Modeling human response errors in synthetic flight simulator domain
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1992-01-01
This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.
Stochastic Models of Human Errors
NASA Technical Reports Server (NTRS)
Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)
2002-01-01
Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
The contributions of human factors on human error in Malaysia aviation maintenance industries
NASA Astrophysics Data System (ADS)
Padil, H.; Said, M. N.; Azizan, A.
2018-05-01
Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.
2010-03-15
Swiss cheese model of human error causation. ................................................................... 3 2. Results for the classification of...based on Reason’s “ Swiss cheese ” model of human error (1990). Figure 1 describes how an accident is likely to occur when all of the errors, or “holes...align. A detailed description of HFACS can be found in Wiegmann and Shappell (2003). Figure 1. The Swiss cheese model of human error
Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid
NASA Technical Reports Server (NTRS)
VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)
1997-01-01
The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).
Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.
Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B
2017-01-01
In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.
Development of an errorable car-following driver model
NASA Astrophysics Data System (ADS)
Yang, H.-H.; Peng, H.
2010-06-01
An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.
A stochastic dynamic model for human error analysis in nuclear power plants
NASA Astrophysics Data System (ADS)
Delgado-Loperena, Dharma
Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.
A Conceptual Framework for Predicting Error in Complex Human-Machine Environments
NASA Technical Reports Server (NTRS)
Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)
1998-01-01
We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lon N. Haney; David I. Gertman
2003-04-01
Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less
Human Error: A Concept Analysis
NASA Technical Reports Server (NTRS)
Hansen, Frederick D.
2007-01-01
Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.
Analyzing human errors in flight mission operations
NASA Technical Reports Server (NTRS)
Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef
1993-01-01
A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.
Metrics for Business Process Models
NASA Astrophysics Data System (ADS)
Mendling, Jan
Up until now, there has been little research on why people introduce errors in real-world business process models. In a more general context, Simon [404] points to the limitations of cognitive capabilities and concludes that humans act rationally only to a certain extent. Concerning modeling errors, this argument would imply that human modelers lose track of the interrelations of large and complex models due to their limited cognitive capabilities and introduce errors that they would not insert in a small model. A recent study by Mendling et al. [275] explores in how far certain complexity metrics of business process models have the potential to serve as error determinants. The authors conclude that complexity indeed appears to have an impact on error probability. Before we can test such a hypothesis in a more general setting, we have to establish an understanding of how we can define determinants that drive error probability and how we can measure them.
Modeling human tracking error in several different anti-tank systems
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1981-01-01
An optimal control model for generating time histories of human tracking errors in antitank systems is outlined. Monte Carlo simulations of human operator responses for three Army antitank systems are compared. System/manipulator dependent data comparisons reflecting human operator limitations in perceiving displayed quantities and executing intended control motions are presented. Motor noise parameters are also discussed.
Vavilov, A Iu; Viter, V I
2007-01-01
Mathematical questions of data errors of modern thermometrical models of postmortem cooling of the human body are considered. The main diagnostic areas used for thermometry are analyzed to minimize these data errors. The authors propose practical recommendations to decrease data errors of determination of prescription of death coming.
Understanding human management of automation errors
McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.
2013-01-01
Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042
Understanding human management of automation errors.
McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D
2014-01-01
Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance.
Spatial durbin error model for human development index in Province of Central Java.
NASA Astrophysics Data System (ADS)
Septiawan, A. R.; Handajani, S. S.; Martini, T. S.
2018-05-01
The Human Development Index (HDI) is an indicator used to measure success in building the quality of human life, explaining how people access development outcomes when earning income, health and education. Every year HDI in Central Java has improved to a better direction. In 2016, HDI in Central Java was 69.98 %, an increase of 0.49 % over the previous year. The objective of this study was to apply the spatial Durbin error model using angle weights queen contiguity to measure HDI in Central Java Province. Spatial Durbin error model is used because the model overcomes the spatial effect of errors and the effects of spatial depedency on the independent variable. Factors there use is life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity. Based on the result of research, we get spatial Durbin error model for HDI in Central Java with influencing factors are life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity.
Rong, Hao; Tian, Jin
2015-05-01
The study contributes to human reliability analysis (HRA) by proposing a method that focuses more on human error causality within a sociotechnical system, illustrating its rationality and feasibility by using a case of the Minuteman (MM) III missile accident. Due to the complexity and dynamics within a sociotechnical system, previous analyses of accidents involving human and organizational factors clearly demonstrated that the methods using a sequential accident model are inadequate to analyze human error within a sociotechnical system. System-theoretic accident model and processes (STAMP) was used to develop a universal framework of human error causal analysis. To elaborate the causal relationships and demonstrate the dynamics of human error, system dynamics (SD) modeling was conducted based on the framework. A total of 41 contributing factors, categorized into four types of human error, were identified through the STAMP-based analysis. All factors are related to a broad view of sociotechnical systems, and more comprehensive than the causation presented in the accident investigation report issued officially. Recommendations regarding both technical and managerial improvement for a lower risk of the accident are proposed. The interests of an interdisciplinary approach provide complementary support between system safety and human factors. The integrated method based on STAMP and SD model contributes to HRA effectively. The proposed method will be beneficial to HRA, risk assessment, and control of the MM III operating process, as well as other sociotechnical systems. © 2014, Human Factors and Ergonomics Society.
Human Error as an Emergent Property of Action Selection and Task Place-Holding.
Tamborello, Franklin P; Trafton, J Gregory
2017-05-01
A computational process model could explain how the dynamic interaction of human cognitive mechanisms produces each of multiple error types. With increasing capability and complexity of technological systems, the potential severity of consequences of human error is magnified. Interruption greatly increases people's error rates, as does the presence of other information to maintain in an active state. The model executed as a software-instantiated Monte Carlo simulation. It drew on theoretical constructs such as associative spreading activation for prospective memory, explicit rehearsal strategies as a deliberate cognitive operation to aid retrospective memory, and decay. The model replicated the 30% effect of interruptions on postcompletion error in Ratwani and Trafton's Stock Trader task, the 45% interaction effect on postcompletion error of working memory capacity and working memory load from Byrne and Bovair's Phaser Task, as well as the 5% perseveration and 3% omission effects of interruption from the UNRAVEL Task. Error classes including perseveration, omission, and postcompletion error fall naturally out of the theory. The model explains post-interruption error in terms of task state representation and priming for recall of subsequent steps. Its performance suggests that task environments providing more cues to current task state will mitigate error caused by interruption. For example, interfaces could provide labeled progress indicators or facilities for operators to quickly write notes about their task states when interrupted.
The Error in Total Error Reduction
Witnauer, James E.; Urcelay, Gonzalo P.; Miller, Ralph R.
2013-01-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modelling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. PMID:23891930
Use of modeling to identify vulnerabilities to human error in laparoscopy.
Funk, Kenneth H; Bauer, James D; Doolen, Toni L; Telasha, David; Nicolalde, R Javier; Reeber, Miriam; Yodpijit, Nantakrit; Long, Myra
2010-01-01
This article describes an exercise to investigate the utility of modeling and human factors analysis in understanding surgical processes and their vulnerabilities to medical error. A formal method to identify error vulnerabilities was developed and applied to a test case of Veress needle insertion during closed laparoscopy. A team of 2 surgeons, a medical assistant, and 3 engineers used hierarchical task analysis and Integrated DEFinition language 0 (IDEF0) modeling to create rich models of the processes used in initial port creation. Using terminology from a standardized human performance database, detailed task descriptions were written for 4 tasks executed in the process of inserting the Veress needle. Key terms from the descriptions were used to extract from the database generic errors that could occur. Task descriptions with potential errors were translated back into surgical terminology. Referring to the process models and task descriptions, the team used a modified failure modes and effects analysis (FMEA) to consider each potential error for its probability of occurrence, its consequences if it should occur and be undetected, and its probability of detection. The resulting likely and consequential errors were prioritized for intervention. A literature-based validation study confirmed the significance of the top error vulnerabilities identified using the method. Ongoing work includes design and evaluation of procedures to correct the identified vulnerabilities and improvements to the modeling and vulnerability identification methods. Copyright 2010 AAGL. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wi, S.; Freeman, S.; Brown, C.
2017-12-01
This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.
2009-12-01
SWISS CHEESE ” MODEL........................................... 16 1. Errors and Violations...16 Figure 5. Reason’s Swiss Cheese Model (After: Reason, 1990, p. 208) ........... 20 Figure 6. The HFACS Swiss Cheese Model of...become more complex. E. REASON’S “ SWISS CHEESE ” MODEL Reason’s (1990) book, Human Error, is generally regarded as the seminal work on the subject
The error in total error reduction.
Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R
2014-02-01
Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.
Model-based influences on humans' choices and striatal prediction errors.
Daw, Nathaniel D; Gershman, Samuel J; Seymour, Ben; Dayan, Peter; Dolan, Raymond J
2011-03-24
The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors, and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. Copyright © 2011 Elsevier Inc. All rights reserved.
Colas, Jaron T; Pauli, Wolfgang M; Larsen, Tobias; Tyszka, J Michael; O'Doherty, John P
2017-10-01
Prediction-error signals consistent with formal models of "reinforcement learning" (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models-namely, "actor/critic" models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning.
An interactive framework for acquiring vision models of 3-D objects from 2-D images.
Motai, Yuichi; Kak, Avinash
2004-02-01
This paper presents a human-computer interaction (HCI) framework for building vision models of three-dimensional (3-D) objects from their two-dimensional (2-D) images. Our framework is based on two guiding principles of HCI: 1) provide the human with as much visual assistance as possible to help the human make a correct input; and 2) verify each input provided by the human for its consistency with the inputs previously provided. For example, when stereo correspondence information is elicited from a human, his/her job is facilitated by superimposing epipolar lines on the images. Although that reduces the possibility of error in the human marked correspondences, such errors are not entirely eliminated because there can be multiple candidate points close together for complex objects. For another example, when pose-to-pose correspondence is sought from a human, his/her job is made easier by allowing the human to rotate the partial model constructed in the previous pose in relation to the partial model for the current pose. While this facility reduces the incidence of human-supplied pose-to-pose correspondence errors, such errors cannot be eliminated entirely because of confusion created when multiple candidate features exist close together. Each input provided by the human is therefore checked against the previous inputs by invoking situation-specific constraints. Different types of constraints (and different human-computer interaction protocols) are needed for the extraction of polygonal features and for the extraction of curved features. We will show results on both polygonal objects and object containing curved features.
#2 - An Empirical Assessment of Exposure Measurement Error ...
Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation of effect estimates in single and bipollutantepidemiological models The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
NASA: Model development for human factors interfacing
NASA Technical Reports Server (NTRS)
Smith, L. L.
1984-01-01
The results of an intensive literature review in the general topics of human error analysis, stress and job performance, and accident and safety analysis revealed no usable techniques or approaches for analyzing human error in ground or space operations tasks. A task review model is described and proposed to be developed in order to reduce the degree of labor intensiveness in ground and space operations tasks. An extensive number of annotated references are provided.
Pauli, Wolfgang M.; Larsen, Tobias; Tyszka, J. Michael; O’Doherty, John P.
2017-01-01
Prediction-error signals consistent with formal models of “reinforcement learning” (RL) have repeatedly been found within dopaminergic nuclei of the midbrain and dopaminoceptive areas of the striatum. However, the precise form of the RL algorithms implemented in the human brain is not yet well determined. Here, we created a novel paradigm optimized to dissociate the subtypes of reward-prediction errors that function as the key computational signatures of two distinct classes of RL models—namely, “actor/critic” models and action-value-learning models (e.g., the Q-learning model). The state-value-prediction error (SVPE), which is independent of actions, is a hallmark of the actor/critic architecture, whereas the action-value-prediction error (AVPE) is the distinguishing feature of action-value-learning algorithms. To test for the presence of these prediction-error signals in the brain, we scanned human participants with a high-resolution functional magnetic-resonance imaging (fMRI) protocol optimized to enable measurement of neural activity in the dopaminergic midbrain as well as the striatal areas to which it projects. In keeping with the actor/critic model, the SVPE signal was detected in the substantia nigra. The SVPE was also clearly present in both the ventral striatum and the dorsal striatum. However, alongside these purely state-value-based computations we also found evidence for AVPE signals throughout the striatum. These high-resolution fMRI findings suggest that model-free aspects of reward learning in humans can be explained algorithmically with RL in terms of an actor/critic mechanism operating in parallel with a system for more direct action-value learning. PMID:29049406
Helle, Samuli
2018-03-01
Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.
Model-based influences on humans’ choices and striatal prediction errors
Daw, Nathaniel D.; Gershman, Samuel J.; Seymour, Ben; Dayan, Peter; Dolan, Raymond J.
2011-01-01
Summary The mesostriatal dopamine system is prominently implicated in model-free reinforcement learning, with fMRI BOLD signals in ventral striatum notably covarying with model-free prediction errors. However, latent learning and devaluation studies show that behavior also shows hallmarks of model-based planning, and the interaction between model-based and model-free values, prediction errors and preferences is underexplored. We designed a multistep decision task in which model-based and model-free influences on human choice behavior could be distinguished. By showing that choices reflected both influences we could then test the purity of the ventral striatal BOLD signal as a model-free report. Contrary to expectations, the signal reflected both model-free and model-based predictions in proportions matching those that best explained choice behavior. These results challenge the notion of a separate model-free learner and suggest a more integrated computational architecture for high-level human decision-making. PMID:21435563
Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.
Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold
2002-02-01
The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).
Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning
Griffiths, Oren; Holmes, Nathan; Westbrook, R. Fred
2017-01-01
Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereby manipulating outcome expectancy and, in the absence of any change in reinforcement, prediction error. These prediction error manipulations have each been shown to modulate extinction learning in aversive conditioning studies. While both manipulations resulted in increased prediction error during training, neither enhanced extinction in the present human learning task (one manipulation resulted in less extinction at test). The results are discussed with reference to the types of associations that are regulated by prediction error, the types of error terms involved in their regulation, and how these interact with parameters involved in training. PMID:28232809
The Swiss cheese model of adverse event occurrence--Closing the holes.
Stein, James E; Heiss, Kurt
2015-12-01
Traditional surgical attitude regarding error and complications has focused on individual failings. Human factors research has brought new and significant insights into the occurrence of error in healthcare, helping us identify systemic problems that injure patients while enhancing individual accountability and teamwork. This article introduces human factors science and its applicability to teamwork, surgical culture, medical error, and individual accountability. Copyright © 2015 Elsevier Inc. All rights reserved.
Associations between errors and contributing factors in aircraft maintenance
NASA Technical Reports Server (NTRS)
Hobbs, Alan; Williamson, Ann
2003-01-01
In recent years cognitive error models have provided insights into the unsafe acts that lead to many accidents in safety-critical environments. Most models of accident causation are based on the notion that human errors occur in the context of contributing factors. However, there is a lack of published information on possible links between specific errors and contributing factors. A total of 619 safety occurrences involving aircraft maintenance were reported using a self-completed questionnaire. Of these occurrences, 96% were related to the actions of maintenance personnel. The types of errors that were involved, and the contributing factors associated with those actions, were determined. Each type of error was associated with a particular set of contributing factors and with specific occurrence outcomes. Among the associations were links between memory lapses and fatigue and between rule violations and time pressure. Potential applications of this research include assisting with the design of accident prevention strategies, the estimation of human error probabilities, and the monitoring of organizational safety performance.
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.
Zhou, Lingling; Xia, Jing; Yu, Lijing; Wang, Ying; Shi, Yun; Cai, Shunxiang; Nie, Shaofa
2016-03-23
We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby further certifying the reliability of our hybrid model. We used the ARIMA, NARNN and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The modeling time range included was the annual prevalence from 1956 to 2008 while the testing time range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the model performance. We reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. The modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016 demonstrated an initial decreasing trend, followed by an increase. The ARIMA-NARNN model can be well applied to analyze surveillance data for early warning systems for the control and elimination of schistosomiasis.
Dynamic Simulation of Human Gait Model With Predictive Capability.
Sun, Jinming; Wu, Shaoli; Voglewede, Philip A
2018-03-01
In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.
The Accuracy of GBM GRB Localizations
NASA Astrophysics Data System (ADS)
Briggs, Michael Stephen; Connaughton, V.; Meegan, C.; Hurley, K.
2010-03-01
We report an study of the accuracy of GBM GRB localizations, analyzing three types of localizations: those produced automatically by the GBM Flight Software on board GBM, those produced automatically with ground software in near real time, and localizations produced with human guidance. The two types of automatic locations are distributed in near real-time via GCN Notices; the human-guided locations are distributed on timescale of many minutes or hours using GCN Circulars. This work uses a Bayesian analysis that models the distribution of the GBM total location error by comparing GBM locations to more accurate locations obtained with other instruments. Reference locations are obtained from Swift, Super-AGILE, the LAT, and with the IPN. We model the GBM total location errors as having systematic errors in addition to the statistical errors and use the Bayesian analysis to constrain the systematic errors.
Sarter, Nadine
2008-06-01
The goal of this article is to illustrate the problem-driven, cumulative, and highly interdisciplinary nature of human factors research by providing a brief overview of the work on mode errors on modern flight decks over the past two decades. Mode errors on modem flight decks were first reported in the late 1980s. Poor feedback, inadequate mental models of the automation, and the high degree of coupling and complexity of flight deck systems were identified as main contributors to these breakdowns in human-automation interaction. Various improvements of design, training, and procedures were proposed to address these issues. The author describes when and why the problem of mode errors surfaced, summarizes complementary research activities that helped identify and understand the contributing factors to mode errors, and describes some countermeasures that have been developed in recent years. This brief review illustrates how one particular human factors problem in the aviation domain enabled various disciplines and methodological approaches to contribute to a better understanding of, as well as provide better support for, effective human-automation coordination. Converging operations and interdisciplinary collaboration over an extended period of time are hallmarks of successful human factors research. The reported body of research can serve as a model for future research and as a teaching tool for students in this field of work.
Human Reliability and Ship Stability
2003-07-04
models such as Miller (1957) and Broadbent (1959) is the idea of human beings as limited capacity information processors with constraints on...15 4.2.2 Outline of Some Key models ...23 TABLE 11: GENERIC ERROR MODELING SYSTEM
Multi-muscle FES force control of the human arm for arbitrary goals.
Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M
2014-05-01
We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.
Defense Mapping Agency (DMA) Raster-to-Vector Analysis
1984-11-30
model) to pinpoint critical deficiencies and understand trade-offs between alternative solutions. This may be exemplified by the allocation of human ...process, prone to errors (i.e., human operator eye/motor control limitations), and its time consuming nature (as a function of data density). It should...achieved through the facilities of coinputer interactive graphics. Each error or anomaly is individually identified by a human operator and corrected
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelli, M.; Gadomski, A. M.; Sepiellis, M.
In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safetymore » Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)« less
On parameters identification of computational models of vibrations during quiet standing of humans
NASA Astrophysics Data System (ADS)
Barauskas, R.; Krušinskienė, R.
2007-12-01
Vibration of the center of pressure (COP) of human body on the base of support during quiet standing is a very popular clinical research, which provides useful information about the physical and health condition of an individual. In this work, vibrations of COP of a human body in forward-backward direction during still standing are generated using controlled inverted pendulum (CIP) model with a single degree of freedom (dof) supplied with proportional, integral and differential (PID) controller, which represents the behavior of the central neural system of a human body and excited by cumulative disturbance vibration, generated within the body due to breathing or any other physical condition. The identification of the model and disturbance parameters is an important stage while creating a close-to-reality computational model able to evaluate features of disturbance. The aim of this study is to present the CIP model parameters identification approach based on the information captured by time series of the COP signal. The identification procedure is based on an error function minimization. Error function is formulated in terms of time laws of computed and experimentally measured COP vibrations. As an alternative, error function is formulated in terms of the stabilogram diffusion function (SDF). The minimization of error functions is carried out by employing methods based on sensitivity functions of the error with respect to model and excitation parameters. The sensitivity functions are obtained by using the variational techniques. The inverse dynamic problem approach has been employed in order to establish the properties of the disturbance time laws ensuring the satisfactory coincidence of measured and computed COP vibration laws. The main difficulty of the investigated problem is encountered during the model validation stage. Generally, neither the PID controller parameter set nor the disturbance time law are known in advance. In this work, an error function formulated in terms of time derivative of disturbance torque has been proposed in order to obtain PID controller parameters, as well as the reference time law of the disturbance. The disturbance torque is calculated from experimental data using the inverse dynamic approach. Experiments presented in this study revealed that vibrations of disturbance torque and PID controller parameters identified by the method may be qualified as feasible in humans. Presented approach may be easily extended to structural models with any number of dof or higher structural complexity.
Five Papers on Human-Machine Interaction.
ERIC Educational Resources Information Center
Norman, Donald A.
Different aspects of human-machine interaction are discussed in the five brief papers that comprise this report. The first paper, "Some Observations on Mental Models," discusses the role of a person's mental model in the interaction with systems. The second paper, "A Psychologist Views Human Processing: Human Errors and Other…
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay
1987-01-01
The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.
Human-computer interaction in multitask situations
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1977-01-01
Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans
Zhou, Lingling; Xia, Jing; Yu, Lijing; Wang, Ying; Shi, Yun; Cai, Shunxiang; Nie, Shaofa
2016-01-01
Background: We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby further certifying the reliability of our hybrid model. Methods: We used the ARIMA, NARNN and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The modeling time range included was the annual prevalence from 1956 to 2008 while the testing time range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the model performance. We reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. Results: The modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016 demonstrated an initial decreasing trend, followed by an increase. Conclusions: The ARIMA-NARNN model can be well applied to analyze surveillance data for early warning systems for the control and elimination of schistosomiasis. PMID:27023573
Error-associated behaviors and error rates for robotic geology
NASA Technical Reports Server (NTRS)
Anderson, Robert C.; Thomas, Geb; Wagner, Jacob; Glasgow, Justin
2004-01-01
This study explores human error as a function of the decision-making process. One of many models for human decision-making is Rasmussen's decision ladder [9]. The decision ladder identifies the multiple tasks and states of knowledge involved in decision-making. The tasks and states of knowledge can be classified by the level of cognitive effort required to make the decision, leading to the skill, rule, and knowledge taxonomy (Rasmussen, 1987). Skill based decisions require the least cognitive effort and knowledge based decisions require the greatest cognitive effort. Errors can occur at any of the cognitive levels.
Managing human error in aviation.
Helmreich, R L
1997-05-01
Crew resource management (CRM) programs were developed to address team and leadership aspects of piloting modern airplanes. The goal is to reduce errors through team work. Human factors research and social, cognitive, and organizational psychology are used to develop programs tailored for individual airlines. Flight crews study accident case histories, group dynamics, and human error. Simulators provide pilots with the opportunity to solve complex flight problems. CRM in the simulator is called line-oriented flight training (LOFT). In automated cockpits CRM promotes the idea of automation as a crew member. Cultural aspects of aviation include professional, business, and national culture. The aviation CRM model has been adapted for training surgeons and operating room staff in human factors.
Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error
NASA Astrophysics Data System (ADS)
Jung, Insung; Koo, Lockjo; Wang, Gi-Nam
2008-11-01
The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.
NASA Technical Reports Server (NTRS)
Foyle, David C.; Goodman, Allen; Hooley, Becky L.
2003-01-01
An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.
A Quantum Theoretical Explanation for Probability Judgment Errors
ERIC Educational Resources Information Center
Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.
2011-01-01
A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…
Competition between learned reward and error outcome predictions in anterior cingulate cortex.
Alexander, William H; Brown, Joshua W
2010-02-15
The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.
A Method for the Study of Human Factors in Aircraft Operations
NASA Technical Reports Server (NTRS)
Barnhart, W.; Billings, C.; Cooper, G.; Gilstrap, R.; Lauber, J.; Orlady, H.; Puskas, B.; Stephens, W.
1975-01-01
A method for the study of human factors in the aviation environment is described. A conceptual framework is provided within which pilot and other human errors in aircraft operations may be studied with the intent of finding out how, and why, they occurred. An information processing model of human behavior serves as the basis for the acquisition and interpretation of information relating to occurrences which involve human error. A systematic method of collecting such data is presented and discussed. The classification of the data is outlined.
A Quality Improvement Project to Decrease Human Milk Errors in the NICU.
Oza-Frank, Reena; Kachoria, Rashmi; Dail, James; Green, Jasmine; Walls, Krista; McClead, Richard E
2017-02-01
Ensuring safe human milk in the NICU is a complex process with many potential points for error, of which one of the most serious is administration of the wrong milk to the wrong infant. Our objective was to describe a quality improvement initiative that was associated with a reduction in human milk administration errors identified over a 6-year period in a typical, large NICU setting. We employed a quasi-experimental time series quality improvement initiative by using tools from the model for improvement, Six Sigma methodology, and evidence-based interventions. Scanned errors were identified from the human milk barcode medication administration system. Scanned errors of interest were wrong-milk-to-wrong-infant, expired-milk, or preparation errors. The scanned error rate and the impact of additional improvement interventions from 2009 to 2015 were monitored by using statistical process control charts. From 2009 to 2015, the total number of errors scanned declined from 97.1 per 1000 bottles to 10.8. Specifically, the number of expired milk error scans declined from 84.0 per 1000 bottles to 8.9. The number of preparation errors (4.8 per 1000 bottles to 2.2) and wrong-milk-to-wrong-infant errors scanned (8.3 per 1000 bottles to 2.0) also declined. By reducing the number of errors scanned, the number of opportunities for errors also decreased. Interventions that likely had the greatest impact on reducing the number of scanned errors included installation of bedside (versus centralized) scanners and dedicated staff to handle milk. Copyright © 2017 by the American Academy of Pediatrics.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
The Importance of HRA in Human Space Flight: Understanding the Risks
NASA Technical Reports Server (NTRS)
Hamlin, Teri
2010-01-01
Human performance is critical to crew safety during space missions. Humans interact with hardware and software during ground processing, normal flight, and in response to events. Human interactions with hardware and software can cause Loss of Crew and/or Vehicle (LOCV) through improper actions, or may prevent LOCV through recovery and control actions. Humans have the ability to deal with complex situations and system interactions beyond the capability of machines. Human Reliability Analysis (HRA) is a method used to qualitatively and quantitatively assess the occurrence of human failures that affect availability and reliability of complex systems. Modeling human actions with their corresponding failure probabilities in a Probabilistic Risk Assessment (PRA) provides a more complete picture of system risks and risk contributions. A high-quality HRA can provide valuable information on potential areas for improvement, including training, procedures, human interfaces design, and the need for automation. Modeling human error has always been a challenge in part because performance data is not always readily available. For spaceflight, the challenge is amplified not only because of the small number of participants and limited amount of performance data available, but also due to the lack of definition of the unique factors influencing human performance in space. These factors, called performance shaping factors in HRA terminology, are used in HRA techniques to modify basic human error probabilities in order to capture the context of an analyzed task. Many of the human error modeling techniques were developed within the context of nuclear power plants and therefore the methodologies do not address spaceflight factors such as the effects of microgravity and longer duration missions. This presentation will describe the types of human error risks which have shown up as risk drivers in the Shuttle PRA which may be applicable to commercial space flight. As with other large PRAs of complex machines, human error in the Shuttle PRA proved to be an important contributor (12 percent) to LOCV. An existing HRA technique was adapted for use in the Shuttle PRA, but additional guidance and improvements are needed to make the HRA task in space-related PRAs easier and more accurate. Therefore, this presentation will also outline plans for expanding current HRA methodology to more explicitly cover spaceflight performance shaping factors.
Wiegmann, D A; Shappell, S A
2001-11-01
The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based on Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. The purpose of the present study was to assess the utility of the HFACS framework as an error analysis and classification tool outside the military. The HFACS framework was used to analyze human error data associated with aircrew-related commercial aviation accidents that occurred between January 1990 and December 1996 using database records maintained by the NTSB and the FAA. Investigators were able to reliably accommodate all the human causal factors associated with the commercial aviation accidents examined in this study using the HFACS system. In addition, the classification of data using HFACS highlighted several critical safety issues in need of intervention research. These results demonstrate that the HFACS framework can be a viable tool for use within the civil aviation arena. However, additional research is needed to examine its applicability to areas outside the flight deck, such as aircraft maintenance and air traffic control domains.
HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye
NASA Astrophysics Data System (ADS)
Galetskii, S. O.; Cherezova, T. Yu
2009-02-01
An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.
Design and Validation of an Infrared Badal Optometer for Laser Speckle (IBOLS)
Teel, Danielle F. W.; Copland, R. James; Jacobs, Robert J.; Wells, Thad; Neal, Daniel R.; Thibos, Larry N.
2009-01-01
Purpose To validate the design of an infrared wavefront aberrometer with a Badal optometer employing the principle of laser speckle generated by a spinning disk and infrared light. The instrument was designed for subjective meridional refraction in infrared light by human patients. Methods Validation employed a model eye with known refractive error determined with an objective infrared wavefront aberrometer. The model eye was used to produce a speckle pattern on an artificial retina with controlled amounts of ametropia introduced with auxiliary ophthalmic lenses. A human observer performed the psychophysical task of observing the speckle pattern (with the aid of a video camera sensitive to infrared radiation) formed on the artificial retina. Refraction was performed by adjusting the vergence of incident light with the Badal optometer to nullify the motion of laser speckle. Validation of the method was performed for different levels of spherical ametropia and for various configurations of an astigmatic model eye. Results Subjective measurements of meridional refractive error over the range −4D to + 4D agreed with astigmatic refractive errors predicted by the power of the model eye in the meridian of motion of the spinning disk. Conclusions Use of a Badal optometer to control laser speckle is a valid method for determining subjective refractive error at infrared wavelengths. Such an instrument will be useful for comparing objective measures of refractive error obtained for the human eye with autorefractors and wavefront aberrometers that employ infrared radiation. PMID:18772719
An optomechanical model eye for ophthalmological refractive studies.
Arianpour, Ashkan; Tremblay, Eric J; Stamenov, Igor; Ford, Joseph E; Schanzlin, David J; Lo, Yuhwa
2013-02-01
To create an accurate, low-cost optomechanical model eye for investigation of refractive errors in clinical and basic research studies. An optomechanical fluid-filled eye model with dimensions consistent with the human eye was designed and fabricated. Optical simulations were performed on the optomechanical eye model, and the quantified resolution and refractive errors were compared with the widely used Navarro eye model using the ray-tracing software ZEMAX (Radiant Zemax, Redmond, WA). The resolution of the physical optomechanical eye model was then quantified with a complementary metal-oxide semiconductor imager using the image resolution software SFR Plus (Imatest, Boulder, CO). Refractive, manufacturing, and assembling errors were also assessed. A refractive intraocular lens (IOL) and a diffractive IOL were added to the optomechanical eye model for tests and analyses of a 1951 U.S. Air Force target chart. Resolution and aberrations of the optomechanical eye model and the Navarro eye model were qualitatively similar in ZEMAX simulations. Experimental testing found that the optomechanical eye model reproduced properties pertinent to human eyes, including resolution better than 20/20 visual acuity and a decrease in resolution as the field of view increased in size. The IOLs were also integrated into the optomechanical eye model to image objects at distances of 15, 10, and 3 feet, and they indicated a resolution of 22.8 cycles per degree at 15 feet. A life-sized optomechanical eye model with the flexibility to be patient-specific was designed and constructed. The model had the resolution of a healthy human eye and recreated normal refractive errors. This model may be useful in the evaluation of IOLs for cataract surgery. Copyright 2013, SLACK Incorporated.
Recognizing and managing errors of cognitive underspecification.
Duthie, Elizabeth A
2014-03-01
James Reason describes cognitive underspecification as incomplete communication that creates a knowledge gap. Errors occur when an information mismatch occurs in bridging that gap with a resulting lack of shared mental models during the communication process. There is a paucity of studies in health care examining this cognitive error and the role it plays in patient harm. The goal of the following case analyses is to facilitate accurate recognition, identify how it contributes to patient harm, and suggest appropriate management strategies. Reason's human error theory is applied in case analyses of errors of cognitive underspecification. Sidney Dekker's theory of human incident investigation is applied to event investigation to facilitate identification of this little recognized error. Contributory factors leading to errors of cognitive underspecification include workload demands, interruptions, inexperienced practitioners, and lack of a shared mental model. Detecting errors of cognitive underspecification relies on blame-free listening and timely incident investigation. Strategies for interception include two-way interactive communication, standardization of communication processes, and technological support to ensure timely access to documented clinical information. Although errors of cognitive underspecification arise at the sharp end with the care provider, effective management is dependent upon system redesign that mitigates the latent contributory factors. Cognitive underspecification is ubiquitous whenever communication occurs. Accurate identification is essential if effective system redesign is to occur.
2014-07-01
Macmillan & Creelman , 2005). This is a quite high degree of discriminability and it means that when the decision model predicts a probability of...ROC analysis. Pattern Recognition Letters, 27(8), 861-874. Retrieved from Google Scholar. Macmillan, N. A., & Creelman , C. D. (2005). Detection
Using model order tests to determine sensory inputs in a motion study
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Junker, A. M.
1977-01-01
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs.
An MEG signature corresponding to an axiomatic model of reward prediction error.
Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J
2012-01-02
Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.
Understanding diagnostic errors in medicine: a lesson from aviation
Singh, H; Petersen, L A; Thomas, E J
2006-01-01
The impact of diagnostic errors on patient safety in medicine is increasingly being recognized. Despite the current progress in patient safety research, the understanding of such errors and how to prevent them is inadequate. Preliminary research suggests that diagnostic errors have both cognitive and systems origins. Situational awareness is a model that is primarily used in aviation human factors research that can encompass both the cognitive and the systems roots of such errors. This conceptual model offers a unique perspective in the study of diagnostic errors. The applicability of this model is illustrated by the analysis of a patient whose diagnosis of spinal cord compression was substantially delayed. We suggest how the application of this framework could lead to potential areas of intervention and outline some areas of future research. It is possible that the use of such a model in medicine could help reduce errors in diagnosis and lead to significant improvements in patient care. Further research is needed, including the measurement of situational awareness and correlation with health outcomes. PMID:16751463
Application of the epidemiological model in studying human error in aviation
NASA Technical Reports Server (NTRS)
Cheaney, E. S.; Billings, C. E.
1981-01-01
An epidemiological model is described in conjunction with the analytical process through which aviation occurrence reports are composed into the events and factors pertinent to it. The model represents a process in which disease, emanating from environmental conditions, manifests itself in symptoms that may lead to fatal illness, recoverable illness, or no illness depending on individual circumstances of patient vulnerability, preventive actions, and intervention. In the aviation system the analogy of the disease process is the predilection for error of human participants. This arises from factors in the operating or physical environment and results in errors of commission or omission that, again depending on the individual circumstances, may lead to accidents, system perturbations, or harmless corrections. A discussion of the previous investigations, each of which manifests the application of the epidemiological method, exemplifies its use and effectiveness.
A method for automatic feature points extraction of human vertebrae three-dimensional model
NASA Astrophysics Data System (ADS)
Wu, Zhen; Wu, Junsheng
2017-05-01
A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.
Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping
2013-01-01
Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Kessler, K. M.
1975-01-01
The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.
On Inertial Body Tracking in the Presence of Model Calibration Errors
Miezal, Markus; Taetz, Bertram; Bleser, Gabriele
2016-01-01
In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266
Combustion Device Failures During Space Shuttle Main Engine Development
NASA Technical Reports Server (NTRS)
Goetz, Otto K.; Monk, Jan C.
2005-01-01
Major Causes: Limited Initial Materials Properties. Limited Structural Models - especially fatigue. Limited Thermal Models. Limited Aerodynamic Models. Human Errors. Limited Component Test. High Pressure. Complicated Control.
Assisting Movement Training and Execution With Visual and Haptic Feedback.
Ewerton, Marco; Rother, David; Weimar, Jakob; Kollegger, Gerrit; Wiemeyer, Josef; Peters, Jan; Maeda, Guilherme
2018-01-01
In the practice of motor skills in general, errors in the execution of movements may go unnoticed when a human instructor is not available. In this case, a computer system or robotic device able to detect movement errors and propose corrections would be of great help. This paper addresses the problem of how to detect such execution errors and how to provide feedback to the human to correct his/her motor skill using a general, principled methodology based on imitation learning. The core idea is to compare the observed skill with a probabilistic model learned from expert demonstrations. The intensity of the feedback is regulated by the likelihood of the model given the observed skill. Based on demonstrations, our system can, for example, detect errors in the writing of characters with multiple strokes. Moreover, by using a haptic device, the Haption Virtuose 6D, we demonstrate a method to generate haptic feedback based on a distribution over trajectories, which could be used as an auxiliary means of communication between an instructor and an apprentice. Additionally, given a performance measurement, the haptic device can help the human discover and perform better movements to solve a given task. In this case, the human first tries a few times to solve the task without assistance. Our framework, in turn, uses a reinforcement learning algorithm to compute haptic feedback, which guides the human toward better solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. JOe; Ronald L. Boring
Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understandmore » from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.« less
Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping
2013-01-01
Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C. PMID:24312497
Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read
2016-01-01
In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677
Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read
2016-01-05
In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons.
A Hybrid Model for Predicting the Prevalence of Schistosomiasis in Humans of Qianjiang City, China
Wang, Ying; Lu, Zhouqin; Tian, Lihong; Tan, Li; Shi, Yun; Nie, Shaofa; Liu, Li
2014-01-01
Backgrounds/Objective Schistosomiasis is still a major public health problem in China, despite the fact that the government has implemented a series of strategies to prevent and control the spread of the parasitic disease. Advanced warning and reliable forecasting can help policymakers to adjust and implement strategies more effectively, which will lead to the control and elimination of schistosomiasis. Our aim is to explore the application of a hybrid forecasting model to track the trends of the prevalence of schistosomiasis in humans, which provides a methodological basis for predicting and detecting schistosomiasis infection in endemic areas. Methods A hybrid approach combining the autoregressive integrated moving average (ARIMA) model and the nonlinear autoregressive neural network (NARNN) model to forecast the prevalence of schistosomiasis in the future four years. Forecasting performance was compared between the hybrid ARIMA-NARNN model, and the single ARIMA or the single NARNN model. Results The modelling mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model was 0.1869×10−4, 0.0029, 0.0419 with a corresponding testing error of 0.9375×10−4, 0.0081, 0.9064, respectively. These error values generated with the hybrid model were all lower than those obtained from the single ARIMA or NARNN model. The forecasting values were 0.75%, 0.80%, 0.76% and 0.77% in the future four years, which demonstrated a no-downward trend. Conclusion The hybrid model has high quality prediction accuracy in the prevalence of schistosomiasis, which provides a methodological basis for future schistosomiasis monitoring and control strategies in the study area. It is worth attempting to utilize the hybrid detection scheme in other schistosomiasis-endemic areas including other infectious diseases. PMID:25119882
NASA Astrophysics Data System (ADS)
Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.
2018-02-01
To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.
Kuselman, Ilya; Pennecchi, Francesca; Epstein, Malka; Fajgelj, Ales; Ellison, Stephen L R
2014-12-01
Monte Carlo simulation of expert judgments on human errors in a chemical analysis was used for determination of distributions of the error quantification scores (scores of likelihood and severity, and scores of effectiveness of a laboratory quality system in prevention of the errors). The simulation was based on modeling of an expert behavior: confident, reasonably doubting and irresolute expert judgments were taken into account by means of different probability mass functions (pmfs). As a case study, 36 scenarios of human errors which may occur in elemental analysis of geological samples by ICP-MS were examined. Characteristics of the score distributions for three pmfs of an expert behavior were compared. Variability of the scores, as standard deviation of the simulated score values from the distribution mean, was used for assessment of the score robustness. A range of the score values, calculated directly from elicited data and simulated by a Monte Carlo method for different pmfs, was also discussed from the robustness point of view. It was shown that robustness of the scores, obtained in the case study, can be assessed as satisfactory for the quality risk management and improvement of a laboratory quality system against human errors. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Coyne, Kevin Anthony
The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities.
Borycki, E M; Kushniruk, A W; Bellwood, P; Brender, J
2012-01-01
The objective of this paper is to examine the extent, range and scope to which frameworks, models and theories dealing with technology-induced error have arisen in the biomedical and life sciences literature as indexed by Medline®. To better understand the state of work in the area of technology-induced error involving frameworks, models and theories, the authors conducted a search of Medline® using selected key words identified from seminal articles in this research area. Articles were reviewed and those pertaining to frameworks, models or theories dealing with technology-induced error were further reviewed by two researchers. All articles from Medline® from its inception to April of 2011 were searched using the above outlined strategy. 239 citations were returned. Each of the abstracts for the 239 citations were reviewed by two researchers. Eleven articles met the criteria based on abstract review. These 11 articles were downloaded for further in-depth review. The majority of the articles obtained describe frameworks and models with reference to theories developed in other literatures outside of healthcare. The papers were grouped into several areas. It was found that articles drew mainly from three literatures: 1) the human factors literature (including human-computer interaction and cognition), 2) the organizational behavior/sociotechnical literature, and 3) the software engineering literature. A variety of frameworks and models were found in the biomedical and life sciences literatures. These frameworks and models drew upon and extended frameworks, models and theoretical perspectives that have emerged in other literatures. These frameworks and models are informing an emerging line of research in health and biomedical informatics involving technology-induced errors in healthcare.
A Framework for Modeling Human-Machine Interactions
NASA Technical Reports Server (NTRS)
Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)
1996-01-01
Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.
Li, Wen-Chin; Harris, Don; Yu, Chung-San
2008-03-01
The human factors analysis and classification system (HFACS) is based upon Reason's organizational model of human error. HFACS was developed as an analytical framework for the investigation of the role of human error in aviation accidents, however, there is little empirical work formally describing the relationship between the components in the model. This research analyses 41 civil aviation accidents occurring to aircraft registered in the Republic of China (ROC) between 1999 and 2006 using the HFACS framework. The results show statistically significant relationships between errors at the operational level and organizational inadequacies at both the immediately adjacent level (preconditions for unsafe acts) and higher levels in the organization (unsafe supervision and organizational influences). The pattern of the 'routes to failure' observed in the data from this analysis of civil aircraft accidents show great similarities to that observed in the analysis of military accidents. This research lends further support to Reason's model that suggests that active failures are promoted by latent conditions in the organization. Statistical relationships linking fallible decisions in upper management levels were found to directly affect supervisory practices, thereby creating the psychological preconditions for unsafe acts and hence indirectly impairing the performance of pilots, ultimately leading to accidents.
Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi
2013-12-01
Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Paul A.; Cooper, Candice Frances; Burnett, Damon J.
Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is virtually nonexistent but necessary to ensure adequate protection against injury to the heart and lungs. In this report, we discuss the development of a high-fidelity human torso model, it's merging with the existing Sandia Human Head-Neck Model, and development of the modeling & simulation (M&S) capabilities necessary to simulate wound injury scenarios. Using the new Sandia Human Torso Model, we demonstrate the advantage of virtual simulation in the investigation of wound injury as it relates tomore » the warfighter experience. We present the results of virtual simulations of blast loading and ballistic projectile impact to the tors o with and without notional protective armor. In this manner, we demonstrate the ad vantages of applying a modeling and simulation approach to the investigation of wound injury and relative merit assessments of protective body armor without the need for trial-and-error testing.« less
Online Deviation Detection for Medical Processes
Christov, Stefan C.; Avrunin, George S.; Clarke, Lori A.
2014-01-01
Human errors are a major concern in many medical processes. To help address this problem, we are investigating an approach for automatically detecting when performers of a medical process deviate from the acceptable ways of performing that process as specified by a detailed process model. Such deviations could represent errors and, thus, detecting and reporting deviations as they occur could help catch errors before harm is done. In this paper, we identify important issues related to the feasibility of the proposed approach and empirically evaluate the approach for two medical procedures, chemotherapy and blood transfusion. For the evaluation, we use the process models to generate sample process executions that we then seed with synthetic errors. The process models describe the coordination of activities of different process performers in normal, as well as in exceptional situations. The evaluation results suggest that the proposed approach could be applied in clinical settings to help catch errors before harm is done. PMID:25954343
Application of manual control theory to the study of biological stress
NASA Technical Reports Server (NTRS)
Replogle, C. R.; Holden, F. M.; Iay, C. N.
1972-01-01
A study was run using both a stable, third-order task and an adaptive first-order unstable task singly and in combination to test the effects of 2 min hypoxia (22000 ft) on human operator. The results indicate that the RMS error in the stable task does not change as a function of hypoxic stress whereas the error in an unstable task changes significantly. Models involving human operator parameter changes and noise injection are discussed.
Research the Gait Characteristics of Human Walking Based on a Robot Model and Experiment
NASA Astrophysics Data System (ADS)
He, H. J.; Zhang, D. N.; Yin, Z. W.; Shi, J. H.
2017-02-01
In order to research the gait characteristics of human walking in different walking ways, a robot model with a single degree of freedom is put up in this paper. The system control models of the robot are established through Matlab/Simulink toolbox. The gait characteristics of straight, uphill, turning, up the stairs, down the stairs up and down areanalyzed by the system control models. To verify the correctness of the theoretical analysis, an experiment was carried out. The comparison between theoretical results and experimental results shows that theoretical results are better agreement with the experimental ones. Analyze the reasons leading to amplitude error and phase error and give the improved methods. The robot model and experimental ways can provide foundation to further research the various gait characteristics of the exoskeleton robot.
Predictive models of safety based on audit findings: Part 1: Model development and reliability.
Hsiao, Yu-Lin; Drury, Colin; Wu, Changxu; Paquet, Victor
2013-03-01
This consecutive study was aimed at the quantitative validation of safety audit tools as predictors of safety performance, as we were unable to find prior studies that tested audit validity against safety outcomes. An aviation maintenance domain was chosen for this work as both audits and safety outcomes are currently prescribed and regulated. In Part 1, we developed a Human Factors/Ergonomics classification framework based on HFACS model (Shappell and Wiegmann, 2001a,b), for the human errors detected by audits, because merely counting audit findings did not predict future safety. The framework was tested for measurement reliability using four participants, two of whom classified errors on 1238 audit reports. Kappa values leveled out after about 200 audits at between 0.5 and 0.8 for different tiers of errors categories. This showed sufficient reliability to proceed with prediction validity testing in Part 2. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Spatial Resolution, Grayscale, and Error Diffusion Trade-offs: Impact on Display System Design
NASA Technical Reports Server (NTRS)
Gille, Jennifer L. (Principal Investigator)
1996-01-01
We examine technology trade-offs related to grayscale resolution, spatial resolution, and error diffusion for tessellated display systems. We present new empirical results from our psychophysical study of these trade-offs and compare them to the predictions of a model of human vision.
Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.
2010-01-01
In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273
Souvestre, P A; Landrock, C K; Blaber, A P
2008-08-01
Human factors centered aviation accident analyses report that skill based errors are known to be cause of 80% of all accidents, decision making related errors 30% and perceptual errors 6%1. In-flight decision making error is a long time recognized major avenue leading to incidents and accidents. Through the past three decades, tremendous and costly efforts have been developed to attempt to clarify causation, roles and responsibility as well as to elaborate various preventative and curative countermeasures blending state of the art biomedical, technological advances and psychophysiological training strategies. In-flight related statistics have not been shown significantly changed and a significant number of issues remain not yet resolved. Fine Postural System and its corollary, Postural Deficiency Syndrome (PDS), both defined in the 1980's, are respectively neurophysiological and medical diagnostic models that reflect central neural sensory-motor and cognitive controls regulatory status. They are successfully used in complex neurotraumatology and related rehabilitation for over two decades. Analysis of clinical data taken over a ten-year period from acute and chronic post-traumatic PDS patients shows a strong correlation between symptoms commonly exhibited before, along side, or even after error, and sensory-motor or PDS related symptoms. Examples are given on how PDS related central sensory-motor control dysfunction can be correctly identified and monitored via a neurophysiological ocular-vestibular-postural monitoring system. The data presented provides strong evidence that a specific biomedical assessment methodology can lead to a better understanding of in-flight adaptive neurophysiological, cognitive and perceptual dysfunctional status that could induce in flight-errors. How relevant human factors can be identified and leveraged to maintain optimal performance will be addressed.
Designing to Control Flight Crew Errors
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Willshire, Kelli F.
1997-01-01
It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.
Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society
2002-01-01
6 Walter Schneider (University of Pittsburgh) A Cognitive Approach to Designing Human Error...Experiment Design and Comparison of Human and Model Data: David Diller and Yvette Tenney (BBN Technologies) An EPIC-Soar Model of Concurrent...the Roles of Design History and Affordances in the HIPE Theory of Function
Children perseverate to a human's actions but not to a robot's actions.
Moriguchi, Yusuke; Kanda, Takayuki; Ishiguro, Hiroshi; Itakura, Shoji
2010-01-01
Previous research has shown that young children commit perseverative errors from their observation of another person's actions. The present study examined how social observation would lead children to perseverative tendencies, using a robot. In Experiment 1, preschoolers watched either a human model or a robot sorting cards according to one dimension (e.g. shape), after which they were asked to sort according to a different dimension (e.g. colour). The results showed that children's behaviours in the task were significantly influenced by the human model's actions but not by the robot's actions. Experiment 2 excluded the possibility that children's behaviours were not affected by the robot's actions because they did not observe its actions. We concluded that children's perseverative errors from social observation resulted, in part, from their socio-cognitive ability.
De Sá Teixeira, Nuno Alexandre
2014-12-01
Given its conspicuous nature, gravity has been acknowledged by several research lines as a prime factor in structuring the spatial perception of one's environment. One such line of enquiry has focused on errors in spatial localization aimed at the vanishing location of moving objects - it has been systematically reported that humans mislocalize spatial positions forward, in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, spatial localization errors were found to evolve dynamically with time in a pattern congruent with an anticipated trajectory (representational trajectory). The present study attempts to ascertain the degree to which vestibular information plays a role in these phenomena. Human observers performed a spatial localization task while tilted to varying degrees and referring to the vanishing locations of targets moving along several directions. A Fourier decomposition of the obtained spatial localization errors revealed that although spatial errors were increased "downward" mainly along the body's longitudinal axis (idiotropic dominance), the degree of misalignment between the latter and physical gravity modulated the time course of the localization responses. This pattern is surmised to reflect increased uncertainty about the internal model when faced with conflicting cues regarding the perceived "downward" direction.
Emmetropisation and the aetiology of refractive errors
Flitcroft, D I
2014-01-01
The distribution of human refractive errors displays features that are not commonly seen in other biological variables. Compared with the more typical Gaussian distribution, adult refraction within a population typically has a negative skew and increased kurtosis (ie is leptokurtotic). This distribution arises from two apparently conflicting tendencies, first, the existence of a mechanism to control eye growth during infancy so as to bring refraction towards emmetropia/low hyperopia (ie emmetropisation) and second, the tendency of many human populations to develop myopia during later childhood and into adulthood. The distribution of refraction therefore changes significantly with age. Analysis of the processes involved in shaping refractive development allows for the creation of a life course model of refractive development. Monte Carlo simulations based on such a model can recreate the variation of refractive distributions seen from birth to adulthood and the impact of increasing myopia prevalence on refractive error distributions in Asia. PMID:24406411
Liu, Xingguo; Niu, Jianwei; Ran, Linghua; Liu, Taijie
2017-08-01
This study aimed to develop estimation formulae for the total human body volume (BV) of adult males using anthropometric measurements based on a three-dimensional (3D) scanning technique. Noninvasive and reliable methods to predict the total BV from anthropometric measurements based on a 3D scan technique were addressed in detail. A regression analysis of BV based on four key measurements was conducted for approximately 160 adult male subjects. Eight total models of human BV show that the predicted results fitted by the regression models were highly correlated with the actual BV (p < 0.001). Two metrics, the mean value of the absolute difference between the actual and predicted BV (V error ) and the mean value of the ratio between V error and actual BV (RV error ), were calculated. The linear model based on human weight was recommended as the most optimal due to its simplicity and high efficiency. The proposed estimation formulae are valuable for estimating total body volume in circumstances in which traditional underwater weighing or air displacement plethysmography is not applicable or accessible. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Modeling human target acquisition in ground-to-air weapon systems
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Mohr, R. L.; Vikmanis, M.; Wei, K. C.
1982-01-01
The problems associated with formulating and validating mathematical models for describing and predicting human target acquisition response are considered. In particular, the extension of the human observer model to include the acquisition phase as well as the tracking segment is presented. Relationship of the Observer model structure to the more complex Standard Optimal Control model formulation and to the simpler Transfer Function/Noise representation is discussed. Problems pertinent to structural identifiability and the form of the parameterization are elucidated. A systematic approach toward the identification of the observer acquisition model parameters from ensemble tracking error data is presented.
Considerations for Creating Multi-Language Personality Norms: A Three-Component Model of Error
ERIC Educational Resources Information Center
Meyer, Kevin D.; Foster, Jeff L.
2008-01-01
With the increasing globalization of human resources practices, a commensurate increase in demand has occurred for multi-language ("global") personality norms for use in selection and development efforts. The combination of data from multiple translations of a personality assessment into a single norm engenders error from multiple sources. This…
A cognitive taxonomy of medical errors.
Zhang, Jiajie; Patel, Vimla L; Johnson, Todd R; Shortliffe, Edward H
2004-06-01
Propose a cognitive taxonomy of medical errors at the level of individuals and their interactions with technology. Use cognitive theories of human error and human action to develop the theoretical foundations of the taxonomy, develop the structure of the taxonomy, populate the taxonomy with examples of medical error cases, identify cognitive mechanisms for each category of medical error under the taxonomy, and apply the taxonomy to practical problems. Four criteria were used to evaluate the cognitive taxonomy. The taxonomy should be able (1) to categorize major types of errors at the individual level along cognitive dimensions, (2) to associate each type of error with a specific underlying cognitive mechanism, (3) to describe how and explain why a specific error occurs, and (4) to generate intervention strategies for each type of error. The proposed cognitive taxonomy largely satisfies the four criteria at a theoretical and conceptual level. Theoretically, the proposed cognitive taxonomy provides a method to systematically categorize medical errors at the individual level along cognitive dimensions, leads to a better understanding of the underlying cognitive mechanisms of medical errors, and provides a framework that can guide future studies on medical errors. Practically, it provides guidelines for the development of cognitive interventions to decrease medical errors and foundation for the development of medical error reporting system that not only categorizes errors but also identifies problems and helps to generate solutions. To validate this model empirically, we will next be performing systematic experimental studies.
Human Systems Integration in Expeditionary Medical Treatment Facilities
2010-04-01
mental models and situation awareness Human Factors Engineering, Personnel, and Safety / Occupational Health The following issue is associated with...domains are human factors engineering, manpower, personnel, training, safety and occupational health , survivability, habitability, and environment...certain responsibilities to less-qualified personnel. Human error is a particularly sensitive topic across all sectors of health care, but the time
Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.
2016-01-01
Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272
Analysis of the “naming game” with learning errors in communications
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong
2015-07-01
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Analysis of the "naming game" with learning errors in communications.
Lou, Yang; Chen, Guanrong
2015-07-16
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
NASA Astrophysics Data System (ADS)
Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora
2014-03-01
Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-03-28
A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.
Image based Monte Carlo Modeling for Computational Phantom
NASA Astrophysics Data System (ADS)
Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican
2014-06-01
The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.
A system dynamic simulation model for managing the human error in power tools industries
NASA Astrophysics Data System (ADS)
Jamil, Jastini Mohd; Shaharanee, Izwan Nizal Mohd
2017-10-01
In the era of modern and competitive life of today, every organization will face the situations in which the work does not proceed as planned when there is problems occur in which it had to be delay. However, human error is often cited as the culprit. The error that made by the employees would cause them have to spend additional time to identify and check for the error which in turn could affect the normal operations of the company as well as the company's reputation. Employee is a key element of the organization in running all of the activities of organization. Hence, work performance of the employees is a crucial factor in organizational success. The purpose of this study is to identify the factors that cause the increasing errors make by employees in the organization by using system dynamics approach. The broadly defined targets in this study are employees in the Regional Material Field team from purchasing department in power tools industries. Questionnaires were distributed to the respondents to obtain their perceptions on the root cause of errors make by employees in the company. The system dynamics model was developed to simulate the factor of the increasing errors make by employees and its impact. The findings of this study showed that the increasing of error make by employees was generally caused by the factors of workload, work capacity, job stress, motivation and performance of employees. However, this problem could be solve by increased the number of employees in the organization.
Particle deposition in human respiratory system: deposition of concentrated hygroscopic aerosols.
Varghese, Suresh K; Gangamma, S
2009-06-01
In the nearly saturated human respiratory tract, the presence of water-soluble substances in the inhaled aerosols can cause change in the size distribution of the particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. Similarly, the presence of high concentration of hygroscopic aerosols also affects the water vapor and temperature profiles in the respiratory tract. A model is presented to analyze these effects in human respiratory system. The model solves simultaneously the heat and mass transfer equations to determine the size evolution of respirable particles and gas-phase properties within human respiratory tract. First, the model predictions for nonhygroscopic aerosols are compared with experimental results. The model results are compared with experimental results of sodium chloride particles. The model reproduces the major features of the experimental data. The water vapor profile is significantly modified only when a high concentration of particles is present. The model is used to study the effect of equilibrium assumptions on particle deposition. Simulations show that an infinite dilution solution assumption to calculate the saturation equilibrium over droplet could induce errors in estimating particle growth. This error is significant in the case of particles of size greater than 1 mum and at number concentrations higher than 10(5)/cm(3).
SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA
Fosdick, Bailey K.; Hoff, Peter D.
2014-01-01
Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353
Inspection error and its adverse effects - A model with implications for practitioners
NASA Technical Reports Server (NTRS)
Collins, R. D., Jr.; Case, K. E.; Bennett, G. K.
1978-01-01
Inspection error has clearly been shown to have adverse effects upon the results desired from a quality assurance sampling plan. These effects upon performance measures have been well documented from a statistical point of view. However, little work has been presented to convince the QC manager of the unfavorable cost consequences resulting from inspection error. This paper develops a very general, yet easily used, mathematical cost model. The basic format of the well-known Guthrie-Johns model is used. However, it is modified as required to assess the effects of attributes sampling errors of the first and second kind. The economic results, under different yet realistic conditions, will no doubt be of interest to QC practitioners who face similar problems daily. Sampling inspection plans are optimized to minimize economic losses due to inspection error. Unfortunately, any error at all results in some economic loss which cannot be compensated for by sampling plan design; however, improvements over plans which neglect the presence of inspection error are possible. Implications for human performance betterment programs are apparent, as are trade-offs between sampling plan modification and inspection and training improvements economics.
Human Error In Complex Systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1991-01-01
Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Cognition in Space Workshop. 1; Metrics and Models
NASA Technical Reports Server (NTRS)
Woolford, Barbara; Fielder, Edna
2005-01-01
"Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals.
Robust Linear Models for Cis-eQTL Analysis.
Rantalainen, Mattias; Lindgren, Cecilia M; Holmes, Christopher C
2015-01-01
Expression Quantitative Trait Loci (eQTL) analysis enables characterisation of functional genetic variation influencing expression levels of individual genes. In outbread populations, including humans, eQTLs are commonly analysed using the conventional linear model, adjusting for relevant covariates, assuming an allelic dosage model and a Gaussian error term. However, gene expression data generally have noise that induces heavy-tailed errors relative to the Gaussian distribution and often include atypical observations, or outliers. Such departures from modelling assumptions can lead to an increased rate of type II errors (false negatives), and to some extent also type I errors (false positives). Careful model checking can reduce the risk of type-I errors but often not type II errors, since it is generally too time-consuming to carefully check all models with a non-significant effect in large-scale and genome-wide studies. Here we propose the application of a robust linear model for eQTL analysis to reduce adverse effects of deviations from the assumption of Gaussian residuals. We present results from a simulation study as well as results from the analysis of real eQTL data sets. Our findings suggest that in many situations robust models have the potential to provide more reliable eQTL results compared to conventional linear models, particularly in respect to reducing type II errors due to non-Gaussian noise. Post-genomic data, such as that generated in genome-wide eQTL studies, are often noisy and frequently contain atypical observations. Robust statistical models have the potential to provide more reliable results and increased statistical power under non-Gaussian conditions. The results presented here suggest that robust models should be considered routinely alongside other commonly used methodologies for eQTL analysis.
Giardina, M; Castiglia, F; Tomarchio, E
2014-12-01
Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
Modeling congenital disease and inborn errors of development in Drosophila melanogaster
Moulton, Matthew J.; Letsou, Anthea
2016-01-01
ABSTRACT Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes. PMID:26935104
Human operator response to error-likely situations in complex engineering systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1988-01-01
The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.
Multi-Unit Considerations for Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. Germain, S.; Boring, R.; Banaseanu, G.
This paper uses the insights from the Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) methodology to help identify human actions currently modeled in the single unit PSA that may need to be modified to account for additional challenges imposed by a multi-unit accident as well as identify possible new human actions that might be modeled to more accurately characterize multi-unit risk. In identifying these potential human action impacts, the use of the SPAR-H strategy to include both errors in diagnosis and errors in action is considered as well as identifying characteristics of a multi-unit accident scenario that may impact themore » selection of the performance shaping factors (PSFs) used in SPAR-H. The lessons learned from the Fukushima Daiichi reactor accident will be addressed to further help identify areas where improved modeling may be required. While these multi-unit impacts may require modifications to a Level 1 PSA model, it is expected to have much more importance for Level 2 modeling. There is little currently written specifically about multi-unit HRA issues. A review of related published research will be presented. While this paper cannot answer all issues related to multi-unit HRA, it will hopefully serve as a starting point to generate discussion and spark additional ideas towards the proper treatment of HRA in a multi-unit PSA.« less
Human error and human factors engineering in health care.
Welch, D L
1997-01-01
Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.
Cheng, Ching-Min; Hwang, Sheue-Ling
2015-03-01
This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Human Factors Directions for Civil Aviation
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
2002-01-01
Despite considerable progress in understanding human capabilities and limitations, incorporating human factors into aircraft design, operation, and certification, and the emergence of new technologies designed to reduce workload and enhance human performance in the system, most aviation accidents still involve human errors. Such errors occur as a direct or indirect result of untimely, inappropriate, or erroneous actions (or inactions) by apparently well-trained and experienced pilots, controllers, and maintainers. The field of human factors has solved many of the more tractable problems related to simple ergonomics, cockpit layout, symbology, and so on. We have learned much about the relationships between people and machines, but know less about how to form successful partnerships between humans and the information technologies that are beginning to play a central role in aviation. Significant changes envisioned in the structure of the airspace, pilots and controllers' roles and responsibilities, and air/ground technologies will require a similarly significant investment in human factors during the next few decades to ensure the effective integration of pilots, controllers, dispatchers, and maintainers into the new system. Many of the topics that will be addressed are not new because progress in crucial areas, such as eliminating human error, has been slow. A multidisciplinary approach that capitalizes upon human studies and new classes of information, computational models, intelligent analytical tools, and close collaborations with organizations that build, operate, and regulate aviation technology will ensure that the field of human factors meets the challenge.
Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C
2014-03-01
Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward prediction errors and the changes in amplitude of these prediction errors at the time of choice presentation and reward delivery. Our results provide further support that the computations that underlie human learning and decision-making follow reinforcement learning principles.
Visual difference metric for realistic image synthesis
NASA Astrophysics Data System (ADS)
Bolin, Mark R.; Meyer, Gary W.
1999-05-01
An accurate and efficient model of human perception has been developed to control the placement of sample in a realistic image synthesis algorithm. Previous sampling techniques have sought to spread the error equally across the image plane. However, this approach neglects the fact that the renderings are intended to be displayed for a human observer. The human visual system has a varying sensitivity to error that is based upon the viewing context. This means that equivalent optical discrepancies can be very obvious in one situation and imperceptible in another. It is ultimately the perceptibility of this error that governs image quality and should be used as the basis of a sampling algorithm. This paper focuses on a simplified version of the Lubin Visual Discrimination Metric (VDM) that was developed for insertion into an image synthesis algorithm. The sampling VDM makes use of a Haar wavelet basis for the cortical transform and a less severe spatial pooling operation. The model was extended for color including the effects of chromatic aberration. Comparisons are made between the execution time and visual difference map for the original Lubin and simplified visual difference metrics. Results for the realistic image synthesis algorithm are also presented.
Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco
2005-01-01
A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204
Color filter array design based on a human visual model
NASA Astrophysics Data System (ADS)
Parmar, Manu; Reeves, Stanley J.
2004-05-01
To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.
Overview of medical errors and adverse events
2012-01-01
Safety is a global concept that encompasses efficiency, security of care, reactivity of caregivers, and satisfaction of patients and relatives. Patient safety has emerged as a major target for healthcare improvement. Quality assurance is a complex task, and patients in the intensive care unit (ICU) are more likely than other hospitalized patients to experience medical errors, due to the complexity of their conditions, need for urgent interventions, and considerable workload fluctuation. Medication errors are the most common medical errors and can induce adverse events. Two approaches are available for evaluating and improving quality-of-care: the room-for-improvement model, in which problems are identified, plans are made to resolve them, and the results of the plans are measured; and the monitoring model, in which quality indicators are defined as relevant to potential problems and then monitored periodically. Indicators that reflect structures, processes, or outcomes have been developed by medical societies. Surveillance of these indicators is organized at the hospital or national level. Using a combination of methods improves the results. Errors are caused by combinations of human factors and system factors, and information must be obtained on how people make errors in the ICU environment. Preventive strategies are more likely to be effective if they rely on a system-based approach, in which organizational flaws are remedied, rather than a human-based approach of encouraging people not to make errors. The development of a safety culture in the ICU is crucial to effective prevention and should occur before the evaluation of safety programs, which are more likely to be effective when they involve bundles of measures. PMID:22339769
Human error in airway facilities.
DOT National Transportation Integrated Search
2001-01-01
This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being : passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. : Human factors engin...
Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C
2013-01-01
Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less
Model-based color halftoning using direct binary search.
Agar, A Ufuk; Allebach, Jan P
2005-12-01
In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2015-01-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057
Chiu, Ming-Chuan; Hsieh, Min-Chih
2016-05-01
The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition
Kheradpisheh, Saeed Reza; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée
2016-01-01
Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown to be able to recognize thousands of object categories in natural image databases. Their architecture is somewhat similar to that of the human visual system: both use restricted receptive fields, and a hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown whether DCNNs match human performance at the task of view-invariant object recognition, whether they make similar errors and use similar representations for this task, and whether the answers depend on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and humans when variations are weak. When facing larger variations, however, more layers were needed to match human performance and error distributions, and to have representations that are consistent with human behavior. A very deep net with 18 layers even outperformed humans at the highest variation level, using the most human-like representations. PMID:27601096
Garbe, James C.; Vrba, Lukas; Sputova, Klara; ...
2014-10-29
Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient non-clonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16INK4; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agentsmore » are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional “passenger” errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of “passenger” genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.« less
2005-08-01
excellente justesse comparativement au F-Scan® pendant les essais sur le modèle de hanche. Les deux systèmes présentaient un certain degré de variation...in appendix C. The experimental design consisted of three steps (See Figure 1). Two were undertaken using a physical model for the shoulder in order...increase in accuracy error compared to Table 1 suggests that the current software for the XSENSOR® system is not designed to compensate for errors
Acquisition, representation, and transfer of models of visuo-motor error
Zhang, Hang; Kulsa, Mila Kirstie C.; Maloney, Laurence T.
2015-01-01
We examined how human subjects acquire and represent models of visuo-motor error and how they transfer information about visuo-motor error from one task to a closely related one. The experiment consisted of three phases. In the training phase, subjects threw beanbags underhand towards targets displayed on a wall-mounted touch screen. The distribution of their endpoints was a vertically elongated bivariate Gaussian. In the subsequent choice phase, subjects repeatedly chose which of two targets varying in shape and size they would prefer to attempt to hit. Their choices allowed us to investigate their internal models of visuo-motor error distribution, including the coordinate system in which they represented visuo-motor error. In the transfer phase, subjects repeated the choice phase from a different vantage point, the same distance from the screen but with the throwing direction shifted 45°. From the new vantage point, visuo-motor error was effectively expanded horizontally by . We found that subjects incorrectly assumed an isotropic distribution in the choice phase but that the anisotropy they assumed in the transfer phase agreed with an objectively correct transfer. We also found that the coordinate system used in coding two-dimensional visuo-motor error in the choice phase was effectively one-dimensional. PMID:26057549
Ge, Zhi-pu; Ma, Ruo-han; Li, Gang; Zhang, Ji-zong; Ma, Xu-chen
2015-08-01
To establish a method that can be used for human age estimation on the basis of pulp chamber volume of first molars and to identify whether the method is good enough for age estimation in real human cases. CBCT images of 373 maxillary first molars and 372 mandibular first molars were collected to establish the mathematical model from 190 female and 213 male patients whose age between 12 and 69 years old. The inclusion criteria of the first molars were: no caries, no excessive tooth wear, no dental restorations, no artifacts due to metal restorative materials present in adjacent teeth, and no pulpal calcification. All the CBCT images were acquired with a CBCT unit NewTom VG (Quantitative Radiology, Verona, Italy) and reconstructed with a voxel-size of 0.15mm. The images were subsequently exported as DICOM data sets and imported into an open source 3D image semi-automatic segmenting and voxel-counting software ITK-SNAP 2.4 for the calculation of pulp chamber volumes. A logarithmic regression analysis was conducted with age as dependent variable and pulp chamber volume as independent variables to establish a mathematical model for the human age estimation. To identify the precision and accuracy of the model for human age estimation, another 104 maxillary first molars and 103 mandibular first molars from 55 female and 57 male patients whose age between 12 and 67 years old were collected, too. Mean absolute error and root mean square error between the actual age and estimated age were used to determine the precision and accuracy of the mathematical model. The study was approved by the Institutional Review Board of Peking University School and Hospital of Stomatology. A mathematical model was suggested for: AGE=117.691-26.442×ln (pulp chamber volume). The regression was statistically significant (p=0.000<0.01). The coefficient of determination (R(2)) was 0.564. There is a mean absolute error of 8.122 and root mean square error of 5.603 between the actual age and estimated age for all the tested teeth. The pulp chamber volume of first molar is a useful index for the estimation of human age with reasonable precision and accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Development of a Modelling Solution to Address Manpower and Personnel Issues Using the IPME
2010-11-01
training for a military system. It deals with the number of personnel spaces and available people. One of the main concerns in this domain is to...are often addressed by examining existing solutions for similar systems and/or a trial-and-error method based on human-in- the -loop tests. Such an...significant effort and resources on the development of a human performance modelling software, the Integrated Performance Modelling Environment (IPME
NASA Astrophysics Data System (ADS)
Pichardo, Samuel; Moreno-Hernández, Carlos; Drainville, Robert Andrew; Sin, Vivian; Curiel, Laura; Hynynen, Kullervo
2017-09-01
A better understanding of ultrasound transmission through the human skull is fundamental to develop optimal imaging and therapeutic applications. In this study, we present global attenuation values and functions that correlate apparent density calculated from computed tomography scans to shear speed of sound. For this purpose, we used a model for sound propagation based on the viscoelastic wave equation (VWE) assuming isotropic conditions. The model was validated using a series of measurements with plates of different plastic materials and angles of incidence of 0°, 15° and 50°. The optimal functions for transcranial ultrasound propagation were established using the VWE, scan measurements of transcranial propagation with an angle of incidence of 40° and a genetic optimization algorithm. Ten (10) locations over three (3) skulls were used for ultrasound frequencies of 270 kHz and 836 kHz. Results with plastic materials demonstrated that the viscoelastic modeling predicted both longitudinal and shear propagation with an average (±s.d.) error of 9(±7)% of the wavelength in the predicted delay and an error of 6.7(±5)% in the estimation of transmitted power. Using the new optimal functions of speed of sound and global attenuation for the human skull, the proposed model predicted the transcranial ultrasound transmission for a frequency of 270 kHz with an expected error in the predicted delay of 5(±2.7)% of the wavelength. The sound propagation model predicted accurately the sound propagation regardless of either shear or longitudinal sound transmission dominated. For 836 kHz, the model predicted accurately in average with an error in the predicted delay of 17(±16)% of the wavelength. Results indicated the importance of the specificity of the information at a voxel level to better understand ultrasound transmission through the skull. These results and new model will be very valuable tools for the future development of transcranial applications of ultrasound therapy and imaging.
Development of the Nontechnical Skills for Officers of the Deck (NTSOD) Rating Form
2010-12-01
organizational model of human error commonly described as the ‘ Swiss Cheese ’ model. This model allows for the identification of active failures and latent...complete list). The authors did identify organizational and management issues as underlying causes to mishaps, similar to Reason’s Swiss Cheese model. 24
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-01-01
Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury. PMID:17391527
Information systems and human error in the lab.
Bissell, Michael G
2004-01-01
Health system costs in clinical laboratories are incurred daily due to human error. Indeed, a major impetus for automating clinical laboratories has always been the opportunity it presents to simultaneously reduce cost and improve quality of operations by decreasing human error. But merely automating these processes is not enough. To the extent that introduction of these systems results in operators having less practice in dealing with unexpected events or becoming deskilled in problemsolving, however new kinds of error will likely appear. Clinical laboratories could potentially benefit by integrating findings on human error from modern behavioral science into their operations. Fully understanding human error requires a deep understanding of human information processing and cognition. Predicting and preventing negative consequences requires application of this understanding to laboratory operations. Although the occurrence of a particular error at a particular instant cannot be absolutely prevented, human error rates can be reduced. The following principles are key: an understanding of the process of learning in relation to error; understanding the origin of errors since this knowledge can be used to reduce their occurrence; optimal systems should be forgiving to the operator by absorbing errors, at least for a time; although much is known by industrial psychologists about how to write operating procedures and instructions in ways that reduce the probability of error, this expertise is hardly ever put to use in the laboratory; and a feedback mechanism must be designed into the system that enables the operator to recognize in real time that an error has occurred.
On Space Exploration and Human Error: A Paper on Reliability and Safety
NASA Technical Reports Server (NTRS)
Bell, David G.; Maluf, David A.; Gawdiak, Yuri
2005-01-01
NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability
Forces associated with pneumatic power screwdriver operation: statics and dynamics.
Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G
2003-10-10
The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.
Meurier, C E
2000-07-01
Human errors are common in clinical practice, but they are under-reported. As a result, very little is known of the types, antecedents and consequences of errors in nursing practice. This limits the potential to learn from errors and to make improvement in the quality and safety of nursing care. The aim of this study was to use an Organizational Accident Model to analyse critical incidents of errors in nursing. Twenty registered nurses were invited to produce a critical incident report of an error (which had led to an adverse event or potentially could have led to an adverse event) they had made in their professional practice and to write down their responses to the error using a structured format. Using Reason's Organizational Accident Model, supplemental information was then collected from five of the participants by means of an individual in-depth interview to explore further issues relating to the incidents they had reported. The detailed analysis of one of the incidents is discussed in this paper, demonstrating the effectiveness of this approach in providing insight into the chain of events which may lead to an adverse event. The case study approach using critical incidents of clinical errors was shown to provide relevant information regarding the interaction of organizational factors, local circumstances and active failures (errors) in producing an adverse or potentially adverse event. It is suggested that more use should be made of this approach to understand how errors are made in practice and to take appropriate preventative measures.
Normal accidents: human error and medical equipment design.
Dain, Steven
2002-01-01
High-risk systems, which are typical of our technologically complex era, include not just nuclear power plants but also hospitals, anesthesia systems, and the practice of medicine and perfusion. In high-risk systems, no matter how effective safety devices are, some types of accidents are inevitable because the system's complexity leads to multiple and unexpected interactions. It is important for healthcare providers to apply a risk assessment and management process to decisions involving new equipment and procedures or staffing matters in order to minimize the residual risks of latent errors, which are amenable to correction because of the large window of opportunity for their detection. This article provides an introduction to basic risk management and error theory principles and examines ways in which they can be applied to reduce and mitigate the inevitable human errors that accompany high-risk systems. The article also discusses "human factor engineering" (HFE), the process which is used to design equipment/ human interfaces in order to mitigate design errors. The HFE process involves interaction between designers and endusers to produce a series of continuous refinements that are incorporated into the final product. The article also examines common design problems encountered in the operating room that may predispose operators to commit errors resulting in harm to the patient. While recognizing that errors and accidents are unavoidable, organizations that function within a high-risk system must adopt a "safety culture" that anticipates problems and acts aggressively through an anonymous, "blameless" reporting mechanism to resolve them. We must continuously examine and improve the design of equipment and procedures, personnel, supplies and materials, and the environment in which we work to reduce error and minimize its effects. Healthcare providers must take a leading role in the day-to-day management of the "Perioperative System" and be a role model in promoting a culture of safety in their organizations.
Nature and Nurture: the complex genetics of myopia and refractive error
Wojciechowski, Robert
2010-01-01
The refractive errors, myopia and hyperopia, are optical defects of the visual system that can cause blurred vision. Uncorrected refractive errors are the most common causes of visual impairment worldwide. It is estimated that 2.5 billion people will be affected by myopia alone with in the next decade. Experimental, epidemiological and clinical research has shown that refractive development is influenced by both environmental and genetic factors. Animal models have demonstrated that eye growth and refractive maturation during infancy are tightly regulated by visually-guided mechanisms. Observational data in human populations provide compelling evidence that environmental influences and individual behavioral factors play crucial roles in myopia susceptibility. Nevertheless, the majority of the variance of refractive error within populations is thought to be due to hereditary factors. Genetic linkage studies have mapped two dozen loci, while association studies have implicated more than 25 different genes in refractive variation. Many of these genes are involved in common biological pathways known to mediate extracellular matrix composition and regulate connective tissue remodeling. Other associated genomic regions suggest novel mechanisms in the etiology of human myopia, such as mitochondrial-mediated cell death or photoreceptor-mediated visual signal transmission. Taken together, observational and experimental studies have revealed the complex nature of human refractive variation, which likely involves variants in several genes and functional pathways. Multiway interactions between genes and/or environmental factors may also be important in determining individual risks of myopia, and may help explain the complex pattern of refractive error in human populations. PMID:21155761
Effect of contrast on human speed perception
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Thompson, Peter
1992-01-01
This study is part of an ongoing collaborative research effort between the Life Science and Human Factors Divisions at NASA ARC to measure the accuracy of human motion perception in order to predict potential errors in human perception/performance and to facilitate the design of display systems that minimize the effects of such deficits. The study describes how contrast manipulations can produce significant errors in human speed perception. Specifically, when two simultaneously presented parallel gratings are moving at the same speed within stationary windows, the lower-contrast grating appears to move more slowly. This contrast-induced misperception of relative speed is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate (e.g., a 50 percent contrast grating appears slower than a 70 percent contrast grating moving at the same speed). The misperception is large: a 70 percent contrast grating must, on average, be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, it is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, the relative orientation of the two gratings is important. Finally, the effect depends on the temporal presentation of the stimuli: the effects of contrast on perceived speed appears lessened when the stimuli to be matched are presented sequentially. These data constrain both physiological models of visual cortex and models of human performance. We conclude that viewing conditions that effect contrast, such as fog, may cause significant errors in speed judgments.
A Systems Modeling Approach for Risk Management of Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila
2012-01-01
The main cause of commanding errors is often (but not always) due to procedures. Either lack of maturity in the processes, incompleteness of requirements or lack of compliance to these procedures. Other causes of commanding errors include lack of understanding of system states, inadequate communication, and making hasty changes in standard procedures in response to an unexpected event. In general, it's important to look at the big picture prior to making corrective actions. In the case of errors traced back to procedures, considering the reliability of the process as a metric during its' design may help to reduce risk. This metric is obtained by using data from Nuclear Industry regarding human reliability. A structured method for the collection of anomaly data will help the operator think systematically about the anomaly and facilitate risk management. Formal models can be used for risk based design and risk management. A generic set of models can be customized for a broad range of missions.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
Operational Interventions to Maintenance Error
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki
1997-01-01
A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
Reduction of Maintenance Error Through Focused Interventions
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)
1997-01-01
It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
Lee, Min Su; Ju, Hojin; Song, Jin Woo; Park, Chan Gook
2015-11-06
In this paper, we present a method for finding the enhanced heading and position of pedestrians by fusing the Zero velocity UPdaTe (ZUPT)-based pedestrian dead reckoning (PDR) and the kinematic constraints of the lower human body. ZUPT is a well known algorithm for PDR, and provides a sufficiently accurate position solution for short term periods, but it cannot guarantee a stable and reliable heading because it suffers from magnetic disturbance in determining heading angles, which degrades the overall position accuracy as time passes. The basic idea of the proposed algorithm is integrating the left and right foot positions obtained by ZUPTs with the heading and position information from an IMU mounted on the waist. To integrate this information, a kinematic model of the lower human body, which is calculated by using orientation sensors mounted on both thighs and calves, is adopted. We note that the position of the left and right feet cannot be apart because of the kinematic constraints of the body, so the kinematic model generates new measurements for the waist position. The Extended Kalman Filter (EKF) on the waist data that estimates and corrects error states uses these measurements and magnetic heading measurements, which enhances the heading accuracy. The updated position information is fed into the foot mounted sensors, and reupdate processes are performed to correct the position error of each foot. The proposed update-reupdate technique consequently ensures improved observability of error states and position accuracy. Moreover, the proposed method provides all the information about the lower human body, so that it can be applied more effectively to motion tracking. The effectiveness of the proposed algorithm is verified via experimental results, which show that a 1.25% Return Position Error (RPE) with respect to walking distance is achieved.
Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm
NASA Astrophysics Data System (ADS)
Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.
2017-01-01
This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.
NASA Technical Reports Server (NTRS)
Diorio, Kimberly A.; Voska, Ned (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1981-01-01
Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
Theoretical investigation of aberrations upon ametropic human eyes
NASA Astrophysics Data System (ADS)
Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin
2003-11-01
The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1980-01-01
Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
Ye, Min; Nagar, Swati; Korzekwa, Ken
2016-04-01
Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, Diana
2014-01-01
Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander
2015-04-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher
2015-01-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106
Pratte, Michael S.; Park, Young Eun; Rademaker, Rosanne L.; Tong, Frank
2016-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced “oblique effect”, with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. PMID:28004957
Pratte, Michael S; Park, Young Eun; Rademaker, Rosanne L; Tong, Frank
2017-01-01
If we view a visual scene that contains many objects, then momentarily close our eyes, some details persist while others seem to fade. Discrete models of visual working memory (VWM) assume that only a few items can be actively maintained in memory, beyond which pure guessing will emerge. Alternatively, continuous resource models assume that all items in a visual scene can be stored with some precision. Distinguishing between these competing models is challenging, however, as resource models that allow for stochastically variable precision (across items and trials) can produce error distributions that resemble random guessing behavior. Here, we evaluated the hypothesis that a major source of variability in VWM performance arises from systematic variation in precision across the stimuli themselves; such stimulus-specific variability can be incorporated into both discrete-capacity and variable-precision resource models. Participants viewed multiple oriented gratings, and then reported the orientation of a cued grating from memory. When modeling the overall distribution of VWM errors, we found that the variable-precision resource model outperformed the discrete model. However, VWM errors revealed a pronounced "oblique effect," with larger errors for oblique than cardinal orientations. After this source of variability was incorporated into both models, we found that the discrete model provided a better account of VWM errors. Our results demonstrate that variable precision across the stimulus space can lead to an unwarranted advantage for resource models that assume stochastically variable precision. When these deterministic sources are adequately modeled, human working memory performance reveals evidence of a discrete capacity limit. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, D. L.
2014-01-01
Human error cannot be defined unambiguously in advance of it happening, it often becomes an error after the fact. The same action can result in a tragic accident for one situation or a heroic action given a more favorable outcome. People often forget that we employ humans in business and industry for the flexibility and capability to change when needed. In complex systems, operations are driven by their specifications of the system and the system structure. People provide the flexibility to make it work. Human error has been reported as being responsible for 60%-80% of failures, accidents and incidents in high-risk industries. We don't have to accept that all human errors are inevitable. Through the use of some basic techniques, many potential human error events can be addressed. There are actions that can be taken to reduce the risk of human error.
An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.
Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes
2017-10-01
This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.
Generating classes of 3D virtual mandibles for AR-based medical simulation.
Hippalgaonkar, Neha R; Sider, Alexa D; Hamza-Lup, Felix G; Santhanam, Anand P; Jaganathan, Bala; Imielinska, Celina; Rolland, Jannick P
2008-01-01
Simulation and modeling represent promising tools for several application domains from engineering to forensic science and medicine. Advances in 3D imaging technology convey paradigms such as augmented reality (AR) and mixed reality inside promising simulation tools for the training industry. Motivated by the requirement for superimposing anatomically correct 3D models on a human patient simulator (HPS) and visualizing them in an AR environment, the purpose of this research effort was to develop and validate a method for scaling a source human mandible to a target human mandible within a 2 mm root mean square (RMS) error. Results show that, given a distance between 2 same landmarks on 2 different mandibles, a relative scaling factor may be computed. Using this scaling factor, results show that a 3D virtual mandible model can be made morphometrically equivalent to a real target-specific mandible within a 1.30 mm RMS error. The virtual mandible may be further used as a reference target for registering other anatomic models, such as the lungs, on the HPS. Such registration will be made possible by physical constraints among the mandible and the spinal column in the horizontal normal rest position.
Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.
2012-01-01
One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.
Development of Web-Based Examination System Using Open Source Programming Model
ERIC Educational Resources Information Center
Abass, Olalere A.; Olajide, Samuel A.; Samuel, Babafemi O.
2017-01-01
The traditional method of assessment (examination) is often characterized by examination questions leakages, human errors during marking of scripts and recording of scores. The technological advancement in the field of computer science has necessitated the need for computer usage in majorly all areas of human life and endeavors, education sector…
Children Perseverate to a Human's Actions but Not to a Robot's Actions
ERIC Educational Resources Information Center
Moriguchi, Yusuke; Kanda, Takayuki; Ishiguro, Hiroshi; Itakura, Shoji
2010-01-01
Previous research has shown that young children commit perseverative errors from their observation of another person's actions. The present study examined how social observation would lead children to perseverative tendencies, using a robot. In Experiment 1, preschoolers watched either a human model or a robot sorting cards according to one…
Chilcott, J; Tappenden, P; Rawdin, A; Johnson, M; Kaltenthaler, E; Paisley, S; Papaioannou, D; Shippam, A
2010-05-01
Health policy decisions must be relevant, evidence-based and transparent. Decision-analytic modelling supports this process but its role is reliant on its credibility. Errors in mathematical decision models or simulation exercises are unavoidable but little attention has been paid to processes in model development. Numerous error avoidance/identification strategies could be adopted but it is difficult to evaluate the merits of strategies for improving the credibility of models without first developing an understanding of error types and causes. The study aims to describe the current comprehension of errors in the HTA modelling community and generate a taxonomy of model errors. Four primary objectives are to: (1) describe the current understanding of errors in HTA modelling; (2) understand current processes applied by the technology assessment community for avoiding errors in development, debugging and critically appraising models for errors; (3) use HTA modellers' perceptions of model errors with the wider non-HTA literature to develop a taxonomy of model errors; and (4) explore potential methods and procedures to reduce the occurrence of errors in models. It also describes the model development process as perceived by practitioners working within the HTA community. A methodological review was undertaken using an iterative search methodology. Exploratory searches informed the scope of interviews; later searches focused on issues arising from the interviews. Searches were undertaken in February 2008 and January 2009. In-depth qualitative interviews were performed with 12 HTA modellers from academic and commercial modelling sectors. All qualitative data were analysed using the Framework approach. Descriptive and explanatory accounts were used to interrogate the data within and across themes and subthemes: organisation, roles and communication; the model development process; definition of error; types of model error; strategies for avoiding errors; strategies for identifying errors; and barriers and facilitators. There was no common language in the discussion of modelling errors and there was inconsistency in the perceived boundaries of what constitutes an error. Asked about the definition of model error, there was a tendency for interviewees to exclude matters of judgement from being errors and focus on 'slips' and 'lapses', but discussion of slips and lapses comprised less than 20% of the discussion on types of errors. Interviewees devoted 70% of the discussion to softer elements of the process of defining the decision question and conceptual modelling, mostly the realms of judgement, skills, experience and training. The original focus concerned model errors, but it may be more useful to refer to modelling risks. Several interviewees discussed concepts of validation and verification, with notable consistency in interpretation: verification meaning the process of ensuring that the computer model correctly implemented the intended model, whereas validation means the process of ensuring that a model is fit for purpose. Methodological literature on verification and validation of models makes reference to the Hermeneutic philosophical position, highlighting that the concept of model validation should not be externalized from the decision-makers and the decision-making process. Interviewees demonstrated examples of all major error types identified in the literature: errors in the description of the decision problem, in model structure, in use of evidence, in implementation of the model, in operation of the model, and in presentation and understanding of results. The HTA error classifications were compared against existing classifications of model errors in the literature. A range of techniques and processes are currently used to avoid errors in HTA models: engaging with clinical experts, clients and decision-makers to ensure mutual understanding, producing written documentation of the proposed model, explicit conceptual modelling, stepping through skeleton models with experts, ensuring transparency in reporting, adopting standard housekeeping techniques, and ensuring that those parties involved in the model development process have sufficient and relevant training. Clarity and mutual understanding were identified as key issues. However, their current implementation is not framed within an overall strategy for structuring complex problems. Some of the questioning may have biased interviewees responses but as all interviewees were represented in the analysis no rebalancing of the report was deemed necessary. A potential weakness of the literature review was its focus on spreadsheet and program development rather than specifically on model development. It should also be noted that the identified literature concerning programming errors was very narrow despite broad searches being undertaken. Published definitions of overall model validity comprising conceptual model validation, verification of the computer model, and operational validity of the use of the model in addressing the real-world problem are consistent with the views expressed by the HTA community and are therefore recommended as the basis for further discussions of model credibility. Such discussions should focus on risks, including errors of implementation, errors in matters of judgement and violations. Discussions of modelling risks should reflect the potentially complex network of cognitive breakdowns that lead to errors in models and existing research on the cognitive basis of human error should be included in an examination of modelling errors. There is a need to develop a better understanding of the skills requirements for the development, operation and use of HTA models. Interaction between modeller and client in developing mutual understanding of a model establishes that model's significance and its warranty. This highlights that model credibility is the central concern of decision-makers using models so it is crucial that the concept of model validation should not be externalized from the decision-makers and the decision-making process. Recommendations for future research would be studies of verification and validation; the model development process; and identification of modifications to the modelling process with the aim of preventing the occurrence of errors and improving the identification of errors in models.
Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant
Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar
2015-01-01
Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485
Managing human fallibility in critical aerospace situations
NASA Astrophysics Data System (ADS)
Tew, Larry
2014-11-01
Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.
Prediction of human errors by maladaptive changes in event-related brain networks.
Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus
2008-04-22
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.
Prediction of human errors by maladaptive changes in event-related brain networks
Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus
2008-01-01
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123
NASA Technical Reports Server (NTRS)
Doggett, Leroy E.; Schaefer, Bradley E.
1994-01-01
We report the results of five Moonwatches, in which more than 2000 observers throughout North America attempted to sight the thin lunar crescent. For each Moonwatch we were able to determine the position of the Lunar Date Line (LDL), the line along which a normal observer has a 50% probability of spotting the Moon. The observational LDLs were then compared with predicted LDLs derived from crescent visibility prediction algorithms. We find that ancient and medieval rules are higly unreliable. More recent empirical criteria, based on the relative altitude and azimuth of the Moon at the time of sunset, have a reasonable accuracy, with the best specific formulation being due to Yallop. The modern theoretical model by Schaefer (based on the physiology of the human eye and the local observing conditions) is found to have the least systematic error, the least average error, and the least maximum error of all models tested. Analysis of the observations also provided information about atmospheric, optical and human factors that affect the observations. We show that observational lunar calendars have a natural bias to begin early.
Defining the Relationship Between Human Error Classes and Technology Intervention Strategies
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.; Rantanen, Eas M.
2003-01-01
The modus operandi in addressing human error in aviation systems is predominantly that of technological interventions or fixes. Such interventions exhibit considerable variability both in terms of sophistication and application. Some technological interventions address human error directly while others do so only indirectly. Some attempt to eliminate the occurrence of errors altogether whereas others look to reduce the negative consequences of these errors. In any case, technological interventions add to the complexity of the systems and may interact with other system components in unforeseeable ways and often create opportunities for novel human errors. Consequently, there is a need to develop standards for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the biggest benefit to flight safety as well as to mitigate any adverse ramifications. The purpose of this project was to help define the relationship between human error and technological interventions, with the ultimate goal of developing a set of standards for evaluating or measuring the potential benefits of new human error fixes.
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1999-01-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1998-09-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less
Towards automatic Markov reliability modeling of computer architectures
NASA Technical Reports Server (NTRS)
Liceaga, C. A.; Siewiorek, D. P.
1986-01-01
The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation.
Structured methods for identifying and correcting potential human errors in aviation operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1997-10-01
Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less
Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data.
Salahuddin, Saqib; Porter, Emily; Meaney, Paul M; O'Halloran, Martin
2017-02-01
The dielectric properties of biological tissues have been studied widely over the past half-century. These properties are used in a vast array of applications, from determining the safety of wireless telecommunication devices to the design and optimisation of medical devices. The frequency-dependent dielectric properties are represented in closed-form parametric models, such as the Cole-Cole model, for use in numerical simulations which examine the interaction of electromagnetic (EM) fields with the human body. In general, the accuracy of EM simulations depends upon the accuracy of the tissue dielectric models. Typically, dielectric properties are measured using a linear frequency scale; however, use of the logarithmic scale has been suggested historically to be more biologically descriptive. Thus, the aim of this paper is to quantitatively compare the Cole-Cole fitting of broadband tissue dielectric measurements collected with both linear and logarithmic frequency scales. In this way, we can determine if appropriate choice of scale can minimise the fit error and thus reduce the overall error in simulations. Using a well-established fundamental statistical framework, the results of the fitting for both scales are quantified. It is found that commonly used performance metrics, such as the average fractional error, are unable to examine the effect of frequency scale on the fitting results due to the averaging effect that obscures large localised errors. This work demonstrates that the broadband fit for these tissues is quantitatively improved when the given data is measured with a logarithmic frequency scale rather than a linear scale, underscoring the importance of frequency scale selection in accurate wideband dielectric modelling of human tissues.
Effect of Logarithmic and Linear Frequency Scales on Parametric Modelling of Tissue Dielectric Data
Salahuddin, Saqib; Porter, Emily; Meaney, Paul M.; O’Halloran, Martin
2016-01-01
The dielectric properties of biological tissues have been studied widely over the past half-century. These properties are used in a vast array of applications, from determining the safety of wireless telecommunication devices to the design and optimisation of medical devices. The frequency-dependent dielectric properties are represented in closed-form parametric models, such as the Cole-Cole model, for use in numerical simulations which examine the interaction of electromagnetic (EM) fields with the human body. In general, the accuracy of EM simulations depends upon the accuracy of the tissue dielectric models. Typically, dielectric properties are measured using a linear frequency scale; however, use of the logarithmic scale has been suggested historically to be more biologically descriptive. Thus, the aim of this paper is to quantitatively compare the Cole-Cole fitting of broadband tissue dielectric measurements collected with both linear and logarithmic frequency scales. In this way, we can determine if appropriate choice of scale can minimise the fit error and thus reduce the overall error in simulations. Using a well-established fundamental statistical framework, the results of the fitting for both scales are quantified. It is found that commonly used performance metrics, such as the average fractional error, are unable to examine the effect of frequency scale on the fitting results due to the averaging effect that obscures large localised errors. This work demonstrates that the broadband fit for these tissues is quantitatively improved when the given data is measured with a logarithmic frequency scale rather than a linear scale, underscoring the importance of frequency scale selection in accurate wideband dielectric modelling of human tissues. PMID:28191324
Kraemer, Sara; Carayon, Pascale
2007-03-01
This paper describes human errors and violations of end users and network administration in computer and information security. This information is summarized in a conceptual framework for examining the human and organizational factors contributing to computer and information security. This framework includes human error taxonomies to describe the work conditions that contribute adversely to computer and information security, i.e. to security vulnerabilities and breaches. The issue of human error and violation in computer and information security was explored through a series of 16 interviews with network administrators and security specialists. The interviews were audio taped, transcribed, and analyzed by coding specific themes in a node structure. The result is an expanded framework that classifies types of human error and identifies specific human and organizational factors that contribute to computer and information security. Network administrators tended to view errors created by end users as more intentional than unintentional, while errors created by network administrators as more unintentional than intentional. Organizational factors, such as communication, security culture, policy, and organizational structure, were the most frequently cited factors associated with computer and information security.
Stern, Shani; Biron, David; Moses, Elisha
2016-07-11
Down syndrome incidence in humans increases dramatically with maternal age. This is mainly the result of increased meiotic errors, but factors such as differences in abortion rate may play a role as well. Since the meiotic error rate increases almost exponentially after a certain age, its contribution to the overall incidence aneuploidy may mask the contribution of other processes. To focus on such selection mechanisms we investigated transmission in trisomic females, using data from mouse models and from Down syndrome humans. In trisomic females the a-priori probability for trisomy is independent of meiotic errors and thus approximately constant in the early embryo. Despite this, the rate of transmission of the extra chromosome decreases with age in females of the Ts65Dn and, as we show, for the Tc1 mouse models for Down syndrome. Evaluating progeny of 73 Tc1 births and 112 Ts65Dn births from females aged 130 days to 250 days old showed that both models exhibit a 3-fold reduction of the probability to transmit the trisomy with increased maternal ageing. This is concurrent with a 2-fold reduction of litter size with maternal ageing. Furthermore, analysis of previously reported 30 births in Down syndrome women shows a similar tendency with an almost three fold reduction in the probability to have a Down syndrome child between a 20 and 30 years old Down syndrome woman. In the two types of mice models for Down syndrome that were used for this study, and in human Down syndrome, older females have significantly lower probability to transmit the trisomy to the offspring. Our findings, taken together with previous reports of decreased supportive environment of the older uterus, add support to the notion that an older uterus negatively selects the less fit trisomic embryos.
Intervention strategies for the management of human error
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1993-01-01
This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.
A Qualitative Model of Human Interaction with Complex Dynamic Systems
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1987-01-01
A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.
A qualitative model of human interaction with complex dynamic systems
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1987-01-01
A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.
Mental workload prediction based on attentional resource allocation and information processing.
Xiao, Xu; Wanyan, Xiaoru; Zhuang, Damin
2015-01-01
Mental workload is an important component in complex human-machine systems. The limited applicability of empirical workload measures produces the need for workload modeling and prediction methods. In the present study, a mental workload prediction model is built on the basis of attentional resource allocation and information processing to ensure pilots' accuracy and speed in understanding large amounts of flight information on the cockpit display interface. Validation with an empirical study of an abnormal attitude recovery task showed that this model's prediction of mental workload highly correlated with experimental results. This mental workload prediction model provides a new tool for optimizing human factors interface design and reducing human errors.
ERIC Educational Resources Information Center
Boedigheimer, Dan
2010-01-01
Approximately 70% of aviation accidents are attributable to human error. The greatest opportunity for further improving aviation safety is found in reducing human errors in the cockpit. The purpose of this quasi-experimental, mixed-method research was to evaluate whether there was a difference in pilot attitudes toward reducing human error in the…
Kalman filter estimation of human pilot-model parameters
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.
1975-01-01
The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.
Servant, Mathieu; White, Corey; Montagnini, Anna; Burle, Borís
2015-07-15
Most decisions that we make build upon multiple streams of sensory evidence and control mechanisms are needed to filter out irrelevant information. Sequential sampling models of perceptual decision making have recently been enriched by attentional mechanisms that weight sensory evidence in a dynamic and goal-directed way. However, the framework retains the longstanding hypothesis that motor activity is engaged only once a decision threshold is reached. To probe latent assumptions of these models, neurophysiological indices are needed. Therefore, we collected behavioral and EMG data in the flanker task, a standard paradigm to investigate decisions about relevance. Although the models captured response time distributions and accuracy data, EMG analyses of response agonist muscles challenged the assumption of independence between decision and motor processes. Those analyses revealed covert incorrect EMG activity ("partial error") in a fraction of trials in which the correct response was finally given, providing intermediate states of evidence accumulation and response activation at the single-trial level. We extended the models by allowing motor activity to occur before a commitment to a choice and demonstrated that the proposed framework captured the rate, latency, and EMG surface of partial errors, along with the speed of the correction process. In return, EMG data provided strong constraints to discriminate between competing models that made similar behavioral predictions. Our study opens new theoretical and methodological avenues for understanding the links among decision making, cognitive control, and motor execution in humans. Sequential sampling models of perceptual decision making assume that sensory information is accumulated until a criterion quantity of evidence is obtained, from where the decision terminates in a choice and motor activity is engaged. The very existence of covert incorrect EMG activity ("partial error") during the evidence accumulation process challenges this longstanding assumption. In the present work, we use partial errors to better constrain sequential sampling models at the single-trial level. Copyright © 2015 the authors 0270-6474/15/3510371-15$15.00/0.
Evaluating a medical error taxonomy.
Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie
2002-01-01
Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.
Review of Nearshore Morphologic Prediction
NASA Astrophysics Data System (ADS)
Plant, N. G.; Dalyander, S.; Long, J.
2014-12-01
The evolution of the world's erodible coastlines will determine the balance between the benefits and costs associated with human and ecological utilization of shores, beaches, dunes, barrier islands, wetlands, and estuaries. So, we would like to predict coastal evolution to guide management and planning of human and ecological response to coastal changes. After decades of research investment in data collection, theoretical and statistical analysis, and model development we have a number of empirical, statistical, and deterministic models that can predict the evolution of the shoreline, beaches, dunes, and wetlands over time scales of hours to decades, and even predict the evolution of geologic strata over the course of millennia. Comparisons of predictions to data have demonstrated that these models can have meaningful predictive skill. But these comparisons also highlight the deficiencies in fundamental understanding, formulations, or data that are responsible for prediction errors and uncertainty. Here, we review a subset of predictive models of the nearshore to illustrate tradeoffs in complexity, predictive skill, and sensitivity to input data and parameterization errors. We identify where future improvement in prediction skill will result from improved theoretical understanding, and data collection, and model-data assimilation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu; Harris, Kendra M.; Ford, Eric
Purpose: Systems to ensure patient safety are of critical importance. The electronic incident reporting systems (IRS) of 2 large academic radiation oncology departments were evaluated for events that may be suitable for submission to a national reporting system (NRS). Methods and Materials: All events recorded in the combined IRS were evaluated from 2007 through 2010. Incidents were graded for potential severity using the validated French Nuclear Safety Authority (ASN) 5-point scale. These incidents were categorized into 7 groups: (1) human error, (2) software error, (3) hardware error, (4) error in communication between 2 humans, (5) error at the human-software interface,more » (6) error at the software-hardware interface, and (7) error at the human-hardware interface. Results: Between the 2 systems, 4407 incidents were reported. Of these events, 1507 (34%) were considered to have the potential for clinical consequences. Of these 1507 events, 149 (10%) were rated as having a potential severity of ≥2. Of these 149 events, the committee determined that 79 (53%) of these events would be submittable to a NRS of which the majority was related to human error or to the human-software interface. Conclusions: A significant number of incidents were identified in this analysis. The majority of events in this study were related to human error and to the human-software interface, further supporting the need for a NRS to facilitate field-wide learning and system improvement.« less
Jeon, Hong Jin; Kim, Ji-Hae; Kim, Bin-Na; Park, Seung Jin; Fava, Maurizio; Mischoulon, David; Kang, Eun-Ho; Roh, Sungwon; Lee, Dongsoo
2014-12-01
Human error is defined as an unintended error that is attributable to humans rather than machines, and that is important to avoid to prevent accidents. We aimed to investigate the association between sleep quality and human errors among train drivers. Cross-sectional. Population-based. A sample of 5,480 subjects who were actively working as train drivers were recruited in South Korea. The participants were 4,634 drivers who completed all questionnaires (response rate 84.6%). None. The Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Impact of Event Scale-Revised (IES-R), the State-Trait Anxiety Inventory (STAI), and the Korean Occupational Stress Scale (KOSS). Of 4,634 train drivers, 349 (7.5%) showed more than one human error per 5 y. Human errors were associated with poor sleep quality, higher PSQI total scores, short sleep duration at night, and longer sleep latency. Among train drivers with poor sleep quality, those who experienced severe posttraumatic stress showed a significantly higher number of human errors than those without. Multiple logistic regression analysis showed that human errors were significantly associated with poor sleep quality and posttraumatic stress, whereas there were no significant associations with depression, trait and state anxiety, and work stress after adjusting for age, sex, education years, marital status, and career duration. Poor sleep quality was found to be associated with more human errors in train drivers, especially in those who experienced severe posttraumatic stress. © 2014 Associated Professional Sleep Societies, LLC.
Rasmussen's legacy: A paradigm change in engineering for safety.
Leveson, Nancy G
2017-03-01
This paper describes three applications of Rasmussen's idea to systems engineering practice. The first is the application of the abstraction hierarchy to engineering specifications, particularly requirements specification. The second is the use of Rasmussen's ideas in safety modeling and analysis to create a new, more powerful type of accident causation model that extends traditional models to better handle human-operated, software-intensive, sociotechnical systems. Because this new model has a formal, mathematical foundation built on systems theory (as was Rasmussen's original model), new modeling and analysis tools become possible. The third application is to engineering hazard analysis. Engineers have traditionally either omitted human from consideration in system hazard analysis or have treated them rather superficially, for example, that they behave randomly. Applying Rasmussen's model of human error to a powerful new hazard analysis technique allows human behavior to be included in engineering hazard analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of human reliability analysis to nursing errors in hospitals.
Inoue, Kayoko; Koizumi, Akio
2004-12-01
Adverse events in hospitals, such as in surgery, anesthesia, radiology, intensive care, internal medicine, and pharmacy, are of worldwide concern and it is important, therefore, to learn from such incidents. There are currently no appropriate tools based on state-of-the art models available for the analysis of large bodies of medical incident reports. In this study, a new model was developed to facilitate medical error analysis in combination with quantitative risk assessment. This model enables detection of the organizational factors that underlie medical errors, and the expedition of decision making in terms of necessary action. Furthermore, it determines medical tasks as module practices and uses a unique coding system to describe incidents. This coding system has seven vectors for error classification: patient category, working shift, module practice, linkage chain (error type, direct threat, and indirect threat), medication, severity, and potential hazard. Such mathematical formulation permitted us to derive two parameters: error rates for module practices and weights for the aforementioned seven elements. The error rate of each module practice was calculated by dividing the annual number of incident reports of each module practice by the annual number of the corresponding module practice. The weight of a given element was calculated by the summation of incident report error rates for an element of interest. This model was applied specifically to nursing practices in six hospitals over a year; 5,339 incident reports with a total of 63,294,144 module practices conducted were analyzed. Quality assurance (QA) of our model was introduced by checking the records of quantities of practices and reproducibility of analysis of medical incident reports. For both items, QA guaranteed legitimacy of our model. Error rates for all module practices were approximately of the order 10(-4) in all hospitals. Three major organizational factors were found to underlie medical errors: "violation of rules" with a weight of 826 x 10(-4), "failure of labor management" with a weight of 661 x 10(-4), and "defects in the standardization of nursing practices" with a weight of 495 x 10(-4).
The Theory of Human Capital and the Earnings of Women: A Re-examination of the Evidence. Revised.
ERIC Educational Resources Information Center
Sandell, Steven H.; Shapiro, David
This paper discusses specification and interpretation of human capital models of women's earnings when data on actual work experience are available. It uses the segmented earnings function framework developed by Jacob Mincer and Solomon Polachek and considers the effects of data errors, issues involving data interpretation, consequences of model…
Simplification of the kinematic model of human movement
NASA Astrophysics Data System (ADS)
Dusza, Jacek J.; Wawrzyniak, Zbigniew M.; del Prado Martinez, David
2013-10-01
The paper presents a methods of simplification of the human gait model. The experimental data were obtained in the laboratory of the group SATI in the Electronics Engineering Department of the University of Valencia. As a result of the Mean Double Step (MDS) procedure, the human motion were described by a matrix containing the Cartesian coordinates of 26 markers placed on the human body recorded in the 100 time points. With these data it has been possible to develop an software application which performs a wide diversity of tasks like array simplification, mask calculation for the simplification, error calculation as well as tools for signals comparison and movement animation of the markers. Simplifications were made by the spectral analysis of signals and calculating the standard deviation of the differences between the signal and its approximation. Using this method the signals of displacement could be written as the time series limited to a small number of harmonic signals. This approach allows us for a high degree of data compression. The model presented in this work can be applied into the context of medical diagnostics or rehabilitation because for a given approximation error and a large number of harmonics may demonstrate some abnormalities (of orthopaedic symptoms) in the gait cycle analysis.
Retrospective studies of operating problems in air transport
NASA Technical Reports Server (NTRS)
Billings, C. E.; Lauber, J. K.; Cooper, G. E.; Ruffell-Smith, H. P.
1976-01-01
An epidemiological model for the study of human errors in aviation is presented. In this approach, retrospective data are used as the basis for formulation of hypotheses as to system factors which may have contributed to such errors. Prospective experimental studies of aviation operations are also required in order to prove or disprove the hypotheses, and to evaluate the effectiveness of intervention techniques designed to solve operational problems in the aviation system.
Hedging Your Bets by Learning Reward Correlations in the Human Brain
Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.
2011-01-01
Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609
The Use Of Computational Human Performance Modeling As Task Analysis Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacuqes Hugo; David Gertman
2012-07-01
During a review of the Advanced Test Reactor safety basis at the Idaho National Laboratory, human factors engineers identified ergonomic and human reliability risks involving the inadvertent exposure of a fuel element to the air during manual fuel movement and inspection in the canal. There were clear indications that these risks increased the probability of human error and possible severe physical outcomes to the operator. In response to this concern, a detailed study was conducted to determine the probability of the inadvertent exposure of a fuel element. Due to practical and safety constraints, the task network analysis technique was employedmore » to study the work procedures at the canal. Discrete-event simulation software was used to model the entire procedure as well as the salient physical attributes of the task environment, such as distances walked, the effect of dropped tools, the effect of hazardous body postures, and physical exertion due to strenuous tool handling. The model also allowed analysis of the effect of cognitive processes such as visual perception demands, auditory information and verbal communication. The model made it possible to obtain reliable predictions of operator performance and workload estimates. It was also found that operator workload as well as the probability of human error in the fuel inspection and transfer task were influenced by the concurrent nature of certain phases of the task and the associated demand on cognitive and physical resources. More importantly, it was possible to determine with reasonable accuracy the stages as well as physical locations in the fuel handling task where operators would be most at risk of losing their balance and falling into the canal. The model also provided sufficient information for a human reliability analysis that indicated that the postulated fuel exposure accident was less than credible.« less
Error quantification of abnormal extreme high waves in Operational Oceanographic System in Korea
NASA Astrophysics Data System (ADS)
Jeong, Sang-Hun; Kim, Jinah; Heo, Ki-Young; Park, Kwang-Soon
2017-04-01
In winter season, large-height swell-like waves have occurred on the East coast of Korea, causing property damages and loss of human life. It is known that those waves are generated by a local strong wind made by temperate cyclone moving to eastward in the East Sea of Korean peninsula. Because the waves are often occurred in the clear weather, in particular, the damages are to be maximized. Therefore, it is necessary to predict and forecast large-height swell-like waves to prevent and correspond to the coastal damages. In Korea, an operational oceanographic system (KOOS) has been developed by the Korea institute of ocean science and technology (KIOST) and KOOS provides daily basis 72-hours' ocean forecasts such as wind, water elevation, sea currents, water temperature, salinity, and waves which are computed from not only meteorological and hydrodynamic model (WRF, ROMS, MOM, and MOHID) but also wave models (WW-III and SWAN). In order to evaluate the model performance and guarantee a certain level of accuracy of ocean forecasts, a Skill Assessment (SA) system was established as a one of module in KOOS. It has been performed through comparison of model results with in-situ observation data and model errors have been quantified with skill scores. Statistics which are used in skill assessment are including a measure of both errors and correlations such as root-mean-square-error (RMSE), root-mean-square-error percentage (RMSE%), mean bias (MB), correlation coefficient (R), scatter index (SI), circular correlation (CC) and central frequency (CF) that is a frequency with which errors lie within acceptable error criteria. It should be utilized simultaneously not only to quantify an error but also to improve an accuracy of forecasts by providing a feedback interactively. However, in an abnormal phenomena such as high-height swell-like waves in the East coast of Korea, it requires more advanced and optimized error quantification method that allows to predict the abnormal waves well and to improve the accuracy of forecasts by supporting modification of physics and numeric on numerical models through sensitivity test. In this study, we proposed an appropriate method of error quantification especially on abnormal high waves which are occurred by local weather condition. Furthermore, we introduced that how the quantification errors are contributed to improve wind-wave modeling by applying data assimilation and utilizing reanalysis data.
Target Uncertainty Mediates Sensorimotor Error Correction
Vijayakumar, Sethu; Wolpert, Daniel M.
2017-01-01
Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323
Target Uncertainty Mediates Sensorimotor Error Correction.
Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M
2017-01-01
Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.
NASA Astrophysics Data System (ADS)
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-10-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
Scherer, Laura D; Yates, J Frank; Baker, S Glenn; Valentine, Kathrene D
2017-06-01
Human judgment often violates normative standards, and virtually no judgment error has received as much attention as the conjunction fallacy. Judgment errors have historically served as evidence for dual-process theories of reasoning, insofar as these errors are assumed to arise from reliance on a fast and intuitive mental process, and are corrected via effortful deliberative reasoning. In the present research, three experiments tested the notion that conjunction errors are reduced by effortful thought. Predictions based on three different dual-process theory perspectives were tested: lax monitoring, override failure, and the Tripartite Model. Results indicated that participants higher in numeracy were less likely to make conjunction errors, but this association only emerged when participants engaged in two-sided reasoning, as opposed to one-sided or no reasoning. Confidence was higher for incorrect as opposed to correct judgments, suggesting that participants were unaware of their errors.
Predictability of the Arctic sea ice edge
NASA Astrophysics Data System (ADS)
Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.
2016-02-01
Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.
A definitional framework for the human/biometric sensor interaction model
NASA Astrophysics Data System (ADS)
Elliott, Stephen J.; Kukula, Eric P.
2010-04-01
Existing definitions for biometric testing and evaluation do not fully explain errors in a biometric system. This paper provides a definitional framework for the Human Biometric-Sensor Interaction (HBSI) model. This paper proposes six new definitions based around two classifications of presentations, erroneous and correct. The new terms are: defective interaction (DI), concealed interaction (CI), false interaction (FI), failure to detect (FTD), failure to extract (FTX), and successfully acquired samples (SAS). As with all definitions, the new terms require a modification to the general biometric model developed by Mansfield and Wayman [1].
Hickey, Edward J; Nosikova, Yaroslavna; Pham-Hung, Eric; Gritti, Michael; Schwartz, Steven; Caldarone, Christopher A; Redington, Andrew; Van Arsdell, Glen S
2015-02-01
We hypothesized that the National Aeronautics and Space Administration "threat and error" model (which is derived from analyzing >30,000 commercial flights, and explains >90% of crashes) is directly applicable to pediatric cardiac surgery. We implemented a unit-wide performance initiative, whereby every surgical admission constitutes a "flight" and is tracked in real time, with the aim of identifying errors. The first 500 consecutive patients (524 flights) were analyzed, with an emphasis on the relationship between error cycles and permanent harmful outcomes. Among 524 patient flights (risk adjustment for congenital heart surgery category: 1-6; median: 2) 68 (13%) involved residual hemodynamic lesions, 13 (2.5%) permanent end-organ injuries, and 7 deaths (1.3%). Preoperatively, 763 threats were identified in 379 (72%) flights. Only 51% of patient flights (267) were error free. In the remaining 257 flights, 430 errors occurred, most commonly related to proficiency (280; 65%) or judgment (69, 16%). In most flights with errors (173 of 257; 67%), an unintended clinical state resulted, ie, the error was consequential. In 60% of consequential errors (n = 110; 21% of total), subsequent cycles of additional error/unintended states occurred. Cycles, particularly those containing multiple errors, were very significantly associated with permanent harmful end-states, including residual hemodynamic lesions (P < .0001), end-organ injury (P < .0001), and death (P < .0001). Deaths were almost always preceded by cycles (6 of 7; P < .0001). Human error, if not mitigated, often leads to cycles of error and unintended patient states, which are dangerous and precede the majority of harmful outcomes. Efforts to manage threats and error cycles (through crew resource management techniques) are likely to yield large increases in patient safety. Copyright © 2015. Published by Elsevier Inc.
Human Error and the International Space Station: Challenges and Triumphs in Science Operations
NASA Technical Reports Server (NTRS)
Harris, Samantha S.; Simpson, Beau C.
2016-01-01
Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.
Methods to achieve accurate projection of regional and global raster databases
Usery, E. Lynn; Seong, Jeong Chang; Steinwand, Dan
2002-01-01
Modeling regional and global activities of climatic and human-induced change requires accurate geographic data from which we can develop mathematical and statistical tabulations of attributes and properties of the environment. Many of these models depend on data formatted as raster cells or matrices of pixel values. Recently, it has been demonstrated that regional and global raster datasets are subject to significant error from mathematical projection and that these errors are of such magnitude that model results may be jeopardized (Steinwand, et al., 1995; Yang, et al., 1996; Usery and Seong, 2001; Seong and Usery, 2001). There is a need to develop methods of projection that maintain the accuracy of these datasets to support regional and global analyses and modeling
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J.
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16th century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines. PMID:23144601
Saxena, Anupam; Lipson, Hod; Valero-Cuevas, Francisco J
2012-01-01
In systems and computational biology, much effort is devoted to functional identification of systems and networks at the molecular-or cellular scale. However, similarly important networks exist at anatomical scales such as the tendon network of human fingers: the complex array of collagen fibers that transmits and distributes muscle forces to finger joints. This network is critical to the versatility of the human hand, and its function has been debated since at least the 16(th) century. Here, we experimentally infer the structure (both topology and parameter values) of this network through sparse interrogation with force inputs. A population of models representing this structure co-evolves in simulation with a population of informative future force inputs via the predator-prey estimation-exploration algorithm. Model fitness depends on their ability to explain experimental data, while the fitness of future force inputs depends on causing maximal functional discrepancy among current models. We validate our approach by inferring two known synthetic Latex networks, and one anatomical tendon network harvested from a cadaver's middle finger. We find that functionally similar but structurally diverse models can exist within a narrow range of the training set and cross-validation errors. For the Latex networks, models with low training set error [<4%] and resembling the known network have the smallest cross-validation errors [∼5%]. The low training set [<4%] and cross validation [<7.2%] errors for models for the cadaveric specimen demonstrate what, to our knowledge, is the first experimental inference of the functional structure of complex anatomical networks. This work expands current bioinformatics inference approaches by demonstrating that sparse, yet informative interrogation of biological specimens holds significant computational advantages in accurate and efficient inference over random testing, or assuming model topology and only inferring parameters values. These findings also hold clues to both our evolutionary history and the development of versatile machines.
MacDonald, Chad; Moussavi, Zahra; Sarkodie-Gyan, Thompson
2007-01-01
This paper presents the development and simulation of a fuzzy logic based learning mechanism to emulate human motor learning. In particular, fuzzy inference was used to develop an internal model of a novel dynamic environment experienced during planar reaching movements with the upper limb. A dynamic model of the human arm was developed and a fuzzy if-then rule base was created to relate trajectory movement and velocity errors to internal model update parameters. An experimental simulation was performed to compare the fuzzy system's performance with that of human subjects. It was found that the dynamic model behaved as expected, and the fuzzy learning mechanism created an internal model that was capable of opposing the environmental force field to regain a trajectory closely resembling the desired ideal.
Norman, Geoffrey R; Monteiro, Sandra D; Sherbino, Jonathan; Ilgen, Jonathan S; Schmidt, Henk G; Mamede, Silvia
2017-01-01
Contemporary theories of clinical reasoning espouse a dual processing model, which consists of a rapid, intuitive component (Type 1) and a slower, logical and analytical component (Type 2). Although the general consensus is that this dual processing model is a valid representation of clinical reasoning, the causes of diagnostic errors remain unclear. Cognitive theories about human memory propose that such errors may arise from both Type 1 and Type 2 reasoning. Errors in Type 1 reasoning may be a consequence of the associative nature of memory, which can lead to cognitive biases. However, the literature indicates that, with increasing expertise (and knowledge), the likelihood of errors decreases. Errors in Type 2 reasoning may result from the limited capacity of working memory, which constrains computational processes. In this article, the authors review the medical literature to answer two substantial questions that arise from this work: (1) To what extent do diagnostic errors originate in Type 1 (intuitive) processes versus in Type 2 (analytical) processes? (2) To what extent are errors a consequence of cognitive biases versus a consequence of knowledge deficits?The literature suggests that both Type 1 and Type 2 processes contribute to errors. Although it is possible to experimentally induce cognitive biases, particularly availability bias, the extent to which these biases actually contribute to diagnostic errors is not well established. Educational strategies directed at the recognition of biases are ineffective in reducing errors; conversely, strategies focused on the reorganization of knowledge to reduce errors have small but consistent benefits.
Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning.
Roemmich, Ryan T; Long, Andrew W; Bastian, Amy J
2016-10-24
In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Romo, David Ricardo
Foreign Object Debris/Damage (FOD) has been an issue for military and commercial aircraft manufacturers since the early ages of aviation and aerospace. Currently, aerospace is growing rapidly and the chances of FOD presence are growing as well. One of the principal causes in manufacturing is the human error. The cost associated with human error in commercial and military aircrafts is approximately accountable for 4 billion dollars per year. This problem is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access, restrictions of personal items entering designated areas, tool accountability, and the use of technology such as Radio Frequency Identification (RFID) tags, etc. All of the efforts mentioned before, have not show a significant occurrence reduction in terms of manufacturing processes. On the contrary, a repetitive path of occurrence is present, and the cost associated has not declined in a significant manner. In order to address the problem, this thesis proposes a new approach using statistical analysis. The effort of this thesis is to create a predictive model using historical categorical data from an aircraft manufacturer only focusing in human error causes. The use of contingency tables, natural logarithm of the odds and probability transformation is used in order to provide the predicted probabilities of each aircraft. A case of study is shown in this thesis in order to show the applied methodology. As a result, this approach is able to predict the possible outcomes of FOD by the workstation/area needed, and monthly predictions per workstation. This thesis is intended to be the starting point of statistical data analysis regarding FOD in human factors. The purpose of this thesis is to identify the areas where human error is the primary cause of FOD occurrence in order to design and implement accurate solutions. The advantages of the proposed methodology can go from the reduction of cost production, quality issues, repair cost, and assembly process time. Finally, a more reliable process is achieved, and the proposed methodology may be used in other aircrafts.
Defining the Relationship Between Human Error Classes and Technology Intervention Strategies
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.; Rantanen, Esa; Crisp, Vicki K. (Technical Monitor)
2002-01-01
One of the main factors in all aviation accidents is human error. The NASA Aviation Safety Program (AvSP), therefore, has identified several human-factors safety technologies to address this issue. Some technologies directly address human error either by attempting to reduce the occurrence of errors or by mitigating the negative consequences of errors. However, new technologies and system changes may also introduce new error opportunities or even induce different types of errors. Consequently, a thorough understanding of the relationship between error classes and technology "fixes" is crucial for the evaluation of intervention strategies outlined in the AvSP, so that resources can be effectively directed to maximize the benefit to flight safety. The purpose of the present project, therefore, was to examine the repositories of human factors data to identify the possible relationship between different error class and technology intervention strategies. The first phase of the project, which is summarized here, involved the development of prototype data structures or matrices that map errors onto "fixes" (and vice versa), with the hope of facilitating the development of standards for evaluating safety products. Possible follow-on phases of this project are also discussed. These additional efforts include a thorough and detailed review of the literature to fill in the data matrix and the construction of a complete database and standards checklists.
NASA Astrophysics Data System (ADS)
Pinnington, Ewan; Casella, Eric; Dance, Sarah; Lawless, Amos; Morison, James; Nichols, Nancy; Wilkinson, Matthew; Quaife, Tristan
2016-04-01
Forest ecosystems play an important role in sequestering human emitted carbon-dioxide from the atmosphere and therefore greatly reduce the effect of anthropogenic induced climate change. For that reason understanding their response to climate change is of great importance. Efforts to implement variational data assimilation routines with functional ecology models and land surface models have been limited, with sequential and Markov chain Monte Carlo data assimilation methods being prevalent. When data assimilation has been used with models of carbon balance, background "prior" errors and observation errors have largely been treated as independent and uncorrelated. Correlations between background errors have long been known to be a key aspect of data assimilation in numerical weather prediction. More recently, it has been shown that accounting for correlated observation errors in the assimilation algorithm can considerably improve data assimilation results and forecasts. In this paper we implement a 4D-Var scheme with a simple model of forest carbon balance, for joint parameter and state estimation and assimilate daily observations of Net Ecosystem CO2 Exchange (NEE) taken at the Alice Holt forest CO2 flux site in Hampshire, UK. We then investigate the effect of specifying correlations between parameter and state variables in background error statistics and the effect of specifying correlations in time between observation error statistics. The idea of including these correlations in time is new and has not been previously explored in carbon balance model data assimilation. In data assimilation, background and observation error statistics are often described by the background error covariance matrix and the observation error covariance matrix. We outline novel methods for creating correlated versions of these matrices, using a set of previously postulated dynamical constraints to include correlations in the background error statistics and a Gaussian correlation function to include time correlations in the observation error statistics. The methods used in this paper will allow the inclusion of time correlations between many different observation types in the assimilation algorithm, meaning that previously neglected information can be accounted for. In our experiments we compared the results using our new correlated background and observation error covariance matrices and those using diagonal covariance matrices. We found that using the new correlated matrices reduced the root mean square error in the 14 year forecast of daily NEE by 44 % decreasing from 4.22 g C m-2 day-1 to 2.38 g C m-2 day-1.
Riddell, Nina; Faou, Pierre; Murphy, Melanie; Giummarra, Loretta; Downs, Rachael A.; Rajapaksha, Harinda
2017-01-01
Purpose Microarray and RNA sequencing studies in the chick model of early optically induced refractive error have implicated thousands of genes, many of which have also been linked to ocular pathologies in humans, including age-related macular degeneration (AMD), choroidal neovascularization, glaucoma, and cataract. These findings highlight the potential relevance of the chick model to understanding both refractive error development and the progression to secondary pathological complications. The present study aimed to determine whether proteomic responses to early optical defocus in the chick share similarities with these transcriptome-level changes, particularly in terms of dysregulation of pathology-related molecular processes. Methods Chicks were assigned to a lens condition (monocular +10 D [diopters] to induce hyperopia, −10 D to induce myopia, or no lens) on post-hatch day 5. Biometric measures were collected following a further 6 h and 48 h of rearing. The retina/RPE was then removed and prepared for liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) on an LTQ-Orbitrap Elite. Raw data were processed using MaxQuant, and differentially abundant proteins were identified using moderated t tests (fold change ≥1.5, Benjamini-Hochberg adjusted p<0.05). These differentially abundant proteins were compared with the genes and proteins implicated in previous exploratory transcriptome and proteomic studies of refractive error, as well as the genes and proteins linked to the ocular pathologies listed above for which myopia or hyperopia are risk factors. Finally, gene set enrichment analysis (GSEA) was used to assess whether gene sets from the Human Phenotype Ontology database were enriched in the lens groups relative to the no lens groups, and at the top or bottom of the protein data ranked by Spearman’s correlation with refraction at 6 and 48 h. Results Refractive errors of −2.63 D ± 0.31 D (mean ± standard error, SE) and 3.90 D ± 0.37 D were evident in the negative and positive lens groups, respectively, at 6 h. By 48 h, refractive compensation to both lens types was almost complete (negative lens −9.70 D ± 0.41 D, positive lens 7.70 D ± 0.44 D). More than 140 differentially abundant proteins were identified in each lens group relative to the no lens controls at both time points. No proteins were differentially abundant between the negative and positive lens groups at 6 h, and 13 were differentially abundant at 48 h. As there was substantial overlap in the proteins implicated across the six comparisons, a total of 390 differentially abundant proteins were identified. Sixty-five of these 390 proteins had previously been implicated in transcriptome studies of refractive error animal models, and 42 had previously been associated with AMD, choroidal neovascularization, glaucoma, and/or cataract in humans. The overlap of differentially abundant proteins with AMD-associated genes and proteins was statistically significant for all conditions (Benjamini-Hochberg adjusted p<0.05), with over-representation analysis implicating ontologies related to oxidative stress, cholesterol homeostasis, and melanin biosynthesis. GSEA identified significant enrichment of genes associated with abnormal electroretinogram, photophobia, and nyctalopia phenotypes in the proteins negatively correlated with ocular refraction across the lens groups at 6 h. The implicated proteins were primarily linked to photoreceptor dystrophies and mitochondrial disorders in humans. Conclusions Optical defocus in the chicks induces rapid changes in the abundance of many proteins in the retina/RPE that have previously been linked to inherited and age-related ocular pathologies in humans. Similar changes have been identified in a meta-analysis of chick refractive error transcriptome studies, highlighting the chick as a model for the study of optically induced stress with possible relevance to understanding the development of a range of pathological states in humans. PMID:29259393
A gunner model for an AAA tracking task with interrupted observations
NASA Technical Reports Server (NTRS)
Yu, C. F.; Wei, K. C.; Vikmanis, M.
1982-01-01
The problem of modeling a trained human operator's tracking performance in an anti-aircraft system under various display blanking conditions is discussed. The input to the gunner is the observable tracking error subjected to repeated interruptions (blanking). A simple and effective gunner model was developed. The effect of blanking on the gunner's tracking performance is approached via modeling the observer and controller gains.
Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Reflections on human error - Matters of life and death
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1989-01-01
The last two decades have witnessed a rapid growth in the introduction of automatic devices into aircraft cockpits, and eleswhere in human-machine systems. This was motivated in part by the assumption that when human functioning is replaced by machine functioning, human error is eliminated. Experience to date shows that this is far from true, and that automation does not replace humans, but changes their role in the system, as well as the types and severity of the errors they make. This altered role may lead to fewer, but more critical errors. Intervention strategies to prevent these errors, or ameliorate their consequences include basic human factors engineering of the interface, enhanced warning and alerting systems, and more intelligent interfaces that understand the strategic intent of the crew and can detect and trap inconsistent or erroneous input before it affects the system.
Twenty-First Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
Miller, R. A. (Compiler); Jagacinski, R. J. (Compiler)
1986-01-01
The proceedings of the entitled conference are presented. Twenty-nine manuscripts and eight abstracts pertaining to workload, attention and errors, controller evaluation, movement skills, coordination and decision making, display evaluation and human operator modeling and manual control.
Role of dopamine D2 receptors in human reinforcement learning.
Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W
2014-09-01
Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well.
Role of Dopamine D2 Receptors in Human Reinforcement Learning
Eisenegger, Christoph; Naef, Michael; Linssen, Anke; Clark, Luke; Gandamaneni, Praveen K; Müller, Ulrich; Robbins, Trevor W
2014-01-01
Influential neurocomputational models emphasize dopamine (DA) as an electrophysiological and neurochemical correlate of reinforcement learning. However, evidence of a specific causal role of DA receptors in learning has been less forthcoming, especially in humans. Here we combine, in a between-subjects design, administration of a high dose of the selective DA D2/3-receptor antagonist sulpiride with genetic analysis of the DA D2 receptor in a behavioral study of reinforcement learning in a sample of 78 healthy male volunteers. In contrast to predictions of prevailing models emphasizing DA's pivotal role in learning via prediction errors, we found that sulpiride did not disrupt learning, but rather induced profound impairments in choice performance. The disruption was selective for stimuli indicating reward, whereas loss avoidance performance was unaffected. Effects were driven by volunteers with higher serum levels of the drug, and in those with genetically determined lower density of striatal DA D2 receptors. This is the clearest demonstration to date for a causal modulatory role of the DA D2 receptor in choice performance that might be distinct from learning. Our findings challenge current reward prediction error models of reinforcement learning, and suggest that classical animal models emphasizing a role of postsynaptic DA D2 receptors in motivational aspects of reinforcement learning may apply to humans as well. PMID:24713613
NASA Astrophysics Data System (ADS)
Meier, Walter Neil
This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an innovative method of combining a new data set of SSM/I-derived ice motions with three different sea ice models via two data assimilation methods. The work described here is the first example of assimilating remotely-sensed data within high-resolution and detailed dynamic-thermodynamic sea ice models. The results demonstrate that assimilation is a valuable resource for determining accurate ice motion in the Arctic.
Accuracy of Noninvasive Estimation Techniques for the State of the Cochlear Amplifier
NASA Astrophysics Data System (ADS)
Dalhoff, Ernst; Gummer, Anthony W.
2011-11-01
Estimation of the function of the cochlea in human is possible only by deduction from indirect measurements, which may be subjective or objective. Therefore, for basic research as well as diagnostic purposes, it is important to develop methods to deduce and analyse error sources of cochlear-state estimation techniques. Here, we present a model of technical and physiologic error sources contributing to the estimation accuracy of hearing threshold and the state of the cochlear amplifier and deduce from measurements of human that the estimated standard deviation can be considerably below 6 dB. Experimental evidence is drawn from two partly independent objective estimation techniques for the auditory signal chain based on measurements of otoacoustic emissions.
Model and experiments to optimize co-adaptation in a simplified myoelectric control system.
Couraud, M; Cattaert, D; Paclet, F; Oudeyer, P Y; de Rugy, A
2018-04-01
To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
Data entry errors and design for model-based tight glycemic control in critical care.
Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey
2012-01-01
Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. The final data entry method tested reduced errors to less than 1-2%, a 60-80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0-20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols. © 2012 Diabetes Technology Society.
Adaptive Automation and Cue Invocation: The Effect of Cue Timing on Operator Error
2013-05-01
129. 5. Parasuraman, R. (2000). Designing automation for human use: Empirical studies and quantitative models. Ergonomics , 43, 931-951. 6...Prospective memory errors involve memory for intended actions that are planned to be performed at some designated point in the future [20]. In the DMOO...RESCHU) [21] was used in this study. A Navy pilot who is familiar with supervisory control tasks designed the RESCHU task and the task has been
Modeling the influence of LASIK surgery on optical properties of the human eye
NASA Astrophysics Data System (ADS)
Szul-Pietrzak, Elżbieta; Hachoł, Andrzej; Cieślak, Krzysztof; Drożdż, Ryszard; Podbielska, Halina
2011-11-01
The aim was to model the influence of LASIK surgery on the optical parameters of the human eye and to ascertain which factors besides the central corneal radius of curvature and central thickness play the major role in postsurgical refractive change. Ten patients were included in the study. Pre- and postsurgical measurements included standard refraction, anterior corneal curvature and pachymetry. The optical model used in the analysis was based on the Le Grand and El Hage schematic eye, modified by the measured individual parameters of corneal geometry. A substantial difference between eye refractive error measured after LASIK and estimated from the eye model was observed. In three patients, full correction of the refractive error was achieved. However, analysis of the visual quality in terms of spot diagrams and optical transfer functions of the eye optical system revealed some differences in these measurements. This suggests that other factors besides corneal geometry may play a major role in postsurgical refraction. In this paper we investigated whether the biomechanical properties of the eyeball and changes in intraocular pressure could account for the observed discrepancies.
SDI Software Technology Program Plan Version 1.5
1987-06-01
computer generation of auditory communication of meaningful speech. Most speech synthesizers are based on mathematical models of the human vocal tract, but...oral/ auditory and multimodal communications. Although such state-of-the-art interaction technology has not fully matured, user experience has...superior I pattern matching capabilities and the subliminal intuitive deduction capability. The error performance of humans can be helped by careful
A model of the human supervisor
NASA Technical Reports Server (NTRS)
Kok, J. J.; Vanwijk, R. A.
1977-01-01
A general model of the human supervisor's behavior is given. Submechanisms of the model include: the observer/reconstructor; decision-making; and controller. A set of hypothesis is postulated for the relations between the task variables and the parameters of the different submechanisms of the model. Verification of the model hypotheses is considered using variations in the task variables. An approach is suggested for the identification of the model parameters which makes use of a multidimensional error criterion. Each of the elements of this multidimensional criterion corresponds to a certain aspect of the supervisor's behavior, and is directly related to a particular part of the model and its parameters. This approach offers good possibilities for an efficient parameter adjustment procedure.
Hidalgo-Rodríguez, Marta; Soriano-Meseguer, Sara; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí
2013-12-18
Several chromatographic systems (three systems of high-performance liquid chromatography and two micellar electrokinetic chromatography systems) besides the reference octanol-water partition system are evaluated by a systematic procedure previously proposed in order to know their ability to model human skin permeation. The precision achieved when skin-water permeability coefficients are correlated against chromatographic retention factors is predicted within the framework of the solvation parameter model. It consists in estimating the contribution of error due to the biological and chromatographic data, as well as the error coming from the dissimilarity between the human skin permeation and the chromatographic systems. Both predictions and experimental tests show that all correlations are greatly affected by the considerable uncertainty of the skin permeability data and the error associated to the dissimilarity between the systems. Correlations with much better predictive abilities are achieved when the volume of the solute is used as additional variable, which illustrates the main roles of both lipophilicity and size of the solute to penetrate through the skin. In this way, the considered systems are able to give precise estimations of human skin permeability coefficients. In particular, the HPLC systems with common C18 columns provide the best performances in emulating the permeation of neutral compounds from aqueous solution through the human skin. As a result, a methodology based on easy, fast, and economical HPLC measurements in a common C18 column has been developed. After a validation based on training and test sets, the method has been applied with good results to the estimation of skin permeation of several hormones and pesticides. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McIntyre, N.; Keir, G.
2014-12-01
Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.
Simulating Human Cognition in the Domain of Air Traffic Control
NASA Technical Reports Server (NTRS)
Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
Hydrologic Design in the Anthropocene
NASA Astrophysics Data System (ADS)
Vogel, R. M.; Farmer, W. H.; Read, L.
2014-12-01
In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood of future hydrologic events of interest.
Human factors process failure modes and effects analysis (HF PFMEA) software tool
NASA Technical Reports Server (NTRS)
Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)
2011-01-01
Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.
Chaplain Corps Cadet Chapel Community Center Chapel Institutional Review Board Not Human Subjects Research Requirements 7 Not Human Subjects Research Form 8 Researcher Instructions - Activities Submitted to DoD IRB 9 Review 18 Not Human Subjects Errors 19 Exempt Research Most Frequent Errors 20 Most Frequent Errors for
Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.
DOT National Transportation Integrated Search
2002-07-01
Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...
Human Error: The Stakes Are Raised.
ERIC Educational Resources Information Center
Greenberg, Joel
1980-01-01
Mistakes related to the operation of nuclear power plants and other technologically complex systems are discussed. Recommendations are given for decreasing the chance of human error in the operation of nuclear plants. The causes of the Three Mile Island incident are presented in terms of the human error element. (SA)
Avoiding Human Error in Mission Operations: Cassini Flight Experience
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2012-01-01
Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.
Brennan, Peter A; Mitchell, David A; Holmes, Simon; Plint, Simon; Parry, David
2016-01-01
Human error is as old as humanity itself and is an appreciable cause of mistakes by both organisations and people. Much of the work related to human factors in causing error has originated from aviation where mistakes can be catastrophic not only for those who contribute to the error, but for passengers as well. The role of human error in medical and surgical incidents, which are often multifactorial, is becoming better understood, and includes both organisational issues (by the employer) and potential human factors (at a personal level). Mistakes as a result of individual human factors and surgical teams should be better recognised and emphasised. Attitudes and acceptance of preoperative briefing has improved since the introduction of the World Health Organization (WHO) surgical checklist. However, this does not address limitations or other safety concerns that are related to performance, such as stress and fatigue, emotional state, hunger, awareness of what is going on situational awareness, and other factors that could potentially lead to error. Here we attempt to raise awareness of these human factors, and highlight how they can lead to error, and how they can be minimised in our day-to-day practice. Can hospitals move from being "high risk industries" to "high reliability organisations"? Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Ananda, Guruprasad; Hile, Suzanne E.; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D.; Eckert, Kristin A.
2014-01-01
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. PMID:25033203
Őri, Zsolt P
2017-05-01
A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.
Error rates in forensic DNA analysis: definition, numbers, impact and communication.
Kloosterman, Ate; Sjerps, Marjan; Quak, Astrid
2014-09-01
Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed. These should be reported, separately from the match probability, when requested by the court or when there are internal or external indications for error. It should also be made clear that there are various other issues to consider, like DNA transfer. Forensic statistical models, in particular Bayesian networks, may be useful to take the various uncertainties into account and demonstrate their effects on the evidential value of the forensic DNA results. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Using a Delphi Method to Identify Human Factors Contributing to Nursing Errors.
Roth, Cheryl; Brewer, Melanie; Wieck, K Lynn
2017-07-01
The purpose of this study was to identify human factors associated with nursing errors. Using a Delphi technique, this study used feedback from a panel of nurse experts (n = 25) on an initial qualitative survey questionnaire followed by summarizing the results with feedback and confirmation. Synthesized factors regarding causes of errors were incorporated into a quantitative Likert-type scale, and the original expert panel participants were queried a second time to validate responses. The list identified 24 items as most common causes of nursing errors, including swamping and errors made by others that nurses are expected to recognize and fix. The responses provided a consensus top 10 errors list based on means with heavy workload and fatigue at the top of the list. The use of the Delphi survey established consensus and developed a platform upon which future study of nursing errors can evolve as a link to future solutions. This list of human factors in nursing errors should serve to stimulate dialogue among nurses about how to prevent errors and improve outcomes. Human and system failures have been the subject of an abundance of research, yet nursing errors continue to occur. © 2016 Wiley Periodicals, Inc.
Fiber-optic evanescent-wave spectroscopy for fast multicomponent analysis of human blood
NASA Astrophysics Data System (ADS)
Simhi, Ronit; Gotshal, Yaron; Bunimovich, David; Katzir, Abraham; Sela, Ben-Ami
1996-07-01
A spectral analysis of human blood serum was undertaken by fiber-optic evanescent-wave spectroscopy (FEWS) by the use of a Fourier-transform infrared spectrometer. A special cell for the FEWS measurements was designed and built that incorporates an IR-transmitting silver halide fiber and a means for introducing the blood-serum sample. Further improvements in analysis were obtained by the adoption of multivariate calibration techniques that are already used in clinical chemistry. The partial least-squares algorithm was used to calculate the concentrations of cholesterol, total protein, urea, and uric acid in human blood serum. The estimated prediction errors obtained (in percent from the average value) were 6% for total protein, 15% for cholesterol, 30% for urea, and 30% for uric acid. These results were compared with another independent prediction method that used a neural-network model. This model yielded estimated prediction errors of 8.8% for total protein, 25% for cholesterol, and 21% for uric acid. spectroscopy, fiber-optic evanescent-wave spectroscopy, Fourier-transform infrared spectrometer, blood, multivariate calibration, neural networks.
Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W
2014-10-01
The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bayesian network models for error detection in radiotherapy plans
NASA Astrophysics Data System (ADS)
Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.
2015-04-01
The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.
Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.
Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D
2015-05-01
Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.
Reliability Analysis and Standardization of Spacecraft Command Generation Processes
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Grenander, Sven; Evensen, Ken
2011-01-01
center dot In order to reduce commanding errors that are caused by humans, we create an approach and corresponding artifacts for standardizing the command generation process and conducting risk management during the design and assurance of such processes. center dot The literature review conducted during the standardization process revealed that very few atomic level human activities are associated with even a broad set of missions. center dot Applicable human reliability metrics for performing these atomic level tasks are available. center dot The process for building a "Periodic Table" of Command and Control Functions as well as Probabilistic Risk Assessment (PRA) models is demonstrated. center dot The PRA models are executed using data from human reliability data banks. center dot The Periodic Table is related to the PRA models via Fault Links.
Identification of the feedforward component in manual control with predictable target signals.
Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max
2013-12-01
In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.
The SACADA database for human reliability and human performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. James Chang; Dennis Bley; Lawrence Criscione
2014-05-01
Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data wouldmore » support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance.« less
Analysis of measured data of human body based on error correcting frequency
NASA Astrophysics Data System (ADS)
Jin, Aiyan; Peipei, Gao; Shang, Xiaomei
2014-04-01
Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.
Computational dosimetry for grounded and ungrounded human models due to contact current
NASA Astrophysics Data System (ADS)
Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao
2013-08-01
This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.
Microscopic saw mark analysis: an empirical approach.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2015-01-01
Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.
Tailoring a Human Reliability Analysis to Your Industry Needs
NASA Technical Reports Server (NTRS)
DeMott, D. L.
2016-01-01
Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed versus a requirement to provide a numerical value as part of a probabilistic risk assessment. Industries involved with humans operating large equipment or transport systems (ex. railroads or airlines) would have more need to address the man machine interface than medical workers administering medications. Human error occurs in every industry; in most cases the consequences are relatively benign and occasionally beneficial. In cases where the results can have disastrous consequences, the use of Human Reliability techniques to identify and classify the risk of human errors allows a company more opportunities to mitigate or eliminate these types of risks and prevent costly tragedies.
Human Activity Recognition by Combining a Small Number of Classifiers.
Nazabal, Alfredo; Garcia-Moreno, Pablo; Artes-Rodriguez, Antonio; Ghahramani, Zoubin
2016-09-01
We consider the problem of daily human activity recognition (HAR) using multiple wireless inertial sensors, and specifically, HAR systems with a very low number of sensors, each one providing an estimation of the performed activities. We propose new Bayesian models to combine the output of the sensors. The models are based on a soft outputs combination of individual classifiers to deal with the small number of sensors. We also incorporate the dynamic nature of human activities as a first-order homogeneous Markov chain. We develop both inductive and transductive inference methods for each model to be employed in supervised and semisupervised situations, respectively. Using different real HAR databases, we compare our classifiers combination models against a single classifier that employs all the signals from the sensors. Our models exhibit consistently a reduction of the error rate and an increase of robustness against sensor failures. Our models also outperform other classifiers combination models that do not consider soft outputs and an Markovian structure of the human activities.
Location Memory in the Real World: Category Adjustment Effects in 3-Dimensional Space
ERIC Educational Resources Information Center
Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F.
2013-01-01
The ability to remember spatial locations is critical to human functioning, both in an evolutionary and in an everyday sense. Yet spatial memories and judgments often show systematic errors and biases. Bias has been explained by models such as the Category Adjustment model (CAM), in which fine-grained and categorical information about locations…
Traveling Salesman Problem: A Foveating Pyramid Model
ERIC Educational Resources Information Center
Pizlo, Zygmunt; Stefanov, Emil; Saalweachter, John; Li, Zheng; Haxhimusa, Yll; Kropatsch, Walter G.
2006-01-01
We tested human performance on the Euclidean Traveling Salesman Problem using problems with 6-50 cities. Results confirmed our earlier findings that: (a) the time of solving a problem is proportional to the number of cities, and (b) the solution error grows very slowly with the number of cities. We formulated a new version of a pyramid model. The…
Indoor-to-outdoor particle concentration ratio model for human exposure analysis
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Ryu, Sung Hee; Lee, Gwangjae; Bae, Gwi-Nam
2016-02-01
This study presents an indoor-to-outdoor particle concentration ratio (IOR) model for improved estimates of indoor exposure levels. This model is useful in epidemiological studies with large population, because sampling indoor pollutants in all participants' house is often necessary but impractical. As a part of a study examining the association between air pollutants and atopic dermatitis in children, 16 parents agreed to measure the indoor and outdoor PM10 and PM2.5 concentrations at their homes for 48 h. Correlation analysis and multi-step multivariate linear regression analysis was performed to develop the IOR model. Temperature and floor level were found to be powerful predictors of the IOR. Despite the simplicity of the model, it demonstrated high accuracy in terms of the root mean square error (RMSE). Especially for long-term IOR estimations, the RMSE was as low as 0.064 and 0.063 for PM10 and PM2.5, respectively. When using a prediction model in an epidemiological study, understanding the consequence of the modeling error and justifying the use of the model is very important. In the last section, this paper discussed the impact of the modeling error and developed a novel methodology to justify the use of the model.
Fuzzy modelling and efficiency in health care systems.
Ozok, Ahmet F
2012-01-01
American Medical Institute reports that each year, because of the medical error, minimum fifty thousand people are dead. For a safety and quality medical system, it is important that information systems are used in health care systems. Health information applications help us to reduce the human error and to support patient care systems. Recently, it is reported that medical information systems applications have also some negative effect on all medical integral elements. The cost of health care information systems is about 4.6% of the total cost. In this paper, it is tried a risk determination model according to principles of fuzzy logic. The improvement of health care systems has become a very popular topic in Turkey recent years. Using necessary information system; it became possible to care patients in a safer way. However, using the necessary HIS tools to manage of administrative and clinical processes at hospitals became more important than before. For example; clinical work flows and communication among pharmacists, nurses and physicians are still not enough investigated. We use fuzzy modeling as a research strategy and developed sum fuzzy membership functions to minimize human error. In application in Turkey the results are significantly related with each other. Besides, the sign differences in health care information systems strongly effects of risk magnitude. The obtained results are discussed and some comments are added.
A fuzzy logic-based model for noise control at industrial workplaces.
Aluclu, I; Dalgic, A; Toprak, Z F
2008-05-01
Ergonomics is a broad science encompassing the wide variety of working conditions that can affect worker comfort and health, including factors such as lighting, noise, temperature, vibration, workstation design, tool design, machine design, etc. This paper describes noise-human response and a fuzzy logic model developed by comprehensive field studies on noise measurements (including atmospheric parameters) and control measures. The model has two subsystems constructed on noise reduction quantity in dB. The first subsystem of the fuzzy model depending on 549 linguistic rules comprises acoustical features of all materials used in any workplace. Totally 984 patterns were used, 503 patterns for model development and the rest 481 patterns for testing the model. The second subsystem deals with atmospheric parameter interactions with noise and has 52 linguistic rules. Similarly, 94 field patterns were obtained; 68 patterns were used for training stage of the model and the rest 26 patterns for testing the model. These rules were determined by taking into consideration formal standards, experiences of specialists and the measurements patterns. The results of the model were compared with various statistics (correlation coefficients, max-min, standard deviation, average and coefficient of skewness) and error modes (root mean square error and relative error). The correlation coefficients were significantly high, error modes were quite low and the other statistics were very close to the data. This statement indicates the validity of the model. Therefore, the model can be used for noise control in any workplace and helpful to the designer in planning stage of a workplace.
Quantitative prediction of ionization effect on human skin permeability.
Baba, Hiromi; Ueno, Yusuke; Hashida, Mitsuru; Yamashita, Fumiyoshi
2017-04-30
Although skin permeability of an active ingredient can be severely affected by its ionization in a dose solution, most of the existing prediction models cannot predict such impacts. To provide reliable predictors, we curated a novel large dataset of in vitro human skin permeability coefficients for 322 entries comprising chemically diverse permeants whose ionization fractions can be calculated. Subsequently, we generated thousands of computational descriptors, including LogD (octanol-water distribution coefficient at a specific pH), and analyzed the dataset using nonlinear support vector regression (SVR) and Gaussian process regression (GPR) combined with greedy descriptor selection. The SVR model was slightly superior to the GPR model, with externally validated squared correlation coefficient, root mean square error, and mean absolute error values of 0.94, 0.29, and 0.21, respectively. These models indicate that Log D is effective for a comprehensive prediction of ionization effects on skin permeability. In addition, the proposed models satisfied the statistical criteria endorsed in recent model validation studies. These models can evaluate virtually generated compounds at any pH; therefore, they can be used for high-throughput evaluations of numerous active ingredients and optimization of their skin permeability with respect to permeant ionization. Copyright © 2017 Elsevier B.V. All rights reserved.
New Integrated Modeling Capabilities: MIDAS' Recent Behavioral Enhancements
NASA Technical Reports Server (NTRS)
Gore, Brian F.; Jarvis, Peter A.
2005-01-01
The Man-machine Integration Design and Analysis System (MIDAS) is an integrated human performance modeling software tool that is based on mechanisms that underlie and cause human behavior. A PC-Windows version of MIDAS has been created that integrates the anthropometric character "Jack (TM)" with MIDAS' validated perceptual and attention mechanisms. MIDAS now models multiple simulated humans engaging in goal-related behaviors. New capabilities include the ability to predict situations in which errors and/or performance decrements are likely due to a variety of factors including concurrent workload and performance influencing factors (PIFs). This paper describes a new model that predicts the effects of microgravity on a mission specialist's performance, and its first application to simulating the task of conducting a Life Sciences experiment in space according to a sequential or parallel schedule of performance.
Hooper, Brionny J; O'Hare, David P A
2013-08-01
Human error classification systems theoretically allow researchers to analyze postaccident data in an objective and consistent manner. The Human Factors Analysis and Classification System (HFACS) framework is one such practical analysis tool that has been widely used to classify human error in aviation. The Cognitive Error Taxonomy (CET) is another. It has been postulated that the focus on interrelationships within HFACS can facilitate the identification of the underlying causes of pilot error. The CET provides increased granularity at the level of unsafe acts. The aim was to analyze the influence of factors at higher organizational levels on the unsafe acts of front-line operators and to compare the errors of fixed-wing and rotary-wing operations. This study analyzed 288 aircraft incidents involving human error from an Australasian military organization occurring between 2001 and 2008. Action errors accounted for almost twice (44%) the proportion of rotary wing compared to fixed wing (23%) incidents. Both classificatory systems showed significant relationships between precursor factors such as the physical environment, mental and physiological states, crew resource management, training and personal readiness, and skill-based, but not decision-based, acts. The CET analysis showed different predisposing factors for different aspects of skill-based behaviors. Skill-based errors in military operations are more prevalent in rotary wing incidents and are related to higher level supervisory processes in the organization. The Cognitive Error Taxonomy provides increased granularity to HFACS analyses of unsafe acts.
Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V
2018-03-01
Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were <30% (predefined criterion) and correlation (r) was at least 0.7950 for the consolidated internal and external datasets of 102 healthy subjects for the AUC 0-t prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error <30% and correlation (r) was at least 0.9339 in the same pool of healthy subjects. A 3-concentration-time points limited sampling model predicts the exposure of saroglitazar (ie, AUC 0-t ) within predefined acceptable bias and imprecision limit. Same model was also used to predict AUC 0-∞ . The same limited sampling model was found to predict the exposure of saroglitazar sulfoxide within predefined criteria. This model can find utility during late-phase clinical development of saroglitazar in the patient population. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.
Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.
Brewer, Bonita J; Payen, Celia; Di Rienzi, Sara C; Higgins, Megan M; Ong, Giang; Dunham, Maitreya J; Raghuraman, M K
2015-12-01
DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.
Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim
2015-01-01
Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.
Votano, Joseph R; Parham, Marc; Hall, L Mark; Hall, Lowell H; Kier, Lemont B; Oloff, Scott; Tropsha, Alexander
2006-11-30
Four modeling techniques, using topological descriptors to represent molecular structure, were employed to produce models of human serum protein binding (% bound) on a data set of 1008 experimental values, carefully screened from publicly available sources. To our knowledge, this data is the largest set on human serum protein binding reported for QSAR modeling. The data was partitioned into a training set of 808 compounds and an external validation test set of 200 compounds. Partitioning was accomplished by clustering the compounds in a structure descriptor space so that random sampling of 20% of the whole data set produced an external test set that is a good representative of the training set with respect to both structure and protein binding values. The four modeling techniques include multiple linear regression (MLR), artificial neural networks (ANN), k-nearest neighbors (kNN), and support vector machines (SVM). With the exception of the MLR model, the ANN, kNN, and SVM QSARs were ensemble models. Training set correlation coefficients and mean absolute error ranged from r2=0.90 and MAE=7.6 for ANN to r2=0.61 and MAE=16.2 for MLR. Prediction results from the validation set yielded correlation coefficients and mean absolute errors which ranged from r2=0.70 and MAE=14.1 for ANN to a low of r2=0.59 and MAE=18.3 for the SVM model. Structure descriptors that contribute significantly to the models are discussed and compared with those found in other published models. For the ANN model, structure descriptor trends with respect to their affects on predicted protein binding can assist the chemist in structure modification during the drug design process.
Kumar, Poornima; Eickhoff, Simon B.; Dombrovski, Alexandre Y.
2015-01-01
Reinforcement learning describes motivated behavior in terms of two abstract signals. The representation of discrepancies between expected and actual rewards/punishments – prediction error – is thought to update the expected value of actions and predictive stimuli. Electrophysiological and lesion studies suggest that mesostriatal prediction error signals control behavior through synaptic modification of cortico-striato-thalamic networks. Signals in the ventromedial prefrontal and orbitofrontal cortex are implicated in representing expected value. To obtain unbiased maps of these representations in the human brain, we performed a meta-analysis of functional magnetic resonance imaging studies that employed algorithmic reinforcement learning models, across a variety of experimental paradigms. We found that the ventral striatum (medial and lateral) and midbrain/thalamus represented reward prediction errors, consistent with animal studies. Prediction error signals were also seen in the frontal operculum/insula, particularly for social rewards. In Pavlovian studies, striatal prediction error signals extended into the amygdala, while instrumental tasks engaged the caudate. Prediction error maps were sensitive to the model-fitting procedure (fixed or individually-estimated) and to the extent of spatial smoothing. A correlate of expected value was found in a posterior region of the ventromedial prefrontal cortex, caudal and medial to the orbitofrontal regions identified in animal studies. These findings highlight a reproducible motif of reinforcement learning in the cortico-striatal loops and identify methodological dimensions that may influence the reproducibility of activation patterns across studies. PMID:25665667
Human performance in the modern cockpit
NASA Technical Reports Server (NTRS)
Dismukes, R. K.; Cohen, M. M.
1992-01-01
This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed.
INVOLVEMENT OF MULTIPLE MOLECULAR PATHWAYS IN THE GENETICS OF OCULAR REFRACTION AND MYOPIA.
Wojciechowski, Robert; Cheng, Ching-Yu
2018-01-01
The prevalence of myopia has increased dramatically worldwide within the last three decades. Recent studies have shown that refractive development is influenced by environmental, behavioral, and inherited factors. This review aims to analyze recent progress in the genetics of refractive error and myopia. A comprehensive literature search of PubMed and OMIM was conducted to identify relevant articles in the genetics of refractive error. Genome-wide association and sequencing studies have increased our understanding of the genetics involved in refractive error. These studies have identified interesting candidate genes. All genetic loci discovered to date indicate that refractive development is a heterogeneous process mediated by a number of overlapping biological processes. The exact mechanisms by which these biological networks regulate eye growth are poorly understood. Although several individual genes and/or molecular pathways have been investigated in animal models, a systematic network-based approach in modeling human refractive development is necessary to understand the complex interplay between genes and environment in refractive error. New biomedical technologies and better-designed studies will continue to refine our understanding of the genetics and molecular pathways of refractive error, and may lead to preventative and therapeutic measures to combat the myopia epidemic.
Gandevia, Simon C.; Herbert, Robert D.
2016-01-01
Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding. PMID:27294280
Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D
2016-01-01
Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding.
Bouhabel, Sarah; Kay-Rivest, Emily; Nhan, Carol; Bank, Ilana; Nugus, Peter; Fisher, Rachel; Nguyen, Lily Hp
2017-06-01
Otolaryngology-head and neck surgery (OTL-HNS) residents face a variety of difficult, high-stress situations, which may occur early in their training. Since these events occur infrequently, simulation-based learning has become an important part of residents' training and is already well established in fields such as anesthesia and emergency medicine. In the domain of OTL-HNS, it is gradually gaining in popularity. Crisis Resource Management (CRM), a program adapted from the aviation industry, aims to improve outcomes of crisis situations by attempting to mitigate human errors. Some examples of CRM principles include cultivating situational awareness; promoting proper use of available resources; and improving rapid decision making, particularly in high-acuity, low-frequency clinical situations. Our pilot project sought to integrate CRM principles into an airway simulation course for OTL-HNS residents, but most important, it evaluated whether learning objectives were met, through use of a novel error identification model.
NASA Technical Reports Server (NTRS)
Deloach, R.
1981-01-01
The Fraction Impact Method (FIM), developed by the National Research Council (NRC) for assessing the amount and physiological effect of noise, is described. Here, the number of people exposed to a given level of noise is multiplied by a weighting factor that depends on noise level. It is pointed out that the Aircraft-noise Levels and Annoyance MOdel (ALAMO), recently developed at NASA Langley Research Center, can perform the NRC fractional impact calculations for given modes of operation at any U.S. airport. The sensitivity of these calculations to errors in estimates of population, noise level, and human subjective response is discussed. It is found that a change in source noise causes a substantially smaller change in contour area than would be predicted simply on the basis of inverse square law considerations. Another finding is that the impact calculations are generally less sensitive to source noise errors than to systematic errors in population or subjective response.
Economics of human performance and systems total ownership cost.
Onkham, Wilawan; Karwowski, Waldemar; Ahram, Tareq Z
2012-01-01
Financial costs of investing in people is associated with training, acquisition, recruiting, and resolving human errors have a significant impact on increased total ownership costs. These costs can also affect the exaggerate budgets and delayed schedules. The study of human performance economical assessment in the system acquisition process enhances the visibility of hidden cost drivers which support program management informed decisions. This paper presents the literature review of human total ownership cost (HTOC) and cost impacts on overall system performance. Economic value assessment models such as cost benefit analysis, risk-cost tradeoff analysis, expected value of utility function analysis (EV), growth readiness matrix, multi-attribute utility technique, and multi-regressions model were introduced to reflect the HTOC and human performance-technology tradeoffs in terms of the dollar value. The human total ownership regression model introduces to address the influencing human performance cost component measurement. Results from this study will increase understanding of relevant cost drivers in the system acquisition process over the long term.
Putting the psychology back into psychological models: mechanistic versus rational approaches.
Sakamoto, Yasuaki; Jones, Mattr; Love, Bradley C
2008-09-01
Two basic approaches to explaining the nature of the mind are the rational and the mechanistic approaches. Rational analyses attempt to characterize the environment and the behavioral outcomes that humans seek to optimize, whereas mechanistic models attempt to simulate human behavior using processes and representations analogous to those used by humans. We compared these approaches with regard to their accounts of how humans learn the variability of categories. The mechanistic model departs in subtle ways from rational principles. In particular, the mechanistic model incrementally updates its estimates of category means and variances through error-driven learning, based on discrepancies between new category members and the current representation of each category. The model yields a prediction, which we verify, regarding the effects of order manipulations that the rational approach does not anticipate. Although both rational and mechanistic models can successfully postdict known findings, we suggest that psychological advances are driven primarily by consideration of process and representation and that rational accounts trail these breakthroughs.
Modeling to Improve the Risk Reduction Process for Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Bryant, Larry; Waggoner, Bruce
2013-01-01
The Jet Propulsion Laboratory has learned that even innocuous errors in the spacecraft command process can have significantly detrimental effects on a space mission. Consequently, such Command File Errors (CFE), regardless of their effect on the spacecraft, are treated as significant events for which a root cause is identified and corrected. A CFE during space mission operations is often the symptom of imbalance or inadequacy within the system that encompasses the hardware and software used for command generation as well as the human experts and processes involved in this endeavor. As we move into an era of increased collaboration with other NASA centers and commercial partners, these systems become more and more complex. Consequently, the ability to thoroughly model and analyze CFEs formally in order to reduce the risk they pose is increasingly important. In this paper, we summarize the results of applying modeling techniques previously developed to the DAWN flight project. The original models were built with the input of subject matter experts from several flight projects. We have now customized these models to address specific questions for the DAWN flight project and formulating use cases to address their unique mission needs. The goal of this effort is to enhance the project's ability to meet commanding reliability requirements for operations and to assist them in managing their Command File Errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.I. Rudyka; Y.E. Zingerman; K.G. Lavrov
Up-to-date mathematical methods, such as correlation analysis and expert systems, are employed in creating a model of the coking process. Automatic coking-control systems developed by Giprokoks rule out human error. At an existing coke battery, after introducing automatic control, the heating-gas consumption is reduced by {>=}5%.
Perez-Guaita, David; Kuligowski, Julia; Quintás, Guillermo; Garrigues, Salvador; Guardia, Miguel de la
2013-03-30
Locally weighted partial least squares regression (LW-PLSR) has been applied to the determination of four clinical parameters in human serum samples (total protein, triglyceride, glucose and urea contents) by Fourier transform infrared (FTIR) spectroscopy. Classical LW-PLSR models were constructed using different spectral regions. For the selection of parameters by LW-PLSR modeling, a multi-parametric study was carried out employing the minimum root-mean square error of cross validation (RMSCV) as objective function. In order to overcome the effect of strong matrix interferences on the predictive accuracy of LW-PLSR models, this work focuses on sample selection. Accordingly, a novel strategy for the development of local models is proposed. It was based on the use of: (i) principal component analysis (PCA) performed on an analyte specific spectral region for identifying most similar sample spectra and (ii) partial least squares regression (PLSR) constructed using the whole spectrum. Results found by using this strategy were compared to those provided by PLSR using the same spectral intervals as for LW-PLSR. Prediction errors found by both, classical and modified LW-PLSR improved those obtained by PLSR. Hence, both proposed approaches were useful for the determination of analytes present in a complex matrix as in the case of human serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Human errors and measurement uncertainty
NASA Astrophysics Data System (ADS)
Kuselman, Ilya; Pennecchi, Francesca
2015-04-01
Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Sophie; Pinto, Frank M; Morin-Ducote, Garnetta
2013-01-01
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADsmore » images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Kelly, R.T.; Quinn, M.L.
1995-05-01
Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices usedmore » in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.« less
DOT National Transportation Integrated Search
2001-02-01
The Human Factors Analysis and Classification System (HFACS) is a general human error framework : originally developed and tested within the U.S. military as a tool for investigating and analyzing the human : causes of aviation accidents. Based upon ...
On modeling human reliability in space flights - Redundancy and recovery operations
NASA Astrophysics Data System (ADS)
Aarset, M.; Wright, J. F.
The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.
Evaluation of Flow Biosensor Technology in a Chronically-Instrumented Non-Human Primate Model
NASA Technical Reports Server (NTRS)
Koenig, S. C.; Reister, C.; Schaub, J.; Muniz, G.; Ferguson, T.; Fanton, J. W.
1995-01-01
The Physiology Research Branch of Brooks AFB conducts both human and non-human primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to indentify the particular mechanisms that invoke these responses. Primary investigative research efforts in a non-human primate model require the calculation of total peripheral resistance (TPR), systemic arterial compliance (SAC), and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. We have evaluated commercially available electromagnetic (EMF) and transit-time flow measurement techniques. In vivo and in vitro experiments demonstrated that the average error of these techniques is less than 25 percent for EMF and less than 10 percent for transit-time.
Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria.
Ihueze, Chukwutoo C; Onwurah, Uchendu O
2018-03-01
One of the major problems in the world today is the rate of road traffic crashes and deaths on our roads. Majority of these deaths occur in low-and-middle income countries including Nigeria. This study analyzed road traffic crashes in Anambra State, Nigeria with the intention of developing accurate predictive models for forecasting crash frequency in the State using autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average with explanatory variables (ARIMAX) modelling techniques. The result showed that ARIMAX model outperformed the ARIMA (1,1,1) model generated when their performances were compared using the lower Bayesian information criterion, mean absolute percentage error, root mean square error; and higher coefficient of determination (R-Squared) as accuracy measures. The findings of this study reveal that incorporating human, vehicle and environmental related factors in time series analysis of crash dataset produces a more robust predictive model than solely using aggregated crash count. This study contributes to the body of knowledge on road traffic safety and provides an approach to forecasting using many human, vehicle and environmental factors. The recommendations made in this study if applied will help in reducing the number of road traffic crashes in Nigeria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kell, Alexander J E; Yamins, Daniel L K; Shook, Erica N; Norman-Haignere, Sam V; McDermott, Josh H
2018-05-02
A core goal of auditory neuroscience is to build quantitative models that predict cortical responses to natural sounds. Reasoning that a complete model of auditory cortex must solve ecologically relevant tasks, we optimized hierarchical neural networks for speech and music recognition. The best-performing network contained separate music and speech pathways following early shared processing, potentially replicating human cortical organization. The network performed both tasks as well as humans and exhibited human-like errors despite not being optimized to do so, suggesting common constraints on network and human performance. The network predicted fMRI voxel responses substantially better than traditional spectrotemporal filter models throughout auditory cortex. It also provided a quantitative signature of cortical representational hierarchy-primary and non-primary responses were best predicted by intermediate and late network layers, respectively. The results suggest that task optimization provides a powerful set of tools for modeling sensory systems. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
Safety in the operating theatre--part 1: interpersonal relationships and team performance
NASA Technical Reports Server (NTRS)
Schaefer, H. G.; Helmreich, R. L.; Scheidegger, D.
1995-01-01
The authors examine the application of interpersonal human factors training on operating room (OR) personnel. Mortality studies of OR deaths and critical incident studies of anesthesia are examined to determine the role of human error in OR incidents. Theoretical models of system vulnerability to accidents are presented with emphasis on a systems approach to OR performance. Input, process, and outcome factors are discussed in detail.
NASA Technical Reports Server (NTRS)
Bayless, E. O.; Lawless, K. G.; Kurgan, C.; Nunes, A. C.; Graham, B. F.; Hoffman, D.; Jones, C. S.; Shepard, R.
1993-01-01
Fully automated variable-polarity plasma arc VPPA welding system developed at Marshall Space Flight Center. System eliminates defects caused by human error. Integrates many sensors with mathematical model of the weld and computer-controlled welding equipment. Sensors provide real-time information on geometry of weld bead, location of weld joint, and wire-feed entry. Mathematical model relates geometry of weld to critical parameters of welding process.
Hétu, Sébastien; Luo, Yi; D’Ardenne, Kimberlee; Lohrenz, Terry
2017-01-01
Abstract As models of shared expectations, social norms play an essential role in our societies. Since our social environment is changing constantly, our internal models of it also need to change. In humans, there is mounting evidence that neural structures such as the insula and the ventral striatum are involved in detecting norm violation and updating internal models. However, because of methodological challenges, little is known about the possible involvement of midbrain structures in detecting norm violation and updating internal models of our norms. Here, we used high-resolution cardiac-gated functional magnetic resonance imaging and a norm adaptation paradigm in healthy adults to investigate the role of the substantia nigra/ventral tegmental area (SN/VTA) complex in tracking signals related to norm violation that can be used to update internal norms. We show that the SN/VTA codes for the norm’s variance prediction error (PE) and norm PE with spatially distinct regions coding for negative and positive norm PE. These results point to a common role played by the SN/VTA complex in supporting both simple reward-based and social decision making. PMID:28981876
Quantification of plume opacity by digital photography.
Du, Ke; Rood, Mark J; Kim, Byung J; Kemme, Michael R; Franek, Bill; Mattison, Kevin
2007-02-01
The United States Environmental Protection Agency (USEPA) developed Method 9 to describe how plume opacity can be quantified by humans. However, use of observations by humans introduces subjectivity, and is expensive due to semiannual certification requirements of the observers. The Digital Opacity Method (DOM) was developed to quantify plume opacity at lower cost, with improved objectivity, and to provide a digital record. Photographs of plumes were taken with a calibrated digital camera under specified conditions. Pixel values from those photographs were then interpreted to quantify the plume's opacity using a contrast model and a transmission model. The contrast model determines plume opacity based on pixel values that are related to the change in contrast between two backgrounds that are located behind and next to the plume. The transmission model determines the plume's opacity based on pixel values that are related to radiances from the plume and its background. DOM was field tested with a smoke generator. The individual and average opacity errors of DOM were within the USEPA Method 9 acceptable error limits for both field campaigns. Such results are encouraging and support the use of DOM as an alternative to Method 9.
A Probabilistic Palimpsest Model of Visual Short-term Memory
Matthey, Loic; Bays, Paul M.; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ. PMID:25611204
A probabilistic palimpsest model of visual short-term memory.
Matthey, Loic; Bays, Paul M; Dayan, Peter
2015-01-01
Working memory plays a key role in cognition, and yet its mechanisms remain much debated. Human performance on memory tasks is severely limited; however, the two major classes of theory explaining the limits leave open questions about key issues such as how multiple simultaneously-represented items can be distinguished. We propose a palimpsest model, with the occurrent activity of a single population of neurons coding for several multi-featured items. Using a probabilistic approach to storage and recall, we show how this model can account for many qualitative aspects of existing experimental data. In our account, the underlying nature of a memory item depends entirely on the characteristics of the population representation, and we provide analytical and numerical insights into critical issues such as multiplicity and binding. We consider representations in which information about individual feature values is partially separate from the information about binding that creates single items out of multiple features. An appropriate balance between these two types of information is required to capture fully the different types of error seen in human experimental data. Our model provides the first principled account of misbinding errors. We also suggest a specific set of stimuli designed to elucidate the representations that subjects actually employ.
Predictive models of safety based on audit findings: Part 2: Measurement of model validity.
Hsiao, Yu-Lin; Drury, Colin; Wu, Changxu; Paquet, Victor
2013-07-01
Part 1 of this study sequence developed a human factors/ergonomics (HF/E) based classification system (termed HFACS-MA) for safety audit findings and proved its measurement reliability. In Part 2, we used the human error categories of HFACS-MA as predictors of future safety performance. Audit records and monthly safety incident reports from two airlines submitted to their regulatory authority were available for analysis, covering over 6.5 years. Two participants derived consensus results of HF/E errors from the audit reports using HFACS-MA. We adopted Neural Network and Poisson regression methods to establish nonlinear and linear prediction models respectively. These models were tested for the validity of prediction of the safety data, and only Neural Network method resulted in substantially significant predictive ability for each airline. Alternative predictions from counting of audit findings and from time sequence of safety data produced some significant results, but of much smaller magnitude than HFACS-MA. The use of HF/E analysis of audit findings provided proactive predictors of future safety performance in the aviation maintenance field. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Maille, Nicolas P.; Statler, Irving C.; Ferryman, Thomas A.; Rosenthal, Loren; Shafto, Michael G.; Statler, Irving C.
2006-01-01
The objective of the Aviation System Monitoring and Modeling (ASMM) project of NASA s Aviation Safety and Security Program was to develop technologies that will enable proactive management of safety risk, which entails identifying the precursor events and conditions that foreshadow most accidents. This presents a particular challenge in the aviation system where people are key components and human error is frequently cited as a major contributing factor or cause of incidents and accidents. In the aviation "world", information about what happened can be extracted from quantitative data sources, but the experiential account of the incident reporter is the best available source of information about why an incident happened. This report describes a conceptual model and an approach to automated analyses of textual data sources for the subjective perspective of the reporter of the incident to aid in understanding why an incident occurred. It explores a first-generation process for routinely searching large databases of textual reports of aviation incident or accidents, and reliably analyzing them for causal factors of human behavior (the why of an incident). We have defined a generic structure of information that is postulated to be a sound basis for defining similarities between aviation incidents. Based on this structure, we have introduced the simplifying structure, which we call the Scenario as a pragmatic guide for identifying similarities of what happened based on the objective parameters that define the Context and the Outcome of a Scenario. We believe that it will be possible to design an automated analysis process guided by the structure of the Scenario that will aid aviation-safety experts to understand the systemic issues that are conducive to human error.
Sobel, Michael E; Lindquist, Martin A
2014-07-01
Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.
Real-Time Detector of Human Fatigue: Detecting Lapses in Alertness
2008-02-15
These coefficients and their variances, covariances and standard errors were computed simultaneously using HLM 6 (Raudenbush, Bryk, Cheong, & Congdon ...CA: Sage. Raudenbush, S. W., Bryk, A. S., Cheong, Y. F., & Congdon , R. T. (2004). HLM6: Hierarchical Linear and Nonlinear Modeling [Computer software
A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems
NASA Technical Reports Server (NTRS)
Hatanaka, Iwao
2000-01-01
The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.
Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach
NASA Astrophysics Data System (ADS)
Manno, Giorgio; Lo Re, Carlo; Ciraolo, Giuseppe
2017-09-01
In recent decades in the Mediterranean Sea, high anthropic pressure from increasing economic and touristic development has affected several coastal areas. Today the erosion phenomena threaten human activities and existing structures, and interdisciplinary studies are needed to better understand actual coastal dynamics. Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence. To improve the assessment of the wave run-up uncertainty, a spectral numerical model was used to propagate waves from deep to intermediate water and a Boussinesq-type model for intermediate water up to the swash zone. Tide effects on the uncertainty of shoreline position were evaluated using data collected by a nearby tide gauge. The proposed methodology was applied to an unprotected, dissipative Sicilian beach far from harbors and subjected to intense human activities over the last 20 years. The results show wave run-up and tide errors ranging from 0.12 to 4.5 m and from 1.20 to 1.39 m, respectively.
Integrating models that depend on variable data
NASA Astrophysics Data System (ADS)
Banks, A. T.; Hill, M. C.
2016-12-01
Models of human-Earth systems are often developed with the goal of predicting the behavior of one or more dependent variables from multiple independent variables, processes, and parameters. Often dependent variable values range over many orders of magnitude, which complicates evaluation of the fit of the dependent variable values to observations. Many metrics and optimization methods have been proposed to address dependent variable variability, with little consensus being achieved. In this work, we evaluate two such methods: log transformation (based on the dependent variable being log-normally distributed with a constant variance) and error-based weighting (based on a multi-normal distribution with variances that tend to increase as the dependent variable value increases). Error-based weighting has the advantage of encouraging model users to carefully consider data errors, such as measurement and epistemic errors, while log-transformations can be a black box for typical users. Placing the log-transformation into the statistical perspective of error-based weighting has not formerly been considered, to the best of our knowledge. To make the evaluation as clear and reproducible as possible, we use multiple linear regression (MLR). Simulations are conducted with MatLab. The example represents stream transport of nitrogen with up to eight independent variables. The single dependent variable in our example has values that range over 4 orders of magnitude. Results are applicable to any problem for which individual or multiple data types produce a large range of dependent variable values. For this problem, the log transformation produced good model fit, while some formulations of error-based weighting worked poorly. Results support previous suggestions fthat error-based weighting derived from a constant coefficient of variation overemphasizes low values and degrades model fit to high values. Applying larger weights to the high values is inconsistent with the log-transformation. Greater consistency is obtained by imposing smaller (by up to a factor of 1/35) weights on the smaller dependent-variable values. From an error-based perspective, the small weights are consistent with large standard deviations. This work considers the consequences of these two common ways of addressing variable data.
Akrami, Mohammad; Qian, Zhihui; Zou, Zhemin; Howard, David; Nester, Chris J; Ren, Lei
2018-04-01
The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle-foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935-2.258 for ground reaction forces, 1.528-2.727 for plantar flexor muscles and 4.84-11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.
Kim, Jun Sik; Jeong, Byung Yong
2018-05-03
The study aimed to describe the characteristics of occupational injuries of female workers in the residential healthcare facilities for the elderly, and analyze human errors as causes of accidents. From the national industrial accident compensation data, 506 female injuries were analyzed by age and occupation. The results showed that medical service worker was the most prevalent (54.1%), followed by social welfare worker (20.4%). Among injuries, 55.7% were <1 year of work experience, and 37.9% were ≥60 years old. Slips/falls were the most common type of accident (42.7%), and proportion of injured by slips/falls increases with age. Among human errors, action errors were the primary reasons, followed by perception errors, and cognition errors. Besides, the ratios of injuries by perception errors and action errors increase with age, respectively. The findings of this study suggest that there is a need to design workplaces that accommodate the characteristics of older female workers.
Method and Apparatus for Evaluating the Visual Quality of Processed Digital Video Sequences
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
2002-01-01
A Digital Video Quality (DVQ) apparatus and method that incorporate a model of human visual sensitivity to predict the visibility of artifacts. The DVQ method and apparatus are used for the evaluation of the visual quality of processed digital video sequences and for adaptively controlling the bit rate of the processed digital video sequences without compromising the visual quality. The DVQ apparatus minimizes the required amount of memory and computation. The input to the DVQ apparatus is a pair of color image sequences: an original (R) non-compressed sequence, and a processed (T) sequence. Both sequences (R) and (T) are sampled, cropped, and subjected to color transformations. The sequences are then subjected to blocking and discrete cosine transformation, and the results are transformed to local contrast. The next step is a time filtering operation which implements the human sensitivity to different time frequencies. The results are converted to threshold units by dividing each discrete cosine transform coefficient by its respective visual threshold. At the next stage the two sequences are subtracted to produce an error sequence. The error sequence is subjected to a contrast masking operation, which also depends upon the reference sequence (R). The masked errors can be pooled in various ways to illustrate the perceptual error over various dimensions, and the pooled error can be converted to a visual quality measure.
[Risk and risk management in aviation].
Müller, Manfred
2004-10-01
RISK MANAGEMENT: The large proportion of human errors in aviation accidents suggested the solution--at first sight brilliant--to replace the fallible human being by an "infallible" digitally-operating computer. However, even after the introduction of the so-called HITEC-airplanes, the factor human error still accounts for 75% of all accidents. Thus, if the computer is ruled out as the ultimate safety system, how else can complex operations involving quick and difficult decisions be controlled? OPTIMIZED TEAM INTERACTION/PARALLEL CONNECTION OF THOUGHT MACHINES: Since a single person is always "highly error-prone", support and control have to be guaranteed by a second person. The independent work of mind results in a safety network that more efficiently cushions human errors. NON-PUNITIVE ERROR MANAGEMENT: To be able to tackle the actual problems, the open discussion of intervened errors must not be endangered by the threat of punishment. It has been shown in the past that progress is primarily achieved by investigating and following up mistakes, failures and catastrophes shortly after they happened. HUMAN FACTOR RESEARCH PROJECT: A comprehensive survey showed the following result: By far the most frequent safety-critical situation (37.8% of all events) consists of the following combination of risk factors: 1. A complication develops. 2. In this situation of increased stress a human error occurs. 3. The negative effects of the error cannot be corrected or eased because there are deficiencies in team interaction on the flight deck. This means, for example, that a negative social climate has the effect of a "turbocharger" when a human error occurs. It needs to be pointed out that a negative social climate is not identical with a dispute. In many cases the working climate is burdened without the responsible person even noticing it: A first negative impression, too much or too little respect, contempt, misunderstandings, not expressing unclear concern, etc. can considerably reduce the efficiency of a team.
A topological multilayer model of the human body.
Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João
2015-11-04
Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.
Linear modeling of human hand-arm dynamics relevant to right-angle torque tool interaction.
Ay, Haluk; Sommerich, Carolyn M; Luscher, Anthony F
2013-10-01
A new protocol was evaluated for identification of stiffness, mass, and damping parameters employing a linear model for human hand-arm dynamics relevant to right-angle torque tool use. Powered torque tools are widely used to tighten fasteners in manufacturing industries. While these tools increase accuracy and efficiency of tightening processes, operators are repetitively exposed to impulsive forces, posing risk of upper extremity musculoskeletal injury. A novel testing apparatus was developed that closely mimics biomechanical exposure in torque tool operation. Forty experienced torque tool operators were tested with the apparatus to determine model parameters and validate the protocol for physical capacity assessment. A second-order hand-arm model with parameters extracted in the time domain met model accuracy criterion of 5% for time-to-peak displacement error in 93% of trials (vs. 75% for frequency domain). Average time-to-peak handle displacement and relative peak handle force errors were 0.69 ms and 0.21%, respectively. Model parameters were significantly affected by gender and working posture. Protocol and numerical calculation procedures provide an alternative method for assessing mechanical parameters relevant to right-angle torque tool use. The protocol more closely resembles tool use, and calculation procedures demonstrate better performance of parameter extraction using time domain system identification methods versus frequency domain. Potential future applications include parameter identification for in situ torque tool operation and equipment development for human hand-arm dynamics simulation under impulsive forces that could be used for assessing torque tools based on factors relevant to operator health (handle dynamics and hand-arm reaction force).
Modeling the effects of high-G stress on pilots in a tracking task
NASA Technical Reports Server (NTRS)
Korn, J.; Kleinman, D. L.
1978-01-01
Air-to-air tracking experiments were conducted at the Aerospace Medical Research Laboratories using both fixed and moving base dynamic environment simulators. The obtained data, which includes longitudinal error of a simulated air-to-air tracking task as well as other auxiliary variables, was analyzed using an ensemble averaging method. In conjunction with these experiments, the optimal control model is applied to model a human operator under high-G stress.
Future Modelling and Simulation Challenges (Defis futurs pour la modelisation et la simulation)
2002-11-01
Language School Figure 2: Location of the simulation center within the MEC Military operations research section - simulation lab Military operations... language . This logic can be probabilistic (branching is randomised, which is useful for modelling error), tactical (a branch goes to the task with the... language and a collection of simulation tools that can be used to create human and team behaviour models to meet users’ needs. Hence, different ways of
Optical diagnosis of malaria infection in human plasma using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Saleem, Muhammad; Amanat, Samina Tufail; Shakoor, Huma Abdul; Rashid, Rashad; Mahmood, Arshad; Ahmed, Mushtaq
2015-01-01
We present the prediction of malaria infection in human plasma using Raman spectroscopy. Raman spectra of malaria-infected samples are compared with those of healthy and dengue virus infected ones for disease recognition. Raman spectra were acquired using a laser at 532 nm as an excitation source and 10 distinct spectral signatures that statistically differentiated malaria from healthy and dengue-infected cases were found. A multivariate regression model has been developed that utilized Raman spectra of 20 malaria-infected, 10 non-malarial with fever, 10 healthy, and 6 dengue-infected samples to optically predict the malaria infection. The model yields the correlation coefficient r2 value of 0.981 between the predicted values and clinically known results of trainee samples, and the root mean square error in cross validation was found to be 0.09; both these parameters validated the model. The model was further blindly tested for 30 unknown suspected samples and found to be 86% accurate compared with the clinical results, with the inaccuracy due to three samples which were predicted in the gray region. Standard deviation and root mean square error in prediction for unknown samples were found to be 0.150 and 0.149, which are accepted for the clinical validation of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bley, D.C.; Cooper, S.E.; Forester, J.A.
ATHEANA, a second-generation Human Reliability Analysis (HRA) method integrates advances in psychology with engineering, human factors, and Probabilistic Risk Analysis (PRA) disciplines to provide an HRA quantification process and PRA modeling interface that can accommodate and represent human performance in real nuclear power plant events. The method uses the characteristics of serious accidents identified through retrospective analysis of serious operational events to set priorities in a search process for significant human failure events, unsafe acts, and error-forcing context (unfavorable plant conditions combined with negative performance-shaping factors). ATHEANA has been tested in a demonstration project at an operating pressurized water reactor.
Rong, Hao; Tian, Jin; Zhao, Tingdi
2016-01-01
In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred
2015-01-01
Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.
Cues that Trigger Social Transmission of Disinhibition in Young Children
ERIC Educational Resources Information Center
Moriguchi, Yusuke; Minato, Takashi; Ishiguro, Hiroshi; Shinohara, Ikuko; Itakura, Shoji
2010-01-01
Previous studies have shown that observing a human model's actions, but not a robot's actions, could induce young children's perseverative behaviors and suggested that children's sociocognitive abilities can lead to perseverative errors ("social transmission of disinhibition"). This study investigated how the social transmission of disinhibition…
Capalbo, Antonio; Hoffmann, Eva R; Cimadomo, Danilo; Ubaldi, Filippo Maria; Rienzi, Laura
2017-11-01
The unbalanced transmission of chromosomes in human gametes and early preimplantation embryos causes aneuploidy, which is a major cause of infertility and pregnancy failure. A baseline of 20% of human oocytes are estimated to be aneuploid and this increases exponentially from 30 to 35 years, reaching on average 80% by 42 years. As a result, reproductive senescence in human females is predominantly determined by the accelerated decline in genetic quality of oocytes from 30 years of age. Understanding mechanisms of chromosome segregation and aneuploidies in the female germline is a crucial step towards the development of new diagnostic approaches and, possibly, for the development of therapeutic targets and molecules. Here, we have reviewed emerging mechanisms that may drive human aneuploidy, in particular the maternal age effect. We conducted a systematic search in PubMed Central of the primary literature from 1990 through 2016 following the PRISMA guidelines, using MeSH terms related to human aneuploidy. For model organism research, we conducted a literature review based on references in human oocytes manuscripts and general reviews related to chromosome segregation in meiosis and mitosis. Advances in genomic and imaging technologies are allowing unprecedented insight into chromosome segregation in human oocytes. This includes the identification of a novel chromosome segregation error, termed reverse segregation, as well as sister kinetochore configurations that were not predicted based on murine models. Elucidation of mechanisms that result in errors in chromosome segregation in meiosis may lead to therapeutic developments that could improve reproductive outcomes by reducing aneuploidy. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Model and experiments to optimize co-adaptation in a simplified myoelectric control system
NASA Astrophysics Data System (ADS)
Couraud, M.; Cattaert, D.; Paclet, F.; Oudeyer, P. Y.; de Rugy, A.
2018-04-01
Objective. To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. Approach. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. Results. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. Significance. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
A dual-loop model of the human controller in single-axis tracking tasks
NASA Technical Reports Server (NTRS)
Hess, R. A.
1977-01-01
A dual loop model of the human controller in single axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure which involves feeding back that portion of the controlled element output rate which is due to control activity. The sensory inputs to the human controller are assumed to be system error and control force. The former is assumed to be sensed via visual, aural, or tactile displays while the latter is assumed to be sensed in kinesthetic fashion. A nonlinear form of the model is briefly discussed. This model is then linearized and parameterized. A set of general adaptive characteristics for the parameterized model is hypothesized. These characteristics describe the manner in which the parameters in the linearized model will vary with such things as display quality. It is demonstrated that the parameterized model can produce controller describing functions which closely approximate those measured in laboratory tracking tasks for a wide variety of controlled elements.
On the Confounding Effect of Temperature on Chemical Shift-Encoded Fat Quantification
Hernando, Diego; Sharma, Samir D.; Kramer, Harald; Reeder, Scott B.
2014-01-01
Purpose To characterize the confounding effect of temperature on chemical shift-encoded (CSE) fat quantification. Methods The proton resonance frequency of water, unlike triglycerides, depends on temperature. This leads to a temperature dependence of the spectral models of fat (relative to water) that are commonly used by CSE-MRI methods. Simulation analysis was performed for 1.5 Tesla CSE fat–water signals at various temperatures and echo time combinations. Oil–water phantoms were constructed and scanned at temperatures between 0 and 40°C using spectroscopy and CSE imaging at three echo time combinations. An explanted human liver, rejected for transplantation due to steatosis, was scanned using spectroscopy and CSE imaging. Fat–water reconstructions were performed using four different techniques: magnitude and complex fitting, with standard or temperature-corrected signal modeling. Results In all experiments, magnitude fitting with standard signal modeling resulted in large fat quantification errors. Errors were largest for echo time combinations near TEinit ≈ 1.3 ms, ΔTE ≈ 2.2 ms. Errors in fat quantification caused by temperature-related frequency shifts were smaller with complex fitting, and were avoided using a temperature-corrected signal model. Conclusion Temperature is a confounding factor for fat quantification. If not accounted for, it can result in large errors in fat quantifications in phantom and ex vivo acquisitions. PMID:24123362
A quasi-3D wire approach to model pulmonary airflow in human airways.
Kannan, Ravishekar; Chen, Z J; Singh, Narender; Przekwas, Andrzej; Delvadia, Renishkumar; Tian, Geng; Walenga, Ross
2017-07-01
The models used for modeling the airflow in the human airways are either 0-dimensional compartmental or full 3-dimensional (3D) computational fluid dynamics (CFD) models. In the former, airways are treated as compartments, and the computations are performed with several assumptions, thereby generating a low-fidelity solution. The CFD method displays extremely high fidelity since the solution is obtained by solving the conservation equations in a physiologically consistent geometry. However, CFD models (1) require millions of degrees of freedom to accurately describe the geometry and to reduce the discretization errors, (2) have convergence problems, and (3) require several days to simulate a few breathing cycles. In this paper, we present a novel, fast-running, and robust quasi-3D wire model for modeling the airflow in the human lung airway. The wire mesh is obtained by contracting the high-fidelity lung airway surface mesh to a system of connected wires, with well-defined radii. The conservation equations are then solved in each wire. These wire meshes have around O(1000) degrees of freedom and hence are 3000 to 25 000 times faster than their CFD counterparts. The 3D spatial nature is also preserved since these wires are contracted out of the actual lung STL surface. The pressure readings between the 2 approaches showed minor difference (maximum error = 15%). In general, this formulation is fast and robust, allows geometric changes, and delivers high-fidelity solutions. Hence, this approach has great potential for more complicated problems including modeling of constricted/diseased lung sections and for calibrating the lung flow resistances through parameter inversion. Copyright © 2016 John Wiley & Sons, Ltd.
Errors in Aviation Decision Making: Bad Decisions or Bad Luck?
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Martin, Lynne; Davison, Jeannie; Null, Cynthia H. (Technical Monitor)
1998-01-01
Despite efforts to design systems and procedures to support 'correct' and safe operations in aviation, errors in human judgment still occur and contribute to accidents. In this paper we examine how an NDM (naturalistic decision making) approach might help us to understand the role of decision processes in negative outcomes. Our strategy was to examine a collection of identified decision errors through the lens of an aviation decision process model and to search for common patterns. The second, and more difficult, task was to determine what might account for those patterns. The corpus we analyzed consisted of tactical decision errors identified by the NTSB (National Transportation Safety Board) from a set of accidents in which crew behavior contributed to the accident. A common pattern emerged: about three quarters of the errors represented plan-continuation errors, that is, a decision to continue with the original plan despite cues that suggested changing the course of action. Features in the context that might contribute to these errors were identified: (a) ambiguous dynamic conditions and (b) organizational and socially-induced goal conflicts. We hypothesize that 'errors' are mediated by underestimation of risk and failure to analyze the potential consequences of continuing with the initial plan. Stressors may further contribute to these effects. Suggestions for improving performance in these error-inducing contexts are discussed.
NASA Astrophysics Data System (ADS)
Wang, Dong; Ding, Hao; Singh, Vijay P.; Shang, Xiaosan; Liu, Dengfeng; Wang, Yuankun; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing
2015-05-01
For scientific and sustainable management of water resources, hydrologic and meteorologic data series need to be often extended. This paper proposes a hybrid approach, named WA-CM (wavelet analysis-cloud model), for data series extension. Wavelet analysis has time-frequency localization features, known as "mathematics microscope," that can decompose and reconstruct hydrologic and meteorologic series by wavelet transform. The cloud model is a mathematical representation of fuzziness and randomness and has strong robustness for uncertain data. The WA-CM approach first employs the wavelet transform to decompose the measured nonstationary series and then uses the cloud model to develop an extension model for each decomposition layer series. The final extension is obtained by summing the results of extension of each layer. Two kinds of meteorologic and hydrologic data sets with different characteristics and different influence of human activity from six (three pairs) representative stations are used to illustrate the WA-CM approach. The approach is also compared with four other methods, which are conventional correlation extension method, Kendall-Theil robust line method, artificial neural network method (back propagation, multilayer perceptron, and radial basis function), and single cloud model method. To evaluate the model performance completely and thoroughly, five measures are used, which are relative error, mean relative error, standard deviation of relative error, root mean square error, and Thiel inequality coefficient. Results show that the WA-CM approach is effective, feasible, and accurate and is found to be better than other four methods compared. The theory employed and the approach developed here can be applied to extension of data in other areas as well.
Barnette, Daniel W.
2002-01-01
The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.
1993-11-01
way is to develop a crude but working model of an entire system. The other is by developing a realistic model of the user interface , leaving out most...devices or by incorporating software for a more user -friendly interface . Automation introduces the possibility of making data entry errors. Multimode...across various human- computer interfaces . 127 a Memory: Minimize the amount of information that the user must maintain in short-term memory
Illusory conjunctions reflect the time course of the attentional blink.
Botella, Juan; Privado, Jesús; de Liaño, Beatriz Gil-Gómez; Suero, Manuel
2011-07-01
Illusory conjunctions in the time domain are binding errors for features from stimuli presented sequentially but in the same spatial position. A similar experimental paradigm is employed for the attentional blink (AB), an impairment of performance for the second of two targets when it is presented 200-500 msec after the first target. The analysis of errors along the time course of the AB allows the testing of models of illusory conjunctions. In an experiment, observers identified one (control condition) or two (experimental condition) letters in a specified color, so that illusory conjunctions in each response could be linked to specific positions in the series. Two items in the target colors (red and white, embedded in distractors of different colors) were employed in four conditions defined according to whether both targets were in the same or different colors. Besides the U-shaped function for hits, the errors were analyzed by calculating several response parameters reflecting characteristics such as the average position of the responses or the attentional suppression during the blink. The several error parameters cluster in two time courses, as would be expected from prevailing models of the AB. Furthermore, the results match the predictions from Botella, Barriopedro, and Suero's (Journal of Experimental Psychology: Human Perception and Performance, 27, 1452-1467, 2001) model for illusory conjunctions.
To Err Is Human; To Structurally Prime from Errors Is Also Human
ERIC Educational Resources Information Center
Slevc, L. Robert; Ferreira, Victor S.
2013-01-01
Natural language contains disfluencies and errors. Do listeners simply discard information that was clearly produced in error, or can erroneous material persist to affect subsequent processing? Two experiments explored this question using a structural priming paradigm. Speakers described dative-eliciting pictures after hearing prime sentences that…
Human factors analysis and classification system-HFACS.
DOT National Transportation Integrated Search
2000-02-01
Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident : reporting systems are not designed around any theoretical framework of human error. As a result, most : accident databases are not conduci...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank
2013-10-15
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS imagesmore » features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.« less
Crime Modeling using Spatial Regression Approach
NASA Astrophysics Data System (ADS)
Saleh Ahmar, Ansari; Adiatma; Kasim Aidid, M.
2018-01-01
Act of criminality in Indonesia increased both variety and quantity every year. As murder, rape, assault, vandalism, theft, fraud, fencing, and other cases that make people feel unsafe. Risk of society exposed to crime is the number of reported cases in the police institution. The higher of the number of reporter to the police institution then the number of crime in the region is increasing. In this research, modeling criminality in South Sulawesi, Indonesia with the dependent variable used is the society exposed to the risk of crime. Modelling done by area approach is the using Spatial Autoregressive (SAR) and Spatial Error Model (SEM) methods. The independent variable used is the population density, the number of poor population, GDP per capita, unemployment and the human development index (HDI). Based on the analysis using spatial regression can be shown that there are no dependencies spatial both lag or errors in South Sulawesi.
Technical approaches for measurement of human errors
NASA Technical Reports Server (NTRS)
Clement, W. F.; Heffley, R. K.; Jewell, W. F.; Mcruer, D. T.
1980-01-01
Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations.
NASA Astrophysics Data System (ADS)
Raju, P. V. S.; Potty, Jayaraman; Mohanty, U. C.
2011-09-01
Comprehensive sensitivity analyses on physical parameterization schemes of Weather Research Forecast (WRF-ARW core) model have been carried out for the prediction of track and intensity of tropical cyclones by taking the example of cyclone Nargis, which formed over the Bay of Bengal and hit Myanmar on 02 May 2008, causing widespread damages in terms of human and economic losses. The model performances are also evaluated with different initial conditions of 12 h intervals starting from the cyclogenesis to the near landfall time. The initial and boundary conditions for all the model simulations are drawn from the global operational analysis and forecast products of National Center for Environmental Prediction (NCEP-GFS) available for the public at 1° lon/lat resolution. The results of the sensitivity analyses indicate that a combination of non-local parabolic type exchange coefficient PBL scheme of Yonsei University (YSU), deep and shallow convection scheme with mass flux approach for cumulus parameterization (Kain-Fritsch), and NCEP operational cloud microphysics scheme with diagnostic mixed phase processes (Ferrier), predicts better track and intensity as compared against the Joint Typhoon Warning Center (JTWC) estimates. Further, the final choice of the physical parameterization schemes selected from the above sensitivity experiments is used for model integration with different initial conditions. The results reveal that the cyclone track, intensity and time of landfall are well simulated by the model with an average intensity error of about 8 hPa, maximum wind error of 12 m s-1and track error of 77 km. The simulations also show that the landfall time error and intensity error are decreasing with delayed initial condition, suggesting that the model forecast is more dependable when the cyclone approaches the coast. The distribution and intensity of rainfall are also well simulated by the model and comparable with the TRMM estimates.
A Simple Model Predicting Individual Weight Change in Humans
Thomas, Diana M.; Martin, Corby K.; Heymsfield, Steven; Redman, Leanne M.; Schoeller, Dale A.; Levine, James A.
2010-01-01
Excessive weight in adults is a national concern with over 2/3 of the US population deemed overweight. Because being overweight has been correlated to numerous diseases such as heart disease and type 2 diabetes, there is a need to understand mechanisms and predict outcomes of weight change and weight maintenance. A simple mathematical model that accurately predicts individual weight change offers opportunities to understand how individuals lose and gain weight and can be used to foster patient adherence to diets in clinical settings. For this purpose, we developed a one dimensional differential equation model of weight change based on the energy balance equation is paired to an algebraic relationship between fat free mass and fat mass derived from a large nationally representative sample of recently released data collected by the Centers for Disease Control. We validate the model's ability to predict individual participants’ weight change by comparing model estimates of final weight data from two recent underfeeding studies and one overfeeding study. Mean absolute error and standard deviation between model predictions and observed measurements of final weights are less than 1.8 ± 1.3 kg for the underfeeding studies and 2.5 ± 1.6 kg for the overfeeding study. Comparison of the model predictions to other one dimensional models of weight change shows improvement in mean absolute error, standard deviation of mean absolute error, and group mean predictions. The maximum absolute individual error decreased by approximately 60% substantiating reliability in individual weight change predictions. The model provides a viable method for estimating individual weight change as a result of changes in intake and determining individual dietary adherence during weight change studies. PMID:24707319
Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)
NASA Technical Reports Server (NTRS)
Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine
2012-01-01
Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.
Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio
2018-06-01
Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A framework for analyzing the cognitive complexity of computer-assisted clinical ordering.
Horsky, Jan; Kaufman, David R; Oppenheim, Michael I; Patel, Vimla L
2003-01-01
Computer-assisted provider order entry is a technology that is designed to expedite medical ordering and to reduce the frequency of preventable errors. This paper presents a multifaceted cognitive methodology for the characterization of cognitive demands of a medical information system. Our investigation was informed by the distributed resources (DR) model, a novel approach designed to describe the dimensions of user interfaces that introduce unnecessary cognitive complexity. This method evaluates the relative distribution of external (system) and internal (user) representations embodied in system interaction. We conducted an expert walkthrough evaluation of a commercial order entry system, followed by a simulated clinical ordering task performed by seven clinicians. The DR model was employed to explain variation in user performance and to characterize the relationship of resource distribution and ordering errors. The analysis revealed that the configuration of resources in this ordering application placed unnecessarily heavy cognitive demands on the user, especially on those who lacked a robust conceptual model of the system. The resources model also provided some insight into clinicians' interactive strategies and patterns of associated errors. Implications for user training and interface design based on the principles of human-computer interaction in the medical domain are discussed.
Groth, Katrina M.; Smith, Curtis L.; Swiler, Laura P.
2014-04-05
In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existingmore » HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.« less
Lost in Translation: the Case for Integrated Testing
NASA Technical Reports Server (NTRS)
Young, Aaron
2017-01-01
The building of a spacecraft is complex and often involves multiple suppliers and companies that have their own designs and processes. Standards have been developed across the industries to reduce the chances for critical flight errors at the system level, but the spacecraft is still vulnerable to the introduction of critical errors during integration of these systems. Critical errors can occur at any time during the process and in many cases, human reliability analysis (HRA) identifies human error as a risk driver. Most programs have a test plan in place that is intended to catch these errors, but it is not uncommon for schedule and cost stress to result in less testing than initially planned. Therefore, integrated testing, or "testing as you fly," is essential as a final check on the design and assembly to catch any errors prior to the mission. This presentation will outline the unique benefits of integrated testing by catching critical flight errors that can otherwise go undetected, discuss HRA methods that are used to identify opportunities for human error, lessons learned and challenges over ownership of testing will be discussed.
The lawful imprecision of human surface tilt estimation in natural scenes
2018-01-01
Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477
The lawful imprecision of human surface tilt estimation in natural scenes.
Kim, Seha; Burge, Johannes
2018-01-31
Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.
Human factors in aircraft incidents - Results of a 7-year study (Andre Allard Memorial Lecture)
NASA Technical Reports Server (NTRS)
Billings, C. E.; Reynard, W. D.
1984-01-01
It is pointed out that nearly all fatal aircraft accidents are preventable, and that most such accidents are due to human error. The present discussion is concerned with the results of a seven-year study of the data collected by the NASA Aviation Safety Reporting System (ASRS). The Aviation Safety Reporting System was designed to stimulate as large a flow as possible of information regarding errors and operational problems in the conduct of air operations. It was implemented in April, 1976. In the following 7.5 years, 35,000 reports have been received from pilots, controllers, and the armed forces. Human errors are found in more than 80 percent of these reports. Attention is given to the types of events reported, possible causal factors in incidents, the relationship of incidents and accidents, and sources of error in the data. ASRS reports include sufficient detail to permit authorities to institute changes in the national aviation system designed to minimize the likelihood of human error, and to insulate the system against the effects of errors.
Human factors in surgery: from Three Mile Island to the operating room.
D'Addessi, Alessandro; Bongiovanni, Luca; Volpe, Andrea; Pinto, Francesco; Bassi, PierFrancesco
2009-01-01
Human factors is a definition that includes the science of understanding the properties of human capability, the application of this understanding to the design and development of systems and services, the art of ensuring their successful applications to a program. The field of human factors traces its origins to the Second World War, but Three Mile Island has been the best example of how groups of people react and make decisions under stress: this nuclear accident was exacerbated by wrong decisions made because the operators were overwhelmed with irrelevant, misleading or incorrect information. Errors and their nature are the same in all human activities. The predisposition for error is so intrinsic to human nature that scientifically it is best considered as inherently biologic. The causes of error in medical care may not be easily generalized. Surgery differs in important ways: most errors occur in the operating room and are technical in nature. Commonly, surgical error has been thought of as the consequence of lack of skill or ability, and is the result of thoughtless actions. Moreover the 'operating theatre' has a unique set of team dynamics: professionals from multiple disciplines are required to work in a closely coordinated fashion. This complex environment provides multiple opportunities for unclear communication, clashing motivations, errors arising not from technical incompetence but from poor interpersonal skills. Surgeons have to work closely with human factors specialists in future studies. By improving processes already in place in many operating rooms, safety will be enhanced and quality increased.
Optimizing Automatic Deployment Using Non-functional Requirement Annotations
NASA Astrophysics Data System (ADS)
Kugele, Stefan; Haberl, Wolfgang; Tautschnig, Michael; Wechs, Martin
Model-driven development has become common practice in design of safety-critical real-time systems. High-level modeling constructs help to reduce the overall system complexity apparent to developers. This abstraction caters for fewer implementation errors in the resulting systems. In order to retain correctness of the model down to the software executed on a concrete platform, human faults during implementation must be avoided. This calls for an automatic, unattended deployment process including allocation, scheduling, and platform configuration.
Barsingerhorn, A D; Boonstra, F N; Goossens, H H L M
2017-02-01
Current stereo eye-tracking methods model the cornea as a sphere with one refractive surface. However, the human cornea is slightly aspheric and has two refractive surfaces. Here we used ray-tracing and the Navarro eye-model to study how these optical properties affect the accuracy of different stereo eye-tracking methods. We found that pupil size, gaze direction and head position all influence the reconstruction of gaze. Resulting errors range between ± 1.0 degrees at best. This shows that stereo eye-tracking may be an option if reliable calibration is not possible, but the applied eye-model should account for the actual optics of the cornea.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2014-12-01
Estimating the relative contributions of human withdrawals and climate variability to changes in groundwater is a challenging task at present. One method that has been used recently is a model-data synthesis combining GRACE total water storage estimates with simulated water storage estimates from land surface models. In this method, water storage changes due to natural climate variations simulated by a model are removed from total water storage changes observed by GRACE; the residual is then interpreted as anthropogenic groundwater change. If the modeled water storage estimate contains systematic errors, these errors will also be present in the residual groundwater estimate. For example, simulations performed with the Community Land Model (CLM; the land component of the Community Earth System Model) generally show a weak (as much as 50% smaller) seasonal cycle of water storage in semi-arid regions when compared to GRACE satellite water storage estimates. This bias propagates into GRACE-CLM anthropogenic groundwater change estimates, which then exhibit unphysical seasonal variability. The CLM bias can be traced to the parameterization of soil evaporative resistance. Incorporating a new soil resistance parameterization in CLM greatly reduces the seasonal bias with respect to GRACE. In this study, we compare the improved CLM water storage estimates to GRACE and discuss the implications for estimates of anthropogenic groundwater withdrawal, showing examples for the Middle East and Southwestern United States.
Lionakis, M.S.; Hajishengallis, G.
2015-01-01
In recent years, the study of genetic defects arising from inborn errors in immunity has resulted in the discovery of new genes involved in the function of the immune system and in the elucidation of the roles of known genes whose importance was previously unappreciated. With the recent explosion in the field of genomics and the increasing number of genetic defects identified, the study of naturally occurring mutations has become a powerful tool for gaining mechanistic insight into the functions of the human immune system. In this concise perspective, we discuss emerging evidence that inborn errors in immunity constitute real-life models that are indispensable both for the in-depth understanding of human biology and for obtaining critical insights into common diseases, such as those affecting oral health. In the field of oral mucosal immunity, through the study of patients with select gene disruptions, the interleukin-17 (IL-17) pathway has emerged as a critical element in oral immune surveillance and susceptibility to inflammatory disease, with disruptions in the IL-17 axis now strongly linked to mucosal fungal susceptibility, whereas overactivation of the same pathways is linked to inflammatory periodontitis. PMID:25900229
The Human Factors Analysis and Classification System : HFACS : final report.
DOT National Transportation Integrated Search
2000-02-01
Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident reporting systems are not designed around any theoretical framework of human error. As a result, most accident databases are not conducive t...
Kaneko, Takaaki; Tomonaga, Masaki
2014-06-01
Humans are often unaware of how they control their limb motor movements. People pay attention to their own motor movements only when their usual motor routines encounter errors. Yet little is known about the extent to which voluntary actions rely on automatic control and when automatic control shifts to deliberate control in nonhuman primates. In this study, we demonstrate that chimpanzees and humans showed similar limb motor adjustment in response to feedback error during reaching actions, whereas attentional allocation inferred from gaze behavior differed. We found that humans shifted attention to their own motor kinematics as errors were induced in motor trajectory feedback regardless of whether the errors actually disrupted their reaching their action goals. In contrast, chimpanzees shifted attention to motor execution only when errors actually interfered with their achieving a planned action goal. These results indicate that the species differed in their criteria for shifting from automatic to deliberate control of motor actions. It is widely accepted that sophisticated motor repertoires have evolved in humans. Our results suggest that the deliberate monitoring of one's own motor kinematics may have evolved in the human lineage. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Moustris, Konstantinos; Tsiros, Ioannis X.; Tseliou, Areti; Nastos, Panagiotis
2018-04-01
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis
2018-04-11
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
Yu, Manzhu; Yang, Chaowei
2016-01-01
Dust storms are devastating natural disasters that cost billions of dollars and many human lives every year. Using the Non-Hydrostatic Mesoscale Dust Model (NMM-dust), this research studies how different spatiotemporal resolutions of two input parameters (soil moisture and greenness vegetation fraction) impact the sensitivity and accuracy of a dust model. Experiments are conducted by simulating dust concentration during July 1-7, 2014, for the target area covering part of Arizona and California (31, 37, -118, -112), with a resolution of ~ 3 km. Using ground-based and satellite observations, this research validates the temporal evolution and spatial distribution of dust storm output from the NMM-dust, and quantifies model error using measurements of four evaluation metrics (mean bias error, root mean square error, correlation coefficient and fractional gross error). Results showed that the default configuration of NMM-dust (with a low spatiotemporal resolution of both input parameters) generates an overestimation of Aerosol Optical Depth (AOD). Although it is able to qualitatively reproduce the temporal trend of the dust event, the default configuration of NMM-dust cannot fully capture its actual spatial distribution. Adjusting the spatiotemporal resolution of soil moisture and vegetation cover datasets showed that the model is sensitive to both parameters. Increasing the spatiotemporal resolution of soil moisture effectively reduces model's overestimation of AOD, while increasing the spatiotemporal resolution of vegetation cover changes the spatial distribution of reproduced dust storm. The adjustment of both parameters enables NMM-dust to capture the spatial distribution of dust storms, as well as reproducing more accurate dust concentration.
Problems in evaluating radiation dose via terrestrial and aquatic pathways.
Vaughan, B E; Soldat, J K; Schreckhise, R G; Watson, E C; McKenzie, D H
1981-01-01
This review is concerned with exposure risk and the environmental pathways models used for predictive assessment of radiation dose. Exposure factors, the adequacy of available data, and the model subcomponents are critically reviewed from the standpoint of absolute error propagation. Although the models are inherently capable of better absolute accuracy, a calculated dose is usually overestimated by from two to six orders of magnitude, in practice. The principal reason for so large an error lies in using "generic" concentration ratios in situations where site specific data are needed. Major opinion of the model makers suggests a number midway between these extremes, with only a small likelihood of ever underestimating the radiation dose. Detailed evaluations are made of source considerations influencing dose (i.e., physical and chemical status of released material); dispersal mechanisms (atmospheric, hydrologic and biotic vector transport); mobilization and uptake mechanisms (i.e., chemical and other factors affecting the biological availability of radioelements); and critical pathways. Examples are shown of confounding in food-chain pathways, due to uncritical application of concentration ratios. Current thoughts of replacing the critical pathways approach to calculating dose with comprehensive model calculations are also shown to be ill-advised, given present limitations in the comprehensive data base. The pathways models may also require improved parametrization, as they are not at present structured adequately to lend themselves to validation. The extremely wide errors associated with predicting exposure stand in striking contrast to the error range associated with the extrapolation of animal effects data to the human being. PMID:7037381
Yang, Anxiong; Stingl, Michael; Berry, David A.; Lohscheller, Jörg; Voigt, Daniel; Eysholdt, Ulrich; Döllinger, Michael
2011-01-01
With the use of an endoscopic, high-speed camera, vocal fold dynamics may be observed clinically during phonation. However, observation and subjective judgment alone may be insufficient for clinical diagnosis and documentation of improved vocal function, especially when the laryngeal disease lacks any clear morphological presentation. In this study, biomechanical parameters of the vocal folds are computed by adjusting the corresponding parameters of a three-dimensional model until the dynamics of both systems are similar. First, a mathematical optimization method is presented. Next, model parameters (such as pressure, tension and masses) are adjusted to reproduce vocal fold dynamics, and the deduced parameters are physiologically interpreted. Various combinations of global and local optimization techniques are attempted. Evaluation of the optimization procedure is performed using 50 synthetically generated data sets. The results show sufficient reliability, including 0.07 normalized error, 96% correlation, and 91% accuracy. The technique is also demonstrated on data from human hemilarynx experiments, in which a low normalized error (0.16) and high correlation (84%) values were achieved. In the future, this technique may be applied to clinical high-speed images, yielding objective measures with which to document improved vocal function of patients with voice disorders. PMID:21877808
Optimal interpolation schemes to constrain pmPM2.5 in regional modeling over the United States
NASA Astrophysics Data System (ADS)
Sousan, Sinan Dhia Jameel
This thesis presents the use of data assimilation with optimal interpolation (OI) to develop atmospheric aerosol concentration estimates for the United States at high spatial and temporal resolutions. Concentration estimates are highly desirable for a wide range of applications, including visibility, climate, and human health. OI is a viable data assimilation method that can be used to improve Community Multiscale Air Quality (CMAQ) model fine particulate matter (PM2.5) estimates. PM2.5 is the mass of solid and liquid particles with diameters less than or equal to 2.5 µm suspended in the gas phase. OI was employed by combining model estimates with satellite and surface measurements. The satellite data assimilation combined 36 x 36 km aerosol concentrations from CMAQ with aerosol optical depth (AOD) measured by MODIS and AERONET over the continental United States for 2002. Posterior model concentrations generated by the OI algorithm were compared with surface PM2.5 measurements to evaluate a number of possible data assimilation parameters, including model error, observation error, and temporal averaging assumptions. Evaluation was conducted separately for six geographic U.S. regions in 2002. Variability in model error and MODIS biases limited the effectiveness of a single data assimilation system for the entire continental domain. The best combinations of four settings and three averaging schemes led to a domain-averaged improvement in fractional error from 1.2 to 0.97 and from 0.99 to 0.89 at respective IMPROVE and STN monitoring sites. For 38% of OI results, MODIS OI degraded the forward model skill due to biases and outliers in MODIS AOD. Surface data assimilation combined 36 × 36 km aerosol concentrations from the CMAQ model with surface PM2.5 measurements over the continental United States for 2002. The model error covariance matrix was constructed by using the observational method. The observation error covariance matrix included site representation that scaled the observation error by land use (i.e. urban or rural locations). In theory, urban locations should have less effect on surrounding areas than rural sites, which can be controlled using site representation error. The annual evaluations showed substantial improvements in model performance with increases in the correlation coefficient from 0.36 (prior) to 0.76 (posterior), and decreases in the fractional error from 0.43 (prior) to 0.15 (posterior). In addition, the normalized mean error decreased from 0.36 (prior) to 0.13 (posterior), and the RMSE decreased from 5.39 µg m-3 (prior) to 2.32 µg m-3 (posterior). OI decreased model bias for both large spatial areas and point locations, and could be extended to more advanced data assimilation methods. The current work will be applied to a five year (2000-2004) CMAQ simulation aimed at improving aerosol model estimates. The posterior model concentrations will be used to inform exposure studies over the U.S. that relate aerosol exposure to mortality and morbidity rates. Future improvements for the OI techniques used in the current study will include combining both surface and satellite data to improve posterior model estimates. Satellite data have high spatial and temporal resolutions in comparison to surface measurements, which are scarce but more accurate than model estimates. The satellite data are subject to noise affected by location and season of retrieval. The implementation of OI to combine satellite and surface data sets has the potential to improve posterior model estimates for locations that have no direct measurements.
Space station crew safety: Human factors interaction model
NASA Technical Reports Server (NTRS)
Cohen, M. M.; Junge, M. K.
1985-01-01
A model of the various human factors issues and interactions that might affect crew safety is developed. The first step addressed systematically the central question: How is this space station different from all other spacecraft? A wide range of possible issue was identified and researched. Five major topics of human factors issues that interacted with crew safety resulted: Protocols, Critical Habitability, Work Related Issues, Crew Incapacitation and Personal Choice. Second, an interaction model was developed that would show some degree of cause and effect between objective environmental or operational conditions and the creation of potential safety hazards. The intermediary steps between these two extremes of causality were the effects on human performance and the results of degraded performance. The model contains three milestones: stressor, human performance (degraded) and safety hazard threshold. Between these milestones are two countermeasure intervention points. The first opportunity for intervention is the countermeasure against stress. If this countermeasure fails, performance degrades. The second opportunity for intervention is the countermeasure against error. If this second countermeasure fails, the threshold of a potential safety hazard may be crossed.
Custom-oriented wavefront sensor for human eye properties measurements
NASA Astrophysics Data System (ADS)
Galetskiy, Sergey; Letfullin, Renat; Dubinin, Alex; Cherezova, Tatyana; Belyakov, Alexey; Kudryashov, Alexis
2005-12-01
The problem of correct measurement of human eye aberrations is very important with the rising widespread of a surgical procedure for reducing refractive error in the eye, so called, LASIK (laser-assisted in situ keratomileusis). In this paper we show capabilities to measure aberrations by means of the aberrometer built in our lab together with Active Optics Ltd. We discuss the calibration of the aberrometer and show invalidity to use for the ophthalmic calibration purposes the analytical equation based on thin lens formula. We show that proper analytical equation suitable for calibration should have dependence on the square of the distance increment and we illustrate this both by experiment and by Zemax Ray tracing modeling. Also the error caused by inhomogeneous intensity distribution of the beam imaged onto the aberrometer's Shack-Hartmann sensor is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Chen; Tan, Jun; Dolly, Steven
2015-02-15
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less
Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists.
Ruiz, María Herrojo; Jabusch, Hans-Christian; Altenmüller, Eckart
2009-11-01
Music performance is an extremely rapid process with low incidence of errors even at the fast rates of production required. This is possible only due to the fast functioning of the self-monitoring system. Surprisingly, no specific data about error monitoring have been published in the music domain. Consequently, the present study investigated the electrophysiological correlates of executive control mechanisms, in particular error detection, during piano performance. Our target was to extend the previous research efforts on understanding of the human action-monitoring system by selecting a highly skilled multimodal task. Pianists had to retrieve memorized music pieces at a fast tempo in the presence or absence of auditory feedback. Our main interest was to study the interplay between auditory and sensorimotor information in the processes triggered by an erroneous action, considering only wrong pitches as errors. We found that around 70 ms prior to errors a negative component is elicited in the event-related potentials and is generated by the anterior cingulate cortex. Interestingly, this component was independent of the auditory feedback. However, the auditory information did modulate the processing of the errors after their execution, as reflected in a larger error positivity (Pe). Our data are interpreted within the context of feedforward models and the auditory-motor coupling.
Model-based VQ for image data archival, retrieval and distribution
NASA Technical Reports Server (NTRS)
Manohar, Mareboyana; Tilton, James C.
1995-01-01
An ideal image compression technique for image data archival, retrieval and distribution would be one with the asymmetrical computational requirements of Vector Quantization (VQ), but without the complications arising from VQ codebooks. Codebook generation and maintenance are stumbling blocks which have limited the use of VQ as a practical image compression algorithm. Model-based VQ (MVQ), a variant of VQ described here, has the computational properties of VQ but does not require explicit codebooks. The codebooks are internally generated using mean removed error and Human Visual System (HVS) models. The error model assumed is the Laplacian distribution with mean, lambda-computed from a sample of the input image. A Laplacian distribution with mean, lambda, is generated with uniform random number generator. These random numbers are grouped into vectors. These vectors are further conditioned to make them perceptually meaningful by filtering the DCT coefficients from each vector. The DCT coefficients are filtered by multiplying by a weight matrix that is found to be optimal for human perception. The inverse DCT is performed to produce the conditioned vectors for the codebook. The only image dependent parameter used in the generation of codebook is the mean, lambda, that is included in the coded file to repeat the codebook generation process for decoding.
de Almeida, Maurício Liberal; Saatkamp, Cassiano Junior; Fernandes, Adriana Barrinha; Pinheiro, Antonio Luiz Barbosa; Silveira, Landulfo
2016-09-01
Urea and creatinine are commonly used as biomarkers of renal function. Abnormal concentrations of these biomarkers are indicative of pathological processes such as renal failure. This study aimed to develop a model based on Raman spectroscopy to estimate the concentration values of urea and creatinine in human serum. Blood sera from 55 clinically normal subjects and 47 patients with chronic kidney disease undergoing dialysis were collected, and concentrations of urea and creatinine were determined by spectrophotometric methods. A Raman spectrum was obtained with a high-resolution dispersive Raman spectrometer (830 nm). A spectral model was developed based on partial least squares (PLS), where the concentrations of urea and creatinine were correlated with the Raman features. Principal components analysis (PCA) was used to discriminate dialysis patients from normal subjects. The PLS model showed r = 0.97 and r = 0.93 for urea and creatinine, respectively. The root mean square errors of cross-validation (RMSECV) for the model were 17.6 and 1.94 mg/dL, respectively. PCA showed high discrimination between dialysis and normality (95 % accuracy). The Raman technique was able to determine the concentrations with low error and to discriminate dialysis from normal subjects, consistent with a rapid and low-cost test.
Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond
NASA Astrophysics Data System (ADS)
Pietsch, Stephan
2017-04-01
Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.
Managing the Risk of Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Bryant, Larry W.
2013-01-01
Command File Error (CFE), as defined by the Jet Propulsion Laboratory's (JPL) Mission Operations Assurance (MOA) is, regardless of the consequence on the spacecraft, either: an error in a command file sent to the spacecraft, an error in the process for developing and delivering a command file to the spacecraft, or the omission of a command file that should have been sent to the spacecraft. The risk consequence of a CFE can be mission ending and thus a concern to space exploration projects during their mission operations. A CFE during space mission operations is often the symptom of some kind of imbalance or inadequacy within the system that comprises the hardware & software used for command generation and the human experts involved in this endeavour. As we move into an era of enhanced collaboration with other NASA centers and commercial partners, these systems become more and more complex and hence it is all the more important to formally model and analyze CFEs in order to manage the risk of CFEs. Here we will provide a summary of the ongoing efforts at JPL in this area and also explain some more recent developments in the area of developing quantitative models for the purpose of managing CFE's.
Patient Safety Climate: A Study of Southern California Healthcare Organizations.
Avramchuk, Andre S; McGuire, Stephen J J
2018-01-01
Human error remains the most important factor in unnecessary deaths and suffering in U.S. hospitals. Human error results from healthcare providers' attitudes and behaviors toward patients in different settings. Therefore, taking periodic snapshots of the attitudes and behaviors prevalent in an organization and manifested in its patient safety climate (PSC) is essential.We developed and tested a short survey instrument intended as an organization-level measure of PSC with good psychometric properties that can be used in hospitals, clinics, or other healthcare provider settings. Analysis of data from 61 Southern California healthcare organizations resulted in a PSC model with four distinct, reliable factors: (1) Assistance From Others and the Organization, (2) Leadership Messages of Support in Policy and Behavior, (3) Resources and Work Environment, and (4) Error Reporting Behavior. A PSC score, ranging from 0 to 100, was generated for each organization.For a subsample of hospitals in our study, preliminary results indicate a predictive quality of the model. The higher the PSC score, the lower the number of violations detected by the Centers for Medicare & Medicaid Services in complaint inspections, and the fewer the safety problems reported by The Leapfrog Group.Given the association between PSC and health outcomes, we urge healthcare leaders to use various means, such as our survey, to monitor the degree to which their organizations maintain a climate that fosters patient safety and use such data to pinpoint areas for improvement.
Modeling Individual Cyclic Variation in Human Behavior.
Pierson, Emma; Althoff, Tim; Leskovec, Jure
2018-04-01
Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets-of human menstrual cycle symptoms and physical activity tracking data-yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.
Modeling Individual Cyclic Variation in Human Behavior
Pierson, Emma; Althoff, Tim; Leskovec, Jure
2018-01-01
Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets—of human menstrual cycle symptoms and physical activity tracking data—yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model. PMID:29780976
Effect of thematic map misclassification on landscape multi-metric assessment.
Kleindl, William J; Powell, Scott L; Hauer, F Richard
2015-06-01
Advancements in remote sensing and computational tools have increased our awareness of large-scale environmental problems, thereby creating a need for monitoring, assessment, and management at these scales. Over the last decade, several watershed and regional multi-metric indices have been developed to assist decision-makers with planning actions of these scales. However, these tools use remote-sensing products that are subject to land-cover misclassification, and these errors are rarely incorporated in the assessment results. Here, we examined the sensitivity of a landscape-scale multi-metric index (MMI) to error from thematic land-cover misclassification and the implications of this uncertainty for resource management decisions. Through a case study, we used a simplified floodplain MMI assessment tool, whose metrics were derived from Landsat thematic maps, to initially provide results that were naive to thematic misclassification error. Using a Monte Carlo simulation model, we then incorporated map misclassification error into our MMI, resulting in four important conclusions: (1) each metric had a different sensitivity to error; (2) within each metric, the bias between the error-naive metric scores and simulated scores that incorporate potential error varied in magnitude and direction depending on the underlying land cover at each assessment site; (3) collectively, when the metrics were combined into a multi-metric index, the effects were attenuated; and (4) the index bias indicated that our naive assessment model may overestimate floodplain condition of sites with limited human impacts and, to a lesser extent, either over- or underestimated floodplain condition of sites with mixed land use.
Functional language shift to the right hemisphere in patients with language-eloquent brain tumors.
Krieg, Sandro M; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian
2013-01-01
Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1 = left dominant; ratio <1 = right dominant). Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning "all errors" and "all errors without hesitations", which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur.
Speeding up Coarse Point Cloud Registration by Threshold-Independent Baysac Match Selection
NASA Astrophysics Data System (ADS)
Kang, Z.; Lindenbergh, R.; Pu, S.
2016-06-01
This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis set is contaminated with more outliers.
Ketamine Effects on Memory Reconsolidation Favor a Learning Model of Delusions
Gardner, Jennifer M.; Piggot, Jennifer S.; Turner, Danielle C.; Everitt, Jessica C.; Arana, Fernando Sergio; Morgan, Hannah L.; Milton, Amy L.; Lee, Jonathan L.; Aitken, Michael R. F.; Dickinson, Anthony; Everitt, Barry J.; Absalom, Anthony R.; Adapa, Ram; Subramanian, Naresh; Taylor, Jane R.; Krystal, John H.; Fletcher, Paul C.
2013-01-01
Delusions are the persistent and often bizarre beliefs that characterise psychosis. Previous studies have suggested that their emergence may be explained by disturbances in prediction error-dependent learning. Here we set up complementary studies in order to examine whether such a disturbance also modulates memory reconsolidation and hence explains their remarkable persistence. First, we quantified individual brain responses to prediction error in a causal learning task in 18 human subjects (8 female). Next, a placebo-controlled within-subjects study of the impact of ketamine was set up on the same individuals. We determined the influence of this NMDA receptor antagonist (previously shown to induce aberrant prediction error signal and lead to transient alterations in perception and belief) on the evolution of a fear memory over a 72 hour period: they initially underwent Pavlovian fear conditioning; 24 hours later, during ketamine or placebo administration, the conditioned stimulus (CS) was presented once, without reinforcement; memory strength was then tested again 24 hours later. Re-presentation of the CS under ketamine led to a stronger subsequent memory than under placebo. Moreover, the degree of strengthening correlated with individual vulnerability to ketamine's psychotogenic effects and with prediction error brain signal. This finding was partially replicated in an independent sample with an appetitive learning procedure (in 8 human subjects, 4 female). These results suggest a link between altered prediction error, memory strength and psychosis. They point to a core disruption that may explain not only the emergence of delusional beliefs but also their persistence. PMID:23776445
Using GOMS and Bayesian plan recognition to develop recognition models of operator behavior
NASA Astrophysics Data System (ADS)
Zaientz, Jack D.; DeKoven, Elyon; Piegdon, Nicholas; Wood, Scott D.; Huber, Marcus J.
2006-05-01
Trends in combat technology research point to an increasing role for uninhabited vehicles in modern warfare tactics. To support increased span of control over these vehicles human responsibilities need to be transformed from tedious, error-prone and cognition intensive operations into tasks that are more supervisory and manageable, even under intensely stressful conditions. The goal is to move away from only supporting human command of low-level system functions to intention-level human-system dialogue about the operator's tasks and situation. A critical element of this process is developing the means to identify when human operators need automated assistance and to identify what assistance they need. Toward this goal, we are developing an unmanned vehicle operator task recognition system that combines work in human behavior modeling and Bayesian plan recognition. Traditionally, human behavior models have been considered generative, meaning they describe all possible valid behaviors. Basing behavior recognition on models designed for behavior generation can offers advantages in improved model fidelity and reuse. It is not clear, however, how to reconcile the structural differences between behavior recognition and behavior modeling approaches. Our current work demonstrates that by pairing a cognitive psychology derived human behavior modeling approach, GOMS, with a Bayesian plan recognition engine, ASPRN, we can translate a behavior generation model into a recognition model. We will discuss the implications for using human performance models in this manner as well as suggest how this kind of modeling may be used to support the real-time control of multiple, uninhabited battlefield vehicles and other semi-autonomous systems.
Smiley, A M
1990-10-01
In February of 1986 a head-on collision occurred between a freight train and a passenger train in western Canada killing 23 people and causing over $30 million of damage. A Commission of Inquiry appointed by the Canadian government concluded that human error was the major reason for the collision. This report discusses the factors contributing to the human error: mainly poor work-rest schedules, the monotonous nature of the train driving task, insufficient information about train movements, and the inadequate backup systems in case of human error.
Settle, Margaret Doyle; Coakley, Amanda Bulette; Annese, Christine Donahue
2017-02-01
Human milk provides superior nutritional value for infants in the neonatal intensive care unit and is the enteral feeding of choice. Our hospital used the system engineering initiative for patient safety model to evaluate the human milk management system in our neonatal intensive care unit. Nurses described the previous process in a negative way, fraught with opportunities for error, increased stress for nurses, and the need to be away from the bedside and their patients. The redesigned process improved the quality and safety of human milk management and created time for the nurses to spend with their patients.
Working Memory Load Strengthens Reward Prediction Errors.
Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David
2017-04-19
Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors (RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory (WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning. SIGNIFICANCE STATEMENT Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward prediction errors. Copyright © 2017 the authors 0270-6474/17/374332-11$15.00/0.
Sensitivity analysis of dynamic biological systems with time-delays.
Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang
2010-10-15
Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.
Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim
2011-08-11
The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
Human factors of advanced technology (glass cockpit) transport aircraft
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1989-01-01
A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.
NASA Technical Reports Server (NTRS)
Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.
2013-01-01
A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.
A classification on human factor accident/incident of China civil aviation in recent twelve years.
Luo, Xiao-li
2004-10-01
To study human factor accident/incident occurred during 1990-2001 using new classification standard. The human factor accident/incident classification standard is developed on the basis of Reason's Model, combining with CAAC's traditional classifying method, and applied to the classified statistical analysis for 361 flying incidents and 35 flight accidents of China civil aviation, which is induced by human factors and occurred from 1990 to 2001. 1) the incident percentage of taxi and cruise is higher than that of takeoff, climb and descent. 2) The dominating type of flight incidents is diverging of runway, overrunning, near-miss, tail/wingtip/engine strike and ground obstacle impacting. 3) The top three accidents are out of control caused by crew, mountain collision and over runway. 4) Crew's basic operating skill is lower than what we imagined, the mostly representation is poor correcting ability when flight error happened. 5) Crew errors can be represented by incorrect control, regulation and procedure violation, disorientation and diverging percentage of correct flight level. The poor CRM skill is the dominant factor impacting China civil aviation safety, this result has a coincidence with previous study, but there is much difference and distinct characteristic in top incident phase, the type of crew error and behavior performance compared with that of advanced countries. We should strengthen CRM training for all of pilots aiming at the Chinese pilot behavior characteristic in order to improve the safety level of China civil aviation.
Bailey, Stephanie L.; Bono, Rose S.; Nash, Denis; Kimmel, April D.
2018-01-01
Background Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. Methods We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. Results We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Conclusions Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited. PMID:29570737
Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D
2018-01-01
Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not identify all errors in spreadsheet-based models. Comparing parallel model versions can aid in identifying unintentional errors and promoting reliable model projections, particularly when resources are limited.
Logical fallacies in animal model research.
Sjoberg, Espen A
2017-02-15
Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y.; Liang, J.; Yan, D.
2006-02-15
Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationshipsmore » between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty, the registration error is limited to within 1.3 mm. For a solid organ such as the prostate, the registration errors are much larger. Given 30% in material uncertainty, the registration error can reach 4.5 mm. However, the registration error distribution for prostates shows that most of the subvolumes have a much smaller registration error. A deformable organ registration technique that uses FEM is a good candidate in IGART if the mean material parameters are available.« less
Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-Su; Ramamirtham, Ramkumar; Smith, Earl L
2010-08-23
We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies. Copyright 2010 Elsevier Ltd. All rights reserved.
Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-su; Ramamirtham, Ramkumar; Smith, Earl L.
2010-01-01
We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies. PMID:20600237
Understanding seasonal variability of uncertainty in hydrological prediction
NASA Astrophysics Data System (ADS)
Li, M.; Wang, Q. J.
2012-04-01
Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
Deception Undermines the Stability of Cooperation in Games of Indirect Reciprocity.
Számadó, Szabolcs; Szalai, Ferenc; Scheuring, István
2016-01-01
Indirect reciprocity is often claimed as one of the key mechanisms of human cooperation. It works only if there is a reputational score keeping and each individual can inform with high probability which other individuals were good or bad in the previous round. Gossip is often proposed as a mechanism that can maintain such coherence of reputations in the face of errors of transmission. Random errors, however, are not the only source of uncertainty in such situations. The possibility of deceptive communication, where the signallers aim to misinform the receiver cannot be excluded. While there is plenty of evidence for deceptive communication in humans the possibility of deception is not yet incorporated into models of indirect reciprocity. Here we show that when deceptive strategies are allowed in the population it will cause the collapse of the coherence of reputations and thus in turn it results the collapse of cooperation. This collapse is independent of the norms and the cost and benefit values. It is due to the fact that there is no selection for honest communication in the framework of indirect reciprocity. It follows that indirect reciprocity can be only proposed plausibly as a mechanism of human cooperation if additional mechanisms are specified in the model that maintains honesty.
Hierarchical information fusion for global displacement estimation in microsensor motion capture.
Meng, Xiaoli; Zhang, Zhi-Qiang; Wu, Jian-Kang; Wong, Wai-Choong
2013-07-01
This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G
2018-04-18
We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.
Markkula, Gustav; Boer, Erwin; Romano, Richard; Merat, Natasha
2018-06-01
A conceptual and computational framework is proposed for modelling of human sensorimotor control and is exemplified for the sensorimotor task of steering a car. The framework emphasises control intermittency and extends on existing models by suggesting that the nervous system implements intermittent control using a combination of (1) motor primitives, (2) prediction of sensory outcomes of motor actions, and (3) evidence accumulation of prediction errors. It is shown that approximate but useful sensory predictions in the intermittent control context can be constructed without detailed forward models, as a superposition of simple prediction primitives, resembling neurobiologically observed corollary discharges. The proposed mathematical framework allows straightforward extension to intermittent behaviour from existing one-dimensional continuous models in the linear control and ecological psychology traditions. Empirical data from a driving simulator are used in model-fitting analyses to test some of the framework's main theoretical predictions: it is shown that human steering control, in routine lane-keeping and in a demanding near-limit task, is better described as a sequence of discrete stepwise control adjustments, than as continuous control. Results on the possible roles of sensory prediction in control adjustment amplitudes, and of evidence accumulation mechanisms in control onset timing, show trends that match the theoretical predictions; these warrant further investigation. The results for the accumulation-based model align with other recent literature, in a possibly converging case against the type of threshold mechanisms that are often assumed in existing models of intermittent control.
2009-05-21
32 Sigmund Freud , Civilization and Its Discontents (New York: W.W. Norton, 1962) and Abraham Maslow, ―Theory of Human...Recognizing and Avoiding Error in Complex Situations. New York: Basic Books, 1996. Freud , Sigmund . Civilization and Its Discontents. New York: W.W...better than a one-to-one scale map? Return to the factor of change over time and even a stable model of human behavior, whether from Freud or Maslow
Performance Metrics, Error Modeling, and Uncertainty Quantification
NASA Technical Reports Server (NTRS)
Tian, Yudong; Nearing, Grey S.; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Tang, Ling
2016-01-01
A common set of statistical metrics has been used to summarize the performance of models or measurements- the most widely used ones being bias, mean square error, and linear correlation coefficient. They assume linear, additive, Gaussian errors, and they are interdependent, incomplete, and incapable of directly quantifying uncertainty. The authors demonstrate that these metrics can be directly derived from the parameters of the simple linear error model. Since a correct error model captures the full error information, it is argued that the specification of a parametric error model should be an alternative to the metrics-based approach. The error-modeling methodology is applicable to both linear and nonlinear errors, while the metrics are only meaningful for linear errors. In addition, the error model expresses the error structure more naturally, and directly quantifies uncertainty. This argument is further explained by highlighting the intrinsic connections between the performance metrics, the error model, and the joint distribution between the data and the reference.
Robustness of linkage strategy that leads to large-scale cooperation.
Inaba, Misato; Takahashi, Nobuyuki; Ohtsuki, Hisashi
2016-11-21
One of the most well-known models to characterize cooperation among unrelated individuals is Social dilemma (SD). However there is no consensus about how to solve the SD by itself. Since SDs are often embedded in other social interactions, including indirect reciprocity games (IR), human can coordinate their behaviors across multiple games. Such coordination is called 'linkage'. Recently linkage has been considered as a promising solution to resolve SDs, since excluding SD defectors (i.e. those who defected in SD) from indirectly reciprocal relationships functions as a costless sanction. A previous study performed mathematical modeling and revealed that a linkage strategy, which cooperates in SD and engages in the Standing strategy in IR based on the recipients' behaviors in both SD and IR, was an ESS against a non-linkage strategy which defects in SD and engages in the Standing strategy in IR based on recipients' behaviors only in IR (Panchanathan and Boyd, 2004). In order to investigate the robustness of the linkage strategy, we devised a non-linkage strategy, which cooperates in SD but does not link two games. First, we conducted a mathematical analysis and demonstrated that the linkage strategy was not an ESS against cooperating non-linkage strategy. Second, we conducted a series of agent-based computer simulations to examine how the strategies perform in situations in which various types of errors can occur. Our results showed that the linkage strategy was an ESS only when there are implementation errors in SD. However, the equilibrium of the linkage strategy was unstable when there are perception errors. Since we know that humans are not free from perception errors in their social life, future studies will need to show how perception errors can be overcome in order to provide support for the conclusion that linkage is a plausible solution to SDs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Vanlunteren, A.
1977-01-01
A previously described parameter estimation program was applied to a number of control tasks, each involving a human operator model consisting of more than one describing function. One of these experiments is treated in more detail. It consisted of a two dimensional tracking task with identical controlled elements. The tracking errors were presented on one display as two vertically moving horizontal lines. Each loop had its own manipulator. The two forcing functions were mutually independent and consisted each of 9 sine waves. A human operator model was chosen consisting of 4 describing functions, thus taking into account possible linear cross couplings. From the Fourier coefficients of the relevant signals the model parameters were estimated after alignment, averaging over a number of runs and decoupling. The results show that for the elements in the main loops the crossover model applies. A weak linear cross coupling existed with the same dynamics as the elements in the main loops but with a negative sign.
Gigerenzer, Gerd
2009-01-01
In their comment on Marewski et al. (good judgments do not require complex cognition, 2009) Evans and Over (heuristic thinking and human intelligence: a commentary on Marewski, Gaissmaier and Gigerenzer, 2009) conjectured that heuristics can often lead to biases and are not error free. This is a most surprising critique. The computational models of heuristics we have tested allow for quantitative predictions of how many errors a given heuristic will make, and we and others have measured the amount of error by analysis, computer simulation, and experiment. This is clear progress over simply giving heuristics labels, such as availability, that do not allow for quantitative comparisons of errors. Evans and Over argue that the reason people rely on heuristics is the accuracy-effort trade-off. However, the comparison between heuristics and more effortful strategies, such as multiple regression, has shown that there are many situations in which a heuristic is more accurate with less effort. Finally, we do not see how the fast and frugal heuristics program could benefit from a dual-process framework unless the dual-process framework is made more precise. Instead, the dual-process framework could benefit if its two “black boxes” (Type 1 and Type 2 processes) were substituted by computational models of both heuristics and other processes. PMID:19784854
Kang, Le; Carter, Randy; Darcy, Kathleen; Kauderer, James; Liao, Shu-Yuan
2013-01-01
In this article we use a latent class model (LCM) with prevalence modeled as a function of covariates to assess diagnostic test accuracy in situations where the true disease status is not observed, but observations on three or more conditionally independent diagnostic tests are available. A fast Monte Carlo EM (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of covariates. To obtain standard errors for confidence interval construction of estimated parameters, the missing information principle is applied to adjust information matrix estimates. We compare the adjusted information matrix based standard error estimates with the bootstrap standard error estimates both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation demonstrates that the adjusted information matrix approach estimates the standard error similarly with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects from a Gynecologic Oncology Group (GOG) study of significant cervical lesion (S-CL) diagnosis in women with atypical glandular cells of undetermined significance (AGC) to compare the diagnostic accuracy of a histology-based evaluation, a CA-IX biomarker-based test and a human papillomavirus (HPV) DNA test. PMID:24163493
Comparison of Highly Resolved Model-Based Exposure ...
Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low co
Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R
2002-11-01
In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.
Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe
2014-01-01
This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378
Culture Representation in Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gertman; Julie Marble; Steven Novack
Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991)more » cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.« less
Safety Metrics for Human-Computer Controlled Systems
NASA Technical Reports Server (NTRS)
Leveson, Nancy G; Hatanaka, Iwao
2000-01-01
The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.
FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L Boring; David I Gertman; Tuan Q Tran
2008-09-01
This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and riskmore » associated with human performance in next generation control rooms.« less
The role of blood vessels in high-resolution volume conductor head modeling of EEG.
Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T
2016-03-01
Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Vassena, Eliana; Deraeve, James; Alexander, William H
2017-10-01
Human behavior is strongly driven by the pursuit of rewards. In daily life, however, benefits mostly come at a cost, often requiring that effort be exerted to obtain potential benefits. Medial PFC (MPFC) and dorsolateral PFC (DLPFC) are frequently implicated in the expectation of effortful control, showing increased activity as a function of predicted task difficulty. Such activity partially overlaps with expectation of reward and has been observed both during decision-making and during task preparation. Recently, novel computational frameworks have been developed to explain activity in these regions during cognitive control, based on the principle of prediction and prediction error (predicted response-outcome [PRO] model [Alexander, W. H., & Brown, J. W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14, 1338-1344, 2011], hierarchical error representation [HER] model [Alexander, W. H., & Brown, J. W. Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27, 2354-2410, 2015]). Despite the broad explanatory power of these models, it is not clear whether they can also accommodate effects related to the expectation of effort observed in MPFC and DLPFC. Here, we propose a translation of these computational frameworks to the domain of effort-based behavior. First, we discuss how the PRO model, based on prediction error, can explain effort-related activity in MPFC, by reframing effort-based behavior in a predictive context. We propose that MPFC activity reflects monitoring of motivationally relevant variables (such as effort and reward), by coding expectations and discrepancies from such expectations. Moreover, we derive behavioral and neural model-based predictions for healthy controls and clinical populations with impairments of motivation. Second, we illustrate the possible translation to effort-based behavior of the HER model, an extended version of PRO model based on hierarchical error prediction, developed to explain MPFC-DLPFC interactions. We derive behavioral predictions that describe how effort and reward information is coded in PFC and how changing the configuration of such environmental information might affect decision-making and task performance involving motivation.
Shao, Wei; Liu, Mingxia; Zhang, Daoqiang
2016-01-01
The systematic study of subcellular location pattern is very important for fully characterizing the human proteome. Nowadays, with the great advances in automated microscopic imaging, accurate bioimage-based classification methods to predict protein subcellular locations are highly desired. All existing models were constructed on the independent parallel hypothesis, where the cellular component classes are positioned independently in a multi-class classification engine. The important structural information of cellular compartments is missed. To deal with this problem for developing more accurate models, we proposed a novel cell structure-driven classifier construction approach (SC-PSorter) by employing the prior biological structural information in the learning model. Specifically, the structural relationship among the cellular components is reflected by a new codeword matrix under the error correcting output coding framework. Then, we construct multiple SC-PSorter-based classifiers corresponding to the columns of the error correcting output coding codeword matrix using a multi-kernel support vector machine classification approach. Finally, we perform the classifier ensemble by combining those multiple SC-PSorter-based classifiers via majority voting. We evaluate our method on a collection of 1636 immunohistochemistry images from the Human Protein Atlas database. The experimental results show that our method achieves an overall accuracy of 89.0%, which is 6.4% higher than the state-of-the-art method. The dataset and code can be downloaded from https://github.com/shaoweinuaa/. dqzhang@nuaa.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Simultaneous Control of Error Rates in fMRI Data Analysis
Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David
2015-01-01
The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730
NASA Astrophysics Data System (ADS)
Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua
2014-07-01
Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.
Human error and the search for blame
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Human error is a frequent topic in discussions about risks in using computer systems. A rational analysis of human error leads through the consideration of mistakes to standards that designers use to avoid mistakes that lead to known breakdowns. The irrational side, however, is more interesting. It conditions people to think that breakdowns are inherently wrong and that there is ultimately someone who is responsible. This leads to a search for someone to blame which diverts attention from: learning from the mistakes; seeing the limitations of current engineering methodology; and improving the discourse of design.
The use of analytical models in human-computer interface design
NASA Technical Reports Server (NTRS)
Gugerty, Leo
1993-01-01
Recently, a large number of human-computer interface (HCI) researchers have investigated building analytical models of the user, which are often implemented as computer models. These models simulate the cognitive processes and task knowledge of the user in ways that allow a researcher or designer to estimate various aspects of an interface's usability, such as when user errors are likely to occur. This information can lead to design improvements. Analytical models can supplement design guidelines by providing designers rigorous ways of analyzing the information-processing requirements of specific tasks (i.e., task analysis). These models offer the potential of improving early designs and replacing some of the early phases of usability testing, thus reducing the cost of interface design. This paper describes some of the many analytical models that are currently being developed and evaluates the usefulness of analytical models for human-computer interface design. This paper will focus on computational, analytical models, such as the GOMS model, rather than less formal, verbal models, because the more exact predictions and task descriptions of computational models may be useful to designers. The paper also discusses some of the practical requirements for using analytical models in complex design organizations such as NASA.
Model Error Estimation for the CPTEC Eta Model
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; daSilva, Arlindo
1999-01-01
Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.
Why do adult dogs (Canis familiaris) commit the A-not-B search error?
Sümegi, Zsófia; Kis, Anna; Miklósi, Ádám; Topál, József
2014-02-01
It has been recently reported that adult domestic dogs, like human infants, tend to commit perseverative search errors; that is, they select the previously rewarded empty location in Piagetian A-not-B search task because of the experimenter's ostensive communicative cues. There is, however, an ongoing debate over whether these findings reveal that dogs can use the human ostensive referential communication as a source of information or the phenomenon can be accounted for by "more simple" explanations like insufficient attention and learning based on local enhancement. In 2 experiments the authors systematically manipulated the type of human cueing (communicative or noncommunicative) adjacent to the A hiding place during both the A and B trials. Results highlight 3 important aspects of the dogs' A-not-B error: (a) search errors are influenced to a certain extent by dogs' motivation to retrieve the toy object; (b) human communicative and noncommunicative signals have different error-inducing effects; and (3) communicative signals presented at the A hiding place during the B trials but not during the A trials play a crucial role in inducing the A-not-B error and it can be induced even without demonstrating repeated hiding events at location A. These findings further confirm the notion that perseverative search error, at least partially, reflects a "ready-to-obey" attitude in the dog rather than insufficient attention and/or working memory.
The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.
Toro-Ibacache, Viviana; O'Higgins, Paul
2016-07-01
Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.
Eom, Hwisoo; Lee, Sang Hun
2015-06-12
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles
Eom, Hwisoo; Lee, Sang Hun
2015-01-01
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406
Common medial frontal mechanisms of adaptive control in humans and rodents
Frank, Michael J.; Laubach, Mark
2013-01-01
In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310
Brain processing of visual information during fast eye movements maintains motor performance.
Panouillères, Muriel; Gaveau, Valérie; Socasau, Camille; Urquizar, Christian; Pélisson, Denis
2013-01-01
Movement accuracy depends crucially on the ability to detect errors while actions are being performed. When inaccuracies occur repeatedly, both an immediate motor correction and a progressive adaptation of the motor command can unfold. Of all the movements in the motor repertoire of humans, saccadic eye movements are the fastest. Due to the high speed of saccades, and to the impairment of visual perception during saccades, a phenomenon called "saccadic suppression", it is widely believed that the adaptive mechanisms maintaining saccadic performance depend critically on visual error signals acquired after saccade completion. Here, we demonstrate that, contrary to this widespread view, saccadic adaptation can be based entirely on visual information presented during saccades. Our results show that visual error signals introduced during saccade execution--by shifting a visual target at saccade onset and blanking it at saccade offset--induce the same level of adaptation as error signals, presented for the same duration, but after saccade completion. In addition, they reveal that this processing of intra-saccadic visual information for adaptation depends critically on visual information presented during the deceleration phase, but not the acceleration phase, of the saccade. These findings demonstrate that the human central nervous system can use short intra-saccadic glimpses of visual information for motor adaptation, and they call for a reappraisal of current models of saccadic adaptation.
NASA Technical Reports Server (NTRS)
Prive, Nikki C.; Errico, Ronald M.
2013-01-01
A series of experiments that explore the roles of model and initial condition error in numerical weather prediction are performed using an observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO). The use of an OSSE allows the analysis and forecast errors to be explicitly calculated, and different hypothetical observing networks can be tested with ease. In these experiments, both a full global OSSE framework and an 'identical twin' OSSE setup are utilized to compare the behavior of the data assimilation system and evolution of forecast skill with and without model error. The initial condition error is manipulated by varying the distribution and quality of the observing network and the magnitude of observation errors. The results show that model error has a strong impact on both the quality of the analysis field and the evolution of forecast skill, including both systematic and unsystematic model error components. With a realistic observing network, the analysis state retains a significant quantity of error due to systematic model error. If errors of the analysis state are minimized, model error acts to rapidly degrade forecast skill during the first 24-48 hours of forward integration. In the presence of model error, the impact of observation errors on forecast skill is small, but in the absence of model error, observation errors cause a substantial degradation of the skill of medium range forecasts.
Bayesian Safety Risk Modeling of Human-Flightdeck Automation Interaction
NASA Technical Reports Server (NTRS)
Ancel, Ersin; Shih, Ann T.
2015-01-01
Usage of automatic systems in airliners has increased fuel efficiency, added extra capabilities, enhanced safety and reliability, as well as provide improved passenger comfort since its introduction in the late 80's. However, original automation benefits, including reduced flight crew workload, human errors or training requirements, were not achieved as originally expected. Instead, automation introduced new failure modes, redistributed, and sometimes increased workload, brought in new cognitive and attention demands, and increased training requirements. Modern airliners have numerous flight modes, providing more flexibility (and inherently more complexity) to the flight crew. However, the price to pay for the increased flexibility is the need for increased mode awareness, as well as the need to supervise, understand, and predict automated system behavior. Also, over-reliance on automation is linked to manual flight skill degradation and complacency in commercial pilots. As a result, recent accidents involving human errors are often caused by the interactions between humans and the automated systems (e.g., the breakdown in man-machine coordination), deteriorated manual flying skills, and/or loss of situational awareness due to heavy dependence on automated systems. This paper describes the development of the increased complexity and reliance on automation baseline model, named FLAP for FLightdeck Automation Problems. The model development process starts with a comprehensive literature review followed by the construction of a framework comprised of high-level causal factors leading to an automation-related flight anomaly. The framework was then converted into a Bayesian Belief Network (BBN) using the Hugin Software v7.8. The effects of automation on flight crew are incorporated into the model, including flight skill degradation, increased cognitive demand and training requirements along with their interactions. Besides flight crew deficiencies, automation system failures and anomalies of avionic systems are also incorporated. The resultant model helps simulate the emergence of automation-related issues in today's modern airliners from a top-down, generalized approach, which serves as a platform to evaluate NASA developed technologies
Four principles for user interface design of computerised clinical decision support systems.
Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian
2011-01-01
The paper presents results from a design research project of a user interface (UI) for a Computerised Clinical Decision Support System (CDSS). The ambition has been to design Human-Computer Interaction (HCI) that can minimise medication errors. Through an iterative design process a digital prototype for prescription of medicine has been developed. This paper presents results from the formative evaluation of the prototype conducted in a simulation laboratory with ten participating physicians. Data from the simulation is analysed by use of theory on how users perceive information. The conclusion is a model, which sum up four principles of interaction for design of CDSS. The four principles for design of user interfaces for CDSS are summarised as four A's: All in one, At a glance, At hand and Attention. The model emphasises integration of all four interaction principles in the design of user interfaces for CDSS, i.e. the model is an integrated model which we suggest as a guide for interaction design when working with preventing medication errors.
Horrey, William J; Lesch, Mary F; Mitsopoulos-Rubens, Eve; Lee, John D
2015-03-01
Humans often make inflated or erroneous estimates of their own ability or performance. Such errors in calibration can be due to incomplete processing, neglect of available information or due to improper weighing or integration of the information and can impact our decision-making, risk tolerance, and behaviors. In the driving context, these outcomes can have important implications for safety. The current paper discusses the notion of calibration in the context of self-appraisals and self-competence as well as in models of self-regulation in driving. We further develop a conceptual framework for calibration in the driving context borrowing from earlier models of momentary demand regulation, information processing, and lens models for information selection and utilization. Finally, using the model we describe the implications for calibration (or, more specifically, errors in calibration) for our understanding of driver distraction, in-vehicle automation and autonomous vehicles, and the training of novice and inexperienced drivers. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mesolimbic confidence signals guide perceptual learning in the absence of external feedback
Guggenmos, Matthias; Wilbertz, Gregor; Hebart, Martin N; Sterzer, Philipp
2016-01-01
It is well established that learning can occur without external feedback, yet normative reinforcement learning theories have difficulties explaining such instances of learning. Here, we propose that human observers are capable of generating their own feedback signals by monitoring internal decision variables. We investigated this hypothesis in a visual perceptual learning task using fMRI and confidence reports as a measure for this monitoring process. Employing a novel computational model in which learning is guided by confidence-based reinforcement signals, we found that mesolimbic brain areas encoded both anticipation and prediction error of confidence—in remarkable similarity to previous findings for external reward-based feedback. We demonstrate that the model accounts for choice and confidence reports and show that the mesolimbic confidence prediction error modulation derived through the model predicts individual learning success. These results provide a mechanistic neurobiological explanation for learning without external feedback by augmenting reinforcement models with confidence-based feedback. DOI: http://dx.doi.org/10.7554/eLife.13388.001 PMID:27021283
Mathematical models of human paralyzed muscle after long-term training.
Law, L A Frey; Shields, R K
2007-01-01
Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of this study was to compare the accuracy of three muscle models, one linear and two nonlinear, for predicting paralyzed soleus muscle force after exposure to long-term FES training. Further, we contrasted the findings between the trained and untrained limbs. The three models' parameters were best fit to a single force train in the trained soleus muscle (N=4). Nine additional force trains (test trains) were predicted for each subject using the developed models. Model errors between predicted and experimental force trains were determined, including specific muscle force properties. The mean overall error was greatest for the linear model (15.8%) and least for the nonlinear Hill Huxley type model (7.8%). No significant error differences were observed between the trained versus untrained limbs, although model parameter values were significantly altered with training. This study confirmed that nonlinear models most accurately predict both trained and untrained paralyzed muscle force properties. Moreover, the optimized model parameter values were responsive to the relative physiological state of the paralyzed muscle (trained versus untrained). These findings are relevant for the design and control of neuro-prosthetic devices for those with SCI.
Visual Prediction Error Spreads Across Object Features in Human Visual Cortex
Summerfield, Christopher; Egner, Tobias
2016-01-01
Visual cognition is thought to rely heavily on contextual expectations. Accordingly, previous studies have revealed distinct neural signatures for expected versus unexpected stimuli in visual cortex. However, it is presently unknown how the brain combines multiple concurrent stimulus expectations such as those we have for different features of a familiar object. To understand how an unexpected object feature affects the simultaneous processing of other expected feature(s), we combined human fMRI with a task that independently manipulated expectations for color and motion features of moving-dot stimuli. Behavioral data and neural signals from visual cortex were then interrogated to adjudicate between three possible ways in which prediction error (surprise) in the processing of one feature might affect the concurrent processing of another, expected feature: (1) feature processing may be independent; (2) surprise might “spread” from the unexpected to the expected feature, rendering the entire object unexpected; or (3) pairing a surprising feature with an expected feature might promote the inference that the two features are not in fact part of the same object. To formalize these rival hypotheses, we implemented them in a simple computational model of multifeature expectations. Across a range of analyses, behavior and visual neural signals consistently supported a model that assumes a mixing of prediction error signals across features: surprise in one object feature spreads to its other feature(s), thus rendering the entire object unexpected. These results reveal neurocomputational principles of multifeature expectations and indicate that objects are the unit of selection for predictive vision. SIGNIFICANCE STATEMENT We address a key question in predictive visual cognition: how does the brain combine multiple concurrent expectations for different features of a single object such as its color and motion trajectory? By combining a behavioral protocol that independently varies expectation of (and attention to) multiple object features with computational modeling and fMRI, we demonstrate that behavior and fMRI activity patterns in visual cortex are best accounted for by a model in which prediction error in one object feature spreads to other object features. These results demonstrate how predictive vision forms object-level expectations out of multiple independent features. PMID:27810936
Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.
2016-01-01
We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041
McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.
2016-01-01
The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821
Garcia, Tanya P; Ma, Yanyuan
2017-10-01
We develop consistent and efficient estimation of parameters in general regression models with mismeasured covariates. We assume the model error and covariate distributions are unspecified, and the measurement error distribution is a general parametric distribution with unknown variance-covariance. We construct root- n consistent, asymptotically normal and locally efficient estimators using the semiparametric efficient score. We do not estimate any unknown distribution or model error heteroskedasticity. Instead, we form the estimator under possibly incorrect working distribution models for the model error, error-prone covariate, or both. Empirical results demonstrate robustness to different incorrect working models in homoscedastic and heteroskedastic models with error-prone covariates.
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1981-01-01
A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.
NASA Astrophysics Data System (ADS)
Tryfonidis, Michail
It has been observed that during orbital spaceflight the absence of gravitation related sensory inputs causes incongruence between the expected and the actual sensory feedback resulting from voluntary movements. This incongruence results in a reinterpretation or neglect of gravity-induced sensory input signals. Over time, new internal models develop, gradually compensating for the loss of spatial reference. The study of adaptation of goal-directed movements is the main focus of this thesis. The hypothesis is that during the adaptive learning process the neural connections behave in ways that can be described by an adaptive control method. The investigation presented in this thesis includes two different sets of experiments. A series of dart throwing experiments took place onboard the space station Mir. Experiments also took place at the Biomechanics lab at MIT, where the subjects performed a series of continuous trajectory tracking movements while a planar robotic manipulandum exerted external torques on the subjects' moving arms. The experimental hypothesis for both experiments is that during the first few trials the subjects will perform poorly trying to follow a prescribed trajectory, or trying to hit a target. A theoretical framework is developed that is a modification of the sliding control method used in robotics. The new control framework is an attempt to explain the adaptive behavior of the subjects. Numerical simulations of the proposed framework are compared with experimental results and predictions from competitive models. The proposed control methodology extends the results of the sliding mode theory to human motor control. The resulting adaptive control model of the motor system is robust to external dynamics, even those of negative gain, uses only position and velocity feedback, and achieves bounded steady-state error without explicit knowledge of the system's nonlinearities. In addition, the experimental and modeling results demonstrate that visuomotor learning is important not only for error correction through internal model adaptation on ground or in microgravity, but also for the minimization of the total mean-square error in the presence of random variability. Thus human intelligent decision displays certain attributes that seem to conform to Bayesian statistical games. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
The Use of Reverse Engineering to Analyse Student Computer Programs.
ERIC Educational Resources Information Center
Vanneste, Philip; And Others
1996-01-01
Discusses how the reverse engineering approach can generate feedback on computer programs without the user having any prior knowledge of what the program was designed to do. This approach uses the cognitive model of programming knowledge to interpret both context independent and dependent errors in the same words and concepts as human programmers.…
Gershman, Samuel J.; Pesaran, Bijan; Daw, Nathaniel D.
2009-01-01
Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable, due to the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning – such as prediction error signals for action valuation associated with dopamine and the striatum – can cope with this “curse of dimensionality.” We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and BOLD activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to “divide and conquer” reinforcement learning over high-dimensional action spaces. PMID:19864565
Gershman, Samuel J; Pesaran, Bijan; Daw, Nathaniel D
2009-10-28
Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable because of the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning-such as prediction error signals for action valuation associated with dopamine and the striatum-can cope with this "curse of dimensionality." We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and blood oxygen level-dependent (BOLD) activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to "divide and conquer" reinforcement learning over high-dimensional action spaces.
Wicke, Jason; Dumas, Genevieve A; Costigan, Patrick A
2009-01-05
Modeling of the body segments to estimate segment inertial parameters is required in the kinetic analysis of human motion. A new geometric model for the trunk has been developed that uses various cross-sectional shapes to estimate segment volume and adopts a non-uniform density function that is gender-specific. The goal of this study was to test the accuracy of the new model for estimating the trunk's inertial parameters by comparing it to the more current models used in biomechanical research. Trunk inertial parameters estimated from dual X-ray absorptiometry (DXA) were used as the standard. Twenty-five female and 24 male college-aged participants were recruited for the study. Comparisons of the new model to the accepted models were accomplished by determining the error between the models' trunk inertial estimates and that from DXA. Results showed that the new model was more accurate across all inertial estimates than the other models. The new model had errors within 6.0% for both genders, whereas the other models had higher average errors ranging from 10% to over 50% and were much more inconsistent between the genders. In addition, there was little consistency in the level of accuracy for the other models when estimating the different inertial parameters. These results suggest that the new model provides more accurate and consistent trunk inertial estimates than the other models for both female and male college-aged individuals. However, similar studies need to be performed using other populations, such as elderly or individuals from a distinct morphology (e.g. obese). In addition, the effect of using different models on the outcome of kinetic parameters, such as joint moments and forces needs to be assessed.
Criticality of Adaptive Control Dynamics
NASA Astrophysics Data System (ADS)
Patzelt, Felix; Pawelzik, Klaus
2011-12-01
We show, that stabilization of a dynamical system can annihilate observable information about its structure. This mechanism induces critical points as attractors in locally adaptive control. It also reveals, that previously reported criticality in simple controllers is caused by adaptation and not by other controller details. We apply these results to a real-system example: human balancing behavior. A model of predictive adaptive closed-loop control subject to some realistic constraints is introduced and shown to reproduce experimental observations in unprecedented detail. Our results suggests, that observed error distributions in between the Lévy and Gaussian regimes may reflect a nearly optimal compromise between the elimination of random local trends and rare large errors.
Cutting the Cord: Discrimination and Command Responsibility in Autonomous Lethal Weapons
2014-02-13
machine responses to identical stimuli, and it was the job of a third party human “witness” to determine which participant was man and which was...machines may be error free, but there are potential benefits to be gained through autonomy if machines can meet or exceed human performance in...lieu of human operators and reap the benefits that autonomy provides. Human and Machine Error It would be foolish to assert that either humans
Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O
2016-03-01
An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.
Human error identification for laparoscopic surgery: Development of a motion economy perspective.
Al-Hakim, Latif; Sevdalis, Nick; Maiping, Tanaphon; Watanachote, Damrongpan; Sengupta, Shomik; Dissaranan, Charuspong
2015-09-01
This study postulates that traditional human error identification techniques fail to consider motion economy principles and, accordingly, their applicability in operating theatres may be limited. This study addresses this gap in the literature with a dual aim. First, it identifies the principles of motion economy that suit the operative environment and second, it develops a new error mode taxonomy for human error identification techniques which recognises motion economy deficiencies affecting the performance of surgeons and predisposing them to errors. A total of 30 principles of motion economy were developed and categorised into five areas. A hierarchical task analysis was used to break down main tasks of a urological laparoscopic surgery (hand-assisted laparoscopic nephrectomy) to their elements and the new taxonomy was used to identify errors and their root causes resulting from violation of motion economy principles. The approach was prospectively tested in 12 observed laparoscopic surgeries performed by 5 experienced surgeons. A total of 86 errors were identified and linked to the motion economy deficiencies. Results indicate the developed methodology is promising. Our methodology allows error prevention in surgery and the developed set of motion economy principles could be useful for training surgeons on motion economy principles. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Zhang, Juanjuan; Collins, Steven H.
2017-01-01
This study uses theory and experiments to investigate the relationship between the passive stiffness of series elastic actuators and torque tracking performance in lower-limb exoskeletons during human walking. Through theoretical analysis with our simplified system model, we found that the optimal passive stiffness matches the slope of the desired torque-angle relationship. We also conjectured that a bandwidth limit resulted in a maximum rate of change in torque error that can be commanded through control input, which is fixed across desired and passive stiffness conditions. This led to hypotheses about the interactions among optimal control gains, passive stiffness and desired quasi-stiffness. Walking experiments were conducted with multiple angle-based desired torque curves. The observed lowest torque tracking errors identified for each combination of desired and passive stiffnesses were shown to be linearly proportional to the magnitude of the difference between the two stiffnesses. The proportional gains corresponding to the lowest observed errors were seen inversely proportional to passive stiffness values and to desired stiffness. These findings supported our hypotheses, and provide guidance to application-specific hardware customization as well as controller design for torque-controlled robotic legged locomotion. PMID:29326580
Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.
2013-01-01
Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney. Conclusions Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086
Stanton, Neville A; Harvey, Catherine
2017-02-01
Risk assessments in Sociotechnical Systems (STS) tend to be based on error taxonomies, yet the term 'human error' does not sit easily with STS theories and concepts. A new break-link approach was proposed as an alternative risk assessment paradigm to reveal the effect of information communication failures between agents and tasks on the entire STS. A case study of the training of a Royal Navy crew detecting a low flying Hawk (simulating a sea-skimming missile) is presented using EAST to model the Hawk-Frigate STS in terms of social, information and task networks. By breaking 19 social links and 12 task links, 137 potential risks were identified. Discoveries included revealing the effect of risk moving around the system; reducing the risks to the Hawk increased the risks to the Frigate. Future research should examine the effects of compounded information communication failures on STS performance. Practitioner Summary: The paper presents a step-by-step walk-through of EAST to show how it can be used for risk assessment in sociotechnical systems. The 'broken-links' method takes a systemic, rather than taxonomic, approach to identify information communication failures in social and task networks.
Empirical Analysis of Systematic Communication Errors.
1981-09-01
human o~ . .... 8 components in communication systems. (Systematic errors were defined to be those that occur regularly in human communication links...phase of the human communication process and focuses on the linkage between a specific piece of information (and the receiver) and the transmission...communication flow. (2) Exchange. Exchange is the next phase in human communication and entails a concerted effort on the part of the sender and receiver to share
NASA Technical Reports Server (NTRS)
DeMott, Diana
2013-01-01
Compared to equipment designed to perform the same function over and over, humans are just not as reliable. Computers and machines perform the same action in the same way repeatedly getting the same result, unless equipment fails or a human interferes. Humans who are supposed to perform the same actions repeatedly often perform them incorrectly due to a variety of issues including: stress, fatigue, illness, lack of training, distraction, acting at the wrong time, not acting when they should, not following procedures, misinterpreting information or inattention to detail. Why not use robots and automatic controls exclusively if human error is so common? In an emergency or off normal situation that the computer, robotic element, or automatic control system is not designed to respond to, the result is failure unless a human can intervene. The human in the loop may be more likely to cause an error, but is also more likely to catch the error and correct it. When it comes to unexpected situations, or performing multiple tasks outside the defined mission parameters, humans are the only viable alternative. Human Reliability Assessments (HRA) identifies ways to improve human performance and reliability and can lead to improvements in systems designed to interact with humans. Understanding the context of the situation that can lead to human errors, which include taking the wrong action, no action or making bad decisions provides additional information to mitigate risks. With improved human reliability comes reduced risk for the overall operation or project.
Identifying Human Factors Issues in Aircraft Maintenance Operations
NASA Technical Reports Server (NTRS)
Veinott, Elizabeth S.; Kanki, Barbara G.; Shafto, Michael G. (Technical Monitor)
1995-01-01
Maintenance operations incidents submitted to the Aviation Safety Reporting System (ASRS) between 1986-1992 were systematically analyzed in order to identify issues relevant to human factors and crew coordination. This exploratory analysis involved 95 ASRS reports which represented a wide range of maintenance incidents. The reports were coded and analyzed according to the type of error (e.g, wrong part, procedural error, non-procedural error), contributing factors (e.g., individual, within-team, cross-team, procedure, tools), result of the error (e.g., aircraft damage or not) as well as the operational impact (e.g., aircraft flown to destination, air return, delay at gate). The main findings indicate that procedural errors were most common (48.4%) and that individual and team actions contributed to the errors in more than 50% of the cases. As for operational results, most errors were either corrected after landing at the destination (51.6%) or required the flight crew to stop enroute (29.5%). Interactions among these variables are also discussed. This analysis is a first step toward developing a taxonomy of crew coordination problems in maintenance. By understanding what variables are important and how they are interrelated, we may develop intervention strategies that are better tailored to the human factor issues involved.
Managing Errors to Reduce Accidents in High Consequence Networked Information Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganter, J.H.
1999-02-01
Computers have always helped to amplify and propagate errors made by people. The emergence of Networked Information Systems (NISs), which allow people and systems to quickly interact worldwide, has made understanding and minimizing human error more critical. This paper applies concepts from system safety to analyze how hazards (from hackers to power disruptions) penetrate NIS defenses (e.g., firewalls and operating systems) to cause accidents. Such events usually result from both active, easily identified failures and more subtle latent conditions that have resided in the system for long periods. Both active failures and latent conditions result from human errors. We classifymore » these into several types (slips, lapses, mistakes, etc.) and provide NIS examples of how they occur. Next we examine error minimization throughout the NIS lifecycle, from design through operation to reengineering. At each stage, steps can be taken to minimize the occurrence and effects of human errors. These include defensive design philosophies, architectural patterns to guide developers, and collaborative design that incorporates operational experiences and surprises into design efforts. We conclude by looking at three aspects of NISs that will cause continuing challenges in error and accident management: immaturity of the industry, limited risk perception, and resource tradeoffs.« less
Statistical analysis of modeling error in structural dynamic systems
NASA Technical Reports Server (NTRS)
Hasselman, T. K.; Chrostowski, J. D.
1990-01-01
The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.
How glitter relates to gold: similarity-dependent reward prediction errors in the human striatum.
Kahnt, Thorsten; Park, Soyoung Q; Burke, Christopher J; Tobler, Philippe N
2012-11-14
Optimal choices benefit from previous learning. However, it is not clear how previously learned stimuli influence behavior to novel but similar stimuli. One possibility is to generalize based on the similarity between learned and current stimuli. Here, we use neuroscientific methods and a novel computational model to inform the question of how stimulus generalization is implemented in the human brain. Behavioral responses during an intradimensional discrimination task showed similarity-dependent generalization. Moreover, a peak shift occurred, i.e., the peak of the behavioral generalization gradient was displaced from the rewarded conditioned stimulus in the direction away from the unrewarded conditioned stimulus. To account for the behavioral responses, we designed a similarity-based reinforcement learning model wherein prediction errors generalize across similar stimuli and update their value. We show that this model predicts a similarity-dependent neural generalization gradient in the striatum as well as changes in responding during extinction. Moreover, across subjects, the width of generalization was negatively correlated with functional connectivity between the striatum and the hippocampus. This result suggests that hippocampus-striatal connections contribute to stimulus-specific value updating by controlling the width of generalization. In summary, our results shed light onto the neurobiology of a fundamental, similarity-dependent learning principle that allows learning the value of stimuli that have never been encountered.
Behind Human Error: Cognitive Systems, Computers and Hindsight
1994-12-01
evaluations • Organize and/or conduct workshops and conferences CSERIAC is a Department of Defense Information Analysis Cen- ter sponsored by the Defense...Process 185 Neutral Observer Criteria 191 Error Analysis as Causal Judgment 193 Error as Information 195 A Fundamental Surprise 195 What is Human...Kahnemann, 1974), and in risk analysis (Dougherty and Fragola, 1990). The discussions have continued in a wide variety of forums, includ- ing the
Groundwater Pollution Source Identification using Linked ANN-Optimization Model
NASA Astrophysics Data System (ADS)
Ayaz, Md; Srivastava, Rajesh; Jain, Ashu
2014-05-01
Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration values. The main advantage of the proposed model is that it requires only upper half of the breakthrough curve and is capable of predicting source parameters when the lag time is not known. Linking of ANN model with proposed optimization model reduces the dimensionality of the decision variables of the optimization model by one and hence complexity of optimization model is reduced. The results show that our proposed linked ANN-Optimization model is able to predict the source parameters for the error-free data accurately. The proposed model was run several times to obtain the mean, standard deviation and interval estimate of the predicted parameters for observations with random measurement errors. It was observed that mean values as predicted by the model were quite close to the exact values. An increasing trend was observed in the standard deviation of the predicted values with increasing level of measurement error. The model appears to be robust and may be efficiently utilized to solve the inverse pollution source identification problem.
Model error estimation for distributed systems described by elliptic equations
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1983-01-01
A function space approach is used to develop a theory for estimation of the errors inherent in an elliptic partial differential equation model for a distributed parameter system. By establishing knowledge of the inevitable deficiencies in the model, the error estimates provide a foundation for updating the model. The function space solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for static shape determination of large flexible systems.
A comprehensive allometric analysis of 2nd digit length to 4th digit length in humans.
Lolli, Lorenzo; Batterham, Alan M; Kratochvíl, Lukáš; Flegr, Jaroslav; Weston, Kathryn L; Atkinson, Greg
2017-06-28
It has been widely reported that men have a lower ratio of the 2nd and 4th human finger lengths (2D : 4D). Size-scaling ratios, however, have the seldom-appreciated potential for providing biased estimates. Using an information-theoretic approach, we compared 12 candidate models, with different assumptions and error structures, for scaling untransformed 2D to 4D lengths from 154 men and 262 women. In each hand, the two-parameter power function and the straight line with intercept models, both with normal, homoscedastic error, were superior to the other models and essentially equivalent to each other for normalizing 2D to 4D lengths. The conventional 2D : 4D ratio biased relative 2D length low for the generally bigger hands of men, and vice versa for women, thereby leading to an artefactual indication that mean relative 2D length is lower in men than women. Conversely, use of the more appropriate allometric or linear regression models revealed that mean relative 2D length was, in fact, greater in men than women. We conclude that 2D does not vary in direct proportion to 4D for both men and women, rendering the use of the simple 2D : 4D ratio inappropriate for size-scaling purposes and intergroup comparisons. © 2017 The Author(s).
A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors.
Lorussi, Federico; Carbonaro, Nicola; De Rossi, Danilo; Tognetti, Alessandro
2016-04-23
Patient-specific performance assessment of arm movements in daily life activities is fundamental for neurological rehabilitation therapy. In most applications, the shoulder movement is simplified through a socket-ball joint, neglecting the movement of the scapular-thoracic complex. This may lead to significant errors. We propose an innovative bi-articular model of the human shoulder for estimating the position of the hand in relation to the sternum. The model takes into account both the scapular-toracic and gleno-humeral movements and their ratio governed by the scapular-humeral rhythm, fusing the information of inertial and textile-based strain sensors. To feed the reconstruction algorithm based on the bi-articular model, an ad-hoc sensing shirt was developed. The shirt was equipped with two inertial measurement units (IMUs) and an integrated textile strain sensor. We built the bi-articular model starting from the data obtained in two planar movements (arm abduction and flexion in the sagittal plane) and analysing the error between the reference data - measured through an optical reference system - and the socket-ball approximation of the shoulder. The 3D model was developed by extending the behaviour of the kinematic chain revealed in the planar trajectories through a parameter identification that takes into account the body structure of the subject. The bi-articular model was evaluated in five subjects in comparison with the optical reference system. The errors were computed in terms of distance between the reference position of the trochlea (end-effector) and the correspondent model estimation. The introduced method remarkably improved the estimation of the position of the trochlea (and consequently the estimation of the hand position during reaching activities) reducing position errors from 11.5 cm to 1.8 cm. Thanks to the developed bi-articular model, we demonstrated a reliable estimation of the upper arm kinematics with a minimal sensing system suitable for daily life monitoring of recovery.
Zhang, Xudong
2002-10-01
This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.
Mirzaei Aliabadi, Mostafa; Aghaei, Hamed; Kalatpour, Omid; Soltanian, Ali Reza; SeyedTabib, Maryam
2018-05-18
Mines are a dangerous workplace worldwide with a high accident rate. According to the Statistical Center of Iran, the number of occupational accidents in Iranian mines has increased in recent years. This study determined and explained human and organizational deficiencies influencing Iranian mining accidents. In this study, the data associated with 305 mining accidents were investigated. The data were analyzed based on a systems analysis approach to identify critical deficiencies in organizational influences, unsafe supervision, preconditions for unsafe acts, and workers' unsafe acts. Partial Least Square Structural Equation Modeling [PLS-SEM] was utilized for modeling the interactions between these deficiencies. It was demonstrated that organizational deficiencies had a direct positive effect on workers' violations (path coefficient=0.16) and workers' errors (path coefficient=0.23). The effect of unsafe supervision on workers' violations and workers' errors was also significant with the path coefficients of 0.14 and 0.20. Likewise, preconditions for unsafe acts also had a significant effect on both workers' violations (path coefficient=0.16) and workers' errors (path coefficient=0.21). Moreover, organizational deficiencies had an indirect positive effect on workers' unsafe acts mediated by unsafe supervision and preconditions for unsafe acts. Among the variables examined in the current study, organizational influences had the strongest impacts on workers' unsafe acts. Organizational deficiencies are the main causes of accidents in mining sectors that affects all other aspects of system safety. For preventing occupational accidents, organizational deficiencies should be modified first.
Beyond crisis resource management: new frontiers in human factors training for acute care medicine.
Petrosoniak, Andrew; Hicks, Christopher M
2013-12-01
Error is ubiquitous in medicine, particularly during critical events and resuscitation. A significant proportion of adverse events can be attributed to inadequate team-based skills such as communication, leadership, situation awareness and resource utilization. Aviation-based crisis resource management (CRM) training using high-fidelity simulation has been proposed as a strategy to improve team behaviours. This review will address key considerations in CRM training and outline recommendations for the future of human factors education in healthcare. A critical examination of the current literature yields several important considerations to guide the development and implementation of effective simulation-based CRM training. These include defining a priori domain-specific objectives, creating an immersive environment that encourages deliberate practice and transfer-appropriate processing, and the importance of effective team debriefing. Building on research from high-risk industry, we suggest that traditional CRM training may be augmented with new training techniques that promote the development of shared mental models for team and task processes, address the effect of acute stress on team performance, and integrate strategies to improve clinical reasoning and the detection of cognitive errors. The evolution of CRM training involves a 'Triple Threat' approach that integrates mental model theory for team and task processes, training for stressful situations and metacognition and error theory towards a more comprehensive training paradigm, with roots in high-risk industry and cognitive psychology. Further research is required to evaluate the impact of this approach on patient-oriented outcomes.
Moon, J; Ota, K T; Driscoll, L L; Levitsky, D A; Strupp, B J
2008-07-01
This study was designed to further assess cognitive and affective functioning in a mouse model of Fragile X syndrome (FXS), the Fmr1(tm1Cgr) or Fmr1 "knockout" (KO) mouse. Male KO mice and wild-type littermate controls were tested on learning set and reversal learning tasks. The KO mice were not impaired in associative learning, transfer of learning, or reversal learning, based on measures of learning rate. Analyses of videotapes of the reversal learning task revealed that both groups of mice exhibited higher levels of activity and wall-climbing during the initial sessions of the task than during the final sessions, a pattern also seen for trials following an error relative to those following a correct response. Notably, the increase in both behavioral measures seen early in the task was significantly more pronounced for the KO mice than for controls, as was the error-induced increase in activity level. This pattern of effects suggests that the KO mice reacted more strongly than controls to the reversal of contingencies and pronounced drop in reinforcement rate, and to errors in general. This pattern of effects is consistent with the heightened emotional reactivity frequently described for humans with FXS. (c) 2008 Wiley Periodicals, Inc.
Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer
Andrade-Delgado, Laura; Telich-Tarriba, Jose E.; Fuente-del-Campo, Antonio; Altamirano-Arcos, Carlos A.
2018-01-01
Summary: Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively (P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies. PMID:29464171
Dimensional Error in Rapid Prototyping with Open Source Software and Low-cost 3D-printer.
Rendón-Medina, Marco A; Andrade-Delgado, Laura; Telich-Tarriba, Jose E; Fuente-Del-Campo, Antonio; Altamirano-Arcos, Carlos A
2018-01-01
Rapid prototyping models (RPMs) had been extensively used in craniofacial and maxillofacial surgery, especially in areas such as orthognathic surgery, posttraumatic or oncological reconstructions, and implantology. Economic limitations are higher in developing countries such as Mexico, where resources dedicated to health care are limited, therefore limiting the use of RPM to few selected centers. This article aims to determine the dimensional error of a low-cost fused deposition modeling 3D printer (Tronxy P802MA, Shenzhen, Tronxy Technology Co), with Open source software. An ordinary dry human mandible was scanned with a computed tomography device. The data were processed with open software to build a rapid prototype with a fused deposition machine. Linear measurements were performed to find the mean absolute and relative difference. The mean absolute and relative difference was 0.65 mm and 1.96%, respectively ( P = 0.96). Low-cost FDM machines and Open Source Software are excellent options to manufacture RPM, with the benefit of low cost and a similar relative error than other more expensive technologies.
Two ultraviolet radiation datasets that cover China
NASA Astrophysics Data System (ADS)
Liu, Hui; Hu, Bo; Wang, Yuesi; Liu, Guangren; Tang, Liqin; Ji, Dongsheng; Bai, Yongfei; Bao, Weikai; Chen, Xin; Chen, Yunming; Ding, Weixin; Han, Xiaozeng; He, Fei; Huang, Hui; Huang, Zhenying; Li, Xinrong; Li, Yan; Liu, Wenzhao; Lin, Luxiang; Ouyang, Zhu; Qin, Boqiang; Shen, Weijun; Shen, Yanjun; Su, Hongxin; Song, Changchun; Sun, Bo; Sun, Song; Wang, Anzhi; Wang, Genxu; Wang, Huimin; Wang, Silong; Wang, Youshao; Wei, Wenxue; Xie, Ping; Xie, Zongqiang; Yan, Xiaoyuan; Zeng, Fanjiang; Zhang, Fawei; Zhang, Yangjian; Zhang, Yiping; Zhao, Chengyi; Zhao, Wenzhi; Zhao, Xueyong; Zhou, Guoyi; Zhu, Bo
2017-07-01
Ultraviolet (UV) radiation has significant effects on ecosystems, environments, and human health, as well as atmospheric processes and climate change. Two ultraviolet radiation datasets are described in this paper. One contains hourly observations of UV radiation measured at 40 Chinese Ecosystem Research Network stations from 2005 to 2015. CUV3 broadband radiometers were used to observe the UV radiation, with an accuracy of 5%, which meets the World Meteorology Organization's measurement standards. The extremum method was used to control the quality of the measured datasets. The other dataset contains daily cumulative UV radiation estimates that were calculated using an all-sky estimation model combined with a hybrid model. The reconstructed daily UV radiation data span from 1961 to 2014. The mean absolute bias error and root-mean-square error are smaller than 30% at most stations, and most of the mean bias error values are negative, which indicates underestimation of the UV radiation intensity. These datasets can improve our basic knowledge of the spatial and temporal variations in UV radiation. Additionally, these datasets can be used in studies of potential ozone formation and atmospheric oxidation, as well as simulations of ecological processes.
Arnold, Denis; Tomaschek, Fabian; Sering, Konstantin; Lopez, Florence; Baayen, R Harald
2017-01-01
Sound units play a pivotal role in cognitive models of auditory comprehension. The general consensus is that during perception listeners break down speech into auditory words and subsequently phones. Indeed, cognitive speech recognition is typically taken to be computationally intractable without phones. Here we present a computational model trained on 20 hours of conversational speech that recognizes word meanings within the range of human performance (model 25%, native speakers 20-44%), without making use of phone or word form representations. Our model also generates successfully predictions about the speed and accuracy of human auditory comprehension. At the heart of the model is a 'wide' yet sparse two-layer artificial neural network with some hundred thousand input units representing summaries of changes in acoustic frequency bands, and proxies for lexical meanings as output units. We believe that our model holds promise for resolving longstanding theoretical problems surrounding the notion of the phone in linguistic theory.
Doytchev, Doytchin E; Szwillus, Gerd
2009-11-01
Understanding the reasons for incident and accident occurrence is important for an organization's safety. Different methods have been developed to achieve this goal. To better understand the human behaviour in incident occurrence we propose an analysis concept that combines Fault Tree Analysis (FTA) and Task Analysis (TA). The former method identifies the root causes of an accident/incident, while the latter analyses the way people perform the tasks in their work environment and how they interact with machines or colleagues. These methods were complemented with the use of the Human Error Identification in System Tools (HEIST) methodology and the concept of Performance Shaping Factors (PSF) to deepen the insight into the error modes of an operator's behaviour. HEIST shows the external error modes that caused the human error and the factors that prompted the human to err. To show the validity of the approach, a case study at a Bulgarian Hydro power plant was carried out. An incident - the flooding of the plant's basement - was analysed by combining the afore-mentioned methods. The case study shows that Task Analysis in combination with other methods can be applied successfully to human error analysis, revealing details about erroneous actions in a realistic situation.
Kis, Anna; Gácsi, Márta; Range, Friederike; Virányi, Zsófia
2012-01-01
In this paper, we describe a behaviour pattern similar to the "A-not-B" error found in human infants and young apes in a monkey species, the common marmosets (Callithrix jacchus). In contrast to the classical explanation, recently it has been suggested that the "A-not-B" error committed by human infants is at least partially due to misinterpretation of the hider's ostensively communicated object hiding actions as potential 'teaching' demonstrations during the A trials. We tested whether this so-called Natural Pedagogy hypothesis would account for the A-not-B error that marmosets commit in a standard object permanence task, but found no support for the hypothesis in this species. Alternatively, we present evidence that lower level mechanisms, such as attention and motivation, play an important role in committing the "A-not-B" error in marmosets. We argue that these simple mechanisms might contribute to the effect of undeveloped object representational skills in other species including young non-human primates that commit the A-not-B error.
Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture.
Fok, Kai Lon; Lee, Jae; Vette, Albert H; Masani, Kei
2018-06-01
Many postural control studies employ a single-mass inverted pendulum model (IPM) to represent the body during standing. However, it is not known to what degree and for what conditions the model's kinematic assumptions are valid. Our first objective was to quantify the IPM error, corresponding to a distance change between the ankle joint and center of mass (COM) during unrestricted, natural, unperturbed standing. A second objective was to quantify the error of having the ankle joint angle represent the COM angle. Eleven young participants completed five standing conditions: quiet standing with eyes open (EO) and closed (EC), voluntarily swaying forward (VSf) and backward (VSb), and freely moving (FR). The modified Helen-Hayes marker model was used to capture the body kinematics. The COM distance changed <0.1% during EO and EC, <0.25% during VSf and VSb, and <1.5% during FR. The ankle angle moderately and positively correlated with the COM angle for EO, EC, and VSf, indicating that temporal features of the ankle angle moderately represent those of the COM angle. However, a considerable offset between the two existed, which needs to be considered when estimating the COM angle using the ankle angle. For VSb and FR, the correlation coefficients were low and/or negative, suggesting that a large error would result from using the ankle angle as an estimate of the COM angle. Insights from this study will be critical for deciding when to use the IPM in postural control research and for interpreting associated results. Copyright © 2018 Elsevier B.V. All rights reserved.
Postural control model interpretation of stabilogram diffusion analysis
NASA Technical Reports Server (NTRS)
Peterka, R. J.
2000-01-01
Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.
Representation of aversive prediction errors in the human periaqueductal gray
Roy, Mathieu; Shohamy, Daphna; Daw, Nathaniel; Jepma, Marieke; Wimmer, Elliott; Wager, Tor D.
2014-01-01
Pain is a primary driver of learning and motivated action. It is also a target of learning, as nociceptive brain responses are shaped by learning processes. We combined an instrumental pain avoidance task with an axiomatic approach to assessing fMRI signals related to prediction errors (PEs), which drive reinforcement-based learning. We found that pain PEs were encoded in the periaqueductal gray (PAG), an important structure for pain control and learning in animal models. Axiomatic tests combined with dynamic causal modeling suggested that ventromedial prefrontal cortex, supported by putamen, provides an expected value-related input to the PAG, which then conveys PE signals to prefrontal regions important for behavioral regulation, including orbitofrontal, anterior mid-cingulate, and dorsomedial prefrontal cortices. Thus, pain-related learning involves distinct neural circuitry, with implications for behavior and pain dynamics. PMID:25282614
Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting
NASA Astrophysics Data System (ADS)
Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.
2009-04-01
In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be either an intermediate forecast between the extremes of the ensemble spread or a manually selected forecast based on a meteorologists advice. 2. Downstream catchments with low influence of weather forecast In downstream catchments with strong human impact on discharge (e.g. by reservoir operation) and large influence of upstream gauge observation quality on forecast quality, the 'overall error' may in most cases be larger than the combination of the 'model error' and an ensemble spread. Therefore, the overall forecast uncertainty bounds are calculated differently: a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. Here, additionally the corresponding inflow hydrograph from all upstream catchments must be used. b) As for an upstream catchment, the uncertainty range is determined by combination of 'model error' and the ensemble member forecasts c) In addition, the 'overall error' is superimposed on the 'lead forecast'. For reasons of consistency, the lead forecast must be based on the same meteorological forecast in the downstream and all upstream catchments. d) From the resulting two uncertainty ranges (one from the ensemble forecast and 'model error', one from the 'lead forecast' and 'overall error'), the envelope is taken as the most prudent uncertainty range. In sum, the uncertainty associated with each forecast run is calculated and communicated to the public in the form of 10% and 90% percentiles. As in part I of this study, the methodology as well as the useful- or uselessness of the resulting uncertainty ranges will be presented and discussed by typical examples.
Trial-by-trial adaptation of movements during mental practice under force field.
Anwar, Muhammad Nabeel; Khan, Salman Hameed
2013-01-01
Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.
Updating expected action outcome in the medial frontal cortex involves an evaluation of error type.
Maier, Martin E; Steinhauser, Marco
2013-10-02
Forming expectations about the outcome of an action is an important prerequisite for action control and reinforcement learning in the human brain. The medial frontal cortex (MFC) has been shown to play an important role in the representation of outcome expectations, particularly when an update of expected outcome becomes necessary because an error is detected. However, error detection alone is not always sufficient to compute expected outcome because errors can occur in various ways and different types of errors may be associated with different outcomes. In the present study, we therefore investigate whether updating expected outcome in the human MFC is based on an evaluation of error type. Our approach was to consider an electrophysiological correlate of MFC activity on errors, the error-related negativity (Ne/ERN), in a task in which two types of errors could occur. Because the two error types were associated with different amounts of monetary loss, updating expected outcomes on error trials required an evaluation of error type. Our data revealed a pattern of Ne/ERN amplitudes that closely mirrored the amount of monetary loss associated with each error type, suggesting that outcome expectations are updated based on an evaluation of error type. We propose that this is achieved by a proactive evaluation process that anticipates error types by continuously monitoring error sources or by dynamically representing possible response-outcome relations.
Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu; Dovan, Thanh; Kavet, Robert
2011-07-07
For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m(-1). However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m(-1), and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an estimate of the tissue's maximum dose.
Reliability of drivers in urban intersections.
Gstalter, Herbert; Fastenmeier, Wolfgang
2010-01-01
The concept of human reliability has been widely used in industrial settings by human factors experts to optimise the person-task fit. Reliability is estimated by the probability that a task will successfully be completed by personnel in a given stage of system operation. Human Reliability Analysis (HRA) is a technique used to calculate human error probabilities as the ratio of errors committed to the number of opportunities for that error. To transfer this notion to the measurement of car driver reliability the following components are necessary: a taxonomy of driving tasks, a definition of correct behaviour in each of these tasks, a list of errors as deviations from the correct actions and an adequate observation method to register errors and opportunities for these errors. Use of the SAFE-task analysis procedure recently made it possible to derive driver errors directly from the normative analysis of behavioural requirements. Driver reliability estimates could be used to compare groups of tasks (e.g. different types of intersections with their respective regulations) as well as groups of drivers' or individual drivers' aptitudes. This approach was tested in a field study with 62 drivers of different age groups. The subjects drove an instrumented car and had to complete an urban test route, the main features of which were 18 intersections representing six different driving tasks. The subjects were accompanied by two trained observers who recorded driver errors using standardized observation sheets. Results indicate that error indices often vary between both the age group of drivers and the type of driving task. The highest error indices occurred in the non-signalised intersection tasks and the roundabout, which exactly equals the corresponding ratings of task complexity from the SAFE analysis. A comparison of age groups clearly shows the disadvantage of older drivers, whose error indices in nearly all tasks are significantly higher than those of the other groups. The vast majority of these errors could be explained by high task load in the intersections, as they represent difficult tasks. The discussion shows how reliability estimates can be used in a constructive way to propose changes in car design, intersection layout and regulation as well as driver training.
Backus Effect on a Perpendicular Errors in Harmonic Models of Real vs. Synthetic Data
NASA Technical Reports Server (NTRS)
Voorhies, C. V.; Santana, J.; Sabaka, T.
1999-01-01
Measurements of geomagnetic scalar intensity on a thin spherical shell alone are not enough to separate internal from external source fields; moreover, such scalar data are not enough for accurate modeling of the vector field from internal sources because of unmodeled fields and small data errors. Spherical harmonic models of the geomagnetic potential fitted to scalar data alone therefore suffer from well-understood Backus effect and perpendicular errors. Curiously, errors in some models of simulated 'data' are very much less than those in models of real data. We analyze select Magsat vector and scalar measurements separately to illustrate Backus effect and perpendicular errors in models of real scalar data. By using a model to synthesize 'data' at the observation points, and by adding various types of 'noise', we illustrate such errors in models of synthetic 'data'. Perpendicular errors prove quite sensitive to the maximum degree in the spherical harmonic expansion of the potential field model fitted to the scalar data. Small errors in models of synthetic 'data' are found to be an artifact of matched truncation levels. For example, consider scalar synthetic 'data' computed from a degree 14 model. A degree 14 model fitted to such synthetic 'data' yields negligible error, but amplifies 4 nT (rmss) added noise into a 60 nT error (rmss); however, a degree 12 model fitted to the noisy 'data' suffers a 492 nT error (rmms through degree 12). Geomagnetic measurements remain unaware of model truncation, so the small errors indicated by some simulations cannot be realized in practice. Errors in models fitted to scalar data alone approach 1000 nT (rmss) and several thousand nT (maximum).
Human Pose Estimation from Monocular Images: A Comprehensive Survey
Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi
2016-01-01
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003
Subthalamic nucleus detects unnatural android movement.
Ikeda, Takashi; Hirata, Masayuki; Kasaki, Masashi; Alimardani, Maryam; Matsushita, Kojiro; Yamamoto, Tomoyuki; Nishio, Shuichi; Ishiguro, Hiroshi
2017-12-19
An android, i.e., a realistic humanoid robot with human-like capabilities, may induce an uncanny feeling in human observers. The uncanny feeling about an android has two main causes: its appearance and movement. The uncanny feeling about an android increases when its appearance is almost human-like but its movement is not fully natural or comparable to human movement. Even if an android has human-like flexible joints, its slightly jerky movements cause a human observer to detect subtle unnaturalness in them. However, the neural mechanism underlying the detection of unnatural movements remains unclear. We conducted an fMRI experiment to compare the observation of an android and the observation of a human on which the android is modelled, and we found differences in the activation pattern of the brain regions that are responsible for the production of smooth and natural movement. More specifically, we found that the visual observation of the android, compared with that of the human model, caused greater activation in the subthalamic nucleus (STN). When the android's slightly jerky movements are visually observed, the STN detects their subtle unnaturalness. This finding suggests that the detection of unnatural movements is attributed to an error signal resulting from a mismatch between a visual input and an internal model for smooth movement.
Safety coaches in radiology: decreasing human error and minimizing patient harm.
Dickerson, Julie M; Koch, Bernadette L; Adams, Janet M; Goodfriend, Martha A; Donnelly, Lane F
2010-09-01
Successful programs to improve patient safety require a component aimed at improving safety culture and environment, resulting in a reduced number of human errors that could lead to patient harm. Safety coaching provides peer accountability. It involves observing for safety behaviors and use of error prevention techniques and provides immediate feedback. For more than a decade, behavior-based safety coaching has been a successful strategy for reducing error within the context of occupational safety in industry. We describe the use of safety coaches in radiology. Safety coaches are an important component of our comprehensive patient safety program.
Procedural error monitoring and smart checklists
NASA Technical Reports Server (NTRS)
Palmer, Everett
1990-01-01
Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form.
NASA Astrophysics Data System (ADS)
Xu, T.; Valocchi, A. J.; Ye, M.; Liang, F.
2016-12-01
Due to simplification and/or misrepresentation of the real aquifer system, numerical groundwater flow and solute transport models are usually subject to model structural error. During model calibration, the hydrogeological parameters may be overly adjusted to compensate for unknown structural error. This may result in biased predictions when models are used to forecast aquifer response to new forcing. In this study, we extend a fully Bayesian method [Xu and Valocchi, 2015] to calibrate a real-world, regional groundwater flow model. The method uses a data-driven error model to describe model structural error and jointly infers model parameters and structural error. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models. The surrogate models are constructed using machine learning techniques to emulate the response simulated by the computationally expensive groundwater model. We demonstrate in the real-world case study that explicitly accounting for model structural error yields parameter posterior distributions that are substantially different from those derived by the classical Bayesian calibration that does not account for model structural error. In addition, the Bayesian with error model method gives significantly more accurate prediction along with reasonable credible intervals.
Cole, Stephen R.; Jacobson, Lisa P.; Tien, Phyllis C.; Kingsley, Lawrence; Chmiel, Joan S.; Anastos, Kathryn
2010-01-01
To estimate the net effect of imperfectly measured highly active antiretroviral therapy on incident acquired immunodeficiency syndrome or death, the authors combined inverse probability-of-treatment-and-censoring weighted estimation of a marginal structural Cox model with regression-calibration methods. Between 1995 and 2007, 950 human immunodeficiency virus–positive men and women were followed in 2 US cohort studies. During 4,054 person-years, 374 initiated highly active antiretroviral therapy, 211 developed acquired immunodeficiency syndrome or died, and 173 dropped out. Accounting for measured confounders and determinants of dropout, the weighted hazard ratio for acquired immunodeficiency syndrome or death comparing use of highly active antiretroviral therapy in the prior 2 years with no therapy was 0.36 (95% confidence limits: 0.21, 0.61). This association was relatively constant over follow-up (P = 0.19) and stronger than crude or adjusted hazard ratios of 0.75 and 0.95, respectively. Accounting for measurement error in reported exposure using external validation data on 331 men and women provided a hazard ratio of 0.17, with bias shifted from the hazard ratio to the estimate of precision as seen by the 2.5-fold wider confidence limits (95% confidence limits: 0.06, 0.43). Marginal structural measurement-error models can simultaneously account for 3 major sources of bias in epidemiologic research: validated exposure measurement error, measured selection bias, and measured time-fixed and time-varying confounding. PMID:19934191
Composable Framework Support for Software-FMEA Through Model Execution
NASA Astrophysics Data System (ADS)
Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco
2016-08-01
Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.
A circadian rhythm in skill-based errors in aviation maintenance.
Hobbs, Alan; Williamson, Ann; Van Dongen, Hans P A
2010-07-01
In workplaces where activity continues around the clock, human error has been observed to exhibit a circadian rhythm, with a characteristic peak in the early hours of the morning. Errors are commonly distinguished by the nature of the underlying cognitive failure, particularly the level of intentionality involved in the erroneous action. The Skill-Rule-Knowledge (SRK) framework of Rasmussen is used widely in the study of industrial errors and accidents. The SRK framework describes three fundamental types of error, according to whether behavior is under the control of practiced sensori-motor skill routines with minimal conscious awareness; is guided by implicit or explicit rules or expertise; or where the planning of actions requires the conscious application of domain knowledge. Up to now, examinations of circadian patterns of industrial errors have not distinguished between different types of error. Consequently, it is not clear whether all types of error exhibit the same circadian rhythm. A survey was distributed to aircraft maintenance personnel in Australia. Personnel were invited to anonymously report a safety incident and were prompted to describe, in detail, the human involvement (if any) that contributed to it. A total of 402 airline maintenance personnel reported an incident, providing 369 descriptions of human error in which the time of the incident was reported and sufficient detail was available to analyze the error. Errors were categorized using a modified version of the SRK framework, in which errors are categorized as skill-based, rule-based, or knowledge-based, or as procedure violations. An independent check confirmed that the SRK framework had been applied with sufficient consistency and reliability. Skill-based errors were the most common form of error, followed by procedure violations, rule-based errors, and knowledge-based errors. The frequency of errors was adjusted for the estimated proportion of workers present at work/each hour of the day, and the 24 h pattern of each error type was examined. Skill-based errors exhibited a significant circadian rhythm, being most prevalent in the early hours of the morning. Variation in the frequency of rule-based errors, knowledge-based errors, and procedure violations over the 24 h did not reach statistical significance. The results suggest that during the early hours of the morning, maintenance technicians are at heightened risk of "absent minded" errors involving failures to execute action plans as intended.
Schweighofer, N; Spoelstra, J; Arbib, M A; Kawato, M
1998-01-01
The cerebellum is essential for the control of multijoint movements; when the cerebellum is lesioned, the performance error is more than the summed errors produced by single joints. In the companion paper (Schweighofer et al., 1998), a functional anatomical model for visually guided arm movement was proposed. The model comprised a basic feedforward/feedback controller with realistic transmission delays and was connected to a two-link, six-muscle, planar arm. In the present study, we examined the role of the cerebellum in reaching movements by embedding a novel, detailed cerebellar neural network in this functional control model. We could derive realistic cerebellar inputs and the role of the cerebellum in learning to control the arm was assessed. This cerebellar network learned the part of the inverse dynamics of the arm not provided by the basic feedforward/feedback controller. Despite realistically low inferior olive firing rates and noisy mossy fibre inputs, the model could reduce the error between intended and planned movements. The responses of the different cell groups were comparable to those of biological cell groups. In particular, the modelled Purkinje cells exhibited directional tuning after learning and the parallel fibres, due to their length, provide Purkinje cells with the input required for this coordination task. The inferior olive responses contained two different components; the earlier response, locked to movement onset, was always present and the later response disappeared after learning. These results support the theory that the cerebellum is involved in motor learning.
Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.
Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S
2017-01-01
Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.
Materials used to simulate physical properties of human skin.
Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M
2016-02-01
For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model
Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P.; Terrace, Herbert S.
2015-01-01
Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort’s success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models. PMID:26407227
Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model.
Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P; Terrace, Herbert S
2015-01-01
Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort's success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models.
NASA Astrophysics Data System (ADS)
Ding, Lei; Lai, Yuan; He, Bin
2005-01-01
It is of importance to localize neural sources from scalp recorded EEG. Low resolution brain electromagnetic tomography (LORETA) has received considerable attention for localizing brain electrical sources. However, most such efforts have used spherical head models in representing the head volume conductor. Investigation of the performance of LORETA in a realistic geometry head model, as compared with the spherical model, will provide useful information guiding interpretation of data obtained by using the spherical head model. The performance of LORETA was evaluated by means of computer simulations. The boundary element method was used to solve the forward problem. A three-shell realistic geometry (RG) head model was constructed from MRI scans of a human subject. Dipole source configurations of a single dipole located at different regions of the brain with varying depth were used to assess the performance of LORETA in different regions of the brain. A three-sphere head model was also used to approximate the RG head model, and similar simulations performed, and results compared with the RG-LORETA with reference to the locations of the simulated sources. Multi-source localizations were discussed and examples given in the RG head model. Localization errors employing the spherical LORETA, with reference to the source locations within the realistic geometry head, were about 20-30 mm, for four brain regions evaluated: frontal, parietal, temporal and occipital regions. Localization errors employing the RG head model were about 10 mm over the same four brain regions. The present simulation results suggest that the use of the RG head model reduces the localization error of LORETA, and that the RG head model based LORETA is desirable if high localization accuracy is needed.
Analysis of MMU FDIR expert system
NASA Technical Reports Server (NTRS)
Landauer, Christopher
1990-01-01
This paper describes the analysis of a rulebase for fault diagnosis, isolation, and recovery for NASA's Manned Maneuvering Unit (MMU). The MMU is used by a human astronaut to move around a spacecraft in space. In order to provide maneuverability, there are several thrusters oriented in various directions, and hand-controlled devices for useful groups of them. The rulebase describes some error detection procedures, and corrective actions that can be applied in a few cases. The approach taken in this paper is to treat rulebases as symbolic objects and compute correctness and 'reasonableness' criteria that use the statistical distribution of various syntactic structures within the rulebase. The criteria should identify awkward situations, and otherwise signal anomalies that may be errors. The rulebase analysis agorithms are derived from mathematical and computational criteria that implement certain principles developed for rulebase evaluation. The principles are Consistency, Completeness, Irredundancy, Connectivity, and finally, Distribution. Several errors were detected in the delivered rulebase. Some of these errors were easily fixed. Some errors could not be fixed with the available information. A geometric model of the thruster arrangement is needed to show how to correct certain other distribution nomalies that are in fact errors. The investigations reported here were partially supported by The Aerospace Corporation's Sponsored Research Program.