subunits, including troponin C (hcTnC), troponin I (hcTnI), and troponin T (hcTnT), are well-documented. Recently, it has been recognised that human cardiac troponin (hcTn) is a sophisticated allosteric system. Therefore, the effect of drugs on this protein complex should be studied with assembled hcTn rather than a short fragment of a subunit or the subunit itself. Here, we describe the expression and assembly of active hcTn in Escherichia coli, a novel method that is rapid and simple, and produces large amounts of functional hcTn.

  12. Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity

    PubMed Central

    Dias, Joana; Sobkowiak, Michał J.; Sandberg, Johan K.; Leeansyah, Edwin

    2016-01-01

    Mucosa-associated invariant T cells are a large and relatively recently described innate-like antimicrobial T-cell subset in humans. These cells recognize riboflavin metabolites from a range of microbes presented by evolutionarily conserved major histocompatibility complex, class I-related molecules. Given the innate-like characteristics of mucosa-associated invariant T cells and the novel type of antigens they recognize, new methodology must be developed and existing methods refined to allow comprehensive studies of their role in human immune defense against microbial infection. In this study, we established protocols to examine a range of mucosa-associated invariant T-cell functions as they respond to antigen produced by Escherichia coli. These improved and dose- and time-optimized experimental protocols allow detailed studies of MR1-dependent mucosa-associated invariant T-cell responses to Escherichia coli pulsed antigen-presenting cells, as assessed by expression of activation markers and cytokines, by proliferation, and by induction of apoptosis and death in major histocompatibility complex, class I-related–expressing target cells. The novel and optimized protocols establish a framework of methods and open new possibilities to study mucosa-associated invariant T-cell immunobiology, using Escherichia coli as a model antigen. Furthermore, we propose that these robust experimental systems can also be adapted to study mucosa-associated invariant T-cell responses to other microbes and types of antigen-presenting cells. PMID:27034405

  13. Expression and purification of human FANCI and FANCD2 using Escherichia coli cells.

    PubMed

    Takahashi, Daisuke; Sato, Koichi; Shimomuki, Mayo; Takata, Minoru; Kurumizaka, Hitoshi

    2014-11-01

    The DNA interstrand crosslink (ICL) is an extremely deleterious DNA lesion that covalently crosslinks complementary strands and prevents the strand-separation reaction. In higher eukaryotes, the Fanconi anemia proteins, FANCI and FANCD2, form a heterodimer and play essential roles in ICL repair. Human FANCI and FANCD2 are large proteins with molecular masses of 149kDa and 164kDa, respectively, and were reportedly purified using a baculovirus expression system with insect cells. We have established a novel expression and purification procedure for human FANCD2 and FANCI, using Escherichia coli cells. The human FANCD2 and FANCI proteins purified by this bacterial expression method formed a stable heterodimer, and exhibited DNA binding and histone chaperone activities, as previously reported for the proteins purified by the baculovirus system. Therefore, these purification methods for human FANCI and FANCD2 provide novel procedures to facilitate structural and biochemical studies of human FANCI and FANCD2.

  14. Emergence of Antimicrobial-Resistant Escherichia coli of Animal Origin Spreading in Humans.

    PubMed

    Skurnik, David; Clermont, Olivier; Guillard, Thomas; Launay, Adrien; Danilchanka, Olga; Pons, Stéphanie; Diancourt, Laure; Lebreton, François; Kadlec, Kristina; Roux, Damien; Jiang, Deming; Dion, Sara; Aschard, Hugues; Denamur, Maurice; Cywes-Bentley, Colette; Schwarz, Stefan; Tenaillon, Olivier; Andremont, Antoine; Picard, Bertrand; Mekalanos, John; Brisse, Sylvain; Denamur, Erick

    2016-04-01

    In the context of the great concern about the impact of human activities on the environment, we studied 403 commensal Escherichia coli/Escherichia clade strains isolated from several animal and human populations that have variable contacts to one another. Multilocus sequence typing (MLST) showed a decrease of diversity 1) in strains isolated from animals that had an increasing contact with humans and 2) in all strains that had increased antimicrobial resistance. A specific B1 phylogroup clonal complex (CC87, Institut Pasteur schema nomenclature) of animal origin was identified and characterized as being responsible for the increased antimicrobial resistance prevalence observed in strains from the environments with a high human-mediated antimicrobial pressure. CC87 strains have a high capacity of acquiring and disseminating resistance genes with specific metabolic and genetic determinants as demonstrated by high-throughput sequencing and phenotyping. They are good mouse gut colonizers but are not virulent. Our data confirm the predominant role of human activities in the emergence of antimicrobial resistance in the environmental bacterial strains and unveil a particular E. coli clonal complex of animal origin capable of spreading antimicrobial resistance to other members of microbial communities.

  15. Biofilm-Forming Abilities of Shiga Toxin-Producing Escherichia coli Isolates Associated with Human Infections

    PubMed Central

    Vogeleer, Philippe; Tremblay, Yannick D. N.; Jubelin, Grégory; Jacques, Mario

    2015-01-01

    Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment. PMID:26712549

  16. Biofilm-Forming Abilities of Shiga Toxin-Producing Escherichia coli Isolates Associated with Human Infections.

    PubMed

    Vogeleer, Philippe; Tremblay, Yannick D N; Jubelin, Grégory; Jacques, Mario; Harel, Josée

    2015-12-28

    Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment.

  17. Intestinal colonization and adhesion by enteroxigenic Escherichia coli: ultrastructural observations on adherence to ileal epithelium of the pig.

    PubMed

    Moon, H W; Nagy, B; Isaacson, R E

    1977-08-01

    Colonization of pig ileum by enterotoxigenic Escherichia coli that were enteropathogenic for pigs but that lacked K88 antigen (K88-) resulted in morphological characteristics similar to those reported for K88+ strains. Strains of enterotoxigenic E. coli from three different K88-serotypes adhered to the villous epithelium. In sections examined by transmission electron microscopy, adherent bacteria were separated from each other and from epithelial microvilli by peribacterial electron-lucent regions. The enterotoxigenic E. coli had appendages that extended into these regions. The appendages were morphologically characteristic for each strain. It is possible that these appendages were pili, polysaccharide K antigens, or structures resulting from some interaction between pili and polysaccharide. Certain pili or pilus-like structures may be virulence attributes that facilitate adhesion of enterotoxigenic E. coli to the intestinal epithelium.

  18. Enteroaggregative Escherichia coli from humans and animals differ in major phenotypical traits and virulence genes.

    PubMed

    Uber, Ana Paula; Trabulsi, Luiz R; Irino, Kinue; Beutin, Lothar; Ghilardi, Angela C R; Gomes, Tânia A T; Liberatore, Ana Maria A; de Castro, Antônio F P; Elias, Waldir P

    2006-03-01

    Enteroaggregative Escherichia coli (EAEC) is characterized by the expression of the aggregative adherence pattern to cultured epithelial cells. In this study, we determined the phenotypic and genotypic relationships among 86 EAEC strains of human and animal (calves, piglets and horses) feces. Serotypes and the presence of EAEC virulence markers were determined, and these results were associated with ribotyping. Strains harboring aggR (typical EAEC) of human origin were found carrying several of the searched markers, while atypical EAEC harbored none or a few markers. The strains of animal origin were classified as atypical EAEC (strains lacking aggR) and harbored only irp2 or shf. Strains from humans and animals belonged to several different serotypes, although none of them prevailed. Sixteen ribotypes were determined, and there was no association with virulence genes profiles or serotypes. Relationship was not found among the strains of this study, and the assessed animals may not represent a reservoir of human pathogenic typical EAEC.

  19. Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations

    PubMed Central

    Blyton, Michaela D. J.; Pi, Hongfei; Vangchhia, Belinda; Abraham, Sam; Trott, Darren J.; Johnson, James R.

    2015-01-01

    The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed. PMID:26002899

  20. Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations.

    PubMed

    Blyton, Michaela D J; Pi, Hongfei; Vangchhia, Belinda; Abraham, Sam; Trott, Darren J; Johnson, James R; Gordon, David M

    2015-08-01

    The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed.

  1. Synthesis and evaluation of potential inhibitors of human and Escherichia coli histidine triad nucleotide binding proteins.

    PubMed

    Bardaweel, Sanaa K; Ghosh, Brahma; Wagner, Carston R

    2012-01-01

    Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.

  2. Single Multiplex Polymerase Chain Reaction To Detect Diverse Loci Associated with Diarrheagenic Escherichia coli

    PubMed Central

    López-Saucedo, Catalina; Cerna, Jorge F.; Villegas-Sepulveda, Nicolas; Thompson, Rocío; Velazquez, F. Raul; Torres, Javier; Tarr, Phillip I.

    2003-01-01

    We developed and tested a single multiplex polymerase chain reaction (PCR) that detects enterotoxigenic, enteropathogenic, enteroinvasive, and Shiga-toxin–producing Escherichia coli. This PCR is specific, sensitive, and rapid in detecting target isolates in stool and food. Because of its simplicity, economy, and efficiency, this protocol warrants further evaluation in large, prospective studies of polymicrobial substances. PMID:12533296

  3. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    PubMed Central

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051

  4. Occurrence and characterization of Shiga toxin-producing Escherichia coli O157:H7 and other non-sorbitol-fermenting E. coli in cattle and humans in urban areas of Morogoro, Tanzania.

    PubMed

    Lupindu, Athumani M; Olsen, John E; Ngowi, Helena A; Msoffe, Peter L M; Mtambo, Madundo M; Scheutz, Flemming; Dalsgaard, Anders

    2014-07-01

    Escherichia coli strains such as Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli, enterotoxigenic, attaching, and effacing E. coli, and enteroinvasive E. coli cause diarrhea in humans. Although other serotypes exist, the most commonly reported STEC in outbreaks is O157:H7. A cross-sectional study was conducted to isolate and characterize non-sorbitol-fermenting (NSF) E. coli O157:H7 from urban and periurban livestock settings of Morogoro, Tanzania. Human stool, cattle feces, and soil and water samples were collected. Observations and questionnaire interview studies were used to gather information about cattle and manure management practices in the study area. E. coli were isolated on sorbitol MacConkey agar and characterized by conventional biochemical tests. Out of 1049 samples, 143 (13.7%) yielded NSF E. coli. Serological and antimicrobial tests and molecular typing were performed to NSF E. coli isolates. These procedures detected 10 (7%) pathogenic E. coli including STEC (n=7), enteropathogenic E. coli (EPEC) (n=2), and attaching and effacing E. coli (A/EEC) (n=1) strains. The STEC strains had the ability to produce VT1 and different VT2 toxin subtypes that caused cytopathic effects on Vero cells. The prevalence of STEC in cattle was 1.6%, out of which 0.9% was serotype O157:H7 and the overall prevalence of diarrheagenic E. coli in cattle was 2.2%. The serotypes O157:H7, O142:H34, O113:H21, O+:H-, O+:H16, and O25:H4 were identified. One ESBL-producing isolate showed the MLST type ST131. To our knowledge, this is the first finding in Tanzania of this recently emerged worldwide pandemic clonal group, causing widespread antimicrobial-resistant infections, and adds knowledge of the geographical distribution of ST131. Cattle manure was indiscriminately deposited within residential areas, and there was direct contact between humans and cattle feces during manure handling. Cattle and manure management practices expose humans, animals, and the environment

  5. Superoxide dismutase and the resistance of Escherichia coli to phagocytic killing by human neutrophils.

    PubMed Central

    Papp-Szabò, E; Sutherland, C L; Josephy, P D

    1993-01-01

    Transformation of Escherichia coli K-12-derived strains with a plasmid carrying the genetic determinants for synthesis of lipopolysaccharide O antigen by Shigella dysenteriae allows the construction of phenotypically smooth derivatives. We show that such E. coli K-12 derivatives are highly resistant to killing by human serum. Isogenic wild-type and sodB mutant (Fe superoxide dismutase-deficient) strains were constructed. The results of experiments on phagocytic killing of these strains by human neutrophils are reported. We observed no difference between the sensitivities of wild-type and sodB mutant strains to phagocytic killing, in contrast to the results reported by other researchers who used species other than E. coli or strains other than K-12. Images PMID:8454348

  6. Virulence and antimicrobial resistance profiles among Escherichia coli strains isolated from human and animal wastewater.

    PubMed

    Sabaté, Montserrat; Prats, Guillem; Moreno, Eva; Ballesté, Elisenda; Blanch, Anicet R; Andreu, Antonia

    2008-05-01

    To gain insight into whether Escherichia coli isolated from humans and resistant to some common antimicrobial agents are derived from animals, 85 E. coli strains were selected by ERIC-PCR from human and animal wastewater samples. Phylogroup, pathogenicity islands (PAIs), resistance to quinolones, fluoroquinolones and presence of extended-spectrum beta-lactamases (ESBLs) were analyzed. Among the total, 55% were resistant to nalidixic acid and 38% to ciprofloxacin; 12% produced ESBLs. Chicken-derived strains were associated with quinolone and fluoroquinolone resistance and presence of ESBLs, while human strains were associated with susceptibility. Group B2 E. coli strains were associated with human origin, susceptibility to fluoroquinolones and presence of PAIs, whereas groups A, B1 and D showed a low virulence profile and a high level of antimicrobial resistance. In both human and animal wastewater, E. coli A, B1 and D were prevalent, and strains from both origins showed a similar virulence profile in each phylogroup. These findings led us to hypothesize that abusive antibiotic use in food animal production may promote the development of resistance among these intestinal E. coli phylogroups, which could later be transmitted to humans through the food supply. The low prevalence of E. coli group B2 in the animal gut may explain, at least in part, the absence of emergence of resistant B2 isolates.

  7. Tracking pathogen transmission at the human-wildlife interface: banded mongoose and Escherichia coli.

    PubMed

    Pesapane, R; Ponder, M; Alexander, K A

    2013-06-01

    A primary challenge to managing emerging infectious disease is identifying pathways that allow pathogen transmission at the human-wildlife interface. Using Escherichia coli as a model organism, we evaluated fecal bacterial transmission between banded mongoose (Mungos mungo) and humans in northern Botswana. Fecal samples were collected from banded mongoose living in protected areas (n = 87, 3 troops) and surrounding villages (n = 92, 3 troops). Human fecal waste was collected from the same environment (n = 46). Isolates were evaluated for susceptibility to 10 antibiotics. Resistant E. coli isolates from mongoose were compared to human isolates using rep-PCR fingerprinting and MLST-PCR. Antimicrobial resistant isolates were identified in 57 % of the mongoose fecal samples tested (range 31-78% among troops). At least one individual mongoose fecal sample demonstrated resistance to each tested antibiotic, and multidrug resistance was highest in the protected areas (40.9%). E. coli isolated from mongoose and human sources in this study demonstrated an extremely high degree of genetic similarity on rep-PCR (AMOVA, F ST = 0.0027, p = 0.18) with a similar pattern identified on MLST-PCR. Human waste may be an important source of microbial exposure to wildlife. Evidence of high levels of antimicrobial resistance even within protected areas identifies an emerging health threat and highlights the need for improved waste management in these systems.

  8. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    PubMed Central

    Huang, Jingfei

    2014-01-01

    The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1) exploring the genetic differences between E. coli strains in human gut and (2) dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate) and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study. PMID:25126572

  9. Limited transmission of bla(CTX-M-9)-type-positive Escherichia coli between humans and poultry in Vietnam.

    PubMed

    Ueda, Shuhei; Ngan, Bui Thi Kim; Huong, Bui Thi Mai; Hirai, Itaru; Tuyen, Le Danh; Yamamoto, Yoshimasa

    2015-01-01

    We examined whether Escherichia coli isolates that produce CTX-M-9-type extended-spectrum β-lactamases (ESBL) are transferred between humans and chickens in a Vietnamese community. The phylogenetic group compositions, sequence types, antimicrobial resistance profiles, the prevalence of plasmid antibiotic resistance genes, and the plasmid replicon types generally differed between the human and chicken E. coli isolates. Our results suggest that transmission of the bla(CTX-M-9)-positive E. coli between humans and poultry was limited.

  10. One-step purification of soluble recombinant human 6-phosphogluconate dehydrogenase from Escherichia coli.

    PubMed

    Chan, Barden; Sukhatme, Vikas P

    2013-11-01

    6-Phosphogluconate dehydrogenase (6PGD), the third enzyme in the pentose phosphate pathway, was recently identified as a novel target in human lung cancer. In this report, we present an expression and purification scheme of recombinant human 6PGD from Escherichia coli. Using a DE3 derivative strain expressing tRNAs for seven rare codons in E. coli called Rosetta2 (DE3), a large quantity of soluble human 6PGD can be expressed with an N-terminal histidine tag and purified by a one-step purification procedure to near homogeneity without denaturants or refolding. Three to seven milligrams of purified protein could be obtained from 100 ml of culture. This recombinant human 6PGD follows classic Michaelis-Menton saturation kinetics with respect to both substrates NADP(+) and 6-phosphogluconate. The respective k(cat) and K(m) were comparable to those of 6PGDs purified from mammalian tissues. Using this purified 6PGD enzyme, we devised an endpoint colorimetric assay suitable for high-throughput screening for human 6PGD inhibitors.

  11. High-yield expression in Escherichia coli of soluble human MT2A with native functions.

    PubMed

    Yang, Fang; Zhou, Min; He, Zhimin; Liu, Xiaorong; Sun, Lin; Sun, Yu; Chen, Zhuchu

    2007-05-01

    Metallothioneins (MTs) are a family of low molecular weight, cysteine rich heavy metal binding proteins with multifunction, such as metal detoxification and antioxidation, and are involved in a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. However, high yield expression of human MT in Escherichia coli has not been established effectively. To produce large amounts of human MT protein at low cost, recombinant human metallothionein 2A (MT2A) protein with an N-terminal GST tag was successfully expressed at high levels in soluble form in E. coli and high purification of it was established by affinity chromatography under native conditions. The final yield was about 5mg of the recombinant MT2A per liter of bacterial culture with the purity of 97.9%. Chemical and functional characteristics analysis of the recombinant human MT2A exhibited intact metal binding ability, hydroxyl radical scavenging ability and significant protective role against DNA damage caused by UVC radiation. Establishment of highly purified recombinant human MT2A protein with native characteristics at low cost would improve its function study and wide applications in protecting against oxidative damage and UV radiation.

  12. A Proteinaceous Fraction of Wheat Bran May Interfere in the Attachment of Enterotoxigenic E. Coli K88 (F4+) to Porcine Epithelial Cells

    PubMed Central

    González-Ortiz, Gemma; Bronsoms, Sílvia; Quarles Van Ufford, H. C.; Halkes, S. Bart A.; Virkola, Ritva; Liskamp, Rob M. J.; Beukelman, Cees J.; Pieters, Roland J.; Pérez, José Francisco; Martín-Orúe, Susana María

    2014-01-01

    Wheat bran (WB) from Triticum aestivum has many beneficial effects on human health. To the best of our knowledge, very little has been published about its ability to prevent pathogenic bacterial adhesion in the intestine. Here, a WB extract was fractionated using different strategies, and the obtained fractions were tested in different in vitro methodologies to evaluate their interference in the attachment of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal porcine epithelial cells (IPEC-J2) with the aim of identifying the putative anti-adhesive molecules. It was found that a proteinaceous compound in the >300-kDa fraction mediates the recognition of ETEC K88 to IPEC-J2. Further fractionation of the >300-kDa sample by size-exclusion chromatography showed several proteins below 90 kDa, suggesting that the target protein belongs to a high-molecular-weight (MW) multi-component protein complex. The identification of some relevant excised bands was performed by mass spectrometry (MS) and mostly revealed the presence of various protease inhibitors (PIs) of low MW: Serpin-Z2B, Class II chitinase, endogenous alpha-amylase/subtilisin inhibitor and alpha-amylase/trypsin inhibitor CM3. Furthermore, an incubation of the WB extract with ETEC K88 allowed for the identification of a 7S storage protein globulin of wheat, Globulin 3 of 66 kDa, which may be one of the most firmly attached WB proteins to ETEC K88 cells. Further studies should be performed to gain an understanding of the molecular recognition of the blocking process that takes place. All gathered information can eventually pave the way for the development of novel anti-adhesion therapeutic agents to prevent bacterial pathogenesis. PMID:25119298

  13. A proteinaceous fraction of wheat bran may interfere in the attachment of enterotoxigenic E. coli K88 (F4+) to porcine epithelial cells.

    PubMed

    González-Ortiz, Gemma; Bronsoms, Sílvia; Quarles Van Ufford, H C; Halkes, S Bart A; Virkola, Ritva; Liskamp, Rob M J; Beukelman, Cees J; Pieters, Roland J; Pérez, José Francisco; Martín-Orúe, Susana María

    2014-01-01

    Wheat bran (WB) from Triticum aestivum has many beneficial effects on human health. To the best of our knowledge, very little has been published about its ability to prevent pathogenic bacterial adhesion in the intestine. Here, a WB extract was fractionated using different strategies, and the obtained fractions were tested in different in vitro methodologies to evaluate their interference in the attachment of enterotoxigenic Escherichia coli (ETEC) K88 to intestinal porcine epithelial cells (IPEC-J2) with the aim of identifying the putative anti-adhesive molecules. It was found that a proteinaceous compound in the >300-kDa fraction mediates the recognition of ETEC K88 to IPEC-J2. Further fractionation of the >300-kDa sample by size-exclusion chromatography showed several proteins below 90 kDa, suggesting that the target protein belongs to a high-molecular-weight (MW) multi-component protein complex. The identification of some relevant excised bands was performed by mass spectrometry (MS) and mostly revealed the presence of various protease inhibitors (PIs) of low MW: Serpin-Z2B, Class II chitinase, endogenous alpha-amylase/subtilisin inhibitor and alpha-amylase/trypsin inhibitor CM3. Furthermore, an incubation of the WB extract with ETEC K88 allowed for the identification of a 7S storage protein globulin of wheat, Globulin 3 of 66 kDa, which may be one of the most firmly attached WB proteins to ETEC K88 cells. Further studies should be performed to gain an understanding of the molecular recognition of the blocking process that takes place. All gathered information can eventually pave the way for the development of novel anti-adhesion therapeutic agents to prevent bacterial pathogenesis.

  14. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells.

    PubMed Central

    Leffler, H; Svanborg-Edén, C

    1981-01-01

    A specific family of glycolipids, the globoseries, was shown to act as receptors on human uroepithelial cells and erythrocytes for the majority of uropathogenic Escherichia coli strains attaching to or hemagglutinating those cells. This was demonstrated in three different ways: (i) correlation between the natural presence of glycolipid in the target cell (erythrocytes of different species) and binding of bacteria; (ii) inhibition of attachment to human uroepithelial cells by preincubation of bacteria and glycolipid; and (iii) induction of binding to unreactive cells by coating of these cells with glycolipid. Strains reacting with the receptor agglutinated guinea pig erythrocytes in a mannose-resistant way after, but not before, coating of the cells with globotetraosylceramide. Unrelated glycolipids were not recognized. The reaction was made independent of simultaneous occurrence of mannose-sensitive adhesions on the strains by addition of D-mannose. The receptor-coated cells were used as a tool to screen for prevalence of receptor recognition in a collection of 453 E. coli strains isolated from patients with urinary tract infection or from the stools of healthy children. Of 150 strains attaching to human uroepithelial cells and agglutinating human erythrocytes, 121 bound to globotetraosylceramide (81%). Globoside recognition was especially frequent among pyelonephritis strains (74/81). The glycolipid composition of the urogenital epithelium and kidney tissue and the ability of uropathogenic E. coli to bind to these glycolipids may be a determinant in host-parasite interaction leading to urinary tract infection. PMID:7037645

  15. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines.

    PubMed Central

    Moon, H W; Whipp, S C; Argenzio, R A; Levine, M M; Giannella, R A

    1983-01-01

    Three strains of enteropathogenic Escherichia coli (EPEC), originally isolated from humans and previously shown to cause diarrhea in human volunteers by unknown mechanisms, and one rabbit EPEC strain were shown to attach intimately to and efface microvilli and cytoplasm from intestinal epithelial cells in both the pig and rabbit intestine. The attaching and effacing activities of these EPEC were demonstrable by light microscopic examination of routine histological sections and by transmission electron microscopy. It was suggested that intact colostrum-deprived newborn pigs and ligated intestinal loops in pigs and rabbits may be useful systems to detect EPEC that have attaching and effacing activities and for studying the pathogenesis of such infections. The lesions (attachment and effacement) produced by EPEC in these systems were multifocal, with considerable animal-to-animal variation in response to the same strain of EPEC. The EPEC strains also varied in the frequency and extent of lesion production. For example, three human EPEC strains usually caused extensive lesions in rabbit intestinal loops, whereas two other human EPEC strains usually did not produce lesions in this system. Images PMID:6350186

  16. Expression in Escherichia coli of the catalytic domain of human proline oxidase.

    PubMed

    Tallarita, Elena; Pollegioni, Loredano; Servi, Stefano; Molla, Gianluca

    2012-04-01

    The human PRODH gene has been shown to have unique roles in regulating cell survival and apoptotic pathways and it has been related to velocardiofacial syndrome/DiGeorge syndrome and increased susceptibility to schizophrenia. It encodes for the flavoprotein proline oxidase (PO), which catalyzes the conversion of l-proline to Δ(1)-pyrroline-5-carboxylate. Despite the important physiological and medical interest in human PO, up to now only microbial homologues of PO have been expressed as recombinant protein and fully characterized. By using a bioinformatics analysis aimed at identifying the catalytic domain and the regions with a high intrinsic propensity to structural disorder, we designed deletion variants of human PO that were successfully expressed in Escherichia coli as soluble proteins in fairly high amounts (up to 10mg/L of fermentation broth). The His-tagged PO-barrelN protein was isolated as an active (the specific activity is 0.032U/mg protein), dimeric holoenzyme showing the typical spectral properties of FAD-containing flavoprotein oxidases. These results pave the way for elucidating structure-function relationships of this human flavoenzyme and clarifying the effect of the reported polymorphisms associated with disease states.

  17. Presence of enterotoxigenic Staphylococcus aureus in artisan fruit salads in the city of San Luis, Argentina.

    PubMed

    Estrada, Cecilia S M Lucero; Alcaráz, Lucia E; Satorres, Sara E; Manfredi, Eduardo; Velázquez, Lidia Del C

    2013-12-01

    An increase in the consumption of fruit juices and minimally processed fruits salads has been observed in recent years all over the world. In this work, the microbiological quality of artisan fruit salads was analysed. Faecal coliforms, Salmonella spp, Shigella spp, Yersinia enterocolitica and Escherichia coli O157:H7 were not detected; nevertheless, eleven strains of Staphylococcus aureus were isolated. By multiplex PCR, all isolates showed positive results for S. aureus 16S rRNA gene and 63.6% of them were positive for sea gene. Furthermore, PCR sea positive strains were able to produce the corresponding enterotoxin. Finally, the inactivation of these strains in fruit salads by nisin, lysozyme and EDTA, was studied. EDTA produced a total S. aureus growth inhibition after 60 h of incubation at a concentration of 250 mg/L. The presence of S. aureus might indicate inadequate hygiene conditions during salad elaboration; however, the enterotoxigenicity of the strains isolated in this study, highlights the risk of consumers' intoxication. EDTA could be used to inhibit the growth of S. aureus in artisan fruit salads and extend the shelf life of these products.

  18. Presence of enterotoxigenic Staphylococcus aureus in artisan fruit salads in the city of San Luis, Argentina

    PubMed Central

    Estrada, Cecilia S.M. Lucero; Alcaráz, Lucia E.; Satorres, Sara E.; Manfredi, Eduardo; Velázquez, Lidia del C.

    2013-01-01

    An increase in the consumption of fruit juices and minimally processed fruits salads has been observed in recent years all over the world. In this work, the microbiological quality of artisan fruit salads was analysed. Faecal coliforms, Salmonella spp, Shigella spp, Yersinia enterocolitica and Escherichia coli O157:H7 were not detected; nevertheless, eleven strains of Staphylococcus aureus were isolated. By multiplex PCR, all isolates showed positive results for S. aureus 16S rRNA gene and 63.6% of them were positive for sea gene. Furthermore, PCR sea positive strains were able to produce the corresponding enterotoxin. Finally, the inactivation of these strains in fruit salads by nisin, lysozyme and EDTA, was studied. EDTA produced a total S. aureus growth inhibition after 60 h of incubation at a concentration of 250 mg/L. The presence of S. aureus might indicate inadequate hygiene conditions during salad elaboration; however, the enterotoxigenicity of the strains isolated in this study, highlights the risk of consumers’ intoxication. EDTA could be used to inhibit the growth of S. aureus in artisan fruit salads and extend the shelf life of these products. PMID:24688505

  19. Preparation and characterization of human interleukin-5 expressed in recombinant Escherichia coli.

    PubMed Central

    Proudfoot, A E; Fattah, D; Kawashima, E H; Bernard, A; Wingfield, P T

    1990-01-01

    The gene coding for human interleukin-5 was synthesized and expressed in Escherichia coli under control of a heat-inducible promoter. High-level expression, 10-15% of total cellular protein, was achieved in E. coli. The protein was produced in an insoluble state. A simple extraction, renaturation and purification scheme is described. The recombinant protein was found to be a homodimer, similar to the natural murine-derived protein. Despite the lack of glycosylation, high specific activities were obtained in three 'in vitro' biological assays. Physical characterization of the protein showed it to be mostly alpha-helical, supporting the hypothesis that a conformational similarity exists among certain cytokines. Images Fig. 1. Fig. 3. PMID:2205201

  20. Bacteriostasis of Escherichia coli by milk. IV. The bacteriostatic antibody of human milk.

    PubMed Central

    Dolby, J. M.; Honour, P.

    1979-01-01

    Bacteriostatic activity for milk-sensitive and milk-resistant strains of Escherichia coli is reduced when IgA is removed from milk by precipitation. Lysozyme is not involved in bacteriostasis and can be removed without loss of activity; heavy bentonite absorption however removes some lactoferrin causing partial loss of activity. The heat-labile antigen eliciting bacteriostatic antibody for E. coli is present in milk-sensitive and milk-resistant strains and in some other Enterobacteriaceae, e.g. salmonella; it cross reacts with the antigen in others, e.g. proteus and enterobacter. The antibody is therefore likely to be present in all human milk as a result of the normal commensal gut flora and with widespread activity. PMID:385767

  1. [Optimization of fermentation of recombinant human Endostatin (rh-Endostatin) expression in Escherichia coli].

    PubMed

    Chang, Guo-Dong; Li, Zhuang-Lin; Qin, Jia-Yang; Ma, Cui-Qing; Luo, Yong-Zhang; Xu, Ping

    2005-07-01

    The fermentation process of recombinant human Endostatin expression in Escherichia coli BL21 (DE3) was studied. The effects of factors such as concentration of IPTG, induction time, cultivation temperature and feeding strategies were investigated. Beside that, by changing the temperature to 40 degrees C after induction, the high-density cultivation finished in a much shorter period. After 9 hours cultivation, the optical density (OD) at 600 nm reached 140 and the yield of inclusion body was 3 g/L. While E. coli system was used, protein with better activity and stability was obtained. The cost was much lower and the producing process was much steadier. It will meet the demands of the industrial production.

  2. Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells.

    PubMed Central

    Edén, C S; Hansson, H A

    1978-01-01

    Presence of pili of fimbriae on Escherichia coli bacteria isolated from the urine of patients with urinary tract infection was related to the ability of the bacteria to attach to human uroepithelial cells. Piliated E. coli strains agglutinated guinea pig erythrocytes. D-Mannose and alpha-methyl-D-mannopyranoside inhibited this agglutination with all but one of the 12 strains tested. D-Mannose, D-galactose, alpha-methyl-D-mannopyranoside, and L-fucose did not afect attachment of piliated strains to uroepithelial cells. Heating as well as washing of piliated strains caused a parallel decrease of piliation and adhesive ability. Growth in glucose-enriched medium increased capsule formation but decreased piliation and adhesion. Capsulated strains retained their adhesive ability provided that pili extended outside the capsule. Images PMID:361565

  3. Virulence Factors and Phenotypical Traits of Verotoxin-Producing Escherichia coli Strains Isolated from Asymptomatic Human Carriers

    PubMed Central

    Stephan, R.; Untermann, F.

    1999-01-01

    Fourteen verotoxin-producing Escherichia coli strains isolated from stool samples of 14 different asymptomatic human carriers were further characterized. A variety of serotypes was found, but none of the strains belonged to serogroup O157. Only one isolate carried most of the virulence genes that are associated with increased pathogenicity. PMID:10203524

  4. Escherichia coli out in the cold: Dissemination of human-derived bacteria into the Antarctic microbiome.

    PubMed

    Power, Michelle L; Samuel, Angelingifta; Smith, James J; Stark, Jonathon S; Gillings, Michael R; Gordon, David M

    2016-08-01

    Discharge of untreated sewage into Antarctic environments presents a risk of introducing non-native microorganisms, but until now, adverse consequences have not been conclusively identified. Here we show that sewage disposal introduces human derived Escherichia coli carrying mobile genetic elements and virulence traits with the potential to affect the diversity and evolution of native Antarctic microbial communities. We compared E. coli recovered from environmental and animal sources in Antarctica to a reference collection of E. coli from humans and non-Antarctic animals. The distribution of phylogenetic groups and frequency of 11 virulence factors amongst the Antarctic isolates were characteristic of E. coli strains more commonly associated with humans. The rapidly emerging E. coli ST131 and ST95 clones were found amongst the Antarctic isolates, and ST95 was the predominant E. coli recovered from Weddell seals. Class 1 integrons were found in 15% of the Antarctic E. coli with 4 of 5 identified gene cassette arrays containing antibiotic resistance genes matching those common in clinical contexts. Disposing untreated sewage into the Antarctic environment does disseminate non-native microorganisms, but the extent of this impact and implications for Antarctic ecosystem health are, as yet, poorly understood.

  5. In vitro cytotoxic effect of alpha-hemolytic Escherichia coli on human blood granulocytes.

    PubMed Central

    Gadeberg, O V; Orskov, I

    1984-01-01

    The cytotoxic effect of Escherichia coli bacteria on human blood granulocytes was measured by recording numbers of nonlysed cells and percentages of viable cells after in vitro incubation with bacteria in the presence of plasma. A total of 179 strains from various sources of infection were tested. Of 117 alpha-hemolytic strains, 59 were cytotoxic. Five nonhemolytic mutant strains, derived from alpha-hemolytic cytotoxic strains, were nontoxic. None of the 62 nonhemolytic strains were toxic. Four spontaneously occurring alpha-hemolytic, nontoxic mutant strains were isolated from cytotoxic ones. Cytotoxicity of bacteria reached a maximum after log-phase growth at 30 to 37 degrees C for 2.5 h, and the toxic capacity was equal after growth in various media, including human urine and plasma. The cytotoxic effect increased with the length of exposure of granulocytes to bacteria and with increasing numbers of bacteria per granulocyte. Cytotoxic strains showed different degrees of toxicity, highly cytotoxic strains lysing about 90% of the granulocytes and killing about one-half of nonlysed cells in 1 h. Bacteria killed by heat, formaldehyde, or UV light were nontoxic. Alpha-hemolytic strains of O groups 2, 4, 6, 25, and 75 originating from various infections in humans were more frequently cytotoxic than alpha-hemolytic strains of other O groups derived from human infections. Culture supernatants containing free alpha-hemolysin were highly cytotoxic to human blood granulocytes, monocytes, and lymphocytes in vitro, whether supernatants originated from cytotoxic or noncytotoxic bacteria. Cytotoxicity to phagocytes, which is mediated by or closely linked genetically to alpha-hemolysin, may be a mechanism by which alpha-hemolytic strains of E. coli strengthen their ability to establish and maintain infections. PMID:6376357

  6. Intein mediated hyper-production of authentic human basic fibroblast growth factor in Escherichia coli

    PubMed Central

    Kwong, Keith W. Y.; Sivakumar, T.; Wong, W. K. R.

    2016-01-01

    Human basic fibroblast growth factor is a functionally versatile but very expensive polypeptide. In this communication, employing a novel amplification method for the target gene and genetic optimization of a previously engineered expression construct, pWK3R, together with a refined fed-batch fermentation protocol, we report an achievement of a phenomenal yield of 610 mg/L of the 146 aa authentic human basic fibroblast growth factor (bFGF) in Escherichia coli. Construct pWK3R was first modified to form plasmid pWK311ROmpAd, which was devoid of the ompA leader sequence and possessed two copies of a DNA segment encoding a fusion product comprising an intein, Saccharomyces cerevisiae vascular membrane ATPase (VMA), and bFGF. When E. coli transformant JM101 [pWK311ROmpAd] was cultivated using the refined fed-batch fermentation protocol, superb expression resulting in a total yield of 610 mg/L of bFGF was detected. Despite existing in high levels, the bFGF remained to be soluble and highly bioactive. PMID:27653667

  7. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5.

    PubMed

    Chileveru, Haritha R; Lim, Shion A; Chairatana, Phoom; Wommack, Andrew J; Chiang, I-Ling; Nolan, Elizabeth M

    2015-03-10

    Human α-defensin 5 (HD5) is a 32-residue cysteine-rich host-defense peptide that exhibits broad-spectrum antimicrobial activity and contributes to innate immunity in the human gut and other organ systems. Despite many years of investigation, its antimicrobial mechanism of action remains unclear. In this work, we report that HD5ox, the oxidized form of this peptide that exhibits three regiospecific disulfide bonds, causes distinct morphological changes to Escherichia coli and other Gram-negative microbes. These morphologies include bleb formation, cellular elongation, and clumping. The blebs are up to ∼1 μm wide and typically form at the site of cell division or cell poles. Studies with E. coli expressing cytoplasmic GFP reveal that HD5ox treatment causes GFP emission to localize in the bleb. To probe the cellular uptake of HD5ox and subsequent localization, we describe the design and characterization of a fluorophore-HD5 conjugate family. By employing these peptides, we demonstrate that fluorophore-HD5ox conjugates harboring the rhodamine and coumarin fluorophores enter the E. coli cytoplasm. On the basis of the fluorescence profiles, each of these fluorophore-HD5ox conjugates localizes to the site of cell division and cell poles. These studies support the notion that HD5ox, at least in part, exerts its antibacterial activity against E. coli and other Gram-negative microbes in the cytoplasm.

  8. Generation of polyclonal antibodies against recombinant human glucocerebrosidase produced in Escherichia coli.

    PubMed

    Novo, Juliana Branco; Oliveira, Maria Leonor Sarno; Magalhães, Geraldo Santana; Morganti, Ligia; Raw, Isaías; Ho, Paulo Lee

    2010-11-01

    Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher's disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.

  9. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity.

    PubMed Central

    Chen, B J; Carroll, P; Samson, L

    1994-01-01

    Escherichia coli can ameliorate the toxic effects of alkylating agents either by preventing DNA alkylation or by repairing DNA alkylation damage. The alkylation-sensitive phenotype of E. coli alkB mutants marks the alkB pathway as an extremely effective defense mechanism against the cytotoxic effects of the SN2, but not the SN1, alkylating agents. Although it is clear that AlkB helps cells to better handle alkylated DNA, no DNA alkylation repair function could be assigned to the purified AlkB protein, suggesting that AlkB either acts as part of a complex or acts to regulate the expression of other genes whose products are directly responsible for alkylation resistance. However, here we present evidence that the provision of alkylation resistance is an intrinsic function of the AlkB protein per se. We expressed the E. coli AlkB protein in two human cell lines and found that it confers the same characteristic alkylation-resistant phenotype in this foreign environment as it does in E. coli. AlkB expression rendered human cells extremely resistant to cell killing by the SN2 but not the SN1 alkylating agents but did not affect the ability of dimethyl sulfate (an SN2 agent) to alkylate the genome. We infer that SN2 agents produce a class of DNA damage that is not efficiently produced by SN1 agents and that AlkB somehow prevents this damage from killing the cell. Images PMID:7928996

  10. Risk Factors for Shiga Toxin-Producing Escherichia coli-Associated Human Diseases.

    PubMed

    Rivas, Marta; Chinen, Isabel; Miliwebsky, Elizabeth; Masana, Marcelo

    2014-10-01

    We have reviewed the risk factors for the occurrence of Shiga toxin-producing Escherichia coli (STEC)-associated human diseases. The analysis of STEC surveillance data and trends shows differences in frequency and severity of the illnesses across countries, whereas the economic and social costs for the affected families, the community, and the health system are better estimated in developed countries. The occurrence of STEC infections is determined by the interaction of the pathogen, the reservoirs, and the biological, cultural, and behavioral aspects of the host. The main risk factors identified in earlier case-control and population-based studies were dietary behaviors and beef consumption. However, in recent years, other risky exposures have also emerged, like the consumption of raw vegetables and sprouts, working or camping in rural areas, visiting farms, and person-to-person transmission. Epidemiological changes have also been determined by the intensification of cattle production, the increase in centralized food production and distribution, and the growth in the volume of international trade of foods. The main lessons learned from recent large outbreaks are knowledge of virulence determinants of new pathogenic strains, recognition of new vehicles of infection, development of new methodologies for detecting STEC in foods and humans, improvement in food regulations and hygiene guidelines, new therapeutic approaches in the treatment of infected patients, establishment of continuous educational programs for food consumers, and enhanced cooperation and teamwork of regional and international networks.

  11. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    SciTech Connect

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria . E-mail: m.barile@biologia.uniba.it

    2006-06-09

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.

  12. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    PubMed Central

    Walsham, Alistair D. S.; MacKenzie, Donald A.; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L.; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  13. Cloning and Expression of Recombinant Human Endostatin in Periplasm of Escherichia coli Expression System

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Pourhassan-Moghaddam, Mohammad; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Purpose: Recombinant human endostatin (rhEs) is an angiogenesis inhibitor which is used as a specific drug in the treatment of non-small-cell lung cancer. In the current research, we developed an efficient method for expressing soluble form of the rhEs protein in the periplasmic space of Escherichia coli via fusing with pelB signal peptide. Methods: The human endostatin (hEs) gene was amplified using synthetic (hEs) gene as a template; then, cloned and expressed under T7 lac promoter. IPTG was used as an inducer for rhEs expression. Next, the osmotic shock was used to extraction of protein from the periplasmic space. The presence of rhEs in the periplasmic space was approved by SDS-PAGE and Western blotting. Results: The results show the applicability of pelB fusion protein system usage for secreting rhEs in the periplasm of E. coli in the laboratory scale. The rhEs represents approximately 35 % (0.83mg/l) of the total cell protein. Conclusion: The present study apparently is the first report of codon-optimized rhEs expression as a fusion with pelB signal peptide. The results presented the successful secretion of soluble rhEs to the periplasmic space. PMID:27478780

  14. Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli.

    PubMed

    Gasparian, Marine E; Ostapchenko, Valeriy G; Schulga, Alexey A; Dolgikh, Dmitry A; Kirpichnikov, Mikhail P

    2003-09-01

    Enteropeptidase (synonym:enterokinase, EC 3.4.21.9) is a heterodimeric serine protease of the intestinal brush border that activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the sequence (Asp)(4)-Lys. The DNA sequence encoding the light chain (catalytic subunit) of human enteropeptidase (GenBank Accession No. U09860) was synthesized from 26 oligonucleotides by polymerase chain reaction and cloned into plasmid pET-32a downstream to the gene of fusion partner thioredoxin immediately after the DNA sequence encoding enteropeptidase recognition site. The fusion protein thioredoxin/human enteropeptidase light chain was expressed in Escherichia coli BL21(DE3) strain in both soluble and insoluble forms. The soluble recombinant fusion protein failed to undergo autocatalytic cleavage and activation; however, autocatalytic cleavage and activation of recombinant human enteropeptidase light chain (L-HEP) were achieved by solubilization and renaturation of the fusion protein from inclusion bodies and the active L-HEP was purified on agarose-linked soybean trypsin inhibitor. The purified L-HEP cleaved the synthetic peptide substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide with kinetic parameters K(m)=0.16 mM and k(cat)=115 s(-1) and small ester Z-Lys-SBzl with K(m)=140 microM, k(cat)=133 s(-1). L-HEP associated with soybean trypsin inhibitor slowly and small ester Z-Lys-SBzl cleavage was inhibited with K(i)(*)=2.3 nM. L-HEP digested thioredoxin/human epidermal growth factor fusion protein five times faster than equal activity units of bovine recombinant light chain (EKMax, Invitrogen) at the same conditions.

  15. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III

    PubMed Central

    Aspinwall, Richard; Rothwell, Dominic G.; Roldan-Arjona, Teresa; Anselmino, Catherine; Ward, Christopher J.; Cheadle, Jeremy P.; Sampson, Julian R.; Lindahl, Tomas; Harris, Peter C.; Hickson, Ian D.

    1997-01-01

    Repair of oxidative damage to DNA bases is essential to prevent mutations and cell death. Endonuclease III is the major DNA glycosylase activity in Escherichia coli that catalyzes the excision of pyrimidines damaged by ring opening or ring saturation, and it also possesses an associated lyase activity that incises the DNA backbone adjacent to apurinic/apyrimidinic sites. During analysis of the area adjacent to the human tuberous sclerosis gene (TSC2) in chromosome region 16p13.3, we identified a gene, OCTS3, that encodes a 1-kb transcript. Analysis of OCTS3 cDNA clones revealed an open reading frame encoding a predicted protein of 34.3 kDa that shares extensive sequence similarity with E. coli endonuclease III and a related enzyme from Schizosaccharomyces pombe, including a conserved active site region and an iron/sulfur domain. The product of the OCTS3 gene was therefore designated hNTH1 (human endonuclease III homolog 1). The hNTH1 protein was overexpressed in E. coli and purified to apparent homogeneity. The recombinant protein had spectral properties indicative of the presence of an iron/sulfur cluster, and exhibited DNA glycosylase activity on double-stranded polydeoxyribonucleotides containing urea and thymine glycol residues, as well as an apurinic/apyrimidinic lyase activity. Our data indicate that hNTH1 is a structural and functional homolog of E. coli endonuclease III, and that this class of enzymes, for repair of oxidatively damaged pyrimidines in DNA, is highly conserved in evolution from microorganisms to human cells. PMID:8990169

  16. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends

    PubMed Central

    2013-01-01

    Abstract Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health. PMID:23962019

  17. Overexpression of Recombinant Human Beta Interferon (rhINF-β) in Periplasmic Space of Escherichia coli

    PubMed Central

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi-Memari, Hamid; Vahidi, Hossein; Maghsoudi, Nader

    2014-01-01

    Human Interferon β (INF-β) is a member of cytokines family which different studies have shown its immunomodulatory and antiviral activities. In this study an expression vector was designed and constructed for expression of human INF-β-1b either in shake flasks or bench top bioreactor. The designed vector was constructed based upon pET-25b(+) with T7 promoter. Recombinant human beta interferon (rhINF-β) was codon optimized and overexpressed as a soluble, N-terminal pelB fusion protein and secreted into the periplasmic space of Escherichia coli BL21 (DE3). The sugar, Isopropyl-β-D-thiogalactopyranoside (IPTG) was used as a chemical inducer for rhINF-β production in the shake flasks and bench top bioreactor. Timing of beta interferon expression was controlled by using the T7 promoter. The rhINF-β protein was extracted from periplasmic space by osmotic shock treatment and the expression of the beta interferon encoding gene in random selected transformants, was confirmed by western and dot blot methods. The maximum of product formation achieved at the OD600nm = 3.42 was found to be 35 % of the total protein content of the strain which translates to 0.32 g L-1. The constructed vector could efficiently overexpress the rhINF-β into the periplasmic space of E. coli. The obtained yield of the produced rhINF-β was more than previous reports. The system is easily adapted to include other vectors, tags or fusions and therefore has the potential to be broadly applicable to express other recombinant proteins. PMID:24711841

  18. Expression of Plasmodium falciparum Circumsporozoite Proteins in Escherichia coli for Potential Use in a Human Malaria Vaccine

    NASA Astrophysics Data System (ADS)

    Young, James F.; Hockmeyer, Wayne T.; Gross, Mitchell; Ripley Ballou, W.; Wirtz, Robert A.; Trosper, James H.; Beaudoin, Richard L.; Hollingdale, Michael R.; Miller, Louis H.; Diggs, Carter L.; Rosenberg, Martin

    1985-05-01

    The circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum may be the most promising target for the development of a malaria vaccine. In this study, proteins composed of 16, 32, or 48 tandem copies of a tetrapeptide repeating sequence found in the CS protein were efficiently expressed in the bacterium Escherichia coli. When injected into mice, these recombinant products resulted in the production of high titers of antibodies that reacted with the authentic CS protein on live sporozoites and blocked sporozoite invasion of human hepatoma cells in vitro. These CS protein derivatives are therefore candidates for a human malaria vaccine.

  19. Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: treatment of experimental colibacillosis.

    PubMed Central

    Mouricout, M; Petit, J M; Carias, J R; Julien, R

    1990-01-01

    Calf diarrhea due to infection by enterotoxigenic Escherichia coli was treated by administration of glycoprotein glycans derived from bovine plasma. The glycan moieties of the nonimmunoglobulin fraction of plasma mimicked the oligosaccharide moiety of intestinal receptors recognized by K99 pili. These glycoprotein glycans inhibited adhesion of E. coli K99+ ST+ to erythrocyte glycoconjugates in vitro, and they protected colostrum-deprived newborn calves against lethal doses of enterotoxigenic E. coli (10(10) bacteria). Adhesion of bacteria to the intestines (duodenum, jejunum, and ileum) was significantly reduced (by 2 orders of magnitude) in treated calves. PMID:2403535

  20. Single Multiplex PCR Assay To Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections

    PubMed Central

    Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto

    2005-01-01

    We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019

  1. Intein-mediated one-step purification of Escherichia coli secreted human antibody fragments.

    SciTech Connect

    Wu, Wan-Yi; Miller, Keith D.; Coolbaugh, Michael; Wood, David W.

    2011-02-25

    In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain intein tag for purification via a chitin agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and b-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the DI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.

  2. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites

    PubMed Central

    Yamamoto, Denise; Hernandes, Rodrigo T.; Liberatore, Ana Maria A.; Abe, Cecilia M.; de Souza, Rodrigo B.; Romão, Fabiano T.; Sperandio, Vanessa; Koh, Ivan H.

    2017-01-01

    Diarrhea is the second leading cause of death of children up to five years old in the developing countries. Among the etiological diarrheal agents are atypical enteropathogenic Escherichia coli (aEPEC), one of the diarrheagenic E. coli pathotypes that affects children and adults, even in developed countries. Currently, genotypic and biochemical approaches have helped to demonstrate that some strains classified as aEPEC are actually E. albertii, a recently recognized human enteropathogen. Studies on particular strains are necessary to explore their virulence potential in order to further understand the underlying mechanisms of E. albertii infections. Here we demonstrated for the first time that infection of fragments of rat intestinal mucosa is a useful tool to study the initial steps of E. albertii colonization. We also observed that an E. albertii strain can translocate from the intestinal lumen to Mesenteric Lymph Nodes and liver in a rat model. Based on our finding of bacterial translocation, we investigated how E. albertii might cross the intestinal epithelium by performing infections of M-like cells in vitro to identify the potential in vivo translocation route. Altogether, our approaches allowed us to draft a general E. albertii infection route from the colonization till the bacterial spreading in vivo. PMID:28178312

  3. Polycistronic expression of human platelet factor 4 with heparin-neutralizing activity in Escherichia coli.

    PubMed

    Duan, Yitao; Wang, Zhe; Wu, Wei; Fang, Zhenjiang; Huang, He

    2012-01-01

    Human platelet factor 4 (hPF4) was evaluated as a clinical alternative to protamine for heparin neutralization, a protector against radiation injury and an anti-neoplastic. To achieve high-level expression of hPF4, expression vectors pET-28a(+)-nf PF4 (n=4, 5, 6) containing n tandem repeats of PF4 were constructed and transformed into the Escherichia coli BL21(DE3) strain. A higher expression level, about 45% of the total proteins (TP), was obtained for E. coli BL21(DE3)/pET28a(+)-nf PF4 (n=4, 5, 6). The purified His-PF4 protein was further identified by cleavage with enterokinase and MS, and its heparin-neutralizing activity was determined by colony formation assay. This study represents a novel approach to large-scale production of PF4 in E. coli, one that might be applied to large-scale production of PF4 protein for possible clinical application. It also provides theoretical points for the expression and purification of other small-molecule peptides.

  4. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli.

    PubMed

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin; Li, Shan; Wang, Jufang

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  5. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites.

    PubMed

    Yamamoto, Denise; Hernandes, Rodrigo T; Liberatore, Ana Maria A; Abe, Cecilia M; Souza, Rodrigo B de; Romão, Fabiano T; Sperandio, Vanessa; Koh, Ivan H; Gomes, Tânia A T

    2017-01-01

    Diarrhea is the second leading cause of death of children up to five years old in the developing countries. Among the etiological diarrheal agents are atypical enteropathogenic Escherichia coli (aEPEC), one of the diarrheagenic E. coli pathotypes that affects children and adults, even in developed countries. Currently, genotypic and biochemical approaches have helped to demonstrate that some strains classified as aEPEC are actually E. albertii, a recently recognized human enteropathogen. Studies on particular strains are necessary to explore their virulence potential in order to further understand the underlying mechanisms of E. albertii infections. Here we demonstrated for the first time that infection of fragments of rat intestinal mucosa is a useful tool to study the initial steps of E. albertii colonization. We also observed that an E. albertii strain can translocate from the intestinal lumen to Mesenteric Lymph Nodes and liver in a rat model. Based on our finding of bacterial translocation, we investigated how E. albertii might cross the intestinal epithelium by performing infections of M-like cells in vitro to identify the potential in vivo translocation route. Altogether, our approaches allowed us to draft a general E. albertii infection route from the colonization till the bacterial spreading in vivo.

  6. High-fidelity translation of recombinant human hemoglobin in Escherichia coli.

    PubMed

    Weickert, M J; Apostol, I

    1998-05-01

    Coexpression of di-alpha-globin and beta-globin in Escherichia coli in the presence of exogenous heme yielded high levels of soluble, functional recombinant human hemoglobin (rHb1.1). High-level expression of rHb1.1 provides a good model for measuring mistranslation in heterologous proteins. rHb1.1 does not contain isoleucine; therefore, any isoleucine present could be attributed to mistranslation, most likely mistranslation of one or more of the 200 codons that differ from an isoleucine codon by 1 bp. Sensitive amino acid analysis of highly purified rHb1.1 typically revealed < or = 0.2 mol of isoleucine per mol of hemoglobin. This corresponds to a translation error rate of < or = 0.001, which is not different from typical translation error rates found for E. coli proteins. Two different expression systems that resulted in accumulation of globin proteins to levels equivalent to approximately 20% of the level of E. coli soluble proteins also resulted in equivalent translational fidelity.

  7. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli

    PubMed Central

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development. PMID:27766259

  8. Recognition of Enteropathogenic Escherichia coli Virulence Determinants by Human Colostrum and Serum Antibodies

    PubMed Central

    Parissi-Crivelli, Aurora; Parissi-Crivelli, Joaquín M.; Girón, Jorge A.

    2000-01-01

    Human colostra and sera collected from Mexican mothers and their children at birth and 6 months thereafter were studied for the presence of antibodies against the bundle-forming pilus and several chromosomal virulence gene products (intimin and secreted proteins EspA and EspB) of enteropathogenic Escherichia coli (EPEC). Among 21 colostrum samples studied, 76, 71.5, 57, and 47% of them contained immunoglobulin A (IgA) antibodies against EspA, intimin, EspB, and BfpA, respectively. Interestingly, there was a difference in IgG response to EPEC antigens between the sera from neonates and sera from the same children 6 months later. While the number of neonates reacting to Esps and intimin diminished when they reached 6 months of age, those reacting with BfpA increased from 9 to 71%. Intimin from an enterohemorrhagic E. coli strain was also recognized by most of the samples reacting with EPEC intimin. These data suggest that Bfp and Esps elicit an antibody response during the early days of life of neonates and support the value of breast-feeding in areas of the world where bacterial diarrheal infections are endemic. PMID:10878066

  9. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli

    PubMed Central

    Mahon, Brian P; Lomelino, Carrie L; Salguero, Antonieta L; Driscoll, Jenna M; Pinard, Melissa A; McKenna, Robert

    2015-01-01

    Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems. PMID:26266677

  10. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells

    PubMed Central

    Crémet, Lise; Broquet, Alexis; Brulin, Bénédicte; Jacqueline, Cédric; Dauvergne, Sandie; Brion, Régis; Asehnoune, Karim; Corvec, Stéphane; Heymann, Dominique; Caroff, Nathalie

    2015-01-01

    Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts. PMID:26333570

  11. Adrenoceptor hyporeactivity is responsible for Escherichia coli endotoxin-induced acute vascular dysfunction in humans.

    PubMed

    Pleiner, Johannes; Heere-Ress, Elisabeth; Langenberger, Herbert; Sieder, Anna E; Bayerle-Eder, Michaela; Mittermayer, Fritz; Fuchsjäger-Mayrl, Gabriele; Böhm, Johannes; Jansen, Burkhard; Wolzt, Michael

    2002-01-01

    Impaired response to catecholamines contributes to the altered hemodynamics in sepsis, which has been attributed to excessive NO formation. We have studied the systemic hemodynamic and local forearm responses and inducible NO synthase (iNOS) expression during experimental endotoxemia in humans. Escherichia coli endotoxin (lipopolysaccharide [LPS]) was administered at doses of 1 or 2 ng/kg to healthy volunteers. In 10 subjects, the systemic pressor effect of phenylephrine was assessed before and after the administration of LPS. In 9 further subjects, forearm blood flow responses to intra-arterial noradrenaline, acetylcholine, glyceryl trinitrate, and N(G)-monomethyl-L-arginine (L-NMMA) were studied at baseline and after LPS administration. Peripheral blood was collected and analyzed for iNOS mRNA and protein. Four hours after LPS, the response of systolic blood pressure (P<0.0005) and heart rate (P<0.05) to phenylephrine was significantly reduced. In the forearm, noradrenaline-induced vasoconstriction was also reduced by approximately 50% (P<0.01), but L-NMMA responsiveness was unchanged. iNOS mRNA or protein was not increased. Marked vascular adrenoceptor hyporeactivity is detectable in the absence of increased NO activity or iNOS expression in endotoxemia, arguing against major involvement of vascular iNOS activity in the acute systemic vasodilation to LPS.

  12. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37.

    PubMed

    Sochacki, Kem A; Barns, Kenneth J; Bucki, Robert; Weisshaar, James C

    2011-04-19

    Natural antimicrobial peptides (AMPs) provide prototypes for the design of unconventional antimicrobial agents. Existing bulk assays measure AMP activity but do not provide details of the growth-halting mechanism. We use fluorescence microscopy to directly observe the attack of the human antimicrobial peptide LL-37 on single Escherichia coli cells in real time. Our findings strongly suggest that disruption of the cytoplasmic membrane is not the growth-halting mechanism. At 8 μM, LL-37 binding saturates the outer membrane (OM) within 1 min. Translocation across the OM and access to the periplasmic space (5-25 min later) correlates in time with the halting of growth. Septating cells are attacked more readily than nonseptating cells. The halting of growth may occur because of LL-37 interference with cell wall biogenesis. Only well after growth halts does the peptide permeabilize the cytoplasmic membrane to GFP and the small dye Sytox Green. The assay enables dissection of antimicrobial design criteria into two parts: translocation across the OM and the subsequent halting of growth.

  13. Genotyping Escherichia coli O157:H7 for its ability to cause disease in humans.

    PubMed

    Bono, James L

    2009-08-01

    Escherichia coli are ubiquitous in the world, and for the most part are non-pathogenic and part of the normal lower gastrointestinal tract in mammals. However, some pathogenic isolates can cause severe disease that range from meningitis to hemorrhagic colitis (HC). In recent years, Shiga toxin-containing E. coli (STEC) have been a major cause of food borne and environmental cases of HC and hemolytic uremic syndrome. One STEC serotype, O157:H7, has been responsible for numerous food-associated outbreaks and recalls worldwide. The protocols in this unit will allow the reader to use real-time polymerase chain reaction genotyping to identify isolates that are more likely to cause disease in humans. The genotyping assay targets a single-nucleotide polymorphism (SNP) in the tir gene. The tir gene is located in a virulence operon called the locus for enterocyte effacement and functions as a receptor for the tight adherence of E. coli O157:H7 to epithelial cells. As more genomes are sequenced, informative SNPs that associate with phenotypes will be identified. Identifying isolates not only by their genus and species, but also by using other informative genomic traits will increase the general knowledge about their genetic diversity.

  14. Characterization and biological activities of recombinant human plasminogen kringle 1-3 produced in Escherichia coli.

    PubMed

    You, Weon-Kyoo; So, Seung-Ho; Sohn, Young-Doug; Lee, Hyosil; Park, Doo-Hong; Chung, Soo-Il; Chung, Kwang-Hoe

    2004-07-01

    Angiogenesis, the formation of new capillaries from preexisting blood vessels, is involved in many pathological conditions, for example, tumorigenesis, diabetic retinopathy, and rheumatoid arthritis. Angiostatin, which contains the kringle 1-4 domains of plasminogen, is known to be a potent inhibitor of angiogenesis and a strong suppressor of various solid tumors. In this study, we expressed recombinant protein containing the kringle 1-3 domains of human plasminogen in Escherichia coli and investigated its biological activities. The protein was successfully refolded from inclusion bodies and purified at a 30% overall yield, as a single peak by HPLC. The purified recombinant protein had biochemical properties that were similar to those of the native form, which included molecular size, lysine-binding capacity, and immunoreactivity with a specific antibody. The recombinant protein was also found to strongly inhibit the proliferation of bovine capillary endothelial cells in vitro, and the formation of new capillaries on chick embryos. In addition, it suppressed the growth of primary Lewis lung carcinoma and B16 melanoma in an in vivo mouse model. Our findings suggest that the recombinant kringle 1-3 domains in a prokaryote expression system have anti-angiogenic activities, which may be useful in clinical and basic research in the field of angiogenesis.

  15. Human Immunodeficiency Virus Integration Protein Expressed in Escherichia Coli Possesses Selective DNA Cleaving Activity

    NASA Astrophysics Data System (ADS)

    Sherman, Paula A.; Fyfe, James A.

    1990-07-01

    The human immunodeficiency virus (HIV) integration protein, a potential target for selective antiviral therapy, was expressed in Escherichia coli. The purified protein, free of detectable contaminating endonucleases, selectively cleaved double-stranded DNA oligonucleotides that mimic the U3 and the U5 termini of linear HIV DNA. Two nucleotides were removed from the 3' ends of both the U5 plus strand and the U3 minus strand; in both cases, cleavage was adjacent to a conserved CA dinucleotide. The reaction was metal-ion dependent, with a preference for Mn2+ over Mg2+. Reaction selectivity was further demonstrated by the lack of cleavage of an HIV U5 substrate on the complementary (minus) strand, an analogous substrate that mimics the U3 terminus of an avian retrovirus, and an HIV U5 substrate in which the conserved CA dinucleotide was replaced with a TA dinucleotide. Such an integration protein-mediated cleavage reaction is expected to occur as part of the integration event in the retroviral life cycle, in which a double-stranded DNA copy of the viral RNA genome is inserted into the host cell DNA.

  16. Killing of an encapsulated strain of Escherichia coli by human serum.

    PubMed Central

    Taylor, P W; Kroll, H P

    1983-01-01

    Changes in cell viability and in factors affecting metabolic integrity were examined after exposure of Escherichia coli LP1092 to human serum. Antibody-dependent classical pathway activity accounted for the rapid killing of strain LP1092 by complement. Removal of serum lysozyme by bentonite absorption or by neutralization with anti-human lysozyme immunoglobulin G resulted in a reduction in the rate of killing; optimal activity could be restored by the addition of physiological amounts of egg-white lysozyme. The pattern of 86Rb+ and alkaline phosphatase release obtained after serum treatment did not support the view that complement simultaneously disrupts cytoplasmic and outer membrane integrity. Macromolecular synthesis was affected late in the reaction sequence; complete inhibition of precursor incorporation into RNA, DNA, and protein occurred only after almost total loss of bacterial colony-forming ability. Addition of chloramphenicol, an inhibitor of protein synthesis, to the bactericidal system resulted in a marked reduction in the rate of serum killing. Killing was completely inhibited by an inhibitor (KCN) and an uncoupler (2,4-dinitrophenol) of oxidative phosphorylation. Exposure of LP1092 cells to serum was followed by a rapid and large increase in intracellular ATP levels; ATP synthesis did not occur when bacteria were exposed to dialyzed serum, which killed LP1092 cells at a much reduced rate. Addition of glucose or serum ultrafiltrate to dialyzed serum restored optimal bactericidal activity. We suggest that optimal killing of gram-negative bacteria is an energy-dependent process requiring an input of bacterially generated ATP. PMID:6185430

  17. Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli.

    PubMed

    Bajaj, Priyanka; Tripathy, Rajan K; Aggarwal, Geetika; Pande, Abhay H

    2015-11-01

    Human PON1 (h-PON1) is a Ca(2+)-dependent serum enzyme and can hydrolyze (and inactivate) a wide range of substrates. It is a multifaceted enzyme and exhibit anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial, and organophosphate (OP)-detoxifying properties. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against these conditions in humans. Insufficient hydrolyzing activity of native h-PON1 against desirable substrate affirms the urgent need to develop improved variant(s) of h-PON1 having enhanced activity. Production of recombinant h-PON1 (rh-PON1) using an Escherichia coli expression system is a key to develop such variant(s). However, generation of rh-PON1 using E. coli expression system has been elusive until now because of the aggregation of over-expressed rh-PON1 protein in inactive form as inclusion bodies (IBs) in the bacterial cells. In this study, we have over-expressed rh-PON1(wt) and rh-PON1(H115W;R192K) proteins as IBs in E. coli, and refolded the inactive enzymes present in the IBs to their active form using in vitro refolding. The active enzymes were isolated from the refolding mixture by ion-exchange chromatography. The catalytic properties of the refolded enzymes were similar to their soluble counterparts. Our results show that the pure and the active variant of rh-PON1 enzyme having enhanced hydrolyzing activity can be produced in large quantities using E. coli expression system. This method can be used for the industrial scale production of rh-PON1 enzymes and will aid in developing h-PON1 as a therapeutic candidate.

  18. Escherichia coli O157:H7: Animal Reservoir and Sources of Human Infection

    PubMed Central

    Ferens, Witold A.

    2011-01-01

    Abstract This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people. PMID:21117940

  19. Longitudinal Characterization of Escherichia coli in Healthy Captive Non-Human Primates

    PubMed Central

    Clayton, Jonathan B.; Danzeisen, Jessica L.; Trent, Ava M.; Murphy, Tami; Johnson, Timothy J.

    2014-01-01

    The gastrointestinal (GI) tracts of non-human primates (NHPs) are well known to harbor Escherichia coli, a known commensal of human beings and animals. While E. coli is a normal inhabitant of the mammalian gut, it also exists in a number of pathogenic forms or pathotypes, including those with predisposition for the GI tract as well as the urogenital tract. Diarrhea in captive NHPs has long been a problem in both zoo settings and research colonies, including the Como Zoo. It is an animal welfare concern, as well as a public health concern. E. coli has not been extensively studied; therefore, a study was performed during the summer of 2009 in collaboration with a zoo in Saint Paul, MN, which was previously experiencing an increased incidence and severity of diarrhea among their NHP collection. Fresh fecal samples were collected weekly from each member of the primate collection, between June and August of 2009, and E. coli were isolated. A total of 33 individuals were included in the study, representing eight species. E. coli isolates were examined for their genetic relatedness, phylogenetic relationships, plasmid replicon types, virulence gene profiles, and antimicrobial susceptibility profiles. A number of isolates were identified containing virulence genes commonly found in several different E. coli pathotypes, and there was evidence of clonal transmission of isolates between animals and over time. Overall, the manifestation of chronic diarrhea in the Como Zoo primate collection is a complex problem whose solution will require regular screening for microbial agents and consideration of environmental causes. This study provides some insight toward the sharing of enteric bacteria between such animals. PMID:26664923

  20. [Possible role of enterotoxigenic Bacteroides fragilis in the etiology of infectious vaginitis].

    PubMed

    Polanco, Nina; Manzi, Lorna; Carmona, Oswaldo

    2012-03-01

    Vaginitis is a common gynecologic disorder. It is due to several causes, some even unknown. Bacteroides fragilis is the most important anaerobe in clinical bacteriology, some strains of this group are notable for being enterotoxigenic and they have been associated with intestinal and extraintestinal syndromes. They have recently been isolated from patients with vaginitis. The purpose of this study was to investigate a possible association of enterotoxigenic B. fragilis with infectious vaginitis. 265 samples of vaginal exudate were processed, 202 from symptomatic patients and 63 healthy women. The identification of the microorganisms was carried out by conventional methods. In 31.2% of symptomatic patients were identified: Gardnerella vaginalis, Mobiluncus, Candida albicans, Mycoplasma hominis, Ureaplasma urealyticum and Streptococcus agalactiae. B. fragilis was identified in 27 symptomatic patients and 5 healthy women. These strains were cultivated in liquid medium and incubated during 48 h at 36 degrees C in anaerobe chambers. Supernatant activity was assayed in HT-29 cells. Eighteen B. fragilis strains isolated from symptomatic patients were enterotoxigenic, because induced alterations in target cell morphology. It was not identified in healthy women (P < 0.05). 77.7% of enterotoxigenic B. fragilis strains were not associated with other specific pathogens. This fact suggests that enterotoxigenic B. fragilis could be a cause for vaginitis. The effect of enterotoxin on E-cadherin of vaginal epithelium could facilitate invasion and its possible pathogenic role in the vagina. This is the first report that associates enterotoxigenic Bacteroides fragilis as a possible cause of infectious vaginitis.

  1. Human influence and biotic homogenization drive the distribution of Escherichia coli virulence genes in natural habitats.

    PubMed

    Cabal, Adriana; Vicente, Joaquin; Alvarez, Julio; Barasona, Jose Angel; Boadella, Mariana; Dominguez, Lucas; Gortazar, Christian

    2017-02-18

    Cattle are the main reservoirs for Shiga-toxin-producing Escherichia coli (STEC), the only known zoonotic intestinal E. coli pathotype. However, there are other intestinal pathotypes that can cause disease in humans, whose presence has been seldom investigated. Thus, our aim was to identify the effects of anthropic pressure and of wild and domestic ungulate abundance on the distribution and diversity of the main human E. coli pathotypes and nine of their representative virulence genes (VGs). We used a quantitative real-time PCR (qPCR) for the direct detection and quantification of the genus-specific gene uidA, nine E. coli VGs (stx1, sxt2, eae, ehxA, aggR, est, elt, bfpA, invA), as well as four genes related to O157:H7 (rfbO157 , fliCH7 ) and O104:H4 (wzxO104 , fliCH4 ) serotypes in animals (feces from deer, cattle, and wild boar) and water samples collected in three areas of Doñana National Park (DNP), Spain. Eight of the nine VGs were detected, being invA, eae, and stx2 followed by stx1, aggR, and ehxA the most abundant ones. In quantitative terms (gene copies per mg of sample), stx1 and stx2 gave the highest values. Significant differences were seen regarding VGs in the three animal species in the three sampled areas. The serotype-related genes were found in all but one sample types. In general, VGs were more diverse and abundant in the northern part of the Park, where the surface waters are more contaminated by human waste and farms. In the current study, we demonstrated that human influence is more relevant than host species in shaping the E. coli VGs spatial pattern and diversity in DNP. In addition, wildlife could be potential reservoirs for other pathotypes different from STEC, however further isolation steps would be needed to completely characterize those E. coli.

  2. Diversity and enterotoxigenicity of Staphylococcus spp. associated with domiati cheese.

    PubMed

    El-Sharoud, Walid M; Spano, Giuseppe

    2008-12-01

    A total of 87 samples of fresh and stored Domiati cheese (an Egyptian soft cheese) were examined for the presence of Staphylococcus spp. Fifteen Staphylococcus isolates identified as S. aureus (2 isolates), S. xylosus (4), S. caprae (4), and S. chromogenes (5) were recovered from 15 cheese samples. The S. aureus isolates were resistant to penicillin G and ampicillin, and one isolate was also resistant to tetracycline. S. aureus isolates harbored classical staphylococcal enterotoxin (SE) genes (sea and seb) and recently characterized SE-like genes (selg, seli, selm, and selo). One S. aureus isolate contained a single SE gene (sea), whereas another isolate contained five SE genes (seb, selg, seli, selm, and selo). These results suggest that Domiati cheese is a source for various Staphylococcus species, including S. aureus strains that could be enterotoxigenic.

  3. Bactericidal Effect of Selected Antidiarrhoeal Medicinal Plants on Intracellular Heat-Stable Enterotoxin-Producing Escherichia coli

    PubMed Central

    Birdi, Tannaz J.; Brijesh, S.; Daswani, Poonam G.

    2014-01-01

    Diarrhoeal diseases due to enterotoxigenic Escherichia coli continue to be a cause of global concern. Medicinal plants have been gaining popularity as promising antidiarrhoeal agents. In the present study, four antidiarrhoeal plants, viz. Aegle marmelos, Cyperus rotundus, Psidium guajava and Zingiber officinale were screened against a heat-stable toxin-producing enterotoxigenic E. coli strain. Decoctions of these plants were studied for their effect on intracellular killing of the bacterial strain using murine monocytic cell line, J774. [3H] thymidine release assay was used to evaluate the apoptotic/necrotic effect. All plants at concentrations <1% enhanced intracellular killing of the bacteria by J774 cells. However, at higher concentrations, the decoctions induced apoptosis in J774 cells. The study demonstrates that these plants could control diarrhoea caused by heat-stable toxin-producing enterotoxigenic E. coli through their immunomodulatory effect. PMID:25035535

  4. Genetic features of human and bovine Escherichia coli O157:H7 strains isolated in Argentina.

    PubMed

    Pianciola, L; D'Astek, B A; Mazzeo, M; Chinen, I; Masana, M; Rivas, M

    2016-02-01

    Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens associated with human diseases. In Argentina, O157:H7 is the dominant serotype in hemolytic uremic syndrome (HUS) cases. Previously, we have described the almost exclusive circulation of human E. coli O157 strains belonging to the hypervirulent clade 8 in Neuquén Province. The aim of the present study was to investigate, by a broad molecular characterization, if this particular distribution of E. coli O157 clades in Neuquén is similar to the situation in other regions of the country and if it may be originated in a similar profile in cattle, its main reservoir. Two-hundred and eighty O157 strains (54 bovine and 226 human) isolated between 2006 and 2008 in different regions of Argentina were studied. All strains harbored rfbO157, fliCH7, eae, and ehxA genes. The predominant genotype was stx2a/stx2c in human (76.1%) and bovine (55.5%) strains. All human isolates tested by Lineage-Specific Polymorphism Assay (LSPA-6), were lineage I/II; among bovine strains, 94.1% belonged to lineage I/II and 5.9% to lineage I. No LSPA-6 lineage II isolates were detected. Single nucleotide polymorphism (SNP) analysis has revealed the existence of nine clade phylogenetic groups. In our clinical strains collection, 87.6% belonged to the hypervirulent clade 8, and 12.4% were classified as clade 4/5. In bovine isolates, 59.3% strains were clade 8, 33.3% clade 4/5 and 7.4% clade 3. More than 80% of human strains showed the presence of 6 of the 7 virulence determinants described in the TW14359 O157 strain associated with the raw spinach outbreak in the U.S. in 2006. More than 80% of bovine strains showed the presence of 3 of these factors. The q933 allele, which has been related to high toxin production, was present in 98.2% of clinical strains and 75.9% of the bovine isolates. The molecular characterization of human STEC O157 strains allows us to conclude that the particular situation previously described

  5. Process development for production of recombinant human interferon-gamma expressed in Escherichia coli.

    PubMed

    Khalilzadeh, R; Shojaosadati, S A; Maghsoudi, N; Mohammadian-Mosaabadi, J; Mohammadi, M R; Bahrami, A; Maleksabet, N; Nassiri-Khalilli, M A; Ebrahimi, M; Naderimanesh, H

    2004-02-01

    A simple fed-batch process was carried out using constant and variable specific growth rates for high-cell-density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma(hIFN-gamma). The feeding rate was adjusted to achieve an appropriate specific growth rate. The dissolved oxygen level was maintained at 20-30% of air saturation by control of airflow and stirrer speed and, where necessary, by enrichment of inlet air with pure oxygen. Glucose was the sole source of carbon and energy and was provided by following a simple exponential feeding rate. The final cell density in the fed-batch fermentation with constant and variable specific growth rate feeding strategies was ~100 g dry cell wt l(-1) after 36 and 20 h, respectively. The final specific yield and overall productivity of recombinant hIFN-gamma in the variable specific growth rate strategy were 0.35 g rHu-IFN-gamma g(-1) dry cell wt and 0.9 g rHu-IFN-gamma l(-1) h(-1), respectively. A new chromatographic purification procedure involving anion exchange and cation exchange chromatographies was developed for purification of rHu-IFN-gamma from inclusion bodies. The established purification process is reproducible and the total recovery of rHu-IFN-gamma was ~30% (100 mg rHu-IFN-gamma g(-1) dry cell wt). The purity of the rHu-IFN-gamma was determined using HPLC. Sterility, pyrogenicity, and DNA content tests were conducted to assure the absence of toxic materials and other components of E. coli in the final product. The final purified rHu-IFN-gamma has a specific antiviral activity of ~2 x 10(7) IU/mg protein, as determined by viral cytopathic effect assay. These results certify the product for clinical purposes.

  6. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    PubMed

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  7. Expression of soluble and functional full-length human matrix metalloproteinase-2 in Escherichia coli

    PubMed Central

    Gonçalves, Andrezza N.; Meschiari, Cesar A.; Stetler-Stevenson, William G.; Nonato, M. Cristina; Alves, Cleidson P.; Espreafico, Enilza M.; Gerlach, Raquel F.

    2012-01-01

    Characterization of the matrix metalloproteinase-2 (MMP-2) substrates and understanding of its function remain difficult because up to date preparations containing minor amounts of other eukaryotic proteins that are co-purified with MMP-2 are still used. In this work, the expression of a soluble and functional full-length recombinant human MMP-2 (rhMMP-2) in the cytoplasm of Escherichia coli is reported, and the purification of this metalloproteinase is described. Culture of this bacterium at 18 °C culminated in maintenance of the soluble and functional rhMMP-2 in the soluble fraction of the E. coli lysate and its purification by affinity with gelatin-sepharose yielded approximately 0.12 mg/L of medium. Western Blotting and zymographic analysis revealed that the most abundant form was the 72-kDa MMP-2, but some gelatinolytic bands corresponding to proteins with lower molecular weight were also detected. The obtained rhMMP-2 was demonstrated to be functional in a gelatinolytic fluorimetric assay, suggesting that the purified rhMMP-2 was correctly folded. The method described here involves fewer steps, is less expensive, and is less prone to contamination with other proteinases and MMP inhibitors as compared to expression of rhMMP-2 in eukaryotic tissue culture. This protocol will facilitate the use of the full-length rhMMP-2 expressed in bacteria and will certainly help researchers to acquire new knowledge about the substrates and biological activities of this important proteinase. PMID:22001844

  8. Membrane changes induced by exposure of Escherichia coli to human serum.

    PubMed Central

    Kroll, H P; Bhakdi, S; Taylor, P W

    1983-01-01

    The effect of bactericidal concentrations of lysozyme-free human serum on parameters of membrane integrity has been studied in serum-susceptible and serum-resistant Escherichia coli strains. Serum treatment released all of the alkaline phosphatase from the periplasmic space of two rapidly serum-susceptible strains but did so at different rates. In contrast, no periplasmic enzyme was released from two serum-resistant strains or from one moderately susceptible smooth strain. Lysozyme-free serum and heat-inactivated serum released comparable amounts of 86Rb+ from preloaded cells at comparable rates, regardless of serum susceptibility. Serum decreased the rate of phospholipid biosynthesis in both serum-susceptible and serum-resistant strains. In susceptible but not in resistant strains, intracellular ATP pools were depleted after serum exposure. Outer membranes and cytoplasmic membranes were prepared from serum-treated E. coli, and assays for C3 and C5b-9(m) were performed. With rapidly susceptible strains, C3 deposition on the outer membrane without attachment of C5b-9(m) occurred during the short prekilling phase. Subsequent bacterial killing was accompanied by deposition of C5b-9(m), which was recovered with C3 exclusively in outer membrane fractions with increased density and by eventual total loss of recoverable cytoplasmic membranes. Minimal deposition of complement components, without accompanying cytoplasmic membrane loss, occurred with serum-resistant strains. Loss of recoverable cytoplasmic membrane was not due to the action of either serum or bacterial phospholipase A. The results raise the possibilities that C5b-9(m) primarily damages the outer membrane and that the bacteria themselves actively participate in the ensuing, as yet unclarified, metabolic reactions that finally lead to their death. Images PMID:6358036

  9. Stop codon mutagenesis for homogenous expression of human papillomavirus L1 protein in Escherichia coli.

    PubMed

    Wang, Daning; Fan, Fei; Li, Zhihai; Liu, Xinlin; Song, Shuo; Wei, Shuangping; He, Maozhou; Lin, Yahua; Li, Zhongyi; Wei, Minxi; Yu, Hai; Gu, Ying; Li, Shaowei; Xia, Ningshao

    2017-03-04

    Human papillomavirus (HPV) is widely accepted to be the major causative pathogen of cervical cancer, warts, and other epithelial tumors. Virus infection and subsequent disease development can be prevented by vaccination with HPV vaccines derived from eukaryotic expression systems. Here, we report the soluble expression of the major capsid protein L1 of HPV31, a dominant carcinogenic HPV genotype, in Escherichia coli. HPV31 L1 protein and its elongated form (L1+) were observed in SDS-PAGE and CE-SDS analysis, generated by the native HPV31 L1 gene with a TAA stop codon. Replacing the TAA with TAG but not TGA could completely terminate protein translation. Mass spectrometry sequencing showed that L1+ comprised L1 with a C-terminal extension of 38 amino acids (aa). RNA folding analysis revealed that the unfaithful L1+ expression may result from translational read-through, as TAG is more stable and accessible than the other stop codons. The 38-aa elongated fragment perturbs self-assembly of HPV31 L1+, as shown in size and morphology analyses. By 3D cryo-electron microscopy structure determination, we show self-assembly of purified HPV31 L1 (TAG) VLPs into T = 7 icosahedral symmetry particles, resembling the native HPV virion. Finally, through additional characterization and antigenicity/immunogenicity assays, we verified that the E.coli-derived HPV31 VLPs are an ideal immunogen for HPV vaccine development. Our findings outline a codon optimization stratagem for protein expression and provide a method for the in-depth investigation of prokaryotic translation regulation.

  10. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli.

    PubMed

    Patra, A K; Mukhopadhyay, R; Mukhija, R; Krishnan, A; Garg, L C; Panda, A K

    2000-03-01

    Recombinant human growth hormone (r-hGH) was expressed in Escherichia coli as inclusion bodies. In 10 h of fed-batch fermentation, 1.6 g/L of r-hGH was produced at a cell concentration of 25 g dry cell weight/L. Inclusion bodies from the cells were isolated and purified to homogeneity. Various buffers with and without reducing agents were used to solubilize r-hGH from the inclusion bodies and the extent of solubility was compared with that of 8 M urea as well as 6 M Gdn-HCl. Hydrophobic interactions as well as ionic interactions were found to be the dominant forces responsible for the formation of r-hGH inclusion bodies during its high-level expression in E. coli. Complete solubilization of r-hGH inclusion bodies was observed in 100 mM Tris buffer at pH 12.5 containing 2 M urea. Solubilization of r-hGH inclusion bodies in the presence of low concentrations of urea helped in retaining the existing native-like secondary structures of r-hGH, thus improving the yield of bioactive protein during refolding. Solubilized r-hGH in Tris buffer containing 2 M urea was found to be less susceptible to aggregation during buffer exchange and thus was refolded by simple dilution. The r-hGH was purified by use of DEAE-Sepharose ion-exchange chromatography and the pure monomeric r-hGH was finally obtained by using size-exclusion chromatography. The overall yield of the purified monomeric r-hGH was approximately 50% of the initial inclusion body proteins and was found to be biologically active in promoting growth of rat Nb2 lymphoma cell lines.

  11. Expression of soluble, biologically active recombinant human endostatin in Escherichia coli.

    PubMed

    Xu, Han-Mei; Zhang, Guo-Yuan; Ji, Xiao-Dan; Cao, Lin; Shu, Luan; Hua, Zi-Chun

    2005-06-01

    Endostatin, a 20kDa C-terminal fragment of collagen XVIII, is a potent anti-angiogenic protein and inhibitor of tumor growth. Recombinant endostatin was prepared from Escherichia coli deposited as insoluble, inactive inclusion bodies. In the present study, we produced soluble and biologically active recombinant human endostatin (rhEndostatin) in E. coli by employing both co-expression of the molecular chaperones and lower temperature fermentation. Two groups of chaperones Trigger factor and GroEL-GroES (GroEL/ES), DnaK-DnaJ-GrpE and GroEL/ES, were co-expressed, respectively, with rhEndostatin at different temperatures (37, 25, and 16 degrees C). It revealed that low temperature or molecular chaperones alone could enhance the production of active rhEndostatin; meanwhile, combinational employment of low temperature cultivation (16 degrees C) together with co-expression of DnaK-DnaJ-GrpE and GroEL/ES was more effective to prevent aggregation of rhEndostatin. The production of soluble rhEndostatin was about 36 mg/L, and at least 16 mg of rhEndostatin was purified from 1L flask culture. The purified rhEndostatin specifically inhibited the proliferation of endothelial cell-bovine capillary endothelial cell in a dose-dependent manner, and it showed potent anti-angiogenic capability on the chorioallantoic membrane of chick embryo in vivo. Our study provides a feasible and convenient approach to produce soluble and biologically active rhEndostatin.

  12. Survival of Escherichia coli O26:H11 exceeds that of Escherichia coli O157:H7 as assessed by simulated human digestion of contaminated raw milk cheeses.

    PubMed

    Miszczycha, Stéphane D; Thévenot, Jonathan; Denis, Sylvain; Callon, Cécile; Livrelli, Valérie; Alric, Monique; Montel, Marie-Christine; Blanquet-Diot, Stéphanie; Thevenot-Sergentet, Delphine

    2014-02-17

    Shiga toxin producing Escherichia coli (STEC) are an important cause of human foodborne outbreaks. The consumption of raw milk dairy products may be an important route of STEC infection. For successful foodborne transmission, STEC strains must survive stress conditions met during gastrointestinal transit in humans. The aim of this study was to evaluate the survival of two STEC strains of serotypes O157:H7 and O26:H11 during simulated human digestion in the TNO gastro-Intestinal tract Model (TIM) of contaminated uncooked pressed cheeses. The survival of cheese microflora during in vitro gastrointestinal transit was also determined for the first time. The level of STEC increased from 2 log₁₀ CFU/ml to 4 log₁₀ CFU/g during the first 24h of cheese making and remained stable at around 4 log₁₀ CFU/g during cheese ripening and conservation. During transit through the artificial stomach and duodenum, levels of STEC decreased: 0.2% of E. coli O157:H7 and 1.8% of E. coli O26:H11 were recovered at 150 min in the gastric compartment, compared with 14.3% for the transit marker. Bacterial resumption was observed in the jejunum and ileum: 35.8% of E. coli O157:H7 and 663.2% of E. coli O26:H11 were recovered at 360 min in the ileal compartment, compared with 12.6% for the transit marker. The fate of STEC was strain-dependent, the survival of E. coli O26:H11 being 13 times greater than that of E. coli O157:H7 at the end of digestion in the cumulative ileal deliveries. These data provide a better understanding of STEC behavior during gastrointestinal transit in humans after ingestion of contaminated cheese.

  13. Binding of diarrheagenic Escherichia coli to 32- to 33-kilodalton human intestinal brush border proteins.

    PubMed Central

    Manjarrez-Hernandez, A; Gavilanes-Parra, S; Chavez-Berrocal, M E; Molina-Lopez, J; Cravioto, A

    1997-01-01

    We have detected human intestinal brush border proteins to which Escherichia coli strains adhere by means of a blotting-nitrocellulose method in which the binding of radiolabeled bacteria to sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated intestinal cell membranes was evaluated. The brush border fraction contained several polypeptides that bound only adherent E. coli strains. The most prominent and consistent of these proteins had apparent molecular masses of 32 to 33 kDa. Additional polypeptides ranging from 50 to 70, from 105 to 130, and from 180 to 200 kDa were also recognized by adherent E. coli strains, although with less intensity (in accordance with the number of bound bacteria to these polypeptides). Independently of the pattern of adherence (localized [LA], diffuse [DA], or aggregative [AggA]) all HEp-2-adhering strains recognized, with different intensities, the 32- to 33-kDa brush border proteins, whereas nonadhesive strains did not. The relative avidity of an LA strain to bind to the 32- to 33-kDa proteins was approximately seven- and sixfold higher than the binding of strains with aggregative and diffuse adherence, respectively. Thus, it is reasonable to think that LA, DA, and AggA strains have a common adhesin that mediates binding to the 32- to 33-kDa bands. Inhibition experiments using HEp-2 cells demonstrated that isolated 32- to 33-kDa proteins or specific antiserum blocked preferentially bacterial adherence of the LA pattern. Delipidization and protein digestion of the human brush borders confirmed that E. coli bound to structures of a proteinaceous nature. Deglycosylation studies and sodium meta-periodate oxidation of the intestinal cell membranes decreased bacterial binding activity significantly, indicating that E. coli bound to carbohydrate moieties in the glycoproteins. These results suggest that binding of E. coli strains, mainly of the LA phenotype, to the 32- to 33-kDa proteins could play a role in colonization through

  14. Primary Amine Oxidase of Escherichia coli Is a Metabolic Enzyme that Can Use a Human Leukocyte Molecule as a Substrate

    PubMed Central

    Maksimow, Mikael; Elima, Kati; Yegutkin, Gennady G.; Skurnik, Mikael; Dobrindt, Ulrich; Siitonen, Anja; McPherson, Michael J.

    2015-01-01

    Escherichia coli amine oxidase (ECAO), encoded by the tynA gene, catalyzes the oxidative deamination of aromatic amines into aldehydes through a well-established mechanism, but its exact biological role is unknown. We investigated the role of ECAO by screening environmental and human isolates for tynA and characterizing a tynA-deletion strain using microarray analysis and biochemical studies. The presence of tynA did not correlate with pathogenicity. In tynA+ Escherichia coli strains, ECAO enabled bacterial growth in phenylethylamine, and the resultant H2O2 was released into the growth medium. Some aminoglycoside antibiotics inhibited the enzymatic activity of ECAO, which could affect the growth of tynA+ bacteria. Our results suggest that tynA is a reserve gene used under stringent environmental conditions in which ECAO may, due to its production of H2O2, provide a growth advantage over other bacteria that are unable to manage high levels of this oxidant. In addition, ECAO, which resembles the human homolog hAOC3, is able to process an unknown substrate on human leukocytes. PMID:26556595

  15. Characterization of the Shiga toxin-producing Escherichia coli O26 isolated from human in Poland between 1996 and 2014.

    PubMed

    Januszkiewicz, A; Wołkowicz, T; Chróst, A; Szych, J

    2015-06-01

    Shiga toxin-producing Escherichia coli (STEC) O26 infections can be comparable with STEC O157 infections in severity of the acute haemolytic-uremic syndrome HUS and long-term sequelae. Among O26 STEC isolates, highly virulent clone O26:H11/H- Sequence Type 29 (ST 29) emerged in Germany in mid-1990s and spread to European countries. However, up to date, no STEC O26:H11/H- belonging to ST29 has been documented in Poland. In this study, we determined the relationship and clonal structure, stx genotypes, plasmid gene profiles and antimicrobial resistance of nine human STEC O26:H11/H- strains from human patients in Poland between 1996 and 2014. Of the 9 human STEC O26:H11/H- strains, two belonged to ST29 and were isolated from two children with HUS and renal failure with sepsis respectively. These strains showed the molecular characteristics of the emerging human-pathogenic ST29 clone (stx1-, stx2a+, eae+, ehxA+, etpD+, katP-, espP-). The remaining STEC O26:H11/H- strains examined in this study, belonged to ST21, with plasmid genes profiles frequently reported in ST21 strains in Europe. STEC O26 infections with serious human health consequences highlight the need of continuous surveillance of non-O157 STEC and implementation of the diagnostic approaches focused on their detection. Significance and impact of the study: These study provides the first data on the occurrence of emerging Shiga toxin-producing Escherichia coli O26:H11 ST 29 clone in human patients in Poland. Those strains show the molecular characteristics of highly virulent new ST29 pathotype (stx1-, stx2a+, eae+ ehxA+, etpD+, katP-, espP-). These results demonstrated prompt efforts to implement diagnostic approaches detection of those pathogen in the European countries.

  16. A QMRA for the Transmission of ESBL-Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies.

    PubMed

    Evers, Eric G; Blaak, Hetty; Hamidjaja, Raditijo A; de Jonge, Rob; Schets, Franciska M

    2016-02-01

    The public health significance of transmission of ESBL-producing Escherichia coli and Campylobacter from poultry farms to humans through flies was investigated using a worst-case risk model. Human exposure was modeled by the fraction of contaminated flies, the number of specific bacteria per fly, the number of flies leaving the poultry farm, and the number of positive poultry houses in the Netherlands. Simplified risk calculations for transmission through consumption of chicken fillet were used for comparison, in terms of the number of human exposures, the total human exposure, and, for Campylobacter only, the number of human cases of illness. Comparing estimates of the worst-case risk of transmission through flies with estimates of the real risk of chicken fillet consumption, the number of human exposures to ESBL-producing E. coli was higher for chicken fillet as compared with flies, but the total level of exposure was higher for flies. For Campylobacter, risk values were nearly consistently higher for transmission through flies than for chicken fillet consumption. This indicates that the public health risk of transmission of both ESBL-producing E. coli and Campylobacter to humans through flies might be of importance. It justifies further modeling of transmission through flies for which additional data (fly emigration, human exposure) are required. Similar analyses of other environmental transmission routes from poultry farms are suggested to precede further investigations into flies.

  17. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and s...

  18. Oral rice-based vaccine induces passive and active immunity against enterotoxigenic E. coli-mediated diarrhea in pigs.

    PubMed

    Takeyama, Natsumi; Yuki, Yoshikazu; Tokuhara, Daisuke; Oroku, Kazuki; Mejima, Mio; Kurokawa, Shiho; Kuroda, Masaharu; Kodama, Toshiaki; Nagai, Shinya; Ueda, Susumu; Kiyono, Hiroshi

    2015-09-22

    Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in both neonatal and weaned pigs. Because the cholera toxin B subunit (CTB) has a high level of amino acid identity to the ETEC heat-labile toxin (LT) B-subunit (LTB), we selected MucoRice-CTB as a vaccine candidate against ETEC-induced pig diarrhea. When pregnant sows were orally immunized with MucoRice-CTB, increased amounts of antigen-specific IgG and IgA were produced in their sera. CTB-specific IgG was secreted in the colostrum and transferred passively to the sera of suckling piglets. IgA antibodies in the colostrum and milk remained high with a booster dose after farrowing. Additionally, when weaned minipigs were orally immunized with MucoRice-CTB, production of CTB-specific intestinal SIgA, as well as systemic IgG and IgA, was induced. To evaluate the cross-protective effect of MucoRice-CTB against ETEC diarrhea, intestinal loop assay with ETEC was conducted. The fluid volume accumulated in the loops of minipigs immunized with MucoRice-CTB was significantly lower than that in control minipigs, indicating that MucoRice-CTB-induced cross-reactive immunity could protect weaned pigs from diarrhea caused by ETEC. MucoRice-CTB could be a candidate oral vaccine for inducing both passive and active immunity to protect both suckling and weaned piglets from ETEC diarrhea.

  19. Characterization and biofilm forming ability of diarrhoeagenic enteroaggregative Escherichia coli isolates recovered from human infants and young animals.

    PubMed

    Vijay, Deepthi; Dhaka, Pankaj; Vergis, Jess; Negi, Mamta; Mohan, Vysakh; Kumar, Manesh; Doijad, Swapnil; Poharkar, Krupali; Kumar, Ashok; Malik, Satyaveer Singh; Barbuddhe, Sukhadeo Baliram; Rawool, Deepak B

    2015-02-01

    Enteroaggregative Escherichia coli (EAEC) is an important pathotype that causes infection in humans and animals. EAEC isolates (n=86) recovered from diarrhoeal cases in human infants (37) and young animals (49) were characterized as 'typical' and/or 'atypical' EAEC strains employing PCR for virulence associated genes (cvd432, aaiA, astA, pilS, irp2, ecp, pic, aggR, aafA, aggA, and agg3A). Besides, biofilm formation ability of human and animal EAEC isolates was assessed using microtiter plate assay. In addition, the transcriptional profile of biofilm associated genes (fis and ecp) was also evaluated and correlated with biofilm formation assay for few selected EAEC isolates of human and animal origins. Overall, a diverse virulence gene profile was observed for the EAEC isolates of human and animal origins as none of the EAEC isolates revealed the presence of all the genes that were targeted. Nine 'typical' EAEC isolates were identified (6 from humans and 3 from animals) while, the majority of the isolates were 'atypical' EAEC strains. Isolation and identification of three 'typical' EAEC isolates from animals (canines) appears to be the first report globally. Further, based on the observations of the biofilm formation assay, the study suggested that human EAEC isolates in particular were comparatively more biofilm producers than that of the animal EAEC isolates. The fis gene was highly expressed in majority of 'typical' EAEC isolates and the ecp gene in 'atypical' EAEC isolates.

  20. Phenotypic Profiles of Enterotoxigenic Escherichia coli Associated With Early Childhood Diarrhea in Rural Egypt

    DTIC Science & Technology

    2004-12-01

    Bethesda,2 Maryland; National Autonomous University, Mexico City, Mexico3; International Vaccine Institute, Seoul, Korea5; and Department of Medical ... Microbiology and Immunology, Göteborg University, Göteborg, Sweden6 Received 4 May 2004/Returned for modification 14 June 2004/Accepted 22 July 2004

  1. Immunologic Control by Oral Vaccines of Diarrheal Disease Due to Enterotoxigenic Escherichia coli and Shigella

    DTIC Science & Technology

    1988-06-30

    obsolete. SECURITY CLASSIFICATION OF THIS PAGE Block 19 continued: a modification of attenuated Salmonella typhi strain Ty21a into which is introduced...prototype Shigella vaccines. The first prototype consisted of attenuated Salmonella typhi strain Ty2la into which was introduced the 120 Md invasiveness...genes into the galE Salmonella typhi Ty2la typhoid vaccine. Infect Immun 34:746-750, 1981. 76. Black RE, Levine MM, Clemnts ML, Losonsky G, Herrington H

  2. Immunologic Control by Oral Vaccines of Diarrheal Disease Due to Enterotoxigenic Escherichia coli and shigella

    DTIC Science & Technology

    1986-09-01

    Tbmdata i~nint that the mlmtnim 03C protection me by anti-f inrial antibody preventlingt pathog .1it ETEC from 0oo1z0i i~ In the proziual small...Studies with Vaccine Prepred at the MUIR Vaccine Production htaility at Pores Glen ne have bs. carried out with 5076-1C vaccine prepared, lised and... bacterial enteric infe.tiono as aplied to vaccine development. Microbiol Rev 1983; 47:510-555. 23. Levine UK, Bergquist EJ, Nalin DR, Waterman EH

  3. A Commensal Gone Bad: Complete Genome Sequence of the Prototypical Enterotoxigenic Escherichia coli Strain H10407

    DTIC Science & Technology

    2010-11-01

    also sequenced using a ETEC GENOME SEQUENCE 5823 similar approach (7, 50. 60). Plasmid DNA for ETEC El392!75 was provided by Acambis United...can confirm only the presence o f genes among the available DNA sc- VOL 192, 2010 ETEC GE:-.’OME SEQUENCE 5827 (A) EAEC 042 CexE H10407 E1392/75...tified a nucleotide region undergoing dynamic alteration. The region of DNA consisted of a shuffion similar to that of R64 (36). PiiV is a component of a

  4. Rapid identification of enterovirulent Escherichia coli strains using polymerase chain reaction from shrimp farms.

    PubMed

    Roy, Debashis; Biswas, Bhabananda; Islam, H M Rakibul; Ahmed, Md Shamim; Rasheduzzaman, Md; Sarower, Md Golam

    2013-11-01

    Although, Escherichia coli is widely distributed in the environment, only a small percentage is pathogenic to humans. The most commonly encountered are those belonging to the Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enterohaemorrhagic (EHEC) and Enteropathogenic (EPEC) subtypes. Aquaculture premises specially shrimp farm in tropical and subtropical countries largely susceptive to different types of E. coli strains. With the PCR system, an attempt was taken to identify the virulent E. coli in a rapid basis from water, sediment and live shrimp from different shrimp farms established in the shrimp production areas of southwest part of Bangladesh. The target genes chosen for this investigation included the PhoA, a housekeeping gene in all E. coli and thereafter the virulent genes LT1, LT1 and ST1 of ETEC, the VT of EHEC and EAE of EPEC, which were amplified with the primers designed for their specific genes. The restriction enzyme conformation and the gel electrophoresis bands showed the presence of E. coli, among which ETEC and EPEC groups were present in the environmental and biological samples of shrimp farms, brings up into the human health concern. The sanitation conditions amid farm were also investigated to find the link of pathogenic E. coli, which came into the result of less infection if the farm maintains improved sanitation. This study has clearly urged the exigency of periodical quick check of virulent E. coli with the versatile PCR system from brood management to post-harvest handling of shrimp.

  5. Enteropathogenic Escherichia coli Serotypes and Endemic Diarrhea in Infants

    PubMed Central

    Toledo, M. Regina F.; Alvariza, M. do Carmo B.; Murahovschi, Jayme; Ramos, Sonia R. T. S.; Trabulsi, Luiz R.

    1983-01-01

    Enteropathogenic Escherichia coli serotypes were searched for in feces of 550 children with endemic diarrhea and in 129 controls, in São Paulo, in 1978 and 1979; serotypes O111ab:H−, O111ab:H2, and O119:H6 were significantly associated with diarrhea in children 0 to 5 months old and were the most frequent agents of diarrhea in this age group as compared with enterotoxigenic and enteroinvasive E. coli, Salmonella sp., Shigella sp., and Yersinia enterocolitica. It is concluded that various enteropathogenic E. coli serotypes may be agents of endemic infantile diarrhea. PMID:6339384

  6. Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality.

    PubMed

    Bussalleu, E; Yeste, M; Sepúlveda, L; Torner, E; Pinart, E; Bonet, S

    2011-09-01

    The presence of bacteria in boar semen causes economic losses in artificial insemination (AI) centers, as a consequence of alterations on boar sperm quality. For this reason, the effects of different concentrations of enterotoxigenic Escherichia coli (ETEC) and verotoxigenic E. coli (VTEC) on boar sperm quality were determined in this study, by conducting two experiments. The first one consisted of assessing these effects on boar sperm quality after incubating the inoculated doses at 37°C for a 96-h period, whereas the second inoculated doses were stored at 15°C during 11 days. In both experiments, the infective concentrations ranged from 10(8)cfu mL(-1) to 10(2)cfu mL(-1); the negative control being a non-inoculated dose. Twenty-four hours after inoculation, we checked by PCR for the presence of bacteria in all tubes. Sperm quality (sperm motility, sperm viability and sperm morphology) was assessed at 24h, 48h, 72h and 96h after inoculations in the first experiment (37°C), and after 3, 5, 7, 9 and 11 days in the second (15°C). Whereas no changes were observed in sperm morphology in both experiments, the percentages of progressive motile spermatozoa dramatically diminished after 24h of incubation at 37°C, the effect being more detrimental at the highest infective concentration of microbes. Moreover, a significant decrease in the percentage of viable spermatozoa in the tube inoculated with the highest concentration (10(8)cfu mL(-1)) was detected after 24h of incubating contaminated doses at 37°C. After 48h of incubation, the presence of infective concentrations of ETEC and VTEC from 10(8)cfu mL(-1) to 10(3)cfu mL(-1) resulted in a significant diminution in the percentage of viable spermatozoa. These results suggest that ETEC and VTEC PCR analyses should be done in doses destined for AI to minimize the use of doses with diminished sperm quality due to the presence of bacteria and to avoid the potential spread of infective diseases.

  7. Detection of enterotoxigenic Staphylococcus aureus isolates in domestic dairy products

    PubMed Central

    Imani Fooladi, AA; Tavakoli, HR; Naderi, A

    2010-01-01

    Background and objectives Staphylococcus aureusis a one of THE most frequent causes of food poisoning (FP) in dairy products. The main etiologic agents of FP are staphylococcal enterotoxins (SE). There are different types of SE; types A (SEA) and B (SEB) are the most clinically important enterotoxins. Traditional dairy products are still produced in small batches and sold by some vendors without a permit from the Ministry of Health. This study focuses on the molecular and serological detection of enterotoxigenic Staphylococcus aureus SEA and SEB genes and its products, respectively from samples of such traditional products. Materials and Methods 100 samples from dairy products were produced under sterile conditions via traditional methods and were transported to the laboratory. The samples were cultured and identified by routine bacteriological methods. The isolated bacteria were evaluated by PCR tests for detection of the genes encoding SEA and SEB. Subsequently, the ability of these strains to produce enterotoxin was examined by Sac's culture method and was confirmed by Sigel Radial Immounodiffussion (SRID). Results The results indicated that 32% of the dairy products were contaminated by S. aureus (cream 18%, cheese 10%, milk 4%). The PCR results showed that 15.6% of the S. aureus isolates possessed the SEA gene, 9.3% had the SEB gene, and 6.2% possessed both genes. The evaluation of enterotoxin production indicated that 80% of SEA and 33% of SEB genes were expressed. Conclusion Enterotoxins SEA and SEB are heat stable and consequently; heating has no effect on dairy products contaminated by entertoxins. Subsequently, gastritis may occur within several hours after consumption. Our findings suggest that PCR is a rapid, sensitive, specific, and inexpensive method for detecting SE and can replace the traditional assays. PMID:22347562

  8. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine

    PubMed Central

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) growth in women’s bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the “interactive metabolome”, which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI. PMID:27076285

  9. Characterization of Monkey Enteropathogenic Escherichia coli (EPEC) and Human Typical and Atypical EPEC Serotype Isolates from Neotropical Nonhuman Primates

    PubMed Central

    Carvalho, Vania M.; Gyles, Carlton L.; Ziebell, Kim; Ribeiro, Marcela A.; Catão-Dias, José L.; Sinhorini, Idércio L.; Otman, Jamile; Keller, Rogéria; Trabulsi, Luiz R.; Pestana de Castro, Antônio F.

    2003-01-01

    Enteropathogenic Escherichia coli (EPEC) has been associated with infantile diarrhea and mortality in humans in developing countries. While diarrhea is also a major problem among primates kept in captivity, the role of E. coli is unclear. This study was designed to characterize diarrheagenic E. coli recovered from the feces of 56 New World nonhuman primates, primarily marmosets (Callithrix spp.). Seventeen of the 56 primates had signs of diarrhea and/or enteritis. E. coli recovered from feces from these animals was tested by PCR for genes encoding virulence factors of diarrheagenic E. coli and for patterns of adherence to HeLa cells. In addition, isolates were characterized by the fluorescence actin staining test and by their ability to induce attaching and effacing lesions. PCR for the eae gene was positive in 10 of the 39 (27%) apparently healthy animals and in 8 of the 17 (47%) animals with diarrhea and/or enteritis. Colonies of eae+ E. coli were serotyped and examined by PCR for genes encoding EPEC virulence markers. The eae+ E. coli isolates recovered from both healthy and sick nonhuman primates demonstrated virulence-associated attributes similar to those of EPEC strains implicated in human disease and are designated monkey EPEC. The results presented here indicate that EPEC may be a significant pathogen for nonhuman primates, deserving further investigation. The similarities between the affected animals investigated in this study and human EPEC infections suggest that marmosets may represent an important model for EPEC in humans. PMID:12624055

  10. Response of extraintestinal pathogenic Escherichia coli to human serum reveals a protective role for Rcs-regulated exopolysaccharide colanic acid.

    PubMed

    Miajlovic, Helen; Cooke, Niamh M; Moran, Gary P; Rogers, Thomas R F; Smith, Stephen G

    2014-01-01

    Extraintestinal Escherichia coli (ExPEC) organisms are the leading cause of Gram-negative bacterial bloodstream infections. These bacteria adapt to survival in the bloodstream through expression of factors involved in scavenging of nutrients and resisting the killing activity of serum. In this study, the transcriptional response of a prototypic ExPEC strain (CFT073) to human serum was investigated. Resistance of CFT073 to the bactericidal properties of serum involved increased expression of envelope stress regulators, including CpxR, σE, and RcsB. Many of the upregulated genes induced by active serum were regulated by the Rcs two-component system. This system is triggered by envelope stress such as changes to cell wall integrity. RcsB-mediated serum resistance was conferred through induction of the exopolysaccharide colanic acid. Production of this exopolysaccharide may be protective while cell wall damage caused by serum components is repaired.

  11. Construction of recombinant Escherichia coli strains for secretory expression of artificial genes for human granulocyte-macrophage colony stimulating factor

    SciTech Connect

    Petrovskaya, L.E.; Ruzin, A.V.; Shingarova, L.N.; Korobko, V.G.

    1995-11-01

    A number of recombinant plasmids for expression of artificial genes encoding human granulocyte-macrophage colony stimulating factor (GM-CSF) were constructed. A hybrid gene was obtained that contains a sequence encoding the leader peptide and a tandem of two IgG-binding domains of protein A from Staphylococcus aureus coupled, through an enteropepdidase linker, to a synthetic gmcsf gene. The construction enables Escherichia coli to carry out biosynthesis of the hybrid protein and its subsequent transport into the periplasmic space of bacteria. Another hybrid gene, combining sequences for the signal peptide of the E. coli outer membrane protein OmpA and GM-CSF, was obtained using polymerase chain reaction. The localization of the mature protein produced by the hybrid gene was found to depend on the strength of the promoter used. 39 refs., 6 figs.

  12. Binding of Soluble Natural Ligands to a Soluble Human T-Cell Receptor Fragment Produced in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Hilyard, Katherine L.; Reyburn, Hugh; Chung, Shan; Bell, John I.; Strominger, Jack L.

    1994-09-01

    An Escherichia coli expression system has been developed to produce milligram quantities of the variable domains of a human T-cell receptor from a cytotoxic T cell that recognizes the HLA-A2-influenza matrix peptide complex as a single polypeptide chain. The recombinant protein was purified by metal-chelate chromatography and then refolded in a redox buffer system. The refolded protein was shown to directly bind both Staphylococcus aureus enterotoxin B and the major histocompatibility complex protein-peptide complex using a BIAcore biosensor. Thus this preparation of a single-chain, variable-domain, T-cell receptor fragment can bind both of its natural ligands and some of it is therefore a functional fragment of the receptor molecule.

  13. Escherichia coli O157:H7 survives within human macrophages: global gene expression profile and involvement of the Shiga toxins.

    PubMed

    Poirier, Katherine; Faucher, Sébastien P; Béland, Maxime; Brousseau, Roland; Gannon, Victor; Martin, Christine; Harel, Josée; Daigle, France

    2008-11-01

    Escherichia coli O157:H7 is an important food-borne pathogen that specifically binds to the follicle-associated epithelium in the intestine, which rapidly brings this bacterial pathogen in contact with underlying human macrophages. Very little information is available about the interaction between E. coli O157:H7 and human macrophages. We evaluated the uptake and survival of strain EDL933 during infection of human macrophages. Surprisingly, EDL933 survived and multiplied in human macrophages at 24 h postinfection. The global gene expression profile of this pathogen during macrophage infection was determined. Inside human macrophages, upregulation of E. coli O157:H7 genes carried on O islands (such as pagC, the genes for both of the Shiga toxins, and the two iron transport system operons fit and chu) was observed. Genes involved in acid resistance and in the SOS response were upregulated. However, genes of the locus of enterocyte effacement or genes involved in peroxide resistance were not differentially expressed. Many genes with putative or unknown functions were upregulated inside human macrophages and may be newly discovered virulence factors. As the Shiga toxin genes were upregulated in macrophages, survival and cytotoxicity assays were performed with isogenic Shiga toxin mutants. The initial uptake of Shiga toxins mutants was higher than that of the wild type; however, the survival rates were significantly lower at 24 h postinfection. Thus, Shiga toxins are implicated in the interaction between E. coli O157:H7 and human macrophages. Understanding the molecular mechanisms used by E. coli to survive within macrophages may help in the identification of targets for new therapeutic agents.

  14. Assessment of Genetic Markers for Tracking the Sources of Human Wastewater Associated Escherichia coli in Environmental Waters.

    PubMed

    Warish, Ahmed; Triplett, Cheryl; Gomi, Ryota; Gyawali, Pradip; Hodgers, Leonie; Toze, Simon

    2015-08-04

    In this study, we have evaluated the performance characteristics (host-specificity and -sensitivity) of four human wastewater-associated Escherichia coli (E. coli) genetic markers (H8, H12, H14, and H24) in 10 target (human) and nontarget (cat, cattle, deer, dog, emu, goat, horse, kangaroo, and possum) host groups in Southeast Queensland, Australia. The overall host-sensitivity values of the tested markers in human wastewater samples were 1.0 (all human wastewater samples contained the E. coli genetic markers). The overall host-specificity values of these markers to differentiate between human and animal host groups were 0.94, 0.85, 0.72, and 0.57 for H8, H12, H24, and H14, respectively. Based on the higher host-specificity values, H8 and H12 markers were chosen for a validation environmental study. The prevalence of the H8 and H12 markers was determined among human wastewater E. coli isolates collected from a wastewater treatment plant (WWTP). Among the 97 isolates tested, 44 (45%) and 14 (14%) were positive for the H8 and H12 markers, respectively. A total of 307 E. coli isolates were tested from environmental water samples collected in Brisbane, of which 7% and 20% were also positive for the H8 and H12 markers, respectively. Based on our results, we recommend that these markers could be useful when it is important to identify the source(s) of E. coli (whether they originated from human wastewater or not) in environmental waters.

  15. Disinfectant and antimicrobial susceptibility profiles of the big six non-O157 Shiga toxin-producing Escherichia coli strains from food animals and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The disinfectant and antimicrobial susceptibility profiles of 144 non-O157 Shiga toxin-producing Escherichia coli (STECs) from food animals and humans were determined. An overall moderate prevalence of 38.9% antimicrobial resistance (AMR) was observed in these strains. Animal strains had a lower p...

  16. Linkage of heat-stable enterotoxin activity and ampicillin resistance in a plasmid isolated from an Escherichia coli strain of human origin.

    PubMed Central

    Stieglitz, H; Fonseca, R; Olarte, J; Kupersztoch-Portnoy, Y M

    1980-01-01

    In an Escherichia coli strain of human origin, ampicillin resistance and heat-stable enterotoxin activity were shown by EcoRI restriction endonuclease and genetic analysis to be in an 80-megadalton plasmid. Images Fig. 1 Fig. 2 PMID:6254890

  17. Drug resistance and adherence to human intestines of enteroaggregative Escherichia coli.

    PubMed

    Yamamoto, T; Echeverria, P; Yokota, T

    1992-04-01

    Clinical isolates of enteroaggregative Escherichia coli (EAggEC) were tested for their in vitro susceptibilities to 27 antimicrobial agents. Marked drug resistance was observed with sulfamethoxazole, ampicillin, and chloramphenicol in contrast to such antimicrobial agents as cefixime, sparfloxacin, and ciprofloxacin. One of the EAggEC strains carried a plasmid that conferred on its host resistance to ampicillin, tetracycline, sulfamethoxazole, streptomycin, and spectinomycin and an ability to adhere to child ileal villi or HeLa cells in the characteristic aggregative pattern. This plasmid also mediated D-mannose-resistant hemagglutinin production and bacterial clump formation (autoagglutination). The data demonstrate appearance of marked drug resistance and an intestine-adherence and drug-resistance plasmid in the newest category of diarrheagenic E. coli.

  18. Incidence of diarrhoeagenic Escherichia coli isolated from young children with diarrhoea in the west of Iran.

    PubMed

    Alikhani, Mohammad Yousef; Sedighi, Iraj; Zamani, Alireza; Aslani, Mohammad Mehdi; Sadrosadat, Taravat

    2012-09-01

    Diarrhoeagenic Escherichia coli (DEC) represents a main group of enteric pathogens that cause human diarrhoea. Because it is not simply distinguished from normal flora by simple laboratory methods, modern molecular diagnostic assays are necessary. Although it is neither necessary nor applicable to perform PCR for all patients, it is of many advantages to verify the prevalence of DEC in different areas by this method. Knowing the prevalence of DEC in an area, we can focus on few pathogens and narrow our antimicrobial treatment. The aim of this study is to evaluate the contribution of the different DEC categories in children diarrhoea in the west of Iran.The stool specimens of 251 children with diarrhoea were collected from June to September 2007. Polymerase chain reaction (PCR) was performed to determine the presence of enteropathogenic (EPEC), enterotoxigenic (ETEC), entero-invasive (EIEC), Shiga toxin-producing (STEC) and entero-aggregative (EAEC) strains. ETEC strains were isolated from 13 and EAEC strains from 16 children. STEC was detected in 7 children, and no EIEC was isolated. Finally, EPEC strains were isolated in 41 cases. EAEC and EPEC are the most frequent DECs in children less than 10 years of age in West of Iran.

  19. Antibacterial and Antidiarrheal Activities of Plant Products against Enterotoxinogenic Escherichia coli

    PubMed Central

    Dubreuil, J. Daniel

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) produces two types of enterotoxins: heat-labile (LT) and heat-stable (STa and STb). These molecules are involved in the induction of secretory diarrhea in animals including humans. This condition is currently treated using a fluid replacement therapy and antibiotics. This treatment is often not available to people in developing countries, and several die from the condition provoke by ETEC. Over the years, plants and plant extracts have been use as traditional medicine to treat various gastrointestinal ailments including diarrhea. Many of these plant products have been claimed to be active against diarrhea, however few have been extensively studied. The main objective of this review was to gather the scattered information on the antidiarrheal activities reported for various plant products on ETEC. This includes two major effects: (1) The inhibitory effect on bacterial growth or viability and (2) The interference with ETEC enterotoxins activity upon the intestinal epithelium. We will focus on plant products and extracts for which we have major indications of their biological activity against ETEC and their enterotoxins. Because Vibrio cholerae toxin (CT) is structurally, antigenically and mechanistically related to LT, it will also be discussed in this review. PMID:24212181

  20. Enterobactin-Mediated Delivery of β-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli

    PubMed Central

    2015-01-01

    The design, synthesis, and characterization of enterobactin–antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition. PMID:24927110

  1. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia.

    PubMed

    Rúgeles, Laura Cristina; Bai, Jing; Martínez, Aída Juliana; Vanegas, María Consuelo; Gómez-Duarte, Oscar Gilberto

    2010-04-15

    The prevalence of diarrheagenic Escherichia coli in childhood diarrhea and the role of contaminated food products in disease transmission in Colombia are largely unknown. The aim of this study is to identify E. coli pathotypes, including E. coli O157:H7, from 108 stool samples from children with acute diarrhea, 38 meat samples and 38 vegetable samples. Multiplex PCR and Bax Dupont systems were used for E. coli pathotype detection. Eighteen (9.8%) E. coli diarrheagenic pathotypes were detected among all clinical and food product samples tested. Four different pathotypes were identified from clinical samples, including enteroaggregative E. coli, enterotoxigenic E. coli, shiga-toxin producing E. coli, and enteropathogenic E. coli. Food product samples were positive for enteroaggregative and shiga-toxin producing E. coli, suggesting that meat and vegetables may be involved in transmission of these E. coli pathotypes in the community. Most E. coli strains identified belong to the phylogenetic groups A and B1, known to be associated with intestinal rather than extraintestinal E. coli clones. Our data is the first molecular E. coli report that confirms the presence of E. coli pathotypes circulating in Colombia among children with diarrhea and food products for human consumption. Implementation of multiplex PCR technology in Latin America and other countries with limited resources may provide an important epidemiological tool for the surveillance of E. coli pathotypes from clinical isolates as well as from water and food product samples.

  2. Persistent colonization of sheep by Escherichia coli O157:H7 and other E. coli pathotypes.

    PubMed

    Cornick, N A; Booher, S L; Casey, T A; Moon, H W

    2000-11-01

    Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 10(7) or 10(10) CFU/strain/animal. The other strains were given only at 10(10) CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 10(7) or 10(10) CFU. One of the ETEC strains also persisted when inoculated at 10(10) CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 10(7) CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.

  3. Seasonal distribution and prevalence of diarrheagenic Escherichia coli in different aquatic environments in Taiwan.

    PubMed

    Huang, Wen-Chien; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Ho, Ying-Ning; Kuo, Chun-Wei; Huang, Yu-Li

    2016-02-01

    Diarrheagenic Escherichia coli (DEC) are the most common agents of diarrhea. Waterborne DEC could pose a potential health risk to human through agricultural, household, recreational, and industrial use. There are few published reports on the detection of DEC and its seasonal distribution in aquatic environments. The presence of DEC in different types of aquatic environments was investigated in this study. Water samples were collected from major rivers, water reservoirs, and recreational hot springs throughout Taiwan. Moreover, an intensive water sampling plan was carried out along Puzih River. The detection of DEC target genes was used to determine the presence of enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC). Among the 383 water samples analyzed, DEC was found in 122 (31.8%) samples. The detection rate varied by genotype, raging from 3.6% for STEC to 17.2% for EPEC. The DEC detection rate was higher from river waters than reservoirs and hot springs. In addition, DEC was detected at a higher rate in spring and summer. The presence of EPEC was significantly associated with total coliform levels among hot spring samples. Moreover, the presence of ETEC in river water samples was associated with heterotrophic plate counts. Water with EPEC differed significantly in pH from Puzih River samples. These results suggest that seasonal characteristics may affect the presence of DEC in different aquatic environments, and water quality indicators may be indicative of the presence of DEC.

  4. Clonal relationship between human and avian ciprofloxacin-resistant Escherichia coli isolates in North-Eastern Algeria.

    PubMed

    Agabou, A; Lezzar, N; Ouchenane, Z; Khemissi, S; Satta, D; Sotto, A; Lavigne, J-P; Pantel, A

    2016-02-01

    The objectives of this study were to determine rates, patterns, and mechanisms of antibiotic resistance, and to assess connections between chicken commensal, human commensal, and pathogenic ciprofloxacin-resistant Escherichia coli isolates. All E. coli isolates collected from chickens, their farmers, and patients in the Constantine region (North-east Algeria) were analyzed for bla and plasmid-mediated quinolone resistance (PMQR) gene contents, phylogroups, Rep-PCR profiles, and multilocus sequence types. A high prevalence of resistance to fluoroquinolones (51.4 % to ciprofloxacin) was recorded in avian isolates. Of these, 22.2 % carried the aac(6')-Ib-cr gene, whereas lower resistance levels to these antibiotics were recorded in chicken farmers' isolates. None of the commensal isolates harbored the qnr, qepA, or oqxAB genes. One human pathogenic isolate was ertapenem-resistant and harbored the bla OXA-48 gene, 84 showed an extended-spectrum β-lactamase phenotype, with bla CTX-M-15 gene prevalent in 87.2 % of them. Seventy isolates were resistant to fluoroquinolones, with aac(6')-Ib-cr present in 72.8 %, qnrB in 5.7 %, and qnrS in 10 %. Three Rep-PCR profiles were common to chicken commensal and human pathogenic isolates (phylogroups D and B1; ST21, ST48, and ST471 respectively); one was found in both chicken and chicken-farmer commensal strains (D; ST108), while another profile was identified in a chicken-farmer commensal strain and a human pathogenic one (B1; ST19). These findings suggest clonal and epidemiologic links between chicken and human ciprofloxacin-resistant E. coli isolates and the important role that poultry may play in the epidemiology of human E. coli infections in the Constantine region.

  5. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (A)BC excision nuclease

    SciTech Connect

    Sibghat-Ullah; Sancar, Z. )

    1990-06-19

    Human cell free extract prepared by the method of Manley et al. carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunits(s) of human excision nuclease.

  6. The Human Homolog of Escherichia coli Endonuclease V Is a Nucleolar Protein with Affinity for Branched DNA Structures

    PubMed Central

    Laerdahl, Jon K.; Gran Neurauter, Christine; Heggelund, Julie E.; Thorgaard, Eirik; Strøm-Andersen, Pernille; Bjørås, Magnar; Dalhus, Bjørn; Alseth, Ingrun

    2012-01-01

    Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3′ of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3′-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription. PMID:23139746

  7. Transgenic cows that produce recombinant human lactoferrin in milk are not protected from experimental Escherichia coli intramammary infection.

    PubMed

    Hyvönen, P; Suojala, L; Orro, T; Haaranen, J; Simola, O; Røntved, C; Pyörälä, S

    2006-11-01

    This is the first study describing an experimental mastitis model using transgenic cows expressing recombinant human lactoferrin (rhLf) in their milk. The aim of the study was to investigate the concentrations in milk and protective effects of bovine and recombinant human lactoferrin in experimental Escherichia coli mastitis. Experimental intramammary infection was induced in one udder quarter of seven first-lactating rhLf-transgenic cows and six normal cows, using an E. coli strain isolated from cows with clinical mastitis and known to be susceptible to Lf in vitro. Clinical signs were recorded during the experimental period, concentrations of human and bovine Lf and indicators of inflammation and bacterial counts were determined for milk, and concentrations of acute-phase proteins and tumor necrosis factor alpha were determined for sera and milk. Serum cortisol and blood hematological and biochemical parameters were also determined. Expression levels of rhLf in the milk of transgenic cows remained constant throughout the experiment (mean, 2.9 mg/ml). The high Lf concentrations in the milk of transgenic cows did not protect them from intramammary infection. All cows became infected and developed clinical mastitis. The rhLf-transgenic cows showed milder systemic signs and lower serum cortisol and haptoglobin concentrations than did controls. This may be explained by lipopolysaccharide-neutralizing and immunomodulatory effects of the high Lf concentrations in their milk. However, Lf does not seem to be a very efficient protein for genetic engineering to enhance the mastitis resistance of dairy cows.

  8. Detection of Escherichia coli enterotoxins in stools.

    PubMed Central

    Merson, M H; Yolken, R H; Sack, R B; Froehlich, J L; Greenberg, H B; Huq, I; Black, R W

    1980-01-01

    We determined whether enterotoxigenic Escherichia coli diarrhea could be diagnosed by direct examination of stools for heat-labile (LT) and heat-stable (ST) enterotoxins. The Y-1 adrenal cell and an enzyme-linked immunosorbent assay (ELISA) detected LT in 85 and 93%, respectively, of stool specimens obtained from adults with acute diarrhea from whom an LT- and ST-producing organism had been isolated. Furthermore, the ELISA assay detected LT in 8 of 35 stool specimens from which no LT-producing E. coli had been isolated. The infant mouse assay was utilized to detect ST in these stool specimens and was found to be an insensitive method, showing positive results in only 36% of the specimens from which an ST-producing organism was isolated. Further studies are warranted to determine the diagnostic value of direct detection of LT in stools, especially by the ELISA method. PMID:6995331

  9. Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

    PubMed Central

    de Toro, María; Scharringa, Jelle; Dohmen, Wietske; Du, Yu; Hu, Juan; Lei, Ying; Li, Ning; Tooming-Klunderud, Ave; Heederik, Dick J. J.; Fluit, Ad C.; Bonten, Marc J. M.; Willems, Rob J. L.; de la Cruz, Fernando; van Schaik, Willem

    2014-01-01

    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E

  10. Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7.

    PubMed

    de Sablet, Thibaut; Chassard, Christophe; Bernalier-Donadille, Annick; Vareille, Marjolaine; Gobert, Alain P; Martin, Christine

    2009-02-01

    Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.

  11. Escherichia coli in the Environment: Implications for Water Quality and Human Health.

    PubMed

    Ishii, Satoshi; Sadowsky, Michael J

    2008-01-01

    Escherichia coli is naturally present in the intestinal tracts of warm-blooded animals. Since E. coli is released into the environment through deposition of fecal material, this bacterium is widely used as an indicator of fecal contamination of waterways. Recently, research efforts have been directed towards the identification of potential sources of fecal contamination impacting waterways and beaches. This is often referred to as microbial source tracking. However, recent studies have reported that E. coli can become "naturalized" to soil, sand, sediments, and algae in tropical, subtropical, and temperate environments. This phenomenon raises issues concerning the continued use of this bacterium as an indicator of fecal contamination. In this review, we discuss the relationship between E. coli and fecal pollution and the use of this bacterium as an indicator of fecal contamination in freshwater systems. We also discuss recent studies showing that E. coli can become an active member of natural microbial communities in the environment, and how this bacterium is being used for microbial source tracking. We also discuss the impact of environmentally-"naturalized" E. coli populations on water quality.

  12. Expression of Active Human Tissue-Type Plasminogen Activator in Escherichia coli

    PubMed Central

    Qiu, Ji; Swartz, James R.; Georgiou, George

    1998-01-01

    The formation of native disulfide bonds in complex eukaryotic proteins expressed in Escherichia coli is extremely inefficient. Tissue plasminogen activator (tPA) is a very important thrombolytic agent with 17 disulfides, and despite numerous attempts, its expression in an active form in bacteria has not been reported. To achieve the production of active tPA in E. coli, we have investigated the effect of cooverexpressing native (DsbA and DsbC) or heterologous (rat and yeast protein disulfide isomerases) cysteine oxidoreductases in the bacterial periplasm. Coexpression of DsbC, an enzyme which catalyzes disulfide bond isomerization in the periplasm, was found to dramatically increase the formation of active tPA both in shake flasks and in fermentors. The active protein was purified with an overall yield of 25% by using three affinity steps with, in sequence, lysine-Sepharose, immobilized Erythrina caffra inhibitor, and Zn-Sepharose resins. After purification, approximately 180 μg of tPA with a specific activity nearly identical to that of the authentic protein can be obtained per liter of culture in a high-cell-density fermentation. Thus, heterologous proteins as complex as tPA may be produced in an active form in bacteria in amounts suitable for structure-function studies. In addition, these results suggest the feasibility of commercial production of extremely complex proteins in E. coli without the need for in vitro refolding. PMID:9835579

  13. Acute Escherichia coli endotoxaemia decreases the plasma l-arginine/asymmetrical dimethylarginine ratio in humans.

    PubMed

    Mittermayer, Friedrich; Namiranian, Khodadad; Pleiner, Johannes; Schaller, Georg; Wolzt, Michael

    2004-06-01

    Acute inflammation impairs vascular function. Based on the association between endothelial dysfunction and plasma concentrations of L-arginine and the endogenous nitric oxide synthase inhibitor ADMA (asymmetrical dimethylarginine), we hypothesized that the ratio between L-arginine and ADMA could be affected by experimental inflammation. Plasma concentrations of L-arginine, ADMA and SDMA (symmetrical dimethylarginine) were studied at baseline and 3.5 h after intravenous administration of Escherichia coli endotoxin [LPS (lipopolysaccharide), 20 units/kg of body mass; n =8] or placebo ( n =9) in healthy males. L-Arginine and dimethylarginines were quantified after solid-phase extraction by reversed-phase HPLC. Body temperature, heart rate and leucocyte count increased after LPS administration ( P <0.01 for all). LPS administration decreased plasma concentrations of L-arginine from 66 micromol/l [95% CI (confidence interval): 56, 88] at baseline to 48 micromol/l (CI: 40, 60) after 3.5 h ( P <0.02), but did not affect ADMA and SDMA concentrations. Consequently, the L-arginine/ADMA ratio declined significantly from a median of 159 (CI: 137, 193) to 135 (CI: 103, 146); a decrease of 25 (CI: -68, -13; P <0.02). L-Arginine, ADMA, SDMA and the L-arginine/ADMA ratio remained constant over time in controls. Acute inflammation reduces the L-arginine/ADMA ratio which could contribute to impaired vascular function.

  14. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity.

    PubMed Central

    Graves, M C; Lim, J J; Heimer, E P; Kramer, R A

    1988-01-01

    In order to define the protease domain of human immunodeficiency virus 1, various regions of the pol open reading frame were cloned and expressed in Escherichia coli. Antiserum directed against the conserved retroviral protease active site was used to identify pol precursor and processed species containing the presumed protease domain. The smallest product that accumulates is about 11 kDa as measured by NaDodSO4/PAGE. This size agrees with that predicted from the presence in this region of two Phe-Pro sequences, which is one of the cleavage sites recognized by HIV protease. DNA encoding only the predicted 11-kDa protein was cloned, bypassing the need for autoprocessing, and the protein was expressed to a high level in E. coli. This form is active as demonstrated by its ability to specifically cleave protease-deficient pol protein in vivo in E. coli. Extracts of E. coli containing the 11-kDa protease also process human immunodeficiency virus gag substrates in vitro. These results demonstrate that the 11-kDa protease is sufficient for enzymatic activity and are consistent with a major role for this form in virus maturation. Images PMID:3282230

  15. High-level expression and purification of recombinant human growth hormone produced in soluble form in Escherichia coli.

    PubMed

    Levarski, Zdenko; Šoltýsová, Andrea; Krahulec, Ján; Stuchlík, Stanislav; Turňa, Ján

    2014-08-01

    Human growth hormone (hGH) was one of the first recombinant proteins approved for the treatment of human growth disorders. Its small size (191 amino acids), possession of only 2 disulphide bonds and absence of posttranslational modifications make Escherichia coli the host of choice for its production on any scale. In this work, we have utilized an efficient T7 based expression system to produce high levels of soluble thioredoxin-hGH (Trx-hGH) fusion protein. We outline a relatively simple three step purification process employing two immobilized metal-affinity chromatography and one anion-exchange steps and removal of fusion partner by enterokinase cleavage yielding native hGH. The ability of cell populations to produce quantities of up to 1 g/L of the soluble Trx-hGH fusion protein has been tested in flask cultivations as well as in batch and fed-batch bioreactor runs. The sequence and structure of derived hGH were confirmed by mass spectrometry and circular dichroism and its native function, to induce cell proliferation, was confirmed by employing a Nb2 cell line proliferation assay.

  16. High purity recombinant human Growth Hormone (rhGH) expression in Escherichia coli under phoA promoter.

    PubMed

    Song, Hao; Jiang, Jingxin; Wang, Xuedong; Zhang, Jianguo

    2016-07-26

    ABSTACT Recombinant human Growth Hormone (rhGH) is an important protein for human growth and is in high demand in clinics. Hence, it is necessary to develop an efficient fermentation process to produce highly pure rhGH. In this study, rhGH was expressed in Escherichia coli under alkaline phosphatase (phoA) promoter. The cultivation conditions for high expression level and purity of rhGH were investigated. The best initial phosphate concentration for rhGH expression, out of the 4 levels of initial phosphate concentration tests performed, was 12.6 mmol/L. Subsequently, 2 fed-batch cultivations under low dissolved oxygen (DO) (0% - 10%) and high DO (20% - 30%) conditions were carried out. High purity rhGH (92%) was obtained from 20% - 30% DO-stat cultivation, although the biomass did not show any significant difference. In summary, this research provided an efficient fermentation process for high purity rhGH production from E. coli under phoA promoter, which can lower the production and purification costs for large-scale production of rhGH.

  17. Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coli O157:H7 Genotypes, New Zealand1

    PubMed Central

    Cookson, Adrian L.; Campbell, Donald M.; Duncan, Gail E.; Prattley, Deborah; Carter, Philip; Besser, Thomas E.; Shringi, Smriti; Hathaway, Steve; Marshall, Jonathan C.; French, Nigel P.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008–2011, we used pulsed-field gel electrophoresis and Shiga toxin–encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans. PMID:25568924

  18. Production, purification, and crystallization of human interleukin-1 beta converting enzyme derived from an Escherichia coli expression system.

    PubMed

    Malinowski, J J; Grasberger, B L; Trakshel, G; Huston, E E; Helaszek, C T; Smallwood, A M; Ator, M A; Banks, T M; Brake, P G; Ciccarelli, R B

    1995-10-01

    Interleukin-1 beta converting enzyme (ICE) is a cysteine protease that catalyzes the conversion of the inactive precursor form of IL-1 beta to an active mature form. The mature form of IL-1 beta is involved in mediating inflammatory responses and in the progression of autoimmune diseases. We recently reported on the production of active human ICE in insect cells using the baculovirus expression system (Wang XM et al., 1994, Gene 145:273-277). Because the levels of expression achieved with this system were limiting for the purpose of performing detailed biochemical and biophysical studies, we examined the production of ICE in Escherichia coli. By using a tac promoter-based expression system and fusion to thioredoxin we were able to recover high levels of active ICE protein. The expressed protein, which was distributed between the soluble and insoluble fractions, was purified to homogeneity from both fractions using a combination of classical and affinity chromatography. Comparisons of ICE derived from both fractions indicated that they were comparable in their specific activities, subunit composition, and sensitivities to specific ICE inhibitors. The combined yields of ICE obtained from the soluble and insoluble fractions was close to 1 mg/L of induced culture. Recombinant human ICE was crystallized in the presence of a specific ICE inhibitor in a form suitable for X-ray crystallographic analysis. This readily available source of ICE will facilitate the further characterization of this novel and important protease.

  19. [Topography and mechanisms of adhesion of uropathogenic Escherichia coli bacteria in the human kidney and renal pelvis].

    PubMed

    Vierbuchen, M; Peters, G; Ortmann, M; Pulverer, G; Fischer, R

    1989-01-01

    The occurrence and significance of bacterial carbohydrate recognition proteins (bacterial lectins) and endogenous carbohydrate binding proteins (endogenous lectins) of human urothelium as well as kidney tubulus epithelium was analyzed with respect to the adhesion of urotoxogenic Escherichia coli bacteria. Using biotinylated neoglycoproteins, we demonstrated a wide spectrum of endogenous lectins with Galactose-, Mannose-, Fucose-, N-Acetylgalactosamine-, and N-Acetylglucosamine binding activities in the urothelium. In the kidney the distal nephron and especially the medullar collecting ducts exhibited a similar spectrum of endogenous carbohydrate binding activities as detected for the urothelium. Adhesion- as well as inhibition-experiments with selective blocking of either bacterial lectins or endogenous lectins of the target cells by different carbohydrates both reduced the bacterial adhesion. However, maximal inhibition of bacterial adhesion was achieved by simultanous blocking of microbial and target cell lectins with mannose or mannan. From these results it is reasonable to conclude that specific adhesion which may result in an organotropism (urotropism) of E. coli infection is due to a dual recognition mechanism which is accomplished by the combined interaction of the bachterial and host cell lectins with the corresponding carbohydrates of E. coli and that of the target cells respectively. Further studies showed that normal human serum possesses natural antiadhesins which are represented by the glycan parts of the serum-glycoproteins.

  20. Production of specific IgY antibody to the recombinant FanC protein produced in Escherichia coli

    PubMed Central

    Nasiri, Khadijeh; Zibaee, Saeed; Nassiri, Mohammadreza; Tahmoorespur, Mojtaba; Haghparast, Alireza

    2016-01-01

    Objective(s): Enterotoxigenic Escherichia coli (ETEC) strains are one of the primary causes of diarrhea in newborn calves and in humans, pigs, and sheep. IgY technology has been identified as a promising alternative to generating a mass amount of specific antibody for use in immunotherapy and immunodiagnostics. The purpose of this study was to produce specific antibody by egg yolk antibody (IgY) to recombinant FanC protein from ETEC. Materials and Methods: FanC (K99) gene was amplified from ETEC by specific primers and polymerase chain reaction. The gene was cloned and subcloned into pTZ57R/T and pET32a (+) vectors, respectively. Recombinant vector was transferred into E. coli BL21 CodonPlus (DE3). Protein expression was investigated by 1 mM IPTG induction. Hens were immunized by the purified recombinant FanC protein. The activity and specificity of the IgY antibody were detected by dot-blotting, Western blotting, and indirect ELISA. Results: We obtained FanC specific IgYs by immunizing the hens with the recombinant FanC protein. The anti-FanC IgY showed binding specifically to the FanC protein of ETEC. Conclusion: The results emphasize that specific IgY against the recombinant FanC protein could be recommended as a candidate for passive immunization against ETEC infection in animals and humans. PMID:27746871

  1. Human platelet activation by Escherichia coli: roles for FcγRIIA and integrin αIIbβ3

    PubMed Central

    Watson, Callum N.; Kerrigan, Steven W.; Cox, Dermot; Henderson, Ian R.; Watson, Steve P.; Arman, Mònica

    2016-01-01

    Abstract Gram-negative Escherichia coli cause diseases such as sepsis and hemolytic uremic syndrome in which thrombotic disorders can be found. Direct platelet–bacterium interactions might contribute to some of these conditions; however, mechanisms of human platelet activation by E. coli leading to thrombus formation are poorly understood. While the IgG receptor FcγRIIA has a key role in platelet response to various Gram-positive species, its role in activation to Gram-negative bacteria is poorly defined. This study aimed to investigate the molecular mechanisms of human platelet activation by E. coli, including the potential role of FcγRIIA. Using light-transmission aggregometry, measurements of ATP release and tyrosine-phosphorylation, we investigated the ability of two E. coli clinical isolates to activate platelets in plasma, in the presence or absence of specific receptors and signaling inhibitors. Aggregation assays with washed platelets supplemented with IgGs were performed to evaluate the requirement of this plasma component in activation. We found a critical role for the immune receptor FcγRIIA, αIIbβ3, and Src and Syk tyrosine kinases in platelet activation in response to E. coli. IgG and αIIbβ3 engagement was required for FcγRIIA activation. Moreover, feedback mediators adenosine 5’-diphosphate (ADP) and thromboxane A2 (TxA2) were essential for platelet aggregation. These findings suggest that human platelet responses to E. coli isolates are similar to those induced by Gram-positive organisms. Our observations support the existence of a central FcγRIIA-mediated pathway by which human platelets respond to both Gram-negative and Gram-positive bacteria. PMID:27025455

  2. Human apolipoprotein E expression in Escherichia coli: structural and functional identity of the bacterially produced protein with plasma apolipoprotein E.

    PubMed Central

    Vogel, T; Weisgraber, K H; Zeevi, M I; Ben-Artzi, H; Levanon, A Z; Rall, S C; Innerarity, T L; Hui, D Y; Taylor, J M; Kanner, D

    1985-01-01

    Human apolipoprotein E (apoE) was produced in Escherichia coli by transforming cells with an expression vector containing a reconstructed apoE cDNA, a lambda PL promoter regulated by the thermolabile cI repressor, and a ribosomal binding site derived from the lambda cII or the E. coli beta-lactamase gene. Transformed cells induced at 42 degrees C for short periods of time (less than 20 min) produced apoE, which accumulated in the cells at levels of approximately equal to 1% of the total soluble cellular protein. Longer induction periods resulted in cell lysis and the proteolytic destruction of apoE. The bacterially produced apoE was purified by heparin-Sepharose affinity chromatography, Sephacryl S-300 gel filtration, and preparative Immobiline isoelectric focusing. The final yield was approximately equal to 20% of the initial apoE present in the cells. Except for an additional methionine at the amino terminus, the bacterially produced apoE was indistinguishable from authentic human plasma apoE as determined by NaDodSO4 and isoelectric focusing gel electrophoresis, amino acid composition of the total protein as well as its cyanogen bromide fragments, and partial amino acid sequence analysis (residues 1-17 and 109-164). Both the bacterially produced and authentic plasma apoE bound similarly to apolipoprotein B,E(low density lipoprotein) receptors of human fibroblasts and to hepatic apoE receptors. Intravenous injection resulted in similar rates of clearance for both the bacterially produced and authentic apoE from rabbit and rat plasma (approximately equal to 50% removed in 20 min). The ability to synthesize a bacterially produced human apolipoprotein with biological properties indistinguishable from those of the native protein will allow the production of large quantities of apoE for use in further investigations of the biological and physiological properties of this apolipoprotein. Images PMID:3909150

  3. Expression of interferon-inducible recombinant human RNase L causes RNA degradation and inhibition of cell growth in Escherichia coli.

    PubMed

    Pandey, Mitali; Rath, Pramod C

    2004-04-30

    Interferon-inducible ribonuclease L (RNase L) is a unique ankyrin-repeat containing endoribonuclease activated by 2',5'-oligoadenylate (2-5A) cofactor leading to RNA degradation and apoptosis during antiviral response in mammalian cells. We report that expression of recombinant human RNase L (1-741 a.a.) caused RNA degradation and inhibition of cell growth in Escherichia coli in absence of exogenous 2-5A. On the contrary, expression of a homologous but dominant negative form of murine RNase L (1-656 a.a.), lacking the RNA binding and ribonuclease domain, did not show RNA degradation, rather it stimulated cell growth. Upon computational analysis by pBLAST search, a putative transcription factor (yahD, F64758, and NP_414852) from the E. coli genome showed highest homology (E value=1e(-17)) with 90-259 a.a. region of human RNase L due to ankyrin repeats with conserved GKT motifs. Ankyrin repeats 6-9 of RNase L are involved in 2-5A binding, dimerization, and activation of the ribonuclease. Thus, a biochemically active human RNase L in E. coli strongly suggests for a prokaryotic cell growth-inhibitory mechanism possibly through ankyrin-ankyrin interaction of YahD and RNase L leading to RNA degradation. The mammalian interferon-inducible RNase L and E. coli yahD protein may have common origin for the ankyrin repeats with 2-5A binding sites. Thus, RNA degradation and cell growth inhibition by recombinant human RNase L biochemically reconstituted mammalian cellular response to interferon in E. coli. RNase L has prokaryotic evolutionary history, it is not only an antiviral but also an antibacterial gene.

  4. Characterization of verotoxin-encoding phages from Escherichia coli O103:H2 strains of bovine and human origins.

    PubMed

    Karama, Musafiri; Gyles, Carlton L

    2008-08-01

    The objectives of this study were to induce and characterize verotoxin-encoding phages from a collection of 91 verotoxin-producing Escherichia coli (VTEC) O103:H2 strains of human and bovine origins. All the strains carried the vt1 gene, and two carried the vt2 gene as well. The phages were induced by UV irradiation and characterized by DNA restriction fragment length polymorphism (RFLP), genome size, morphology, and Q and P genes, characteristic of lambdoid phages. A total of 32 vt-positive phages were induced and isolated from 31 VTEC O103:H2 strains. Thirty phages were vt1 positive, and two were vt2 positive. Ten of the 30 vt1-positive phages (33.3%) were from cattle strains, and 20 (66.6%) were from human strains. The two vt2-positive phages were from human strains. Phages belonged to 21 RFLP profiles, of which 17 were single-phage profiles and 4 were multiple-phage profiles. The estimated genome size of the phages ranged from 34 to 84 kb. Two phages that were examined by electron microscopy possessed hexagonal heads with long tails, and one had an elongated head with a long tail. The Q and P genes were amplified in all 32 phages, and the Q-stxA(1) gene region yielded an amplicon in 19 phages (59.3%). It is concluded that the VTEC O103:H2 strains of human origin were more readily inducible than those of bovine origin and that the genotypic profiles of verotoxin-encoding phages were highly diverse, as revealed by their RFLP profiles.

  5. Antigen Detection in Enteropathogenic Escherichia coli Using Secretory Immunoglobulin A Antibodies Isolated from Human Breast Milk

    PubMed Central

    Manjarrez-Hernandez, H. A.; Gavilanes-Parra, S.; Chavez-Berrocal, E.; Navarro-Ocaña, A.; Cravioto, A.

    2000-01-01

    Enteropathogenic Escherichia coli (EPEC) produces a characteristic attaching and effacing (A/E) lesion in the small intestines of infected children. The immune response to EPEC infection remains poorly characterized. The molecular targets that elicit protective immunity against EPEC disease are unknown. In this study protein antigens from EPEC were identified using secretory immunoglobulin A (sIgA) antibodies isolated from milk from Mexican women by Western blot analysis. Purified sIgA antibodies, which inhibit the adherence of EPEC to cells, reacted to many EPEC proteins, the most prominent of which were intimin (a 94-kDa outer membrane protein) and two unknown proteins with apparent molecular masses of 80 and 70 kDa. A culture supernatant protein of 110 kDa also reacted strongly with the sIgA antibodies. The molecular size of this protein and its reactivity with specific anti-EspC antiserum suggest that it is EPEC-secreted protein C (EspC). These EPEC surface protein antigens were consistently recognized by all the different sIgA samples obtained from 15 women. Screening of clinical isolates of various O serogroups from cases of severe infantile diarrhea revealed that all EPEC strains able to produce the A/E lesion showed expression of intimin and the 80- and 70-kDa proteins. Such proteins reacted strongly with the purified sIgA pool. Moreover, nonvirulent E. coli strains were unable to generate a sIgA response. The immunogenic capacities of the 80- and 70-kDa proteins as virulence antigens have not been previously reported. The strong sIgA response to intimin and the 80- and 70-kDa proteins obtained in this study indicates that such antigens stimulate intestinal immune responses and may elicit protective immunity against EPEC disease. PMID:10948121

  6. [Estimation of the transfer of ESBL-producing Escherichia coli to humans in Germany].

    PubMed

    Sharp, Hannah; Valentin, Lars; Fischer, Jennie; Guerra, Beatriz; Appel, Bernd; Käsbohrer, Annemarie

    2014-01-01

    In 2011 EFSA has evaluated the risk for the consumer caused by ESBL-/AmpC-producing bacteria in food of animal origin and in livestock animals. Human-to-human transfer in hospitals.and in the community was considered as the most relevant route of transmission for ESBL-producing E. coli. ESBL-/AmpC-producing E. coli are in Germany, as in many other Member States of the European Union, widely spread in food of animal origin and in livestock animals. In an assessment of the relevance of livestock animals as reservoir for ESBL-/AmpC-producing E. coli as well as for ESBL-coding resistance genes the heterogeneity of the resistance genes, plasmids and bacteria in animals, foods and humans needs to be considered. In this context, both, the clonal spread of bacteria as well as horizontal transfer of resistance genes, e. g. by plasmids, have to be analyzed. Whereas studies in The Netherlands identified poultry as the most relevant reservoir, the transfer of ESBL-gene carrying plasmids from pigs to the farmers was demonstrated in Denmark. First attempts to quantify the relevance of livestock animals as reservoir for ESBL-producing E. coli in Germany showed, that the proportions of the most frequent ESBL-resistance genes are quite different between animal and human derived E. coli isolates. If in addition properties of the bacterial cells, e.g. resistance to several antibiotic classes are considered, only a small proportion of human isolates showed the same patterns as animal isolates. The results achieved so far demonstrate that certain ESBL-types are prevalent in all livestock populations investigated. Currently, the majority of cases of colonizations with ESBL-producing E. coli among humans cannot be directly linked to livestock and food-producing animals as reservoirs. This reflects that transmission routes are more complex and other reservoirs and sources including human-human interactions have to be taken into consideration.

  7. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistances from human sources.

    PubMed

    Ibekwe, A Mark; Murinda, Shelton E; Graves, Alexandria K

    2011-01-01

    Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study. Evaluation of E. coli populations along the creeks and channels showed that E. coli were more prevalent in sediment compared to surface water. E. coli populations were not significantly different (P = 0.05) between urban runoff sources and agricultural sources, however, E. coli genotypes determined by pulsed-field gel electrophoresis (PFGE) were less diverse in the agricultural sources than in urban runoff sources. PFGE also showed that E. coli populations in surface water were more diverse than in the sediment, suggesting isolates in sediment may be dominated by clonal populations.Twenty four percent (144 isolates) of the 600 isolates exhibited resistance to more than one antimicrobial agent. Most multiple resistances were associated with inputs from urban runoff and involved the antimicrobials rifampicin, tetracycline, and erythromycin. The occurrence of a greater number of E. coli with multiple antibiotic resistances from urban runoff sources than agricultural sources in this watershed provides useful evidence in planning strategies for water quality management and public health protection.

  8. Human leukocytic pyrogen test for detection of pyrogenic material in growth hormone produced by recombinant Escherichia coli.

    PubMed Central

    Dinarello, C A; O'Connor, J V; LoPreste, G; Swift, R L

    1984-01-01

    Human growth hormone is biosynthetically produced in recombinant strains of Escherichia coli as methionyl human growth hormone (met-hGH). When purified from the bacterial culture, met-hGH is biologically active in established assays for growth hormone. Therefore, a phase I trial of met-hGH was carried out in healthy human adults; during the first trial, however, signs, symptoms, and clinical laboratory tests characteristic of an acute-phase response to pyrogenic agents was observed. Prior testing of the met-hGH preparation used in the phase I trial did not reveal evidence of toxicity, and the U.S. Pharmacopeial Convention rabbit pyrogen test, as well as the Limulus amoebocyte lysate (LAL) test, had not detected significant levels of exogenous pyrogens or endotoxin. In addition, standard inhibition studies with added endotoxin showed no inhibition by the LAL test. When this preparation of met-hGH was incubated with human blood mononuclear cells, leukocytic pyrogen (LP) was released into the supernatant medium, suggesting that the preparation contained pyrogenic material. Various lots of met-hGH based on different purification and formulating methods were tested by the human LP assay for contaminating pyrogens. The results of these tests aided in the identification of procedures for met-hGH preparations which did not induce LP in vitro. Thus, subsequent lots of met-hGH which had passed the LP test were used in repeat clinical studies, and no inflammatory or pyrogenic reactions were observed. When the LP test was used, experiments revealed that the original lot of met-hGH was contaminated with endotoxin which had not been detected in the LAL or rabbit pyrogen tests. Lyophilization in glycine-phosphate buffer had resulted in a 10- to 20-fold reduction of endotoxin reactivity in the LAL test and the U.S. Pharmacopeial Convention rabbit pyrogen test. These data provide a probable explanation for the negative result from the LAL and rabbit pyrogen test in the initial lot

  9. Refolding and purification of recombinant human (Pro)renin receptor from Escherichia coli by ion exchange chromatography.

    PubMed

    Wang, Fei; Guo, Jinjin; Bai, Quan; Wang, Lili

    2014-01-01

    Purification of the recombinant human renin receptor (rhRnR) is a major aspect of its biological or biophysical analysis, as well as structural research. A simple and efficient method for the refolding and purification of rhRnR expressed in Escherichia coli with weak anion-exchange chromatography (WAX) was presented in this work. The solution containing denatured rhRnR in 8.0 mol/L urea extracted from the inclusion bodies was directly injected into the WAX column. The aggregation was prevented and the soluble form of renatured rhRnR in aqueous solution was obtained after desorption from the column. Effects of the extracting solutions, the pH values and urea concentrations in the mobile phase, as well as the sample size on the refolding and purification of rhRnR were investigated, indicating that the above mentioned factors had remarkable influences on the efficiency of refolding, purification and mass recovery of rhRnR. Under the optimal conditions, rhRnR was successfully refolded and purified simultaneously by WAX in one step within only 30 min. The result was satisfactory with mass recovery of 71.8% and purity of 94.8%, which was further tested by western blotting. The specific binding of the purified rhRnR to recombinant human renin was also determined using surface plasmon resonance (SPR). The association constant of rhRnR to recombinant human renin was calculated to be 3.25 × 10(8) L/mol, which demonstrated that rhRnR was already renatured and simultaneously purified in one step using WAX. All of the above demonstrate that protein folding liquid chromatography (PFLC) should be a powerful tool for the purification and renaturation of rhRnR.

  10. Enterotoxigenicity of Staphylococcus strains isolated from Spanish dry-cured hams.

    PubMed Central

    Marín, M E; de la Rosa, M C; Cornejo, I

    1992-01-01

    The ability of 135 Staphylococcus strains isolated from Spanish dry-cured hams to produce enterotoxins in culture was investigated by the reversed passive latex agglutination method. A high percentage of enterotoxigenic Staphylococcus aureus strains (85.9%) was recorded, and 54.3% of these produced enterotoxin A. One of the two Staphylococcus epidermidis strains produced enterotoxin C. The reversed passive latex agglutination method yielded satisfactory results. PMID:1575480

  11. Prevalence of Enterotoxigenic Bacteroides fragilis in Children with Diarrhea in Japan

    PubMed Central

    Kato, Naoki; Liu, Chengxu; Kato, Haru; Watanabe, Kunitomo; Nakamura, Haruhi; Iwai, Naoichi; Ueno, Kazue

    1999-01-01

    In age-matched controlled studies performed in Japan, enterotoxigenic Bacteroides fragilis was isolated from 14.9% of 114 children aged 1 to 14 years with antibiotic-unassociated diarrhea (AUD) and 6.5% of 108 children aged 1 to 6 years with antibiotic-associated diarrhea (AAD). The difference in comparison with control children, was significant for AUD children but not AAD children. PMID:9986859

  12. Draft Genome Sequences of Enterotoxigenic Bacillus cereus Strains Obtained from Powdered Infant Formula

    PubMed Central

    Carter, Laurenda; Chase, Hannah R.; Choi, Hyerim; Jun, SoYoung; Park, JiHyeon; Jeong, Seungeun; Kim, MiJeong; Han, KyuYoung; Lee, ChaeYoon; Jeong, HyeJin; Finkelstein, Samantha; Negrete, Flavia; Cinar, Hediye N.; Tall, Ben D.

    2017-01-01

    ABSTRACT We introduce the draft genome sequences of five enterotoxigenic Bacillus cereus strains: Bc 12, Bc 67, Bc 111, Bc 112, and Bc 113, which were obtained from powdered infant formula. The genome sizes of the strains ranged from 5.5 to 5.8 Mb, and the G+C contents were ~35.2%. PMID:28232440

  13. Determination of enterotoxigenic and methicillin resistant Staphylococcus aureus in ice cream.

    PubMed

    Gücükoğlu, Ali; Çadirci, Özgür; Terzi, Göknur; Kevenk, T Onur; Alişarli, Mustafa

    2013-05-01

    The aim of this study was to determine the prevalence of enterotoxigenic and methicillin-resistant Staphylococcus aureus in ice creams. After culture-based identification of isolates, the presence of 16S rRNA and nuc was confirmed by mPCR. S. aureus was identified in 18 of 56 fruity (32.1%), 4 of 32 vanilla (12.5%), and 1 of 12 chocolate (8.3%) ice creams. S. aureus was identified as 38 isolates in 23 ice cream samples by culture-based techniques, but only 35 isolates were confirmed by PCR as S. aureus. To determine the enterotoxigenic properties of PCR-confirmed S. aureus isolates, a toxin detection kit was used (SET RPLA®). Of the 12 enterotoxigenic S. aureus isolates, 9 SEB (75%), 1 SED (8.3%), 1 SEB+SED (8.3%), and 1 SEA+SEB+SED (8.3%) expressing isolates were found. The presence of enterotoxin genes (sea, seb, sed) was identified in 13 (37.1%) out of 35 isolates by the mPCR technique. In the ice cream isolates, the sea, seb, and sed genes were detected: 1 sea (7.6%), 9 seb (69.2%), 1 sed (7.6%), 1 seb+sed (7.6%), and 1 sea+seb+sed (7.6%), respectively. The sec gene was not detected in any of these isolates. One of the 35 (2.8%) S. aureus strain was mecA positive.

  14. Binding of Escherichia coli heat-stable enterotoxin to rat intestinal cells and brush border membranes.

    PubMed Central

    Frantz, J C; Jaso-Friedman, L; Robertson, D C

    1984-01-01

    The association of heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli 431 with isolated rat intestinal epithelial cells and brush border membranes was characterized. Specific binding of strain 431 125I-STa to a single class of specific high-affinity receptors was saturable and temperature dependent and reached a maximum between 5 and 10 min. A 1,000-fold excess of unlabeled 431 STa competitively displaced 90 to 95% of radiolabeled enterotoxin bound to brush border membranes. In contrast, specific binding of 431 125I-STa to intestinal cells ranged from 40 to 65%. The number of STa-specific receptors on rat intestinal cells determined by Scatchard analysis was 47,520 +/- 14,352 (mean +/- standard error of the mean) per cell, with affinity constants (KaS) of 2.55 X 10(11)and 4.32 x 10(11) liters/mol determined for intestinal cells and brush border membranes, respectively. Villus intestinal cells appeared to possess about twice as many STa receptors as did crypt cells. Dissociation of specifically bound 431 125I-STa from intestinal cells and brush border membranes was minimal (2 to 5%). In addition, neither the rate nor the extent of dissociation was increased by a 1,000-fold excess of unlabeled homologous 431 Sta. Binding experiments with 431 125I-STa and brush border membranes showed that purified unlabeled STas from enterotoxigenic E. coli strains 667 (class 1 porcine enteropathogen), B-41 (bovine enteropathogen), and human strains 213C2 (Mexico) and 153961-2 (Dacca, Bangledesh) exhibited patterns of competitive inhibition similar to those of homologous unlabeled 431 STa (class 2 enteropathogen). A lipid extract which contained gangliosides and glycolipids exhibited dose-dependent competitive inhibition of heat-labile enterotoxin binding to brush border membranes but did not inhibit binding of 431 125I-STa. Purified heat-labile enterotoxin from strain 286C2 did not inhibit binding of 431 STa to brush border membranes. Pronase treatment of

  15. High-level Expression and Purification of Active Human FGF-2 in Escherichia coli by Codon and Culture Condition Optimization

    PubMed Central

    Soleyman, Mohammad Reza; Khalili, Mostafa; Khansarinejad, Behzad; Baazm, Maryam

    2016-01-01

    Background: Basic fibroblast growth factor (bFGF) is a member of a highly conserved superfamily of proteins that are involved in cell proliferation, differentiation, and migration. Objectives: The objective of this study was to overexpress and purify the high-level active human bFGF in Escherichia coli (E. coli). Materials and Methods: This experimental study was conducted in the Islamic Republic of Iran. After codon optimization and gene synthesis, the optimized FGF-2 gene was subcloned into plasmid pET-32a. pET32-FGF-2 was transformed into E. coli BL21 for expression. The cultivation parameters were optimized to produce a high yield of FGF-2. Results: The optimal conditions were determined as follows: cultivation at 37°C in TB medium, with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG), followed by post-induction expression for 6 h. Under the abovementioned conditions, the expression volumetric productivity of FGF-2 reached 1.48 g/L. Conclusions: A fusion tag from the pET32 expression plasmid permits the recovery of the recombinant fusion FGF-2 from E. coli, without affecting its biological activity. PMID:27175305

  16. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    PubMed

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens.

  17. Refolding of recombinant human interferon alpha-2a from Escherichia coli by urea gradient size exclusion chromatography.

    PubMed

    Gao, F; Shi, L; Xu, L X

    2013-01-01

    Protein refolding is still a puzzle in the production of recombinant proteins expressed as inclusion bodies (IBs) in Escherichia coli. Gradient size exclusion chromatography (SEC) is a recently developed method for refolding of recombinant proteins in IBs. In this study, we used a decreasing urea gradient SEC for the refolding of recombinant human interferon alpha-2a (rhLFNalpha-2a) which was overexpressed as IBs in E. coli. In chromatographic process, the denatured rhLFNalpha-2a would pass along the 8.0-3.0 M urea gradient and refold gradually. Several operating conditions, such as final concentration of urea along the column, gradient length, the ratio of reduced to oxidized glutathione and flow rate were investigated, respectively. Under the optimum conditions, 1.2 x 10(8) IU/mg of specific activity and 82% mass recovery were obtained from the loaded 10 ml of 1.75 mg/ml denatured protein, and rhLFNalpha-2a was also purified during this process with the purity of higher than 92%. Compared with dilution method, urea gradient SEC was more efficient for the rhl FNalpha-2a refolding in terms of specific activity and mass recovery.

  18. Expression, purification, and refolding of active recombinant human E-selectin lectin and EGF domains in Escherichia coli.

    PubMed

    Kawano, Susumu; Iyaguchi, Daisuke; Okada, Chiaki; Sasaki, Yusuke; Toyota, Eiko

    2013-06-01

    Attempts to obtain active E-selectin from Escherichia coli (E. coli) have not yet been successful. In this study, we succeeded in expressing the recombinant lectin and epidermal growth factor domain fragments of human E-selectin (rh-ESLE) in E. coli on a large-scale. The rh-ESLE protein was expressed as an inactive form in the inclusion bodies. The inactive form of rh-ESLE was denatured and solubilized by 6 M guanidine hydrochloride and then purified by Ni(2+) affinity chromatography under denaturing conditions. Denatured rh-ESLE was then refolded by a rapid-dilution method using a large amount of refolding buffer, which contained arginine and cysteine/cystine. The refolded rh-ESLE showed binding affinity for sLe(X) (K(d) = 321 nM, B(max) = 1.9 pmol/μg protein). This result suggests that the refolded rh-ESLE recovered its native and functional structure.

  19. N-Chlorotaurine, a Long-Lived Oxidant Produced by Human Leukocytes, Inactivates Shiga Toxin of Enterohemorrhagic Escherichia coli

    PubMed Central

    Eitzinger, Christian; Ehrlenbach, Silvia; Lindner, Herbert; Kremser, Leopold; Gottardi, Waldemar; Debabov, Dmitri; Anderson, Mark

    2012-01-01

    N-chlorotaurine (NCT), the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2), used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC). Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives. PMID:23139739

  20. Escherichia coli Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK-cell responses.

    PubMed

    Vlasova, Anastasia N; Shao, Lulu; Kandasamy, Sukumar; Fischer, David D; Rauf, Abdul; Langel, Stephanie N; Chattha, Kuldeep S; Kumar, Anand; Huang, Huang-Chi; Rajashekara, Gireesh; Saif, Linda J

    2016-10-01

    Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4(+) mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172(+) MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.

  1. Effects of subinhibitory amounts of ampicillin, amoxycillin and mecillinam on the adhesion of Escherichia coli bacteria to human urinary tract epithelial cells: a preliminary study.

    PubMed

    Svanborg-Edén, C; Sandberg, T; Stenqvist, K; Ahlstedt, S

    1979-01-01

    Attachment to mucous surfaces may be a prerequisite for bacteria colonizing these surfaces or invading underlying tissues. Subinhibitory amounts of ampicillin and amoxycillin but not mecillinam decreased the attachment of Escherichia coli bacteria to human uro-epithelial cells in vitro. No significant synergistic effect on the attachment by the antibiotics was obtained. The present report indicates a new parameter for the study of antibacterial actions of drugs.

  2. Detection of diarrheagenic Escherichia coli strains isolated from dogs and cats in Brazil.

    PubMed

    Puño-Sarmiento, Juan; Medeiros, Leonardo; Chiconi, Carolina; Martins, Fernando; Pelayo, Jacinta; Rocha, Sérgio; Blanco, Jorge; Blanco, Miguel; Zanutto, Marcelo; Kobayashi, Renata; Nakazato, Gerson

    2013-10-25

    Escherichia coli are gut microbiota bacteria that can cause disease in some humans and other animals, including dogs and cats that humans often keep as pets. Diarrheagenic E. coli (DEC) strains are classified into six categories: enteropathogenic (EPEC), enterotoxigenic (ETEC), Shiga toxin-producing (STEC), enteroinvasive (EIEC), enteroaggregative (EAEC), and diffuse-adhering E. coli (DAEC). In this study 144 and 163 E. coli colonies were isolated from the fecal samples of 50 dogs and 50 cats, respectively, with and without diarrhea from a Veterinary Hospital (clinical isolates). The virulence factors were determined using multiplex Polymerase Chain Reaction. Adherence assays, antibacterial susceptibility and serotyping (somatic or flagellar antigens) were performed on DEC isolates. We found 25 (17.4%) and 4 (2.5%) DEC strains isolated from dogs and cats, respectively. Only the EPEC and EAEC pathotypes were found in both animals. Meanwhile, genes from other pathotypes (STEC, EIEC, and ETEC) were not found in these clinical isolates. All of the DEC strains showed mannose-resistant adherence to HEp-2 and HeLa cells, and aggregative adherence was predominant in these isolates. Multiresistant strains to antimicrobials were found in most DEC strains including usual and unusual antimicrobials in veterinary practices. The serotypes of these DEC isolates were variable. The ONT serotype was predominant in these isolates. Some serotypes found in our study were described to human DEC. Here, we demonstrate that pets carry virulent DEC genes, which are mainly strains of EPECs and EAECs. The presence of these virulence factors in isolates from animals without diarrhea suggests that pets can act as a reservoir for human infection.

  3. Engineering Escherichia coli for Soluble Expression and Single Step Purification of Active Human Lysozyme

    PubMed Central

    Lamppa, John W.; Tanyos, Sam A.; Griswold, Karl E.

    2012-01-01

    Genetically engineered variants of human lysozyme represent promising leads in the battle against drug-resistant bacterial pathogens, but early stage development and testing of novel lysozyme variants is constrained by the lack of a robust, scalable and facile expression system. While wild type human lysozyme is reportedly produced at 50 – 80 kg per hectare of land in recombinant rice, this plant-based system is not readily scaled down to bench top production, and it is therefore not suitable for development and characterization of novel lysozyme variants. Here, we describe a novel and efficient expression system capable of producing folded, soluble and functional human lysozyme in E. coli cells. To achieve this goal, we simultaneously co-express multiple protein folding chaperones as well as harness the lysozyme inhibitory protein, Ivy. Our strategy exploits E. coli’s ease of culture, short doubling time, and facile genetics to yield upwards of 30 mg/L of soluble lysozyme in a bioreactor system, a 3000-fold improvement over prior efforts in E. coli. Additionally, molecular interactions between lysozyme and a his-tagged Ivy allows for one-step purification by IMAC chromatography, yielding as much as 21 mg/L of purified enzyme. We anticipate that our expression and purification platform will facilitate further development of engineered lysozymes having utility in disease treatment and other practical applications. PMID:23220215

  4. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood.

    PubMed

    Brekke, Ole-Lars; Hellerud, Bernt Christian; Christiansen, Dorte; Fure, Hilde; Castellheim, Albert; Nielsen, Erik Waage; Pharo, Anne; Lindstad, Julie Katrine; Bergseth, Grethe; Leslie, Graham; Lambris, John D; Brandtzaeg, Petter; Mollnes, Tom Eirik

    2011-09-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant were incubated with whole blood using lepirudin as anticoagulant which has no adverse effects on complement. Bacteria free in plasma, bound to erythrocytes or phagocytized by granulocytes and monocytes were quantified using flow cytometry. The effects of the C3 inhibitor compstatin, a C5a receptor antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had no effect on these processes since similar results were obtained using an LPS-deficient N. meningitidis mutant. In vivo experiments in a pig model of sepsis showed limited binding of bacteria to erythrocytes, consistent with the facts that erythrocyte CR1 receptors are absent in non-primates and that the bacteria were mainly found in the lungs. In conclusion, complement-dependent binding of Gram-negative bacteria to erythrocyte CR1 decreases phagocytosis and oxidative burst by leukocytes in human whole blood.

  5. Expression of Functional Human Sialyltransferases ST3Gal1 and ST6Gal1 in Escherichia coli

    PubMed Central

    Ortiz-Soto, Maria Elena; Seibel, Jürgen

    2016-01-01

    Sialyltransferases (STs) are disulfide-containing, type II transmembrane glycoproteins that catalyze the transfer of sialic acid to proteins and lipids and participate in the synthesis of the core structure oligosaccharides of human milk. Sialic acids are found at the outermost position of glycostructures, playing a key role in health and disease. Sialylation is also essential for the production of recombinant therapeutic proteins (RTPs). Despite their importance, availability of sialyltransferases is limited due to the low levels of stable, soluble and active protein produced in bacterial expression systems, which hampers biochemical and structural studies on these enzymes and restricts biotechnological applications. We report the successful expression of active human sialyltransferases ST3Gal1 and ST6Gal1 in commercial Escherichia coli strains designed for production of disulfide-containing proteins. Fusion of hST3Gal1 with different solubility enhancers and substitution of exposed hydrophobic amino acids by negatively charged residues (supercharging-like approach) were performed to promote solubility and folding. Co-expression of sialyltransferases with the chaperon/foldases sulfhydryl oxidase, protein disulfide isomerase and disulfide isomerase C was explored to improve the formation of native disulfide bonds. Active sialyltransferases fused with maltose binding protein (MBP) were obtained in sufficient amounts for biochemical and structural studies when expressed under oxidative conditions and co-expression of folding factors increased the yields of active and properly folded sialyltransferases by 20%. Mutation of exposed hydrophobic amino acids increased recovery of active enzyme by 2.5-fold, yielding about 7 mg of purified protein per liter culture. Functionality of recombinant enzymes was evaluated in the synthesis of sialosides from the β-d-galactoside substrates lactose, N-acetyllactosamine and benzyl 2-acetamido-2-deoxy-3-O

  6. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood

    PubMed Central

    Brekke, Ole-Lars; Hellerud, Bernt Christian; Christiansen, Dorte; Fure, Hilde; Castellheim, Albert; Nielsen, Erik Waage; Pharo, Anne; Lindstad, Julie Katrine; Bergseth, Grethe; Leslie, Graham; Lambris, John D.; Brandtzaeg, Petter; Mollnes, Tom Eirik

    2011-01-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 Neisseria meningitidis (N. meningitidis) and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant were incubated with whole blood using lepirudin as anticoagulant which has no adverse effects on complement. Bacteria free in plasma, bound to erythrocytes or phagocytized by granulocytes and monocytes were quantified using flow cytometry. The effects of the C3 inhibitor compstatin, a C5a receptor antagonist (C5aRa) and a complement receptor 1 (CR1)-blocking antibody (3D9) were examined. Most bacteria (80%) immediately bound to erythrocytes. The binding gradually declined over time, with a parallel increase in phagocytosis. Complement inhibition with compstatin reduced erythrocyte binding and bacterial C3 opsonization. In contrast, the C5aRa efficiently reduced phagocytosis, but did not affect the binding of bacteria to erythrocytes. The anti-CR1 blocking mAb dose-dependently reduced bacterial binding to erythrocytes to nil, with subsequent increased phagocytosis and oxidative burst. LPS had no effect on these processes since similar results were obtained using an LPS-deficient N. meningitidis mutant. In vivo experiments in a pig model of sepsis showed limited binding of bacteria to erythrocytes, consistent with the facts that erythrocyte CR1 receptors are absent in non-primates and that the bacteria were mainly found in the lungs. In conclusion, complement-dependent binding of Gram-negative bacteria to erythrocyte CR1 decreases phagocytosis and oxidative burst by leukocytes in human whole blood. PMID:21839519

  7. Effect of Culture Condition Variables on Human Endostatin Gene Expression in Escherichia coli Using Response Surface Methodology

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Background Recombinant human endostatin (rhES) is an angiogenesis inhibitor used as a specific drug for the treatment of non-small-cell lung cancer. As mRNA concentration affects the recombinant protein expression level, any factor affecting mRNA concentration can alter the protein expression level. Response surface methodology (RSM) based on the Box-Behnken design (BBD) is a statistical tool for experimental design and for optimizing biotechnological processes. Objectives This investigation aimed to predict and develop the optimal culture conditions for mRNA expression of the synthetic human endostatin (hES) gene in Escherichia coli BL21 (DE3). Materials and Methods The hES gene was amplified, cloned, and expressed in the E. coli expression system. Three factors, including isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, post-induction time, and cell density before induction, were selected as important factors. The mRNA expression level was determined using real-time PCR. The expression levels of hES mRNA under the different growth conditions were analyzed. SDS-PAGE and western blot analyses were carried out for further confirmation of interest-gene expression. Results A maximum rhES mRNA level of 376.16% was obtained under the following conditions: 0.6 mM IPTG, 7 hours post-induction time, and 0.9 cell density before induction. The level of rhES mRNA was significantly correlated with post-induction time, IPTG concentration, and cell density before induction (P < 0.05). The expression of the hES gene was confirmed by western blot. Conclusions The obtained results indicate that RSM is an effective method for the optimization of culture conditions for hES gene expression in E. coli. PMID:27800134

  8. Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus strain GG on human rotavirus binding, infection, and B cell immunity

    PubMed Central

    Kandasamy, Sukumar; Vlasova, Anastasia N; Fischer, David; Kumar, Anand; Chattha, Kuldeep S; Rauf, Abdul; Shao, Lulu; Langel, Stephanie N; Rajashekara, Gireesh; Saif, Linda J

    2015-01-01

    Rotavirus (RV) causes significant morbidity and mortality in children worldwide. The intestinal microbiota plays an important role in modulating host-pathogen interactions, but little is known about the impact of commonly used probiotics on human RV (HRV) infection. In this study, we compared the immunomodulatory effects of Gram-positive [Lactobacillus rhamnosus strain GG (LGG)] and Gram-negative [Escherichia coli Nissle (EcN)] probiotic bacteria on virulent human rotavirus (VirHRV) infection and immunity using neonatal gnotobiotic (Gn) piglets. Gn piglets were colonized with EcN, LGG, EcN+LGG or uncolonized and challenged with VirHRV. Mean peak virus shedding titers and mean cumulative fecal scores were significantly lower in EcN-colonized compared to LGG-colonized or uncolonized piglets. Reduced viral shedding titers were correlated with significantly reduced small intestinal HRV IgA antibody responses in EcN-colonized compared to uncolonized piglets post-VirHRV challenge. However the total IgA levels post-VirHRV challenge in the intestine and pre-VirHRV challenge in serum were significantly higher in EcN-colonized than in LGG-colonized piglets. In vitro treatment of mononuclear cells (MNCs) with these probiotics demonstrated that EcN, but not LGG, induced IL-6, IL-10, and IgA, with the latter partially dependent on IL-10. However, addition of exogenous recombinant porcine IL-10 + IL-6 to MNCs co-cultured with LGG significantly enhanced IgA responses. The greater effectiveness of EcN in moderating HRV infection, may also be explained by the binding of EcN, but not LGG to Wa HRV particles or HRV 2/4/6 virus-like particles (VLP) but not 2/6 VLP. Results suggest that EcN and LGG differentially modulate RV infection and B cell responses. PMID:26800875

  9. On the trail of EHEC/EAEC--unraveling the gene regulatory networks of human pathogenic Escherichia coli bacteria.

    PubMed

    Pauling, Josch; Röttger, Richard; Neuner, Andreas; Salgado, Heladia; Collado-Vides, Julio; Kalaghatgi, Prabhav; Azevedo, Vasco; Tauch, Andreas; Pühler, Alfred; Baumbach, Jan

    2012-07-01

    Pathogenic Escherichia coli, such as Enterohemorrhagic E. coli (EHEC) and Enteroaggregative E. coli (EAEC), are globally widespread bacteria. Some may cause the hemolytic uremic syndrome (HUS). Varying strains cause epidemics all over the world. Recently, we observed an epidemic outbreak of a multi-resistant EHEC strain in Western Europe, mainly in Germany. The Robert Koch Institute reports >4300 infections and >50 deaths (July, 2011). Farmers lost several million EUR since the origin of infection was unclear. Here, we contribute to the currently ongoing research with a computer-aided study of EHEC transcriptional regulatory interactions, a network of genetic switches that control, for instance, pathogenicity, survival and reproduction of bacterial cells. Our strategy is to utilize knowledge of gene regulatory networks from the evolutionary relative E. coli K-12, a harmless strain mainly used for wet lab studies. In order to provide high-potential candidates for human pathogenic E. coli bacteria, such as EHEC, we developed the integrated online database and an analysis platform EhecRegNet. We utilize 3489 known regulations from E. coli K-12 for predictions of yet unknown gene regulatory interactions in 16 human pathogens. For these strains we predict 40,913 regulatory interactions. EhecRegNet is based on the identification of evolutionarily conserved regulatory sites within the DNA of the harmless E. coli K-12 and the pathogens. Identifying and characterizing EHEC's genetic control mechanism network on a large scale will allow for a better understanding of its survival and infection strategies. This will support the development of urgently needed new treatments. EhecRegNet is online via http://www.ehecregnet.de.

  10. Cloning and Expression of L1 Protein Human Papillomavirus Type 31 Isolated from Iranian Patients in Escherichia coli.

    PubMed

    Hajmohammadi, Sameh; Rassi, Hossein

    2016-08-01

    Human papillomavirus (HPV), a major pathogen of human cervical cancer, contains a full-length L1 gene encoding its surface capsid protein. One group of potential vaccine candidates against this virus in Iranian patients is based on surface protein components such as HPV31 L1 protein that can make virus-like particles (VLPs). The high immunity response stimulation of this effecter VLP was observed in host, suggesting that the individual characteristics of a particular effecter may require empirical testing for vaccination. In the present study, we decided to clone and express HPV31 L1 protein to investigate its use as a subunit vaccine and furthermore to insert the gene into an Escherichia coli background so as to analyze production of this recombinant protein. We report the presentation of HPV31 in 100 cervical lesion tissue samples based on polymerase chain reaction (PCR). Type of lesion, age, and other characteristics were reviewed and confirmed by a pathologist. The sequence from L1 genes of HPV was selected using special primers. The gene encoding the major capsid protein L1 was used for subcloning in pTG19-T and pET-32a plasmid. The recombinant protein expression was confirmed by RT-PCR using L1 primers and detected by absorption sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot testing. The results presented here offer new insights into the in vivo response of HPV31 in Iranian patients and European models. On the other hand, the use of recombinant L1 protein for Iranian patient protection as well as vaccination studies will permit testing of this antigen protection rate and open the way to the discovery of protein biomarkers for monitoring clinical and subclinical cervical cancers.

  11. Preparative isolation by high performance liquid chromatography of human insulin B chain produced in escherichia coli

    SciTech Connect

    Cruz, N.; Antonio, S.; De Anda, R.; Gosset, G.; Bolivar, F. )

    1990-01-01

    This paper reports on a simple method developed for the analytical and preparative purification of human insulin B chain from recombinant origin. Three solvent systems: acetonitrile, isopropanol and methanol, were studied to determine their capacity to resolve the insulin B chain from a mixture of cyanogen bromide generated bacterial peptides. Using a {mu}Bondapak C18 column, it was possible to resolve the insulin B chain in all three systems. On a preparative scale, using a PrePak 500 C18 column with the isopropanol system, it was possible to purify insulin B chain and to obtain a 95% protein recovery.

  12. Prevalence and antibiogram profiling of Escherichia coli pathotypes isolated from the Kat River and the Fort Beaufort abstraction water.

    PubMed

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I

    2014-08-12

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes.

  13. Prevalence and Antibiogram Profiling of Escherichia coli Pathotypes Isolated from the Kat River and the Fort Beaufort Abstraction Water

    PubMed Central

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I.

    2014-01-01

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes. PMID:25119699

  14. Three New Escherichia coli Phages from the Human Gut Show Promising Potential for Phage Therapy

    PubMed Central

    Dalmasso, Marion; Strain, Ronan; Neve, Horst; Franz, Charles M. A. P.; Cousin, Fabien J.; Ross, R. Paul; Hill, Colin

    2016-01-01

    With the emergence of multi-drug resistant bacteria the use of bacteriophages (phages) is gaining renewed interest as promising anti-microbial agents. The aim of this study was to isolate and characterize phages from human fecal samples. Three new coliphages, ɸAPCEc01, ɸAPCEc02 and ɸAPCEc03, were isolated. Their phenotypic and genomic characteristics, and lytic activity against biofilm, and in combination with ciprofloxacin, were investigated. All three phages reduced the growth of E. coli strain DPC6051 at multiplicity of infection (MOI) between 10−3 and 105. A cocktail of all three phages completely inhibited the growth of E. coli. The phage cocktail also reduced biofilm formation and prevented the emergence of phage-resistant mutants which occurred with single phage. When combined with ciprofloxacin, phage alone or in cocktail inhibited the growth of E. coli and prevented the emergence of resistant mutants. These three new phages are promising biocontrol agents for E. coli infections. PMID:27280590

  15. Human Escherichia coli O157:H7 infection associated with the consumption of unpasteurized goat's milk.

    PubMed Central

    Bielaszewska, M.; Janda, J.; Bláhová, K.; Minaríková, H.; Jíková, E.; Karmali, M. A.; Laubová, J.; Sikulová, J.; Preston, M. A.; Khakhria, R.; Karch, H.; Klazarová, H.; Nyc, O.

    1997-01-01

    A cluster of four cases of haemolytic uraemic syndrome in children occurred in Northern Bohemia, Czech Republic, between 15 June and 7 July, 1995. All the cases had significantly elevated titres of anti-O157 lipopolysaccharide (LPS) antibodies as detected by the indirect haemagglutination assay. All but one of them had drunk unpasteurized goat's milk from the same farm within the week before the disease. Evidence of E. coli O157 infection was subsequently found in 5 of 15 regular drinkers of the farm's raw goat's milk; four of them were asymptomatic, 1 had mild diarrhoea at the end of June. Verocytotoxin 2-producing E. coli O157:H7 strains of phage type 2 and of identical pulsed-field gel electrophoresis patterns were isolated from 1 of 2 farm goats and from 1 of the asymptomatic goat's milk drinkers. The frequency of anti-O157 LPS antibodies found among regular drinkers of the farm's raw goat's milk (33%; 5 of 15) was significantly higher than that found in control population (0%; none of 45) (P = 0.0005; Fisher's exact test). Our findings indicate that goats may be a reservoir of E. coli O157:H7 and a source of the infection for humans; raw goat's milk may serve as a vehicle of the pathogen transmission. PMID:9440432

  16. Mass production of human epidermal growth factor using fed-batch cultures of recombinant Escherichia coli.

    PubMed

    Shimizu, N; Fukuzono, S; Harada, Y; Fujimori, K; Gotoh, K; Yamazaki, Y

    1991-06-05

    Fed-batch cultures of recombinant E. coli HB101 harboring expression plasmid pTRLBT1 or pTREBT1, with acetate concentration monitoring, are investigated to obtain high cell density and large amounts of human epidermal growth factor (hEGF). The expression plasmid pTRlBT1 contains a synthetic hEGF gene attached downstream of the N-terminal fragment of the trp L gene preceded by the trp promoter. The expression plasmid pTREBT1 contains the same coding sequence attached downstream of the N-terminal fragment of the trp E gene preceded by the trp promoter, trp L gene, and attenuator region. E. coli harboring pTREBT1 produces 0.56 mg/L hEGE and immediately degrades it. On the other hand E. coli harboring pTRLBT1 produces 6.8 mg/L hEGF and does not decompose it. Prominent inclusion bodies are observed in E. coli cells harboring pTRLBT1 using an election microscope. To Cultivate E. coli harboring pTRLBT1, a fed-batch culture system, divided into a cell growth step and an hEGF production step, is carried out. The cells grow smoothly without acetate-induced inhibition. Cell concentration and hEGF quantity reach the high values of 21 g/L and 60 mg/L, respectively.

  17. Design of a covalently linked human interleukin-10 fusion protein and its secretory expression in Escherichia coli.

    PubMed

    Guggenbichler, Florian; Büttner, Carolin; Rudolph, Wolfram; Zimmermann, Kurt; Gunzer, Florian; Pöhlmann, Christoph

    2016-12-01

    Wild-type human interleukin-10 (hIL-10) is a non-covalent homodimer with a short half-life, thus limiting its therapeutic applications in vivo. To avoid loss of function due to dimer dissociation, we designed a synthetic hIL-10 analog by bridging both monomers via a 15 amino acid-long peptide spacer in a C-terminal to N-terminal fashion. For secretory expression in Escherichia coli, a 1156 bp fragment was generated from template vector pAZ1 by fusion PCR encoding a T7 promoter region and the signal sequence of the E. coli outer membrane protein F fused in frame to two tandem E. coli codon-optimized mature hIL-10 genes connected via a 45 nucleotide linker sequence. The construct was cloned into pUC19 for high-level expression in E. coli BL21 (DE3). The mean concentrations of hIL-10 fusion protein in the periplasm and supernatant of E. coli at 37 °C growth temperature were 130 ± 40 and 2 ± 1 ng/ml, respectively. The molecular mass of the recombinant protein was assessed via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis, indicating correct processing of the signaling sequence in E. coli. In vitro biological activity was shown by phosphorylation of signal transducer and activator of transcription protein 3 and suppression of tumor necrosis factor α secretion in lipopolysaccharide-stimulated macrophages.

  18. Expression, purification, and characterization of the functional dimeric cytoplasmic domain of human erythrocyte band 3 in Escherichia coli.

    PubMed Central

    Wang, C. C.; Badylak, J. A.; Lux, S. E.; Moriyama, R.; Dixon, J. E.; Low, P. S.

    1992-01-01

    The cytoplasmic domain of the human erythrocyte membrane protein, band 3 (cdb3), contains binding sites for hemoglobin, several glycolytic enzymes, band 4.1, band 4.2, and ankyrin, and constitutes the major linkage between the membrane skeleton and the membrane. Although erythrocyte cdb3 has been partially purified from proteolyzed red blood cells, further separation of the water-soluble 43-kDa and 41-kDa proteolytic fragments has never been achieved. In order to obtain pure cdb3 for crystallization and site-directed mutagenesis studies, we constructed an expression plasmid that has a tandemly linked T7 promoter placed upstream of the N-terminal 379 amino acids of the erythrocyte band 3 gene. Comparison of several Escherichia coli strains led to the selection of the BL21 (DE3) strain containing the pLysS plasmid as the best host for efficient production of cdb3. About 10 mg of recombinant cdb3 can be easily purified from 4 L of E. coli culture in two simple steps. Comparison of cdb3 released from the red blood cell by proteolysis with recombinant cdb3 reveals that both have the same N-terminal sequence, secondary structure, and pH-dependent conformational change. The purified recombinant cdb3 is also a soluble stable dimer with the same Stokes radius as erythrocyte cdb3. The affinities of the two forms of cdb3 for ankyrin are essentially identical; however, recombinant cdb3 with its unblocked N-terminus exhibits a slightly lower affinity for aldolase. PMID:1304397

  19. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression.

    PubMed

    Raisch, Jennifer; Rolhion, Nathalie; Dubois, Anaëlle; Darfeuille-Michaud, Arlette; Bringer, Marie-Agnès

    2015-03-01

    Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24 h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72 h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72 h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages.

  20. The contribution of Escherichia coli from human and animal sources to the integron gene pool in coastal waters

    PubMed Central

    Moura, Alexandra; Araújo, Susana; Alves, Marta S.; Henriques, Isabel; Pereira, Anabela; Correia, António C. M.

    2014-01-01

    To understand the contribution of animal- and human-derived fecal pollution sources in shaping integron prevalence and diversity in beach waters, 414 Escherichia coli strains were collected from beach waters (BW, n = 166), seagull feces (SF, n = 179), and wastewaters (WW, n = 69), on the World Biosphere Reserve of the Berlenga Island, Portugal. Statistical differences were found between the prevalence of integrons in BW (21%) and WW (10%), but not between BW and SF (19%). The majority of integrase-positive (intI+)-strains affiliated to commensal phylogroups B1 (37%), A0 (24%), and A1 (20%). Eighteen different gene cassette arrays were detected, most of them coding for resistances to aminoglycosides, trimethoprim, chloramphenicol, and quaternary ammonia compounds. Common arrays were found among strains from different sources. Multi-resistance to three or more different classes of antibiotics was observed in 89, 82, and 57% of intI+-strains from BW, SF and WW, respectively. Plasmids were detected in 79% of strains (60/76) revealing a high diversity of replicons in all sources, mostly belonging to IncF (Frep, FIA, and FIB subgroups), IncI1, IncN, IncY, and IncK incompatibility groups. In 20% (15/76) of strains, integrons were successfully mobilized through conjugation to E. coli CV601. Results obtained support the existence of a diverse integron pool in the E. coli strains from this coastal environment, associated with different resistance traits and plasmid incompatibility groups, mainly shaped by animal fecal pollution inputs. These findings underscore the role of wild life in dissemination of integrons and antibiotic resistance traits in natural environments. PMID:25161650

  1. An Escherichia coli Expression Assay and Screen for Human Immunodeficiency Virus Protease Variants with Decreased Susceptibility to Indinavir

    PubMed Central

    Melnick, Laurence; Yang, Shiow-Shong; Rossi, Rick; Zepp, Charlie; Heefner, Donald

    1998-01-01

    We have developed a recombinant Escherichia coli screening system for the rapid detection and identification of amino acid substitutions in the human immunodeficiency virus (HIV) protease associated with decreased susceptibility to the protease inhibitor indinavir (MK-639; Merck & Co.). The assay depends upon the correct processing of a segment of the HIV-1 HXB2 gag-pol polyprotein followed by detection of HIV reverse transcriptase activity by a highly sensitive, colorimetric enzyme-linked immunosorbent assay. The highly sensitive system detects the contributions of single substitutions such as I84V, L90M, and L63P. The combination of single substitutions further decreases the sensitivity to indinavir. We constructed a library of HIV protease variant genes containing dispersed mutations and, using the E. coli recombinant system, screened for mutants with decreased indinavir sensitivity. The discovered HIV protease variants contain amino acid substitutions commonly associated with indinavir resistance in clinical isolates, including the substitutions L90M, L63P, I64V, V82A, L24I, and I54T. One substitution, W6R, is also frequently found by the screen and has not been reported elsewhere. Of a total of 12,000 isolates that were screened, 12 protease variants with decreased sensitivity to indinavir were found. The L63P substitution, which is also associated with indinavir resistance, increases the stability of the isolated protease relative to that of the native HXB2 protease. The rapidity, sensitivity, and accuracy of this screen also make it useful for screening for novel inhibitors. We have found the approach described here to be useful for the detection of amino acid substitutions in HIV protease that have been associated with drug resistance as well as for the screening of novel compounds for inhibitory activity. PMID:9835523

  2. Prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli isolated from animals, foods and humans in Iceland.

    PubMed

    Thorsteinsdottir, T R; Haraldsson, G; Fridriksdottir, V; Kristinsson, K G; Gunnarsson, E

    2010-05-01

    The prevalence of resistant bacteria in food products in Iceland is unknown, and little is known of the prevalence in production animals. The aim of this study was to investigate the prevalence and genetic relatedness of antimicrobial-resistant Escherichia coli from healthy pigs and broiler chicken, pork, broiler meat, slaughterhouse personnel and outpatients in Iceland. A total of 419 E. coli isolates were tested for antimicrobial susceptibility using a microbroth dilution method (VetMIC), and resistant strains were compared using pulsed-field gel electrophoresis (PFGE). All samples were screened for enrofloxacin-resistant strains with selective agar plates. The resistance rates among E. coli isolates were moderate to high from caecal and meat samples of pigs (54.1% and 28%), broilers (33.6% and 52%) and slaughterhouse personnel (39.1%), whereas isolates from outpatients showed moderate resistance rates (23.1%). Of notice was resistance to quinolones (minimum inhibitory concentrations: nalidixic acid > or = 32, ciprofloxacin > or = 0.12 and enrofloxacin > or = 0.5), particularly among broiler and broiler meat isolates (18.2% and 36%), as there is no known antimicrobial selection pressure in the broiler production in Iceland. The majority (78.6%) of the resistant E. coli isolates was genotypically different, based on PFGE fingerprint analyses and clustering was limited. However, the same resistance pattern and pulsotype were found among isolates from broiler meat and a slaughterhouse worker, indicating spread of antimicrobial-resistant E. coli from animals to humans. Diverse resistance patterns and pulsotypes suggest the presence of a large population of resistant E. coli in production animals in Iceland. This study gives baseline information on the prevalence of antimicrobial-resistant E. coli from production animals, and their food products in Iceland and the moderate to high resistance rates emphasize the need for continuing surveillance. Further studies on the

  3. Optimization of Fermentation Conditions for Recombinant Human Interferon Beta Production by Escherichia coli Using the Response Surface Methodology

    PubMed Central

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi Memari, Hamid; Vahidi, Hossein

    2015-01-01

    Background: The periplasmic overexpression of recombinant human interferon beta (rhIFN-β)-1b using a synthetic gene in Escherichia coli BL21 (DE3) was optimized in shake flasks using Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD). Objectives: This study aimed to predict and develop the optimal fermentation conditions for periplasmic expression of rhIFN-β-1b in shake flasks whilst keeping the acetate excretion as the lowest amount and exploit the best results condition for rhIFN-β in a bench top bioreactor. Materials and Methods: The process variables studied were the concentration of glucose as carbon source, cell density prior the induction (OD 600 nm) and induction temperature. Ultimately, a three-factor three-level BBD was employed during the optimization process. The rhIFN-β production and the acetate excretion served as the evaluated responses. Results: The proposed optimum fermentation condition consisted of 7.81 g L-1 glucose, OD 600 nm prior induction 1.66 and induction temperature of 30.27°C. The model prediction of 0.267 g L-1 of rhIFN-β and 0.961 g L-1 of acetate at the optimum conditions was verified experimentally as 0.255 g L-1 and 0.981 g L-1 of acetate. This agreement between the predicted and observed values confirmed the precision of the applied method to predict the optimum conditions. Conclusions: It can be concluded that the RSM is an effective method for the optimization of recombinant protein expression using synthetic genes in E. coli. PMID:26034535

  4. Preparation of soluble isotopically labeled human growth hormone produced in Escherichia coli.

    PubMed

    Lee, Jin-Hee; Jeong, Ji-Seon; Kim, Sook-Kyung; Song, Jimyeong; Lee, Ji Youn; Baek, Soyun; Choi, Jun-Hyuk

    2016-11-01

    Isotopically labeled proteins have been used as internal standards for mass spectrometry (MS)-based absolute protein quantification. Although this approach can provide highly accurate analyses of proteins of interest within a complex mixture, one of the major limitations of this method is the difficulty in preparing uniformly labeled standards. Human growth hormone (hGH) is one of the most important hormones that circulate throughout the body, and its measurement is primarily of interest in the diagnosis and treatment of growth disorders. In order to provide a useful internal standard for MS-based hGH measurement, we describe an efficient strategy to produce a potentially valuable, stable isotope-labeled hGH with high purity and yield. The strategy involves the following steps: solubilization of hGH under labeling conditions, detection of stable isotope incorporation, large-scale purification, analysis of the labeled protein, and assessment of the labeling efficiency. We show that the yield of soluble hGH under selective isotopic labeling conditions can be greatly increased by optimizing protein expression and extraction. Our efficient method for generating isotopically labeled hGH does not influence the structural integrity of hGH. Finally, we assessed the efficiency of stable isotope labeling at the intact protein level, and the result was further verified by amino acid analysis. These results clearly indicate that our labeling approach allows an almost complete incorporation of (13)C6(15)N4-arginine into the hGH expressed in E.coli without detectable isotope scrambling.

  5. Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma.

    PubMed

    Kaliberov, S A; Market, J M; Gillespie, G Y; Krendelchtchikova, V; Della Manna, D; Sellers, J C; Kaliberova, L N; Black, M E; Buchsbaum, D J

    2007-07-01

    Combined treatment using adenoviral (Ad)-directed enzyme/prodrug therapy and radiation therapy has the potential to become a powerful method of cancer therapy. We have developed an Ad vector encoding a mutant bacterial cytosine deaminase (bCD) gene (AdbCD-D314A), which has a higher affinity for cytosine than wild-type bCD (bCDwt). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of AdbCD-D314A with the prodrug 5-fluorocytosine (5-FC) and ionizing radiation against human glioma. The present study demonstrates that AdbCD-D314A infection resulted in increased 5-FC-mediated cell killing, compared with AdbCDwt. Furthermore, a significant increase in cytotoxicity following AdbCD-D314A and radiation treatment of glioma cells in vitro was demonstrated as compared to AdbCDwt. Animal studies showed significant inhibition of subcutaneous or intracranial tumor growth of D54MG glioma xenografts by the combination of AdbCD-D314A/5-FC with ionizing radiation as compared with either agent alone, and with AdbCDwt/5-FC plus radiation. The results suggest that the combination of AdbCD-D314A/5-FC with radiation produces markedly increased cytotoxic effects in cancer cells in vitro and in vivo. These data indicate that combined treatment with this novel mutant enzyme/prodrug therapy and radiotherapy provides a promising approach for cancer therapy.

  6. Protection of mice against enterotoxigenic E. coli by immunization with a polyvalent enterotoxin comprising a combination of LTB, STa, and STb.

    PubMed

    You, Jiansong; Xu, Yongping; He, Maolong; McAllister, Tim A; Thacker, Philip A; Li, Xiaoyu; Wang, Tingting; Jin, Liji

    2011-03-01

    Currently available enterotoxigenic Escherichia coli (ETEC) vaccines are based on colonization factors and/or the heat-labile enterotoxin B subunit (LTB). However, the induction of antitoxic responses against heat-stable enterotoxin a (STa) and b (STb) has merit as these two poorly immunogenic toxins are frequently associated with ETEC strains. In this study, we genetically constructed a trivalent enterotoxin fusion protein (STa-LTB-STb, abbreviated to SLS) in an effort to develop a single toxoid containing these three enterotoxins for vaccination against ETEC. Mutagenesis at one disulfide-bridge-forming cysteine in STa led to a dramatic reduction in the STa toxicity of SLS; however, the fusion peptide retained the STb-associated toxicity. Immunization of mice with SLS protein elicited significant antibody responses to LTB, STa, and STb. Significantly, the mice antisera were able to neutralize the biological activity of both STa and STb. In the experiment to assess the protective effect of SLS immunization, the mortality of mice receiving SLS was significantly lower than their control cohorts (P < 0.01) after intraperitoneal challenge with ETEC. These results show that the trivalent fusion enterotoxin SLS has the potential to serve as a useful toxin-based vaccine against ETEC-induced diarrheal disease via a single immunogen.

  7. Pathogenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  8. Emerging Escherichia Pathogen

    PubMed Central

    Permpalung, Nitipong; Sentochnik, Deborah E.

    2013-01-01

    Escherichia hermannii was first identified as a new species in 1982. It has rarely been reported as a human pathogen. We report the first case of E. hermannii as the sole pathogen in a catheter-related bloodstream infection. PMID:23740732

  9. No Evidence for Transmission of Antibiotic-Resistant Escherichia coli Strains from Humans to Wild Western Lowland Gorillas in Lopé National Park, Gabon

    PubMed Central

    Godreuil, Sylvain; Bodenham, Rebecca; Ratiarison, Sandra; Devos, Céline; Petretto, Marie-Odile; Raymond, Michel; Escobar-Páramo, Patricia

    2012-01-01

    The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resistant isolates in a population of the critically endangered western lowland gorilla (Gorilla gorilla gorilla) and other wild mammals in Lopé National Park (LNP), Gabon, and we tested whether the observed pattern could be explained by bacterial transmission from humans and domestic animals into wildlife populations. Our results show a high prevalence of antibiotic-resistant bacterial isolates in humans and low levels in gorillas and other wildlife. The significant differences in the genetic background of the resistant bacteria isolated from humans and gorillas suggest that transmission is low or does not occur between these two species. These findings indicate that the presence of antibiotic-resistant strains in wildlife do not imply direct bacteria transmission from humans. Thus, in areas of low human density, human-wildlife E. coli transmission seems to be low. The presence of antibiotic-resistant isolates in gorillas may be better explained by other mechanisms for resistance acquisition, such as horizontal gene exchange among bacteria or naturally acquired resistance. PMID:22492436

  10. Some structures and processes of human epithelial cells involved in uptake of enterohemorrhagic Escherichia coli O157:H7 strains.

    PubMed Central

    Oelschlaeger, T A; Barrett, T J; Kopecko, D J

    1994-01-01

    Several enterohemorrhagic Escherichia coli (EHEC) strains of serotype O157:H7 isolated from patients with hemorrhagic colitis, ischemic colitis, or hemolytic uremic syndrome were all found to be able to invade certain human epithelial cell lines in vitro. Their ability to gain entry into epithelial cells was compared with those of known invasive Shigella flexneri and Salmonella typhi strains and the noninvasive E. coli strain HB101 in invasion assays utilizing gentamicin to kill extracellular bacteria. All EHEC strains under investigation were efficiently internalized into T24 bladder and HCT-8 ileocecal cells. In striking contrast to shigellae, the same EHEC strains were not taken up into human embryonic intestinal INT407 cells or HEp-2 cells any more than the noninvasive E. coli strain HB101. The mechanism(s) of EHEC internalization was characterized by comparing the invasion efficiencies in the absence and presence of a variety of inhibitors acting on structures and processes of prokaryotic or eukaryotic cells. Also, wild-type, plasmid-containing EHEC strains were compared with their plasmid-cured isogenic derivative strains to determine if plasmid genes affect invasion ability. Plasmid-cured EHEC invaded as well as wild-type EHEC, indicating that invasion ability is chromosomally encoded. Inhibition of bacterial protein synthesis by simultaneous addition of bacteria and chloramphenicol to the monolayer blocked EHEC uptake dramatically, suggesting the presence of an invasion protein(s) with a short half-life. Studies utilizing inhibitors which act on eukaryotic cells demonstrated a strong dependence on microfilaments in the process of uptake of all EHEC strains into both T24 and HCT-8 cells. In general, depolymerization of microtubules as well as inhibition of receptor-mediated endocytosis reduced the efficiency of EHEC invasion of T24 cells, whereas interference with endosome acidification reduced EHEC entry into only HCT-8 cells. Taxol-induced stabilization of

  11. Expression of Recombinant Human Insulin-like Growth Factor Type 1 (rhIGF-1) in Escherichia coli

    PubMed Central

    Iranpoor, Hamidreza; Omidinia, Eskandar; Vatankhah, Venus; Gharanjik, Vahid; Shahbazi, Majid

    2015-01-01

    Background: Human insulin-like growth factor type 1 (hIGF-1) is a protein consisting of 70 amino acids (MW=7.6 kDa) and mainly synthesized by liver. Mecasermin (Trade name INCRELEX) is the synthetic form of the protein which is used as an effective treatment for particular disorders such as short stature, type 1 and 2 diabetes, and wound healing. Current study was aimed to investigate the expression of human insulin-like growth factor type1 in Escherichia coli (E. coli) BL21 (DE3) expression system in order to produce an active recombinant form of the protein. Methods: For the purpose of the study, firstly codon optimization was done for hIGF-1 gene, using bioinformatics databases. Then, the gene was synthesized and inserted in pET-24a vector by a cutting strategy included NdeI and BamHI-HF enzymes. In the next step, gene was run in agarose gel and purified. The constructed expression cassette was transformed into E. coli BL21 (DE3) cells through CaCl 2 heat shock method. Identification and confirmation of the transformed colonies were performed using screening PCR method. Synthesis of hIGF-1 was induced by IPTG. The expression in induced strains was analyzed by SDS-PAGE and western blotting techniques. Confirmation of cloning and IGF-1 expression cassette was carried out through genetic engineering procedures. Results: Analysis of transformed E. coli strain with SDS-PAGE and western blotting techniques confirmed that gene was expressed in host cells. Molecular weight of the expressed protein was estimated to be 7.6 kDa. Conclusion: hIGF-1 expression cassette for cloning and expression in E. coli was designed and the protein of interest was successfully induced and identified. In addition, E. coli BL21 (DE3) can be used as a suitable host for production of recombinant hIGF-1 and this technology has a potential to be localized. PMID:26306149

  12. Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic

    PubMed Central

    Röderova, Magdalena; Halova, Dana; Papousek, Ivo; Dolejska, Monika; Masarikova, Martina; Hanulik, Vojtech; Pudova, Vendula; Broz, Petr; Htoutou-Sedlakova, Miroslava; Sauer, Pavel; Bardon, Jan; Cizek, Alois; Kolar, Milan; Literak, Ivan

    2017-01-01

    Escherichia coli is a common commensal bacterial species of humans and animals that may become a troublesome pathogen causing serious diseases. The aim of this study was to characterize the quinolone resistance phenotypes and genotypes in E. coli isolates of different origin from one area of the Czech Republic. E. coli isolates were obtained from hospitalized patients and outpatients, chicken farms, retailed turkeys, rooks wintering in the area, and wastewaters. Susceptibility of the isolates grown on the MacConkey agar with ciprofloxacin (0.05 mg/L) to 23 antimicrobial agents was determined. The presence of plasmid-mediated quinolone resistance (PMQR) and ESBL genes was tested by PCR and sequencing. Specific mutations in gyrA, gyrB, parC, and parE were also examined. Multilocus sequence typing and pulsed-field gel electrophoresis were performed to assess the clonal relationship. In total, 1050 E. coli isolates were obtained, including 303 isolates from humans, 156 from chickens, 105 from turkeys, 114 from the rooks, and 372 from wastewater samples. PMQR genes were detected in 262 (25%) isolates. The highest occurrence was observed in isolates from retailed turkey (49% of the isolates were positive) and inpatients (32%). The qnrS1 gene was the most common PMQR determinant identified in 146 (56%) followed by aac(6′)-Ib-cr in 77 (29%), qnrB19 in 41 (16%), and qnrB1 in 9 (3%) isolates. All isolates with high level of ciprofloxacin resistance (>32 mg/L) carried double or triple mutations in gyrA combined with single or double mutations in parC. The most frequently identified substitutions were Ser(83)Leu; Asp(87)Asn in GyrA, together with Ser(80)Ile, or Glu(84)Val in ParC. Majority of these isolates showed resistance to beta-lactams and multiresistance phenotype was found in 95% isolates. Forty-eight different sequence types among 144 isolates analyzed were found, including five major clones ST131 (26), ST355 (19), ST48 (13), ST95 (10), and ST10 (5). No isolates

  13. Activity of essential oils from Brazilian medicinal plants on Escherichia coli.

    PubMed

    Duarte, Marta Cristina Teixeira; Leme, Ewerton Eduardo; Delarmelina, Camila; Soares, Andressa Almeida; Figueira, Glyn Mara; Sartoratto, Adilson

    2007-05-04

    Essential oils obtained from leaves of 29 medicinal plants commonly used in Brazil were screened against 13 different Escherichia coli serotypes. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentration (MIC) were determined by microdilution method. Essential oil from Cymbopogon martinii exhibited a broad inhibition spectrum, presenting strong activity (MIC between 100 and 500 microg/mL) against 10 out of 13 Escherichia coli serotypes: three enterotoxigenic, two enteropathogenic, three enteroinvasive and two shiga-toxin producers. C. winterianus inhibited strongly two enterotoxigenic, one enteropathogenic, one enteroinvasive and one shiga-toxin producer serotypes. Aloysia triphylla also shows good potential to kill Escherichia coli with moderate to strong inhibition. Other essential oils showed antimicrobial properties, however with a more restricted action against the serotypes studied. Chemical analysis of Cymbopogon martinii essential oil performed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS) showed the presence of compounds with known antimicrobial activity, including geraniol, geranyl acetate and trans-cariophyllene, which tested separately, indicated geraniol as antimicrobial active compound. The significant antibacterial activity of Cymbopogon martinii oil suggests that they could serve as a source for compounds with therapeutic potential.

  14. Polymorphism of the glucosyltransferase gene (ycjM) in Escherichia coli and its use for tracking human fecal pollution in water.

    PubMed

    Deng, Daiyong; Zhang, Ning; Xu, Dong; Reed, Mary; Liu, Fengjing; Zheng, Guolu

    2015-12-15

    This study examined polymorphism of the glucosyltransferase gene (ycjM) in fecal Escherichia coli isolates and evaluated the use of the sequence polymorphism for measuring human fecal pollution in water. Significant nucleotide variations were observed through comparative analysis of the ycjM sequences of 70 E. coli strains isolated from the feces of humans, domestic livestock, and wild animals. Three distinct types of ycjM sequences were found: universal-ycjM, human/chicken-ycjM, and human-ycjM. Using the human-ycjM sequences, both a polymerase chain reaction (PCR), Hycj-PCR and a quantitative PCR, Hycj-qPCR, were developed. As shown by the Hycj-PCR amplification, the human-ycjM marker appeared to be highly associated with the E. coli strains isolated from human feces, based on the analysis of 370 E. coli strains isolated from humans and seven other animal species. Similarly, the human-ycjM marker was highly linked with human feces, as demonstrated by the Hycj-PCR assay, when using 337 fecal DNA samples from 16 host animal sources, including both domestic and wild animals. Overall, the specificity and sensitivity of the human-ycjM marker for differentiating between the feces of humans and those of nonhuman groups were 99.7% and 100%, respectively; the prevalence of the marker appeared to be greater than 50% in the human-feces-associated E. coli population. In addition, our study showed that the quantification of human E. coli by the Hycj-qPCR was linearly correlated with the anthropogenic activity within a watershed. Our study suggests that this novel human-ycjM marker and the resulting PCR-based methods developed should be useful for measuring human-associated E. coli and human fecal pollution in water.

  15. Human serum amyloid P component protects against Escherichia coli O157:H7 Shiga toxin 2 in vivo: therapeutic implications for hemolytic-uremic syndrome.

    PubMed

    Armstrong, Glen D; Mulvey, George L; Marcato, Paola; Griener, Thomas P; Kahan, Melvyn C; Tennent, Glenys A; Sabin, Caroline A; Chart, Henrik; Pepys, Mark B

    2006-04-15

    Shiga toxin (Stx) 2 causes hemolytic-uremic syndrome (HUS), an intractable and often fatal complication of enterohemorrhagic Escherichia coli O157:H7 infection. Here, we show that serum amyloid P component (SAP), a normal human plasma protein, specifically protects mice against the lethal toxicity of Stx2, both when injected into wild-type mice and when expressed transgenically; in the presence of human SAP, there was greatly reduced in vivo localization of Stx2 to the kidneys, suggesting a possible mechanism of protection. In humans, circulating SAP concentrations did not differ between patients with suspected enterohemorrhagic E. coli infection with antibodies to E. coli O157:H7 lipopolysaccharide and those without antibodies or between patients with HUS and those without it. However, the potent protection conferred by human SAP in the mouse model suggests that infusion of supplemental SAP may be a useful novel therapeutic approach to the treatment of this devastating condition.

  16. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  17. Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits.

    PubMed

    Gordon, David M; Stern, Steven E; Collignon, Peter J

    2005-01-01

    Escherichia coli were isolated from the faeces of 266 individuals living in the Canberra region of Australia. The isolates were characterized for their ECOR group membership (A, B1, B2 or D) and for the presence of 29 virulence-associated traits. Overall, 19.5 % of the strains were members of group A, 12.4 % B1, 45.1 % B2 and 22.9 % D. The frequency with which strains belonging to the four ECOR groups were observed varied with the age and sex of the hosts from which they were isolated. In males, the probability of isolating A or D strains increased with host age, whilst the probability of detecting a group B2 strain declined. In females, the probability of recovering A or B2 strains increased with increasing host age and there was a concomitant decline in the likelihood of isolating B1 or D strains. Of the 29 virulence-associated traits examined, 24 were detected in more than one strain. The likelihood of detecting most traits varied with a strain's ECOR membership, with the exception of afa/draBC, astA, cvaC, eaeA, iss and iutA, for which there was no statistically significant evidence of an association with ECOR group. The frequency with which fimH, iha, eaeA, iroN, hlyD, iss, ompT and K1 were detected in a strain depended on the age or sex of the host from which the strain was isolated. In group B2 strains many of the virulence traits were non-randomly associated, with some co-occurring in a strain less often than expected by chance, whilst others were co-associated. In 17 cases, the extent to which two virulence traits were co-associated was found to depend on host sex and age. The results of this study suggest that the morphological, physiological and dietary differences that occur among human individuals of different sex or age may influence the distribution of E. coli genotypes.

  18. Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins.

    PubMed

    Chou, Tsui-Fen; Baraniak, Janina; Kaczmarek, Renata; Zhou, Xin; Cheng, Jilin; Ghosh, Brahma; Wagner, Carston R

    2007-01-01

    To facilitate the delivery of nucleotide-based therapeutics to cells and tissues, a variety of pronucleotide approaches have been developed. Our laboratory and others have demonstrated that nucleoside phosphoramidates can be activated intracellularly to the corresponding 5'-monophosphate nucleotide and that histidine triad nucleotide binding proteins (Hints) are potentially responsible for their bioactivation. Hints are conserved and ubiquitous enzymes that hydrolyze phosphoramidate bonds between nucleoside 5'-monophosphate and an amine leaving group. On the basis of the ability of nucleosides to quench the fluorescence of covalently linked amines containing indole, a sensitive, continuous fluorescence-based assay was developed. A series of substrates linking the naturally fluorogenic indole derivatives to nucleoside 5'-monophosphates were synthesized, and their steady state kinetic parameters of hydrolysis by human Hint1 and Escherichia coli hinT were evaluated. To characterize the elemental and stereochemical effect on the reaction, two P-diastereoisomers of adenosine or guanosine phosphoramidothioates were synthesized and studied to reveal a 15-200-fold decrease in the specificity constant (kcat/Km) when the phosphoryl oxygen is replaced with sulfur. While a stereochemical preference was not observed for E. coli hinT, hHint1 exhibited a 300-fold preference for d-tryptophan phosphoramidates over l-isomers. The most efficient substrates evaluated to date are those that contain the less sterically hindering amine leaving group, tryptamine, with kcat and Km values comparable to those found for adenosine kinase. The apparent second-order rate constants (kcat/Km) for adenosine tryptamine phosphoramidate monoester were found to be 107 M-1 s-1 for hHint1 and 106 M-1 s-1 for E. coli hinT. Both the human and E. coli enzymes preferred purine over pyrimidine analogues. Consistent with observed hydrogen bonding between the 2'-OH group of adenosine monophosphate and the

  19. Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli Isolates from Humans, Animals, and the Environment

    PubMed Central

    Chen, Xiang; Zhang, Weiqiu; Pan, Weijuan; Yin, Jiajun; Pan, Zhiming; Gao, Song

    2012-01-01

    qnr, aac(6′)-Ib-cr, qepA, and oqxAB genes were detected in 5.7%, 4.9%, 2.6%, and 20.2% of 1,022 Escherichia coli isolates from humans, animals, and the environment, respectively, collected between 1993 and 2010 in China. The prevalence of oqxAB in porcine isolates (51.0%) was significantly higher than that in other isolates. This is the first report of oqxAB-positive isolates from ducks and geese and as early as 1994 from chickens. PMID:22391545

  20. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes.

    PubMed

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen; Hjernø, Karin; Møller-Jensen, Jakob

    2015-09-01

    Comparative studies of pathogenic bacteria and their non-pathogenic counterparts has led to the discovery of important virulence factors thereby generating insight into mechanisms of pathogenesis. Protein-based antigens for vaccine development are primarily selected among unique virulence-related factors produced by the pathogen of interest. However, recent work indicates that proteins that are not unique to the pathogen but instead selectively expressed compared to its non-pathogenic counterpart could also be vaccine candidates or targets for drug development. Modern methods in quantitative proteome analysis have the potential to discover both classes of proteins and hence form an important tool for discovering therapeutic targets. Adherent-invasive Escherichia coli (AIEC) and Enterotoxigenic E. coli (ETEC) are pathogenic variants of E. coli which cause intestinal disease in humans. AIEC is associated with Crohn's disease (CD), a chronic inflammatory condition of the gastrointestinal tract whereas ETEC is the major cause of human diarrhea which affects hundreds of millions annually. In spite of the disease burden associated with these pathogens, effective vaccines conferring long-term protection are still needed. In order to identify proteins with therapeutic potential, we have used mass spectrometry-based Stable Isotope Labeling with Amino acids in Cell culture (SILAC) quantitative proteomics method which allows us to compare the proteomes of pathogenic strains to commensal E. coli. In this study, we grew the pathogenic strains ETEC H10407, AIEC LF82 and the non-pathogenic reference strain E. coli K-12 MG1655 in parallel and used SILAC to compare protein levels in OMVs and culture supernatant. We have identified well-known virulence factors from both AIEC and ETEC, thus validating our experimental approach. In addition we find proteins that are not unique to the pathogenic strains but expressed at levels different from the commensal strain, including the

  1. Escherichia coli O157: Insights into the adaptive stress physiology and the influence of stressors on epidemiology and ecology of this human pathogen.

    PubMed

    Vidovic, Sinisa; Korber, Darren R

    2016-01-01

    Escherichia coli O157, a foodborne pathogen of major concern for public health, has been associated with numerous outbreaks of haemorrhagic colitis and hemolytic uremic syndrome worldwide. Human infection with E. coli O157 has been primarily associated with the food-chain transmission route. This transmission route commonly elicits a multi-faceted adaptive stress response of E. coli O157 for an extended period of time prior to human infection. Several recent research articles have indicated that E. coli O157:H7 has evolved unique survival characteristics which can affect the epidemiology and ecology of this zoonotic pathogen. This review article summarizes the recent knowledge of the molecular responses of E. coli O157 to the most common stressors found within the human food chain, and further emphasizes the influence of these stressors on the epidemiology and ecology of E. coli O157.

  2. Prevalence of Staphylococcus aureus in Imported Fish and Correlations between Antibiotic Resistance and Enterotoxigenicity.

    PubMed

    Obaidat, Mohammad M; Salman, Alaa E Bani; Lafi, Shawkat Q

    2015-11-01

    A total of 156 Staphylococcus aureus isolates were obtained from 330 imported fresh fish samples from three countries. Selective media were used for the isolation of S. aureus, and the isolates were confirmed by PCR. The isolates were tested for mecA gene, antibiotic resistance, and enterotoxin genes (sea, seb, sec, sed, see, seg, seh, and sei). Most isolates carried sea, seg, and sei genes, and seg-sei was the most frequent enterotoxin profile. About 88.5% of the S. aureus exhibited resistance to at least one antibiotic. High resistance to penicillin and ampicillin; low resistance to tetracycline, erythromycin, rifampin, and clindamycin; and very low resistance to cefotaxime, amoxicillin-clavulanic acid, gentamicin, and ciprofloxacin were exhibited by S. aureus from the three countries. In addition, some antibiotic resistance exhibited a strong correlation (P ≤ 0.01) with enterotoxigenicity in S. aureus. The study concluded that the large amount of globally traded fish increases the possibility of intercontinental transmission of enterotoxigenic and multidrug-resistant S. aureus through fish and highlights the potential influence of local fish handling and processing on consumer health worldwide. The introduction of periodic training in food safety and hygiene is essential to increase fish handlers' awareness of good hygienic practices in handling fish. These findings also enrich the ongoing debate about the risk of methicillin- and multidrug-resistant S. aureus as a foodborne pathogen compared with drug-susceptible S. aureus.

  3. Stat3 Activation in Murine Colitis Induced by Enterotoxigenic Bacteroides fragilis

    PubMed Central

    Wick, Elizabeth C.; Rabizadeh, Shervin; Albesiano, Emilia; Wu, XinQun; Wu, Shaoguang; Chan, June; Rhee, Ki-Jong; Ortega, Guillermo; Huso, David L.; Pardoll, Drew; Housseau, Franck; Sears, Cynthia L.

    2014-01-01

    Background Enterotoxigenic Bacteroides fragilis (ETBF), a molecular subclass of the common human commensal, B. fragilis, has been associated with inflammatory bowel disease. ETBF colitis is characterized by the activation of Stat3 and a Th17 immune response in the colonic mucosa. This study was designed to investigate the time course and cellular distribution of Stat3 activation in ETBF-colonized mice. Methods C57BL/6 wild-type, C57BL/6Stat3ΔIEC, or Rag-1 mice were inoculated with saline, nontoxigenic B. fragilis or ETBF. Histologic diagnosis and mucosal Stat activation (immunohistochemistry, Western blot, and/or electrophorectic mobility shift assay) were evaluated over time (6–24 h, 1–7 d, and 1–18 mo after inoculation). Mucosal permeability was evaluated at 16 hours, 1 day, and 3 days. Mucosal immune responses were evaluated at 1 week, and 12 and 18 months. Results ETBF induced rapid-onset colitis that persisted for up to 1 year. Stat3 activation (pStat3) was noted in the mucosal immune cells within 16 hours, with colonic epithelial cell activation evident at 24 hours after inoculation. ETBF-induced increased mucosal permeability was first observed at 24 hours after inoculation, after which the initial immune cell pStat3 activation was noted. Immune cell pStat3 was present in the absence of epithelial pStat3 (C57BL/ 6Stat3ΔIEC). Epithelial pStat3 was present in the absence of T and B cells (Rag-1 mice). pStat3 persisted in the epithelial and immune cells for 1 year, characterized by isolated pStat3-positive cell clusters, with varying intensity distributed through the proximal and distal colon. Similarly, mucosal Th17 immune responses persisted for up to 1 year. Loss of fecal ETBF colonization was associated with the loss of mucosal pStat3 and Th17 immune responses. Conclusions ETBF rapidly induces immune cell pStat3, which is independent of epithelial pStat3. This occurs before ETBF-induced mucosal permeability, suggesting that ETBF, likely through B

  4. Etiologic diagnosis of diarrheal disease of calves: frequency and methods for detecting enterotoxin and K99 antigen production by Escherichia cola.

    PubMed

    Moon, H W; Whipp, S C; Skartvedt, S M

    1976-09-01

    Escherichia coli isolated from calves in Minnesota and Montana were tested for enterotoxigenicity via bio-assay of cell-free broth culture fluid and for K99 antigen via a serum agglutination test. Infant mice were used to assay for heat-stable enterotoxin (ST), and adrenal cells in culture were used to assay for heat-labile enterotoxin (LT). Forty-six of the 345 E coli isolates produced ST enterotoxin, but none produced LT enterotoxin. Thirty-five of the 46 enterotoxigenic isolates had K99 antigen, and only 9 of 66 nonenterotoxigenic isolates so tested had this antigen. The enterotoxigenicity of 28 additional E coli isolates known or suspected to be calf enteropathogens and provided by investigators from 3 different laboratories was also tested. All isolates from 2 laboratories produced ST but not LT. All isolates from the 3rd laboratory produced LT but not ST. Escherichia coli organisms that were positive in the infant mouse assay also caused positive ligated, jejunal-loop responses in calves and in 9-day-old (but not in 5-week-old) pigs. It was concluded that the infant mouse and adrenal cell tests for ST and LT, combined with the agglutination test for K99, would be useful in the diagnosis of enteric enterotoxic colibacillosis of calves.

  5. Extended virulence genotype of pathogenic Escherichia coli isolates carrying the afa-8 operon: evidence of similarities between isolates from humans and animals with extraintestinal infections.

    PubMed

    Girardeau, Jean Pierre; Lalioui, Lila; Said, A Mohamed Ou; De Champs, Christophe; Le Bouguénec, Chantal

    2003-01-01

    The afimbrial AfaE-VIII adhesin is common among Escherichia coli isolates from calves with intestinal and/or extraintestinal infections and from humans with sepsis or pyelonephritis. The virulence genotypes of 77 Escherichia coli afa-8 isolates from farm animals and humans were compared to determine whether any trait of commonality exists between isolates of the different host species. Over half of the extraintestinal afa-8 isolates were associated with pap and f17Ac adhesin genes and contained virulence genes (pap, hly, and cnf1) which are characteristic of human extraintestinal pathogenic E. coli (ExPEC). PapG, which occurs as three known variants (variants I to III), is encoded by the corresponding three alleles of papG. Among the pap-positive strains, new papG variants (papGrs) that differed from the isolates with genes for the three adhesin classes predominated over isolates with papG allele III, which in turn were more prevalent than those with allele II. The data showed the substantial prevalence of the enteroaggregative E. coli heat-stable enterotoxin gene (east1) among afa-8 isolates. Most of the afa-8 isolates harbored the high-pathogenicity island (HPI) present in pathogenic Yersinia; however, two-thirds of the HPI-positive strains shared a truncated HPI integrase gene. The presence of ExPEC-associated virulence factors (VFs) in extraintestinal isolates that carry genes typical of enteric strains and that express O antigens associated with intestinal E. coli is consistent with transfer of VFs and O-antigen determinants between ExPEC and enteric strains. The similarities between animal and human ExPEC strains support the hypothesis of overlapping populations, with members of certain clones or clonal groups including animal and human strains. The presence of multiple-antibiotic-resistant bovine afa-8 strains among such clones may represent a potential public health risk.

  6. Expression in Escherichia coli of the flavin-containing monooxygenase D (form II) from adult human liver: determination of a distinct tertiary amine substrate specificity.

    PubMed

    Lomri, N; Yang, Z; Cashman, J R

    1993-01-01

    The cDNA for a major component of the family of flavin-containing monooxygenases (FMOs) present in adult human liver (i.e., HLFMO-D) has been cloned and expressed in a prokaryotic system. Escherichia coli strain NM522 was transformed with pTrcHLFMO-D, and the HLFMO-D cDNA was expressed under the control of the Trc promoter. A variety of tertiary amine substrates [i.e., chlorpromazine and 10-[(N,N-dimethylamino)alkyl]- 2-(trifluoromethyl)phenothiazines] were efficiently oxygenated by HLFMO-D cDNA expressed in E. coli or by adult human liver microsomes. Approximate dimensions of the substrate binding channel for both adult human liver microsomal FMO and cDNA-expressed HLFMO-D were apparent from an examination of the N-oxygenation of a series of 10-[(N,N-dimethylamino)alkyl]-2-(trifluoromethyl)phenothiazines. The substrate regioselectivity studies suggest that adult human liver FMO form D possesses a distinct substrate specificity compared with form A FMO from animal hepatic sources. It is likely that the substrate specificity observed for cDNA-expressed adult human liver FMO-D may have consequences for the metabolism and distribution of tertiary amines and phosphorus- and sulfur-containing drugs in humans and may provide insight into the physiologic substrate(s) for adult human liver FMO.

  7. CD14 and Complement Crosstalk and Largely Mediate the Transcriptional Response to Escherichia coli in Human Whole Blood as Revealed by DNA Microarray

    PubMed Central

    Lau, Corinna; Nygård, Ståle; Fure, Hilde; Olstad, Ole Kristoffer; Holden, Marit; Lappegård, Knut Tore; Brekke, Ole-Lars; Espevik, Terje; Hovig, Eivind; Mollnes, Tom Eirik

    2015-01-01

    Systemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation. PMID:25706641

  8. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from human stools and drinking water sources in Jordan.

    PubMed

    Shehabi, A A; Odeh, J F; Fayyad, M

    2006-10-01

    This study demonstrates that Escherichia coli isolates from human stools showed mostly higher minimum inhibitory concentrations (MICs) and significant rates of resistance (32%-67%, P<0.05) than Escherichia coli water isolates in Jordan, as follows: ampicillin (67% vs 28%), trimethoprim/sulfamethoxazole (67% vs 28%) nalidixic acid (63% vs 20%), cefuroxime (32% vs 4%), gentamicin (32% vs 17%), norfloxacin (32% vs 12%) and tetracycline (33% vs 16%). The prevalence of integron integrase genes (Intl1) in these isolates was also significantly higher in patients' stools (67%, P <0.05) than in water (36%), but the distribution of Sul 1/Sul 2 or both in association with postive Intl1 and resistance to ampicillin and sulfamethoxazole was not significantly higher (74% versus 62%, P <0.05) in isolates from stool and water. Plasmid profiles of representative multiresistant E. coli isolates from both sources indicated the presence of two common plasmids (49,25 kb) in 11/12 (91.6%), and all E. coli transconjugants were positive for class 1 integron markers (Intl 1, Sul 1 and Sul2) and mostly associated with three transferable drug-resistant determinants to ampicillin, sulfamethoxazole and tetracycline. These results indicate that class 1 integrons with conjugative R-plasmids are common and transferable among commensal antimicrobial multiresistant E. coli isolated from human feces and drinking water sources in Jordan.

  9. Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions.

    PubMed

    Nassour, Hassan; Dubreuil, J Daniel

    2014-01-01

    Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly young pigs. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ) proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure we treated human colon cells (T84) with purified STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble) and the cytoplasmic (NP-40 soluble) location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24 h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM) increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6 h. Medium supplemented with the same concentration of Mg++ or Zn++ did not affect the dislodgement rate compared to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies, we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.

  10. Application of DNA hybridization techniques in the assessment of diarrheal disease among refugess in Thailand. [Shigella; Escherichia coli; Campylobacter; Cryptosporidium

    SciTech Connect

    Taylor, D.N.; Echeverria, P.; Pitarangsi, C.; Seriwatana, J.; Sethabutr, O.; Bodhidatta, L.; Brown, C.; Herrmann, J.E.; Blacklow, N.R.

    1988-01-01

    The epidemiology and etiology of acute diarrheal disease were determined in a Hmong refugee camp on the Thai-Laotian border from April 11 to May 14, 1985. DNA hybridization techniques were used to detect Shigella species, enteroinvasive Escherichia coli, and enterotoxigenic E. coli. A monoclonal enzyme-linked immunosorbent assay was used to detect rotavirus, and standard microbiology was used to detect other enteropathogens. The age-specific diarrheal disease rates were 47 episodes per month per 1000 children less than five years old and 113 episodes per month per 1000 children less than one year old. Rotavirus, enterotoxigenic E. coli, Campylobacter, and Cryptosporidium were the predominant pathogens in children less than two years old. The DNA probe hybridized with 94% of 31 specimens identified as enterotoxigenic E. coli by the standard assays and with none of the specimens in which the standard assays were negative. The probe for Shigella and enteroinvasive E. coli hybridized in eight of 10 stools that contained Shigella and four of 314 stools from which Shigella and enteroinvasive E. coli were not isolated. The use of DNA probes allows specimens to be collected in remote areas with a minimum amount of equipment and technical expertise so that they can be easily transported to a central laboratory for further processing.

  11. Disinfectant and Antimicrobial Susceptibility Profiles of the Big Six Non-O157 Shiga Toxin-Producing Escherichia coli Strains from Food Animals and Humans.

    PubMed

    Beier, Ross C; Franz, Eelco; Bono, James L; Mandrell, Robert E; Fratamico, Pina M; Callaway, Todd R; Andrews, Kathleen; Poole, Toni L; Crippen, Tawni L; Sheffield, Cynthia L; Anderson, Robin C; Nisbet, David J

    2016-08-01

    The disinfectant and antimicrobial susceptibility profiles of 138 non-O157 Shiga toxin-producing Escherichia coli strains (STECs) from food animals and humans were determined. Antimicrobial resistance (AMR) was moderate (39.1% of strains) in response to 15 antimicrobial agents. Animal strains had a lower AMR prevalence (35.6%) than did human strains (43.9%) but a higher prevalence of the resistance profile GEN-KAN-TET. A decreasing prevalence of AMR was found among animal strains from serogroups O45 > O145 > O121 > O111 > O26 > O103 and among human strains from serogroups O145 > O103 > O26 > O111 > O121 > O45. One animal strain from serogroups O121 and O145 and one human strain from serogroup O26 had extensive drug resistance. A high prevalence of AMR in animal O45 and O121 strains and no resistance or a low prevalence of resistance in human strains from these serogroups suggests a source other than food animals for human exposure to these strains. Among the 24 disinfectants evaluated, all strains were susceptible to triclosan. Animal strains had a higher prevalence of resistance to chlorhexidine than did human strains. Both animal and human strains had a similar low prevalence of low-level benzalkonium chloride resistance, and animal and human strains had similar susceptibility profiles for most other disinfectants. Benzyldimethylammonium chlorides and C10AC were the primary active components in disinfectants DC&R and P-128, respectively, against non-O157 STECs. A disinfectant FS512 MIC ≥ 8 μg/ml was more prevalent among animal O121 strains (61.5%) than among human O121 strains (25%), which may also suggest a source of human exposure to STEC O121 other than food animals. Bacterial inhibition was not dependent solely on pH but was correlated with the presence of dissociated organic acid species and some undissociated acids.

  12. Model-based clustering of Escherichia coli O157:H7 genotypes and their potential association with clinical outcome in human infections.

    PubMed

    Elhadidy, Mohamed; Elkhatib, Walid F; Piérard, Denis; De Reu, Koen; Heyndrickx, Marc

    2015-10-01

    This study addresses the potential association of Escherichia coli O157:H7 genetic clusters with severe clinical manifestations in humans. The genotypes used in this model-based clustering had been delineated on the basis of lineage-specific polymorphism assay, Shiga toxin-encoding bacteriophage insertion site assay, clade typing, tir (A255T) polymorphism, variant analysis of Shiga toxin 2 gene, and antiterminator Q genes. Based on this model, the distribution of genotypes among tested strains suggested the presence of 6 main genetic clusters of E. coli O157:H7 strains. Clusters 1 and 3 were observed to be more frequent among E. coli O157:H7 strains isolated from bloody diarrhea and hemolytic uremic syndrome, respectively. Consequently, our findings supported the growing evidence of the existence of distinct genotypes of E. coli O157:H7 that differ in their virulence levels to human.

  13. Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat, and human extraintestinal infection.

    PubMed

    Danzeisen, Jessica L; Wannemuehler, Yvonne; Nolan, Lisa K; Johnson, Timothy J

    2013-03-01

    To examine the correlations between virulence genotyping and multilocus sequence analysis of Escherichia coli from poultry and humans, 88 isolates were examined. The isolates were selected from a population of over 1000 based on their assignment to nine different virulence genotyping clusters. Clustering based on multilocus sequence analysis mostly correlated with virulence genotyping, although multilocus sequence analysis demonstrated higher discriminatory ability and greater reliability related to inferred phylogenetic relationships. No distinct patterns in host source were observed using inferred phylogeny through multilocus sequence analysis, indicating that human, avian, and retail meat isolates are diverse, and some belong to multiple shared clonal complexes. Clonal complexes with host source overlap included ST95 and ST23 and additional novel groups, underscoring the diversity of avian pathogenic E. coli and the potential importance of these novel groups as avian and zoonotic pathogens.

  14. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification.

    PubMed

    Logue, Catherine M; Wannemuehler, Yvonne; Nicholson, Bryon A; Doetkott, Curt; Barbieri, Nicolle L; Nolan, Lisa K

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates' strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  15. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification

    PubMed Central

    Logue, Catherine M.; Wannemuehler, Yvonne; Nicholson, Bryon A.; Doetkott, Curt; Barbieri, Nicolle L.; Nolan, Lisa K.

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates’ strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  16. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  17. Gut Microbial Succession Follows Acute Secretory Diarrhea in Humans

    PubMed Central

    David, Lawrence A.; Weil, Ana; Ryan, Edward T.; Calderwood, Stephen B.; Harris, Jason B.; Chowdhury, Fahima; Begum, Yasmin; Qadri, Firdausi

    2015-01-01

    ABSTRACT Disability after childhood diarrhea is an important burden on global productivity. Recent studies suggest that gut bacterial communities influence how humans recover from infectious diarrhea, but we still lack extensive data and mechanistic hypotheses for how these bacterial communities respond to diarrheal disease and its treatment. Here, we report that after Vibrio cholerae infection, the human gut microbiota undergoes an orderly and reproducible succession that features transient reversals in relative levels of enteric Bacteroides and Prevotella. Elements of this succession may be a common feature in microbiota recovery from acute secretory diarrhea, as we observed similar successional dynamics after enterotoxigenic Escherichia coli (ETEC) infection. Our metagenomic analyses suggest that multiple mechanisms drive microbial succession after cholera, including bacterial dispersal properties, changing enteric oxygen and carbohydrate levels, and phage dynamics. Thus, gut microbiota recovery after cholera may be predictable at the level of community structure but is driven by a complex set of temporally varying ecological processes. Our findings suggest opportunities for diagnostics and therapies targeting the gut microbiota in humans recovering from infectious diarrhea. PMID:25991682

  18. Genetic diversity of Shiga toxin-producing Escherichia coli O157 : H7 recovered from human and food sources.

    PubMed

    Elhadidy, Mohamed; Elkhatib, Walid F; Elfadl, Eman A Abo; Verstraete, Karen; Denayer, Sarah; Barbau-Piednoir, Elodie; De Zutter, Lieven; Verhaegen, Bavo; De Rauw, Klara; Piérard, Denis; De Reu, Koen; Heyndrickx, Marc

    2015-01-01

    The aim of this study was to identify an epidemiological association between Shiga toxin-producing Escherichia coli O157 : H7 strains associated with human infection and with food sources. Frequency distributions of different genetic markers of E. coli O157 : H7 strains recovered from human and food sources were compared using molecular assays to identify E. coli O157 : H7 genotypes associated with variation in pathogenic potential and host specificity. Genotypic characterization included: lineage-specific polymorphism assay (LSPA-6), clade typing, tir (A255T) polymorphism, Shiga toxin-encoding bacteriophage insertion site analysis and variant analysis of Shiga toxin 2 gene (stx2a and stx2c) and antiterminator Q genes (Q933 and Q21). The intermediate lineage (LI/II) dominated among both food and human strains. Compared to other clades, clades 7 and 8 were more frequent among food and human strains, respectively. The tir (255T) polymorphism occurred more frequently among human strains than food strains. Q21 and Q933 + Q21 were found at significantly higher frequencies among food and human strains, respectively. Moreover, stx2a and stx2a+c were detected at significantly higher frequencies among human strains compared to food strains. Bivariate analysis revealed significant concordance (P<0.05) between the LSPA-6 assay and the other typing methods. Multivariable regression analysis suggested that tir (255T) was the most distinctive genotype that can be used to detect bacterial clones with potential risk for human illness from food sources. This study supported previous reports of the existence of diversity in genetic markers among different isolation sources by including E. coli O157 : H7 strains from both food and human sources. This might enable tracking genotypes with potential risk for human illness from food sources.

  19. Immunization of swine with heat-stable Escherichia coli enterotoxin coupled to a carrier protein does not protect suckling pigs against an Escherichia coli strain that produces heat-stable enterotoxin.

    PubMed Central

    Moon, H W; Baetz, A L; Giannella, R A

    1983-01-01

    Pregnant swine were immunized parenterally with purified heat-stable Escherichia coli enterotoxin that was made antigenic by coupling it to bovine immunoglobulin G. Immunized swine had high titers of antitoxin in serum and colostrum as measured by radioimmunoassay. However, the heat-stable enterotoxin neutralizing titers of the serum and colostrum from immunized swine were comparatively low. Newborn pigs suckling their immunized dams were not protected against challenge with porcine enterotoxigenic E. coli that produce heat-stable toxin but do not produce heat-labile toxin. PMID:6339398

  20. Antimicrobial Resistance of Diarrheagenic Escherichia coli Isolated from Children under the Age of 5 Years from Ifakara, Tanzania

    PubMed Central

    Vila, Jordi; Vargas, Martha; Casals, Climent; Urassa, Honorato; Mshinda, Hassan; Schellemberg, David; Gascon, Joaquim

    1999-01-01

    Diarrhea caused by multidrug-resistant bacteria is an important public health problem among children in developing countries. The prevalence and antimicrobial susceptibility of diarrheagenic Escherichia coli in 346 children under 5 years of age in Ifakara, Tanzania, were studied. Thirty-eight percent of the cases of diarrhea were due to multiresistant enterotoxigenic E. coli, enteroaggregative E. coli, or enteropathogenic E. coli. Strains of all three E. coli categories showed high-level resistance to ampicillin, tetracycline, co-trimoxazole, and chloramphenicol but were highly susceptible to quinolones. Guidelines for appropriate use of antibiotics in developing countries need updating. PMID:10582903

  1. A combination of PhP typing and β-d-glucuronidase gene sequence variation analysis for differentiation of Escherichia coli from humans and animals.

    PubMed

    Masters, N; Christie, M; Katouli, M; Stratton, H

    2015-06-01

    We investigated the usefulness of the β-d-glucuronidase gene variance in Escherichia coli as a microbial source tracking tool using a novel algorithm for comparison of sequences from a prescreened set of host-specific isolates using a high-resolution PhP typing method. A total of 65 common biochemical phenotypes belonging to 318 E. coli strains isolated from humans and domestic and wild animals were analysed for nucleotide variations at 10 loci along a 518 bp fragment of the 1812 bp β-d-glucuronidase gene. Neighbour-joining analysis of loci variations revealed 86 (76.8%) human isolates and 91.2% of animal isolates were correctly identified. Pairwise hierarchical clustering improved assignment; where 92 (82.1%) human and 204 (99%) animal strains were assigned to their respective cluster. Our data show that initial typing of isolates and selection of common types from different hosts prior to analysis of the β-d-glucuronidase gene sequence improves source identification. We also concluded that numerical profiling of the nucleotide variations can be used as a valuable approach to differentiate human from animal E. coli. This study signifies the usefulness of the β-d-glucuronidase gene as a marker for differentiating human faecal pollution from animal sources.

  2. Evolutionary and Functional Relationships of Colonization Factor Antigen I and Other Class 5 Adhesive Fimbriae of Enterotoxigenic Escherichia coli

    DTIC Science & Technology

    2004-12-01

    protein (MBP) fusions. For routine propagation and protein expression, bacteria were grown in Luria- Bertani medium (47) or in rich medium (10 g of...tryptone, 5 g of yeast extract, 5 g of NaCl, and 2 g of glucose per liter). For hemagglutination and tissue culture adherence assays, cultures were...grown on CFA agar (8) with or without the addition of 1.5 g of Bacto bile salts no. 3 (Difco, Detroit, Mich.) per liter. Ampicillin (62.5 g /ml) and

  3. [Cloning and expression of F18 fimbrial operon gene clusters from enterotoxigenic Escherichia coli and their bioactivity].

    PubMed

    Zhang, Jian-Jun; Zhu, Guo-Qiang

    2007-10-01

    The fed operon gene clusters with each size of 5.6kb, encoding the F18ab or F18ac fimbriae, was amplified respectively by high fidelity PCR using the genomic DNA templates from F18 fimbriae E. coli strains 107/86 or 2134P. The PCR products with the restriction enzyme sites at each end were digested and then cloned into the vector pET-22b (+), the recombinant plamids with the inserts of both type of fed gene clusters were constructed and screened, further confirmed by the means of combination with restriction endonuclease analysis and sequencing. The both types of fimbriae F18ab and F18ac were expressed efficiently in the E. coli BL21 (DE3) after proper concentration of IPTG induction. Expressed fimbriae were revealed and confirmed by transmissible electromicroscope observation. The both fimbriae F18ab and F18ac were isolated and purified from the recombinant E. coli, and only a single major band of protein with size of approximately 15kDa was visualized in Coomassie blue-stained gels after SDS-PAGE. The rabbits sera with high titer of anti-F18 fimbriae were detected after being immunized with the purified F18ab or F18ac fimbriae. The results of combination of agglutination assay with Western blotting showed that the sera directed against both fimbriae F18ab and F18ac reacted positively with the F18 fimbriae from both wild E. coli 107/86 and 2134P. Small intestine epithelial cells with F18 fimbriae receptors, which were from post-weaning piglets with the genotypes of FUT1 gene both M307(GG) and M307(AG), were prepared and tested for the adherence of E. coli expressing F18 fimbriae under the microscopic examination. Adhesion and adhesion inhibition test showed both of the recombinant E. coli expressing F18ab or F18ac fimbriae respectively could adhere to the jejunal epithelial cells in vitro as E. coli 107/86 and 2134p did. The both of anti-sera directed against fimbriae F18ab or F18ac respectively can efficiently inhibit the fimbriae-mediated post-weaning piglet jejunal epithelial cells adherence to both the recombinant E. coli (expressing F18ab or F18ac fimbriae) and wild type E. coli (107/86 and 2134P).

  4. Immunologic Control of Diarrheal Disease Due to Enterotoxigenic Escherichia coli: Reactogenicity, Immunogenicity, and Efficacy Studies of Pili Vaccines

    DTIC Science & Technology

    1981-09-01

    work-scope involved intensive collaboration with the Department of Gastroenterology (Col. Edgar Boedeker and Capt. Christopher Cheney) and the...70. In B.D. Davis and L. Warren, Eds., The specificity _ cell surfaces. Prentice- Hall, Englewood Cliffs, New Jersey, 1967. 7. Buts, J.P., Morin , C.L...vaccine and challenge. Infect. Immun. 22:771, 1978. 30. Morin , C.L., Buts, J-P, Weber, A., Roy, C.C., Brochu, P. One-hour blood xylose test in diagnosis

  5. Simultaneous Presence of Insertion Sequence Excision Enhancer and Insertion Sequence IS629 Correlates with Increased Diversity and Virulence in Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Toro, M.; Rump, L. V.; Cao, G.; Meng, J.; Brown, E. W.

    2015-01-01

    Although new serotypes of enterohemorrhagic Escherichia coli (EHEC) emerge constantly, the mechanisms by which these new pathogens arise and the reasons emerging serotypes tend to carry more virulence genes than other E. coli are not understood. An insertion sequence (IS) excision enhancer (IEE) was discovered in EHEC O157:H7 that promoted the excision of IS3 family members and generating various genomic deletions. One IS3 family member, IS629, actively transposes and proliferates in EHEC O157:H7 and enterotoxigenic E. coli (ETEC) O139 and O149. The simultaneous presence of the IEE and IS629 (and other IS3 family members) may be part of a system promoting not only adaptation and genome diversification in E. coli O157:H7 but also contributing to the development of pathogenicity among predominant serotypes. Prevalence comparisons of these elements in 461 strains, representing 72 different serotypes and 5 preassigned seropathotypes (SPT) A to E, showed that the presence of these two elements simultaneously was serotype specific and associated with highly pathogenic serotypes (O157 and top non-O157 Shiga toxin-producing Escherichia coli [STEC]) implicated in outbreaks and sporadic cases of human illness (SPT A and B). Serotypes lacking one or both elements were less likely to have been isolated from clinical cases. Our comparisons of IEE sequences showed sequence variations that could be divided into at least three clusters. Interestingly, the IEE sequences from O157 and the top 10 non-O157 STEC serotypes fell into clusters I and II, while less commonly isolated serotypes O5 and O174 fell into cluster III. These results suggest that IS629 and IEE elements may be acting synergistically to promote genome plasticity and genetic diversity among STEC strains, enhancing their abilities to adapt to hostile environments and rapidly take up virulence factors. PMID:26292302

  6. First study on characterization of virulence and antibiotic resistance genes in verotoxigenic and enterotoxigenic E. coli isolated from raw milk and unpasteurized traditional cheeses in Romania.

    PubMed

    Tabaran, Alexandra; Mihaiu, Marian; Tăbăran, Flaviu; Colobatiu, Liora; Reget, Oana; Borzan, Mihai Marian; Dan, Sorin Daniel

    2017-03-01

    The study focused on the incidence of enterotoxigenic Escherichia coli (ETEC) and verotoxigenic E. coli (VTEC) in raw milk and traditional dairy cheeses marketed in Romania, characterizing the virulence and antibiotic resistance genes of these isolates. One hundred and twenty samples of raw milk and 80 samples of unpasteurized telemy cheese were collected and cultured according to the international standard protocol. All the characteristic E. coli cultures were analyzed for the presence of STa, STb, LT, stx1, and stx2 toxicity genes. The ETEC/VTEC strains were tested for the presence of antibiotic resistance genes, such as aadA1, tetA, tetB, tetC, tetG, dfrA1, qnrA, aaC, sul1, bla SHV , bla CMY , bla TEM , and ere(A), using PCR. The results showed that 27 samples (18.62%) were positive for one of the virulence genes investigated. 48.1% (n = 13) tested positive at the genes encoding for tetracycline resistance, tetA being the most prevalent one (61.5%; n = 8). A high percent (33.3%; n = 9) revealed the beta-lactamase (bla TEM ) resistance gene, and none of the samples tested positive for bla CMY and bla SHV genes. The genes responsible for resistance to sulfonamides (sul1) and trimethoprim (dfrA1) were detected in rates of 14.8% (n = 4) and 7.4% (n = 2), respectively. E. coli is highly prevalent in raw milk and unpasteurized cheeses marketed in Romania. These strains might represent an important reservoir of resistance genes which can easily spread into other European countries, given the unique market.

  7. Genetic characterization of atypical enteropathogenic Escherichia coli isolates from ewes' milk, sheep farm environments, and humans by multilocus sequence typing and pulsed-field gel electrophoresis.

    PubMed

    Otero, Verónica; Rodríguez-Calleja, José-María; Otero, Andrés; García-López, María-Luisa; Santos, Jesús A

    2013-10-01

    A collection of 81 isolates of enteropathogenic Escherichia coli (EPEC) was obtained from samples of bulk tank sheep milk (62 isolates), ovine feces (4 isolates), sheep farm environment (water, 4 isolates; air, 1 isolate), and human stool samples (9 isolates). The strains were considered atypical EPEC organisms, carrying the eae gene without harboring the pEAF plasmid. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 19 sequence types (ST) were detected, with none of them having been previously reported for atypical EPEC. The most frequent ST included 41 strains isolated from milk and human stool samples. Genetic typing by pulsed-field gel electrophoresis (PFGE) resulted in 57 patterns which grouped in 24 clusters. Comparison of strains isolated from the different samples showed phylogenetic relationships between milk and human isolates and also between milk and water isolates. The results obtained show a possible risk for humans due to the presence of atypical EPEC in ewes' milk and suggest a transmission route for this emerging pathogen through contaminated water.

  8. More than a marine propeller--the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus.

    PubMed

    Troge, Anja; Scheppach, Wolfgang; Schroeder, Bjoern O; Rund, Stefan A; Heuner, Klaus; Wehkamp, Jan; Stange, Eduard F; Oelschlaeger, Tobias A

    2012-12-01

    The flagellum of the probiotic Escherichia coli strain Nissle 1917 (EcN) is not just responsible for motility, but also for EcN's ability to induce the production of human β-defensin 2. Here, we report a third function of this EcN organell. In this study we investigated the role of the EcN flagellum in adhesion to different host tissues by ex vivo and in vitro studies. Ex vivo studies with cryosections of human gut biopsies revealed that the flagellum of EcN is most likely important for efficient adhesion to the human intestinal tract. These results and in vitro studies with different epithelial cells indicated that the presence of mucus is important for efficient mediation of adhesion by the flagellum of EcN. We observed direct interaction between isolated flagella from EcN wild type and porcine mucin 2 as well as human mucus. However, we could not observe any interaction of the flagella with murine mucus. For the first time, we identified the mucus component gluconate as one receptor for the binding of flagella from EcN and were able to exclude the flagellin domain D3 as a responsible interaction partner. We propose that the flagellum of EcN is its major adhesin in vivo, which enables this probiotic strain to compete efficiently for binding sites on host tissue with several bacterial pathogens.

  9. Transmission of antibiotic-resistant Escherichia coli between cattle, humans and the environment in peri-urban livestock keeping communities in Morogoro, Tanzania.

    PubMed

    Lupindu, Athumani M; Dalsgaard, Anders; Msoffe, Peter L M; Ngowi, Helena A; Mtambo, Madundo M; Olsen, John E

    2015-03-01

    Urban and peri-urban livestock farming is expanding world-widely because of increased urbanization and demands for food of animal origin. Such farming practices pose a public health risk as livestock are reservoirs of several zoonotic pathogens. In an attempt to determine the fecal transmission between livestock and people, 100 household clusters keeping cattle in close proximity of humans were selected in urban and peri-urban areas of Morogoro in Tanzania. One hundred eighteen ampicillin and tetracycline resistant Escherichia coli (40 from human stool, 50 from cattle feces, 21 from soil and seven from water samples) were isolated from 44 different clusters. Pulsed-field gel electrophoresis (PFGE) of XbaI digested chromosomal DNA was used to compare the genetic relatedness of the ampicillin- and tetracycline-resistant E. coli isolates. Indistinguishable PFGE band patterns of the ampicillin- and tetracycline-resistant E. coli isolates were found in samples from 23 (52%) clusters. This suggests that transfer of fecal microorganisms between cattle, humans, water and soils within the farms and from livestock farms to the neighborhood occurred commonly. Logistic regression showed that animal housing infrastructures (Odd Ratio=11.2, 95% CI=1.1-119.3) were associated with E. coli showing identical PFGE types within and between clusters. There is a need to improve animal husbandry and manure management practices to reduce risks of transmission of enteropathogens between livestock and humans in urban and peri-urban farming.

  10. The distribution of plasmids determining citrate utilization in citrate-positive variants of Escherichia coli from humans, domestic animals, feral birds and environments.

    PubMed

    Ishiguro, N; Sato, G

    1979-10-01

    Sixty-seven isolates of citrate-positive variants of Escherichia coli were isolated from human, domestic animal, feral bird and environmental sources. With the exception of citrate utilization, all isolates were identified as typical E. coli by their biochemical reactions. The transmission of the ability to utilize citrate on Simmons' citrate agar was demonstrated in 53 (79.1%) out of the 67 citrate-positive E. coli variants obtained from various sources. Drug resistance determinants and citrate utilizing character were co-transmitted into E. coli K-12 by conjugation among citrate-positive E. coli isolates carrying R plasmids except for that isolated from horses. The other characters (haemolysin or colicin production, raffinose or sucrose fermentation) were not transmitted together with the citrate utilizing character. These facts suggested that the structural gene responsible for citrate utilizing ability in citrate-positive variants of E. coli was located on a conjugative plasmid.

  11. Escherichia coli isolated from feces of brown bears (Ursus arctos) have a lower prevalence of human extraintestinal pathogenic E. coli virulence-associated genes.

    PubMed

    Vadnov, Maruša; Barbič, Damjana; Žgur-Bertok, Darja; Erjavec, Marjanca Starčič

    2017-01-01

    Eighty-six Escherichia coli strains from feces of either wild brown bears or those living in a zoo were screened for phylogenetic groups using the revisited Clermont phylotyping method and the prevalence of 24 virulence-associated genes (VAGs) of extraintestinal pathogenic E. coli (ExPEC). Our results showed that most strains of E. coli in bears belonged to phylogenetic groups III/IV/V (29%) and B1 (26%). Only half of the tested VAGs were found in the E. coli bear strains, with fimH present in 72%, ompT in 63%, and kpsMT in 43% of the strains. When the data obtained on the fecal E. coli strains from brown bears were compared with the data obtained on 90 fecal E. coli strains from healthy humans, there were significant differences in E. coli population structures between both hosts.

  12. Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms

    PubMed Central

    Clawson, Michael L; Keen, James E; Smith, Timothy PL; Durso, Lisa M; McDaneld, Tara G; Mandrell, Robert E; Davis, Margaret A; Bono, James L

    2009-01-01

    Background Cattle are a reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157), and are known to harbor subtypes not typically found in clinically ill humans. Consequently, nucleotide polymorphisms previously discovered via strains originating from human outbreaks may be restricted in their ability to distinguish STEC O157 genetic subtypes present in cattle. The objectives of this study were firstly to identify nucleotide polymorphisms in a diverse sampling of human and bovine STEC O157 strains, secondly to classify strains of either bovine or human origin by polymorphism-derived genotypes, and finally to compare the genotype diversity with pulsed-field gel electrophoresis (PFGE), a method currently used for assessing STEC O157 diversity. Results High-throughput 454 sequencing of pooled STEC O157 strain DNAs from human clinical cases (n = 91) and cattle (n = 102) identified 16,218 putative polymorphisms. From those, 178 were selected primarily within genomic regions conserved across E. coli serotypes and genotyped in 261 STEC O157 strains. Forty-two unique genotypes were observed that are tagged by a minimal set of 32 polymorphisms. Phylogenetic trees of the genotypes are divided into clades that represent strains of cattle origin, or cattle and human origin. Although PFGE diversity surpassed genotype diversity overall, ten PFGE patterns each occurred with multiple strains having different genotypes. Conclusions Deep sequencing of pooled STEC O157 DNAs proved highly effective in polymorphism discovery. A polymorphism set has been identified that characterizes genetic diversity within STEC O157 strains of bovine origin, and a subset observed in human strains. The set may complement current techniques used to classify strains implicated in disease outbreaks. PMID:19463166

  13. Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark.

    PubMed

    Cavaco, Lina Maria; Frimodt-Møller, Niels; Hasman, Henrik; Guardabassi, Luca; Nielsen, Lene; Aarestrup, Frank Møller

    2008-06-01

    Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations (MICs) of nalidixic acid (NAL) and ciprofloxacin (CIP) were investigated in 124 Escherichia coli isolated from humans (n=85) and swine (n=39) in Denmark. The collection included 59 high-level CIP-resistant isolates (MIC >or= 4) from human (n=51) and pig origin (n=8) and 65 low-level CIP-resistant isolates (MIC >or= 0.125) from human (n=34) and pig origin (n=31). Resistance by target modification was screened by PCR amplification and sequencing of the quinolone resistance determining regions (QRDRs) of gyrA, gyrB, parC, and parE. QRDR mutations occurred in all except two isolates (98%). All high-level CIP-resistant E. coli had one or two mutations in gyrA in combination with mutations in parC or parE. Mutations in parC and parE were only found in combination with gyrA mutations, and no mutations were observed in gyrB. Efflux pump mechanisms were detected in 10 human (11.8%) and 29 porcine (74.4%) isolates by an efflux pump inhibitor (EPI) agar dilution assay. The aac(6')-Ib-cr gene mediating resistance by enzymatic modification was found in 12 high-level CIP-resistant human isolates. The qnrA and qnrS genes conferring quinolone resistance by target protection were detected in two human low-level CIP-resistant isolates that did not display NAL resistance. As expected, target mutation in QRDRs was the most prevalent mechanism of quinolone resistance. This mechanism was complemented by efflux mechanisms in most porcine isolates. Transferable resistance by target protection or enzymatic modification was less common (10%) and restricted to human isolates.

  14. Development of a Method To Produce Hemoglobin in a Bioreactor Culture of Escherichia coli BL21(DE3) Transformed with a Plasmid Containing Plesiomonas shigelloides Heme Transport Genes and Modified Human Hemoglobin Genes ▿

    PubMed Central

    Smith, B. J. Z.; Gutierrez, P.; Guerrero, E.; Brewer, C. J.; Henderson, D. P.

    2011-01-01

    We describe a method for production of recombinant human hemoglobin by Escherichia coli grown in a bioreactor. E. coli BL21(DE3) transformed with a plasmid containing hemoglobin genes and Plesiomonas shigelloides heme transport genes reached a cell dry weight of 83.64 g/liter and produced 11.92 g/liter of hemoglobin in clarified lysates. PMID:21803893

  15. afa-8 Gene cluster is carried by a pathogenicity island inserted into the tRNA(Phe) of human and bovine pathogenic Escherichia coli isolates.

    PubMed

    Lalioui, L; Le Bouguénec, C

    2001-02-01

    We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI I(AL862), we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenic afa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negative E. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI II(AL862)), which appeared to be similar in size and genetic organization to PAI I(AL862) and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.

  16. Subtilase cytotoxin encoding genes are present in human, sheep and deer intimin-negative, Shiga toxin-producing Escherichia coli O128:H2.

    PubMed

    Sánchez, Sergio; Beristain, Xabier; Martínez, Remigio; García, Alfredo; Martín, Carmen; Vidal, Dolors; Díaz-Sánchez, Sandra; Rey, Joaquín; Alonso, Juan M; Herrera-León, Silvia

    2012-10-12

    Shiga toxin-producing Escherichia coli (STEC) O128:H2 is recognised worldwide to be an important non-O157 STEC associated with human illness and in particular with causing haemolytic uraemic syndrome. This serotype is commonly isolated from sheep and is being increasingly isolated from deer. We determined the virulence profile and genetic relationships of one human, six sheep and five deer intimin-negative STEC O128:H2 strains isolated in Spain over a 7-year period. Our goals were to establish the presence of other virulence-associated factors, such as SubAB, in intimin-negative STEC O128:H2 strains involved in human disease and in that case, to determine if sheep and/or deer represent a reservoir of SubAB-positive STEC O128:H2. All the strains lacked the eae gene and carried subtilase cytotoxin (SubAB) encoding genes (subAB) and tia genes, but not saa gene, suggesting the presence of the recently identified new variant of SubAB, encoded on a putative pathogenicity island together with tia. We report for the first time the presence of subtilase cytotoxin encoding genes in intimin-negative STEC O128:H2 strains pathogenic for humans and how this finding might explain their clinical relevance despite neither carrying eae nor stx subtypes associated with severe clinical outcomes, but only stx1c and stx2b. Multilocus sequence typing analysis revealed that STEC O128:H2 strains from sheep and deer belong to the clonal lineage of STEC O128:H2 strains involved in diarrhoeal and haemorrhagic diseases in humans. Our results indicate that sheep and deer represent a reservoir of SubAB-positive STEC O128:H2 strains and thus a potential source of human infection.

  17. Inhibition of water absorption and selective damage to human colonic mucosa induced by Shiga toxin-2 are enhanced by Escherichia coli O157:H7 infection.

    PubMed

    Albanese, Adriana; Gerhardt, Elizabeth; García, Hugo; Amigo, Natalia; Cataldi, Angel; Zotta, Elsa; Ibarra, Cristina

    2015-05-01

    Shiga toxin-producing Escherichia coli (STEC) strains are responsible for a variety of clinical syndromes including bloody and non-bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Although multiple serotypes of STEC have been isolated from hemorrhagic colitis cases, E. coli O157:H7 is by far the most prevalent serotype associated with HUS. Shiga toxin is the major virulence factor of E. coli O157:H7 and is responsible for the more severe symptoms of the infection. However, the mechanisms involved in the pathogenesis of diarrhea mediated by Stx2 are not well known. In this study, we have determined the effects of E. coli O157:H7 strain 125/99 wild type (wt) on the human colonic mucosa mounted in an Ussing chamber. In response to 125/99wt, an inhibition of water absorption across human colonic mucosa was observed. Histological sections showed severe necrosis with detachment of the surface epithelium, mononuclear inflammatory infiltrate and loss of goblet cells after 1h of incubation with 125/99wt. These alterations were not observed with the isogenic mutant strain lacking stx2 or with the filter-sterilized culture supernatant from the 125/99wt strain. These results indicate that the cell damages in human colon are induced by Stx2, and that Stx2 production is increased by the interaction with bacterial cells. Identification of host cell-derived factors responsible for increasing Stx2 can lead to new strategies for modulating STEC infections.

  18. Patterns of Antimicrobial Resistance Observed in Escherichia coli Isolates Obtained from Domestic- and Wild-Animal Fecal Samples, Human Septage, and Surface Water

    PubMed Central

    Sayah, Raida S.; Kaneene, John B.; Johnson, Yvette; Miller, RoseAnn

    2005-01-01

    A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria. PMID:15746342

  19. Efficient Production of Hydroxylated Human-Like Collagen Via the Co-Expression of Three Key Genes in Escherichia coli Origami (DE3).

    PubMed

    Tang, Yunping; Yang, Xiuliang; Hang, Baojian; Li, Jiangtao; Huang, Lei; Huang, Feng; Xu, Zhinan

    2016-04-01

    Mature collagen is abundant in human bodies and very valuable for a range of industrial and medical applications. The biosynthesis of mature collagen requires post-translational modifications to increase the stability of collagen triple helix structure. By co-expressing the human-like collagen (HLC) gene with human prolyl 4-hydroxylase (P4H) and D-arabinono-1, 4-lactone oxidase (ALO) in Escherichia coli, we have constructed a prokaryotic expression system to produce the hydroxylated HLC. Then, five different media, as well as the induction conditions were investigated with regard to the soluble expression of such protein. The results indicated that the highest soluble expression level of target HLC obtained in shaking flasks was 49.55 ± 0.36 mg/L, when recombinant cells were grew in MBL medium and induced by 0.1 mM IPTG at the middle stage of exponential growth phase. By adopting the glucose feeding strategy, the expression level of target HLC can be improved up to 260 mg/L in a 10 L bench-top fermentor. Further, HPLC analyses revealed that more than 10 % of proline residues in purified HLC were successfully hydroxylated. The present work has provided a solid base for the large-scale production of hydroxylated HLC in E. coli.

  20. Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response