Science.gov

Sample records for human epithelial cells

  1. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2007-10-01

    Epithelial Stem Cells PRINCIPAL INVESTIGATOR: Peter D. Eirew CONTRACTING ORGANIZATION: British Columbia Cancer Agency...NUMBER Characterization of Human Mammary Epithelial Stem Cells 5b. GRANT NUMBER W81XWH-06-1-0702 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Abstract The mammary epithelium in normal adult female mice contains undifferentiated stem cells with extensive in vivo regenerative and self-renewal

  2. The human airway epithelial basal cell transcriptome.

    PubMed

    Hackett, Neil R; Shaykhiev, Renat; Walters, Matthew S; Wang, Rui; Zwick, Rachel K; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G

    2011-05-04

    The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  3. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  4. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  5. Adherence of skin bacteria to human epithelial cells.

    PubMed Central

    Romero-Steiner, S; Witek, T; Balish, E

    1990-01-01

    Aerobic and anaerobic bacteria isolated from human axillae were tested for their capacity to adhere to buccal epithelial cells, immortalized human epithelial (HEp-2) cells, and undifferentiated and differentiated human epithelial cells. In general, both aerobic and anaerobic diphtheroids adhered better to differentiated human epithelial cells than to HEp-2 and undifferentiated human epithelial cells (P less than 0.05). Mannose, galactose, fucose, N-acetyl-D-glucosamine, and fibronectin were also assayed for their capacity to inhibit the adherence of diphtheroids to human epithelial cells. A great deal of variability was observed in the capacity of the latter compounds to inhibit the attachment of aerobic diphtheroids to undifferentiated and differentiated epithelial cells. Overall, mannose appeared to be best at inhibiting the adherence of the aerobic diphtheroids to undifferentiated human epithelial cells. Galactose, fucose, N-acetyl-D-glucosamine, and fibronectin showed a greater capacity to inhibit attachment of aerobic diphtheroids to differentiated than to undifferentiated human epithelial cells. The inhibition of adherence to differentiated human epithelial cells varied with the microorganism and the compound tested; however, the highest and most consistent inhibition of adherence (76.1 to 88.6%) was observed with a 5% solution of N-acetyl-D-glucosamine. The in vitro adherence and adherence inhibition assays presented here demonstrate that a number of adhesins and receptors are involved in the adherence of skin bacteria to human epithelial cells and receptors on human epithelial cells are apparently altered during differentiation. PMID:2298877

  6. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2009-10-01

    Appendix……………………………………………………………………………… 11 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A method for... Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability...Abstracts Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turshvili, Sam Aparicio , Joanne Emerman and Connie Eaves, “Identification of Human Mammary

  7. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.

  8. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  9. Glucocorticoid receptor in human respiratory epithelial cells.

    PubMed

    Pujolsa, Laura; Mullol, Joaquim; Picado, Cèsar

    2009-01-01

    Inhaled and intranasal glucocorticoids (GCs) are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as allergic rhinitis, chronic rhinosinusitis with/without nasal polyps, and asthma, and the respiratory epithelium is a primary target of GC anti-inflammatory actions. GC effects are mediated through the GC receptor (GR). In humans, one single GR gene gives rise to two main GR products, namely GRalpha and GRbeta, which are subject to translational and posttranslational modifications. GRalpha is expressed in virtually all human cells and tissues, including respiratory epithelial cells, and - at least in vitro - is downregulated by GC. GRalpha mediates the anti-inflammatory actions of GC by activating transcription of anti-inflammatory genes through binding of GRalpha to glucocorticoid response elements (GRE) located in the promoter region of target genes, repressing transcription of proinflammatory genes through direct interaction between GRalpha and proinflammatory transcription factors, such as AP-1 and NF-kappaB (transrepression), and also by destabilizing the mRNA of proinflammatory mediators. GRbeta acts as a dominant negative inhibitor of GRalpha-mediated transactivation and transrepression in certain in vitro studies with transfected cells. The GRbeta message is expressed at low levels in numerous tissues and its protein is mainly expressed in inflammatory cells, although it has also been detected in airway epithelial cells. Increased GRbeta expression has been reported in bronchial asthma and nasal polyposis, and after incubation of cells with certain proinflammatory stimuli. However, the role of GRbeta in modulating GC sensitivity in vivo has been highly debated and is as yet unclear.

  10. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  11. Spontaneous Production of Immunoglobulin M in Human Epithelial Cancer Cells

    PubMed Central

    Hu, Fanlei; Zhang, Li; Zheng, Jie; Zhao, Ling; Huang, Jing; Shao, Wenwei; Liao, Qinyuan; Ma, Teng; Geng, Li; Yin, C. Cameron; Qiu, Xiaoyan

    2012-01-01

    It is well known that B-1 B cells are the main cell type that is responsible for the production of natural immunoglobulin M (IgM) and can respond to infection by increasing IgM secretion. However, we unexpectedly found that some epithelial cells also can express rearranged IgM transcript that has natural IgM characteristics, such as germline-encoded and restricted rearrangement patterns. Here we studied IgM expression in human non-B cells and found that IgM was frequently expressed by many human epithelial cancer cells as well as non-cancer epithelial cells. Moreover, CD79A and CD79B, two molecules that are physically linked to membranous IgM on the surface of B cells to form the B cell antigen receptor complex, were also expressed on the cell surface of epithelial cancer cells and co-located with IgM. Like the natural IgM, the epithelial cancer cell-derived IgM recognized a series of microbial antigens, such as single-stranded DNA, double-stranded DNA, lipopolysaccharide, and the HEp-2 cell antigen. More important, stimulation of the toll-like receptor 9 (TLR9), which mimics bacterial infection, substantially increased the secretion of IgM in human epithelial cancer cells. These findings indicate that human epithelial cancer cells as well as non-cancer epithelial cells can spontaneously produce IgM with natural antibody activity. PMID:23251529

  12. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  13. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells.

    PubMed

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-07-15

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.

  14. Cholecystokinin octapeptide antagonizes apoptosis in human retinal pigment epithelial cells

    PubMed Central

    Liu, Yuan; Zhang, Yueling; Gu, Zhaohui; Hao, Lina; Du, Juan; Yang, Qian; Li, Suping; Wang, Liying; Gong, Shilei

    2014-01-01

    Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite. PMID:25221599

  15. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  16. Culture, Immortalization, and Characterization of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Hatton, Mark P.; Khandelwal, Payal

    2010-01-01

    Purpose. Meibomian gland epithelial cells are essential in maintaining the health and integrity of the ocular surface. However, very little is known about their physiological regulation. In this study, the cellular control mechanisms were explored, first to establish a defined culture system for the maintenance of primary epithelial cells from human meibomian glands and, second, to immortalize these cells, thereby developing a preclinical model that could be used to identify factors that regulate cell activity. Methods. Human meibomian glands were removed from lid segments after surgery, enzymatically digested, and dissociated. Isolated epithelial cells were cultured in media with or without serum and/or 3T3 feeder layers. To attempt immortalization, the cells were exposed to retroviral human telomerase reverse transcriptase (hTERT) and/or SV40 large T antigen cDNA vectors, and antibiotic-resistant cells were selected, expanded, and subcultured. Analyses for possible biomarkers, cell proliferation and differentiation, lipid-related enzyme gene expression, and the cellular response to androgen were performed with biochemical, histologic, and molecular biological techniques. Results. It was possible to isolate viable human meibomian gland epithelial cells and to culture them in serum-free medium. These cells proliferated, survived through at least the fifth passage, and contained neutral lipids. Infection with hTERT immortalized these cells, which accumulated neutral lipids during differentiation, expressed multiple genes for lipogenic enzymes, responded to androgen, and continued to proliferate. Conclusions. The results show that human meibomian gland epithelial cells may be isolated, cultured, and immortalized. PMID:20335607

  17. Human Growth Hormone Promotes Corneal Epithelial Cell Migration in Vitro

    PubMed Central

    Ding, Juan; Wirostko, Barbara; Sullivan, David A

    2015-01-01

    Purpose Corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells and interactions between epithelial cells and stromal fibroblasts. Compounds that can be applied topically to the ocular surface and that have the capability of activating corneal epithelial cells to proliferate and/or migrate would be useful to promote corneal wound healing. We hypothesize that human growth hormone (HGH) will activate Signal Transducer and Activators of Transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial cell and fibroblast proliferation and/or migration in vitro. The purpose of this study is to test these hypotheses. Methods We studied cell signaling, proliferation and migration using an immortalized human corneal epithelial cell line and primary human corneal fibroblasts in vitro. We also examined whether insulin-like growth factor-1 (IGF-1), a hormone known to mediate many of HGH’s growth promoting actions, may play a role in this effect. Results We show that HGH activates STAT5 signaling and promotes corneal epithelial cell migration in vitro. The migratory effect requires an intact communication between corneal epithelia and fibroblasts, and is not mediated by IGF-1. Conclusion HGH may represent a topical therapeutic to promote corneal epithelial wound healing. This warrants further investigation. PMID:25782399

  18. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  19. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  20. Development of human epithelial cell systems for radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Craise, L. M.

    1994-10-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  1. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  2. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  3. Cholera toxin stimulation of human mammary epithelial cells in culture

    SciTech Connect

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  4. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  5. Cooperative Interactions During Human Mammary Epithelial Cell Immortalization

    DTIC Science & Technology

    2005-07-01

    Immortal Transformation of Cultured Human Mammary Epithelial Cells. Cellular Oncology, 26:248-251, 2004. Rodier , F., Kim, S-H., Nijjar, T., Yaswen, P...Promoter, Mol. Cell Biol.: 25:3923-3933, 2005. Goldstein, J, Rodier , F, Garbe, J, Stampfer, M, Campisi, J, Caspase-independent cytochrome c release is a

  6. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  7. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  8. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2008-10-01

    9 Appendix……………………………………………………………………………… 10 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A...Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turashvili, Samuel Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human...Eirew, Afshin Raouf, John Stingl, Gulisa Turashvili, Allen Delaney, Joanne Emerman, Marco Marra and Samuel Aparicio . “Stem Cells in the Mammary Gland

  9. Serratia marcescens internalization and replication in human bladder epithelial cells

    PubMed Central

    Hertle, Ralf; Schwarz, Heinz

    2004-01-01

    Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566

  10. Airway epithelial cell response to human metapneumovirus infection

    SciTech Connect

    Bao, X.; Liu, T.; Spetch, L.; Kolli, D.; Garofalo, R.P.; Casola, A.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and type I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.

  11. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  12. Radiogenic transformation of human mammary epithelial cells in vitro

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  13. Microarray analysis of human epithelial cell responses to bacterial interaction.

    PubMed

    Mans, Jeffrey J; Lamont, Richard J; Handfield, Martin

    2006-09-01

    Host-pathogen interactions are inherently complex and dynamic. The recent use of human microarrays has been invaluable to monitor the effects of various bacterial and viral pathogens upon host cell gene expression programs. This methodology has allowed the host response transcriptome of several cell lines to be studied on a global scale. To this point, the great majority of reports have focused on the response of immune cells, including macrophages and dendritic cells. These studies revealed that the immune response to microbial pathogens is tailored to different microbial challenges. Conversely, the paradigm for epithelial cells has--until recently--held that the epithelium mostly served as a relatively passive physical barrier to infection. It is now generally accepted that the epithelial barrier contributes more actively to signaling events in the immune response. In light of this shift, this review will compare transcriptional profiling data from studies that involved host-pathogen interactions occurring with epithelial cells. Experiments that defined both a common core response, as well as pathogen-specific host responses will be discussed. This review will also summarize the contributions that transcriptional profiling analysis has made to our understanding of bacterial physio-pathogensis of infection. This will include a discussion of how host transcriptional responses can be used to infer the function of virulence determinants from bacterial pathogens interacting with epithelial mucosa. In particular, we will expand upon the lessons that have been learned from gastro-intestinal and oral pathogens, as well as from members of the commensal flora.

  14. Multipotent Capacity of Immortalized Human Bronchial Epithelial Cells

    PubMed Central

    Delgado, Oliver; Kaisani, Aadil A.; Spinola, Monica; Xie, Xian-Jin; Batten, Kimberly G.; Minna, John D.; Wright, Woodring E.; Shay, Jerry W.

    2011-01-01

    While the adult murine lung utilizes multiple compartmentally restricted progenitor cells during homeostasis and repair, much less is known about the progenitor cells from the human lung. Translating the murine stem cell model to humans is hindered by anatomical differences between species. Here we show that human bronchial epithelial cells (HBECs) display characteristics of multipotent stem cells of the lung. These HBECs express markers indicative of several epithelial types of the adult lung when experimentally tested in cell culture. When cultured in three different three-dimensional (3D) systems, subtle changes in the microenvironment result in unique responses including the ability of HBECs to differentiate into multiple central and peripheral lung cell types. These new findings indicate that the adult human lung contains a multipotent progenitor cell whose differentiation potential is primarily dictated by the microenvironment. The HBEC system is not only important in understanding mechanisms for specific cell lineage differentiation, but also for examining changes that correlate with human lung diseases including lung cancer. PMID:21760947

  15. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  16. Bombesin-like peptide receptors in human bronchial epithelial cells.

    PubMed

    Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A

    1996-01-01

    Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.

  17. In vitro methods to culture primary human breast epithelial cells.

    PubMed

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  18. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells.

    PubMed

    Zheng, Li-Wei; Linthicum, Logan; DenBesten, Pamela K; Zhang, Yan

    2013-03-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCl) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which was also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  19. Neurotransmitter Influence on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Kam, Wendy R.

    2011-01-01

    Purpose. A striking characteristic of the human meibomian gland is its rich sensory, sympathetic, and parasympathetic innervation, yet the functional relevance of these nerve fibers remains unknown. Acting on the hypothesis that neurotransmitters are released in the vicinity of the gland, act on glandular receptors, and influence the production, secretion, and/or delivery of meibomian gland secretions to the ocular surface, the goal in this study was to begin to determine whether neurotransmitters influence the meibomian gland. Methods. Immortalized human meibomian gland epithelial (SLHMG) cells were examined for the presence of vasoactive intestinal peptide (VIP) and muscarinic acetylcholine (mACh) receptor transcripts and proteins. Cells were also exposed to VIP, carbachol, forskolin, and/or 3-isobutyl-1-methylxanthine (IBMX) to determine whether these agents, alone or in combination, modulate the adenylyl cyclase pathway, the accumulation of intracellular free calcium ([Ca2+]i), or cell proliferation. Results. Results demonstrate that SLHMG cells transcribe and translate VIP and mACh receptors; VIP, with either IBMX or forskolin, activates the adenylyl cyclase pathway, and the effect of VIP and forskolin together is synergistic; both VIP and carbachol increase intracellular [Ca2+] in SLHMG cells; and VIP with forskolin stimulates SLHMG cell proliferation. Conclusions. This study shows that parasympathetic neurotransmitters and their agonists influence the function of human meibomian gland epithelial cells. It remains to be determined whether this action alters the production, secretion, and/or delivery of meibum to the ocular surface. PMID:21969302

  20. Norepinephrine potentiates proinflammatory responses of human vaginal epithelial cells.

    PubMed

    Brosnahan, Amanda J; Vulchanova, Lucy; Witta, Samantha R; Dai, Yuying; Jones, Bryan J; Brown, David R

    2013-06-15

    The vaginal epithelium provides a barrier to pathogens and recruits immune defenses through the secretion of cytokines and chemokines. Several studies have shown that mucosal sites are innervated by norepinephrine-containing nerve fibers. Here we report that norepinephrine potentiates the proinflammatory response of human vaginal epithelial cells to products produced by Staphylococcus aureus, a pathogen that causes menstrual toxic shock syndrome. The cells exhibit immunoreactivity for catecholamine synthesis enzymes and the norepinephrine transporter. Moreover, the cells secrete norepinephrine and dopamine at low concentrations. These results indicate that norepinephrine may serve as an autocrine modulator of proinflammatory responses in the vaginal epithelium.

  1. Temporal Monitoring of Differentiated Human Airway Epithelial Cells Using Microfluidics

    PubMed Central

    Blume, Cornelia; Reale, Riccardo; Held, Marie; Millar, Timothy M.; Collins, Jane E.; Davies, Donna E.; Morgan, Hywel; Swindle, Emily J.

    2015-01-01

    The airway epithelium is exposed to a variety of harmful agents during breathing and appropriate cellular responses are essential to maintain tissue homeostasis. Recent evidence has highlighted the contribution of epithelial barrier dysfunction in the development of many chronic respiratory diseases. Despite intense research efforts, the responses of the airway barrier to environmental agents are not fully understood, mainly due to lack of suitable in vitro models that recapitulate the complex in vivo situation accurately. Using an interdisciplinary approach, we describe a novel dynamic 3D in vitro model of the airway epithelium, incorporating fully differentiated primary human airway epithelial cells at the air-liquid interface and a basolateral microfluidic supply of nutrients simulating the interstitial flow observed in vivo. Through combination of the microfluidic culture system with an automated fraction collector the kinetics of cellular responses by the airway epithelium to environmental agents can be analysed at the early phases for the first time and with much higher sensitivity compared to common static in vitro models. Following exposure of primary differentiated epithelial cells to pollen we show that CXCL8/IL–8 release is detectable within the first 2h and peaks at 4–6h under microfluidic conditions, a response which was not observed in conventional static culture conditions. Such a microfluidic culture model is likely to have utility for high resolution temporal profiling of toxicological and pharmacological responses of the airway epithelial barrier, as well as for studies of disease mechanisms. PMID:26436734

  2. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  3. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    PubMed

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  4. Human epithelial cell cultures from superficial limbal explants.

    PubMed

    Ghoubay-Benallaoua, D; Basli, E; Goldschmidt, P; Pecha, F; Chaumeil, C; Laroche, L; Borderie, V

    2011-02-01

    To study the kinetics of growth and the phenotype of cells cultured from human limbal explants in a cholera toxin-free medium with no feeder cell layer. Human organ-cultured corneas were used to prepare limbal explants (full-thickness and superficial limbal explants) and corneal stromal explants. Cell growth kinetics and phenotypes were assessed by cultivating explants in cholera toxin-free Green medium. Epithelial and progenitor cell markers were assessed by immunocytochemistry, flow cytometry, and Reverse Transcription and Polymerase Chain Reaction (RT-PCR). The successful epithelial cell growth rates from full thickness limbal explant and superficial limbal explant tissues were 41 and 86%, respectively (p=0.0001). The mean cell area and the percentage of small cells in superficial and full-thickness explant cultures were, respectively, 317 µm(2) and 429 µm(2), and 8.9% and 1.7% (p<0.001). The percentage of positive cells in superficial and full-thickness limbal explant cultures as assessed by immunocytochemistry were the following: broad spectrum cytokeratins (cytokeratins 4, 5, 6, 8, 10, 13, and 18 [MNF116]), 82%/37% (p=0.01); cytokeratin 3 (CK3), 74%/25% (p=0.009); cytokeratin 19 (CK19), 46%/25% (p=0.19); vimentin, 56%/53% (p=0.48); delta N p63α, 54%/0% (p<0.001); and ABCG2, 5%/0% (p=0.1). Flow cytometry showed a higher percentage of small cells, a higher percentage of MNF116+ cells, and stronger expression of progenitor-associated markers in superficial than in full-thickness explant cultures. For superficial limbal explant cultures, analysis of the expression profiles for various mRNAs at the end of 21 days of culture showed high levels of expression of the mRNAs encoding CK3, vimentin, and CK19. The expression of mRNA of delta N p63α and ABCG2 was weaker. Cultures obtained from full-thickness limbal explants featured no expression of mRNA of CK19, delta N p63α, and ABCG2, whereas mRNAs encoding CK3 and vimentin were detected. Human corneal stromal

  5. Efficient cultivation conditions for human limbal epithelial cells.

    PubMed

    Kim, Mee Kum; Lee, Jae Lim; Oh, Joo Youn; Shin, Mi Sun; Shin, Kyeong Seon; Wee, Won Ryang; Lee, Jin Hak; Park, Ki Sook; Son, Young Sook

    2008-10-01

    To compare the stem niche in different culture conditions of limbal epithelial cells, the suspended human limbal epithelial cells (HLECs) were seeded on the 3T3-pretreated plates and the other suspended cells were plated on amniotic membranes (AMs) which were either cryo-preserved or freeze-dried. All were cultured for 10 to 12 days. Reverse transcription-polymerase chain reaction (RT-PCR) for ATP-binding cassette, subfamily G, member 2 (ABCG2), p63, cytokeratin 12, and connexin 43 were performed in cultivated HLECs and their expression levels were compared. The mRNA expression of all markers examined showed no statistically significant differences between the cells on cryo-preserved and on freeze-dried AM. The expression of p63 and cytokeratin 12 in cultivated cells on AMs were significantly lower than those in 3T3-cocultured cells on RT-PCR and immunofluorescent staining. Cultivated HLECs on AMs showed reduced proliferation and differentiation while maintaining stem-property regardless of the preservative method of AM.

  6. Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation

    DTIC Science & Technology

    2012-04-01

    algorithm for CpG-island detection. BMC Bioinformatics 7: 446. 17. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol...it does not have a CpG island according to the original criteria (Gardiner-Garden and Frommer 1987). H3K4me3 and H3Ac are present in miR-205...culture of normal human mammary epithelial cells. Cancer Res 69: 7557–7568. Gardiner-GardenM, Frommer M. 1987. CpG islands in vertebrate genomes. J Mol

  7. Ultraviolet transmittance of human limbal epithelial cells cultured on human amniotic membranes.

    PubMed

    Mimura, Tatsuya; Yokoo, Seiichi; Kaji, Yuichi; Usui, Tomohiko; Yamagam, Satoru; Ono, Kyoko; Araie, Makoto; Amano, Shiro

    2005-07-01

    To evaluate ultraviolet (UV) A and B transmittance by human limbal epithelial cells cultured on human amniotic membranes. Human limbal epithelial cells were taken from the limbus of donor corneas and were cultured on human amniotic membranes with inactivated 3T3 fibroblasts for 2 to 4 weeks. Then, the cultured cells were examined histologically. Next, cells from different culture periods were irradiated with UV-A (365 nm) or UV-B (302 nm) at energy levels ranging from 50 to 800 microW/cm2, and UV transmittance was measured with a UV light meter. Histological examination revealed a monolayer of corneal epithelial cells on the amniotic membrane after 2 weeks of culture, and a layer of 3-4 cells was formed after 4 weeks. Transmittance of UV-A and UV-B was highest by the amniotic membrane alone, followed in decreasing order by limbal epithelial cells cultured on amniotic membranes for 2 weeks, 3 weeks, and 4 weeks. These results indicate that UV absorbance increases in proportion to the number of limbal epithelial cell layers in cultures on amniotic membranes. Limbal epithelial cells may need to be cultured until 3-4 layers are formed in order to prevent ocular damage by UV light after transplantation.

  8. Quantification of regenerative potential in primary human mammary epithelial cells.

    PubMed

    Linnemann, Jelena R; Miura, Haruko; Meixner, Lisa K; Irmler, Martin; Kloos, Uwe J; Hirschi, Benjamin; Bartsch, Harald S; Sass, Steffen; Beckers, Johannes; Theis, Fabian J; Gabka, Christian; Sotlar, Karl; Scheel, Christina H

    2015-09-15

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49f(hi)/EpCAM(-) population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis.

  9. Quantification of regenerative potential in primary human mammary epithelial cells

    PubMed Central

    Linnemann, Jelena R.; Miura, Haruko; Meixner, Lisa K.; Irmler, Martin; Kloos, Uwe J.; Hirschi, Benjamin; Bartsch, Harald S.; Sass, Steffen; Beckers, Johannes; Theis, Fabian J.; Gabka, Christian; Sotlar, Karl; Scheel, Christina H.

    2015-01-01

    We present an organoid regeneration assay in which freshly isolated human mammary epithelial cells are cultured in adherent or floating collagen gels, corresponding to a rigid or compliant matrix environment. In both conditions, luminal progenitors form spheres, whereas basal cells generate branched ductal structures. In compliant but not rigid collagen gels, branching ducts form alveoli at their tips, express basal and luminal markers at correct positions, and display contractility, which is required for alveologenesis. Thereby, branched structures generated in compliant collagen gels resemble terminal ductal-lobular units (TDLUs), the functional units of the mammary gland. Using the membrane metallo-endopeptidase CD10 as a surface marker enriches for TDLU formation and reveals the presence of stromal cells within the CD49fhi/EpCAM− population. In summary, we describe a defined in vitro assay system to quantify cells with regenerative potential and systematically investigate their interaction with the physical environment at distinct steps of morphogenesis. PMID:26071498

  10. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    SciTech Connect

    Roberts, Joan E. Wielgus, Albert R. Boyes, William K. Andley, Usha Chignell, Colin F.

    2008-04-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C{sub 60}(OH){sub 22-26}] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C{sub 60}(OH){sub 22-26} in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 {mu}M. Exposure to either UVA or visible light in the presence of > 5 {mu}M fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 {mu}M lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein {alpha}-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C{sub 60}(OH){sub 22-26} is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo.

  11. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    PubMed

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  12. Irsogladine maleate regulates gap junctional intercellular communication-dependent epithelial barrier in human nasal epithelial cells.

    PubMed

    Miyata, Ryo; Nomura, Kazuaki; Kakuki, Takuya; Takano, Ken-Ichi; Kohno, Takayuki; Konno, Takumi; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi

    2015-04-01

    The airway epithelium of the human nasal mucosa acts as the first physical barrier that protects against inhaled substances and pathogens. Irsogladine maleate (IM) is an enhancer of gastric mucosal protective factors via upregulation of gap junctional intercellular communication (GJIC). GJIC is thought to participate in the formation of functional tight junctions. However, the effects of IM on GJIC and the epithelial barrier in human nasal epithelial cells (HNECs) remain unknown. To investigate the effects of IM on GJIC and the tight junctional barrier in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were treated with IM and the GJIC inhibitors oleamide and 18β-GA. Some cells were pretreated with IM before treatment with TLR3 ligand poly(I:C) to examine whether IM prevented the changes via TLR3-mediated signal pathways. In hTERT-HNECs, GJIC blockers reduced the expression of tight junction molecules claudin-1, -4, -7, occludin, tricellulin, and JAM-A. IM induced GJIC activity and enhanced the expression of claudin-1, -4, and JAM-A at the protein and mRNA levels with an increase of barrier function. GJIC blockers prevented the increase of the tight junction proteins induced by IM. Furthermore, IM prevented the reduction of JAM-A but not induction of IL-8 and TNF-α induced by poly(I:C). In conclusion, IM can maintain the GJIC-dependent tight junctional barrier via regulation of GJIC in upper airway nasal epithelium. Therefore, it is possible that IM may be useful as a nasal spray to prevent the disruption of the epithelial barrier by viral infections and exposure to allergens in human nasal mucosa.

  13. Investigating the Responses of Human Epithelial Cells to Predatory Bacteria

    PubMed Central

    Monnappa, Ajay K.; Bari, Wasimul; Choi, Seong Yeol; Mitchell, Robert J.

    2016-01-01

    One beguiling alternative to antibiotics for treating multi-drug resistant infections are Bdellovibrio-and-like-organisms (BALOs), predatory bacteria known to attack human pathogens. Consequently, in this study, the responses from four cell lines (three human and one mouse) were characterized during an exposure to different predatory bacteria, Bdellovibrio bacteriovorus HD100, Bacteriovorus BY1 and Bacteriovorax stolpii EB1. TNF-α levels were induced in Raw 264.7 mouse macrophage cultures with each predator, but paled in comparison to those obtained with E. coli. This was true even though the latter strain was added at an 11.1-fold lower concentration (p < 0.01). Likewise, E. coli led to a significant (54%) loss in the Raw 264.7 murine macrophage viability while the predatory strains had no impact. Tests with various epithelial cells, including NuLi-1 airway, Caco2, HT29 and T84 colorectal cells, gave similar results, with E. coli inducing IL-8 production. The viabilities of the NuLi-1 and Caco-2 cells were slightly reduced (8%) when exposed to the predators, while T84 viability remained steady. In no cases did the predatory bacteria induce actin rearrangement. These results clearly demonstrate the gentle natures of predatory bacteria and their impacts on human cells. PMID:27629536

  14. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    SciTech Connect

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline; Donner, Catherine; Perez-Morga, David; De Vos, Rita; Snoeck, Robert; Marchant, Arnaud

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMV by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.

  15. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  16. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  17. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  18. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    PubMed Central

    McCarthy, J; Gong, X; Nahirney, D; Duszyk, M; Radomski, MW

    2011-01-01

    Background Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function. Methods Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches. Results Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl− channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl− and HCO3 − secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl− channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl− channels by the nanoparticles. Conclusion This is the first study to identify the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact

  19. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    PubMed Central

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  20. Culture models of human mammary epithelial cell transformation

    SciTech Connect

    Stampfer, Martha R.; Yaswen, Paul

    2000-11-10

    Human pre-malignant breast diseases, particularly ductal carcinoma in situ (DCIS)3 already display several of the aberrant phenotypes found in primary breast cancers, including chromosomal abnormalities, telomerase activity, inactivation of the p53 gene and overexpression of some oncogenes. Efforts to model early breast carcinogenesis in human cell cultures have largely involved studies in vitro transformation of normal finite lifespan human mammary epithelial cells (HMEC) to immortality and malignancy. We present a model of HMEC immortal transformation consistent with the know in vivo data. This model includes a recently described, presumably epigenetic process, termed conversion, which occurs in cells that have overcome stringent replicative senescence and are thus able to maintain proliferation with critically short telomeres. The conversion process involves reactivation of telomerase activity, and acquisition of good uniform growth in the absence and presence of TFGB. We propose th at overcoming the proliferative constraints set by senescence, and undergoing conversion, represent key rate-limiting steps in human breast carcinogenesis, and occur during early stage breast cancer progression.

  1. Cytotoxicity of folpet fungicide on human bronchial epithelial cells.

    PubMed

    Canal-Raffin, Mireille; l'Azou, Béatrice; Jorly, Joana; Hurtier, Annabelle; Cambar, Jean; Brochard, Patrick

    2008-07-30

    Folpet, a widely used dicarboximide fungicide, has been detected in the ambient air of several vine-growing regions of France. It is present in particle form in the environment; however, no study exploring its potential health impact on airways and the respiratory system has been published. Here, the biological effect of these particles was investigated in vitro on human bronchial epithelial cells (16HBE14o-). To be close to the real-life conditions of exposure, Folpan 80WG, a commercial form of folpet, was tested. Folpan 80WG particles showed dose- and time-dependent cytotoxic effects on 16HBE14o- cells. This effect was compared to that produced by technical-grade folpet and both were found to induce a toxicity with similar IC(50) values after 24h of exposure. After 4h and at least until 48h of exposure, the IC(50) values of Folpan 80WG particles were between 2.4 and 2.8 microg/cm(2). Investigation of the cytotoxicity found that Folpan 80WG particles at 1.85 microg/cm(2) induced an increase in ROS production from the first hour of exposure. Evidence that oxidative processes occur in folpet-exposed cells was confirmed by the presence of membrane lipid peroxidation. Furthermore, early apoptosis and late apoptosis/necrosis were both present after the first hour of exposure. These findings indicate that exposure to Folpan 80WG particles result in a rapid cytotoxic effect on human bronchial epithelial cells in vitro that could be in part explained by oxidative stress, characterised by membrane lipid peroxidation and ROS production.

  2. Preexisting epithelial diversity in normal human livers: a tissue-tethered cytometric analysis in portal/periportal epithelial cells.

    PubMed

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J

    2013-04-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BECs). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the canals of Hering and/or metaplasia of preexisting mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high-resolution whole-slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes preexist in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. "Virtually digested" WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g., scatterplots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. The results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bipotential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable preexistent hybrid epithelial diversity in normal human liver. This computationally enabled tissue analysis approach offers much broader potential beyond the results presented here. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  4. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  5. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  6. Connexin expression in nonneoplastic human prostate epithelial cells.

    PubMed

    Saladino, Francesca; Carruba, Giuseppe; Quader, Salmaan T A; Amoroso, Maria; Di Cristina, Antoniette; Webber, Mukta M; Castagnetta, Luigi A M

    2002-06-01

    Expression of gap-junction proteins connexins (Cx), specifically Cx43, Cx32, and Cx26, in both nontumorigenic (RWPE-1) and tumorigenic (RWPE-2) human prostate epithelial cells as well as in two cell clones (WPEI-7 and WPEI-10) originating from the RWPE-1 cell line was investigated. The aim was to determine whether individual connexins are differentially expressed in cultured cells. Western blot analysis revealed striking differences in the expression of individual connexins in the cell lines studied. In particular, Cx43 is largely expressed in RWPE-1 and WPEI-10 cells, whereas Cx32 is expressed predominantly in RWPE-2 and WPEI-7 cells. In addition, both forskolin and estrone increase Cx43 expression levels in WPEI-10 cells, with no apparent effect on WPEI-7 cells. Conversely, forskolin and especially estrone induce a marked increase of Cx32 in WPEI-7 cells, whereas Cx32 expression is limitedly affected by both agents in WPEI-10 cells. Overall, expression levels of Cx43 and Cx32 appear to be inversely related, with RWPE-1 and WPEI-10 cells having a significantly higher Cx43 to Cx32 ratio than that observed in RWPE-2 and WPEI-7 cells. We recently reported that junctional communication could be rescued in RWPE-1 cells by either forskolin or estrone and that restoration of GJIC is associated with an increase of Cx43 or a decrease of Cx32, or both, eventually leading to a marked rise of the Cx43 to Cx32 ratio. Studies are currently ongoing in our laboratories to assess the potential effect of agents increasing the Cx43 to Cx32 ratio on GJIC activity in these systems.

  7. Characterization of biomaterial-free cell sheets cultured from human oral mucosal epithelial cells.

    PubMed

    Hyun, Dong Won; Kim, Yun Hee; Koh, Ah Young; Lee, Hyun Ju; Wee, Won Ryang; Jeon, Saewha; Kim, Mee Kum

    2017-03-01

    The purpose of this study was to report the characteristics of biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support, in vitro and after transplantation to limbal-deficient models. Human oral mucosal epithelial cells and limbal epithelial cells were cultured for 2 weeks, and the colony-forming efficiency (CFE) rates were compared. Markers of stem cells (p63), cell proliferation (Ki-67) and epithelial differentiation (cytokeratin; K1, K3, K4, K13) were observed in colonies and in biomaterial-free sheets. Biomaterial-free sheets which had been detached with 1% dispase or biomaterial-free sheets generated by fibrin support were transplanted to 12 limbal-deficient rabbit models. In vitro cell viability, in vivo stability and cytokeratin characteristics of biomaterial-free sheets were compared with those of sheets formed by fibrin-coated culture 1 week after transplantation. Mean CFE rate was significantly higher in human oral mucosal epithelial cells (44.8%) than in human limbal epithelial cells(17.7%). K3 and K4 were well expressed in both colonies and sheets. Biomaterial-free sheets had two to six layers of stratified cells and showed an average of 79.8% viable cells in the sheets after detachment. Cytokeratin expressions of biomaterial-free sheets were comparable to those of sheets cultured by fibrin support, in limbal-deficient models. Both p63 and Ki-67 were well expressed in colonies, isolated sheets and sheets transplanted to limbal-deficient models. Our results suggest that biomaterial-free sheets cultured from human oral mucosal epithelial cells without fibrin support can be an alternative option for cell therapy in use for the treatment of limbal-deficient diseases. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. HSP60 activity on human bronchial epithelial cells.

    PubMed

    Sangiorgi, Claudia; Vallese, Davide; Gnemmi, Isabella; Bucchieri, Fabio; Balbi, Bruno; Brun, Paola; Leone, Angelo; Giordano, Andrea; Conway de Macario, Everly; Macario, Alberto Jl; Cappello, Francesco; Di Stefano, Antonino

    2017-10-01

    HSP60 has been implicated in chronic inflammatory disease pathogenesis, including chronic obstructive pulmonary disease (COPD), but the mechanisms by which this chaperonin would act are poorly understood. A number of studies suggest a role for extracellular HSP60, since it can be secreted from cells and bind Toll-like receptors; however, the effects of this stimulation have never been extensively studied. We investigated the effects (pro- or anti-inflammatory) of HSP60 in human bronchial epithelial cells (16-HBE) alone and in comparison with oxidative, inflammatory, or bacterial challenges. 16-HBE cells were cultured for 1-4 h in the absence or presence of HSP60, H2O2, lipopolysaccharide (LPS), or cytomix. The cell response was evaluated by measuring the expression of IL-8 and IL-10, respectively, pro- and anti-inflammatory cytokines involved in COPD pathogenesis, as well as of pertinent TLR-4 pathway mediators. Stimulation with HSP60 up-regulated IL-8 at mRNA and protein levels and down-regulated IL-10 mRNA and protein. Likewise, CREB1 mRNA was up-regulated. H2O2 and LPS up-regulated IL-8. Experiments with an inhibitor for p38 showed that this mitogen-activated protein kinase could be involved in the HSP60-mediated pro-inflammatory effects. HSP60 showed pro-inflammatory properties in bronchial epithelial cells mediated by activation of TLR-4-related molecules. The results should prompt further studies on more complex ex-vivo or in-vivo models with the aim to elucidate further the role of those molecules in the pathogenesis of COPD.

  9. Cytotoxicity of triamcinolone acetonide on human retinal pigment epithelial cells.

    PubMed

    Chang, Yi-Sheng; Wu, Chao-Liang; Tseng, Sung-Huei; Kuo, Pao-Ying; Tseng, Shih-Ya

    2007-06-01

    To investigate the toxic effects of triamcinolone acetonide (TA) suspensions on human retinal pigment epithelial (RPE) cells. Cultured human RPE cells were exposed for up to 2 hours to one of seven solutions: control (balanced salt solution, BSS; Alcon Laboratories, Ft. Worth TX), commercial TA suspension (cTA), cTA from which the vehicle (which contains the preservative benzyl alcohol) had been removed (vehicle-removed TA, -vTA), vehicle of the cTA (V), or a 1:10 dilution (in BSS; Alcon) of cTA, -vTA or V. Solution effects were evaluated by phase-contrast microscopy of cells stained in situ with trypan blue and in vitro by trypan blue exclusion assay. RPE cell function was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The mechanism of TA toxicity was studied by acridine orange-ethidium bromide staining and epifluorescence microscopy, and ultrastructural changes were examined by transmission electron microscopy (TEM). The effects of vehicle-removed solutions (-vTA and 1:10 -vTA) were similar to those of the control solution. Exposure for 1 hour or longer to a vehicle-containing solution (cTA and V) resulted in similar and significant degrees of cell damage that were dose and time dependent. The major mechanism of cell death was necrosis, and the early ultrastructural change was swelling of organelles in the cytoplasm. Preserved commercial TA suspensions damaged human RPE cells, but vehicle-free solutions did not. The authors suggest removing the vehicle as completely as possible from TA solutions before they are administered intravitreally. Furthermore, they recommend that a commercial formulation of preservative-free TA suspension be made available for intraocular use.

  10. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport.

    PubMed

    Ren, Hui; Birch, Nigel P; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10-8 cm/s vs (738 ± 190) ×10-8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  11. An Optimised Human Cell Culture Model for Alveolar Epithelial Transport

    PubMed Central

    Birch, Nigel P.; Suresh, Vinod

    2016-01-01

    Robust and reproducible in vitro models are required for investigating the pathways involved in fluid homeostasis in the human alveolar epithelium. We performed functional and phenotypic characterisation of ion transport in the human pulmonary epithelial cell lines NCI-H441 and A549 to determine their similarity to primary human alveolar type II cells. NCI-H441 cells exhibited high expression of junctional proteins ZO-1, and E-cadherin, seal-forming claudin-3, -4, -5 and Na+-K+-ATPase while A549 cells exhibited high expression of pore-forming claudin-2. Consistent with this phenotype NCI-H441, but not A549, cells formed a functional barrier with active ion transport characterised by higher electrical resistance (529 ± 178 Ω cm2 vs 28 ± 4 Ω cm2), lower paracellular permeability ((176 ± 42) ×10−8 cm/s vs (738 ± 190) ×10−8 cm/s) and higher transepithelial potential difference (11.9 ± 4 mV vs 0 mV). Phenotypic and functional properties of NCI-H441 cells were tuned by varying cell seeding density and supplement concentrations. The cells formed a polarised monolayer typical of in vivo epithelium at seeding densities of 100,000 cells per 12-well insert while higher densities resulted in multiple cell layers. Dexamethasone and insulin-transferrin-selenium supplements were required for the development of high levels of electrical resistance, potential difference and expression of claudin-3 and Na+-K+-ATPase. Treatment of NCI-H441 cells with inhibitors and agonists of sodium and chloride channels indicated sodium absorption through ENaC under baseline and forskolin-stimulated conditions. Chloride transport was not sensitive to inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) under either condition. Channels inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) contributed to chloride secretion following forskolin stimulation, but not at baseline. These data precisely define experimental conditions for the application of NCI

  12. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    PubMed

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  13. Carbocisteine inhibits rhinovirus infection in human tracheal epithelial cells.

    PubMed

    Yasuda, H; Yamaya, M; Sasaki, T; Inoue, D; Nakayama, K; Yamada, M; Asada, M; Yoshida, M; Suzuki, T; Nishimura, H; Sasaki, H

    2006-07-01

    The aim of the study was to examine the effects of a mucolytic drug, carbocisteine, on rhinovirus (RV) infection in the airways. Human tracheal epithelial cells were infected with a major-group RV, RV14. RV14 infection increased virus titres and the cytokine content of supernatants. Carbocisteine reduced supernatant virus titres, the amount of RV14 RNA in cells, cell susceptibility to RV infection and supernatant cytokine concentrations, including interleukin (IL)-6 and IL-8, after RV14 infection. Carbocisteine reduced the expression of mRNA encoding intercellular adhesion molecule (ICAM)-1, the receptor for the major group of RVs. It also reduced the supernatant concentration of a soluble form of ICAM-1, the number and fluorescence intensity of acidic endosomes in the cells before RV infection, and nuclear factor-kappaB activation by RV14. Carbocisteine also reduced the supernatant virus titres of the minor group RV, RV2, although carbocisteine did not reduce the expression of mRNA encoding a low density lipoprotein receptor, the receptor for RV2. These results suggest that carbocisteine inhibits rhinovirus 2 infection by blocking rhinovirus RNA entry into the endosomes, and inhibits rhinovirus 14 infection by the same mechanism as well as by reducing intercellular adhesion molecule-1 levels. Carbocisteine may modulate airway inflammation by reducing the production of cytokines in rhinovirus infection.

  14. Bioavailability of antioxidants applied to stratified human corneal epithelial cells.

    PubMed

    Stoddard, Alexander R; Koetje, Leah R; Mitchell, Anna K; Schotanus, Mark P; Ubels, John L

    2013-09-01

    Oxidative damage to the corneal epithelium may be involved in dry eye disease. The bioavailability and efficacy of antioxidants in human corneal limbal epithelial (HCLE) cells were measured to determine whether antioxidants might be beneficial constituents of lubricant eye drops. The activity of antioxidants was evaluated using a cellular antioxidant activity assay in which, cells were loaded with the reactive oxygen species (ROS)-sensitive fluorescent indicator, 2',7'-dichlorofluorescin diacetate (DCFH-DA), and an antioxidant compound. ROS were then generated intracellularly using 2,2'-azobis(2-amidinopropane) dihydrochloride (ABAP) or extracellularly using xanthine oxidase, and the ability of an antioxidant to inhibit ROS-generated fluorescence was measured. When ROS were generated by ABAP, EC50 values for quercetin, epigallocatechin gallate (EGCG), n-propyl gallate, and gallic acid were 2.98, 3.41, 6.30, and 50.7 μM, respectively. When ROS were generated extracellularly by xanthine oxidase, EC50 values for quercetin, EGCG, n-propyl gallate, and gallic acid were 41.3, 56.5, 70.5, and 337.5 μM. These values were reduced significantly when an antioxidant was present both in the medium with the xanthine oxidase and within the cells. The antioxidants were effective at quenching ROS in HCLE cells, indicating that they are bioavailable and might be effective in protecting the corneal epithelium from oxidative damage if included in a lubricant eye drop.

  15. Effect of Cadmium on Human Middle Ear Epithelial Cells.

    PubMed

    Song, Jae Jun; Kim, Ju Yeon; Jang, An Soo; Kim, Shin Hye; Rah, Yoon Chan; Park, Mina; Park, Moo Kyun

    2015-12-01

    Cadmium (Cd(2+)) exposure can occur through passive smoking, ambient air pollution, and food. Even low exposure can affect hearing and cause lung disease. Here we investigated whether cadmium causes cytotoxicity, induces inflammation, or increases mucin gene expression in immortalized human middle ear epithelial cells (HMEECs). Cell viability was investigated using the MTT assay following Cd(2+) treatment. Increases in apoptosis and necrosis were determined, and the production of reactive oxygen species (ROS) was measured. We analyzed the expression of an inflammatory cytokine (COX-2) gene and a mucin gene (MUC5AC) using RT-PCR. Exposure to >20 µM Cd(2+) caused a significant decrease in cell viability. Hoechst 33258 staining showed apoptotic morphology of heterogeneous intensity, condensation, and fragmentation after Cd(2+) exposure. Cd(2+) was shown to increase cell death by apoptosis and necrosis by annexin V-FITC/PI double staining. Cd(2+) exposure increased ROS production and COX-2 and MUC5AC expressions. Our findings suggest that environmental cadmium exposure is related to the development of otitis media.

  16. Human Normal Bronchial Epithelial Cells: A Novel In Vitro Cell Model for Toxicity Evaluation

    PubMed Central

    Huang, Haiyan; Xia, Bo; Liu, Hongya; Li, Jie; Lin, Shaolin; Li, Tiyuan; Liu, Jianjun; Li, Hui

    2015-01-01

    Human normal cell-based systems are needed for drug discovery and toxicity evaluation. hTERT or viral genes transduced human cells are currently widely used for these studies, while these cells exhibited abnormal differentiation potential or response to biological and chemical signals. In this study, we established human normal bronchial epithelial cells (HNBEC) using a defined primary epithelial cell culture medium without transduction of exogenous genes. This system may involve decreased IL-1 signaling and enhanced Wnt signaling in cells. Our data demonstrated that HNBEC exhibited a normal diploid karyotype. They formed well-defined spheres in matrigel 3D culture while cancer cells (HeLa) formed disorganized aggregates. HNBEC cells possessed a normal cellular response to DNA damage and did not induce tumor formation in vivo by xenograft assays. Importantly, we assessed the potential of these cells in toxicity evaluation of the common occupational toxicants that may affect human respiratory system. Our results demonstrated that HNBEC cells are more sensitive to exposure of 10~20 nm-sized SiO2, Cr(VI) and B(a)P compared to 16HBE cells (a SV40-immortalized human bronchial epithelial cells). This study provides a novel in vitro human cells-based model for toxicity evaluation, may also be facilitating studies in basic cell biology, cancer biology and drug discovery. PMID:25861018

  17. Interleukin-1 stimulates zinc uptake by human thymic epithelial cells

    SciTech Connect

    Coto, J.A.; Hadden, J.W. )

    1991-03-15

    Thymic epithelial cells (TEC) are known to secrete peptides which influence the differentiation and maturation of T-lymphocytes. These peptides include the thymic hormones thymulin, thymosin-{alpha}1, and thymopoietin. The biological activity of thymulin is dependent on the presence of zinc in an equimolar ratio. The authors have shown that both interleukin-1{alpha}(IL-1{alpha}) and interleukin-1{beta}(IL-1{beta}), which stimulate proliferation of TEC, stimulate the uptake of Zn-65 in-vitro independent of this proliferation. Mitomycin-C was used to inhibit the proliferation of TEC. Two other stimulators of proliferation of TEC, bovine pituitary extract (BPE) and epidermal growth factor (EGF), did not stimulate zinc uptake by the TEC independent of proliferation. They have also shown, utilizing in-situ hybridization, that IL-1 and zinc induce metallothionein(MT) mRNA expression in human thymic epithelial cells. The exact role of metallothionein is not clear, but it is thought to be involved in regulation of trace metal metabolism, especially in maintenance of zinc homeostasis. Their current hypothesis is that IL-1 stimulates uptake of zinc into the TEC, followed by its complexing with metallothionein. Zinc is then thought to be transferred from metallothionein to thymulin. Immunostaining, utilizing an antithymulin antibody and a fluoresceinated goat anti-rabbit second antibody, confirms the presence of thymulin in TEC and its dependence on zinc. Upon stimulation, thymulin is then secreted. Known stimulants for thymulin include progesterone, dexamethasone, estradiol, testosterone, and prolactin. None of these secretagogues increase zinc uptake, suggesting the priming of the zinc-thymulin complex is unrelated to the regulation of its secretion.

  18. Epithelial cell responses to infection with human papillomavirus.

    PubMed

    Stanley, Margaret A

    2012-04-01

    Human papillomavirus (HPV) infection of the genital tract is common in young sexually active individuals, the majority of whom clear the infection without overt clinical disease. Most of those who do develop benign lesions eventually mount an effective cell-mediated immune (CMI) response, and the lesions regress. Regression of anogenital warts is accompanied histologically by a CD4(+) T cell-dominated Th1 response; animal models support this and provide evidence that the response is modulated by antigen-specific CD4(+) T cell-dependent mechanisms. Failure to develop an effective CMI response to clear or control infection results in persistent infection and, in the case of the oncogenic HPVs, an increased probability of progression to high-grade intraepithelial neoplasia and invasive carcinoma. Effective evasion of innate immune recognition seems to be the hallmark of HPV infections. The viral infectious cycle is exclusively intraepithelial: there is no viremia and no virus-induced cytolysis or cell death, and viral replication and release are not associated with inflammation. HPV globally downregulates the innate immune signaling pathways in the infected keratinocyte. Proinflammatory cytokines, particularly the type I interferons, are not released, and the signals for Langerhans cell (LC) activation and migration, together with recruitment of stromal dendritic cells and macrophages, are either not present or inadequate. This immune ignorance results in chronic infections that persist over weeks and months. Progression to high-grade intraepithelial neoplasia with concomitant upregulation of the E6 and E7 oncoproteins is associated with further deregulation of immunologically relevant molecules, particularly chemotactic chemokines and their receptors, on keratinocytes and endothelial cells of the underlying microvasculature, limiting or preventing the ingress of cytotoxic effectors into the lesions. Recent evidence suggests that HPV infection of basal keratinocytes

  19. Cytotoxic Effects of Curcumin in Human Retinal Pigment Epithelial Cells

    PubMed Central

    Hollborn, Margrit; Chen, Rui; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas; Kohen, Leon

    2013-01-01

    Backround Curcumin from turmeric is an ingredient in curry powders. Due to its antiinflammatory, antioxidant and anticarcinogenic effects, curcumin is a promising drug for the treatment of cancer and retinal diseases. We investigated whether curcumin alters the viability and physiological properties of human retinal pigment epithelial (RPE) cells in vitro. Methodology/Principal Findings Cellular proliferation was investigated with a bromodeoxy-uridine immunoassay, and chemotaxis was investigated with a Boyden chamber assay. Cell viability was determined by trypan blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation ELISA. Gene expression was determined by real-time PCR, and secretion of VEGF and bFGF was examined with ELISA. The phosphorylation level of proteins was revealed by Western blotting. The proliferation of RPE cells was slightly increased by curcumin at 10 µM and strongly reduced by curcumin above 50 µM. Curcumin at 50 µM increased slightly the chemotaxis of the cells. Curcumin reduced the expression and secretion of VEGF under control conditions and abolished the VEGF secretion induced by PDGF and chemical hypoxia. Whereas low concentrations of curcumin stimulated the expression of bFGF and HGF, high concentrations caused downregulation of both factors. Curcumin decreased dose-dependently the viability of RPE cells via induction of early necrosis (above 10 µM) and delayed apoptosis (above 1 µM). The cytotoxic effect of curcumin involved activation of caspase-3 and calpain, intracellular calcium signaling, mitochondrial permeability, oxidative stress, increased phosphorylation of p38 MAPK and decreased phosphorylation of Akt protein. Conclusion It is concluded that curcumin at concentrations described to be effective in the treatment of tumor cells and in inhibiting death of retinal neurons (∼10 µM) has adverse effects on RPE cells. It is suggested that, during the intake of curcumin as concomitant therapy of

  20. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  1. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  2. Polarized fibronectin secretion induced by adenosine regulates bacterial–epithelial interaction in human intestinal epithelial cells

    PubMed Central

    2004-01-01

    Fibronectin (FN) is a multifunctional protein that plays important roles in many biological processes including cell adhesion and migration, wound healing and inflammation. Cellular FNs are produced by a wide variety of cell types including epithelial cells, which secrete them and often organize them into extensive extracellular matrices at their basal surface. However, regulation of FN synthesis and the polarity of FN secretion by intestinal epithelial cells have not been investigated. In the present study we investigated the role of adenosine, whose levels are up-regulated during inflammation, in modulating FN synthesis, the polarity of FN secretion and the downstream effects of the secreted FN. Polarized monolayers of T84 cells were used as an intestinal epithelial model. Adenosine added to either the apical or basolateral aspect of the cells led to a time- and dose-dependent accumulation of FN in the culture supernatants, polarized to the apical compartment and reached maximal levels 24 h after apical or basolateral addition of adenosine. Confocal microscopy confirmed that FN localized to the apical domain of model intestinal epithelial cells stimulated with apical or basolateral adenosine. The induction of FN was significantly down-regulated in response to the adenosine receptor antagonist alloxazine and was inhibited by cycloheximide. Moreover, adenosine increased FN promoter activity (3.5-fold compared with unstimulated controls) indicating that FN induction is, in part, transcriptionally regulated. Interestingly, we demonstrated that adenosine, as well as apical FN, significantly enhanced the adherence and invasion of Salmonella typhimurium into cultured epithelial cells. In summary, we have shown for the first time that FN, a classic extracellular matrix protein, is secreted into the apical compartment of epithelial cells in response to adenosine. FN may be a critical host factor that modulates adherence and invasion of bacteria, thus playing a key role

  3. Nanoceria have no genotoxic effect on human lens epithelial cells

    NASA Astrophysics Data System (ADS)

    Pierscionek, Barbara K.; Li, Yuebin; Yasseen, Akeel A.; Colhoun, Liza M.; Schachar, Ronald A.; Chen, Wei

    2010-01-01

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO2) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 µg ml-1 of CeO2 nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  4. The Effect of Silica Nanoparticles on Human Corneal Epithelial Cells

    PubMed Central

    Park, Joo-Hee; Jeong, Hyejoong; Hong, Jinkee; Chang, Minwook; Kim, Martha; Chuck, Roy S.; Lee, Jimmy K.; Park, Choul-Yong

    2016-01-01

    Ocular drug delivery is an interesting field in current research. Silica nanoparticles (SiNPs) are promising drug carriers for ophthalmic drug delivery. However, little is known about the toxicity of SiNPs on ocular surface cells such as human corneal epithelial cells (HCECs). In this study, we evaluated the cytotoxicity induced by 50, 100 and 150 nm sizes of SiNPs on cultured HCECs for up to 48 hours. SiNPs were up-taken by HCECs inside cytoplasmic vacuoles. Cellular reactive oxygen species generation was mildly elevated, dose dependently, with SiNPs, but no significant decrease of cellular viability was observed up to concentrations of 100 μg/ml for three different sized SiNPs. Western blot assays revealed that both cellular autophagy and mammalian target of rapamycin (mTOR) pathways were activated with the addition of SiNPs. Our findings suggested that 50, 100 and 150 nm sized SiNPs did not induce significant cytotoxicity in cultured HCECs. PMID:27876873

  5. Regulation of potassium transport in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Warwar, Ronald; Brown, Thomas L; Adragna, Norma C

    2006-01-01

    The major K influx pathways and their response to thiol modification by N-ethylmaleimide (NEM) and protein kinase and phosphatase inhibitors were characterized in human lens epithelial B3 (HLE-B3) cells with Rb as K congener. Ouabain (0.1 mM) and bumetanide (5 microM) discriminated between the Na/K pump ( approximately 35% of total Rb influx) and Na-K-2Cl cotransport (NKCC) ( approximately 50%). Cl-replacement with nitrate or sulfamate revealed <10% residual [ouabain+bumetanide]-insensitive K-Cl cotransport (KCC). At 0.3-0.5 mM, NEM stimulated the Na/K pump by 2-fold independent of external Na, KCC between 2 and 4-fold, and abolished approximately 90% of NKCC. Calyculin-A, a serine/threonine protein phosphatase-1 inhibitor, did not affect NKCC but inhibited KCC, whereas 10 microM staurosporine, a serine/threonine kinase inhibitor, abolished NKCC, and stimulated KCC only when followed by NEM treatment. The tyrosine-kinase inhibitor genistein, at concentrations >100 microM, activated the Na/K pump and abolished NKCC but did not affect KCC. The data suggest at least partial inverse regulation of KCC and NKCC in HLE-B3 cells by signaling cascades involving serine, threonine and tyrosine phosphorylation/dephosphorylation equilibria.

  6. Thymic epithelial cell development and its dysfunction in human diseases.

    PubMed

    Sun, Lina; Li, Hongran; Luo, Haiying; Zhao, Yong

    2014-01-01

    Thymic epithelial cells (TECs) are the key components in thymic microenvironment for T cells development. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor and undergo a stepwise development controlled by multiple levels of signals to be functionally mature for supporting thymocyte development. Tumor necrosis factor receptor (TNFR) family members including the receptor activator for NF κ B (RANK), CD40, and lymphotoxin β receptor (LT β R) cooperatively control the thymic medullary microenvironment and self-tolerance establishment. In addition, fibroblast growth factors (FGFs), Wnt, and Notch signals are essential for establishment of functional thymic microenvironment. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful modulators of TEC development, differentiation, and self-tolerance. Dysfunction in thymic microenvironment including defects of TEC and thymocyte development would cause physiological disorders such as tumor, infectious diseases, and autoimmune diseases. In the present review, we will summarize our current understanding on TEC development and the underlying molecular signals pathways and the involvement of thymus dysfunction in human diseases.

  7. Effect of soft foods on primary human gingival epithelial cell growth and the wound healing process.

    PubMed

    Rouabhia, Mahmoud; Rouabhia, Dounia; Park, Hyun Jin; Giasson, Luc; Zhang, Ze

    2017-10-01

    Investigate the effect of soft diet foods on gingival epithelial cell growth, migration, and mediator secretion. Human gingival epithelial cells were stimulated for various time periods with the following soft diet foods: orange juice, drinkable yogurt, and a nutritional drink. Cell growth was determined by an MTT assay and cell migration was investigated by a scratch assay and F-actin filament staining. Keratin production was analyzed by Western blot and wound healing mediators IL-6 and human β-defensin 2 were quantified by ELISA. We demonstrate, for the first time, that certain soft diet foods increased the production of keratin 5, 14, and 19 by gingival epithelial cells. These proteins were known to be produced by proliferating cells. The soft foods tested also stimulated gingival epithelial cells to produce IL-6 and human β-defensin 2. Soft foods are capable of promoting gingival epithelial cell migration by increasing F-actin production, which is part of the wound healing process. Results varied depending on the foods tested. Gingival epithelial cells interacted with the soft diet foods under study. This interaction was shown to upregulate keratin expression, as well as IL-6 and human β-defensin 2 secretions. Furthermore, following cell wound, the soft foods upregulated post-scratch cell migration and F-actin production. Overall data suggest that the choice of foods in soft diets following oral surgery may influence the wound healing process of gingival epithelial cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Potential role for laminin 5 in hypoxia-mediated apoptosis of human corneal epithelial cells.

    PubMed

    Esco, M A; Wang, Z; McDermott, M L; Kurpakus-Wheater, M

    2001-11-01

    Laminin 5 functions to promote cell-matrix adhesion and therefore is hypothesized to abrogate apoptosis initiated through the loss of epithelial cell contact with extracellular matrix. Laminin 5 levels are decreased in epithelial cells cultured in a hypoxic environment. Exposure of epithelial cells to hypoxia may induce apoptotic pathways transmitted through changes in mitochondrial membrane potential. Using an apoptosis assay based on mitochondrial membrane integrity, the effect of hypoxia (2% oxygen) on human corneal epithelial cell viability was determined. Both a virally transformed corneal epithelial cell line and third passage corneal epithelial cells were resistant to hypoxia-mediated apoptosis for up to 5 days in culture. However, at 7 days in culture, a statistically significant increase in apoptosis was noted in hypoxic corneal epithelial cells compared to normoxic (20% oxygen) controls. Increased apoptosis in hypoxic epithelium at 7 days in culture correlated with decreased deposition of laminin 5 into the extracellular matrix, as determined by western blot analysis and immunofluorescence microscopy. Additionally, the extracellular processing of the alpha3 and gamma2 chains of laminin 5 was negatively impacted by corneal epithelial cell exposure to hypoxia for 7 days. Treatment of human corneal epithelial cells cultured in 20% oxygen with function-inhibiting antibodies to laminin 5 for 2 or 3 days resulted in a statistically significant decrease in proliferation, and concomitant increase in apoptosis, compared with untreated normoxic controls. Based on these results, it appears that mechanisms of hypoxia-mediated apoptosis in human corneal epithelial cells may be initiated by the loss of processed laminin 5 in the extracellular matrix or by the loss of laminin 5-epithelial cell communication and transmitted through mitochondria.

  9. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  10. Binding of transcobalamin II by human mammary epithelial cells.

    PubMed

    Adkins, Y; Lönnerdal, B

    2001-01-01

    The presence of nutrient binders in milk may have an important role during milk production and may influence the nutrient's bioavailability to the infant. Human milk and plasma contain at least two types of vitamin B12 binders: transcobalamin II (TCII) and haptocorrin (Hc). Vitamin B12 in milk is exclusively bound to Hc (Hc-B12). In plasma, the major vitamin B12 binding protein that is responsible for delivering absorbed vitamin B12 to most tissues and cells is TCII (TCII-B12). Currently, little is known about the route of secretion of vitamin B12 into human milk. It is possible that a receptor-mediated pathway is involved, since maternal vitamin B12 supplementation increases the amount of the vitamin secreted into human milk if the mother's vitamin B12 consumption is low, but remains unchanged if her intake is adequate. In this study, we investigated the process by which the mammary gland acquires vitamin B12 from maternal circulation, whether as a free vitamin or as a Hc-B12 or TCII-B12 complex. TCII was purified from plasma incubated with [57Co]vit B12 (B12*), while Hc was purified from whey incubated with B12*. Both proteins were separated by fast protein liquid chromatography using gel filtration and anion-exchange columns. Purity of the separated proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Binding studies were carried out on a monolayer of normal human mammary epithelial cells (HMEC) at 4 degrees C using free B12* and TCII-B12* and Hc-B12* complexes. Minimal binding of free B12* and Hc-B12* to HMEC was observed; however, HMEC exhibited a high affinity for the TCII-B12* complex. This study suggests that a specific cell surface receptor for the TCII-B12 complex exists in the mammary gland. It is possible that once vitamin B12 is in the mammary gland it is transferred to Hc (which may be synthesized by the mammary gland) and then secreted into milk as a Hc-B12 complex.

  11. Effect of Growth Factors on the Proliferation and Gene Expression of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Kam, Wendy R.; Ding, Juan; Hatton, Mark P.; Sullivan, David A.

    2013-01-01

    Purpose. We hypothesize that growth factors, including epidermal growth factor (EGF) and bovine pituitary extract (BPE), induce proliferation, but not differentiation (e.g., lipid accumulation), of human meibomian gland epithelial cells. We also hypothesize that these actions involve a significant upregulation of genes linked to cell cycle processes, and a significant downregulation of genes associated with differentiation. Our objective was to test these hypotheses. Methods. Immortalized human meibomian gland and conjunctival epithelial cells were cultured for varying time periods in the presence or absence of EGF, BPE, EGF + BPE, or serum, followed by cell counting, neutral lipid staining, or RNA isolation for molecular biological procedures. Results. Our studies show that growth factors stimulate a significant, time-dependent proliferation of human meibomian gland epithelial cells. These effects are associated with a significant upregulation of genes linked to cell cycle, DNA replication, ribosomes, and translation, and a significant decrease in those related to cell differentiation, tissue development, lipid metabolic processes, and peroxisome proliferator-activated receptor signaling. Serum-induced differentiation, but not growth factor-related proliferation, elicits a pronounced lipid accumulation in human meibomian gland epithelial cells. This lipogenic response is unique, and is not duplicated by human conjunctival epithelial cells. Conclusions. Our results demonstrate that EGF and BPE stimulate human meibomian gland epithelial cells to proliferate. Further, our findings show that action is associated with an upregulation of cell cycle and translation ontologies, and a downregulation of genetic pathways linked to differentiation and lipid biosynthesis. PMID:23493293

  12. Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro.

    PubMed

    Roig, Andres I; Eskiocak, Ugur; Hight, Suzie K; Kim, Sang Bum; Delgado, Oliver; Souza, Rhonda F; Spechler, Stuart J; Wright, Woodring E; Shay, Jerry W

    2010-03-01

    Long-term propagation of human colonic epithelial cells (HCEC) of adult origin has been a challenge; currently used HCEC lines are of malignant origin and/or contain multiple cytogenetic changes. We sought to immortalize human colon biopsy-derived cells expressing stem cell markers and retaining multilineage epithelial differentiation capability. We isolated and cultured cells from biopsy samples of 2 patients undergoing routine screening colonoscopy. Cells were immortalized by expression of the nononcogenic proteins cyclin-dependent kinase 4 (Cdk4) and the catalytic component of human telomerase (hTERT) and maintained for more than 1 year in culture. The actively proliferating HCECs expressed the mesenchymal markers vimentin and alpha-smooth muscle actin. Upon growth arrest, cells assumed a cuboidal shape, decreased their mesenchymal features, and expressed markers of colonic epithelial cells such as cytokeratin 18, zonula occludens-1, mucins-1 and -2, antigen A33, and dipeptidyl peptidase 4. Immortalized cells expressed stem cell markers that included LGR5, BMI1, CD29, and CD44. When placed in Matrigel in the absence of a mesenchymal feeder layer, individual cells divided and formed self-organizing, cyst-like structures; a subset of cells exhibited mucin-2 or polarized villin staining. We established immortalized HCECs that are capable of self-renewal and multilineage differentiation. These cells should serve as valuable reagents for studying colon stem cell biology, differentiation, and pathogenesis. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells.

    PubMed

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W Michael; Das, Mita

    2014-04-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases.

  14. PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells

    PubMed Central

    Zhang, Hanying; Okamoto, Miyako; Panzhinskiy, Evgeniy; Zawada, W. Michael

    2014-01-01

    Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases. PMID:24500281

  15. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    SciTech Connect

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R. )

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV.

  16. HUIEC, Human intestinal epithelial cell line with differentiated properties: process of isolation and characterisation.

    PubMed

    Gradisnik, Lidija; Trapecar, Martin; Rupnik, Marjan Slak; Velnar, Tomaz

    2015-12-01

    The intestinal epithelium is composed of diverse cell types, most abundant being the enterocytes. Among other functions, they maintain the intestinal barrier and play a critical role in the absorption of nutrients, drugs and toxins. This study describes the development and characterization of human intestinal epithelial cells (HUIEC), a spontaneously arising cell line established by selective trypsinization and cloning of the intestinal epithelium, resulting in a uniform population of highly epithelial cells with a strong growth potential.

  17. Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells

    PubMed Central

    Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.

    2001-01-01

    Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by

  18. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  19. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    EPA Science Inventory

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  20. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells

    PubMed Central

    Raghavan, Cibin T.; Nagaraj, Ram H.

    2016-01-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis. PMID:27263094

  1. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    PubMed

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

  2. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18.

    PubMed

    Bello, D; Webber, M M; Kleinman, H K; Wartinger, D D; Rhim, J S

    1997-06-01

    Prostate cancer and benign tumors of the prostate are the two most common neoplastic diseases in men in the United States, however, research on their causes and treatment has been slow because of the difficulty in obtaining fresh samples of human tissue and a lack of well characterized cell lines which exhibit growth and differentiation characteristics of normal prostatic epithelium. Non-neoplastic adult human prostatic epithelial cells from a white male donor were immortalized with human papillomavirus 18 which resulted in the establishment of the RWPE-1 cell line. Cells from the RWPE-1 cell line were further transformed by v-Ki-ras to establish the RWPE-2 cell line. The objectives of this study were to: (1) establish the prostatic epithelial origin and androgen responsiveness of RWPE-1 and RWPE-2 cell lines; (2) examine their response to growth factors; and (3) establish the malignant characteristics of the RWPE-2 cell line. Immunoperoxidase staining showed that both RWPE-1 and RWPE-2 cells express cytokeratins 8 and 18, which are characteristic of luminal prostatic epithelial cells, but they also coexpress basal cell cytokeratins. These cell lines show growth stimulation and prostate specific antigen (PSA) and androgen receptor (AR) expression in response to the synthetic androgen mibolerone, which establishes their prostatic epithelial origin. Both cell lines also show a dose-dependent growth stimulation by EGF and bFGF and growth inhibition when exposed to TGF-beta, however, the transformed RWPE-2 cells are less responsive. RWPE-1 cells neither grow in agar nor form tumors when injected into nude mice with or without Matrigel. However, RWPE-2 cells form colonies in agar and tumors in nude mice. In the in vitro invasion assay, RWPE-1 cells are not invasive whereas RWPE-2 cells are invasive. Nuclear expression of p53 and Rb proteins was heterogeneous but detectable by immunostaining in both cell lines. The RWPE-1 cells, which show many normal cell

  3. Coculture of mesenchymal stem cells and respiratory epithelial cells to engineer a human composite respiratory mucosa.

    PubMed

    Le Visage, Catherine; Dunham, Brian; Flint, Paul; Leong, Kam W

    2004-01-01

    In this study, we describe a novel in vitro reconstitution system for tracheal epithelium that could be useful for investigating the cellular and molecular interaction of epithelial and mesenchymal cells. In this system, a Transwell insert was used as a basement membrane on which adult bone marrow mesenchymal stem cells (MSCs) were cultured on the lower side whereas normal human bronchial epithelial (NHBE) cells were cultured on the opposite upper side. Under air-liquid interface conditions, the epithelial cells maintained their capacity to progressively differentiate and form a functional epithelium, leading to the differentiation of mucin-producing cells between days 14 and 21. Analysis of apical secretions showed that mucin production increased over time, with peak secretion on day 21 for NHBE cells alone, whereas mucin secretion by NHBE cells cocultured with MSCs remained constant between days 18 and day 25. This in vitro model of respiratory epithelium, which exhibited morphologic, histologic, and functional features of a tracheal mucosa, could help to understand interactions between mesenchymal and epithelial cells and mechanisms involved in mucus production, inflammation, and airway repair. It might also play an important role in the design of an composite prosthesis for tracheal replacement.

  4. Expression of epithelial markers by human umbilical cord stem cells. A topographical analysis.

    PubMed

    Garzón, I; Alfonso-Rodríguez, C A; Martínez-Gómez, C; Carriel, V; Martin-Piedra, M A; Fernández-Valadés, R; Sánchez-Quevedo, M C; Alaminos, M

    2014-12-01

    Human umbilical cord stem cells have inherent differentiation capabilities and potential usefulness in regenerative medicine. However, the epithelial differentiation capability and the heterogeneity of these cells have not been fully explored to the date. We analyzed the expression of several undifferentiation and epithelial markers in cells located in situ in different zones of the umbilical cord -in situ analysis- and in primary ex vivo cell cultures of Wharton's jelly stem cells by microarray and immunofluorescence. Our results demonstrated that umbilical cord cells were heterogeneous and had intrinsic capability to express in situ stem cell markers, CD90 and CD105 and the epithelial markers cytokeratins 3, 4, 7, 8, 12, 13, 19, desmoplakin and zonula occludens 1 as determined by microarray and immunofluorescence, and most of these markers remained expressed after transferring the cells from the in situ to the ex vivo cell culture conditions. However, important differences were detected among some cell types in the umbilical cord, with subvascular zone cells showing less expression of stem cell markers and cells in Wharton's jelly and the amnioblastic zones showing the highest expression of stem cells and epithelial markers. These results suggest that umbilical cord mesenchymal cells have intrinsic potential to express relevant epithelial markers, and support the idea that they could be used as alternative cell sources for epithelial tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An improved method for isolation of epithelial and stromal cells from the human endometrium

    PubMed Central

    MASUDA, Ayako; KATOH, Noriko; NAKABAYASHI, Kazuhiko; KATO, Kiyoko; SONODA, Kenzo; KITADE, Mari; TAKEDA, Satoru; HATA, Kenichiro; TOMIKAWA, Junko

    2016-01-01

    We aimed to improve the efficiency of isolating endometrial epithelial and stromal cells (EMECs and EMSCs) from the human endometrium. We revealed by immunohistochemical staining that the large tissue fragments remaining after collagenase treatment, which are usually discarded after the first filtration in the conventional protocol, consisted of glandular epithelial and stromal cells. Therefore, we established protease treatment and cell suspension conditions to dissociate single cells from the tissue fragments and isolated epithelial (EPCAM-positive) and stromal (CD13-positive) cells by fluorescence-activated cell sorting. Four independent experiments showed that, on average, 1.2 × 106 of EMECs and 2.8 × 106 EMSCs were isolated from one hysterectomy specimen. We confirmed that the isolated cells presented transcriptomic features highly similar to those of epithelial and stromal cells obtained by the conventional method. Our improved protocol facilitates future studies to better understand the molecular mechanisms underlying the dynamic changes of the endometrium during the menstrual cycle. PMID:26853786

  6. S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells

    PubMed Central

    Wang, Dongmei; Zhao, Zhenwen; Caperell-Grant, Andrea; Yang, Gong; Mok, Samuel C.; Liu, Jinsong; Bigsby, Robert M.; Xu, Yan

    2009-01-01

    Epithelial ovarian cancer (EOC) arises from the epithelial layer covering the surface of ovaries and intra-peritoneal metastasis is commonly observed at diagnosis. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule, is potentially involved in EOC tumorigenesis. We have found that S1P is elevated in human EOC ascites. We show that physiologically relevant concentrations of S1P stimulate migration and invasion of EOC cells, but inhibit migration of human ovarian surface epithelial (HOSE) cells. In addition, S1P inhibits lysophosphatidic acid (LPA)-induced cell migration in HOSE, but not in EOC cells. We have provided the first line of evidence that the expression levels of S1P receptor subtypes are not the only determinants for how cells respond to S1P. Even though S1P1 is expressed and functional in HOSE cells, the inhibitory effect mediated by S1P2 is dominant in those cells. The cellular pre-existing stress fibers are also important determinants for the migratory response to S1P. Differential S1P-induced morphology changes are noted in EOC and HOSE cells. Pre-existing stress fibers in HOSE cells are further enhanced by S1P treatment, resulting in the negative migratory response to S1P. By contrast, EOC cells lost stress fibers and S1P treatment induces filopodium-like structures at cell edges, which correlates with increased cell motility. In addition, inhibition of the protein kinase C pathway is likely to be involved in the inhibitory effect of S1P on LPA-induced cell migration in HOSE cells. These findings are important for the development of new therapeutics targeting S1P and LPA in EOC. PMID:18645009

  7. Structural Cues from the Tissue Microenvironment Are Essential Determinants of the Human Mammary Epithelial Cell Phenotype

    PubMed Central

    Schmeichel, Karen L.; Weaver, Valerie M.

    2010-01-01

    Historically, the study of normal human breast function and breast disorders has been significantly impaired by limitations inherent to available model systems. Recent improvements in human breast epithelial cell lines and three-dimensional (3-D)3 culture systems have contributed to the development of in vitro model systems that recapitulate differentiated epithelial cell phenotypes with remarkable fidelity. Molecular characterization of these human breast cell models has demonstrated that normal breast epithelial cell behavior is determined in part by the precise interplay that exists between a cell and its surrounding microenvironment. Recent functional studies of integrins in a human model system provide evidence to support the idea that the structural stability afforded by integrin-mediated cell-extracellular matrix interactions is an important determinant of normal cellular behavior, and that alterations in tissue structure can give rise to tumorigenic progression. PMID:10819528

  8. Immortalization of human corneal epithelial cells using simian virus 40 large T antigen and cell characterization.

    PubMed

    Kim, Cho-Won; Go, Ryeo-Eun; Lee, Geum-A; Kim, Chang Deok; Chun, Young-Jin; Choi, Kyung-Chul

    2016-01-01

    Primary cultures of human corneal epithelial (HCE) cells usually cease to grow after four or five passages. This result in a small cell yield for experiments such as the eye irritancy test represents a serious problem for human and animal corneal epithelial research. In the present study, we established an HCE cell line immortalized by simian virus 40 (SV40), a polyomavirus, and characterized the inherent morphologic and cytologic cell properties. Primary cultured HCE cells were infected with a SV40 large T antigen (SV40 T)-expressing retrovirus, and were selected using G418 solution, an aminoglycoside antibiotic. To ensure that the immortalized cell lines express SV40 T and cytokeratin-3, a corneal epithelial-specific marker, we conducted reverse-transcription (RT)-PCR and Western blot analysis. These cell lines continued to grow for more than 50 generations, exhibiting a cobble stone-like appearance similar to normal HCE cells and an increased proliferation rate compared to primary cultured HCE cells. RT-PCR results showed that the immortalized cell lines expressed SV40 T while the primary cultured cells did not. In the Western blot assay, protein levels of phosphorylated (Ser15) p53 protein were significantly decreased in the immortalized cell lines while the expression of total p53 protein was constant. In addition, expression of p21(cip1), a cell cycle protein, was down-regulated in the immortalized cells. Moreover, a cornea epithelium-specific marker, cytokeratin-3 (CK-3), was expressed at equal levels in the immortalized cells and primary HCE cells. Taken together, these results indicate that immortalized HCE cell lines were successfully established using the SV40-retroviral vector. These cells may be an excellent model for detecting the adverse effects of standard toxic materials and could replace the traditional eye irritation test as an animal-free alternative method. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  10. Construction of tissue engineered skin with human amniotic mesenchymal stem cells and human amniotic epithelial cells.

    PubMed

    Yu, S-C; Xu, Y-Y; Li, Y; Xu, B; Sun, Q; Li, F; Zhang, X-G

    2015-12-01

    To establish a new model for construction of tissue engineered skin with human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial cells (hAECs). hAMSCs and hAECs were isolated from amniotic membrane. The morphology and phenotype of hAMSCs and hAECs were confirmed by microscope and flow cytometry, respectively. Then, we performed RT-PCR and immunofluorescence staining to assess the expression of stem cells and keratinocyte markers. Moreover, cell co-culture was performed to observe the growth and phenotype characteristics of hAMSCs and hAECs in vitro. In addition, tissue engineered skin with hAMSCs and hAECs was constructed and assessed with histological methods. hAMSCs and hAECs were successfully isolated, exhibiting fibroblast-like morphous and cobblestone-shape epithelial morphous, respectively. The surface biomarker analysis showed that hAMSCs and hAECs were both positive for CD73, CD90 and CD105, and negative for CD34 and HLA-DR. The RT-PCR showed that hAMSCs expressed stem cell marker Nanog and c-MYC, and keratinocyte marker K19, β1 integrin and K8, whereas hAECs expressed stem cell marker KLF4 and c-MYC, and keratinocyte marker K19, β1 integrin, K5 and K8. The expression of keratinocyte proliferation antigen K14 was also found on hAECs. Furthermore, we found co-culture has no impact on the phenotype of hAMSCs and hAECs, but increased the proliferation activity of hAECs and decreased the proliferation activity of hAMSCs. Finally, the histological analysis showed that the tissue engineered skin exhibited similar structure as normal skin. Tissue engineered skin with hAMSCs and hAECs was successfully constructed and shown a similar feature as a skin equivalent. The tissue engineered skin might have good application prospects in regenerative medicine.

  11. Advanced imaging and tissue engineering of the human limbal epithelial stem cell niche.

    PubMed

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E; Vernon, Amanda J; Funderburgh, James L; Daniels, Julie T

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein.

  12. Advanced Imaging and Tissue Engineering of the Human Limbal Epithelial Stem Cell Niche

    PubMed Central

    Massie, Isobel; Dziasko, Marc; Kureshi, Alvena; Levis, Hannah J.; Morgan, Louise; Neale, Michael; Sheth, Radhika; Tovell, Victoria E.; Vernon, Amanda J.; Funderburgh, James L.; Daniels, Julie T.

    2015-01-01

    The limbal epithelial stem cell niche provides a unique, physically protective environment in which limbal epithelial stem cells reside in close proximity with accessory cell types and their secreted factors. The use of advanced imaging techniques is described to visualize the niche in three dimensions in native human corneal tissue. In addition, a protocol is provided for the isolation and culture of three different cell types, including human limbal epithelial stem cells from the limbal niche of human donor tissue. Finally, the process of incorporating these cells within plastic compressed collagen constructs to form a tissue-engineered corneal limbus is described and how immunohistochemical techniques may be applied to characterize cell phenotype therein. PMID:25388395

  13. Comparative proteomics reveals human pluripotent stem cell-derived limbal epithelial stem cells are similar to native ocular surface epithelial cells

    PubMed Central

    Mikhailova, Alexandra; Jylhä, Antti; Rieck, Jochen; Nättinen, Janika; Ilmarinen, Tanja; Veréb, Zoltán; Aapola, Ulla; Beuerman, Roger; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli

    2015-01-01

    Limbal epithelial stem cells (LESCs) are tissue-specific stem cells responsible for renewing the corneal epithelium. Acute trauma or chronic disease affecting LESCs may disrupt corneal epithelial renewal, causing vision threatening and painful ocular surface disorders, collectively referred to as LESC deficiency (LESCD). These disorders cannot be treated with traditional corneal transplantation and therefore alternative cell sources for successful cell-based therapy are needed. LESCs derived from human pluripotent stem cells (hPSCs) are a prospective source for ocular surface reconstruction, yet critical evaluation of these cells is crucial before considering clinical applications. In order to quantitatively evaluate hPSC-derived LESCs, we compared protein expression in native human corneal cells to that in hPSC-derived LESCs using isobaric tag for relative and absolute quantitation (iTRAQ) technology. We identified 860 unique proteins present in all samples, including proteins involved in cell cycling, proliferation, differentiation and apoptosis, various LESC niche components, and limbal and corneal epithelial markers. Protein expression profiles were nearly identical in LESCs derived from two different hPSC lines, indicating that the differentiation protocol is reproducible, yielding homogeneous cell populations. Their protein expression profile suggests that hPSC-derived LESCs are similar to the human ocular surface epithelial cells, and possess LESC-like characteristics. PMID:26423138

  14. Hypoxic conditions induce a cancer-like phenotype in human breast epithelial cells.

    PubMed

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René; Petersen, Ole W; Johansson, Elisabet; Beckman, Siv; Larsson, Christer; Påhlman, Sven; Jögi, Annika

    2012-01-01

    Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with global histone deacetylation

  15. Lumican induces human corneal epithelial cell migration and integrin expression via ERK 1/2 signaling

    SciTech Connect

    Seomun, Young; Joo, Choun-Ki

    2008-07-18

    Lumican is a major proteoglycans of the human cornea. Lumican knock-out mice have been shown to lose corneal transparency and to display delayed wound healing. The purpose of this study was to define the role of lumican in corneal epithelial cell migration. Over-expression of lumican in human corneal epithelial (HCE-T) cells increased both cell migration and proliferation, and increased levels of integrins {alpha}2 and {beta}1. ERK 1/2 was also activated in lumican over-expressed cells. When we treated HCE-T cells with the ERK-specific inhibitor U0126, cell migration and the expression of integrin {beta}1 were completely blocked. These data provide evidence that lumican stimulates cell migration in the corneal epithelium by activating ERK 1/2, and point to a novel signaling pathway implicated in corneal epithelial cell migration.

  16. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  17. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  18. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  19. Nuclear factor I and epithelial cell-specific transcription of human papillomavirus type 16.

    PubMed Central

    Apt, D; Chong, T; Liu, Y; Bernard, H U

    1993-01-01

    The transcription of human papillomavirus type 16 (HPV-16) is mediated by the viral enhancer. Epithelial cell-specific activation is achieved by the cooperative interaction of apparently ubiquitous transcriptional factors. One of them, nuclear factor I (NFI), binds seven sites within the HPV-16 enhancer. Point mutations on enhancer fragments, which retain epithelial cell specificity, verify the functional contribution of NFI. In band shift experiments, the epithelial cell-derived NFI proteins CTF-1, CTF-2, and CTF-3 form a characteristic pattern of heterodimeric complexes which are observed in all epithelial cells tested. Divergence from this pattern in fibroblasts, liver cells, and lymphoid cells correlates with the lack of HPV-16 enhancer activation. The HPV-16 enhancer can be activated by CTF-1 in SL-2 cells, which lack NFI-like proteins. However, exogenous CTF-1 fails to overcome the inactivity of the viral enhancer in fibroblasts. Western immunoblot and supershift analysis shows that exogenously introduced CTF-1 proteins form different heterodimer complexes with the given subset of endogenous NFI proteins in epithelial or fibroblast cells. Polymerase chain reaction analysis and cDNA library screens identified the endogenous fibroblast type NFI as NFI-X, an NFI family member originally cloned from hamster liver cells. The strict correlation between the activation or lack of activation of the HPV-16 enhancer and cell-specific subsets of NFI proteins argues for the pivotal role of NFI binding sites in the epithelial cell-specific function of the viral enhancer. Images PMID:8392590

  20. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    PubMed

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  1. Rhodococcus equi human clinical isolates enter and survive within human alveolar epithelial cells.

    PubMed

    Ramos-Vivas, J; Pilares-Ortega, L; Remuzgo-Martínez, S; Padilla, D; Gutiérrez-Díaz, J L; Navas-Méndez, J

    2011-05-01

    Rhodococcus equi is an emerging opportunistic human pathogen associated with immunosuppressed people, especially those infected with the human immunodeficiency virus (HIV). This pathogen resides primarily within lung macrophages of infected patients, which may explain in part its ability to escape normal pulmonary defense mechanisms. Despite numerous studies as a pulmonary pathogen in foals, where a plasmid seems to play an important role in virulence, information on the pathogenesis of this pathogen in humans is still scarce. In this study, fluorescence microscopy and vancomycin protection assays were used to investigate the ability of R. equi human isolates to adhere to and to invade the human alveolar epithelial cell line A549. Our findings indicate that some R. equi clinical strains are capable of adhering, entering and surviving within the alveolar cell line, which may contribute to the pathogen persistence in lung tissues. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  2. Nerve growth factor induces the expression of chaperone protein calreticulin in human epithelial ovarian cells.

    PubMed

    Vera, C; Tapia, V; Kohan, K; Gabler, F; Ferreira, A; Selman, A; Vega, M; Romero, C

    2012-07-01

    Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    PubMed

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  4. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung epithelial cells.

    PubMed

    Xie, Hong; Smith, Leah J; Holmes, Amie L; Zheng, Tongzhang; Pierce Wise, John

    2016-05-01

    Cobalt is a toxic metal used in various industrial applications leading to adverse lung effects by inhalation. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells, especially normal lung epithelial cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in normal primary human lung epithelial cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble and particulate cobalt induced similar cytotoxicity while soluble cobalt was more genotoxic than particulate cobalt. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung epithelial cells. © 2016 Wiley Periodicals, Inc.

  5. Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion.

    PubMed

    Kulawiec, Mariola; Safina, Alfiya; Desouki, Mohamed Mokhtar; Still, Ivan; Matsui, Sei-Ichi; Bakin, Andrei; Singh, Keshav K

    2008-11-01

    Human mitochondrial DNA (mtDNA) encodes 13 proteins involved in oxidative phosphorylation (OXPHOS). In order to investigate the role of mitochondrial OXPHOS genes in breast tumorigenesis, we have developed a breast epithelial cell line devoid of mtDNA (rho(0) cells). Our analysis revealed that depletion of mtDNA in breast epithelial cells results in in vitro tumorigenic phenotype as well as breast tumorigenesis in a xenograft model. We identified two major gene networks which were differentially regulated between parental and rho(0) epithelial cells. The focal proteins in these networks include (i) FN1 (fibronectin) and (ii) p53. Bioinformatic analyses of FN1 network identified laminin, integrin and 3 of 6 members of peroxiredoxin whose expression were altered in rho(0) epithelial cells. In the p53 network, we identified SMC4 and WRN whose changes in expression suggest that this network may affect chromosomal stability. Consistent with above finding our study revealed an increase in DNA double strand breaks and unique chromosomal rearrangements in rho(0) breast epithelial cells. Additionally, we identified tight junction proteins claudin-1 and claudin-7 in p53 network. To determine the functional relevance of altered gene expression, we focused on detailed analyses of claudin-1 and -7 proteins in breast tumorigenesis. Our study determined that (i) claudin-1 and 7 were indeed downregulated in rho(0) breast epithelial cells, (ii) downregulation of claudin-1 or -7 led to neoplastic transformation of breast epithelial cells, and (iii) claudin-1 and -7 were also downregulated in primary breast tumors. Together, our study suggest that mtDNA encoded OXPHOS genes play a key role in transformation of breast epithelial cells and that multiple pathway involved in mitochondria-to-nucleus retrograde regulation contribute to transformation of breast epithelial cells.

  6. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    SciTech Connect

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  7. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  8. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  9. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  10. The Influence of 13-cis Retinoic Acid on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Kam, Wendy R.; Dieckow, Julia; Sullivan, David A.

    2013-01-01

    Purpose. Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. Methods. To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. Results. We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. Conclusions. Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA–related induction of MGD. PMID:23722388

  11. Phenotypic characterization of collagen gel embedded primary human breast epithelial cells in athymic nude mice.

    PubMed

    Yang, J; Guzman, R C; Popnikolov, N; Bandyopadhyay, G K; Christov, K; Collins, G; Nandi, S

    1994-06-30

    We have developed a method to characterize the phenotypes and tumorigenicity of dissociated human breast epithelial cells. The dissociated cells were first embedded in collagen gels and subsequently transplanted subcutaneously in vivo in athymic nude mice. The transplantation of dissociated epithelial cells from reduction mammoplasties, presumed to be normal, always resulted in normal histomorphology. Epithelial cells were arranged as short tubular structures consisting of lumina surrounded by epithelial cells with an occasional more complex branching structure. These outgrowths were surrounded by intact basement membrane and were embedded in collagen gel that, at termination, contained collagenous stroma with fibroblasts and blood vessels. In contrast, transplantation of dissociated breast epithelial cells from breast cancer specimens resulted in outgrowths with an invasive pattern infiltrating the collagen gel as well as frank invasion into vascular space, nerves and muscles. These observations were made long before the subsequent palpable stage which resulted if left in the mouse for a long enough time. The dissociated human breast epithelial cells thus retained their intrinsic property to undergo morphogenesis to reflect their original phenotype when placed in a suitable environment, the collagen gel.

  12. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.

  13. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells.

    PubMed

    Bimczok, D; Kao, J Y; Zhang, M; Cochrun, S; Mannon, P; Peter, S; Wilcox, C M; Mönkemüller, K E; Harris, P R; Grams, J M; Stahl, R D; Smith, P D; Smythies, L E

    2015-05-01

    Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.

  14. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    PubMed

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2017-03-01

    Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Stem Cells Translational Medicine 2017;6:761-766. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  15. Effects of fluoroquinolone eye solutions without preservatives on human corneal epithelial cells in vitro.

    PubMed

    Oum, Boo Sup; Kim, Na Mi; Lee, Jong Soo; Park, Young Min

    2014-01-01

    To evaluate the biologic effects of fluoroquinolone eye solutions without preservatives on cultured human corneal epithelial cells in vitro. We studied the effect of diverse generations of topical fluoroquinolones such as ofloxacin 0.3%, levofloxacin 0.5%, tosufloxacin 0.3%, moxifloxacin 0.5% and gatifloxacin 0.3% on cultured human corneal epithelial cells. MTT-based calorimetric assay, lactate dehydrogenase leakage (LDH) assay and scratch wound test were performed. Corneal epithelial cell morphologies were examined by performing inverted light microscopy and transmission electron microscopy. In all topical fluoroquinolones, the metabolic activity of the corneal epithelial cells decreased in a time-dependent fashion and the LDH titer increased with longer exposure times. Especially, the LDH titers significantly increased after exposure to moxifloxacin 0.5% and gatifloxacin 0.3% compared with controls. The migration rates of the corneal epithelial cells were faster in ofloxacin 0.3% or levofloxacin 0.5% than other fluoroquinolones. Severe cellular morphological damage was observed after exposure to moxifloxacin 0.5% and gatifloxacin 0.3%. As moxifloxacin 0.5% and gatifloxacin 0.3% induced the toxic effect to the corneal epithelial cells, compared with other fluoroquinolones, the 4th fluoroquinolone eye solutions should be carefully used in case of the corneal epithelium is damaged by long duration of treatment or overdosage. © 2014 S. Karger AG, Basel.

  16. Hormone Production by Epithelial Cells of Human Thymus in vitro.

    PubMed

    Yarilin, A. A.; Sharova, N. I.; Bulanova, E. C.; Kotchergina, N. I.; Mitin, A. N.; Kharchenko, T. Yu.; Arshinov, V. Yu.

    1996-12-01

    The conditions of hormone production by human thymic stromal cell line were studied. Human thymic stromal cells did not produce any hormones in 5-day monoculture. Co-cultivation of these cells with human thymocytes induced alpha1-thymosin and thymulin production increased to 4-5 days of co-cultivation. An increase in number of human thymic stromal cells and thymocyte elimination were observed in co-culture. The maximal stimulation of proliferation and hormone secretion by human thymic stromal cell was reached in their co-culturing with thymocytes at relative concentrations of 10(4) and 10(7) cells per ml. Thymocyte viability was important for inducing the stimulatory effect. The effect of viable cells could not be replaced by their supernatant. Stimulatory activity of CD4(-)CD8(-) and CD4(+)CD8(+) thymocytes was comparable, alpha1-thymosin and some of its synthetic fragments did not influence alpha1-thymosin synthesis or slightly inhibited it (in high concentrations). Synthetic peptide corresponding to C-terminal half of alpha1-thymosin molecule strongly enhanced production of this hormone.

  17. Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro.

    PubMed

    Botelho, Monica Catarina; Costa, Carla; Silva, Susana; Costa, Solange; Dhawan, Alok; Oliveira, Paula A; Teixeira, João P

    2014-02-01

    Manufacturing or using nanomaterials may result in exposure of workers to nanoparticles. Potential routes of exposure include skin, lung and gastrointestinal tract. The lack of health-based standards for nanomaterials combined with their increasing use in many different workplaces and products emphasize the need for a reliable temporary risk assessment tool. Therefore, the aim of this work was to explore the effects of different doses of titanium dioxide nanoparticles on human gastric epithelial cells in vitro. We analyzed proliferation by MTT assay, apoptosis by Tunel, migration by injury assay, oxidative stress by determining GSH/GSSG ratio and DNA damage by Comet assay on nanoparticle-treated AGS human gastric epithelial cell line in comparison to controls. We show and discuss the tumor-like phenotypes of nanoparticles-exposed AGS cells in vitro, as increased proliferation and decreased apoptosis. Our results demonstrate for the first time that nanoparticles induce tumor-like phenotypes in human gastric epithelial cells.

  18. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  19. The human thymus microenvironment: heterogeneity detected by monoclonal anti-epithelial cell antibodies.

    PubMed Central

    de Maagd, R A; MacKenzie, W A; Schuurman, H J; Ritter, M A; Price, K M; Broekhuizen, R; Kater, L

    1985-01-01

    Monoclonal antibodies were raised against human thymus stromal cells and their specificity for the epithelial component of thymus stroma assessed by double immunofluorescence using anti-keratin antibodies to identify epithelium. Our monoclonal antibodies identify six distinct patterns of epithelial cell antigen expression within the thymus: pan epithelial (antibody IP1); cortex (MR3 and MR6); cortical/medullary junction (IP2); subcapsule and subpopulation of medulla (MR10/MR14); Hassall's corpuscles and adjacent subpopulation of medulla (IP3); Hassall's corpuscles only (MR13/IP4). This heterogeneity of antigen expression suggests that many different epithelial microenvironments exist within the human thymus. Images Figure 1 Figure 1 Cont Figure 2 PMID:3884494

  20. Clonal analysis of morphological phenotype in cultured mammary epithelial cells from human milk.

    PubMed

    Stoker, M; Perryman, M; Eeles, R

    1982-05-22

    Three main types of colony forming epithelial cell, termed elongated, cuboidal and open, are found in cultures of human milk. Subculture of identified colonies, and cloning from single cells shows that each cell type can maintain its morphological phenotype, but in addition the cuboidal and open cell types can give rise to the elongated type. The results, which suggest a differentiation pathway starting with open cell types, are discussed in relation to differentiation studies on mammary cancer cells.

  1. A differentiated porcine bronchial epithelial cell culture model for studying human adenovirus tropism and virulence.

    PubMed

    Lam, E; Ramke, M; Groos, S; Warnecke, G; Heim, A

    2011-12-01

    The species specificity of human adenoviruses (HAdV) almost precludes studying virulence and tropism in animal models, e.g. rodent models, or derived tissue and cell culture models. However, replication of HAdV type 5 (HAdV-C5) has been shown after intravenous injection in swine. In order to study adenovirus replication in airway tissue propagation of bronchial epithelial cells from porcine lungs was established. These primary cells proved to be fully permissive for HAdV-C5 infection in submerged culture, demonstrating efficient HAdV genome replication, infectious viral particle release (1.07×10(8) TCID(50)/ml±6.63×10(7)) and development of cytopathic effect (CPE). Differentiation of porcine bronchial epithelial cells was achieved at the air-liquid interface on collagen I coated 0.4μm polyester membranes. Morphology, expression of tubulin and occludin, the development of tight-junctions and cilia were similar to human bronchial epithelial cells. Infection with HAdV-C5 from the basolateral side resulted in release of infectious virus progeny (2.05×10(7) TCID(50)/ml±2.39×10(7)) to the apical surface as described recently in human bronchial epithelial cells, although complete CPE was not observed. Differentiated porcine bronchial epithelial cells hold promise as a novel method for studying the virulence and pathophysiology of pneumonia associated HAdV types.

  2. ICAM-1-independent adhesion of neutrophils to phorbol ester-stimulated human airway epithelial cells.

    PubMed

    Celi, A; Cianchetti, S; Petruzzelli, S; Carnevali, S; Baliva, F; Giuntini, C

    1999-09-01

    Intercellular adhesion molecule-1 (ICAM-1) is the only inducible adhesion receptor for neutrophils identified in bronchial epithelial cells. We stimulated human airway epithelial cells with various agonists to evaluate whether ICAM-1-independent adhesion mechanisms could be elicited. Phorbol 12-myristate 13-acetate (PMA) stimulation of cells of the alveolar cell line A549 caused a rapid, significant increase in neutrophil adhesion from 11 +/- 3 to 49 +/- 7% (SE). A significant increase from 17 +/- 4 to 39 +/- 6% was also observed for neutrophil adhesion to PMA-stimulated human bronchial epithelial cells in primary culture. Although ICAM-1 expression was upregulated by PMA at late time points, it was not affected at 10 min when neutrophil adhesion was already clearly enhanced. Antibodies to ICAM-1 had no effect on neutrophil adhesion. In contrast, antibodies to the leukocyte integrin beta-chain CD18 totally inhibited the adhesion of neutrophils to PMA-stimulated epithelial cells. These results demonstrate that PMA stimulation of human airway epithelial cells causes an increase in neutrophil adhesion that is not dependent on ICAM-1 upregulation.

  3. Soluble extracellular Klotho decreases sensitivity to cigarette smoke induced cell death in human lung epithelial cells.

    PubMed

    Blake, David J; Reese, Caitlyn M; Garcia, Mario; Dahlmann, Elizabeth A; Dean, Alexander

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the US and is associated with an abnormal inflammatory response to cigarette smoke (CS). Exposure to CS induces oxidative stress and can result in cellular senescence in the lung. Cellular senescence can then lead to decreased proliferation of epithelial cells, the destruction of alveolar structure and pulmonary emphysema. The anti-aging gene, klotho, encodes a membrane bound protein that has been shown to be a key regulator of oxidative stress and cellular senescence. In this study the role of Klotho (KL) with regard to oxidative stress and cellular senescence was investigated in human pulmonary epithelial cells exposed to cigarette smoke. Individual clones that stably overexpress Klotho were generated through retroviral transfection and geneticin selection. Klotho overexpression was confirmed through RT-qPCR, Western blotting and ELISA. Compared to control cells, constitutive Klotho overexpression resulted in decreased sensitivity to cigarette smoke induced cell death in vitro via a reduction of reactive oxygen species and a decrease in the expression of p21. Our results suggest that increasing Klotho level in pulmonary epithelial cells may be a promising strategy to reduce cellular senescence and mitigate the risk for the development of COPD.

  4. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology.

    PubMed

    Shaharuddin, Bakiah; Ahmad, Sajjad; Md Latar, Nani; Ali, Simi; Meeson, Annette

    2016-10-14

    : Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue.

  5. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    SciTech Connect

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  6. Restoration of telomeres in human papillomavirus-immortalized human anogenital epithelial cells

    SciTech Connect

    Klingelhutz, A.J.; Barber, S.A.; Smith, P.P.

    1994-02-01

    Loss of telomeres has been hypothesized to be important in cellular senescence and may play a role in carcinogenesis. In this study, we have measured telomere length in association with the immortalization and transformation of human cervical and foreskin epithelial cells by the human papillomavirus type 16 or 18 E6 and E7 open reading frames. By using a telomeric TTAGGG repeat probe, it was shown that the telomeres of precrisis normal and E6-, E7-, and E6/E7-expressing cells gradually shortened with passaging (30 to 100 bp per population doubling). Cells that expressed both E6 and E7 went through a crisis period and gave rise to immortalized lines. In contrast to precrisis cells, E6/E7-immortalized cells generally showed an increase in telomere length as they were passaged in culture, with some later passage lines having telomeres that were similar to or longer than the earliest-passage precrisis cells examined. No consistent association could be made between telomere length and tumorigenicity of cells in nude mice. However, of the three cell lines that grew in vivo, two had long telomeres, thus arguing against the hypothesis that cancer cells favor shortened telomeres. Our results indicate that arrest of telomere shortening may be important in human papillomavirus-associated immortalization and that restoration of telomere length may be advantageous to cells with regard to their ability to proliferate. 55 refs., 7 figs., 1 tab.

  7. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  8. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    EPA Science Inventory

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  9. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  10. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  11. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  12. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses.

    PubMed

    Cho, Myung Soo; Kim, Sang Jin; Ku, Seung-Yup; Park, Jung Hyun; Lee, Haksup; Yoo, Dae Hoon; Park, Un Chul; Song, Seul Ae; Choi, Young Min; Yu, Hyeong Gon

    2012-09-01

    Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.

  13. Effect of cord blood serum on ex vivo human limbal epithelial cell culture.

    PubMed

    Chakraborty, Anindita; Dutta, Jayanta; Das, Sumantra; Datta, Himadri

    2012-12-01

    Limbal cell transplantation is an efficacious procedure for rehabilitation of visual acuity in patients with severe ocular surface disorders. Cultivation of limbal epithelial stem cell with fetal bovine serum for transplantation has been a promising treatment for reconstructing the ocular surface in severe limbal stem cell deficiency caused by Steven Johnson syndrome, chemical or thermal injury. This technique of "cell therapy" has been accepted worldwide but the cost of cultivating the cells for transplantation is high. The objective of this study was to investigate the effect of cord blood serum in place of fetal bovine serum on the growth of human limbal epithelial cell culture. Our group has experimented with human cord blood serum which was obtained free of cost from willing donors. The use of human cord blood serum in place of fetal bovine serum for ex vivo culture of limbal stem cell has helped us in reducing the cost of culture. Fresh human limbal tissues from donor cadavers were cultured on intact and denuded amniotic membrane. Cells were proliferated in vitro with cell culture media containing human cord blood serum. Reverse transcription-polymerase chain reaction and immunofluorescence cytochemistry of cultured human limbal epithelial stem cell was done for characterization of the cells.

  14. Neuropeptides released from trigeminal neurons promote the stratification of human corneal epithelial cells.

    PubMed

    Ko, Ji-Ae; Mizuno, Yukari; Ohki, Chihiro; Chikama, Tai-ichiro; Sonoda, Koh-Hei; Kiuchi, Yoshiaki

    2014-01-07

    To examine the effects of neural cells on the stratification of and junctional protein expression by corneal epithelial cells with a coculture system. PC12 cells induced to undergo neuronal differentiation or rat trigeminal nerve cells were cultured together with simian virus 40-transformed human corneal epithelial (HCE) cells on opposite sides of a collagen vitrigel membrane. Stratification of HCE cells was examined by immunofluorescence analysis with antibodies to zonula occludens-1. Expression of junctional proteins in HCE cells was assessed by RT-PCR and immunoblot analyses. The presence of neural cells (PC12 cells or trigeminal neurons) markedly promoted the stratification of HCE cells as well as increased the amounts of N-cadherin mRNA and protein in these cells. These effects of the neural cells were mimicked by conditioned medium prepared from differentiating PC12 cells or by the neuropeptides substance P and calcitonin gene-related peptide (CGRP). Furthermore, the stimulatory effects of trigeminal neurons on the stratification of and N-cadherin expression by HCE cells were inhibited by antagonists of substance P or of CGRP. These results suggest that trigeminal neurons play an important role in the differentiation of corneal epithelial cells. Neuropeptides released from these neurons may thus regulate adhesion between corneal epithelial cells and thereby contribute to the establishment and maintenance of corneal structure and function.

  15. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells.

    PubMed

    Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao

    2015-07-20

    Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.

  16. Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection.

    PubMed Central

    Lemoine, N. R.; Mayall, E. S.; Jones, T.; Sheer, D.; McDermid, S.; Kendall-Taylor, P.; Wynford-Thomas, D.

    1989-01-01

    Human primary thyroid follicular epithelial cells were transfected with a plasmid containing an origin-defective SV40 genome (SVori-) to produce several immortal cell lines. Two of the 10 cell lines analysed expressed specific features of thyroid epithelial function (iodide-trapping and thyroglobulin production). These two lines were characterised in detail and found to be growth factor-independent, capable of anchorage-independent growth at low frequency but non-tumorigenic in nude mice. These differentiated, These differentiated, partially transformed cell lines were shown to be suitable for gene transfer at high frequency using simple coprecipitation techniques. Images Figure 2 Figure 3 Figure 4 PMID:2557880

  17. Adiponectin differentially affects gene expression in human mammary epithelial and breast cancer cells.

    PubMed

    Treeck, O; Lattrich, C; Juhasz-Boess, I; Buchholz, S; Pfeiler, G; Ortmann, O

    2008-10-21

    Serum levels of adiponectin are inversely associated with breast cancer risk. In this study, its effect on growth and gene expression of MCF-7 breast cancer cells and MCF-10A human mammary epithelial cells was compared. The antiproliferative effect of adiponectin on MCF-10A cells was more pronounced and was accompanied by elevated transcript levels of caspase 1, ERbeta2, ERbeta5, TR2 and USP2. Our data suggest that upregulation of genes with known growth inhibitory or apoptotic functions in mammary epithelial cells might contribute to the protective action of this adipocytokine.

  18. Platelet-derived microparticles and soluble factors differentially regulate human endometrial epithelial cell movement.

    PubMed

    Suginami, Koh; Sato, Yukiyasu; Horie, Akihito; Matsumoto, Hisanori; Tani, Hirohiko; Mizumoto, Yasunari; Ono, Masanori; Matsuoka, Ayumi; Kyo, Satoru; Araki, Yoshihiko; Konishi, Ikuo; Fujiwara, Hiroshi

    2017-04-01

    We previously proposed that platelets promote re-epithelialization during menstruation. As cell movement is one of the important cell behaviors in the process of tissue remodeling, we examined the effects of platelets on endometrial epithelial cell invasion. The platelets were isolated from healthy women. Using a human endometrial epithelial cell-derived immortalized cell line, EM-E6/E7/hTERT cells, we examined the effects of platelets and platelet-derived condition media with or without microparticles on the morphological and invasive properties of EM-E6/E7/hTERT cells. Platelets and microparticle-containing conditioned media inhibited Matrigel invasion by EM-E6/E7/hTERT cells along with an increase in cortical ring formation, whereas microparticle-depleted conditioned media promoted their invasion without any significant changes of cortical ring formation. These results support our previous proposal and newly suggest the dual roles of platelets: platelet-derived soluble factors that promote cell movement in the distant area, and microparticles that induce re-epithelialization by endometrial epithelial cells in the proximal area. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Smooth Brucella strains invade and replicate in human lung epithelial cells without inducing cell death.

    PubMed

    Ferrero, Mariana C; Fossati, Carlos A; Baldi, Pablo C

    2009-04-01

    Inhalation is a common route for Brucella infection. We investigated whether Brucella species can invade and replicate within alveolar(A549) and bronchial (Calu-6 and 16HBE14o-) human epithelial cells. The number of adherent and intracellular bacteria was higher for rough strains (Brucella canis and Brucella abortus RB51) than for smooth strains (B. abortus 2308 and Brucella suis 1330). Only smooth strains exhibited efficient intracellular replication (1.5-3.5 log increase at 24 h p.i.). A B. abortus mutant with defective expression of the type IV secretion system did not replicate. B. abortus internalization was inhibited by specific inhibitors of microfilaments, microtubules and PI3-kinase activity. As assessed with fluorescent probes, B. abortus infection did not affect the viability of A549 and 16HBE14o- cells, but increased the percentage of injured cells (both strains) and dead cells (RB51) in Calu-6 cultures. LDH levels were increased in supernatants of Calu-6 and 16HBE14o- cells infected with B. abortus RB51, and to a lower extent in Calu-6 infected with B. abortus 2308. No apoptosis was detected by TUNEL upon infection with smooth or rough B. abortus. This study shows that smooth brucellae can infect and replicate in human respiratory epithelial cells inducing minimal or null cytotoxicity. (c) 2009 Elsevier Masson SAS. All rights reserved.

  20. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis

    PubMed Central

    Gifford, Gail B; Demitrack, Elise S; Keeley, Theresa M; Tam, Andrew; La Cunza, Nilsa; Dedhia, Priya H; Spence, Jason R; Simeone, Diane M; Saotome, Ichiko; Louvi, Angeliki; Siebel, Christian W; Samuelson, Linda C

    2016-01-01

    Objective We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate stem and epithelial cell homoeostasis in mouse and human gastric antral tissue. Design Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and cellular differentiation were measured by histological and molecular approaches. Organoids were established from mouse and human antral glands; growth and differentiation were measured after treatment with Notch inhibitors. Results Notch1 and Notch2 are the predominant Notch receptors expressed in mouse and human antral tissue and organoid cultures. Combined inhibition of Notch1 and Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with remodelling of cells to express secretory products normally associated with other regions of the GI tract, including intestine. Analysis of mouse and human organoids showed that Notch signalling through Notch1 and Notch2 is intrinsic to the epithelium and required for organoid growth. Conclusions Notch signalling is required to maintain gastric antral stem cells. Notch1 and Notch2 are the primary Notch receptors regulating epithelial cell homoeostasis in mouse and human stomach. PMID:26933171

  1. Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter.

    PubMed

    Mushtaq, Naseem; Ezzati, Majid; Hall, Lucinda; Dickson, Iain; Kirwan, Michael; Png, Ken M Y; Mudway, Ian S; Grigg, Jonathan

    2011-05-01

    Epidemiologic studies report an association between pneumonia and urban particulate matter (PM) less than 10 microns (μm) in aerodynamic diameter (PM(10)). Streptococcus pneumoniae is a common cause of bacterial pneumonia worldwide. To date, the mechanism whereby urban PM enhances vulnerability to S pneumoniae infection is unclear. Adhesion of S pneumoniae to host cells is a prerequisite for infection. Host-expressed proteins, including the receptor for platelet-activating factor (PAFR), are co-opted by S pneumoniae to adhere to lower airway epithelial cells. To define whether inhalable urban PM enhances the adhesion of S pneumoniae to airway epithelial cells. A549 cells were cultured with PM(10) from Leicester (United Kingdom [UK]) and PM(10) and PM less than 2.5 μm in aerodynamic diameter (PM(2.5)) from Accra (Ghana), then infected with S pneumoniae strain D39. Pneumococcal adhesion to human primary bronchial epithelial cells was also assessed. Bacterial adhesion was determined by quantitative culture and confocal microscopy. The role of oxidative stress was assessed by N-acetyl cysteine, and the role of PAFR was assessed by mRNA transcript level, receptor expression, and receptor blocking. PM(10) (UK) increased S pneumoniae adhesion to both A549 airway epithelial cells and human primary bronchial epithelial cells. PM(10) (Ghana) and PM(2.5) (Ghana) also increased adhesion. Culture of A549 cells by PM(10) (UK) increased PAFR mRNA transcript level and PAFR expression. PM(10) (UK)-stimulated adhesion to A549 cells was attenuated by a PAFR blocker and N-acetyl cysteine. Urban PM increases adhesion of S pneumoniae to human airway epithelial cells. PM-stimulated adhesion is mediated by oxidative stress and PAFR. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis.

    PubMed

    Malyukova, Irina; Murray, Karen F; Zhu, Chengru; Boedeker, Edgar; Kane, Anne; Patterson, Kathleen; Peterson, Jeffrey R; Donowitz, Mark; Kovbasnjuk, Olga

    2009-01-01

    Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases.

  3. Altered protein secretion of Chlamydia trachomatis in persistently infected human endocervical epithelial cells

    PubMed Central

    Wang, Jin; Frohlich, Kyla M.; Buckner, Lyndsey; Quayle, Alison J.; Luo, Miao; Feng, Xiaogeng; Beatty, Wandy; Hua, Ziyu; Rao, Xiancai; Lewis, Maria E.; Sorrells, Kelly; Santiago, Kerri; Zhong, Guangming

    2011-01-01

    Chlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival. Here we used primary human endocervical epithelial cells and HeLa cells infected with C. trachomatis to examine the secretion of bacterial proteins during productive growth and persistent growth induced by ampicillin. Specifically, we observed a decrease in secretable chlamydial protease-like activity factor (CPAF) in the cytosol of host epithelial cells exposed to ampicillin with no evident reduction of CPAF product by C. trachomatis. In contrast, the expression of CopN and Tarp was downregulated, suggesting that C. trachomatis responds to ampicillin exposure by selectively altering the expression of secretable proteins. In addition, we observed a greater accumulation of outer-membrane vesicles from C. trachomatis in persistently infected cells. Taken together, these results suggest that the regulation of both gene expression and the secretion of chlamydial virulence proteins is involved in the adaptation of the bacteria to a persistent infection state in human genital epithelial cells. PMID:21737500

  4. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo.

    PubMed

    Larios-Rodriguez, E; Rangel-Ayon, C; Castillo, S J; Zavala, G; Herrera-Urbina, R

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  5. Modeling Cystic Fibrosis Using Pluripotent Stem Cell-Derived Human Pancreatic Ductal Epithelial Cells.

    PubMed

    Simsek, Senem; Zhou, Ting; Robinson, Christopher L; Tsai, Su-Yi; Crespo, Miguel; Amin, Sadaf; Lin, Xiangyi; Hon, Jane; Evans, Todd; Chen, Shuibing

    2016-05-01

    We established an efficient strategy to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell (iPSC) line derived from patients with cystic fibrosis, to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-derived PDECs expressed functional cystic fibrosis transmembrane conductance regulator (CFTR) protein. In addition, iPSC lines were derived from a patient with CF carrying compound frameshift and mRNA splicing mutations and were differentiated to PDECs. PDECs derived from Weill Cornell cystic fibrosis (WCCF)-iPSCs showed defective expression of mature CFTR protein and impaired chloride ion channel activity, recapitulating functional defects of patients with CF at the cellular level. These studies provide a new methodology to derive pure PDECs expressing CFTR and establish a "disease in a dish" platform to identify drug candidates to rescue the pancreatic defects of patients with CF. An efficient strategy was established to direct human pluripotent stem cells, including human embryonic stem cells (hESCs) and an induced pluripotent stem cell line derived from patients with cystic fibrosis (CF-iPSCs), to differentiate into pancreatic ductal epithelial cells (PDECs). After purification, more than 98% of hESC-PDECs derived from CF-iPSCs showed defective expression of mature cystic fibrosis transmembrane conductance regulator (CFTR) protein and impaired chloride ion channel activity, recapitulating functional pancreatic defects of patients with CF at the cellular level. These studies provide a new methodology for deriving pure PDECs expressing CFTR, and they establish a "disease-in-a-dish" platform for identifying drug candidates to rescue the pancreatic defects of these patients. ©AlphaMed Press.

  6. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    PubMed

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress

    PubMed Central

    Cortes, Diego F; Sha, Wei; Hower, Valerie; Blekherman, Greg; Laubenbacher, Reinhard; Akman, Steven; Torti, Suzy V; Shulaev, Vladimir

    2011-01-01

    Oxidative stress plays a key role in breast carcinogenesis. To investigate whether normal and malignant breast epithelial cells differ in their responses to oxidative stress, we examined the global gene expression profiles of three cell types, representing cancer progression from a normal to a malignant stage, under oxidative stress. Normal human mammary epithelial cells (HMEC), an immortalized cell line (HMLER-1), and a tumorigenic cell line (HMLER-5), were exposed to increased levels of reactive oxygen species (ROS) by treatment with glucose oxidase. Functional analysis of the metabolic pathways enriched with differentially expressed genes demonstrates that normal and malignant breast epithelial cells diverge substantially in their response to oxidative stress. While normal cells exhibit the up-regulation of antioxidant mechanisms, cancer cells are unresponsive to the ROS insult. However, the gene expression response of normal HMEC cells under oxidative stress is comparable to that of the malignant cells under normal conditions, indicating that altered redox status is persistent in breast cancer cells, which makes them resistant to increased generation of ROS. This study discusses some of the possible adaptation mechanisms of breast cancer cells under persistent oxidative stress that differentiate them from the response to acute oxidative stress in normal mammary epithelial cells. PMID:21397008

  8. All-Trans Retinoic Acid Increases Aquaporin 3 Expression in Human Vaginal Epithelial Cells.

    PubMed

    Lee, Hyun-Suk; Kim, Sun-Ouck; Ahn, Kyuyoun; Park, Kwangsung

    2016-12-01

    Water channel aquaporin 3 (AQP3) is an aquaglyceroporin that transports small neutral solutes and water. All-trans retinoic acid (ATRA), a member of the retinoid drug class, acts as a regulator in several biological processes. To investigate the effect of ATRA on the expression of AQP3 in human vaginal epithelial cells. Human vaginal mucosal epithelial cells (CRL2616) were treated with ATRA 0, 0.01, 0.1, and 1 μmol/L for 24 hours to examine the dose-dependent effects of ATRA and with ATRA 1 μmol/L for 0, 3, 6, 12, and 24 hours. The expression of AQP3 and retinoic acid receptor (RAR) was determined by western blot analysis and reverse transcription polymerase chain reaction. AQP3 was detected in the cell membrane of human vaginal epithelial cells. ATRA increased the protein expression and mRNA levels of AQP3 in a dose-dependent manner (P < .05). ATRA also increased the protein expression of RARα (P < .05). Treatment of CRL2616 cells with an RAR antagonist (Ro 41-5253) significantly decreased AQP3 protein expression (P < .05). ATRA mediated by RARα increased AQP3 gene and protein expression in human vaginal mucosal epithelial cells. These results imply that AQP3 regulated by ATRA could play an important role in the mechanism of vaginal lubrication. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Vesicular uptake of macromolecules by human placental amniotic epithelial cells.

    PubMed

    Sharshiner, Rita; Brace, Robert A; Cheung, Cecilia Y

    2017-09-01

    Studies in animal models have shown that unidirectional vesicular transport of amniotic fluid across the amnion plays a primary role in regulating amniotic fluid volume. Our objective was to explore vesicle type, vesicular uptake and intracellular distribution of vesicles in human amnion cells using high- and super-resolution fluorescence microscopy. Placental amnion was obtained at cesarean section and amnion cells were prepared and cultured. At 20%-50% confluence, the cells were incubated with fluorophore conjugated macromolecules for 1-30 min at 22 °C or 37 °C. Fluorophore labeled macromolecules were selected as markers of receptor-mediated caveolar and clathrin-coated vesicular uptake as well as non-specific endocytosis. After fluorophore treatment, the cells were fixed, imaged and vesicles counted using Imaris(®) software. Vesicular uptake displayed first order saturation kinetics with half saturation times averaging 1.3 min at 37 °C compared to 4.9 min at 22 °C, with non-specific endocytotic uptake being more rapid at both temperatures. There was extensive cell-to-cell variability in uptake rate. Under super-resolution microscopy, the pattern of intracellular spatial distribution was distinct for each macromolecule. Co-localization of fluorescently labeled macromolecules was very low at vesicular dimensions. In human placental amnion cells, 1) vesicular uptake of macromolecules is rapid, consistent with the concept that vesicular transcytosis across the amnion plays a role in the regulation of amniotic fluid volume; 2) uptake is temperature dependent and variable among individual cells; 3) the unique intracellular distributions suggest distinct functions for each vesicle type; 4) non-receptor mediated vesicular uptake may be a primary vesicular uptake mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Alpha2 adrenoceptors regulate proliferation of human intestinal epithelial cells

    PubMed Central

    Schaak, S; Cussac, D; Cayla, C; Devedjian, J; Guyot, R; Paris, H; Denis, C

    2000-01-01

    BACKGROUND AND AIMS—Previous studies on rodents have suggested that catecholamines stimulate proliferation of the intestinal epithelium through activation of α2 adrenoceptors located on crypt cells. The occurrence of this effect awaits demonstration in humans and the molecular mechanisms involved have not yet been elucidated. Here, we examined the effect of α2 agonists on a clone of Caco2 cells expressing the human α2A adrenoceptor.
METHODS—Cells were transfected with a bicistronic plasmid containing the α2C10 and neomycin phosphotransferase genes. G418 resistant clones were assayed for receptor expression using radioligand binding. Receptor functionality was assessed by testing its ability to couple Gi proteins and to inhibit cAMP production. Mitogen activated protein kinase (MAPK) phosphorylation was followed by western blot, and cell proliferation was estimated by measuring protein and DNA content.
RESULTS—Permanent transfection of Caco2 cells allowed us to obtain a clone (Caco2-3B) expressing α2A adrenoceptors at a density similar to that found in normal human intestinal epithelium. Caco2-3B retained morphological features and brush border enzyme expression characteristic of enterocytic differentiation. The receptor was coupled to Gi2/Gi3 proteins and its stimulation caused marked diminution of forskolin induced cAMP production. Treatment of Caco2-3B with UK14304 (α2 agonist) induced a rapid increase in the phosphorylation state of MAPK, extracellular regulated protein kinase 1 (Erk1), and 2 (Erk2). This event was totally abolished in pertussis toxin treated cells and in the presence of kinase inhibitors (genistein or PD98059). It was unaffected by protein kinase C downregulation but correlated with a transient increase in Shc tyrosine phosphorylation. Finally, sustained exposure of Caco2-3B to UK14304 resulted in modest but significant acceleration of cell proliferation. None of these effects was observed in the parental cell line Caco2.

  11. Human beta-defensin-2 controls cell cycle in malignant epithelial cells: in vitro study.

    PubMed

    Zhuravel, E; Shestakova, T; Efanova, O; Yusefovich, Yu; Lytvin, D; Soldatkina, M; Pogrebnoy, P

    2011-09-01

    In the present research we analyze the mechanism of human beta-defensin-2 (hBD-2) influence on cultured malignant epithelial cell growth. The analysis of a concentration-dependent effect of recombinant hBD-2 (rec-hBD-2) on cell growth patterns and cell cycle distribution has been performed in vitro with 2 cell lines (human lung adenocarcinoma A549 cells and human epidermoid carcinoma A431 cells) using MTT test, flow cytometry and direct cell counting. To study intracellular localization of hBD-2 immunocytofluorescent and immunocytochemical analyses were applied, and effect of hBD-2 on signal cascades involved in cell cycle regulation has been studied by Western blotting. According to our data, rec-hBD-2 exerts a concentration-dependent effect on the viability of cultured A549 and A431 cells. It causes proproliferative effect at concentrations below 1 nM, significant suppression of cell proliferation at concentration range from 10 nM to 1 μM (p<0.05), and cell death at higher concentrations. Using flow cytometry we have demonstrated that hBD-2 dependent growth suppression is realized via cell cycle arrest at G1/S phase (p<0.05). Also, we have registered significant activation of pRB and decreased expression of Cyclin D1 in cells treated with the defensin compared to untreated control cells, while the expression of p53 remains unaffected. The study of intracellular localization of hBD-2 in these cells has revealed that exogeneously added defensin molecules enter the cells, are distributed throughout the cytoplasm and could be detected in cell nuclei. The model study using A549 cells treated with 1,25-(OH)(2)D(3) has shown similar cell growth suppression effect of native endogenously produced hBD-2. The results of our study suggest that in malignant epithelial cells hBD-2 may control cell growth via arrest of G1/S transition and activation of pRB.

  12. Comparison of methods for the isolation of human breast epithelial and myoepithelial cells

    PubMed Central

    Zubeldia-Plazaola, Arantzazu; Ametller, Elisabet; Mancino, Mario; Prats de Puig, Miquel; López-Plana, Anna; Guzman, Flavia; Vinyals, Laia; Pastor-Arroyo, Eva M.; Almendro, Vanessa; Fuster, Gemma; Gascón, Pedro

    2015-01-01

    Two lineages, epithelial, and myoepithelial cells are the main cell populations in the normal mammary gland and in breast cancer. Traditionally, cancer research has been performed using commercial cell lines, but primary cell cultures obtained from fresh breast tissue are a powerful tool to study more reliably new aspects of mammary gland biology, including normal and pathological conditions. Nevertheless, the methods described to date have some technical problems in terms of cell viability and yield, which hamper work with primary mammary cells. Therefore, there is a need to optimize technology for the proper isolation of epithelial and myoepithelial cells. For this reason, we compared four methods in an effort to improve the isolation and primary cell culture of different cell populations of human mammary epithelium. The samples were obtained from healthy tissue of patients who had undergone mammoplasty or mastectomy surgery. We based our approaches on previously described methods, and incorporated additional steps to ameliorate technical efficiency and increase cell survival. We determined cell growth and viability by phase-contrast images, growth curve analysis and cell yield, and identified cell-lineage specific markers by flow cytometry and immunofluorescence in 3D cell cultures. These techniques allowed us to better evaluate the functional capabilities of these two main mammary lineages, using CD227/K19 (epithelial cells) and CD10/K14 (myoepithelial cells) antigens. Our results show that slow digestion at low enzymatic concentration combined with the differential centrifugation technique is the method that best fits the main goal of the present study: protocol efficiency and cell survival yield. In summary, we propose some guidelines to establish primary mammary epithelial cell lines more efficiently and to provide us with a strong research instrument to better understand the role of different epithelial cell types in the origin of breast cancer. PMID

  13. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier.

    PubMed

    Kuehn, Anna; Kletting, Stephanie; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Griffiths, Gareth; Fischer, Ulrike; Meese, Eckart; Huwer, Hanno; Wirth, Dagmar; May, Tobias; Schneider-Daum, Nicole; Lehr, Claus-Michael

    2016-01-01

    This paper describes a new human alveolar epithelial cell line (hAELVi - human Alveolar Epithelial Lentivirus immortalized) with type I-like characteristics and functional tight junctions, suitable to model the air-blood barrier of the peripheral lung. Primary human alveolar epithelial cells were immortalized by a novel regimen, grown as monolayers on permeable filter supports and characterized morphologically, biochemically and biophysically. hAELVi cells maintain the capacity to form tight intercellular junctions, with high trans-epithelial electrical resistance (> 1000 Ω*cm²). The cells could be kept in culture over several days, up to passage 75, under liquid-liquid as well as air-liquid conditions. Ultrastructural analysis and real time PCR revealed type I-like cell properties, such as the presence of caveolae, expression of caveolin-1, and absence of surfactant protein C. Accounting for the barrier properties, inter-digitations sealed with tight junctions and desmosomes were also observed. Low permeability of the hydrophilic marker sodium fluorescein confirmed the suitability of hAELVi cells for in vitro transport studies across the alveolar epithelium. These results suggest that hAELVi cells reflect the essential features of the air-blood barrier, as needed for an alternative to animal testing to study absorption and toxicity of inhaled drugs, chemicals and nanomaterials.

  14. Transcription factor TCF4 maintains the properties of human corneal epithelial stem cells.

    PubMed

    Lu, Rong; Qu, Yangluowa; Ge, Jian; Zhang, Lili; Su, Zhitao; Pflugfelder, Stephen C; Li, De-Quan

    2012-04-01

    TCF4, a key transcription factor of Wnt signaling system, has been recently found to be essential for maintaining stem cells. However, its signaling pathway is not well elucidated. This study was to explore the functional roles and signaling pathway of TCF4 in maintaining adult stem cell properties using human corneal epithelial stem cells as a model. With immunofluorescent staining and real-time polymerase chain reaction, we observed that TCF4 was exclusively expressed in the basal layer of human limbal epithelium where corneal epithelial stem cells reside. TCF4 was found to be well colocalized with ABCG2 and p63, two recognized epithelial stem/progenitor cell markers. Using in vitro culture models of primary human corneal epithelial cells, we revealed that TCF4 mRNA and protein were upregulated by cells in exponential growth stage, and RNA interference by small interfering RNA-TCF4 (10-50 nM) transfection blocked TCF4 signaling and suppressed cell proliferation as measured by WST-1 assay. TCF4 silence was found to be accompanied by downregulated proliferation-associated factors p63 and survivin, as well as upregulated cyclin-dependent kinase inhibitor 1C (p57). By creating a wound healing model in vitro, we identified upregulation and activation of β-catenin/TCF4 with their protein translocation from cytoplasm to nuclei, as evaluated by reverse transcription-quantitative real-time polymerase chain reaction, immunostaining, and Western blotting. Upregulated p63/survivin and downregulated p57 were further identified to be TCF4 downstream molecules that promote cell migration and proliferation in wound healing process. These findings demonstrate that transcription factor TCF4 plays an important role in determining or maintaining the phenotype and functional properties of human corneal epithelial stem cells. Copyright © 2012 AlphaMed Press.

  15. Influence of sex on gene expression in human corneal epithelial cells

    PubMed Central

    Suzuki, Tomo; Richards, Stephen M.; Liu, Shaohui; Jensen, Roderick V.

    2009-01-01

    Purpose Sex-associated differences have been identified in the anatomy, physiology and pathophysiology of the human cornea. We hypothesize that many of these differences are due to fundamental variations in gene expression. Our objective in this study was to determine whether such differences exist in human corneal epithelial cells both in vivo and in vitro. Methods Human corneal epithelial cells were isolated from the corneoscleral rims of male and female donors. Cells were processed either directly for RNA extraction, or first cultured in phenol red-free keratinocyte serum-free media. The RNA samples were examined for differentially expressed mRNAs by using of CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with GeneSifter.Net software. Results Our results demonstrate that sex significantly influences the expression of over 600 genes in human corneal epithelial cells in vivo. These genes are involved in a broad spectrum of biologic processes, molecular functions and cellular components, such as metabolic processes, DNA replication, cell migration, RNA binding, oxidoreductase activity and nucleoli. We also identified significant, sex-related effects on gene expression in human corneal epithelial cells in vitro. However, with few exceptions (e.g., X- and Y-linked genes), these sex-related differences in gene expression in vitro were typically different than those in vivo. Conclusions Our findings support our hypothesis that sex-related differences exist in the gene expression of human corneal epithelial cells. Variations in gene expression may contribute to sex-related differences in the prevalence of certain corneal diseases. PMID:20011627

  16. Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40.

    PubMed Central

    Gruenert, D C; Basbaum, C B; Welsh, M J; Li, M; Finkbeiner, W E; Nadel, J A

    1988-01-01

    To facilitate understanding of the mechanisms underlying pulmonary diseases, including lung cancer and cystic fibrosis, we have transformed and characterized cultures of human tracheal epithelial cells. Cells were transfected by calcium phosphate precipitation with a plasmid containing a replication-defective simian virus 40 (SV40) genome. Colonies of cells with enhanced growth potential were isolated and analyzed for transformation- and epithelial-specific characteristics. Precrisis cells were observed to express the SV40 large tumor antigen, produce cytokeratins, have microvilli, and form tight junctions. After crisis, cells continued to express the SV40 large tumor antigen as well as epithelial-specific cytokeratins and to display the apical membrane microvilli. Apical membrane Cl channels were opened in postcrisis cells exposed to 50 microM forskolin. These channels showed electrical properties similar to those observed in primary cultures. The postcrisis cells have been in culture for greater than 250 generations and are potentially "immortal." In addition to providing a useful in vitro model for the study of ion transport by human airway epithelial cells, the cells can be used to examine stages of neoplastic progression. Images PMID:2457904

  17. Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation.

    PubMed

    Kao, Hui-Fang; Chang-Chien, Pei-Wen; Chang, Wen-Tsan; Yeh, Trai-Ming; Wang, Jiu-Yao

    2013-03-01

    Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  19. Aquaporin expression and function in human pluripotent stem cell-derived retinal pigmented epithelial cells.

    PubMed

    Juuti-Uusitalo, Kati; Delporte, Christine; Grégoire, Francoise; Perret, Jason; Huhtala, Heini; Savolainen, Virpi; Nymark, Soile; Hyttinen, Jari; Uusitalo, Hannu; Willermain, Francois; Skottman, Heli

    2013-05-01

    Aquaporins (AQPs), a family of transmembrane water channel proteins, are essential for allowing passive water transport through retinal pigmented epithelial (RPE) cells. Even though human native RPE cells and immortalized human RPEs have been shown to express AQPs, the expression of AQPs during the differentiation in stem cell-derived RPE remains to be elucidated. In human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs)-derived RPE cells, the expression of several AQPs was determined by quantitative real-time PCR and the localization of AQP1 was assessed with confocal microscopy. The functionality of AQP water channels was determined by cell volume assay in hESC-derived RPE cells. AQP1, AQP3, AQP4, AQP5, AQP6, AQP7, AQP10, AQP11, and AQP12 were expressed in hESC- and hiPSC-derived RPE cells. Furthermore, the expression of AQP1 and AQP11 genes were significantly upregulated during the maturation of both hESC and iPSC into RPE. Confocal microscopy shows the expression of AQP1 at the apical plasma membrane of polarized cobblestone hESC- and hiPSC-derived RPE cells. Lastly, aquaporin inhibitors significantly reduced AQP functionality in hESC-RPE cells. hESC-RPE and hiPSC-RPE cells express several AQP genes, which are functional in mature hESC-derived RPE cells. The localization of AQP1 on the apical plasma membrane in mature RPE cells derived from both hESC and hiPSC suggests its functionality. These data propose that hESC- and hiPSC-derived RPE cells, grown and differentiated under serum-free conditions, resemble their native counterpart in the human eye.

  20. Matrigel-induced tubular morphogenesis of human eccrine sweat gland epithelial cells.

    PubMed

    Lei, Xia; Liu, Bo; Wu, Jinjin; Lu, Yuangang; Yang, Yadong

    2011-09-01

    Human eccrine sweat glands are tubule-structured glands of the skin that are vital in thermoregulation, secretion, and excretion of water and electrolytes. A study of tubular morphogenesis in vitro would facilitate the development of a tissue engineering model for eccrine sweat glands and other tubule-structured glands. Matrigel, a basement membrane matrix, has been shown to promote differentiation and morphogenesis of many different cell types, including tubular cells. This study investigated the growth, differentiation, and tubular morphogenesis of human eccrine sweat gland epithelial cells cultured in Matrigel. Human eccrine gland epithelial cells were isolated and cultured in vitro. The cell growth in Matrigel was evidenced by the formation of cell clusters, which were observed under an inverted microscope. The internal structure of the cell clusters was further investigated by hematoxylin-eosin (HE) staining and confocal laser scanning microscopy (CLSM) of propidium iodide-stained nuclei. The results demonstrated that although on a plastic surface or in a collagen gel the cells could not form tubular structures, they formed tubular structures when cultured in Matrigel. Consequently, we conclude that Matrigel can promote tubular morphogenesis of human eccrine sweat gland epithelial cells.

  1. LPS may enhance expression and release of HMGB1 in human nasal epithelial cells in vitro.

    PubMed

    Chen, D; Bellussi, L M; Passali, D; Chen, L

    2013-12-01

    Chronic rhinosinusitis with nasal polyps is a common disease with still unclear pathophysiologic mechanisms. The airway epithelial barrier has been shown to be involved in different chronic disorders, including rhinitis, nasal polyposis and asthma. High mobility group box 1 (HMGB1), a primarily nuclear protein, is involved in the induction of airway inflammation in patients with chronic rhinosinusitis, allergy, asthma and COPD. Pathogen-derived lipopolysaccharide is widely used as a trigger for inflammation. However, the molecular dialogue between LPS and HMGB1 in the delayed inflammatory processes remains to be explored, and the regulation of HMGB1 release through LPS from epithelial cells has not been extensively studied in patients with chronic rhinosinusitis and nasal polyps. The objective of the present study was to investigate the relocation of HMGB1 in LPS-induced human nasal epithelial cells in vitro. We obtained epithelial cells of nasal polyps from 10 patients requiring surgery for sinusitis at the ENT Department of the Chinese PLA General Hospital. The primary cultured human nasal epithelial (HNE) cells were stimulated with LPS. The expression and translocation of HMGB1 in intracellular and culture supernatants were determined using Western blot and immunofluorescence assay. HMGB1 protein was released in a time-dependent fashion in culture supernatants: in fact, expression of HMGB1 protein in HNE cells showed no significant changes at 0-24 h after exposure to 100 μg/ml LPS, but increased significantly at 48 and 72 hr. Immunofluorescence analysis revealed the transfer of HMGB1 from nuclei to cytoplasm in response to LPS exposure after 24 hr. These data reveal a hitherto unrecognized association between HMGB1 and LPS in human nasal epithelial cells. LPS can affect HMGB1 translocation and release, suggesting the involvement of HMGB1, through inflammatory mediators, in chronic rhinosinusitis with nasal polyps.

  2. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    PubMed Central

    Youn, Hyun-Yi; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope. Results The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation. Conclusions The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the

  3. Hypoxic Conditions Induce a Cancer-Like Phenotype in Human Breast Epithelial Cells

    PubMed Central

    Vaapil, Marica; Helczynska, Karolina; Villadsen, René; Petersen, Ole W.; Johansson, Elisabet; Beckman, Siv; Larsson, Christer; Påhlman, Sven; Jögi, Annika

    2012-01-01

    Introduction Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and potentially have bearing on early stages of tumorigenesis. Methods Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot. Results In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1α levels and multiple cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix. Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with mammary epithelial polarization e.g. α6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia. We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures. Acinar morphogenesis was associated with

  4. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins.

    PubMed

    Ramirez, Ruben D; Sheridan, Shelley; Girard, Luc; Sato, Mitsuo; Kim, Young; Pollack, Jon; Peyton, Michael; Zou, Ying; Kurie, Jonathan M; Dimaio, J Michael; Milchgrub, Sara; Smith, Alice L; Souza, Rhonda F; Gilbey, Laura; Zhang, Xi; Gandia, Kenia; Vaughan, Melville B; Wright, Woodring E; Gazdar, Adi F; Shay, Jerry W; Minna, John D

    2004-12-15

    By expressing two genes (hTERT and Cdk4), we have developed a method to reproducibly generate continuously replicating human bronchial epithelial cell (HBEC) lines that provide a novel resource to study the molecular pathogenesis of lung cancer and the differentiation of bronchial epithelial cells. Twelve human bronchial epithelial biopsy specimens obtained from persons with and without lung cancer were placed into short-term culture and serially transfected with retroviral constructs containing cyclin-dependent kinase (Cdk) 4 and human telomerase reverse transcriptase (hTERT), resulting in continuously growing cultures. The order of introduction of Cdk4 and hTERT did not appear to be important; however, transfection of either gene alone did not result in immortalization. Although they could be cloned, the immortalized bronchial cells did not form colonies in soft agar or tumors in nude mice. The immortalized HBECs have epithelial morphology; express epithelial markers cytokeratins 7, 14, 17, and 19, the stem cell marker p63, and high levels of p16(INK4a); and have an intact p53 checkpoint pathway. Cytogenetic analysis and array comparative genomic hybridization profiling show immortalized HBECs to have duplication of parts of chromosomes 5 and 20. Microarray gene expression profiling demonstrates that the Cdk4/hTERT-immortalized bronchial cell lines clustered together and with nonimmortalized bronchial cells, distinct from lung cancer cell lines. We also immortalized several parental cultures with viral oncoproteins human papilloma virus type 16 E6/E7 with and without hTERT, and these cells exhibited loss of the p53 checkpoint and significantly different gene expression profiles compared with Cdk4/hTERT-immortalized HBECs. These HBEC lines are a valuable new tool for studying of the pathogenesis of lung cancer.

  5. Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype.

    PubMed

    Benbrahim-Tallaa, Lamia; Tokar, Erik J; Diwan, Bhalchandra A; Dill, Anna L; Coppin, Jean-François; Waalkes, Michael P

    2009-12-01

    Breast cancer has recently been linked to cadmium exposure. Although not uniformly supported, it is hypothesized that cadmium acts as a metalloestrogenic carcinogen via the estrogen receptor (ER). Thus, we studied the effects of chronic exposure to cadmium on the normal human breast epithelial cell line MCF-10A, which is ER-negative but can convert to ER-positive during malignant transformation. Cells were continuously exposed to low-level cadmium (2.5 muM) and checked in vitro and by xenograft study for signs of malignant transformation. Transformant cells were molecularly characterized by protein and transcript analysis of key genes in breast cancer. Over 40 weeks of cadmium exposure, cells showed increasing secretion of matrix metalloproteinase-9, loss of contact inhibition, increased colony formation, and increasing invasion, all typical for cancer cells. Inoculation of cadmium-treated cells into mice produced invasive, metastatic anaplastic carcinoma with myoepithelial components. These cadmium-transformed breast epithelial (CTBE) cells displayed characteristics of basal-like breast carcinoma, including ER-alpha negativity and HER2 (human epidermal growth factor receptor 2) negativity, reduced expression of BRCA1 (breast cancer susceptibility gene 1), and increased CK5 (cytokeratin 5) and p63 expression. CK5 and p63, both breast stem cell markers, were prominently overexpressed in CTBE cell mounds, indicative of persistent proliferation. CTBE cells showed global DNA hypomethylation and c-myc and k-ras overexpression, typical in aggressive breast cancers. CTBE cell xenograft tumors were also ER-alpha negative. Cadmium malignantly transforms normal human breast epithelial cells-through a mechanism not requiring ER-alpha-into a basal-like cancer phenotype. Direct cadmium induction of a malignant phenotype in human breast epithelial cells strongly fortifies a potential role in breast cancer.

  6. [Subcellular distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells].

    PubMed

    Zhao, Guangqiang; Huang, Yunchao; Li, Guangjian; Li, Sen; Zhou, Yongchun; Lei, Yujie; Chen, Xiaobo; Yang, Kaiyun; Chen, Ying; Yang, Kun

    2013-03-01

    Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B). The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM). DNA damage was detected by single-cell gel electrophoresis (comet assay). TEM revealed that SiO₂ nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05). The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

  7. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells.

    PubMed

    Kolesnikova, Larissa; Heck, Sonja; Matrosovich, Tatyana; Klenk, Hans-Dieter; Becker, Stephan; Matrosovich, Mikhail

    2013-05-01

    The epithelium of conducting airways represents the main target for influenza virus in mammals. However, the peculiarities of virus interactions with differentiated airway epithelial cells remain largely unknown. Here, influenza virus budding was studied in differentiated cultures of human tracheobronchial epithelial cells using transmission electron microscopy. Budding of spherical and filamentous virions was observed on the apical surfaces of cells with no association with cilia and secretory granules. Quantitative analysis of the distribution of viral buds on the cell surface indicated that the tips of the microvilli represented a prominent site of influenza virus budding in the human airway epithelium. As the microvilli of differentiated cells are involved in many fundamental cell functions, these data will prompt further studies on the biological significance of microvilli-associated budding for virus replication, transmission and pathogenicity.

  8. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  9. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  10. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  11. SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    SIGNALING MECHANISMS IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES
    Y.M. Kim, A.G. Lenz, R. Silbajoris, I. Jaspers and J.M. Samet. Department of Environmental Sciences and Engineering and Center for Environmental Medicine, University of North Carolina, ...

  12. ASBESTOS-INDUCED ACTIVATION OF SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Title: Asbestos-Induced Activation of Signaling Pathways in Human
    Bronchial Epithelial Cells

    X. Wang, MD 1, J. M. Samet, PhD 2 and A. J. Ghio, MD 2. 1 Center for
    Environmental Medicine, Asthma and Lung Biology, University of North
    Carolina, Chapel Hill, NC, Uni...

  13. DIFFERENTIAL ACTIVATION OF AP-1 IN HUMAN BLADDER EPITHELIAL CELLS BY INORGANIC AND METHYLATED ARSENICALS

    EPA Science Inventory

    Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals

    Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo

    ABSTRACT

    Epidemiological studies have linked chronic ingestion of drinking water contai...

  14. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  15. DIFFERENTIAL ACTIVATION OF AP-1 IN HUMAN BLADDER EPITHELIAL CELLS BY INORGANIC AND METHYLATED ARSENICALS

    EPA Science Inventory

    Differential Activation of AP-1 in Human Bladder Epithelial Cells by Inorganic and Methylated Arsenicals

    Zuzana Drobna, Ilona Jaspers, David J. Thomas, and Miroslav Styblo

    ABSTRACT

    Epidemiological studies have linked chronic ingestion of drinking water contai...

  16. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  17. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO METALS

    EPA Science Inventory

    We have previously shown that exposure to combustion-derived metals rapidly (within 20 min) activated mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK), in the human bronchial epithelial cell line BEAS. To study the mechanisms respons...

  18. THE EFFECT OF SIZE FRACTIONED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO

    EPA Science Inventory

    THE EFFECT OF SIZE FRACTIONATED PARTICULATE MATTER ON HUMAN AIRWAY EPITHELIAL CELLS IN VITRO. LA Dailey1, C Sioutas2, JM Soukup1, S Becker1, RB Devlin1. 1National Health & Environmental Effects Research Laboratory, USEPA, RTP, NC,USA; 2USC, Civil & Environmental Engineering, LA, ...

  19. Effect of Lunar Dust Simulant on Human Epithelial Cell Lines

    NASA Technical Reports Server (NTRS)

    Myers, Nicholas J.; Wallace, William T.; Jeevarajan, Antony S.

    2009-01-01

    The purpose of this project is to assess the potential toxicity of lunar dust to cause the release of pro-inflammatory cytokines by human lung cells. Some of this dust is on the scale of 1-2 micrometers and could enter the lungs when astronauts track dust into the habitat and inhale it. This could be a serious problem as NASA plans on going back to the moon for an extended period of time. Literature shows that quartz, which has a known cytoxicity, can cause acute cases of silicosis within 6 months, and in most cases cause silicosis after 3 years. The activation of lunar dust through impacts creates surface based radicals which, upon contact with water create hydroxl radicals and peroxyl radicals which are very reactive and potentially might even be as cytotoxic as quartz. These radicals could then react with lung cells to produce pro-inflammatory mediators such as interleukin-6 and interleukin-8, and TNF-alpha.

  20. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    PubMed

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  1. Cadmium Regulates the Expression of the CFTR Chloride Channel in Human Airway Epithelial Cells

    PubMed Central

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N.; Davis, Ian C.; Knoell, Daren L.; Parinandi, Narasimham L.; Cormet-Boyaka, Estelle

    2010-01-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function. PMID:20363832

  2. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    PubMed

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  3. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells

    PubMed Central

    Martin, Linda D.; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A.

    2010-01-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  4. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells.

    PubMed

    Iliev, I D; Spadoni, I; Mileti, E; Matteoli, G; Sonzogni, A; Sampietro, G M; Foschi, D; Caprioli, F; Viale, G; Rescigno, M

    2009-11-01

    In mice, a subpopulation of gut dendritic cells (DCs) expressing CD103 drives the development of regulatory T (T(reg)) cells. Further, it was recently described that the cross-talk between human intestinal epithelial cells (IECs) and DCs helps in maintaining gut immune homeostasis via the induction of non-inflammatory DCs. In this study, an analysis was carried out to determine whether IECs could promote the differentiation of CD103+ tolerogenic DCs, and the function of primary CD103+ DCs isolated from human mesenteric lymph nodes (MLNs) was evaluated. Monocyte-derived DCs (MoDCs) and circulating CD1c+ DCs were conditioned or not with supernatants from Caco-2 cells or IECs isolated from healthy donors or donors with Crohn's disease and analysed for their ability to induce T(reg) cell differentiation. In some cases, transforming growth factor beta (TGFbeta), retinoic acid (RA) or thymic stromal lymphopoietin (TSLP) were neutralised before conditioning. CD103+ and CD103- DCs were sorted by fluorescence-activated cell sorting (FACS) from MLNs and used in T(reg) cell differentiation experiments. It was found that human IECs promoted the differentiation of tolerogenic DCs able to drive the development of adaptive Foxp3+ T(reg) cells. This control was lost in patients with Crohn's disease and paralleled a reduced expression of tolerogenic factors by primary IECs. MoDCs differentiated with RA or IEC supernatant upregulated the expression of CD103. Consistently, human primary CD103+ DCs isolated from MLNs were endowed with the ability to drive T(reg) cell differentiation. This subset of DCs expressed CCR7 and probably represents a lamina propria-derived migratory population. A population of tolerogenic CD103+ DCs was identified in the human gut that probably differentiate in response to IEC-derived factors and drive T(reg) cell development.

  5. Evidence for the multistep nature of in vitro human epithelial cell carcinogenesis

    SciTech Connect

    Rhim, J.S.; Yoo, J.H.; Park, J.H.; Thraves, P.; Salehi, Z.; Dritschilo, A. )

    1990-09-01

    In keeping with the multistep development of human cancer in vivo, a stepwise approach to neoplastic transformation in vitro presents a reasonable strategy. We have recently developed an in vitro multistep model suitable for the study of human epithelial cell carcinogenesis. Upon infection with the adenovirus 12-simian virus 40 hybrid virus, primary human epidermal keratinocytes acquired an indefinite life span in culture but did not undergo malignant conversion. Subsequent addition of Kirsten murine sarcoma virus and human ras oncogene or chemical carcinogens (N-methyl-N{prime}-nitro-N-nitrosoguanidine or 4-nitroquinoline 1-oxide) to these cells induced morphological alterations and the acquisition of neoplastic properties. Subsequently it was found that this line could be transformed neoplastically by a variety of retrovirus-containing H-ras, bas, fes, fms, erbB, and src oncogenes. In addition, we found that the immortalized human epidermal keratinocyte (RHEK-1) line can be transformed neoplastically by exposure to ionizing radiation. Thus, this in vitro system may be useful in studying the interaction of a variety of carcinogenic agents and human epithelial cells. These findings demonstrate the malignant transformation of human primary epithelial cells in culture by the combined action of viruses, oncogenes, chemical carcinogens, or X-ray irradiation and support a multistep process for neoplastic conversion.

  6. Human endometrial mesenchymal stem cells exhibit intrinsic anti-tumor properties on human epithelial ovarian cancer cells

    PubMed Central

    Bu, Shixia; Wang, Qian; Zhang, Qiuwan; Sun, Junyan; He, Biwei; Xiang, Charlie; Liu, Zhiwei; Lai, Dongmei

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most lethal tumor of all gynecologic tumors. There is no curative therapy for EOC thus far. The tumor-homing ability of adult mesenchymal stem cells (MSCs) provide the promising potential to use them as vehicles to transport therapeutic agents to the site of tumor. Meanwhile, studies have showed the intrinsic anti-tumor properties of MSCs against various kinds of cancer, including epithelial ovarian cancer. Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a novel source for adult MSCs and exert restorative function in some diseases. Whether EnSCs endow innate anti-tumor properties on EOC cells has never been reported. By using tumor-bearing animal model and ex vivo experiments, we found that EnSCs attenuated tumor growth by inducing cell cycle arrest, promoting apoptosis, disturbing mitochondria membrane potential and decreasing pro-angiogenic ability in EOC cells in vitro and/or in vivo. Furthermore, EnSCs decreased AKT phosphorylation and promoted nuclear translocation of Forkhead box O-3a (FoxO3a) in EOC cells. Collectively, our findings elucidated the potential intrinsic anti-tumor properties of EnSCs on EOC cells in vivo and in vitro. This research provides a potential strategy for EnSC-based anti-cancer therapy against epithelial ovarian cancer. PMID:27845405

  7. A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells.

    PubMed Central

    Cunningham, A C; Zhang, J G; Moy, J V; Ali, S; Kirby, J A

    1997-01-01

    Human lung alveolar epithelial cells constitutively express class II major histocompatibility complex (MHC). Human lung microvascular endothelial and small airway epithelial cells can be induced to express class II MHC by stimulation with the pro-inflammatory cytokine interferon-gamma. The levels of class II MHC on lung epithelial and endothelial cells were comparable to those seen on an Epstein-Barr virus (EBV)-transformed B-cell line. However, the costimulatory molecules B7-1 and B7-2 were not expressed. The ability of the class II MHC expressing human lung parenchymal cells to present alloantigen to CD4+ T lymphocytes was investigated. Freshly isolated human alveolar epithelial cells (type II pneumocytes) and monolayers of interferon-gamma-stimulated small airway epithelial and lung microvascular endothelial cells were co-cultured with allogeneic CD4+ T lymphocytes and proliferation determined by [3H]thymidine incorporation. A clear difference was observed between effects of the epithelial and endothelial cells on CD4+ T-lymphocyte activation. Alveolar and small airway epithelial cells failed to stimulate the proliferation of allogeneic CD4+ T lymphocytes whereas lung microvascular endothelial cells did stimulate proliferation. This difference could not be explained by the levels of class II MHC or the lack of B7-1 and B7-2 solely. Microvascular endothelial cells, and not alveolar or small airway epithelial cells, possess B7-independent costimulatory pathways. PMID:9301537

  8. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  9. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.

    PubMed

    Andarawewa, Kumari L; Erickson, Anna C; Chou, William S; Costes, Sylvain V; Gascard, Philippe; Mott, Joni D; Bissell, Mina J; Barcellos-Hoff, Mary Helen

    2007-09-15

    Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 S1, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGFbeta (0.4 ng/mL) or double treated. All double-treated (IR + TGFbeta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, although IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogen-activated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  10. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells.

    PubMed

    Bersaas, Audun; Arnoldussen, Yke Jildouw; Sjøberg, Mari; Haugen, Aage; Mollerup, Steen

    2016-09-01

    Lung cancer is largely an environmentally caused disease with poor prognosis. An in vitro transformation model of human bronchial epithelial cells (HBEC) was used to study long-term effects of tobacco smoke carcinogens on epithelial-mesenchymal transition (EMT) and the forkhead box transcription factors FOXA1 and FOXA2. CDK4 and hTERT immortalized HBEC2 and HBEC12 cell lines were exposed weekly to either cigarette smoke condensate (CSC), benzo[a]pyrene, or methylnitrosourea. Transformed cell lines were established from soft-agar colonies after 12weeks of exposure. HBEC12 was transformed by all exposures while HBEC2 was only transformed by CSC. Untransformed HBEC2 showed little invasive capacity, whereas transformed cell lines completely closed the gap in a matrigel scratch wound assay. CDH1 was down-regulated in all of the transformed cell lines. In contrast, CDH2 was up-regulated in both HBEC2 and one of the HBEC12 transformed cell lines. Furthermore, transformed cells showed activation of EMT markers including SNAI1, ZEB1, VIM, and MMP2. All transformed cell lines had significant down-regulation of FOXA1 and FOXA2, indicating a possible role in cell transformation and EMT. ChIP analysis showed increased binding of Histone-H3 and macroH2A in FOXA1 and FOXA2 in the transformed HBEC2 cell lines, indicating a compact chromatin. In conclusion, long-term carcinogen exposure lead to down-regulation of FOXA1 and FOXA2 concomitantly with the occurrence of EMT and in vitro transformation in HBEC cells. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells.

    PubMed

    Kim, Seok-Jo; Chung, Tae-Wook; Choi, Hee-Jung; Kwak, Choong-Hwan; Song, Kwon-Ho; Suh, Seok-Jong; Kwon, Kyung-Min; Chang, Young-Chae; Park, Young-Guk; Chang, Hyeun Wook; Kim, Kyoung-Sook; Kim, Cheorl-Ho; Lee, Young-Choon

    2013-01-01

    TGF-β (transforming growth factor-β)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-β-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-β1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-β1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-β1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-β. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-β1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFβRs (TGF-β receptors) in TGF-β1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-β1 regulates EMT by potential interaction with TGFβRs.

  12. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells.

    PubMed

    Zou, Weifeng; Zou, Yimin; Zhao, Zhuxiang; Li, Bing; Ran, Pixin

    2013-02-15

    Epithelial-mesenchymal transition (EMT) has been proposed to be a mechanism in airway remodeling, which is a characteristic of chronic obstructive pulmonary disease (COPD). Studies have shown that cigarette smoke and nicotine are factors that induce Wnt/β-catenin activation, which is a pathway that has also been implicated in EMT. The main aim of this study was to test whether human bronchial epithelial cells are able to undergo EMT in vitro following nicotine stimulation via the Wnt3a/β-catenin signaling pathway. We show that nicotine activates the Wnt3a signal pathway, which leads to the translocation of β-catenin into the nucleus and activation of β-catenin/Tcf-dependent transcription in the human bronchial epithelial cell (HBEC) line. This accumulation was accompanied by an increase in smooth muscle actin, vimentin, matrix metalloproteinases-9, and type I collagen expression as well as downregulation of E-cadherin, which are typical characteristics of EMT. We also noted that the release of TGF-β(1) from these cells was stimulated by nicotine. Knockdown of Wnt3a with small interfering RNA (siRNA) prevented these effects, implying that β-catenin activation in these responses is Wnt3a dependent. Furthermore, specific knockdown of TGF-β(1) with TGF-β(1) siRNA partially prevented nicotine-induced EMT, suggesting that TGF-β(1) has a role in nicotine-mediated EMT in HBECs. These results suggest that HBECs are able to undergo EMT in vitro upon nicotine stimulation via the Wnt3a/β-catenin signaling pathway.

  13. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    PubMed

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation.

  14. Geldanamycin increases 4-hydroxynonenal (HNE)-induced cell death in human retinal pigment epithelial cells.

    PubMed

    Kaarniranta, Kai; Ryhänen, Tuomas; Karjalainen, Hannu M; Lammi, Mikko J; Suuronen, Tiina; Huhtala, Anne; Kontkanen, Matti; Teräsvirta, Markku; Uusitalo, Hannu; Salminen, Antero

    Development of age-related macular degeneration (AMD) is associated with functional abnormalities and cell death in retinal pigment epithelial (RPE) cells attributable to oxidative stress. To minimize the adverse effects of oxidative stress, cells activate their defence systems, e.g., via increased expression of heat shock protein (Hsp), activation of stress sensitive AP-1 and NF-kappaB transcription factors. In this study, we examined the accumulation of Hsp70 protein, activation of AP-1 and NF-kappaB transcription factors in human ARPE-19 cells subjected to a 4-hydroxynonenal (HNE)-induced oxidative stress. In addition, the influence of Hsp90 inhibitor geldanamycin (GA) was studied in HNE-treated cells. Mitochondrial metabolic activity and apoptosis were determined to evaluate cell death in the ARPE-19 cells. The ARPE-19 cells showed increased accumulation of Hsp70 protein before of the cytotoxic hallmarks appearing in response to HNE. In contrast, increased DNA-binding activities of AP-1 or NF-kappaB transcription factors were not seen under HNE insults. Interestingly, GA significantly increased cell death in the HNE-treated cells, which was involved in caspase-3 independent apoptosis. This study reveals that the Hsps have an important role in the cytoprotection of RPE cells subjected to HNE-derived oxidative stress.

  15. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  16. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  17. Human oral mucosal epithelial cell sheets imaging with high-resolution phase-diversity homodyne OCT

    NASA Astrophysics Data System (ADS)

    Senda, Naoko; Osawa, Kentaro

    2015-03-01

    There is a need for development of non-invasive technique to evaluate regenerative tissues such as cell sheets for transplantation. We demonstrated non-invasive imaging inside living cell sheets of human oral mucosal epithelial cells by phase-diversity homodyne optical coherence tomography (OCT). The new method OCT developed in Hitachi enables cell imaging because of high resolution (axial resolution; ~2.6 μm, lateral resolution; ~1 μm, in the air). Nuclei inside cell sheets were imaged with sufficient spatial resolution to identify each cell. It suggested that the new method OCT could be useful for non-invasive cell sheet evaluation test.

  18. Cigarette smoke extract reduces VEGF in primary human airway epithelial cells.

    PubMed

    Thaikoottathil, J V; Martin, R J; Zdunek, J; Weinberger, A; Rino, J G; Chu, H W

    2009-04-01

    Reduced vascular endothelial growth factor (VEGF) has been reported in bronchoalveolar lavage fluid and lungs of severe emphysema patients. Airway epithelial cells (AEC) are exposed to various environmental insults like cigarette smoke and bacterial infections, but their direct effect on VEGF production in well-differentiated primary human AEC remains unclear. The current authors determined the effect of cigarette smoke extract (CSE) alone and in combination with Mycoplasma pneumoniae (Mp) on VEGF production in well-differentiated primary normal human bronchial epithelial (NHBE) and small airway epithelial cells (SAEC) in air-liquid interface cultures. Secretion and expression of VEGF were determined by ELISA and real-time RT-PCR, respectively. Cell growth, apoptosis, extracellular signal-regulated kinase (ERK)1/2 and protein kinase (PK)C signalling pathways were evaluated to further dissect VEGF regulation under CSE treatment. CSE significantly reduced VEGF secretion in NHBE and SAEC. In SAEC, Mp alone significantly increased the VEGF, while the presence of CSE attenuated Mp-induced VEGF production. While ERK inhibitor reduced VEGF secretion only in NHBE, a PKC inhibitor significantly decreased VEGF secretion in both NHBE and SAEC. In conclusion, direct cigarette smoke extract exposure significantly reduced vascular endothelial growth factor production in well-differentiated primary human airway epithelial cells, in part through modifying extracellular signal-regulated kinase 1/2 and protein kinase C signalling pathways.

  19. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    PubMed Central

    Hashemi, Elham; Sadeghi, Yousef; Aliaghaei, Abbas; Seddighi, Afsoun; Piryaei, Abbas; Broujeni, Mehdi Eskandarian; Shaerzadeh, Fatemeh; Amini, Abdollah; Pouriran, Ramin

    2017-01-01

    As the key producer of cerebrospinal fluid (CSF), the choroid plexus (CP) provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2), as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP) in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic) led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions. PMID:28250752

  20. TIMP-1 via TWIST1 Induces EMT Phenotypes in Human Breast Epithelial Cells

    PubMed Central

    D’Angelo, Rosemarie Chirco; Liu, Xu-Wen; Najy, Abdo J.; Jung, Young Suk; Won, Joshua; Chai, Karl X.; Fridman, Rafael; Kim, Hyeong-Reh Choi

    2014-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1 overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1 mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the MMP-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function. PMID:24895412

  1. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells

    PubMed Central

    Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P.; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium. PMID:26146837

  2. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    PubMed

    Maggiorani, Damien; Dissard, Romain; Belloy, Marcy; Saulnier-Blache, Jean-Sébastien; Casemayou, Audrey; Ducasse, Laure; Grès, Sandra; Bellière, Julie; Caubet, Cécile; Bascands, Jean-Loup; Schanstra, Joost P; Buffin-Meyer, Bénédicte

    2015-01-01

    Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2) were subjected to FSS (0.5 Pa) for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1), Par polarity complex (Pard6), adherens junctions (E-Cadherin, β-Catenin) and the primary cilium (α-acetylated Tubulin) were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months) mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  3. Short-term primary culture of epithelial cells derived from human breast tumours.

    PubMed Central

    Speirs, V.; Green, A. R.; Walton, D. S.; Kerin, M. J.; Fox, J. N.; Carleton, P. J.; Desai, S. B.; Atkin, S. L.

    1998-01-01

    As experimental models for breast cancer, most studies rely on established human breast cancer cell lines. However, many of these lines were established over 20 years ago, many from pleural effusions rather than the primary tumour, so the validity of using them as representative models is questionable. This paper describes our experiences, over a 3-year period, in establishing short-term epithelial-cell-enriched preparations from primary breast tumours based on differential centrifugation followed by culture in selective media. Epithelial cells were successfully cultured from 55% of samples, but culture success did not appear to be correlated with tumour histology, stage, grade or node status. Epithelial cell-enriched cultures were immunopositive for broad-spectrum cytokeratin and epithelial membrane antigen (EMA). Positivity for keratin 19 confirmed that the cultures contained tumour-derived cells, which additionally showed significantly higher activity of the reductive pathway of the steroid-converting enzyme 17beta-hydroxysteroid dehydrogenase type I. That the cultures contained tumour and not normal epithelial cells was further substantiated by the complete absence of the calmodulin-like gene NB-1 in tumour-derived cultures; this is only associated with normal breast epithelia. Eighty-five per cent of cultures established from oestrogen receptor (ER)-positive tumours expressed ER in vitro; this was functional in 66% of cultures, although ER-positive phenotype was gradually lost over time. In conclusion, epithelial cells can be isolated and maintained as short-term cultures from primary breast tumours irrespective of histopathological or clinical details, providing a model system with a greater biological and clinical relevance than breast cancer cell lines. Images Figure 1 Figure 2 Figure 5 Figure 7 PMID:9836473

  4. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1.

    PubMed

    Fernández-Martínez, Ana B; Bajo, Ana M; Isabel Arenas, M; Sánchez-Chapado, Manuel; Prieto, Juan C; Carmena, María J

    2010-12-18

    The carcinogenic potential of vasoactive intestinal peptide (VIP) was analyzed in non-tumor human prostate epithelial cells (RWPE-1) and in vivo xenografts. VIP induced morphological changes and a migratory phenotype consistent with stimulation of expression/activity of metalloproteinases MMP-2 and MMP-9, decreased E-cadherin-mediated cell-cell adhesion, and increased cell motility. VIP increased cyclin D1 expression and cell proliferation that was blocked after VPAC(1)-receptor siRNA transfection. Similar effects were seen in RWPE-1 tumors developed by subcutaneous injection of VIP-treated cells in athymic nude mice. VIP acts as a cytokine in RWPE-1 cell transformation conceivably through epithelial-mesenchymal transition (EMT), reinforcing VIP role in prostate tumorigenesis.

  5. Nanoemulsion-based mucosal adjuvant induces apoptosis in human epithelial cells

    PubMed Central

    Orzechowska, Beata U.; Kukowska-Latallo, Jolanta F.; Coulter, Alexa D.; Szabo, Zsuzsanna; Gamian, Andrzej; Myc, Andrzej

    2015-01-01

    Nanoemulsions (NEs) are adjuvants that enhance antigen penetration of the nasal mucosa, increase cellular uptake of antigens by both epithelial and dendritic cells, and promote the migration of antigen-loaded dendritic cells to regional lymph nodes within 24-hours of vaccine administration. The objective of this study was to elucidate cell death caused by W805EC NE and identify caspases and genes associated with death pathways. Consistent with this aim, we show that exposure of human epithelial cells (EC), both RPMI 2650 and FaDu, to NE results in the activation of caspases (1, 3/7, 6, 8, and 9) and the expression of genes involved in apoptotic as well as authophagy and necrosis pathways. Interestingly, the NE activates caspase 8 which promotes “immunogenic apoptosis”. The rescue assay was employed to investigate the fate of RPMI 2650 cells treated with W805EC NE. After four hour treatment with as little as 0.03% of NE no cells were rescued at 72 hours. Remarkably, immediately after four-hour treatment, the cells morphologically resembled untreated cells and most of the cells were alive. Altogether, these results suggest that NE induces death of human ECs through multiple pathways. Epithelial cell death caused by W805EC may have further implications on antigen uptake, processing, and presentation by DC's. PMID:25817825

  6. Inhibitory effects of carbocisteine on type A seasonal influenza virus infection in human airway epithelial cells.

    PubMed

    Yamaya, Mutsuo; Nishimura, Hidekazu; Shinya, Kyoko; Hatachi, Yukimasa; Sasaki, Takahiko; Yasuda, Hiroyasu; Yoshida, Motoki; Asada, Masanori; Fujino, Naoya; Suzuki, Takaya; Deng, Xue; Kubo, Hiroshi; Nagatomi, Ryoichi

    2010-08-01

    Type A human seasonal influenza (FluA) virus infection causes exacerbations of bronchial asthma and chronic obstructive pulmonary disease (COPD). l-carbocisteine, a mucolytic agent, reduces the frequency of common colds and exacerbations in COPD. However, the inhibitory effects of l-carbocisteine on FluA virus infection are uncertain. We studied the effects of l-carbocisteine on FluA virus infection in airway epithelial cells. Human tracheal epithelial cells were pretreated with l-carbocisteine and infected with FluA virus (H(3)N(2)). Viral titers in supernatant fluids, RNA of FluA virus in the cells, and concentrations of proinflammatory cytokines in supernatant fluids, including IL-6, increased with time after infection. l-carbocisteine reduced viral titers in supernatant fluids, RNA of FluA virus in the cells, the susceptibility to FluA virus infection, and concentrations of cytokines induced by virus infection. The epithelial cells expressed sialic acid with an alpha2,6-linkage (SAalpha2,6Gal), a receptor for human influenza virus on the cells, and l-carbocisteine reduced the expression of SAalpha2,6Gal. l-carbocisteine reduced the number of acidic endosomes from which FluA viral RNA enters into the cytoplasm and reduced the fluorescence intensity from acidic endosomes. Furthermore, l-carbocisteine reduced NF-kappaB proteins including p50 and p65 in the nuclear extracts of the cells. These findings suggest that l-carbocisteine may inhibit FluA virus infection, partly through the reduced expression of the receptor for human influenza virus in the human airway epithelial cells via the inhibition of NF-kappaB and through increasing pH in endosomes. l-carbocisteine may reduce airway inflammation in influenza virus infection.

  7. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells

    PubMed Central

    Feygin, Alex; Ivanov, Andrei I.

    2015-01-01

    Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton. PMID:25809162

  8. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells

    PubMed Central

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon

    2017-01-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer. PMID:28280409

  9. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    PubMed Central

    Gierok, Philipp; Harms, Manuela; Methling, Karen; Hochgräfe, Falko; Lalk, Michael

    2016-01-01

    The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR) and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS) and (HPLC-MS). To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model. PMID:27834866

  10. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B.

    PubMed

    Ekstrand-Hammarström, Barbro; Akfur, Christine M; Andersson, Per Ola; Lejon, Christian; Osterlund, Lars; Bucht, Anders

    2012-09-01

    We have compared the cellular uptake and responses of five preparations of nanocrystalline titanium dioxide (TiO(2)) between normal human bronchial epithelial (NHBE) cells and epithelial cell lines (A549 and BEAS-2B). The P25 nanoparticles, containing both anatase and rutile modifications, induced reactive oxygen species (ROS) and secretion of the neutrophil chemoattractant IL-8 in all three cell types used. Pure anatase and rutile particles provoked differential IL-8 response in A549 and no response in BEAS-2B cells despite similar formation of ROS. The pure TiO(2) modifications also provoked release of the inflammatory mediators: IL-6, G-CSF and VEGF, in NHBE cells but not in the two cell lines. We conclude that the responsiveness of lung epithelial cells is strongly dependent on both the physicochemical properties of TiO(2) nanoparticles and the type of responder cells. The differential pro-inflammatory responsiveness of primary lung epithelial cells compared with immortalized cell lines should be considered in the assessment of adverse reactions to inhaled nanoparticles.

  11. Light and electron microscopic study of epithelial cells from the human oviduct and uterus subcultured on extracellular matrix gel.

    PubMed

    Eslaminejad, Mohamadreza Baghaban; Valojerdi, Mojtaba Rezazadeh; Ashtiani, Saeed Kazemi; Eftekhari-Yazdi, Poopak

    2007-06-01

    To investigate the structure of epithelial cells from the human oviduct and uterus on extracellular matrix (ECM) gel in the first passage. Human oviducts and endometrial tissues were obtained from patients undergoing total hysterectomy; the epithelial cells, having been isolated by enzyme digestion, were cultured on polystyrene plastic surfaces. The epithelial nature of the cells was confirmed by immunocytochemistry, and their morphology was examined by microscopy. Cells of an epithelial nature were then trypsinized and cultured on an ECM gel-coated filter insert for 5 days. The cells, in parallel with the tissues, were subsequently prepared for transmission electron microscopy. Plastic-cultured cells had no sign of differentiation and appeared as elongated spindle cells in sections. These cells looked columnar and highly polarized after being cultured on ECM gel surfaces. They were similar to epithelial cells from the corresponding tissue fragment. Cultured on ECM gel, the ciliated epithelial cells of human oviducts appeared ultrastructurally similar to glandular cells from the human uterus. Cilia did not form under culture conditions. It seems that human uterine and oviduct epithelial cells can acquire polarized morphology and differentiated states on ECM gel after having lost it on plastic surfaces and that ECM gel by itself is not enough to induce cilia formation in culture.

  12. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells

    SciTech Connect

    Weng, Yu-I; Hsu, Pei-Yin; Liyanarachchi, Sandya; Liu, Joseph; Deatherage, Daniel E.; Huang Yiwen; Zuo Tao; Rodriguez, Benjamin; Lin, Ching-Hung; Cheng, Ann-Lii; Huang, Tim H.-M.

    2010-10-15

    Substantial evidence indicates that exposure to bisphenol A (BPA) during early development may increase breast cancer risk later in life. The changes may persist into puberty and adulthood, suggesting an epigenetic process being imposed in differentiated breast epithelial cells. The molecular mechanisms by which early memory of BPA exposure is imprinted in breast progenitor cells and then passed onto their epithelial progeny are not well understood. The aim of this study was to examine epigenetic changes in breast epithelial cells treated with low-dose BPA. We also investigated the effect of BPA on the ER{alpha} signaling pathway and global gene expression profiles. Compared to control cells, nuclear internalization of ER{alpha} was observed in epithelial cells preexposed to BPA. We identified 170 genes with similar expression changes in response to BPA. Functional analysis confirms that gene suppression was mediated in part through an ER{alpha}-dependent pathway. As a result of exposure to BPA or other estrogen-like chemicals, the expression of lysosomal-associated membrane protein 3 (LAMP3) became epigenetically silenced in breast epithelial cells. Furthermore, increased DNA methylation in the LAMP3 CpG island was this repressive mark preferentially occurred in ER{alpha}-positive breast tumors. These results suggest that the in vitro system developed in our laboratory is a valuable tool for exposure studies of BPA and other xenoestrogens in human cells. Individual and geographical differences may contribute to altered patterns of gene expression and DNA methylation in susceptible loci. Combination of our exposure model with epigenetic analysis and other biochemical assays can give insight into the heritable effect of low-dose BPA in human cells.

  13. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.

    PubMed

    Rochon, Marie-Hélène; Fradette, Julie; Fortin, Véronique; Tomasetig, Florence; Roberge, Charles J; Baker, Kathleen; Berthod, François; Auger, François A; Germain, Lucie

    2010-05-01

    The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.

  14. Characterization of Ocular Surface Epithelial and Progenitor Cell Markers in Human Adipose Stromal Cells Derived from Lipoaspirates

    PubMed Central

    Martínez-Conesa, Eva M.; Espel, Enric; Reina, Manuel

    2012-01-01

    Purpose. The goal of this study was to characterize and compare mesenchymal stem cells from adult human adipose tissue (ADS cells) with progenitor cell lines from the human corneoscleral limbus and to analyze their potential for the expression of epithelial markers. Methods. Stem cell markers (CD34, CD90, p63, and ABCG2) and epithelial cell markers (CK3/76, CK12, CK76, CK19, and CK1/5/10/14) were analyzed by immunostaining, flow cytometry, Western blot analysis, and PCR methods. The authors assayed adhesion and proliferation on different extracellular matrix proteins. Results. ADS cells expressed a set of progenitor cell markers, including p63 and ABCG2. CK12 expression in ADS cell cultures increased spontaneously and progressively by differential adhesion, which demonstrates the cells' potential and capability to acquire epithelial-like cell characteristics. The authors observed an increase in the adhesion and proliferation of ADS cells seeded onto different basement membrane extracellular matrix proteins. Laminin substrates reduced the proliferative state of ADS cells. Conclusions. The expression of putative stem cell markers (CD90, ABCG2, and p63) and cytokeratins (CK12 and CK76) supports the hypothesis that ADS cells have self-renewal capacity and intrinsic plasticity that enables them to acquire some epithelial-like characteristics. Therefore, adult ADS cells could be a potential source for cell therapy in ocular surface regeneration. PMID:22199247

  15. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    SciTech Connect

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  16. Induction of proinflammatory cytokines in human lung epithelial cells during Rhodococcus equi infection.

    PubMed

    Remuzgo-Martínez, Sara; Pilares-Ortega, Lilian; Alvarez-Rodríguez, Lorena; Aranzamendi-Zaldunbide, Maitane; Padilla, Daniel; Icardo, Jose Manuel; Ramos-Vivas, Jose

    2013-08-01

    Rhodococcus equi is an opportunistic human pathogen associated with immunosuppressed people. While the interaction of R. equi with macrophages has been comprehensively studied, little is known about its interactions with non-phagocytic cells. Here, we characterized the entry process of this bacterium into human lung epithelial cells. The invasion is inhibited by nocodazole and wortmannin, suggesting that the phosphatidylinositol 3-kinase pathway and microtubule cytoskeleton are important for invasion. Pre-incubation of R. equi with a rabbit anti-R. equi polyclonal antiserum resulted in a dramatic reduction in invasion. Also, the invasion process as studied by immunofluorescence and scanning electron microscopy indicates that R. equi make initial contact with the microvilli of the A549 cells, and at the structural level, the entry process was observed to occur via a zipper-like mechanism. Infected lung epithelial cells upregulate the expression of cytokines IL-8 and IL-6 upon infection. The production of these pro-inflammatory cytokines was significantly enhanced in culture supernatants from cells infected with non-mucoid plasmid-less strains when compared with cells infected with mucoid strains. These results demonstrate that human airway epithelial cells produce pro-inflammatory mediators against R. equi isolates.

  17. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    SciTech Connect

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  18. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    PubMed

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.

  19. Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells.

    PubMed

    Olsen, Colin E; Liguori, Andrew E; Zong, Yue; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2008-08-01

    As part of the innate immune defense, the polarized conducting lung epithelium acts as a barrier to keep particulates carried in respiration from underlying tissue. Arsenic is a metalloid toxicant that can affect the lung via inhalation or ingestion. We have recently shown that chronic exposure of mice or humans to arsenic (10-50 ppb) in drinking water alters bronchiolar lavage or sputum proteins consistent with reduced epithelial cell migration and wound repair in the airway. In this report, we used an in vitro model to examine effects of acute exposure of arsenic (15-290 ppb) on conducting airway lung epithelium. We found that arsenic at concentrations as low as 30 ppb inhibits reformation of the epithelial monolayer following scrape wounds of monolayer cultures. In an effort to understand functional contributions to epithelial wound repair altered by arsenic, we showed that acute arsenic exposure increases activity and expression of matrix metalloproteinase (MMP)-9, an important protease in lung function. Furthermore, inhibition of MMP-9 in arsenic-treated cells improved wound repair. We propose that arsenic in the airway can alter the airway epithelial barrier by restricting proper wound repair in part through the upregulation of MMP-9 by lung epithelial cells.

  20. Human Bronchial Epithelial Cell-Derived Factors from Severe Asthmatic Subjects Stimulate Eosinophil Differentiation.

    PubMed

    Salter, Brittany M A; Smith, Steven G; Mukherjee, Manali; Plante, Sophie; Krisna, Sakktee; Nusca, Graeme; Oliveria, John Paul; Irshad, Anam; Gauvreau, Gail M; Chakir, Jamila; Nair, Parameswaran; Sehmi, Roma

    2017-08-30

    Activated bronchial epithelial cells release alarmins, including thymic stromal lymphopoietin (TSLP) that drive type 2 inflammatory responses. We hypothesize that bronchial epithelial-derived factors enhance in situ eosinophil differentiation and maturation from myeloid precursors, a process that is driven by an IL-5 rich micro-environment within asthma airways. To assess the eosinophilopoietic potential of epithelial-derived factors, eosinophil/basophil colony forming units (Eo/B-CFU) were enumerated in 14-day methylcellulose cultures of blood-derived mononuclear cells (NAMNCs) incubated with bronchial epithelial cell supernatants (BECSN) from healthy non-atopic controls (NC; n = 8), mild atopic asthmatics (MA; n = 9) and severe asthmatics (SA; n = 5). Receptor blocking antibodies were used to evaluate the contribution of alarmins. Modulation of mRNA expression of transcription factors crucial for eosinophil differentiation was evaluated. BECSN stimulated the clonogenic expansion of eosinophil progenitors, in vitro. In the presence of IL-5, Eo/B-CFU growth was significantly greater in co-cultures of BESCN from SA, compared to MA and NC. This effect was attenuated by a TSLP receptor blocking antibody but not by an ST2 antibody. Recombinant human TSLP (optimal at 100 pg/ml) stimulated significant Eo/B-CFU growth, which was significantly enhanced in presence of IL-5 (1 ng/ml). Overnight culture of CD34+ cells with IL-5 and TSLP synergistically increased GATA-2 and CEBP-alpha mRNA expression. The eosinophilopoietic potential of factors derived from bronchial epithelial cells is increased in severe asthma. Our data suggest that TSLP is a key alarmin produced by bronchial epithelial cells, which promotes in situ eosinophilopoiesis in a type 2 rich microenvironment.

  1. Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.

    PubMed

    Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru

    2013-09-01

    We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.

  2. Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells.

    PubMed Central

    Doig, P; Todd, T; Sastry, P A; Lee, K K; Hodges, R S; Paranchych, W; Irvin, R T

    1988-01-01

    The ability of pili from Pseudomonas aeruginosa K (PAK) to act as an adhesin to human respiratory epithelial cells was examined using an in vitro adhesion assay. Equilibrium analysis of PAK binding to human buccal epithelial cells (BECs) and tracheal epithelial cells (TECs) by means of a Langmuir adsorption isotherm revealed that the maximum numbers of binding sites per epithelial cell (N) were 255 for BECs and 236 for TECs, with apparent association constants (Ka) of 2.8 x 10(-9) and 5.8 x 10(-9) ml/CFU, respectively. Trypsinization of the BECs before the binding assay increased N to 605 and decreased the Ka to 1.7 x 10(-9) ml/CFU. Addition of homologous pili to the binding assay with BECs or TECs or the addition of anti-pilus Fab fragments inhibited PAK adherence. Binding of purified pili to BECs was shown to reach saturation. Purified pili and PAK competed for the same receptor on the BEC surface. Further, by using peptide fragments of PAK pilin (derived from the native pili or produced synthetically) in the binding assay for PAK to BECs, we have presumptively identified the pilus binding domain in the C-terminal region of the pilin and shown that the C-terminal disulfide bridge is important in maintaining the functionality of the binding domain. PMID:2897336

  3. Tryptase does not alter transepithelial conductance or paracellular permeability in human airway epithelial cells.

    PubMed

    Chang, Eugene H; Lee, John H; Zabner, Joseph

    2010-01-01

    Cell tight junction proteins create a barrier between airway epithelial cells to limit paracellular transport from the apical to basolateral surface. This barrier can impede the entry of respiratory pathogens and toxins from the airway lumen into the systemic circulation. Mast cell-mediated inflammation in the human airway can cause a disruption of this barrier. Tryptase is one of the major mediators released by mast cells and has been studied extensively in diseases such as asthma, reflux, and sinusitis. We hypothesize that tryptase may play a role in airway paracellular permeability by disrupting the cell tight junction proteins. We tested this hypothesis by applying tryptase on the apical and basolateral surface to primary human airway epithelia grown in an air-liquid interface and measured changes in the transepithelial conductance and paracellular permeability of the membrane during short (every minute) and longer (over hours) time courses. We then immunostained the cell membranes for occludins and claudins to observe for changes in the structure of the tight junctions after tryptase application. Our data show that tryptase does not alter paracellular permeability in human airway cells over minutes or hours, and that tryptase does not alter the structure of the cell junction. Tryptase alone does not alter paracellular permeability in human airway cells. Tryptase may be altering the epithelial membrane independent of the cell tight junction pathway or other mast cell mediators may play a role in permeability.

  4. Human genital epithelial cells capture cell-free human immunodeficiency virus type 1 and transmit the virus to CD4+ Cells: implications for mechanisms of sexual transmission.

    PubMed

    Wu, Zhiwei; Chen, Zhiwei; Phillips, David M

    2003-11-15

    Sexual transmission of human immunodeficiency virus (HIV) accounts for the majority of new infections worldwide. However, the mechanism of viral transmission across the mucosal barrier is poorly understood. By use of an ectocervical epithelium-derived cell line, we found that the cells are capable of sequestering large amounts of HIV particles but are refractory to cell-free viral infection. The sequestered virus particles remained infectious for >/=6 days and resisted treatment with trypsin. Upon coculture with CD4(+)-susceptible cells, epithelial cells can effectively transmit the virus to these cells, which can result in robust infection of the target cells. Inhibitory studies have shown that heparan sulfate moiety of cell-surface proteoglycans is involved in the viral attachment to these CD4-negative epithelial cells. Genital epithelial cells may play active roles in sequestering, protecting, and transferring virus during sexual transmission of HIV.

  5. Neutrophil and asbestos fiber-induced cytotoxicity in cultured human mesothelial and bronchial epithelial cells.

    PubMed

    Kinnula, V L; Raivio, K O; Linnainmaa, K; Ekman, A; Klockars, M

    1995-03-01

    This study investigates reactive oxygen species generation and oxidant-related cytotoxicity induced by amosite asbestos fibers and polymorphonuclear leucocytes (PMNs) in human mesothelial cells and human bronchial epithelial cells in vitro. Transformed human pleural mesothelial cells (MET 5A) and bronchial epithelial cells (BEAS 2B) were treated with amosite (2 micrograms/cm2) for 48 h. After 24 h of incubation, the cells were exposed for 1 h to nonactivated or amosite (50 micrograms) activated PMNs, washed, and incubated for another 23 h. Reactive oxygen species generation by the PMNs and the target cells was measured by chemiluminescence. Cell injury was assessed by cellular adenine nucleotide depletion, extracellular release of nucleotides, and lactate dehydrogenase (LDH). Amosite-activated (but also to a lesser degree nonactivated) PMNs released substantial amounts of reactive oxygen metabolites, whereas the chemiluminescence of amosite-exposed mesothelial cells and epithelial cells did not differ from the background. Amosite treatment (48 h) of the target cells did not change intracellular adenine nucleotides (ATP, ADP, AMP) or nucleotide catabolite products (xanthine, hypoxanthine, and uric acid). When the target cells were exposed to nonactivated PMNs, significant adenine nucleotide depletion and nucleotide catabolite accumulation was observed in mesothelial cells only. In separate experiments, when the target cells were exposed to amosite-activated PMNs, the target cell injury was further potentiated compared with the amosite treatment alone or exposure to nonactivated PMNs. In conclusion, this study suggests the importance of inflammatory cell-derived free radicals in the development of amosite-induced mesothelial cell injury.

  6. Modulation of Candida albicans attachment to human epithelial cells by bacteria and carbohydrates.

    PubMed Central

    Centeno, A; Davis, C P; Cohen, M S; Warren, M M

    1983-01-01

    The effects of carbohydrates (mannose and dextrose). Escherichia coli 07KL. and Klebsiella pneumoniae on Candida albicans attachment to epithelial cells was studied. Dextrose had no effect on yeast attachment to epithelial cells. Conversely, mannose significantly decreased both yeast and piliated bacterial attachment (E. coli 07KL, heavily piliated K. pneumoniae) whereas having no effect on nonpiliated K. pneumoniae attachment to epithelial cells. The number of yeasts attaching to epithelial cells was enhanced by preincubation of epithelial cells with piliated strains of bacteria, whereas preincubation with nonpiliated strains of bacteria had no effect on yeast attachment. Scanning electron microscopy showed that piliated bacteria and yeasts were juxtaposed on the epithelial cell surface. These data suggest that certain piliated strains of bacteria can enhance C. albicans attachment to epithelial cells and that type 1 pili of bacteria can be a factor in the enhanced attachment of C. albicans to epithelial cells. Images PMID:6132878

  7. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells

    SciTech Connect

    Gutierrez-Barrera, Angelica M.; Menter, David G.; Abbruzzese, James L.; Reddy, Shrikanth A.G. . E-mail: sa08366@wotan.mdacc.tmc.edu

    2007-07-06

    Three-dimensional (3D) cultures of epithelial cells offer singular advantages for studies of morphogenesis or the role of cancer genes in oncogenesis. In this study, as part of establishing a 3D culture system of pancreatic duct epithelial cells, we compared human pancreatic duct epithelial cells (HPDE-E6E7) with pancreatic cancer cell lines. Our results show, that in contrast to cancer cells, HPDE-E6E7 organized into spheroids with what appeared to be apical and basal membranes and a luminal space. Immunostaining experiments indicated that protein kinase Akt was phosphorylated (Ser473) and CTMP, a negative Akt regulator, was expressed in both HPDE-E6E7 and cancer cells. However, a nuclear pool of CTMP was detectable in HPDE-E6E7 cells that showed a dynamic concentrated expression pattern, a feature that further distinguished HPDE-E637 cells from cancer cells. Collectively, these data suggest that 3D cultures of HPDE-E6E7 cells are useful for investigating signaling and morphological abnormalities in pancreatic cancer cells.

  8. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    PubMed

    Puig, Ferranda; Fuster, Gemma; Adda, Mélanie; Blanch, Lluís; Farre, Ramon; Navajas, Daniel; Artigas, Antonio

    2013-01-01

    Acute lung injury (ALI) is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC) on mechanical tension and barrier integrity in human alveolar epithelial cells (A549) exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml) or vehicle (control). Subsequently, thrombin (50 nM) or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  9. Odontoblastic inductive potential of epithelial cells derived from human deciduous dental pulp.

    PubMed

    Lee, Hye-Kyung; Park, Ji-Won; Seo, You-Mi; Kim, Ha Hoon; Lee, Gene; Bae, Hyun-Sook; Park, Joo-Cheol

    2016-06-01

    For the dentin regeneration, dental epithelial cells are indispensible and must possess odontoblastic induction capability. Epithelial cell-like stem cells were recently identified in human deciduous dental pulp (DPESCs). However, their cellular characteristics remain poorly defined. The purpose of this study was to characterize DPESCs compared to HAT-7 ameloblastic cells. Expression levels of ameloblast-specific markers [odontogenic ameloblast-associated protein (Odam), matrix metalloproteinase (Mmp)-20, amelogenin, and ameloblastin] were detected in DPESCs. Co-culturing odontoblastic MDPC-23 cells with DPESCs increased expression of odontoblast differentiation markers (Dmp1 and Dspp) from days 4 to 10, while the expression of bone sialoprotein rapidly decreased. MDPC-23 cells cultured in DPESC-conditioned medium (CM) showed increased Dspp promoter activity compared with control MDPC-23 cultures. Mineralization was first observed in the CM groups from day 4 and proceeded rapidly until day 14, whereas mineralized nodules were found from day 7 in control media-cultured cells. In conclusion, DPESCs in human deciduous pulp possess ameloblast-like characteristics and differentiation properties, and substances derived from DPESCs promote odontoblastic differentiation. Thus, our results indicate that DPESCs can be a realistic epithelial source for use in odontoblastic induction and dentin formation of dental mesenchymal cells.

  10. Osteopontin improves adhesion and migration of human primary renal cortical epithelial cells during wound healing

    PubMed Central

    Wu, Jinfeng; Wang, Zuolin

    2016-01-01

    The aim of the present study was to investigate the effect of osteopontin (OPN) on adhesion and migration in human primary renal cortical epithelial cells during wound healing and Transwell assays. MTT assay was used to examine the cell viability and western blot analysis was used to examine the expression of cytoskeletal proteins and cell adhesion molecules. The results showed that overexpression of OPN had positive effects on the viability, proliferation, adhesion and migration of the human primary renal cortical epithelial cells. In addition, the integrity of the cell membrane and cytoskeleton of the epithelial cells was negatively affected by knockdown of OPN expression. The Transwell migration and a wound healing assays performed using OPN-knockdown cells suggested that OPN had a significant impact on cell migration (P=0.0421) and wound healing (P=0.0333). Therefore, OPN may be a potential target for the therapeutic modulation of skin repair to improve the healing rate and quality of wound healing. PMID:28101213

  11. Insensitivity of volume-sensitive chloride currents to chromones in human airway epithelial cells

    PubMed Central

    Zegarra-Moran, Olga; Lantero, Sabina; Sacco, Oliviero; Rossi, Giovanni A; Galietta, Luis J V

    1998-01-01

    Chromones (sodium cromoglycate and sodium nedocromil) block cell swelling-activated Cl− channels in NIH-3T3 fibroblasts and endothelial cells. This has led to hypothesize that cell volume regulation might be involved in asthma pathogenesis.Using whole-cell patch-clamp experiments, we studied the effect of chromones on volume-sensitive Cl− currents in transformed human tracheal epithelial cells (9HTEo-) and in primary cultures of human bronchial epithelial cells (BE).Cl− currents activated by hypotonic shock were poorly blocked by extracellular nedocromil or cromoglycate. The block was voltage-dependent since it was observed only at positive membrane potentials. At the concentration of 5 mM, the current inhibition by both chromones at +80 mV was about 40% for 9HTEo- and only 20% for BE.Intracellular application of chromones elicited a voltage-independent inhibition in 9HTEo- cells. Under this condition, volume-sensitive Cl− currents were reduced at all membrane potentials (60 and 45% inhibition by 2 mM nedocromil and cromoglycate respectively). In contrast intracellular chromones were ineffective in BE cells.The relative refractoriness to chromones, in contrast with the high sensitivity shown by other Cl− channels, suggests that the epithelial volume-sensitive Cl− channel is not involved in asthma. PMID:9863671

  12. Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homoeostasis.

    PubMed

    Gifford, Gail B; Demitrack, Elise S; Keeley, Theresa M; Tam, Andrew; La Cunza, Nilsa; Dedhia, Priya H; Spence, Jason R; Simeone, Diane M; Saotome, Ichiko; Louvi, Angeliki; Siebel, Christian W; Samuelson, Linda C

    2017-06-01

    We tested the ability of Notch pathway receptors Notch1 and Notch2 to regulate stem and epithelial cell homoeostasis in mouse and human gastric antral tissue. Mice were treated with the pan-Notch inhibitor dibenzazepine (DBZ) or inhibitory antibodies targeting Notch1 and/or Notch2. Epithelial proliferation, apoptosis and cellular differentiation were measured by histological and molecular approaches. Organoids were established from mouse and human antral glands; growth and differentiation were measured after treatment with Notch inhibitors. Notch1 and Notch2 are the predominant Notch receptors expressed in mouse and human antral tissue and organoid cultures. Combined inhibition of Notch1 and Notch2 in adult mice led to decreased epithelial cell proliferation, including reduced proliferation of LGR5 stem cells, and increased apoptosis, similar to the response to global Notch inhibition with DBZ. Less pronounced effects were observed after inhibition of individual receptors. Notch pathway inhibition with DBZ or combined inhibition of Notch1 and Notch2 led to increased differentiation of all gastric antral lineages, with remodelling of cells to express secretory products normally associated with other regions of the GI tract, including intestine. Analysis of mouse and human organoids showed that Notch signalling through Notch1 and Notch2 is intrinsic to the epithelium and required for organoid growth. Notch signalling is required to maintain gastric antral stem cells. Notch1 and Notch2 are the primary Notch receptors regulating epithelial cell homoeostasis in mouse and human stomach. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright © 2012 John Wiley & Sons, Ltd.

  14. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  15. ASBESTOS-INDUCED ACTIVATION OF CELL SIGNALING PATHWAYS IN HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Using respiratory epithelial cells transfected with either superoxide dismutase (SOD) or catalase, the authors tested the hypothesis that the activation of the epidermal growth factor (EGF) receptor signal pathway after asbestos exposure involves an oxidative stress. Western blot...

  16. Mesenchymal-epithelial transitions: spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures.

    PubMed

    Franke, Werner W; Rickelt, Steffen

    2011-12-01

    Using biochemical as well as light- and electron-microscopic immunolocalization methods, in cultures of unicellular human blood tumor cells, we have studied the phenomenon of spontaneous and cumulative syntheses of certain epithelial proteins and glycoproteins and their assemblies to two major kinds of novel cell-cell junctions, adhering junctions (AJs) and junctions based on the epithelial cell adhesion molecule (EpCAM). More than two decades, we have selected and characterized clonal sublines of multipotential hematopoietic K562 cells, which are enriched in newly formed AJs based on cis-clusters of desmoglein Dsg2, in some sublines accompanied by desmocollin Dsc2. Both desmosomal cadherins can be anchored in a submembranous plaque containing plakoglobin and plakophilins Pkp2 and Pkp3, with or without other armadillo proteins and desmoplakin. Also, these cells are often connected by an additional, extended junction system, in which the transmembrane epithelial glycoprotein EpCAM is associated with a cytoplasmic plaque rich in several actin-binding proteins such as afadin, α-actinin, ezrin and vinculin. Both kinds of junctions contribute to connections of K562 cells into epithelioid monolayers or even three-dimensional, tissue-like structures, thus markedly changing the cell biological nature and behavior of the resulting tumor subforms (mesenchymal-epithelial transitions). We discuss molecular mechanisms involved in the formation and function of these junctions, also with respect to tumor spread and metastasis, as well as diagnostic and therapeutic consequences.

  17. Expression of a functional asialoglycoprotein receptor in human renal proximal tubular epithelial cells.

    PubMed

    Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye

    2002-07-01

    The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel

  18. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    SciTech Connect

    Youakim, A.; Herscovics, A.

    1985-11-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-(2-TH)mannose or L-(5,6-TH)fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with (2-TH)mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with (2-TH)mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-(1,6-TH)glucosamine and L-(1- UC)fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced TH-labeled N-acetylglucosamine and N-acetylgalactosamine.

  19. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  20. Effect of topical microbicides on infectious human immunodeficiency virus type 1 binding to epithelial cells.

    PubMed

    Roth, Susan; Monsour, Michael; Dowland, Amanda; Guenthner, Patricia C; Hancock, Kelly; Ou, Chin-Yi; Dezzutti, Charlene S

    2007-06-01

    Topical microbicides (cellulose acetate 1,2 benzene dicarboxylate [CAP], PRO 2000, SPL7013, and UC781) are being investigated to reduce the sexual transmission of human immunodeficiency virus type 1 (HIV-1). These products were shown to prevent the transfer of infectious HIV-1 from urogenital and colorectal epithelial cell lines to peripheral blood mononuclear cells. However, it was unclear if the topical microbicides rendered the virus noninfectious and/or reduced the binding to the epithelial cells. To test this, epithelial cells were cultured with HIV-1 in the presence or absence of topical microbicides or their placebos. The cells were washed, RNA lysates were made, and real-time PCR was performed for HIV-1. PRO 2000 and SPL7013 significantly (P < 0.0001) reduced the amount of bound HIV-1 to the colorectal epithelial cell line across clades A, B, C, and CRF01-AE. While none of the products reduced the binding of HIV-1 clades A and C to the urogenital cell line, CAP, PRO 2000, and SPL7013 significantly (P epithelial cells and possible shedding into mucosal secretions. Therefore, functional virological assays in addition to measuring viral RNA should be included when clinically evaluating topical microbicide use by infected persons.

  1. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers

    PubMed Central

    Min, Kyoung Ah; Rosania, Gus R.; Kim, Chong-Kook; Shin, Meong Cheol

    2016-01-01

    To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies. PMID:26746641

  2. Neisseria gonorrhoeae Modulates Cell Death in Human Endocervical Epithelial Cells through Export of Exosome-Associated cIAP2

    PubMed Central

    Massari, Paola

    2015-01-01

    Several bacterial pathogens persist and survive in the host by modulating host cell death pathways. We previously demonstrated that Neisseria gonorrhoeae, a Gram-negative pathogen responsible for the sexually transmitted infection gonorrhea, protects against exogenous induction of apoptosis in human cervical epithelial cells. However, induction of cell death by N. gonorrhoeae has also been reported in other cell types. The mechanisms by which N. gonorrhoeae modulates cell death are not clear, although a role for the inhibitor of apoptosis-2 (cIAP2) has been proposed. In this study, we confirmed that N. gonorrhoeae induces production of cIAP2 in human cervical epithelial cells. High levels of intracellular cIAP2 were detected early after N. gonorrhoeae stimulation, which was followed by a marked decrease at 24 h. At this time point, we observed increased levels of extracellular cIAP2 associated with exosomes and an overall increase in production of exosomes. Inhibition of cIAP2 in N. gonorrhoeae-stimulated epithelial cells resulted in increased cell death and interleukin-1β (IL-1β) production. Collectively these results indicate that N. gonorrhoeae stimulation of human endocervical epithelial cells induces the release of cIAP2, an essential regulator of cell death and immune signaling. PMID:26077759

  3. Neisseria gonorrhoeae Modulates Cell Death in Human Endocervical Epithelial Cells through Export of Exosome-Associated cIAP2.

    PubMed

    Nudel, Kathleen; Massari, Paola; Genco, Caroline A

    2015-09-01

    Several bacterial pathogens persist and survive in the host by modulating host cell death pathways. We previously demonstrated that Neisseria gonorrhoeae, a Gram-negative pathogen responsible for the sexually transmitted infection gonorrhea, protects against exogenous induction of apoptosis in human cervical epithelial cells. However, induction of cell death by N. gonorrhoeae has also been reported in other cell types. The mechanisms by which N. gonorrhoeae modulates cell death are not clear, although a role for the inhibitor of apoptosis-2 (cIAP2) has been proposed. In this study, we confirmed that N. gonorrhoeae induces production of cIAP2 in human cervical epithelial cells. High levels of intracellular cIAP2 were detected early after N. gonorrhoeae stimulation, which was followed by a marked decrease at 24 h. At this time point, we observed increased levels of extracellular cIAP2 associated with exosomes and an overall increase in production of exosomes. Inhibition of cIAP2 in N. gonorrhoeae-stimulated epithelial cells resulted in increased cell death and interleukin-1β (IL-1β) production. Collectively these results indicate that N. gonorrhoeae stimulation of human endocervical epithelial cells induces the release of cIAP2, an essential regulator of cell death and immune signaling.

  4. Side Population Cells From an Immortalized Human Liver Epithelial Cell Line Exhibit Hepatic Stem-Like Cell Properties.

    PubMed

    Tokiwa, Takayoshi; Yamazaki, Taisuke; Enosawa, Shin

    2012-01-01

    The existence of hepatic stem cells in human livers is controversial. We investigated whether the side population (SP) cells derived from an immortalized human liver epithelial cell line THLE-5b possess the properties of hepatic stem-like cells. SP cells derived from THLE-5b were isolated using flow cytometry and were assayed for the expression of phenotypic markers by reverse transcription polymerase chain reaction and immunostaining. THLE-5b SP cells retained the capacity to generate both SP and non-SP cells, showed a capacity for self-renewal, and were more efficient in colony formation than non-SP cells. Neither the SP nor the non-SP cells formed tumors when transplanted into athymic nude mice or severe combined immunodeficient mice. The expression level of stem cell-associated markers such as an ATP-binding cassette membrane transporter, epithelial cell adhesion molecule, c-kit, Thy-1, and octomer binding transcription factor 4 was higher in SP cells than in non-SP cells. When cultivated as rotation-mediated aggregates, the expression of liver-specific genes including tryptophan oxygenase and CYP3A4 was up-regulated in SP cells, suggesting that THLE-5b SP cells have the ability to differentiate into a hepatocyte phenotype. One of the clonal cell lines derived from the SP cells expressed stem cell-associated markers. These results indicate that SP cells derived from THLE-5b possess hepatic stem-like cell properties and suggest that THLE-5b can be used as a model of normal human liver progenitor or stem cell line.

  5. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells

    PubMed Central

    Castillo, Lilian Fedra; Tascón, Rocío; Huvelle, María Amparo Lago; Novack, Gisela; Llorens, María Candelaria; dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Joffé, Elisa Bal de Kier; Labriola, Leticia; Peters, María Giselle

    2016-01-01

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits. Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1. Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis. PMID:27507057

  6. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells.

    PubMed

    Castillo, Lilian Fedra; Tascón, Rocío; Lago Huvelle, María Amparo; Novack, Gisela; Llorens, María Candelaria; Dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Bal de Kier Joffé, Elisa; Labriola, Leticia; Peters, María Giselle

    2016-09-13

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.

  7. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  8. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    PubMed

    Sherwood, Cara L; Liguori, Andrew E; Olsen, Colin E; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  9. Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density.

    PubMed

    DeFilippis, Rosa Anna; Fordyce, Colleen; Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D

    2014-09-15

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal nontumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared with epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g., activin A and CD36) to prevent breast cancer.

  10. Stress Signaling from Human Mammary Epithelial Cells Contributes to Phenotypes of Mammographic Density

    PubMed Central

    Patten, Kelley; Chang, Hang; Zhao, Jianxin; Fontenay, Gerald V.; Kerlikowske, Karla; Parvin, Bahram; Tlsty, Thea D.

    2014-01-01

    Telomere malfunction and other types of DNA damage induce an activin A-dependent stress response in mortal non-tumorigenic human mammary epithelial cells that subsequently induces desmoplastic-like phenotypes in neighboring fibroblasts. Some characteristics of this fibroblast/stromal response, such as reduced adipocytes and increased extracellular matrix content, are observed not only in tumor tissues but also in disease-free breast tissues at high risk for developing cancer, especially high mammographic density tissues. We found that these phenotypes are induced by repression of the fatty acid translocase CD36, which is seen in desmoplastic and disease-free high mammographic density tissues. In this study, we show that epithelial cells from high mammographic density tissues have more DNA damage signaling, shorter telomeres, increased activin A secretion and an altered DNA damage response compared to epithelial cells from low mammographic density tissues. Strikingly, both telomere malfunction and activin A expression in epithelial cells can repress CD36 expression in adjacent fibroblasts. These results provide new insights into how high mammographic density arises and why it is associated with breast cancer risk, with implications for the definition of novel invention targets (e.g. activin A, CD36) to prevent breast cancer. PMID:25172842

  11. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells.

    PubMed

    Larsen, Anett K; Nymo, Ingebjørg H; Briquemont, Benjamin; Sørensen, Karen K; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72-96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary.

  12. Entrance and Survival of Brucella pinnipedialis Hooded Seal Strain in Human Macrophages and Epithelial Cells

    PubMed Central

    Briquemont, Benjamin; Sørensen, Karen K.; Godfroid, Jacques

    2013-01-01

    Marine mammal Brucella spp. have been isolated from pinnipeds (B. pinnipedialis) and cetaceans (B. ceti) from around the world. Although the zoonotic potential of marine mammal brucellae is largely unknown, reports of human disease exist. There are few studies of the mechanisms of bacterial intracellular invasion and multiplication involving the marine mammal Brucella spp. We examined the infective capacity of two genetically different B. pinnipedialis strains (reference strain; NTCT 12890 and a hooded seal isolate; B17) by measuring the ability of the bacteria to enter and replicate in cultured phagocytes and epithelial cells. Human macrophage-like cells (THP-1), two murine macrophage cell lines (RAW264.7 and J774A.1), and a human malignant epithelial cell line (HeLa S3) were challenged with bacteria in a gentamicin protection assay. Our results show that B. pinnipedialis is internalized, but is then gradually eliminated during the next 72 – 96 hours. Confocal microscopy revealed that intracellular B. pinnipedialis hooded seal strain colocalized with lysosomal compartments at 1.5 and 24 hours after infection. Intracellular presence of B. pinnipedialis hooded seal strain was verified by transmission electron microscopy. By using a cholesterol-scavenging lipid inhibitor, entrance of B. pinnipedialis hooded seal strain in human macrophages was significantly reduced by 65.8 % (± 17.3), suggesting involvement of lipid-rafts in intracellular entry. Murine macrophages invaded by B. pinnipedialis do not release nitric oxide (NO) and intracellular bacterial presence does not induce cell death. In summary, B. pinnipedialis hooded seal strain can enter human and murine macrophages, as well as human epithelial cells. Intracellular entry of B. pinnipedialis hooded seal strain involves, but seems not to be limited to, lipid-rafts in human macrophages. Brucella pinnipedialis does not multiply or survive for prolonged periods intracellulary. PMID:24376851

  13. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells

    PubMed Central

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N.

    2013-01-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma. PMID:24665390

  14. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    PubMed

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma.

  15. Carbocisteine inhibits oxidant-induced apoptosis in cultured human airway epithelial cells.

    PubMed

    Yoshida, Motoki; Nakayama, Katsutoshi; Yasuda, Hiroyasu; Kubo, Hiroshi; Kuwano, Kazuyoshi; Arai, Hiroyuki; Yamaya, Mutsuo

    2009-09-01

    Increased oxidant levels have been associated with exacerbations of COPD, and L-carbocisteine, a mucolytic agent, reduces the frequency of exacerbations. The mechanisms underlying the inhibitory effects of L-carbocisteine on oxidant-induced COPD exacerbations were examined in an in vitro study of human airway epithelial cells. In order to examine the antioxidant effects of L-carbocisteine, human tracheal epithelial cells were treated with L-carbocisteine and exposed to hydrogen peroxide (H(2)O(2)). Cell apoptosis was assessed using a cell death detection ELISA, and the pathways leading to cell apoptosis were examined by measurement of caspase-3 and caspase-9 by western blot analysis with fluorescent detection. The proportion of apoptotic cells in human tracheal epithelium was increased in a concentration- and time-dependent manner, following exposure to H(2)O(2). Treatment with L-carbocisteine reduced the proportion of apoptotic cells. In contrast, H(2)O(2) did not increase the concentration of LDH in supernatants of epithelial cells. Exposure to H(2)O(2) activated caspase-3 and caspase-9, and L-carbocisteine inhibited the H(2)O(2)-induced activation of these caspases. L-carbocisteine activated Akt phosphorylation, which modulates caspase activation, and the inhibitors of Akt, LY294002 and wortmannin, significantly reversed the inhibitory effects of L-carbocisteine on H(2)O(2)-induced cell apoptosis. These findings suggest that in human airway epithelium, L-carbocisteine may inhibit cell damage induced by H(2)O(2) through the activation of Akt phosphorylation. L-carbocisteine may have antioxidant effects, as well as mucolytic activity, in inflamed airways.

  16. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    SciTech Connect

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.

  17. Propagation of normal human epithelial cell populations using an in vivo culture system. Description and applications.

    PubMed Central

    Klein-Szanto, A. J.; Terzaghi, M.; Mirkin, L. D.; Martin, D.; Shiba, M.

    1982-01-01

    A new model using xenotransplanted human epithelia was developed for the study of toxic and carcinogenic effects of chemicals. Epithelial cells from the respiratory tract of 4 male and 3 female premature and fullterm fetuses were enzymatically removed and inoculated into deepithelialized rat tracheas. These were sealed at both ends and transplanted subcutaneously into nude mice. After 3-4 weeks, a normal mucociliary epithelium covered the tracheal lumen. At this stage the epithelial cells could be isolated again and transplanted into new denuded rat tracheas. This passaging could be repeated up to six times, each permitting an amplification factor of approximately 3. Tracheal transplants containing cells of human origin (in vivo Passages 2-4) were treated with 7,12-dimethylbenz(a)anthracene. Hyperplasias, squamous metaplasias, and dysplasias were seen 1-8 weeks after initiation of treatment, indicating that the responses of human and rodent epithelial cells to polycyclic aromatic hydrocarbons are similar. Initial experiments with skin and esophageal epithelia suggest that other covering epithelia could also be used in this fashion for evaluation of toxicants and carcinogens that are likely to come into contact with these tissues. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:6821529

  18. Gene Regulation by Retinoid Receptors in Human Mammary Epithelial Cells

    DTIC Science & Technology

    2002-10-01

    Hamann , P. Jenti, B. Imhof, and D. Vestweber. 1993. A death and tissue remodeling during mouse mammary gland involution. De- monoclonal antibody...Cell Growth Differ 10:49-59. Kato J-Y, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ . 1993. Snowden AW, Perkins ND. 1998. Cell cycle regulation of the

  19. Differential effects of vitamin D on normal human prostate epithelial and stromal cells in primary culture.

    PubMed

    Krill, D; Stoner, J; Konety, B R; Becich, M J; Getzenberg, R H

    1999-07-01

    Because epidemiologic evidence has demonstrated that vitamin D may play a role in the etiology of prostate cancer, we tested the inhibitory effect of the biologically active form of vitamin D (1,25-D) on the cell proliferation of human prostate epithelial and stromal cells in a chemically defined situation in the presence and absence of dihydrotestosterone (DHT). We also tested the effect of 1,25-D in castrated rats in the presence and absence of flutamide, an androgen receptor blocker. Prostate stromal and epithelial cells were isolated from freshly collected human prostatectomy specimens, and cell proliferation was measured with the MTT assay. Immunohistochemistry was performed to detect the presence of 1,25-D receptors, androgen receptors, smooth muscle actin, and E-cadherin. For in vivo analysis of 1,25-D, male Sprague-Dawley rats were castrated, then treated with either 1,25-D, 1,25-D with flutamide, or vehicle control. Incubation of primary cultures of prostate epithelial cells with 1,25-D at a concentration of 10(-8) M reduced cell proliferation by 40% of controls. The inhibition of growth by 1,25-D was maintained in the presence of DHT. Conversely, the effect of a similar dose of 1,25-D on stromal cell exposure was increased proliferation. In vivo, 1,25-D increased the prostatic weight of castrated rats that had serum testosterone levels below the detectable limit. The addition of flutamide did not alter this effect. These results confirm that vitamin D may be an effective antiproliferative agent of epithelial cells in prostate cancer therapy and support in vivo studies performed in the normal rat prostate.

  20. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction.

    PubMed

    Mikhailova, Alexandra; Ilmarinen, Tanja; Ratnayake, Anjula; Petrovski, Goran; Uusitalo, Hannu; Skottman, Heli; Rafat, Mehrdad

    2016-05-01

    Corneal epithelium is renewed by limbal epithelial stem cells (LESCs), a type of tissue-specific stem cells located in the limbal palisades of Vogt at the corneo-scleral junction. Acute trauma or inflammatory disorders of the ocular surface can destroy these stem cells, leading to limbal stem cell deficiency (LSCD) - a painful and vision-threatening condition. Treating these disorders is often challenging and complex, especially in bilateral cases with extensive damage. Human pluripotent stem cells (hPSCs) provide new opportunities for corneal reconstruction using cell-based therapy. Here, we investigated the use of hPSC-derived LESC-like cells on bioengineered collagen matrices in serum-free conditions, aiming for clinical applications to reconstruct the corneal epithelium and partially replace the damaged stroma. Differentiation of hPSCs towards LESC-like cells was directed using small-molecule induction followed by maturation in corneal epithelium culture medium. After four to five weeks of culture, differentiated cells were seeded onto bioengineered matrices fabricated as transparent membranes of uniform thickness, using medical-grade porcine collagen type I and a hybrid cross-linking technology. The bioengineered matrices were fully transparent, with high water content and swelling capacity, and parallel lamellar microstructure. Cell proliferation of hPSC-LESCs was significantly higher on bioengineered matrices than on collagen-coated control wells after two weeks of culture, and LESC markers p63 and cytokeratin 15, along with proliferation marker Ki67 were expressed even after 30 days in culture. Overall, hPSC-LESCs retained their capacity to self-renew and proliferate, but were also able to terminally differentiate upon stimulation, as suggested by protein expression of cytokeratins 3 and 12. We propose the use of bioengineered collagen matrices as carriers for the clinically-relevant hPSC-derived LESC-like cells, as a novel tissue engineering approach for

  1. Transplantation of human amniotic epithelial cells repairs brachial plexus injury: pathological and biomechanical analyses

    PubMed Central

    Yang, Qi; Luo, Min; Li, Peng; Jin, Hai

    2014-01-01

    A brachial plexus injury model was established in rabbits by stretching the C6 nerve root. Immediately after the stretching, a suspension of human amniotic epithelial cells was injected into the injured brachial plexus. The results of tensile mechanical testing of the brachial plexus showed that the tensile elastic limit strain, elastic limit stress, maximum stress, and maximum strain of the injured brachial plexuses were significantly increased at 24 weeks after the injection. The treatment clearly improved the pathological morphology of the injured brachial plexus nerve, as seen by hematoxylin eosin staining, and the functions of the rabbit forepaw were restored. These data indicate that the injection of human amniotic epithelial cells contributed to the repair of brachial plexus injury, and that this technique may transform into current clinical treatment strategies. PMID:25657737

  2. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells.

    PubMed

    Elberg, Gerard; Elberg, Dorit; Lewis, Teresa V; Guruswamy, Suresh; Chen, Lijuan; Logan, Charlotte J; Chan, Michael D; Turman, Martin A

    2007-11-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-prostanoid (EP) receptor mediating the PGE2 effect has not been characterized. Our goal is to define the PGE2 receptor subtype involved in ADPKD. We used a three-dimensional cell-culture system of human epithelial cells from normal and ADPKD kidneys in primary cultures to demonstrate that PGE2 induces cyst formation. Biochemical evidence gathered by using real-time RT-PCR mRNA analysis and immunodetection indicate the presence of EP2 receptor in cystic epithelial cells in ADPKD kidney. Pharmacological evidence obtained by using PGE2-selective analogs further demonstrates that EP2 mediates cAMP formation and cystogenesis. Functional evidence for a role of EP2 receptor in mediating cAMP signaling was also provided by inhibiting EP2 receptor expression with transfection of small interfering RNA in cystic epithelial cells. Our results indicate that PGE2 produced in cyst fluid binds to adjacent EP2 receptors located on the apical side of cysts and stimulates EP2 receptor expression. PGE2 binding to EP2 receptor leads to cAMP signaling and cystogenesis by a mechanism that involves protection of cystic epithelial cells from apoptosis. The role of EP2 receptor in mediating the PGE2 effect on stimulating cyst formation may have direct pharmacological implications for the treatment of polycystic kidney disease.

  3. Value of human amniotic epithelial cells in tissue engineering for cornea.

    PubMed

    Fatimah, Simat Siti; Ng, Sook Luan; Chua, Kien Hui; Hayati, Abdul Rahman; Tan, Ay Eeng; Tan, Geok Chin

    2010-11-01

    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.

  4. Cre-mediated reversible immortalization of human renal proximal tubular epithelial cells.

    PubMed

    Kowolik, Claudia M; Liang, Shujian; Yu, Ying; Yee, Jiing-Kuan

    2004-08-05

    Primary human renal proximal tubule epithelial cells (RPTECs) are of limited use for basic research and for clinical applications due to their limited lifespan in culture. Here we used two lentivirus vectors carrying the human telomerase (hTERT) and the SV40T antigen (Tag) flanked by loxP sites to reversibly immortalize RPTECs. Transduced RPTEC clones continued to proliferate while retaining biochemical and functional characteristics of primary cells. The clones exhibited contact-inhibited, anchorage- and growth factor-dependent growth and did not form tumors in nude mice, suggesting that the cells were not transformed. Transient Cre expression in these cells led to efficient proviral deletion, upregulation of some renal specific activities, and decreased growth rates. Ultimately, the cells underwent replicative senescence, indicating intact cell cycle control. Thus, reversible immortalization allows the expansion of human RPTECs, leading to large production of RPTECs that retain most tissue-specific properties.

  5. Effect of Estrogen on Mutagenesis in Human Mammary Epithelial Cells

    DTIC Science & Technology

    2005-06-01

    ER+ cell lines are sensitive to estrogen, we tested whether 17P3-estradiol can stimulate transcriptional activation of an estrogen- responsive...MSI in sporadic colon cancer is transcriptional silencing of the cDNA. Results show that MMR-proficient cells have hMLHI1 gene by methylation of the...three independent experiments.,0 14) 0 a) The asterisk indicates significantd frence (P • 0-05) from other mecan "- " - - values with student t tests

  6. Human bronchial epithelial cells express PAR-2 with different sensitivity to thermolysin.

    PubMed

    Ubl, Joachim J; Grishina, Zoryana V; Sukhomlin, Tatiana K; Welte, Tobias; Sedehizade, Fariba; Reiser, Georg

    2002-06-01

    Protease-activated receptor-2 (PAR-2) plays a role in inflammatory reactions in airway physiology. Proteases cleaving the extracellular NH(2) terminus of receptors activate or inactivate PAR, thus possessing a therapeutic potential. Using RT-PCR and immunocytochemistry, we show PAR-2 in human airway epithelial cell lines human bronchial epithelial (HBE) and A549. Functional expression of PAR-2 was confirmed by Ca(2+) imaging studies using the receptor agonist protease trypsin. The effect was abolished by soybean trypsin inhibitor and mimicked by the specific PAR-2 peptide agonist SLIGKV. Amplitude and duration of PAR-2-elicited Ca(2+) response in HBE and A549 cells depend on concentration and time of agonist superfusion. The response is partially pertussis toxin (PTX) insensitive, abolished by the phospholipase C inhibitor U-73122, and diminished by the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate. Cathepsin G altered neither the resting Ca(2+) level nor PAR-2-elicited Ca(2+) response. Thermolysin, a prototypic bacterial metalloprotease, induced a dose-dependent Ca(2+) response in HBE, but not A549, cells. In both cell lines, thermolysin abolished the response to a subsequent trypsin challenge but not to SLIGKV. Thus different epithelial cell types express different PAR-2 with identical responses to physiological stimuli (trypsin, SLIGKV) but different sensitivity to modifying proteases, such as thermolysin.

  7. Regenerative potential of human airway stem cells in lung epithelial engineering.

    PubMed

    Gilpin, Sarah E; Charest, Jonathan M; Ren, Xi; Tapias, Luis F; Wu, Tong; Evangelista-Leite, Daniele; Mathisen, Douglas J; Ott, Harald C

    2016-11-01

    Bio-engineered organs for transplantation may ultimately provide a personalized solution for end-stage organ failure, without the risk of rejection. Building upon the process of whole organ perfusion decellularization, we aimed to develop novel, translational methods for the recellularization and regeneration of transplantable lung constructs. We first isolated a proliferative KRT5(+)TP63(+) basal epithelial stem cell population from human lung tissue and demonstrated expansion capacity in conventional 2D culture. We then repopulated acellular rat scaffolds in ex vivo whole organ culture and observed continued cell proliferation, in combination with primary pulmonary endothelial cells. To show clinical scalability, and to test the regenerative capacity of the basal cell population in a human context, we then recellularized and cultured isolated human lung scaffolds under biomimetic conditions. Analysis of the regenerated tissue constructs confirmed cell viability and sustained metabolic activity over 7 days of culture. Tissue analysis revealed extensive recellularization with organized tissue architecture and morphology, and preserved basal epithelial cell phenotype. The recellularized lung constructs displayed dynamic compliance and rudimentary gas exchange capacity. Our results underline the regenerative potential of patient-derived human airway stem cells in lung tissue engineering. We anticipate these advances to have clinically relevant implications for whole lung bioengineering and ex vivo organ repair.

  8. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    PubMed Central

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  9. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants.

    PubMed

    Wang, Kai-Hung; Kao, An-Pei; Chang, Chia-Cheng; Lin, Ta-Chin; Kuo, Tsung-Cheng

    2016-01-01

    We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC) from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate) is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40) of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  10. The leukocyte chemotactic receptor FPR1 is functionally expressed on human lens epithelial cells.

    PubMed

    Schneider, Erich H; Weaver, Joseph D; Gaur, Sonia S; Tripathi, Brajendra K; Jesaitis, Algirdas J; Zelenka, Peggy S; Gao, Ji-Liang; Murphy, Philip M

    2012-11-23

    Lens degeneration in Fpr1(-/-) mice prompted us to search for functional FPR1 expression directly on lens epithelial cells. FPR1 is functionally expressed on human lens epithelial cells but has atypical properties compared with hematopoietic cell FPR1. Lens epithelial cell FPR1 may be involved in development and maintenance of the lens. This is the first link between non-hematopoietic expression of FPR1 and an ophthalmologic phenotype. Formyl peptide receptor 1 (FPR1) is a G protein-coupled chemoattractant receptor expressed mainly on leukocytes. Surprisingly, aging Fpr1(-/-) mice develop spontaneous lens degeneration without inflammation or infection (J.-L. Gao et al., manuscript in preparation). Therefore, we hypothesized that FPR1 is functionally expressed directly on lens epithelial cells, the only cell type in the lens. Consistent with this, the human fetal lens epithelial cell line FHL 124 expressed FPR1 mRNA and was strongly FPR1 protein-positive by Western blot and FACS. Competition binding using FPR1 ligands N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys (Nle = Norleucine), formylmethionylleucylphenylalanine, and peptide W revealed the same profile for FHL 124 cells, neutrophils, and FPR1-transfected HEK 293 cells. Saturation binding with fluorescein-labeled N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys revealed ~2500 specific binding sites on FHL-124 cells (K(D) ~ 0.5 nm) versus ~40,000 sites on neutrophils (K(D) = 3.2 nm). Moreover, formylmethionylleucylphenylalanine induced pertussis toxin-sensitive Ca(2+) flux in FHL 124 cells, consistent with classic G(i)-mediated FPR1 signaling. FHL 124 cell FPR1 was atypical in that it resisted agonist-induced internalization. Expression of FPR1 was additionally supported by detection of the intact full-length open reading frame in sequenced cDNA from FHL 124 cells. Thus, FHL-124 cells express functional FPR1, which is consistent with a direct functional role for FPR1 in the lens, as suggested by the phenotype of Fpr1 knock-out mice.

  11. Isolates of the Enterobacter cloacae complex induce apoptosis of human intestinal epithelial cells.

    PubMed

    Krzymińska, Sylwia; Koczura, Ryszard; Mokracka, Joanna; Puton, Tomasz; Kaznowski, Adam

    2010-09-01

    Strains of the Enterobacter cloacae complex are becoming increasingly important human pathogen. The aim of the study was to identify, by sequencing the hsp60 gene, the species of clinical isolates phenotypically identified as E. cloacae and to examine them for virulence-associated properties: the ability of adhesion, invasion to HEp-2 cells and the induced apoptosis of infected epithelial cells. The majority of the strains were identified as Enterobacter hormaechei with E. hormaechei subsp. steigerwaltii being the most frequent subspecies. Other strains belonged to E. hormaechei subsp. oharae, E. cloacae cluster III, and E. cloacae cluster IV. The strains were examined for virulence-associated properties: the ability to adhesion and invasion to HEp-2 cells and the apoptosis induction of infected epithelial cells. All strains revealed adherence ability and most of them (71%) were invasive to epithelial cells. Analyses of cellular morphology and DNA fragmentation in the HEp-2 cells exhibited typical features of cells undergoing apoptosis. We observed morphological changes, including condensation of nuclear chromatin, formation of apoptotic bodies and blebbing of cell membrane. The lowest apoptotic index did not exceed 6%, whereas the highest reached 49% at 24h and 98% at 48 h after infection. Forty strains (73%) induced fragmentation of nuclear DNA and characteristic intranucleosomal pattern with the size of about 180-200 bp in DNA extracted from infected cells at 48 h after infection. The results indicated that the bacteria of the E. cloacae complex may adhere to and penetrate into epithelial cells and induce apoptosis, which could be an important mechanism contributing to the development diseases.

  12. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    USDA-ARS?s Scientific Manuscript database

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  13. Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells.

    PubMed

    Yao, Chunlei; Xie, Changyan; Lin, Peng; Yan, Feng; Huang, Pingbo; Hsing, I-Ming

    2013-12-03

    An organic electrochemical transistor array is integrated with human airway epithelial cells. This integration provides a novel method to couple transepithelial ion transport with electrical current. Activation and inhibition of transepithelial ion transport are readily detected with excellent time resolution. The organic electrochemical transistor array serves as a promising platform for physiological studies and drug testing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    PubMed Central

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  15. Lycium barbarum Polysaccharides Protect Human Lens Epithelial Cells against Oxidative Stress–Induced Apoptosis and Senescence

    PubMed Central

    Wen, Yuechun; Liu, Lian; Guo, Xiaoling; Hou, Guanghui; Wang, Guifang; Zhong, Jingxiang

    2014-01-01

    Objectives We aimed to investigate the protective effect of Lycium barbarum polysaccharides (LBPs) against oxidative stress–induced apoptosis and senescence in human lens epithelial cells. Methods To study apoptosis, SRA01/04 cells, a human lens epithelial cell lines, were exposed to 200 µM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with LBPs. Cell viability was measured using a Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, intracellular reactive oxygen species (ROS), and the loss of mitochondria membrane potential (Δψm) were detected by flow cytometric analyses. Expression levels of Bcl-2 and Bax proteins were measured by western blot analysis. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were quantized using commercial enzymatic kits according to the manufacturer's instructions. To study senescence, SRA01/04 cells were pre-incubated with LBPs and all cells were then exposed to 100 µM H2O2 for 96 h. Cellular senescence was assessed by morphologic examination and senescence-associated β-galactosidase (SA-β-gal) staining. Results LBPs significantly reduced H2O2-induced cell apoptosis, the generation of ROS, the loss of Δψm, and the levels of MDA. LBPs also inhibited H2O2-induced downregulated Bcl-2 and upregulated Bax proteins and increased the levels of SOD and GSH enzyme activity. Moreover, LBPs significantly attenuated H2O2-induced cellular senescence. Conclusions These findings suggested that LBPs protect human lens epithelial cells from H2O2-induced apoptosis by modulating the generation of ROS, loss of Δψm, Bcl-2 family, and antioxidant enzyme activity and attenuating cellular senescence. PMID:25333784

  16. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2017-02-14

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  17. Effect of Hangeshashinto on calprotectin expression in human oral epithelial cells.

    PubMed

    Hiroshima, Yuka; Bando, Mika; Inagaki, Yuji; Kido, Reiko; Kataoka, Masatoshi; Nagata, Toshihiko; Kido, Jun-Ichi

    2016-05-01

    Oral epithelial cells produce antimicrobial peptides (AMPs) to prevent microbial infection. Calprotectin (S100A8/S100A9) is one of these AMPs in oral epithelial cells, the expression of which is up-regulated by interleukin-1α (IL-1α). Hangeshashinto (HST) is a traditional Japanese herbal medicine that has anti-inflammatory effects. The purpose of this study was to investigate the effect of HST on the expression of calprotectin through the regulation of IL-1α in oral epithelial cells. Human oral epithelial cells (TR146) were cultured with HST in the presence or absence of anti-IL-1α antibody or IL-1 receptor antagonist, or with six major components of HST (3,4-dihydroxybenzaldehyde, baicalin, ginsenoside Rb1, glycyrrhizin, oleanolic acid and berberine). The expression of S100A8, S100A9, other AMPs and cytokine mRNAs was examined by RT-PCR and quantitative real-time PCR. Calprotectin expression and IL-1α secretion were investigated by ELISA. HST (6 μg/ml) increased the expression of S100A8/S100A9 mRNAs and calprotectin protein, and also up-regulated β-defensin 2 (DEFB4) and S100A7 expression. The expression of IL-1α mRNA and its protein was slightly but significantly increased by HST. A neutralizing antibody against IL-1α and IL-1 receptor antagonist inhibited HST-up-regulated S100A8/S100A9 mRNA expression. Although 3,4-dihydroxybenzaldehyde, baicalin and ginsenoside Rb1 as HST components increased S100A8/S100A9 expression, oleanolic acid and berberine decreased their expression. These results suggest that HST increases the expression of calprotectin, DEFB4 and S100A7 in oral epithelial cells. In response to HST, up-regulation of calprotectin expression may be partially induced via IL-1α.

  18. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells

    PubMed Central

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S.; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections. PMID:27506372

  19. Arsenic Exposure Transforms Human Epithelial Stem/Progenitor Cells into a Cancer Stem-like Phenotype

    PubMed Central

    Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2010-01-01

    Background Inorganic arsenic is a ubiquitous environmental carcinogen affecting millions of people worldwide. Evolving theory predicts that normal stem cells (NSCs) are transformed into cancer stem cells (CSCs) that then drive oncogenesis. In humans, arsenic is carcinogenic in the urogenital system (UGS), including the bladder and potentially the prostate, whereas in mice arsenic induces multiorgan UGS cancers, indicating that UGS NSCs may represent targets for carcinogenic initiation. However, proof of emergence of CSCs induced by arsenic in a stem cell population is not available. Methods We continuously exposed the human prostate epithelial stem/progenitor cell line WPE-stem to an environmentally relevant level of arsenic (5 μM) in vitro and determined the acquired cancer phenotype. Results WPE-stem cells rapidly acquired a malignant CSC-like phenotype by 18 weeks of exposure, becoming highly invasive, losing contact inhibition, and hypersecreting matrix metalloproteinase-9. When hetero-transplanted, these cells (designated As-CSC) formed highly pleomorphic, aggressive tumors with immature epithelial- and mesenchymal-like cells, suggesting a highly pluripotent cell of origin. Consistent with tumor-derived CSCs, As-CSCs formed abundant free-floating spheres enriched in CSC-like cells, as confirmed by molecular analysis and the fact that only these floating cells formed xenograft tumors. An early loss of NSC self-renewal gene expression (p63, ABCG2, BMI-1, SHH, OCT-4, NOTCH-1) during arsenite exposure was subsequently reversed as the tumor suppressor gene PTEN was progressively suppressed and the CSC-like phenotype acquired. Conclusions Arsenite transforms prostate epithelial stem/progenitor cells into CSC-like cells, indicating that it can produce CSCs from a model NSC population. PMID:20056578

  20. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface.

    PubMed

    Schamberger, Andrea C; Staab-Weijnitz, Claudia A; Mise-Racek, Nikica; Eickelberg, Oliver

    2015-02-02

    The differentiated human airway epithelium consists of different cell types forming a polarized and pseudostratified epithelium. This is dramatically altered in chronic obstructive pulmonary disease (COPD), characterized by basal and goblet cell hyperplasia, and squamous cell metaplasia. The effect of cigarette smoke on human bronchial epithelial cell (HBEC) differentiation remains to be elucidated. We analysed whether cigarette smoke extract (CSE) affected primary (p)HBEC differentiation and function. pHBEC were differentiated at the air-liquid interface (ALI) and differentiation was quantified after 7, 14, 21, or 28 days by assessing acetylated tubulin, CC10, or MUC5AC for ciliated, Clara, or goblet cells, respectively. Exposure of differentiating pHBEC to CSE impaired epithelial barrier formation, as assessed by resistance measurements (TEER). Importantly, CSE exposure significantly reduced the number of ciliated cells, while it increased the number of Clara and goblet cells. CSE-dependent cell number changes were reflected by a reduction of acetylated tubulin levels, an increased expression of the basal cell marker KRT14, and increased secretion of CC10, but not by changes in transcript levels of CC10, MUC5AC, or FOXJ1. Our data demonstrate that cigarette smoke specifically alters the cellular composition of the airway epithelium by affecting basal cell differentiation in a post-transcriptional manner.

  1. Apoptosis induction of human endometriotic epithelial and stromal cells by noscapine

    PubMed Central

    Khazaei, Mohammad Rasoul; Rashidi, Zahra; Chobsaz, Farzaneh; Khazaei, Mozafar

    2016-01-01

    Objective(s): Endometriosis is a complex gynecologic disease with unknown etiology. Noscapine has been introduced as a cancer cell suppressor. Endometriosis was considered as a cancer like disorder, The aim of present study was to investigate noscapine apoptotic effect on human endometriotic epithelial and stromal cells in vitro. Materials and Methods: In this in vitro study, endometrial biopsies from endometriosis patients (n=9) were prepared and digested by an enzymatic method (collagenase I, 2 mg/ml). Stromal and epithelial cells were separated by sequential filtration through a cell strainer and ficoll layering. The cells of each sample were divided into five groups: control (0), 10, 25, 50 and 100 micromole/liter (µM) concentration of noscapine and were cultured for three different periods of times; 24, 48 and 72 hr. Cell viability was assessed by colorimetric assay. Nitric oxide (NO) concentration was measured by Griess reagent. Cell death was analyzed by Acridine Orange (AO)–Ethidium Bromide (EB) double staining and Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay. Data were analyzed by one-way ANOVA. Results: Viability of endometrial epithelial and stromal cells significantly decreased in 10, 25, 50 and 100 µM noscapine concentration in 24, 48, 72 hr (P<0.05) and apoptotic index increased in 25, 50 and 100 µM noscapine concentrations in 48 hr significantly (P<0.05). Concentrations of NO didn’t show a significant decrease. Conclusion: Noscapine increased endometriotic epithelial and stromal cell death and can be suggested as a treatment for endometriosis. PMID:27803780

  2. PM10-stimulated airway epithelial cells activate primary human dendritic cells independent of uric acid: application of an in vitro model system exposing dendritic cells to airway epithelial cell-conditioned media.

    PubMed

    Hirota, Jeremy A; Alexis, Neil E; Pui, Mandy; Wong, SzeWing; Fung, Elkie; Hansbro, Phillip; Knight, Darryl A; Sin, Don D; Carlsten, Chris

    2014-08-01

    Airway epithelial cells represent the first line of defence against inhaled insults, including air pollution. Air pollution can activate innate immune signalling in airway epithelial cells leading to the production of soluble mediators that can influence downstream inflammatory cells. Our objective was to develop and validate a model of dendritic cell exposure to airway epithelial cell-conditioned media. After establishing the model, we explored how soluble mediators released from airway epithelial cells in response to air pollution influenced the phenotype of dendritic cells. Human airway epithelial cells were cultured under control and urban particulate matter (PM10) exposure conditions with or without pharmacological inhibitors of the uric acid pathway. Culture supernatants were collected for conditioned media experiments with peripheral blood mononuclear cell-derived dendritic cells analysed by flow cytometry. Monocytes derived from peripheral blood mononuclear cells cultured in interleukin-4 and granulocyte macrophage colony stimulating factor differentiated into immature dendritic cells that phenotypically differentiated into mature dendritic cells in response to conditioned media from phorbol myristate acetate-activated THP-1 monocytes. Exposure of immature dendritic cells to conditioned media from airway epithelial cells exposed to PM10 resulted in dendritic cell maturation that was independent of uric acid. We present a conditioned media model useful for interrogating the contribution of soluble mediators produced by airway epithelial cells to dendritic cell phenotype and function. Furthermore, we demonstrate that PM10 exposure induces airway epithelial cell production of soluble mediators that induce maturation of dendritic cells independent of uric acid. © 2014 Asian Pacific Society of Respirology.

  3. Isolation of Human Amnion Epithelial Cells According to Current Good Manufacturing Procedures.

    PubMed

    Gramignoli, Roberto; Srinivasan, Raghuraman C; Kannisto, Kristina; Strom, Stephen C

    2016-05-12

    Different cell types can be isolated from human placental tissues, and some have been reported to retain phenotypic plasticity and characteristics that make them a promising source of cells for regenerative medicine. Among these are human amnion epithelial cells (hAECs). Adoption of current good manufacturing practices (cGMP) and enhanced quality control is essential when isolating hAECs in order to deliver a safe and effective cellular product for clinical purposes. This unit describes a detailed protocol for selective isolation of hAECs from human term placenta with little to no contamination by other cell types. A method for characterizing the heterogeneity of the hAEC suspension is also provided. The resulting cell product will be useful for clinical as well as basic research applications. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  4. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  6. Effects of hexamethylene diisocyanate exposure on human airway epithelial cells: in vitro cellular and molecular studies.

    PubMed Central

    Wisnewski, Adam V; Liu, Qing; Miller, Jing-Jing; Magoski, Nadine; Redlich, Carrie A

    2002-01-01

    In this study we developed an in vitro exposure model to investigate the effects of hexamethylene diisocyanate (HDI) on human airway epithelial cells at the cellular and molecular level. We used immunofluorescence analysis (IFA) to visualize the binding and uptake of HDI by airway epithelial cell lines (A549 and NCI-NCI-H292) and microarray technology to identify HDI sensitive genes. By IFA, we observed that subcytotoxic concentrations of HDI form microscopic micelles that appear to be taken up by cells over a 3-hr period postexposure. Microarray analysis (4.6K genes) of parallel cultures identified four genes (thioredoxin reductase, dihydrodiol dehydrogenase, TG interacting factor, and stanniocalcin) whose mRNA levels were up-regulated after HDI exposure. Northern analysis was used to confirm that HDI increased message levels of these four genes and to further explore the dose dependence and kinetics of the response. The finding that HDI exposure increases thioredoxin reductase expression supports previous studies suggesting that HDI alters thiol-redox homeostasis, an important sensor of cellular stress. Another of the HDI-increased genes, a dihydrodiol dehydrogenase, encodes a protein previously shown to be specifically susceptible to HDI conjugation, and known to detoxify other hydrocarbons. Together, the data describe a novel approach for investigating the effects of HDI binding and uptake by human airway epithelial cells and begin to identify genes that may be involved in the acute response to exposure. PMID:12204825

  7. Toluene diisocyanate colocalizes with tubulin on cilia of differentiated human airway epithelial cells.

    PubMed

    Lange, R W; Lantz, R C; Stolz, D B; Watkins, S C; Sundareshan, P; Lemus, R; Karol, M H

    1999-07-01

    Toluene diisocyanate (TDI), a highly reactive industrial chemical with widespread use in the manufacture of polyurethane and plastics, is the leading cause of occupational asthma associated with chemical exposure. We report the effects of TDI vapor (20, 100, 500, 1000 ppb) in vitro on differentiated human bronchial epithelial cells. Increased mucus was observed by electron microscopy at all TDI concentrations. Cytotoxicity, as evidenced by cell pyknosis and DNA fragmentation, was detected following a 30-min exposure to TDI concentrations of 100 ppb or higher. At 1000 ppb, transepithelial resistance was lost. Using confocal microscopy and double staining, TDI was found colocalized with ciliary tubulin in cultures that had been exposed to 20 and 100 ppb. These findings are the first to identify TDI binding to human pulmonary epithelial cells and indicate extensive binding to the cilia of differentiated epithelial cells. The in vivo implications of these findings include decreased ciliary movement and longer retention of TDI and hence increased exposure. Altered cytoskeletal-derived signal transduction may be a consequence of tubulin involvement. The effects of such changes on respiratory sensitization remain to be explored.

  8. Translocation of Ricin Across Polarized Human Bronchial Epithelial Cells

    DTIC Science & Technology

    2009-01-01

    Elsevier Ltd.1. Introduction Native to tropical east Africa, castor bean plants ( Ricinus communis ) are commercially cultivated in many areas of the...junctions permitted toxin to move around the cells, thus gaining entry by paracellular diffusion. 2. Materials and methods 2.1. Materials Ricinus communis ...x: þ1 301 610 2348. .L. Hale). er Ltd.Ricinus communis agglutinin II (ricin) belongs to the type 2 ribosome-inactivating protein family consisting of

  9. Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells

    PubMed Central

    Konishi, Satoshi; Gotoh, Shimpei; Tateishi, Kazuhiro; Yamamoto, Yuki; Korogi, Yohei; Nagasaki, Tadao; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Ito, Isao; Tsukita, Sachiko; Mishima, Michiaki

    2015-01-01

    Summary Multi-ciliated airway cells (MCACs) play a role in mucociliary clearance of the lung. However, the efficient induction of functional MCACs from human pluripotent stem cells has not yet been reported. Using carboxypeptidase M (CPM) as a surface marker of NKX2-1+-ventralized anterior foregut endoderm cells (VAFECs), we report a three-dimensional differentiation protocol for generating proximal airway epithelial progenitor cell spheroids from CPM+ VAFECs. These spheroids could be induced to generate MCACs and other airway lineage cells without alveolar epithelial cells. Furthermore, the directed induction of MCACs and of pulmonary neuroendocrine lineage cells was promoted by adding DAPT, a Notch pathway inhibitor. The induced MCACs demonstrated motile cilia with a “9 + 2” microtubule arrangement and dynein arms capable of beating and generating flow for mucociliary transport. This method is expected to be useful for future studies on human airway disease modeling and regenerative medicine. PMID:26724905

  10. Isolation of alveolar epithelial type II progenitor cells from adult human lungs

    PubMed Central

    Fujino, Naoya; Kubo, Hiroshi; Suzuki, Takaya; Ota, Chiharu; Hegab, Ahmed E; He, Mei; Suzuki, Satoshi; Suzuki, Takashi; Yamada, Mitsuhiro; Kondo, Takashi; Kato, Hidemasa; Yamaya, Mutsuo

    2011-01-01

    Resident stem/progenitor cells in the lung are important for tissue homeostasis and repair. However, a progenitor population for alveolar type II (ATII) cells in adult human lungs has not been identified. The aim of this study is to isolate progenitor cells from adult human lungs with the ability to differentiate into ATII cells. We isolated colony-forming cells that had the capability for self-renewal and the potential to generate ATII cells in vitro. These undifferentiated progenitor cells expressed surface markers of mesenchymal stem cells (MSCs) and surfactant proteins associated with ATII cells, such as CD90 and pro-surfactant protein-C (pro-SP-C), respectively. Microarray analyses indicated that transcripts associated with lung development were enriched in the pro-SP-C+/CD90+ cells compared with bone marrow-MSCs. Furthermore, pathological evaluation indicated that pro-SP-C and CD90 double-positive cells were present within alveolar walls in normal lungs, and significantly increased in ATII cell hyperplasias contributing to alveolar epithelial repair in damaged lungs. Our findings demonstrated that adult human lungs contain a progenitor population for ATII cells. This study is a first step toward better understanding of stem cell biology in adult human lung alveoli. PMID:21079581

  11. Lycium barbarum polysaccharides protected human retinal pigment epithelial cells against oxidative stress-induced apoptosis

    PubMed Central

    Liu, Lian; Lao, Wei; Ji, Qing-Shan; Yang, Zhi-Hao; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2015-01-01

    AIM To investigate the protective effect and its mechanism of lycium barbarum polysaccharides (LBP) against oxidative stress-induced apoptosis in human retinal pigment epithelial cells. METHODS ARPE-19 cells, a human retinal pigment epithelial cell lines, were exposed to different concentrations of H2O2 for 24h, then cell viability was measured by Cell Counting Kit-8 (CCK-8) assay to get the properly concentration of H2O2 which can induce half apoptosis of APRE-19. With different concentrations of LBP pretreatment, the ARPE-19 cells were then exposed to appropriate concentration of H2O2, cell apoptosis was detected by flow cytometric analysis. Expression levels of Bcl-2 and Bax were measured by real time quantitative polymerase chain reaction (RT-PCR) technique. RSULTS LBP significantly reduced the H2O2-induced ARPE-19 cells' apoptosis. LBP inhibited the H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax. CONCLUSION LBP could protect ARPE-19 cells from H2O2-induced apoptosis. The Bcl-2 family had relationship with the protective effects of LBP. PMID:25709900

  12. Interleukin-13 interferes with CFTR and AQP5 expression and localization during human airway epithelial cell differentiation

    SciTech Connect

    Skowron-zwarg, Marie; Boland, Sonja; Caruso, Nathalie; Coraux, Christelle; Marano, Francelyne; Tournier, Frederic . E-mail: f-tournier@paris7.jussieu.fr

    2007-07-15

    Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.

  13. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  14. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  15. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer Development

    DTIC Science & Technology

    2014-06-01

    expression by RT-PCR showed that while human dermal fibroblasts have higher constitutive expression of Nanog, Oct4 and Sox2 compared to IMP90 cells...REPORT U b . ABSTRACT U c. THIS PAGE U UU 12 19b. TELEPHONE NUMBER (include area code) 4 TABLE OF CONTENTS: Item...mechanistic insights into prostate epithelial cell development can be gained. 8 a. DPYS DAY!O b . c. Fig. 1. Differentiation of human iPSC to

  16. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    SciTech Connect

    Huang, Chunrong; Zheng, Haichong; He, Wanmei; Lu, Guifang; Li, Xia; Deng, Yubin; Zeng, Mian

    2016-05-20

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activated the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.

  17. Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration.

    PubMed

    Park, Jeong Hun; Park, Ju Young; Nam, Inn-Chul; Hwang, Se-Hwan; Kim, Choung-Soo; Jung, Jin Woo; Jang, Jinah; Lee, Hyungseok; Choi, Yeongjin; Park, Sun Hwa; Kim, Sung Won; Cho, Dong-Woo

    2015-10-01

    Rapid functional epithelial regeneration on the luminal surface is essential when using artificial tracheal grafts to repair tracheal defects. In this study, we imposed human turbinate mesenchymal stromal cell (hTMSC) sheets for tracheal epithelial regeneration, and then assessed their potential as a new clinical cell source. In vitro, hTMSCs sheets showed high capacity to differentiate into tracheal epithelium. We fabricated a poly(ε-caprolactone) (PCL) tracheal graft by indirect three-dimensional (3D) printing technique and created a composite construct by transplanting the hTMSC sheets to its luminal surface of the tracheal graft, then applied this tissue-engineered tracheal graft to non-circumferential tracheal reconstruction in a rabbit model. 4 weeks after implantation, the luminal surface of tissue-engineered tracheal graft was covered by a mature and highly-ciliated epithelium, whereas tracheal grafts without hTMSC sheets were covered by only a thin, immature epithelium. Therefore, hTMSC sheets on the luminal surface of a tissue-engineered tracheal graft can accelerate the tracheal epithelial regeneration, and the tissue-engineered tracheal graft with hTMSC sheets provides a useful clinical alternative for tracheal epithelial regeneration.

  18. Effects of conditioned media from human amniotic epithelial cells on corneal alkali injuries in rabbits

    PubMed Central

    Kim, Tae-Hyun; Park, Young-Woo; Ahn, Jae-Sang; Ahn, Jeong-Taek; Kim, Se-Eun; Jeong, Man-Bok; Seo, Min-Su; Kang, Kyung-Sun

    2013-01-01

    This study was performed to evaluate the effects of conditioned media (CM) from human amniotic epithelial cells (HAECs) on the corneal wound healing process. Eighteen rabbits (36 eyes) were used and randomly assigned to three groups according treatment: CM from HAECs (group 1), vehicle alone (group 2), and saline (group 3). Corneal alkali injuries were induced with 1 N sodium hydroxide. Each reagent used for treatment evaluation was injected into the dorsal bulbar subconjunctiva and the area of the corneal epithelial defect was measured every other day. Two animals from each group were euthanized at a time on days 3, 7, and 15, and the cornea was removed for histological examination. The sum of the epithelial defect areas measured on day 0 to day 6 as well as day 0 to day 14 in group 1 was significantly smaller than those of other groups. Histological examination revealed that the group 1 corneas had less inflammatory cell infiltration and showed more intact epithelial features compared to the other groups. These results suggest that CM from HAECs promote corneal wound healing in rabbits. PMID:23388445

  19. Cell-to-Cell Contact and Nectin-4 Govern Spread of Measles Virus from Primary Human Myeloid Cells to Primary Human Airway Epithelial Cells

    PubMed Central

    Singh, Brajesh K.; Li, Ni; Mark, Anna C.; Mateo, Mathieu; Cattaneo, Roberto

    2016-01-01

    ABSTRACT Measles is a highly contagious, acute viral illness. Immune cells within the airways are likely first targets of infection, and these cells traffic measles virus (MeV) to lymph nodes for amplification and subsequent systemic dissemination. Infected immune cells are thought to return MeV to the airways; however, the mechanisms responsible for virus transfer to pulmonary epithelial cells are poorly understood. To investigate this process, we collected blood from human donors and generated primary myeloid cells, specifically, monocyte-derived macrophages (MDMs) and dendritic cells (DCs). MDMs and DCs were infected with MeV and then applied to primary cultures of well-differentiated airway epithelial cells from human donors (HAE). Consistent with previous results obtained with free virus, infected MDMs or DCs were incapable of transferring MeV to HAE when applied to the apical surface. Likewise, infected MDMs or DCs applied to the basolateral surface of HAE grown on small-pore (0.4-μm) support membranes did not transfer virus. In contrast, infected MDMs and DCs applied to the basolateral surface of HAE grown on large-pore (3.0-μm) membranes successfully transferred MeV. Confocal microscopy demonstrated that MDMs and DCs are capable of penetrating large-pore membranes but not small-pore membranes. Further, by using a nectin-4 blocking antibody or recombinant MeV unable to enter cells through nectin-4, we demonstrated formally that transfer from immune cells to HAE occurs in a nectin-4-dependent manner. Thus, both infected MDMs and DCs rely on cell-to-cell contacts and nectin-4 to efficiently deliver MeV to the basolateral surface of HAE. IMPORTANCE Measles virus spreads rapidly and efficiently in human airway epithelial cells. This rapid spread is based on cell-to-cell contact rather than on particle release and reentry. Here we posit that MeV transfer from infected immune cells to epithelial cells also occurs by cell-to-cell contact rather than through cell

  20. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    SciTech Connect

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois . E-mail: Jean-Francois.Beaulieu@USherbrooke.ca

    2006-03-31

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells.

  1. [Effect of decontaminating solutions on titanium surface: an in vitro study of human epithelial cell culture].

    PubMed

    Ungvári, Krisztina; Pelsoczi, K István; Kormos, Bernadett; Oszkó, Albert; Radnai, Márta; Nagy, Katalin; Fazekas, András; Turzó, Kinga

    2011-03-01

    The effects of three different decontaminating solutions in clinical use for peri-implantitis therapy on the chemical structure and surface roughness of commercially pure (CP) Ti were investigated. A further aim was to survey the response of the biological environment to these changes, by examining the attachment and proliferation of human epithelial cells after treatment of the Ti surfaces with these solutions. CP (grade 4) machined titanium discs (CAMLOG Biotechnologies AG, Switzerland) were treated with 3% H2O2 (5 min), saturated citric acid (pH = 1; 1 min) or chlorhexidine gel (CHX, 5 min). The surface properties were followed through the use of X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The epithelial cell attachment and proliferation was examined by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bicinchoninic acid (BCA) protein-content assays. XPS showed an intact TiO2 layer on each sample and CHX was adsorbed by the surface, as C-O and/or C=O bond formation was revealed. AFM results gave no significant changes in the roughness after treating the surfaces with the cleaning solutions. While MTT and BCA assays did not show significant differences in epithelial cell attachments, the cell proliferation was significantly increased after H2O2 treatment as compared to CHX (not shown by BCA assays). The applied decontaminating agents do not damage the Ti surface. H2O2 can be used effectively in decontaminating the implants affected by peri-implantitis, as the human epithelial cell growth was improved, in contrast with CHX.

  2. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering.

    PubMed

    Butler, Colin R; Hynds, Robert E; Gowers, Kate H C; Lee, Dani Do Hyang; Brown, James M; Crowley, Claire; Teixeira, Vitor H; Smith, Claire M; Urbani, Luca; Hamilton, Nicholas J; Thakrar, Ricky M; Booth, Helen L; Birchall, Martin A; De Coppi, Paolo; Giangreco, Adam; O'Callaghan, Christopher; Janes, Sam M

    2016-07-15

    Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. To define a scalable cell culture system to deliver airway epithelium to clinical grafts. Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.

  3. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    NASA Astrophysics Data System (ADS)

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S. P.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-06-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.Inhaled nanoparticles have a high deposition rate in

  4. Alteration of transcriptional profile in human bronchial epithelial cells induced by cigarette smoke condensate.

    PubMed

    Hu, Ying-Chun; Yang, Zhi-Hua; Zhong, Ke-Jun; Niu, Li-Jing; Pan, Xiu-Jie; Wu, De-Chang; Sun, Xian-Jun; Zhou, Ping-Kun; Zhu, Mao-Xiang; Huo, Yan-Ying

    2009-10-08

    Despite the significance of cigarette smoke for carcinogenesis, the molecular mechanisms that lead to increased susceptibility of human cancers are not well-understood. In our present study, the oncogenic transforming effects of cigarette smoke condensate (CSC) were examined using papillomavirus-immortalized human bronchial epithelial cells (BEP2D). Growth kinetics, saturation density, resistance to serum-induced terminal differentiation, anchorage-independent growth and tumorigenicity in nude mice were used to investigate the various stages of transformation in BEP2D cells. Illumina microarray platforms were used to explore the CSC-induced alteration of global mRNA expression profiles of the earlier period and the advanced stage of CSC-treated BEP2D cells. We showed here that a series of sequential steps arose among CSC-treated immortalized human bronchial epithelial cells, including altered growth kinetics, resistance to serum-induced terminal differentiation, and anchorage-independence growth. In the earlier period of CSC treatment, 265 genes were down-regulated and 63 genes were up-regulated, respectively, and in the advanced stage of CSC treatment, 313 genes were down-regulated and 145 genes were up-regulated, respectively. Notably, among those genes, the expression of some of imprinted genes such as IGF2, NDN, H19 and MEG3 were all silenced or down-regulated in CSC-treated cells. These genes reactivated after 5 microM 5-aza-2-deoxycytidine (5-aza-dC) treatment. These results demonstrated that long-term treatment of human bronchial epithelial cells with CSC may adversely affect their genetic and epigenetic integrity and lead to further transformation.

  5. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells.

    PubMed

    Lee, John K; Phillips, John W; Smith, Bryan A; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M; Shokat, Kevan M; Gustafson, W Clay; Huang, Jiaoti; Witte, Owen N

    2016-04-11

    MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.

  6. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells

    PubMed Central

    Lee, John K.; Phillips, John W.; Smith, Bryan A.; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F.; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G.; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Shokat, Kevan M.; Gustafson, W. Clay; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    SUMMARY MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  7. Neisserial Heparin Binding Antigen (NHBA) Contributes to the Adhesion of Neisseria meningitidis to Human Epithelial Cells

    PubMed Central

    Vacca, Irene; Del Tordello, Elena; Gasperini, Gianmarco; Pezzicoli, Alfredo; Di Fede, Martina; Rossi Paccani, Silvia; Marchi, Sara; Mubaiwa, Tsisti D.; Hartley-Tassell, Lauren E.; Jennings, Michael P.; Seib, Kate L.; Masignani, Vega; Pizza, Mariagrazia; Serruto, Davide; Aricò, Beatrice; Delany, Isabel

    2016-01-01

    Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization. PMID:27780200

  8. A beta-linked mannan inhibits adherence of Pseudomonas aeruginosa to human lung epithelial cells.

    PubMed

    Azghani, A O; Williams, I; Holiday, D B; Johnson, A R

    1995-02-01

    Adherence through carbohydrate-binding adhesins is an early step in colonization of the lung by gram-negative organisms, and because published data indicate that binding involves mannose groups, we tested the ability of a beta-linked acetyl-mannan (acemannan) to inhibit adherence of Pseudomonas aeruginosa to cultures of human lung epithelial cells. Adherence of radiolabelled P.aeruginosa to A549 cells (a type II-like pneumocyte line) increased linearly with the duration of the incubation. Acemannan inhibited adherence of bacteria, and the extent of inhibition was related to the concentration of the mannan. Inhibition required continued contact between acemannan and the target epithelial cells; cells washed free of acemannan no longer discouraged bacterial binding. Comparison of binding between seven different strains of P.aeruginosa indicated that fewer mucoid than non-mucoid bacteria adhered, but binding of either phenotype was inhibited by acemannan. Mannose, methyl alpha-D-mannopyranoside, methyl beta-D-mannopyranoside and dextran did not affect adherence of any of the non-mucoid strains. Mannose inhibited adherence by one mucoid strain, but not the other, indicating differences between strains of the same phenotype. Since prior treatment of epithelial cells with concanavalin A did not affect acemannan-induced inhibition of bacterial adherence, we concluded that the inhibitory effect of acemannan probably does not involve mannose-containing receptors.

  9. Human myosin-Vc is a novel class V myosin expressed in epithelial cells.

    PubMed

    Rodriguez, Olga C; Cheney, Richard E

    2002-03-01

    Class V myosins are one of the most ancient and widely distributed groups of the myosin superfamily and are hypothesized to function as motors for actin-dependent organelle transport. We report the discovery and initial characterization of a novel member of this family, human myosin-Vc (Myo5c). The Myo5c protein sequence shares approximately 50% overall identity with the two other class V myosins in vertebrates, myosin-Va (Myo5a) and myosin-Vb (Myo5b). Systematic analysis of the mRNA and protein distribution of these myosins indicates that Myo5a is most abundant in brain, whereas Myo5b and Myo5c are expressed chiefly in non-neuronal tissues. Myo5c is particularly abundant in epithelial and glandular tissues including pancreas, prostate, mammary, stomach, colon and lung. Immunolocalization in colon and exocrine pancreas indicates that Myo5c is expressed chiefly in epithelial cells. A dominant negative approach using a GFP-Myo5c tail construct in HeLa cells reveals that the Myo5c tail selectively colocalizes with and perturbs a membrane compartment containing the transferrin receptor and rab8. Transferrin also accumulates in this compartment, suggesting that Myo5c is involved in transferrin trafficking. As a class V myosin of epithelial cells, Myo5c is likely to power actin-based membrane trafficking in many physiologically crucial tissues of the human body.

  10. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.

    PubMed

    Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B

    2017-08-31

    Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.

  11. Differential effects of human papillomavirus type 6, 16, and 18 DNAs on immortalization and transformation of human cervical epithelial cells

    SciTech Connect

    Pecoraro, G.; Morgan, D.; Defendi, V. )

    1989-01-01

    The human papillomaviruses (HPVs) are associated with specific benign and malignant lesions of the skin and mucosal epithelia. Cloned viral DNAs from HPV types 6b, 16, and 18 associated with different pathological manifestations of genital neoplasia in vivo were introduced into primary human cervical epithelial cells by electroporation. Cells transfected with HPV16 or HPV18 DNA acquired indefinite lifespans, distinct morphological alterations, and anchorage-independent growth (HPV18), and contain integrated transcriptionally active viral genomes. HPV6b or plasmid electroporated cells senesced at low passage. The alterations in growth and differentiation of the cells appear to reflect the progressive oncogenic processes that result in cervical carcinoma in vivo.

  12. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    PubMed

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  13. Pulmonary surfactant mitigates silver nanoparticle toxicity in human alveolar type-I-like epithelial cells.

    PubMed

    Sweeney, Sinbad; Leo, Bey Fen; Chen, Shu; Abraham-Thomas, Nisha; Thorley, Andrew J; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Shaffer, Milo S P; Chung, Kian Fan; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2016-09-01

    Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25μg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells.

    PubMed

    Maciejewski, Barbara A; Jamieson, Kyla C; Arnason, Jason W; Kooi, Cora; Wiehler, Shahina; Traves, Suzanne L; Leigh, Richard; Proud, David

    2017-05-01

    Exacerbations of chronic obstructive pulmonary disease are triggered by viral or bacterial pathogens, with human rhinovirus (HRV) and nontypeable Hemophilus influenzae (NTHI) among the most commonly detected pathogens. Patients who suffer from concomitant viral and bacterial infection have more severe exacerbations. The airway epithelial cell is the initial site of viral and bacterial interactions, and CCL20 is an epithelial chemokine that attracts immature dendritic cells to the airways and can act as an antimicrobial. As such, it contributes to innate and adaptive immune responses to infection. We used primary cultures of human bronchial epithelial cells and the BEAS-2B cell line to examine the effects of bacterial-viral coexposure, as well as each stimulus alone, on epithelial expression of CXCL8 and, in particular, CCL20. HRV-bacterial coexposure induced synergistic production of CXCL8 and CCL20 compared with the sum of each stimulus alone. Synergistic induction of CCL20 did not require viral replication and occurred with two different HRV serotypes that use different viral receptors. Synergy was also seen with either NTHI or Pseudomonas aeruginosa Synergistic induction of CCL20 was transcriptionally regulated. Although NF-κB was required for transcription, it did not regulate synergy, but NF-IL-6 did appear to contribute. Among MAPK inhibitors studied, neither SB203580 nor PD98059 had any effect on synergy, whereas U0126 prevented synergistic induction of CCL20 by HRV and bacteria, apparently via "off-target" effects. Thus bacterial-viral coexposure synergistically increases innate immune responses compared with individual infections. We speculate that this increased inflammatory response leads to worse clinical outcomes. Copyright © 2017 the American Physiological Society.

  15. Human Airway Primary Epithelial Cells Show Distinct Architectures on Membrane Supports Under Different Culture Conditions.

    PubMed

    Min, Kyoung Ah; Rosania, Gus R; Shin, Meong Cheol

    2016-06-01

    To facilitate drug development for lung delivery, it is highly demanding to establish appropriate airway epithelial cell models as transport barriers to evaluate pharmacokinetic profiles of drug molecules. Besides the cancer-derived cell lines, as the primary cell model, normal human bronchial epithelial (NHBE) cells have been used for drug screenings because of physiological relevance to in vivo. Therefore, to accurately interpret drug transport data in NHBE measured by different laboratories, it is important to know biophysical characteristics of NHBE grown on membranes in different culture conditions. In this study, NHBE was grown on the polyester membrane in a different medium and its transport barrier properties as well as cell architectures were fully characterized by functional assays and confocal imaging throughout the days of cultures. Moreover, NHBE cells on inserts in a different medium were subject to either of air-interfaced culture (AIC) or liquid-covered culture (LCC) condition. Cells in the AIC condition were cultivated on the membrane with medium in the basolateral side only, whereas cells with medium in apical and basolateral sides under the LCC condition. Quantitative microscopic imaging with biophysical examination revealed distinct multilayered architectures of differentiated NHBE cells, suggesting NHBE as functional cell barriers for the lung-targeting drug transport.

  16. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  17. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation.

    PubMed

    Martínez-García, Eva; Irigoyen, Marta; Ansó, Elena; Martínez-Irujo, Juan José; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 muM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  18. Unique growth pattern of human mammary epithelial cells induced by polymeric nanoparticles

    PubMed Central

    Hussien, Rajaa; Rihn, Bertrand H; Eidi, Housam; Ronzani, Carole; Joubert, Olivier; Ferrari, Luc; Vazquez, Oscar; Kaufer, Daniela; Brooks, George A

    2013-01-01

    Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs’ interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric Eudragit® RS NPs (ENPs) for 1–3 days. Cells displayed dose-dependent increases in metabolic activity and growth, but lower proliferation rates, than control cells, as evidenced in tetrazolium salt (WST-1) and 5-bromo-2′-deoxyuridine (BrdU) assays, respectively. Those effects did not affect cell death or mitochondrial fragmentation. We attribute the increase in metabolic activity and growth of cells culture with ENPs to three factors: (1) high affinity of proteins present in the serum for ENPs, (2) adhesion of ENPs to cells, and (3) activation of proliferation and growth pathways. The proteins and genes responsible for stimulating cell adhesion and growth were identified by mass spectrometry and Microarray analyses. We demonstrate a novel property of ENPs, which act to increase cell metabolic activity and growth and organize epithelial cells in the epithelium as determined by Microarray analysis. PMID:24303146

  19. Antiapoptotic effects of estrogen in normal and cancer human cervical epithelial cells.

    PubMed

    Wang, Qifang; Li, Xin; Wang, Liqin; Feng, Ying-Hong; Zeng, Robin; Gorodeski, George

    2004-12-01

    The present study investigated the antiapoptotic effects of estrogen in normal and cancer human cervical cells and the mechanisms involved. Baseline apoptosis in human cervical epithelial cells is mediated predominantly by P2X7-receptor-induced, Ca(2+)-dependent activation of the mitochondrial (caspase-9) pathway. Treatment with 10 nM 17beta-estradiol blocked apoptosis induced by the P2X7-receptor ligands ATP and 2',3'-0-(4-benzoylbenzoyl)-ATP in normal human cervical epithelial cells (hECEs) and attenuated the effect in hECEs immortalized with human papillomavirus-16 (ECE16-1) and the cancer cervical cells HT3 and CaSki. Diethylstilbestrol and to a lesser degree estrone could mimic the effects of 17beta-estradiol, whereas actinomycin-D and cycloheximide attenuated the response. The antiapoptotic effect of estrogen did not depend on cell cycle phase, and in both normal and cancer cervical cells, it involved attenuation of activation of caspase-9 and the terminal caspase-3. However, involvement of cascades upstream to the caspase-9 differed in normal vs. cancer cervical cells. In the normal hECEs estrogen blocked P2X7-receptor-induced calcium influx. In contrast, in the cancer CaSki cells, estrogen up-regulated expression of Bcl-2 and attenuated Ca(2+)-induced mitochondrial swelling (i.e. formation of mitochondrial permeability transition pores). Estrogen had no effect on P2X7-receptor-induced apoptosis in the anaplastic SiHa and Hela cells. These results point to a novel antiapoptotic effect of estrogen in the cervix that is independent of its mitogenic function. The results also suggest that cancer cervical cells evolved antiapoptotic mechanisms that enable the cells to evade apoptosis and could therefore promote tumor progression.

  20. Human VAT-1: a calcium-regulated activation marker of human epithelial cells.

    PubMed

    Koch, Judith; Foekens, John; Timmermans, Mieke; Fink, Wolfram; Wirzbach, Alexander; Kramer, Michael D; Schaefer, Birgit M

    2003-09-01

    Human VAT-1 (hVAT-1) is a homologue of the synaptic vesicle membrane protein of Torpedo californica. Its coding gene is located near the BRCA1 locus and thus hVAT-1 may be linked to an inherited predisposition to breast and ovary cancer. However, the hVAT-1 protein expression pattern in normal epithelial tissues such as skin, mammary gland and ovary, as well as in tumours of the mammary gland and ovary, has not been studied. To address this issue, an immunohistological analysis of biopsies of normal epidermis and lesional epidermis of bullous pemphigoid and pemphigus vulgaris patients was undertaken. hVAT-1-expression was observed in basal keratinocytes of lesional epidermis of bullous pemphigoid patients but not in normal epidermis or in lesional epidermis of pemphigus vulgaris patients. Moreover, hVAT-1 expression in HaCaT cells was found to be calcium-dependent. Normal and malignant mammary and ovary epithelium were found to be hVAT-1-negative. Our results indicate that hVAT-1 exerts a specific function in keratinocyte physiology, in particular in calcium-regulated processes, with no evident deregulation in malignancies of the breast and ovary.

  1. Oxidative stress in Nipah virus-infected human small airway epithelial cells

    PubMed Central

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella

    2015-01-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development. PMID:26297489

  2. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells

    PubMed Central

    Chen, Congcong; Dienhart, Jason A.; Bolton, Eric C.

    2016-01-01

    Androgen receptor (AR) signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT) treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS), TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP) in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2) were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1) were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins, such that

  3. Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    NASA Astrophysics Data System (ADS)

    Mbeh, Doris A.; Akhavan, Omid; Javanbakht, Taraneh; Mahmoudi, Morteza; Yahia, L.'Hocine

    2014-11-01

    Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell proliferation and induction of cell apoptosis. These results can provide more in-depth understanding about cytotoxic effects of graphene nanostructures which can be functionalized by the proteins of media.

  4. Rapid Expansion of Human Epithelial Stem Cells Suitable for Airway Tissue Engineering

    PubMed Central

    Gowers, Kate H. C.; Lee, Dani Do Hyang; Brown, James M.; Crowley, Claire; Teixeira, Vitor H.; Smith, Claire M.; Urbani, Luca; Hamilton, Nicholas J.; Thakrar, Ricky M.; Booth, Helen L.; Birchall, Martin A.; De Coppi, Paolo; Giangreco, Adam; O’Callaghan, Christopher

    2016-01-01

    Rationale: Stem cell–based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell–seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. Objectives: To define a scalable cell culture system to deliver airway epithelium to clinical grafts. Methods: Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air–liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air–liquid interface cultures. Measurements and Main Results: 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. Conclusions: Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical

  5. Differential activation of human T cells to allogeneic endothelial cells, epithelial cells and fibroblasts in vitro

    PubMed Central

    2012-01-01

    Background In the direct pathway, T cells recognize intact donor major histocompatability complexes and allogeneic peptide on the surface of donor antigen presenting cells (APCs). Indirect allorecognition results from the recognition of processed alloantigen by self MHC complexes on self APCs. In this study, we wished to evaluate the relative contribution of different intragraft cells to the alloactivation of nave and memory T cells though the direct and the indirect pathway of allorecognition. Methods The processing of membrane fragments from IFN-treated single donor endothelial cells (EC), fibroblasts or renal epithelial cells (RPTEC) was evaluated by DiOC labeling of each cell type and flow cytometry following interaction with PBMC. Direct pathway activation of nave CD45RA+ or memory CD45RO+ CD4+ T cells was evaluated following coculture with IFN-treated and MHC class II-expressing EC, fibroblasts or RPTEC. Indirect pathway activation was assessed using CD45RA+ or CD45RO+ CD4+ T cells cocultured with autologous irradiated APCs in the absence or presence of sonicates derived from IFN-treated allogeneic EC, fibroblasts or RPTEC. Activation of T cells was assessed by [3H]thymidine incorporation and by ELISpot assays. Results We find that CD14+ APCs readily acquire membrane fragments from fibroblasts and RPTEC, but fail to acquire membrane fragments from intact EC. However, APCs process membranes from EC undergoing apoptosis.There was a notable direct pathway alloproliferative response of CD45RO+ CD4+ T cells to IFN-treated EC, but not to fibroblasts or RPTEC. Also, there was a minimal direct pathway response of CD45RA+ CD4+ T cells to all cell types. In contrast, we found that both CD45RA+ and CD45RO+ CD4+ T cells proliferated following coculture with autologous APCs in the presence of sonicates derived from IFN-treated EC, fibroblasts or RPTEC. By ELISpot, we found that these T cells stimulated via the indirect pathway also produced the cytokines IFN, IL-2, IL-4

  6. Differential activation of human T cells to allogeneic endothelial cells, epithelial cells and fibroblasts in vitro.

    PubMed

    Samsonov, Dmitry; Geehan, Christopher; Woda, Craig B; Briscoe, David M

    2012-04-24

    In the direct pathway, T cells recognize intact donor major histocompatability complexes and allogeneic peptide on the surface of donor antigen presenting cells (APCs). Indirect allorecognition results from the recognition of processed alloantigen by self MHC complexes on self APCs. In this study, we wished to evaluate the relative contribution of different intragraft cells to the alloactivation of nave and memory T cells though the direct and the indirect pathway of allorecognition. The processing of membrane fragments from IFN-treated single donor endothelial cells (EC), fibroblasts or renal epithelial cells (RPTEC) was evaluated by DiOC labeling of each cell type and flow cytometry following interaction with PBMC. Direct pathway activation of nave CD45RA+ or memory CD45RO+ CD4+ T cells was evaluated following coculture with IFN-treated and MHC class II-expressing EC, fibroblasts or RPTEC. Indirect pathway activation was assessed using CD45RA+ or CD45RO+ CD4+ T cells cocultured with autologous irradiated APCs in the absence or presence of sonicates derived from IFN-treated allogeneic EC, fibroblasts or RPTEC. Activation of T cells was assessed by [3H]thymidine incorporation and by ELISpot assays. We find that CD14+ APCs readily acquire membrane fragments from fibroblasts and RPTEC, but fail to acquire membrane fragments from intact EC. However, APCs process membranes from EC undergoing apoptosis.There was a notable direct pathway alloproliferative response of CD45RO+ CD4+ T cells to IFN-treated EC, but not to fibroblasts or RPTEC. Also, there was a minimal direct pathway response of CD45RA+ CD4+ T cells to all cell types. In contrast, we found that both CD45RA+ and CD45RO+ CD4+ T cells proliferated following coculture with autologous APCs in the presence of sonicates derived from IFN-treated EC, fibroblasts or RPTEC. By ELISpot, we found that these T cells stimulated via the indirect pathway also produced the cytokines IFN, IL-2, IL-4 and IL-5. Recipient APCs may

  7. A Synthetic Chloride Channel Restores Chloride Conductance in Human Cystic Fibrosis Epithelial Cells

    PubMed Central

    Wang, Fei; Yao, Xiaoqiang; Yang, Dan

    2012-01-01

    Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl−) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl− transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl− channels to mediate Cl− transport across lipid bilayer membranes is capable of restoring Cl− permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl− channel dysfunction. PMID:22514656

  8. A synthetic chloride channel restores chloride conductance in human cystic fibrosis epithelial cells.

    PubMed

    Shen, Bing; Li, Xiang; Wang, Fei; Yao, Xiaoqiang; Yang, Dan

    2012-01-01

    Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.

  9. BAX gene over-expression via nucleofection to induce apoptosis in human lens epithelial cells.

    PubMed

    Fang, Yanwen; Mo, Xiaofen; Luo, Yi; Lu, Yi

    2012-09-01

    Despite significant advances in cataract surgery techniques, posterior capsule opacification (PCO) remains a common complication. In PCO, remaining epithelial cells cloud the lens capsule and impair postoperative vision. This in vitro study was designed to investigate the potential of a gene-based approach, specifically over-expression of the proapoptotic BAX gene, to prevent PCO. Human lens epithelial cells (HLECs) were transfected by nucleofection with a plasmid encoding a fusion protein of green fluorescent protein and human BAX. The expression levels of BAX and its antiapoptotic counterpart BCL2 were determined by realtime reverse transcription polymerase chain reaction, Western blotting and immunofluorescence. BAX over-expression-induced cell death was analyzed by fluorescence-activated cell sorting using the Annexin V antibody. Fluorescence microscopy and transmission electron microscopy were used to assess changes in morphology and ultrastructure. Differential expression of the downstream apoptosis-related factor, caspase 3, was detected by Western blotting. Nucleofection efficiency was high (nearly 80%). BAX-transfected HLECs showed remarkably enhanced BAX gene expression and BAX:BCL2 ratio, but relatively little change in endogenous BCL2 expression. BAX over-expression also led to significant cytotoxicity, induction of apoptosis-related characteristics and activation of caspase 3. In conclusion, our results indicate that BAX gene over-expression can trigger cell death in HLECs via an apoptotic pathway. Thus, BAX may be a promising candidate for human gene therapy to treat PCO.

  10. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  11. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    PubMed

    Otsuki, Noriyuki; Nakatsu, Yuichiro; Kubota, Toru; Sekizuka, Tsuyoshi; Seki, Fumio; Sakai, Kouji; Kuroda, Makoto; Yamaguchi, Ryoji; Takeda, Makoto

    2013-01-01

    Canine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  12. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  13. Enhanced growth medium and method for culturing human mammary epithelial cells

    DOEpatents

    Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  14. Precancerous model of human breast epithelial cells induced by NNK for prevention.

    PubMed

    Siriwardhana, Nalin; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2008-06-01

    Epidemiological investigations have suggested that exposure to tobacco and environmental carcinogens increase the risk of developing human breast cancer. In light of the chronic exposure of human breast tissues to tobacco and environmental carcinogens, we have taken an approach of analyzing cellular changes of immortalized non-cancerous human breast epithelial MCF10A cells during the acquisition of cancerous properties induced by repeated exposure to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at a low concentration of 100 pM. We found that accumulated exposures of MCF10A cells to NNK result in progressive development of cellular carcinogenesis from a stage of immortalization to precancerous sub-stages of acquiring a reduced dependence on growth factors and acquiring anchorage-independent growth. Using Matrigel for MCF10A cells to form size-restricted acini, we detected that exposures to NNK resulted in altered acinar conformation. Analysis of gene expression profiles by cDNA microarrays revealed up- and down-regulated genes associated with NNK-induced carcinogenesis. Using this cellular carcinogenesis model as a target system to identify anticancer agents, we detected that grape seed proanthocyanadin extract significantly suppressed NNK-induced carcinogenesis of MCF10A cells. Our studies provide a carcinogenesis-cellular model mimicking the accumulative exposure to carcinogens in the progression of human breast epithelial cells to increasingly acquire cancerous properties, as likely occurs in the development of precancerous human breast cells. Our cellular model also serves as a cost-efficient, in vitro system to identify preventive agents that inhibit human breast cell carcinogenesis induced by chronic exposures to carcinogens.

  15. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice.

    PubMed

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice.

  16. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  17. Free fucose is a danger signal to human intestinal epithelial cells.

    PubMed

    Chow, Wai Ling; Lee, Yuan Kun

    2008-03-01

    Fucose is present in foods, and it is a major component of human mucin glycoproteins and glycolipids. l-Fucose can also be found at the terminal position of many cell-surface oligosaccharide ligands that mediate cell-recognition and adhesion-signalling pathways. Mucin fucose can be released through the hydrolytic activity of pathogens and indigenous bacteria, leading to the release of free fucose into the intestinal lumen. The immunomodulating effects of free fucose on intestinal epithelial cells (enterocyte-like Caco-2) were investigated. It was found that the presence of l-fucose up regulated genes and secretion of their encoded proteins that are involved in both the innate and adaptive immune responses, possibly via the toll-like receptor-2 signalling pathway. These include TNFSF5, TNFSF7, TNF-alpha, IL12, IL17 and IL18. Besides modulating immune reactions in differentiated Caco-2 cells, fucose induced a set of cytokine genes that are involved in the development and proliferation of immune cells. These include the bone morphogenetic proteins (BMP) BMP2, BMP4, IL5, thrombopoietin and erythropoietin. In addition, the up regulated gene expression of fibroblast growth factor-2 may help to promote epithelial cell restitution in conjunction with the enhanced expression of transforming growth factor-beta mRNA. Since the exogenous fucose was not metabolised by the differentiated Caco-2 cells as a carbon source, the reactions elicited were suggested to be a result of the direct interaction of fucose and differentiated Caco-2 cells. The presence of free fucose may signal the invasion of mucin-hydrolysing microbial cells and breakage of the mucosal barrier. The intestinal epithelial cells respond by up regulation and secretion of cytokines, pre-empting the actual invasion of pathogens.

  18. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  19. Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications.

    PubMed

    Revello, M Grazia; Gerna, Giuseppe

    2010-05-01

    Human cytomegalovirus (HCMV) has been routinely isolated from and propagated in vitro in human embryonic lung fibroblast (HELF) cell cultures, while in vivo it is known to infect predominantly endothelial and epithelial cells. In recent years, genetic determinants of the HCMV tropism for endothelial/epithelial cells were identified in the UL131A/UL130/UL128 locus of HCMV genome of wild-type strains. UL131A-UL128 gene products form a complex with glycoprotein H (gH) and L (gL) resulting in a gH/gL/UL131A-UL128 complex that is required for HCMV entry into endothelial/epithelial cells. In contrast, virus entry into fibroblasts has its genetic determinants in the complex gH/gL/gO (or gH/gL). During primary HCMV infection, the neutralising antibody response measured in endothelial cells (EC) is potent, occurs very early and is directed mostly against combinations of two or three gene products of the UL131A-128 locus. On the contrary, neutralising antibodies measured in fibroblasts appear late, are relatively weak in potency and are directed against gH and gB. The T-cell immune response to UL131A-UL128 gene products remains to be investigated. Recently, a role has been proposed for neutralising antibody in conferring prevention/protection against HCMV infection/disease in pregnant women with primary HCMV infection. However, the level of cooperation between humoral immunity and the well-established T-cell protection remains to be defined.

  20. Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells.

    PubMed

    Shah, Rohan M; Rajasekaran, Dhivya; Ludford-Menting, Mandy; Eldridge, Daniel S; Palombo, Enzo A; Harding, Ian H

    2016-04-01

    Development of drug delivery systems, as much as the drug molecule itself, is an important consideration for improving drug absorption and bioavailability. The mechanisms by which drug carriers enter target cells can differ depending on their size, surface properties and components. Solid lipid nanoparticles (SLNs) have gained an increased attention in recent years and are the drug carriers of interest in this paper. They are known to breach the cell-membrane barrier and have been actively sought to transport biomolecules. Previous studies by our group, and also other groups, provided an extensive characterization of SLNs. However, few studies have investigated the uptake of SLNs and these have had limited mechanistic focus. The aim of this work was to investigate the pathway of uptake of SLNs by human epithelial cells i.e., lung A549 and cervical HeLa cells. To the best of our knowledge, this is first study that investigates the cellular uptake of SLNs by human epithelial cells. The mechanism of cellular uptake was deciphered using pharmacologic inhibitors (sucrose, potassium-free buffer, filipin and cytochalasin B). Imaging techniques and flow assisted cell sorting (FACS) were used to assess the cellular uptake of SLNs loaded with rhodamine 123 as a fluorescent probe. This study provided evidence that the cellular uptake of SLNs was energy-dependent, and the endocytosis of SLNs was mainly dependent on clathrin-mediated mechanisms. The establishment of entry mechanism of SLNs is of fundamental importance for future facilitation of SLNs as biological or drug carriers.

  1. Establishment of a blue light damage model of human retinal pigment epithelial cells in vitro.

    PubMed

    Su, G; Cai, S J; Gong, X; Wang, L L; Li, H H; Wang, L M

    2016-06-24

    To establish a blue-light damage model of human retinal pigment epithelium (RPE). Fourth-generation human RPE cells were randomly divided into two groups. In group A, cells were exposed to blue light (2000 ± 500 lux) for 0 (control), 3, 6, 9, and 12 h, and cell culture was stopped after 12 h. In group B, cells were exposed to blue light at the same intensity and time periods, but cell culture was stopped after 24 h. TdT-mediated dUTP nick-end labeling (TUNEL) assay was performed to determine the most suitable illuminating time with apoptotic index. Flow cytometry was used to determine apoptotic ratio of RPEs. In group A, the apoptotic index of cells that received 6, 9 and 12 h of blue light was higher than that of control. The apoptotic index of cells receiving 9 and 12 h was higher than that of 6 h (P = 0.000). In group B, the apoptotic index and RPE cell apoptosis ratio of cells exposed to 6, 9 and 12 h of blue light were higher than that of 3 h (P = 0.000); and cells receiving 9 and 12 h had higher values than that of 6 h. This study demonstrated that the best conditions to establish a blue light damage model of human retinal pigment epithelial cells in vitro are 2000 ± 500 lux light intensity for 6 h, with 24 h of cell culture post-exposure.

  2. SIGIRR participates in negative regulation of LPS response and tolerance in human bladder epithelial cells.

    PubMed

    Li, Dan; Zhang, Xin; Chen, Baiyi

    2015-12-03

    The innate immune response of urinary tract is critically important in the defense to microbial attack. Toll-like receptor 4 (TLR4) controls initial mucosal response to uropathogenic Escherichia coli (UPEC). However, excessive and dysfunctional TLR signaling may result in severe inflammation and inappropriate tissue damage. Previous studies have demonstrated that single immunoglobulin IL-1R-related receptor/Toll IL-1 receptor 8 (SIGIRR/TIR8) is a member of the toll-interleukin-1 receptor (TIR) family that can negatively modulate TLR4 mediated signaling, but its role in the innate immunity of urinary tract infection remains incompletely defined. In this study, we investigated its cellular distribution and mechanisms involved within the human bladder epithelial cells after LPS stimulation. Immunostaining, reverse transcription PCR and Western blot results showed that SIGIRR was constitutively expressed in the human bladder epithelial cell lines and was downregulated after LPS stimulation. To further define the role of SIGIRR, cells were transiently transfected with SIGIRR siRNA and stimulated with LPS. SIGIRR gene silencing augmented chemokine expression in response to LPS, as indicated by increased levels of IL-6 and IL-8 secretions in the supernatants compared with negative control siRNA. Furthermore, LPS tolerance, a protective mechanism against second LPS stimulation, was significantly reduced in SIGIRR siRNA transfected cells. Moreover, transient gene silencing augmented LPS-induced NF-κB and MAPK activation. In conclusion, our results suggest that SIGIRR plays an important role in the negative regulation of LPS response and tolerance in human bladder epithelial cells, possibly through its impact on TLR-mediated signaling.

  3. Role of mesothelin in carbon nanotube-induced carcinogenic transformation of human bronchial epithelial cells

    PubMed Central

    He, Xiaoqing; Despeaux, Emily; Stueckle, Todd A.; Chi, Alexander; Castranova, Vincent; Dinu, Cerasela Zoica; Wang, Liying

    2016-01-01

    Carbon nanotubes (CNTs) have been likened to asbestos in terms of morphology and toxicity. CNT exposure can lead to pulmonary fibrosis and promotion of tumorigenesis. However, the mechanisms underlying CNT-induced carcinogenesis are not well defined. Mesothelin (MSLN) is overexpressed in many human tumors, including mesotheliomas and pancreatic and ovarian carcinomas. In this study, the role of MSLN in the carcinogenic transformation of human bronchial epithelial cells chronically exposed to single-walled CNT (BSW) was investigated. MSLN overexpression was found in human lung tumors, lung cancer cell lines, and BSW cells. The functional role of MSLN in the BSW cells was then investigated by using stably transfected MSLN knockdown (BSW shMSLN) cells. MSLN knockdown resulted in significantly decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, BSW shMSLN cells formed smaller primary tumors and less metastases. The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. Cell cycle analysis showed that the BSW shMSLN cells had an increased G2 population and a decreased S phase population, which is consistent with the decreased rate of proliferation. Together, our results indicate a novel role of MSLN in the malignant transformation of bronchial epithelial cells following CNT exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced malignancies. PMID:27422997

  4. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    PubMed

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  5. Influence of acid and bile acid on ERK activity, PPARγ expression and cell proliferation in normal human esophageal epithelial cells

    PubMed Central

    Jiang, Zhi-Ru; Gong, Jun; Zhang, Zhen-Ni; Qiao, Zhe

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor γ (PPARγ) in normal human esophageal epithelial cells in vitro. METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0 - 6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively. Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARγ protein were determined by the immunoblotting technique. RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P < 0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and phosphorylated ERK1/2 expression. On the contrary, deoxycholic acid (DCA) exposure (> 20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P < 0.05). There was no expression of PPARγ in normal human esophageal epithelial cells. CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway. PMID:16688842

  6. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells.

    PubMed

    Cerri, Chiara; Chimenti, Daniele; Conti, Ilaria; Neri, Tommaso; Paggiaro, Pierluigi; Celi, Alessandro

    2006-08-01

    Cell-derived microparticles (MP) are membrane fragments shed by virtually all eukaryotic cells upon activation or during apoptosis that play a significant role in physiologically relevant processes, including coagulation and inflammation. We investigated whether MP derived from monocytes/macrophages have the potential to modulate human airway epithelial cell activation. Monocytes/macrophages were isolated from the buffy coats of blood donors by Ficoll gradient centrifugation, followed by overnight culture of the mononuclear cell fraction. Adherent cells were washed and incubated with the calcium ionophore, A23187, or with histamine. The MP-containing supernatant was incubated with cells of the human bronchial epithelial line BEAS-2B and of the human alveolar line A549. IL-8, MCP-1, and ICAM-1 production was assessed by ELISA and by RT-PCR. In some experiments, monocytes/macrophages were stained with the fluorescent lipid intercalating dye PKH67, and the supernatant was analyzed by FACS. Stimulation of monocytes/macrophages with A23187 caused the release of particles that retain their fluorescent lipid intercalating label, indicating that they are derived from cell membranes. Incubation with A549 and BEAS-2B cells up-regulate IL-8 synthesis. Ultrafiltration and ultracentrifugation of the material abolished the effect, indicating that particulate matter, rather than soluble molecules, is responsible for it. Up-regulation of MCP-1 and ICAM-1 was also demonstrated in A549 cells. Similar results were obtained with histamine. Our data show that human monocytes/macrophages release MP that have the potential to sustain the innate immunity of the airway epithelium, as well as to contribute to the pathogenesis of inflammatory diseases of the lungs through up-regulation of proinflammatory mediators.

  7. Highly Differentiated Human Airway Epithelial Cells: a Model to Study Host cell-parasite Interactions in Pertussis

    PubMed Central

    Guevara, Claudia; Zhang, Chengxian; Gaddy, Jennifer A.; Iqbal, Junaid; Guerra, Julio; Greenberg, David P.; Decker, Michael D.; Carbonetti, Nicholas; Starner, Timothy D.; McCray, Paul B.; Mooi, Frits R.

    2017-01-01

    Background Bordetella pertussis colonizes the human respiratory mucosa. Most studies on B. pertussis adherence have relied on cultured mammalian cells that lack key features present in differentiated human airway cells or on animal models that are not natural hosts of B. pertussis. The objectives of this work are to evaluate B. pertussis infection on highly differentiated human airway cells in vitro and to show the role of B. pertussis fimbriae in cell adherence. Methods Primary human airway epithelial (PHAE) cells from human bronchi and a human bronchial epithelial (HBE) cell line were grown in vitro under air-liquid interface conditions. Results PHAE and HBE cells infected with B. pertussis wild type strain revealed bacterial adherence to cell’s apical surface and bacterial induced cytoskeleton changes and cell detachment. Mutations in the major fimbrial subunits Fim2/3 or in the minor fimbrial adhesin subunit FimD affected B. pertussis adherence to predominantly HBE cells. This cell model recapitulates the morphologic features of the human airway infected by B. pertussis and confirms the role of fimbriae in B. pertussis adherence. Furthemore, HBE cells show that fimbrial subunits, and specifically FimD adhesin, are critical in B. pertussis adherence to airway cells. Conclusions The relevance of this model to study host-parasite interaction in pertussis lies in the striking physiologic and morphologic similarity between the PHAE and HBE cells and the human airway ciliated and goblet cells in vivo. These cells can proliferate in vitro, differentiate, and express the same genetic profile as human respiratory cells in vivo. PMID:26492208

  8. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion

    PubMed Central

    Cuman, Carly; Van Sinderen, Michelle; Gantier, Michael P.; Rainczuk, Kate; Sorby, Kelli; Rombauts, Luk; Osianlis, Tiki; Dimitriadis, Evdokia

    2015-01-01

    Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure. PMID:26629549

  9. BRCA1 Regulates Follistatin Function in Ovarian Cancer and Human Ovarian Surface Epithelial Cells

    PubMed Central

    Sneed, Rosie; Salamanca, Clara; Li, Xin; Xu, Jingwen; Kumar, Deepak; Rosen, Eliot M.; Saha, Tapas

    2012-01-01

    Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells. PMID:22685544

  10. Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

    PubMed Central

    Stewart, Ceri E.; Torr, Elizabeth E.; Mohd Jamili, Nur H.; Bosquillon, Cynthia; Sayers, Ian

    2012-01-01

    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions. PMID:22287976

  11. Immortalization of normal human kidney epithelial cells by nickel(II)

    SciTech Connect

    Tveito, G.; Hansteen, I.L.; Dalen, H.; Haugen, A.

    1989-04-01

    The occupational and environmental hazards of nickel exposure are of great concern in environmental medicine. Nickel workers have increased risk of cancer of the nose, lung, larynx, and possibly the kidney. In the present investigation we have studied the effects of nickel ions on fetal human kidney cortex explants. The explants were continuously exposed to 5 micrograms/ml NiSO4. After 70-100 days in culture foci of phenotypically altered cells appeared. Immortalized cell lines were established and demonstrated to be of human epithelial origin. Tumorigenicity was not induced, but the cells demonstrated decreased requirement for serum, increased plating efficiency and saturation density, and formation of colonies in soft agar. Chromosome changes in the treated cells were observed. Worth mentioning are change in ploidy (3n) and abnormalities of chromosomes 1, 7, 9, 11, 13, 14 and 20; increased numbers of chromosome 17; and loss of normal chromosomes 20 and 22.

  12. The putative human stem cell marker, Rex-1 (Zfp42): structural classification and expression in normal human epithelial and carcinoma cell cultures.

    PubMed

    Mongan, Nigel P; Martin, Kisha M; Gudas, Lorraine J

    2006-12-01

    Human Rex-1 (hRex-1) (also referred to as zinc-finger protein-42, Zfp42) encodes a zinc finger protein expression of which is believed to be characteristic of pluripotent stem cells. We have applied bioinformatics to classify the relationship of human, rat, and mouse REX1 proteins in the C2H2 family of zinc finger proteins and demonstrate that REX1 is a member of the YY1 sub-family of transcription factors, which includes the Drosophila pleiohomeotic (Pho) protein. We have generated a molecular model of the human REX1 zinc finger domains based on the crystal structure of the YY1 transcription factor. To date, expression of hRex-1 and its extensively studied mouse homolog mRex-1, has been reported only in embryonic and adult stem cells and in differentiated spermatocytes. In this study, reverse transcription-PCR and Western analysis were employed to assay for hRex-1 expression in cultured normal human epithelial cells and human carcinoma cell lines. Expression of hRex-1 mRNA was detected in normal human epidermal keratinocytes, normal prostate epithelial cells (PrEC), bronchial, and small airway lung epithelial cells. Other stem cell markers, such as Oct 4, DAB2, and cMyc were also detected in normal human epidermal keratinocyte cultures. Expression of hRex-1 was also detected in some human tumor cell lines including MDA-MB-468 mammary carcinoma, SCC-15 head and neck squamous cell carcinoma, and N-TERA2 human teratocarcinoma cells. Western analyses confirmed expression of the human REX1 (ZFP42) protein in MDA-MB-468 cells and normal human keratinocytes. This research has identified model human cell culture systems, in addition to embryonic stem (ES) cells, in which Rex-1 is expressed, and this should enable the characterization of REX1 functions in normal adult epithelial cells and tumorigenic stem cells.

  13. Cultured Human Airway Epithelial Cells (Calu-3): A Model of Human Respiratory Function, Structure, and Inflammatory Responses

    PubMed Central

    Zhu, Yan; Chidekel, Aaron; Shaffer, Thomas H.

    2010-01-01

    This article reviews the application of the human airway Calu-3 cell line as a respiratory model for studying the effects of gas concentrations, exposure time, biophysical stress, and biological agents on human airway epithelial cells. Calu-3 cells are grown to confluence at an air-liquid interface on permeable supports. To model human respiratory conditions and treatment modalities, monolayers are placed in an environmental chamber, and exposed to specific levels of oxygen or other therapeutic modalities such as positive pressure and medications to assess the effect of interventions on inflammatory mediators, immunologic proteins, and antibacterial outcomes. Monolayer integrity and permeability and cell histology and viability also measure cellular response to therapeutic interventions. Calu-3 cells exposed to graded oxygen concentrations demonstrate cell dysfunction and inflammation in a dose-dependent manner. Modeling positive airway pressure reveals that pressure may exert a greater injurious effect and cytokine response than oxygen. In experiments with pharmacological agents, Lucinactant is protective of Calu-3 cells compared with Beractant and control, and perfluorocarbons also protect against hyperoxia-induced airway epithelial cell injury. The Calu-3 cell preparation is a sensitive and efficient preclinical model to study human respiratory processes and diseases related to oxygen- and ventilator-induced lung injury. PMID:20948883

  14. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro.

    PubMed

    Liu, Bo; Yu, Zhuoteng; Chen, Ceng; Kling, David E; Newburg, David S

    2012-08-01

    Many human milk glycans inhibit pathogen binding to host receptors and their consumption by infants is associated with reduced risk of disease. Salmonella infection is more frequent among infants than among the general population, but the incidence is lower in breast-fed babies, suggesting that human milk could contain components that inhibit Salmonella. This study aimed to test whether human milk per se inhibits Salmonella invasion of human intestinal epithelial cells in vitro and, if so, to identify the milk components responsible for inhibition. Salmonella enterica serovar Typhimurium SL1344 (SL1344) invasion of FHs 74 Int and Caco-2 cells were the models of human intestinal epithelium infection. Internalization of fluorescein-5-isothiocyanate-labeled SL1344 into intestinal cells was measured by flow cytometry to quantify infection. Human milk and its fractions inhibited infection; the inhibitory activity localized to the high molecular weight glycans. Mucin 1 and mucin 4 were isolated to homogeneity. At 150 μg/L, a typical concentration in milk, human milk mucin 1 and mucin 4 inhibited SL1344 invasion of both target cell types. These mucins inhibited SL1344 invasion of epithelial cells in a dose-dependent manner. Thus, mucins may prove useful as a basis for developing novel oral prophylactic and therapeutic agents that inhibit infant diseases caused by Salmonella and related pathogens.

  15. Sirtuin 3 Protects against Urban Particulate Matter-Induced Autophagy in Human Bronchial Epithelial Cells.

    PubMed

    Chen, I-Chieh; Huang, Hsin-Hsiu; Chen, Pei-Fen; Chiang, Hung-Che

    2016-07-01

    Urban particulate matter (urban PM) is a heterogeneous mixture of various types of particles originating from different sources. Exposure to high concentrations of urban PM leading to adverse health effects is evaluated by using in vitro cultures of human lung epithelial cells. However, the mechanism underlying the correlation between high concentrations of urban PM exposure and adverse health effects has not been fully elucidated; urban PM-induced oxidative stress is considered as an important mechanism of urban PM-mediated cytotoxicity. Sirtuin 3 (SIRT3), a primary mitrochondrial deacetylase, controls cellular reactive oxygen species (ROS) production, and expression of antioxidant enzymes. In this study, we examined the role of SIRT3 in the regulation of urban PM-induced oxidative stress in normal primary human bronchial epithelial cells (HBEpiCs). Cell viability showed a time- and concentration-dependent decrease when exposed to urban PM, which could indicate that the amount of lactate dehydrogenase released from the cell in response to urban PM is related to cell viability in HBEpiC. The effects of urban PM on morphological and biochemical markers of autophagy in HBEpiC were analyzed by electron microscopy and Western blotting. Overexpression of SIRT3 inhibited urban PM-induced ROS generation, while concomitantly increasing the expression of antioxidant enzymes, and decreasing NF-κB activation and release of inflammation factors. Up-regulation of SIRT3 significantly inhibited the expression of autophagy markers and autophagic vacuole formation. Our findings provide a valuable insight into the potential role of the SIRT3 enzyme in regulating urban PM-induced autophagy by mediating urban PM-induced oxidative stress, which may contribute to urban PM-induced impairment of airway epithelial cell function.

  16. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells.

    PubMed Central

    Kelley, T J; Drumm, M L

    1998-01-01

    It has been reported that exhaled nitric oxide levels are reduced in cystic fibrosis (CF) patients. We have examined the inducible isoform of nitric oxide synthase (iNOS) in the airways by immunostaining and found that iNOS is constitutively expressed in the airway epithelia of non-CF mouse and human tissues but essentially absent in the epithelium of CF airways. We explored potential consequences of lost iNOS expression and found that iNOS inhibition significantly increases mouse nasal trans-epithelial potential difference, and hindered the ability of excised mouse lungs to prevent growth of Pseudomonas aeruginosa. The absence of continuous nitric oxide production in epithelial cells of CF airways may play a role in two CF-associated characteristics: hyperabsorption of sodium and susceptibility to bacterial infections. PMID:9739054

  17. Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis.

    PubMed

    Savanur, Mohammed Azharuddin; Eligar, Sachin M; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind; Kalraiya, Rajiv D; Swamy, Bale M; Rhodes, Jonathan M; Yu, Lu-Gang; Inamdar, Shashikala R

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.

  18. Respiratory epithelial cell expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice.

    PubMed Central

    Korfhagen, T R; Swantz, R J; Wert, S E; McCarty, J M; Kerlakian, C B; Glasser, S W; Whitsett, J A

    1994-01-01

    Increased production of EGF or TGF-alpha by the respiratory epithelial cells has been associated with the pathogenesis of various forms of lung injury. Growth factors and cytokines are thought to act locally, via paracrine and autocrine mechanisms, to stimulate cell proliferation and matrix deposition by interstitial lung cells resulting in pulmonary fibrosis. To test whether TGF-alpha mediates pulmonary fibrotic responses, we have generated transgenic mice expressing human TGF-alpha under control of regulatory regions of the human surfactant protein C (SP-C) gene. Human TGF-alpha mRNA was expressed in pulmonary epithelial cells in the lungs of the transgenic mice. Adult mice bearing the SP-C-TGF-alpha transgene developed severe pulmonary fibrosis. Fibrotic lesions were observed in peribronchial, peribronchiolar, and perivascular regions, as well as subjacent to pleural surfaces. Lesions consisted of fibrous tissue that included groups of epithelial cells expressing endogenous SP-C mRNA, consistent with their identification as distal respiratory epithelial cells. Peripheral fibrotic regions consisted of thickened pleura associated with extensive collagen deposition. Alveolar architecture was disrupted in the transgenic mice with loss of alveoli in the lung parenchyma. Pulmonary epithelial cell expression of TGF-alpha in transgenic mice disrupts alveolar morphogenesis and produces fibrotic lesions mediated by paracrine signaling between respiratory epithelial and interstitial cells of the lung. Images PMID:8163670

  19. Toxic effects following phosgene exposure of human epithelial lung cells in vitro using a CULTEX® system.

    PubMed

    Wijte, Dorien; Alblas, Marcel J; Noort, Daan; Langenberg, Jan P; van Helden, Herman P M

    2011-12-01

    The aim of the present study was to investigate toxic effects following phosgene exposure of human epithelial lung cells (A549) in vitro using a CULTEX® system. In particular, toxic effects regarding early biomarkers emerging during the latency period following exposure might be of great value for medical treatment. Cells cultured on semi-permeable membranes were directly exposed at the liquid-air interface to different concentrations of phosgene, or dry medical air. Cell membrane integrity (leakage of LDH), metabolic activity (reduction of Alamar Blue), oxidative damage (GSH, and HO-1, in cell lysates), and release of IL-8, were studied. For most of the above-mentioned biological end-point markers, significant changes could be assessed following a 20 min exposure to 1.0 ppm and 2.0 ppm phosgene. Moreover, except for IL-8, all biological marker profiles showed to be in line with results obtained by others in animal studies. The C×t value of 40 ppm min appeared to be constant. The overall results suggest that at 4 h post-exposure a maximal level of toxicity was achieved. Our results demonstrate the suitability of a CULTEX® system to detect toxic effects induced by phosgene on human epithelial lung cells, which may contribute to the discovery of early biomarkers for new medical countermeasures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Carbon nanotubes induce apoptosis resistance of human lung epithelial cells through FLICE-inhibitory protein.

    PubMed

    Pongrakhananon, Varisa; Luanpitpong, Sudjit; Stueckle, Todd A; Wang, Liying; Nimmannit, Ubonthip; Rojanasakul, Yon

    2015-02-01

    Chronic exposure to single-walled carbon nanotubes (SWCNT) has been reported to induce apoptosis resistance of human lung epithelial cells. As resistance to apoptosis is a foundation of neoplastic transformation and cancer development, we evaluated the apoptosis resistance characteristic of the exposed lung cells to understand the pathogenesis mechanism. Passage control and SWCNT-transformed human lung epithelial cells were treated with known inducers of apoptosis via the intrinsic (antimycin A and CDDP) or extrinsic (FasL and TNF-α) pathway and analyzed for apoptosis by DNA fragmentation, annexin-V expression, and caspase activation assays. Whole-genome microarray was performed to aid the analysis of apoptotic gene signaling network. The SWCNT-transformed cells exhibited defective death receptor pathway in association with cellular FLICE-inhibitory protein (c-FLIP) overexpression. Knockdown or chemical inhibition of c-FLIP abrogated the apoptosis resistance of SWCNT-transformed cells. Whole-genome expression signature analysis confirmed these findings. This study is the first to demonstrate carbon nanotube-induced defective death receptor pathway and the role of c-FLIP in the process.

  1. Trichomonas vaginalis induces cytopathic effect on human lung alveolar basal carcinoma epithelial cell line A549.

    PubMed

    Salvador-Membreve, Daile Meek C; Jacinto, Sonia D; Rivera, Windell L

    2014-12-01

    Trichomonas vaginalis, the causative agent of trichomoniasis is generally known to inhabit the genitourinary tract. However, several case reports with supporting molecular and immunological identifications have documented its occurrence in the respiratory tract of neonates and adults. In addition, the reports have documented that its occurrence is associated with respiratory failures. The medical significance or consequence of this association is unclear. Thus, to establish the possible outcome from the interaction of T. vaginalis with lung cells, the cytopathic effects of the parasites were evaluated using monolayer cultures of the human lung alveolar basal carcinoma epithelial cell line A549. The possible effect of association of T. vaginalis with A549 epithelial cells was analyzed using phase-contrast, scanning electron microscopy and fluorescence microscopy. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), crystal-violet and TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling) assays were conducted for cytotoxicity testing. The results demonstrate that T. vaginalis: (1) adheres to A549 epithelial cells, suggesting a density-dependent parasite-cell association; (2) adherence on A549 is through flagella, membrane and axostyle; (3) causes cell detachment and cytotoxicity (50-72.4%) to A549 and this effect is a function of parasite density; and (4) induces apoptosis in A549 about 20% after 6 h of incubation. These observations indicate that T. vaginalis causes cytopathic effects on A549 cell. To date, this is the first report showing a possible interaction of T. vaginalis with the lung cells using A549 monolayer cultures. Further studies are recommended to completely elucidate this association.

  2. Acid and organic aerosol coatings on magnetic nanoparticles increase iron concentrations in human airway epithelial cells.

    PubMed

    Ghio, Andrew J; Dailey, Lisa A; Richards, Judy H; Jang, Myoseon

    2009-07-01

    Numerous industrial applications for man-made nanoparticles have been proposed. Interactions of nanoparticles with agents in the atmosphere may impact human health. We tested the postulate that in vitro exposures of respiratory epithelial cells to airborne magnetic nanoparticles (MNP; Fe(3)O(4)) with and without a secondary organic aerosol (SOA) and an inorganic acid could affect iron homeostasis, oxidative stress, and interleukin (IL)-8 release. Cell iron concentrations were increased after exposures to MNP and values were further elevated with co-exposures to either SOA or inorganic acid. Increased expression of ferritin and elevated levels of RNA for DMT1, proteins for iron storage and transport respectively, followed MNP exposures, but values were significant for only those with co-exposures to inorganic acid and organic aerosols. Cell iron concentration corresponded to a measure of oxidative stress in the airway epithelial cells; MNP with co-exposures to SOA and inorganic acid increased both available metal and indices of oxidant generation. Finally, the release of a proinflammatory cytokine (i.e. IL-8) by the exposed cells similarly increased with cell iron concentration. We conclude that MNP can interact with a SOA and an inorganic acid to present metal in a catalytically reactive state to cultured respiratory cells. This produces an oxidative stress to affect a release of IL-8.

  3. Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy

    PubMed Central

    Alcaraz, Jordi; Buscemi, Lara; Grabulosa, Mireia; Trepat, Xavier; Fabry, Ben; Farré, Ramon; Navajas, Daniel

    2003-01-01

    Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G*(ω)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1–100 Hz) and at different loading forces (0.1–0.9 nN) with atomic force microscopy. G*(ω) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G′(ω) increased with frequency following a power law with exponent ∼0.2. The loss modulus G″(ω) was ∼2/3 lower and increased similarly to G′(ω) up to ∼10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G′(ω) and G″(ω). G*(ω) conformed to the power-law model with a structural damping coefficient of ∼0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture. PMID:12609908

  4. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    PubMed

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  5. Validation of Normal Human Bronchial Epithelial Cells as a Model for Influenza A Infections in Human Distal Trachea

    PubMed Central

    Davis, A. Sally; Chertow, Daniel S.; Moyer, Jenna E.; Suzich, Jon; Sandouk, Aline; Dorward, David W.; Logun, Carolea; Shelhamer, James H.

    2015-01-01

    Primary normal human bronchial/tracheal epithelial (NHBE) cells, derived from the distal-most aspect of the trachea at the bifurcation, have been used for a number of studies in respiratory disease research. Differences between the source tissue and the differentiated primary cells may impact infection studies based on this model. Therefore, we examined how well-differentiated NHBE cells compared with their source tissue, the human distal trachea, as well as the ramifications of these differences on influenza A viral pathogenesis research using this model. We employed a histological analysis including morphological measurements, electron microscopy, multi-label immunofluorescence confocal microscopy, lectin histochemistry, and microarray expression analysis to compare differentiated NHBEs to human distal tracheal epithelium. Pseudostratified epithelial height, cell type variety and distribution varied significantly. Electron microscopy confirmed differences in cellular attachment and paracellular junctions. Influenza receptor lectin histochemistry revealed that α2,3 sialic acids were rarely present on the apical aspect of the differentiated NHBE cells, but were present in low numbers in the distal trachea. We bound fluorochrome bioconjugated virus to respiratory tissue and NHBE cells and infected NHBE cells with human influenza A viruses. Both indicated that the pattern of infection progression in these cells correlated with autopsy studies of fatal cases from the 2009 pandemic. PMID:25604814

  6. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke.

    PubMed

    Berman, Reena; Jiang, Di; Wu, Qun; Chu, Hong Wei

    2016-01-01

    Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air-liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×10(4) 50% Tissue Culture Infective Dose [TCID50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.

  7. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms

    PubMed Central

    Wörmann, Mirka E.; Horien, Corey L.; Johnson, Errin; Liu, Guangyu; Aho, Ellen; Tang, Christoph M.

    2016-01-01

    In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host–pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus–pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms. PMID:26813911

  8. Cytostatic and cytotoxic effects of 5-fluorouracil on human corneal epithelial cells and keratocytes.

    PubMed

    Midena, Edoardo; Lazzarini, Daniela; Catania, Anton Giulio; Moretto, Erika; Fregona, Iva; Parrozzani, Raffaele

    2013-03-01

    To investigate the effects of various 5-fluorouracil (5-FU) concentrations, exposure times, and application techniques on in vitro-cultured human corneal cells. Human corneal epithelial cell (HCEC) and human corneal keratocyte (HCK) cultures were exposed to different 5-FU concentrations (0.025%-1%) and incubation durations (5 minutes to 2 hours). The cytostatic effect was evaluated as the percentage of inhibition of migration relative to the control. The evaluation of cytotoxic effect included both phase contrast microscopic observations and viability measures performed using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)] colorimetric assay. The results are expressed as ratio of optical density (OD) reduction 24 hours after exposure. The cytostatic effect was time and dose dependent. The 50% inhibiting dose was 0.55% after 1 hour of incubation for HCECs and was 0.5% after 2 hours of incubation for HCKs. A 100% inhibitory effect was never observed at any concentration or incubation duration. No cytotoxic changes were observed using an 5-FU concentration of <1%; 1% 5-FU showed time-dependent cytotoxic changes in HCEC cultures only. MTT analysis showed no OD reduction at 5-FU concentrations of <1%, whereas 1% 5-FU showed OD reduction <50% at any tested exposure time. HCECs showed higher reduction in OD than HCKs. 5-FU formulations topically used in clinical practice showed limited toxicity in normal cultured corneal epithelial cells and keratocytes.

  9. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms.

    PubMed

    Wörmann, Mirka E; Horien, Corey L; Johnson, Errin; Liu, Guangyu; Aho, Ellen; Tang, Christoph M; Exley, Rachel M

    2016-03-01

    In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.

  10. Human amniotic epithelial cells differentiate into cells expressing germ cell specific markers when cultured in medium containing serum substitute supplement

    PubMed Central

    2012-01-01

    Background Human amniotic epithelial cells (hAECs) maintain the plasticity of pregastrulation embryonic cells, having the potential to differentiate into all three germ layers. The potential of these cells to differentiate into cells expressing germ cell specific markers has never been described before. Methods In the present study, hAECs were cultured in medium containing serum substitute supplement (SSS). Gene and protein expression of germ cell and oocyte specific markers was assessed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and flow activated cell sorter analysis (FACS) in hAECs at different time points during the differentiation into cells expressing germ cell specific markers. Results When cultured with SSS, already at passage 1, hAECs start to express the germ cell specific genes C-KIT, DAZL, VASA and ZP3 and at passage 5 large round cells, resembling oocytes, appeared. The cells express the germ cell specific marker DAZL, the oocyte specific markers GDF9 and ZP3 and the meiosis specific markers DMC1 and SCP3 at the protein level. Conclusions From our preliminary results we can conclude that hAECs have the potential to differentiate into cells expressing germ cell specific markers. PMID:23241213

  11. Cellular and molecular alterations in human epithelial cells transformed by high let radiation

    NASA Astrophysics Data System (ADS)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  12. Normal Human Lung Epithelial Cells Inhibit Transforming Growth Factor-β Induced Myofibroblast Differentiation via Prostaglandin E2

    PubMed Central

    Epa, Amali P.; Thatcher, Thomas H.; Pollock, Stephen J.; Wahl, Lindsay A.; Lyda, Elizabeth; Kottmann, R. M.; Phipps, Richard P.; Sime, Patricia J.

    2015-01-01

    Introduction Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease with very few effective treatments. The key effector cells in fibrosis are believed to be fibroblasts, which differentiate to a contractile myofibroblast phenotype with enhanced capacity to proliferate and produce extracellular matrix. The role of the lung epithelium in fibrosis is unclear. While there is evidence that the epithelium is disrupted in IPF, it is not known whether this is a cause or a result of the fibroblast pathology. We hypothesized that healthy epithelial cells are required to maintain normal lung homeostasis and can inhibit the activation and differentiation of lung fibroblasts to the myofibroblast phenotype. To investigate this hypothesis, we employed a novel co-culture model with primary human lung epithelial cells and fibroblasts to investigate whether epithelial cells inhibit myofibroblast differentiation. Measurements and Main Results In the presence of transforming growth factor (TGF)-β, fibroblasts co-cultured with epithelial cells expressed significantly less α-smooth muscle actin and collagen and showed marked reduction in cell migration, collagen gel contraction, and cell proliferation compared to fibroblasts grown without epithelial cells. Epithelial cells from non-matching tissue origins were capable of inhibiting TGF-β induced myofibroblast differentiation in lung, keloid and Graves’ orbital fibroblasts. TGF-β promoted production of prostaglandin (PG) E2 in lung epithelial cells, and a PGE2 neutralizing antibody blocked the protective effect of epithelial cell co-culture. Conclusions We provide the first direct experimental evidence that lung epithelial cells inhibit TGF-β induced myofibroblast differentiation and pro-fibrotic phenotypes in fibroblasts. This effect is not restricted by tissue origin, and is mediated, at least in part, by PGE2. Our data support the hypothesis that the epithelium plays a crucial role in maintaining lung homeostasis

  13. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    NASA Astrophysics Data System (ADS)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-06-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting.

  14. IL-17A Induces Pendrin Expression and Chloride-Bicarbonate Exchange in Human Bronchial Epithelial Cells

    PubMed Central

    Adams, Kelly M.; Abraham, Valsamma; Spielman, Daniel; Kolls, Jay K.; Rubenstein, Ronald C.; Conner, Gregory E.; Cohen, Noam A.; Kreindler, James L.

    2014-01-01

    The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A), which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE) cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4) as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease. PMID:25141009

  15. Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells

    PubMed Central

    2009-01-01

    Secondhand smoke (SHS) exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure. PMID:19943936

  16. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    SciTech Connect

    Yaswen, P.; Smoll, A.; Stampfer, M.R. ); Peehl, D.M. ); Trask, D.K.; Sager, R. )

    1990-10-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo({alpha})pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type {beta} increased its relative abundance. The protein encoded by NB-1 may have Ca{sup 2{sup plus}} binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined.

  17. Secondhand smoke inhibits both Cl- and K+ conductances in normal human bronchial epithelial cells.

    PubMed

    Savitski, Amy N; Mesaros, Clementina; Blair, Ian A; Cohen, Noam A; Kreindler, James L

    2009-11-27

    Secondhand smoke (SHS) exposure is an independent risk factor for asthma, rhinosinusitis, and more severe respiratory tract infections in children and adults. Impaired mucociliary clearance with subsequent mucus retention contributes to the pathophysiology of each of these diseases, suggesting that altered epithelial salt and water transport may play an etiological role. To test the hypothesis that SHS would alter epithelial ion transport, we designed a system for in vitro exposure of mature, well-differentiated human bronchial epithelial cells to SHS. We show that SHS exposure inhibits cAMP-stimulated, bumetanide-sensitive anion secretion by 25 to 40% in a time-dependent fashion in these cells. Increasing the amount of carbon monoxide to 100 ppm from 5 ppm did not increase the amount of inhibition, and filtering SHS reduced inhibition significantly. It was determined that SHS inhibited cAMP-dependent apical membrane chloride conductance by 25% and Ba2+-sensitive basolateral membrane potassium conductance by 50%. These data confirm previous findings that cigarette smoke inhibits chloride secretion in a novel model of smoke exposure designed to mimic SHS exposure. They also extend previous findings to demonstrate an effect on basolateral K+ conductance. Therefore, pharmacological agents that increase either apical membrane chloride conductance or basolateral membrane potassium conductance might be of therapeutic benefit in patients with diseases related to SHS exposure.

  18. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    SciTech Connect

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated fro