Sample records for human error probabilities

  1. Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

    PubMed Central

    Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar

    2015-01-01

    Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485

  2. A Quantum Theoretical Explanation for Probability Judgment Errors

    ERIC Educational Resources Information Center

    Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.

    2011-01-01

    A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…

  3. Human-computer interaction in multitask situations

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1977-01-01

    Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.

  4. Neural dynamics of reward probability coding: a Magnetoencephalographic study in humans

    PubMed Central

    Thomas, Julie; Vanni-Mercier, Giovanna; Dreher, Jean-Claude

    2013-01-01

    Prediction of future rewards and discrepancy between actual and expected outcomes (prediction error) are crucial signals for adaptive behavior. In humans, a number of fMRI studies demonstrated that reward probability modulates these two signals in a large brain network. Yet, the spatio-temporal dynamics underlying the neural coding of reward probability remains unknown. Here, using magnetoencephalography, we investigated the neural dynamics of prediction and reward prediction error computations while subjects learned to associate cues of slot machines with monetary rewards with different probabilities. We showed that event-related magnetic fields (ERFs) arising from the visual cortex coded the expected reward value 155 ms after the cue, demonstrating that reward value signals emerge early in the visual stream. Moreover, a prediction error was reflected in ERF peaking 300 ms after the rewarded outcome and showing decreasing amplitude with higher reward probability. This prediction error signal was generated in a network including the anterior and posterior cingulate cortex. These findings pinpoint the spatio-temporal characteristics underlying reward probability coding. Together, our results provide insights into the neural dynamics underlying the ability to learn probabilistic stimuli-reward contingencies. PMID:24302894

  5. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  6. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  7. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  8. Metrics for Business Process Models

    NASA Astrophysics Data System (ADS)

    Mendling, Jan

    Up until now, there has been little research on why people introduce errors in real-world business process models. In a more general context, Simon [404] points to the limitations of cognitive capabilities and concludes that humans act rationally only to a certain extent. Concerning modeling errors, this argument would imply that human modelers lose track of the interrelations of large and complex models due to their limited cognitive capabilities and introduce errors that they would not insert in a small model. A recent study by Mendling et al. [275] explores in how far certain complexity metrics of business process models have the potential to serve as error determinants. The authors conclude that complexity indeed appears to have an impact on error probability. Before we can test such a hypothesis in a more general setting, we have to establish an understanding of how we can define determinants that drive error probability and how we can measure them.

  9. Prediction of human errors by maladaptive changes in event-related brain networks.

    PubMed

    Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus

    2008-04-22

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.

  10. Prediction of human errors by maladaptive changes in event-related brain networks

    PubMed Central

    Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123

  11. Intervention strategies for the management of human error

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1993-01-01

    This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herberger, Sarah M.; Boring, Ronald L.

    Abstract Objectives: This paper discusses the differences between classical human reliability analysis (HRA) dependence and the full spectrum of probabilistic dependence. Positive influence suggests an error increases the likelihood of subsequent errors or success increases the likelihood of subsequent success. Currently the typical method for dependence in HRA implements the Technique for Human Error Rate Prediction (THERP) positive dependence equations. This assumes that the dependence between two human failure events varies at discrete levels between zero and complete dependence (as defined by THERP). Dependence in THERP does not consistently span dependence values between 0 and 1. In contrast, probabilistic dependencemore » employs Bayes Law, and addresses a continuous range of dependence. Methods: Using the laws of probability, complete dependence and maximum positive dependence do not always agree. Maximum dependence is when two events overlap to their fullest amount. Maximum negative dependence is the smallest amount that two events can overlap. When the minimum probability of two events overlapping is less than independence, negative dependence occurs. For example, negative dependence is when an operator fails to actuate Pump A, thereby increasing his or her chance of actuating Pump B. The initial error actually increases the chance of subsequent success. Results: Comparing THERP and probability theory yields different results in certain scenarios; with the latter addressing negative dependence. Given that most human failure events are rare, the minimum overlap is typically 0. And when the second event is smaller than the first event the max dependence is less than 1, as defined by Bayes Law. As such alternative dependence equations are provided along with a look-up table defining the maximum and maximum negative dependence given the probability of two events. Conclusions: THERP dependence has been used ubiquitously for decades, and has provided approximations of the dependencies between two events. Since its inception, computational abilities have increased exponentially, and alternative approaches that follow the laws of probability dependence need to be implemented. These new approaches need to consider negative dependence and identify when THERP output is not appropriate.« less

  13. Use of modeling to identify vulnerabilities to human error in laparoscopy.

    PubMed

    Funk, Kenneth H; Bauer, James D; Doolen, Toni L; Telasha, David; Nicolalde, R Javier; Reeber, Miriam; Yodpijit, Nantakrit; Long, Myra

    2010-01-01

    This article describes an exercise to investigate the utility of modeling and human factors analysis in understanding surgical processes and their vulnerabilities to medical error. A formal method to identify error vulnerabilities was developed and applied to a test case of Veress needle insertion during closed laparoscopy. A team of 2 surgeons, a medical assistant, and 3 engineers used hierarchical task analysis and Integrated DEFinition language 0 (IDEF0) modeling to create rich models of the processes used in initial port creation. Using terminology from a standardized human performance database, detailed task descriptions were written for 4 tasks executed in the process of inserting the Veress needle. Key terms from the descriptions were used to extract from the database generic errors that could occur. Task descriptions with potential errors were translated back into surgical terminology. Referring to the process models and task descriptions, the team used a modified failure modes and effects analysis (FMEA) to consider each potential error for its probability of occurrence, its consequences if it should occur and be undetected, and its probability of detection. The resulting likely and consequential errors were prioritized for intervention. A literature-based validation study confirmed the significance of the top error vulnerabilities identified using the method. Ongoing work includes design and evaluation of procedures to correct the identified vulnerabilities and improvements to the modeling and vulnerability identification methods. Copyright 2010 AAGL. Published by Elsevier Inc. All rights reserved.

  14. Information systems and human error in the lab.

    PubMed

    Bissell, Michael G

    2004-01-01

    Health system costs in clinical laboratories are incurred daily due to human error. Indeed, a major impetus for automating clinical laboratories has always been the opportunity it presents to simultaneously reduce cost and improve quality of operations by decreasing human error. But merely automating these processes is not enough. To the extent that introduction of these systems results in operators having less practice in dealing with unexpected events or becoming deskilled in problemsolving, however new kinds of error will likely appear. Clinical laboratories could potentially benefit by integrating findings on human error from modern behavioral science into their operations. Fully understanding human error requires a deep understanding of human information processing and cognition. Predicting and preventing negative consequences requires application of this understanding to laboratory operations. Although the occurrence of a particular error at a particular instant cannot be absolutely prevented, human error rates can be reduced. The following principles are key: an understanding of the process of learning in relation to error; understanding the origin of errors since this knowledge can be used to reduce their occurrence; optimal systems should be forgiving to the operator by absorbing errors, at least for a time; although much is known by industrial psychologists about how to write operating procedures and instructions in ways that reduce the probability of error, this expertise is hardly ever put to use in the laboratory; and a feedback mechanism must be designed into the system that enables the operator to recognize in real time that an error has occurred.

  15. A Bayesian method for using simulator data to enhance human error probabilities assigned by existing HRA methods

    DOE PAGES

    Groth, Katrina M.; Smith, Curtis L.; Swiler, Laura P.

    2014-04-05

    In the past several years, several international agencies have begun to collect data on human performance in nuclear power plant simulators [1]. This data provides a valuable opportunity to improve human reliability analysis (HRA), but there improvements will not be realized without implementation of Bayesian methods. Bayesian methods are widely used in to incorporate sparse data into models in many parts of probabilistic risk assessment (PRA), but Bayesian methods have not been adopted by the HRA community. In this article, we provide a Bayesian methodology to formally use simulator data to refine the human error probabilities (HEPs) assigned by existingmore » HRA methods. We demonstrate the methodology with a case study, wherein we use simulator data from the Halden Reactor Project to update the probability assignments from the SPAR-H method. The case study demonstrates the ability to use performance data, even sparse data, to improve existing HRA methods. Furthermore, this paper also serves as a demonstration of the value of Bayesian methods to improve the technical basis of HRA.« less

  16. Human Reliability and the Cost of Doing Business

    NASA Technical Reports Server (NTRS)

    DeMott, Diana

    2014-01-01

    Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.

  17. Reliability of drivers in urban intersections.

    PubMed

    Gstalter, Herbert; Fastenmeier, Wolfgang

    2010-01-01

    The concept of human reliability has been widely used in industrial settings by human factors experts to optimise the person-task fit. Reliability is estimated by the probability that a task will successfully be completed by personnel in a given stage of system operation. Human Reliability Analysis (HRA) is a technique used to calculate human error probabilities as the ratio of errors committed to the number of opportunities for that error. To transfer this notion to the measurement of car driver reliability the following components are necessary: a taxonomy of driving tasks, a definition of correct behaviour in each of these tasks, a list of errors as deviations from the correct actions and an adequate observation method to register errors and opportunities for these errors. Use of the SAFE-task analysis procedure recently made it possible to derive driver errors directly from the normative analysis of behavioural requirements. Driver reliability estimates could be used to compare groups of tasks (e.g. different types of intersections with their respective regulations) as well as groups of drivers' or individual drivers' aptitudes. This approach was tested in a field study with 62 drivers of different age groups. The subjects drove an instrumented car and had to complete an urban test route, the main features of which were 18 intersections representing six different driving tasks. The subjects were accompanied by two trained observers who recorded driver errors using standardized observation sheets. Results indicate that error indices often vary between both the age group of drivers and the type of driving task. The highest error indices occurred in the non-signalised intersection tasks and the roundabout, which exactly equals the corresponding ratings of task complexity from the SAFE analysis. A comparison of age groups clearly shows the disadvantage of older drivers, whose error indices in nearly all tasks are significantly higher than those of the other groups. The vast majority of these errors could be explained by high task load in the intersections, as they represent difficult tasks. The discussion shows how reliability estimates can be used in a constructive way to propose changes in car design, intersection layout and regulation as well as driver training.

  18. A Generalized Process Model of Human Action Selection and Error and its Application to Error Prediction

    DTIC Science & Technology

    2014-07-01

    Macmillan & Creelman , 2005). This is a quite high degree of discriminability and it means that when the decision model predicts a probability of...ROC analysis. Pattern Recognition Letters, 27(8), 861-874. Retrieved from Google Scholar. Macmillan, N. A., & Creelman , C. D. (2005). Detection

  19. Bayesian network models for error detection in radiotherapy plans

    NASA Astrophysics Data System (ADS)

    Kalet, Alan M.; Gennari, John H.; Ford, Eric C.; Phillips, Mark H.

    2015-04-01

    The purpose of this study is to design and develop a probabilistic network for detecting errors in radiotherapy plans for use at the time of initial plan verification. Our group has initiated a multi-pronged approach to reduce these errors. We report on our development of Bayesian models of radiotherapy plans. Bayesian networks consist of joint probability distributions that define the probability of one event, given some set of other known information. Using the networks, we find the probability of obtaining certain radiotherapy parameters, given a set of initial clinical information. A low probability in a propagated network then corresponds to potential errors to be flagged for investigation. To build our networks we first interviewed medical physicists and other domain experts to identify the relevant radiotherapy concepts and their associated interdependencies and to construct a network topology. Next, to populate the network’s conditional probability tables, we used the Hugin Expert software to learn parameter distributions from a subset of de-identified data derived from a radiation oncology based clinical information database system. These data represent 4990 unique prescription cases over a 5 year period. Under test case scenarios with approximately 1.5% introduced error rates, network performance produced areas under the ROC curve of 0.88, 0.98, and 0.89 for the lung, brain and female breast cancer error detection networks, respectively. Comparison of the brain network to human experts performance (AUC of 0.90 ± 0.01) shows the Bayes network model performs better than domain experts under the same test conditions. Our results demonstrate the feasibility and effectiveness of comprehensive probabilistic models as part of decision support systems for improved detection of errors in initial radiotherapy plan verification procedures.

  20. Temporal uncertainty analysis of human errors based on interrelationships among multiple factors: a case of Minuteman III missile accident.

    PubMed

    Rong, Hao; Tian, Jin; Zhao, Tingdi

    2016-01-01

    In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Advancing Usability Evaluation through Human Reliability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; David I. Gertman

    2005-07-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probabilitymore » of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues.« less

  2. An MEG signature corresponding to an axiomatic model of reward prediction error.

    PubMed

    Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J

    2012-01-02

    Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Sensitivity to prediction error in reach adaptation

    PubMed Central

    Haith, Adrian M.; Harran, Michelle D.; Shadmehr, Reza

    2012-01-01

    It has been proposed that the brain predicts the sensory consequences of a movement and compares it to the actual sensory feedback. When the two differ, an error signal is formed, driving adaptation. How does an error in one trial alter performance in the subsequent trial? Here we show that the sensitivity to error is not constant but declines as a function of error magnitude. That is, one learns relatively less from large errors compared with small errors. We performed an experiment in which humans made reaching movements and randomly experienced an error in both their visual and proprioceptive feedback. Proprioceptive errors were created with force fields, and visual errors were formed by perturbing the cursor trajectory to create a visual error that was smaller, the same size, or larger than the proprioceptive error. We measured single-trial adaptation and calculated sensitivity to error, i.e., the ratio of the trial-to-trial change in motor commands to error size. We found that for both sensory modalities sensitivity decreased with increasing error size. A reanalysis of a number of previously published psychophysical results also exhibited this feature. Finally, we asked how the brain might encode sensitivity to error. We reanalyzed previously published probabilities of cerebellar complex spikes (CSs) and found that this probability declined with increasing error size. From this we posit that a CS may be representative of the sensitivity to error, and not error itself, a hypothesis that may explain conflicting reports about CSs and their relationship to error. PMID:22773782

  4. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less

  5. The Importance of HRA in Human Space Flight: Understanding the Risks

    NASA Technical Reports Server (NTRS)

    Hamlin, Teri

    2010-01-01

    Human performance is critical to crew safety during space missions. Humans interact with hardware and software during ground processing, normal flight, and in response to events. Human interactions with hardware and software can cause Loss of Crew and/or Vehicle (LOCV) through improper actions, or may prevent LOCV through recovery and control actions. Humans have the ability to deal with complex situations and system interactions beyond the capability of machines. Human Reliability Analysis (HRA) is a method used to qualitatively and quantitatively assess the occurrence of human failures that affect availability and reliability of complex systems. Modeling human actions with their corresponding failure probabilities in a Probabilistic Risk Assessment (PRA) provides a more complete picture of system risks and risk contributions. A high-quality HRA can provide valuable information on potential areas for improvement, including training, procedures, human interfaces design, and the need for automation. Modeling human error has always been a challenge in part because performance data is not always readily available. For spaceflight, the challenge is amplified not only because of the small number of participants and limited amount of performance data available, but also due to the lack of definition of the unique factors influencing human performance in space. These factors, called performance shaping factors in HRA terminology, are used in HRA techniques to modify basic human error probabilities in order to capture the context of an analyzed task. Many of the human error modeling techniques were developed within the context of nuclear power plants and therefore the methodologies do not address spaceflight factors such as the effects of microgravity and longer duration missions. This presentation will describe the types of human error risks which have shown up as risk drivers in the Shuttle PRA which may be applicable to commercial space flight. As with other large PRAs of complex machines, human error in the Shuttle PRA proved to be an important contributor (12 percent) to LOCV. An existing HRA technique was adapted for use in the Shuttle PRA, but additional guidance and improvements are needed to make the HRA task in space-related PRAs easier and more accurate. Therefore, this presentation will also outline plans for expanding current HRA methodology to more explicitly cover spaceflight performance shaping factors.

  6. Associations between errors and contributing factors in aircraft maintenance

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Williamson, Ann

    2003-01-01

    In recent years cognitive error models have provided insights into the unsafe acts that lead to many accidents in safety-critical environments. Most models of accident causation are based on the notion that human errors occur in the context of contributing factors. However, there is a lack of published information on possible links between specific errors and contributing factors. A total of 619 safety occurrences involving aircraft maintenance were reported using a self-completed questionnaire. Of these occurrences, 96% were related to the actions of maintenance personnel. The types of errors that were involved, and the contributing factors associated with those actions, were determined. Each type of error was associated with a particular set of contributing factors and with specific occurrence outcomes. Among the associations were links between memory lapses and fatigue and between rule violations and time pressure. Potential applications of this research include assisting with the design of accident prevention strategies, the estimation of human error probabilities, and the monitoring of organizational safety performance.

  7. Transmission of trisomy decreases with maternal age in mouse models of Down syndrome, mirroring a phenomenon in human Down syndrome mothers.

    PubMed

    Stern, Shani; Biron, David; Moses, Elisha

    2016-07-11

    Down syndrome incidence in humans increases dramatically with maternal age. This is mainly the result of increased meiotic errors, but factors such as differences in abortion rate may play a role as well. Since the meiotic error rate increases almost exponentially after a certain age, its contribution to the overall incidence aneuploidy may mask the contribution of other processes. To focus on such selection mechanisms we investigated transmission in trisomic females, using data from mouse models and from Down syndrome humans. In trisomic females the a-priori probability for trisomy is independent of meiotic errors and thus approximately constant in the early embryo. Despite this, the rate of transmission of the extra chromosome decreases with age in females of the Ts65Dn and, as we show, for the Tc1 mouse models for Down syndrome. Evaluating progeny of 73 Tc1 births and 112 Ts65Dn births from females aged 130 days to 250 days old showed that both models exhibit a 3-fold reduction of the probability to transmit the trisomy with increased maternal ageing. This is concurrent with a 2-fold reduction of litter size with maternal ageing. Furthermore, analysis of previously reported 30 births in Down syndrome women shows a similar tendency with an almost three fold reduction in the probability to have a Down syndrome child between a 20 and 30 years old Down syndrome woman. In the two types of mice models for Down syndrome that were used for this study, and in human Down syndrome, older females have significantly lower probability to transmit the trisomy to the offspring. Our findings, taken together with previous reports of decreased supportive environment of the older uterus, add support to the notion that an older uterus negatively selects the less fit trisomic embryos.

  8. A human reliability based usability evaluation method for safety-critical software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boring, R. L.; Tran, T. Q.; Gertman, D. I.

    2006-07-01

    Boring and Gertman (2005) introduced a novel method that augments heuristic usability evaluation methods with that of the human reliability analysis method of SPAR-H. By assigning probabilistic modifiers to individual heuristics, it is possible to arrive at the usability error probability (UEP). Although this UEP is not a literal probability of error, it nonetheless provides a quantitative basis to heuristic evaluation. This method allows one to seamlessly prioritize and identify usability issues (i.e., a higher UEP requires more immediate fixes). However, the original version of this method required the usability evaluator to assign priority weights to the final UEP, thusmore » allowing the priority of a usability issue to differ among usability evaluators. The purpose of this paper is to explore an alternative approach to standardize the priority weighting of the UEP in an effort to improve the method's reliability. (authors)« less

  9. Monte Carlo simulation of expert judgments on human errors in chemical analysis--a case study of ICP-MS.

    PubMed

    Kuselman, Ilya; Pennecchi, Francesca; Epstein, Malka; Fajgelj, Ales; Ellison, Stephen L R

    2014-12-01

    Monte Carlo simulation of expert judgments on human errors in a chemical analysis was used for determination of distributions of the error quantification scores (scores of likelihood and severity, and scores of effectiveness of a laboratory quality system in prevention of the errors). The simulation was based on modeling of an expert behavior: confident, reasonably doubting and irresolute expert judgments were taken into account by means of different probability mass functions (pmfs). As a case study, 36 scenarios of human errors which may occur in elemental analysis of geological samples by ICP-MS were examined. Characteristics of the score distributions for three pmfs of an expert behavior were compared. Variability of the scores, as standard deviation of the simulated score values from the distribution mean, was used for assessment of the score robustness. A range of the score values, calculated directly from elicited data and simulated by a Monte Carlo method for different pmfs, was also discussed from the robustness point of view. It was shown that robustness of the scores, obtained in the case study, can be assessed as satisfactory for the quality risk management and improvement of a laboratory quality system against human errors. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. On Space Exploration and Human Error: A Paper on Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Bell, David G.; Maluf, David A.; Gawdiak, Yuri

    2005-01-01

    NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability

  11. Performance of concatenated Reed-Solomon/Viterbi channel coding

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Yuen, J. H.

    1982-01-01

    The concatenated Reed-Solomon (RS)/Viterbi coding system is reviewed. The performance of the system is analyzed and results are derived with a new simple approach. A functional model for the input RS symbol error probability is presented. Based on this new functional model, we compute the performance of a concatenated system in terms of RS word error probability, output RS symbol error probability, bit error probability due to decoding failure, and bit error probability due to decoding error. Finally we analyze the effects of the noisy carrier reference and the slow fading on the system performance.

  12. The statistical significance of error probability as determined from decoding simulations for long codes

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.

  13. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.

  14. Error rates in forensic DNA analysis: definition, numbers, impact and communication.

    PubMed

    Kloosterman, Ate; Sjerps, Marjan; Quak, Astrid

    2014-09-01

    Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed. These should be reported, separately from the match probability, when requested by the court or when there are internal or external indications for error. It should also be made clear that there are various other issues to consider, like DNA transfer. Forensic statistical models, in particular Bayesian networks, may be useful to take the various uncertainties into account and demonstrate their effects on the evidential value of the forensic DNA results. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. On the determinants of the conjunction fallacy: probability versus inductive confirmation.

    PubMed

    Tentori, Katya; Crupi, Vincenzo; Russo, Selena

    2013-02-01

    Major recent interpretations of the conjunction fallacy postulate that people assess the probability of a conjunction according to (non-normative) averaging rules as applied to the constituents' probabilities or represent the conjunction fallacy as an effect of random error in the judgment process. In the present contribution, we contrast such accounts with a different reading of the phenomenon based on the notion of inductive confirmation as defined by contemporary Bayesian theorists. Averaging rule hypotheses along with the random error model and many other existing proposals are shown to all imply that conjunction fallacy rates would rise as the perceived probability of the added conjunct does. By contrast, our account predicts that the conjunction fallacy depends on the added conjunct being perceived as inductively confirmed. Four studies are reported in which the judged probability versus confirmation of the added conjunct have been systematically manipulated and dissociated. The results consistently favor a confirmation-theoretic account of the conjunction fallacy against competing views. Our proposal is also discussed in connection with related issues in the study of human inductive reasoning. 2013 APA, all rights reserved

  16. Explanation of asymmetric dynamics of human water consumption in arid regions: prospect theory versus expected utility theory

    NASA Astrophysics Data System (ADS)

    Tian, F.; Lu, Y.

    2017-12-01

    Based on socioeconomic and hydrological data in three arid inland basins and error analysis, the dynamics of human water consumption (HWC) are analyzed to be asymmetric, i.e., HWC increase rapidly in wet periods while maintain or decrease slightly in dry periods. Besides the qualitative analysis that in wet periods great water availability inspires HWC to grow fast but the now expanded economy is managed to sustain by over-exploitation in dry periods, two quantitative models are established and tested, based on expected utility theory (EUT) and prospect theory (PT) respectively. EUT states that humans make decisions based on the total expected utility, namely the sum of utility function multiplied by probability of each result, while PT states that the utility function is defined over gains and losses separately, and probability should be replaced by probability weighting function.

  17. Risk-sensitive reinforcement learning.

    PubMed

    Shen, Yun; Tobia, Michael J; Sommer, Tobias; Obermayer, Klaus

    2014-07-01

    We derive a family of risk-sensitive reinforcement learning methods for agents, who face sequential decision-making tasks in uncertain environments. By applying a utility function to the temporal difference (TD) error, nonlinear transformations are effectively applied not only to the received rewards but also to the true transition probabilities of the underlying Markov decision process. When appropriate utility functions are chosen, the agents' behaviors express key features of human behavior as predicted by prospect theory (Kahneman & Tversky, 1979 ), for example, different risk preferences for gains and losses, as well as the shape of subjective probability curves. We derive a risk-sensitive Q-learning algorithm, which is necessary for modeling human behavior when transition probabilities are unknown, and prove its convergence. As a proof of principle for the applicability of the new framework, we apply it to quantify human behavior in a sequential investment task. We find that the risk-sensitive variant provides a significantly better fit to the behavioral data and that it leads to an interpretation of the subject's responses that is indeed consistent with prospect theory. The analysis of simultaneously measured fMRI signals shows a significant correlation of the risk-sensitive TD error with BOLD signal change in the ventral striatum. In addition we find a significant correlation of the risk-sensitive Q-values with neural activity in the striatum, cingulate cortex, and insula that is not present if standard Q-values are used.

  18. The Use Of Computational Human Performance Modeling As Task Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacuqes Hugo; David Gertman

    2012-07-01

    During a review of the Advanced Test Reactor safety basis at the Idaho National Laboratory, human factors engineers identified ergonomic and human reliability risks involving the inadvertent exposure of a fuel element to the air during manual fuel movement and inspection in the canal. There were clear indications that these risks increased the probability of human error and possible severe physical outcomes to the operator. In response to this concern, a detailed study was conducted to determine the probability of the inadvertent exposure of a fuel element. Due to practical and safety constraints, the task network analysis technique was employedmore » to study the work procedures at the canal. Discrete-event simulation software was used to model the entire procedure as well as the salient physical attributes of the task environment, such as distances walked, the effect of dropped tools, the effect of hazardous body postures, and physical exertion due to strenuous tool handling. The model also allowed analysis of the effect of cognitive processes such as visual perception demands, auditory information and verbal communication. The model made it possible to obtain reliable predictions of operator performance and workload estimates. It was also found that operator workload as well as the probability of human error in the fuel inspection and transfer task were influenced by the concurrent nature of certain phases of the task and the associated demand on cognitive and physical resources. More importantly, it was possible to determine with reasonable accuracy the stages as well as physical locations in the fuel handling task where operators would be most at risk of losing their balance and falling into the canal. The model also provided sufficient information for a human reliability analysis that indicated that the postulated fuel exposure accident was less than credible.« less

  19. Personnel reliability impact on petrochemical facilities monitoring system's failure skipping probability

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.

    2017-08-01

    The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.

  20. Testing boundary conditions for the conjunction fallacy: effects of response mode, conceptual focus, and problem type.

    PubMed

    Wedell, Douglas H; Moro, Rodrigo

    2008-04-01

    Two experiments used within-subject designs to examine how conjunction errors depend on the use of (1) choice versus estimation tasks, (2) probability versus frequency language, and (3) conjunctions of two likely events versus conjunctions of likely and unlikely events. All problems included a three-option format verified to minimize misinterpretation of the base event. In both experiments, conjunction errors were reduced when likely events were conjoined. Conjunction errors were also reduced for estimations compared with choices, with this reduction greater for likely conjuncts, an interaction effect. Shifting conceptual focus from probabilities to frequencies did not affect conjunction error rates. Analyses of numerical estimates for a subset of the problems provided support for the use of three general models by participants for generating estimates. Strikingly, the order in which the two tasks were carried out did not affect the pattern of results, supporting the idea that the mode of responding strongly determines the mode of thinking about conjunctions and hence the occurrence of the conjunction fallacy. These findings were evaluated in terms of implications for rationality of human judgment and reasoning.

  1. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  2. Judging the Probability of Hypotheses Versus the Impact of Evidence: Which Form of Inductive Inference Is More Accurate and Time-Consistent?

    PubMed

    Tentori, Katya; Chater, Nick; Crupi, Vincenzo

    2016-04-01

    Inductive reasoning requires exploiting links between evidence and hypotheses. This can be done focusing either on the posterior probability of the hypothesis when updated on the new evidence or on the impact of the new evidence on the credibility of the hypothesis. But are these two cognitive representations equally reliable? This study investigates this question by comparing probability and impact judgments on the same experimental materials. The results indicate that impact judgments are more consistent in time and more accurate than probability judgments. Impact judgments also predict the direction of errors in probability judgments. These findings suggest that human inductive reasoning relies more on estimating evidential impact than on posterior probability. Copyright © 2015 Cognitive Science Society, Inc.

  3. An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.

    PubMed

    Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes

    2017-10-01

    This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.

  4. Array coding for large data memories

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.

    1982-01-01

    It is pointed out that an array code is a convenient method for storing large quantities of data. In a typical application, the array consists of N data words having M symbols in each word. The probability of undetected error is considered, taking into account three symbol error probabilities which are of interest, and a formula for determining the probability of undetected error. Attention is given to the possibility of reading data into the array using a digital communication system with symbol error probability p. Two different schemes are found to be of interest. The conducted analysis of array coding shows that the probability of undetected error is very small even for relatively large arrays.

  5. Classification and reduction of pilot error

    NASA Technical Reports Server (NTRS)

    Rogers, W. H.; Logan, A. L.; Boley, G. D.

    1989-01-01

    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses.

  6. Study on relationship of performance shaping factor in human error probability with prevalent stress of PUSPATI TRIGA reactor operators

    NASA Astrophysics Data System (ADS)

    Rahim, Ahmad Nabil Bin Ab; Mohamed, Faizal; Farid, Mohd Fairus Abdul; Fazli Zakaria, Mohd; Sangau Ligam, Alfred; Ramli, Nurhayati Binti

    2018-01-01

    Human factor can be affected by prevalence stress measured using Depression, Anxiety and Stress Scale (DASS). From the respondents feedback can be summarized that the main factor causes the highest prevalence stress is due to the working conditions that require operators to handle critical situation and make a prompt critical decisions. The relationship between the prevalence stress and performance shaping factors found that PSFFitness and PSFWork Process showed positive Pearson’s Correlation with the score of .763 and .826 while the level of significance, p = .028 and p = .012. These positive correlations with good significant values between prevalence stress and human performance shaping factor (PSF) related to fitness, work processes and procedures. The higher the stress level of the respondents, the higher the score of selected for the PSFs. This is due to the higher levels of stress lead to deteriorating physical health and cognitive also worsened. In addition, the lack of understanding in the work procedures can also be a factor that causes a growing stress. The higher these values will lead to the higher the probabilities of human error occur. Thus, monitoring the level of stress among operators RTP is important to ensure the safety of RTP.

  7. Potential benefit of electronic pharmacy claims data to prevent medication history errors and resultant inpatient order errors

    PubMed Central

    Palmer, Katherine A; Shane, Rita; Wu, Cindy N; Bell, Douglas S; Diaz, Frank; Cook-Wiens, Galen; Jackevicius, Cynthia A

    2016-01-01

    Objective We sought to assess the potential of a widely available source of electronic medication data to prevent medication history errors and resultant inpatient order errors. Methods We used admission medication history (AMH) data from a recent clinical trial that identified 1017 AMH errors and 419 resultant inpatient order errors among 194 hospital admissions of predominantly older adult patients on complex medication regimens. Among the subset of patients for whom we could access current Surescripts electronic pharmacy claims data (SEPCD), two pharmacists independently assessed error severity and our main outcome, which was whether SEPCD (1) was unrelated to the medication error; (2) probably would not have prevented the error; (3) might have prevented the error; or (4) probably would have prevented the error. Results Seventy patients had both AMH errors and current, accessible SEPCD. SEPCD probably would have prevented 110 (35%) of 315 AMH errors and 46 (31%) of 147 resultant inpatient order errors. When we excluded the least severe medication errors, SEPCD probably would have prevented 99 (47%) of 209 AMH errors and 37 (61%) of 61 resultant inpatient order errors. SEPCD probably would have prevented at least one AMH error in 42 (60%) of 70 patients. Conclusion When current SEPCD was available for older adult patients on complex medication regimens, it had substantial potential to prevent AMH errors and resultant inpatient order errors, with greater potential to prevent more severe errors. Further study is needed to measure the benefit of SEPCD in actual use at hospital admission. PMID:26911817

  8. Prediction of Foreign Object Debris/Damage type based in human factors for aeronautics using logistic regression model

    NASA Astrophysics Data System (ADS)

    Romo, David Ricardo

    Foreign Object Debris/Damage (FOD) has been an issue for military and commercial aircraft manufacturers since the early ages of aviation and aerospace. Currently, aerospace is growing rapidly and the chances of FOD presence are growing as well. One of the principal causes in manufacturing is the human error. The cost associated with human error in commercial and military aircrafts is approximately accountable for 4 billion dollars per year. This problem is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access, restrictions of personal items entering designated areas, tool accountability, and the use of technology such as Radio Frequency Identification (RFID) tags, etc. All of the efforts mentioned before, have not show a significant occurrence reduction in terms of manufacturing processes. On the contrary, a repetitive path of occurrence is present, and the cost associated has not declined in a significant manner. In order to address the problem, this thesis proposes a new approach using statistical analysis. The effort of this thesis is to create a predictive model using historical categorical data from an aircraft manufacturer only focusing in human error causes. The use of contingency tables, natural logarithm of the odds and probability transformation is used in order to provide the predicted probabilities of each aircraft. A case of study is shown in this thesis in order to show the applied methodology. As a result, this approach is able to predict the possible outcomes of FOD by the workstation/area needed, and monthly predictions per workstation. This thesis is intended to be the starting point of statistical data analysis regarding FOD in human factors. The purpose of this thesis is to identify the areas where human error is the primary cause of FOD occurrence in order to design and implement accurate solutions. The advantages of the proposed methodology can go from the reduction of cost production, quality issues, repair cost, and assembly process time. Finally, a more reliable process is achieved, and the proposed methodology may be used in other aircrafts.

  9. Anatomy of an incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  10. Anatomy of an incident

    DOE PAGES

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.; ...

    2016-03-23

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  11. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; The Map and Related Decoding Algirithms

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.

  12. An investigation of reports of Controlled Flight Toward Terrain (CFTT)

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Loomis, J. P.

    1981-01-01

    Some 258 reports from more than 23,000 documents in the files of the Aviation Safety Reporting System (ASRS) were found to be to the hazard of flight into terrain with no prior awareness by the crew of impending disaster. Examination of the reports indicate that human error was a casual factor in 64% of the incidents in which some threat of terrain conflict was experienced. Approximately two-thirds of the human errors were attributed to controllers, the most common discrepancy being a radar vector below the Minimum Vector Altitude (MVA). Errors by pilots were of a much diverse nature and include a few instances of gross deviations from their assigned altitudes. The ground proximity warning system and the minimum safe altitude warning equipment were the initial recovery factor in some 18 serious incidents and were apparently the sole warning in six reported instances which otherwise would most probably have ended in disaster.

  13. Fifty Years of THERP and Human Reliability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø Nationalmore » Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.« less

  14. Investigating the Relationship between Conceptual and Procedural Errors in the Domain of Probability Problem-Solving.

    ERIC Educational Resources Information Center

    O'Connell, Ann Aileen

    The relationships among types of errors observed during probability problem solving were studied. Subjects were 50 graduate students in an introductory probability and statistics course. Errors were classified as text comprehension, conceptual, procedural, and arithmetic. Canonical correlation analysis was conducted on the frequencies of specific…

  15. Eliciting management action: Using THERP to highlight human factors deficiencies for trip reduction programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuld, R.; Cybert, S.

    Methods and criteria for performing human factors evaluations of plant systems and procedures are well developed and available. For a design review to produce a positive impact on operations, however, it is not enough to simply document deficiences and solutions. The results must be presented to management in a clear and compelling form that will direct attention to the heart of a problem and present proposed solutions in terms of explicit, quantified cost/benefits. A proactive program of trip reduction provides an excellent opportunity to accomplish human factors-related upgrades. As an evaluative context, trip reduction imposes a uniform goodness criterion onmore » all situations: the probability of inadvertent plant trip. This in turn means that findings can be compared in terms of a common quantitative reference point: the cost of an inadvertent shutdown. To interpret human factors deficiencies in terms of trip probabilities, the Technique for Human Error Rate Prediction (THERP) can be used. THERP provides an accessible compilation of human reliability data for generic, discrete task elements. Sequences of such values are combined in standard event trees to determine the probability of failure (e.g., trip) for a given evolution. THERP is widely accepted as one of the best available alternatives for assessing human reliability.« less

  16. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    NASA Astrophysics Data System (ADS)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-09-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  17. Fuzzy risk analysis of a modern γ-ray industrial irradiator.

    PubMed

    Castiglia, F; Giardina, M

    2011-06-01

    Fuzzy fault tree analyses were used to investigate accident scenarios that involve radiological exposure to operators working in industrial γ-ray irradiation facilities. The HEART method, a first generation human reliability analysis method, was used to evaluate the probability of adverse human error in these analyses. This technique was modified on the basis of fuzzy set theory to more directly take into account the uncertainties in the error-promoting factors on which the methodology is based. Moreover, with regard to some identified accident scenarios, fuzzy radiological exposure risk, expressed in terms of potential annual death, was evaluated. The calculated fuzzy risks for the examined plant were determined to be well below the reference risk suggested by International Commission on Radiological Protection.

  18. Automated Comparative Auditing of NCIT Genomic Roles Using NCBI

    PubMed Central

    Cohen, Barry; Oren, Marc; Min, Hua; Perl, Yehoshua; Halper, Michael

    2008-01-01

    Biomedical research has identified many human genes and various knowledge about them. The National Cancer Institute Thesaurus (NCIT) represents such knowledge as concepts and roles (relationships). Due to the rapid advances in this field, it is to be expected that the NCIT’s Gene hierarchy will contain role errors. A comparative methodology to audit the Gene hierarchy with the use of the National Center for Biotechnology Information’s (NCBI’s) Entrez Gene database is presented. The two knowledge sources are accessed via a pair of Web crawlers to ensure up-to-date data. Our algorithms then compare the knowledge gathered from each, identify discrepancies that represent probable errors, and suggest corrective actions. The primary focus is on two kinds of gene-roles: (1) the chromosomal locations of genes, and (2) the biological processes in which genes plays a role. Regarding chromosomal locations, the discrepancies revealed are striking and systematic, suggesting a structurally common origin. In regard to the biological processes, difficulties arise because genes frequently play roles in multiple processes, and processes may have many designations (such as synonymous terms). Our algorithms make use of the roles defined in the NCIT Biological Process hierarchy to uncover many probable gene-role errors in the NCIT. These results show that automated comparative auditing is a promising technique that can identify a large number of probable errors and corrections for them in a terminological genomic knowledge repository, thus facilitating its overall maintenance. PMID:18486558

  19. Fisher classifier and its probability of error estimation

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  20. Measurement of the Errors of Service Altimeter Installations During Landing-Approach and Take-Off Operations

    NASA Technical Reports Server (NTRS)

    Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.

    1960-01-01

    The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.

  1. Identification and assessment of common errors in the admission process of patients in Isfahan Fertility and Infertility Center based on "failure modes and effects analysis".

    PubMed

    Dehghan, Ashraf; Abumasoudi, Rouhollah Sheikh; Ehsanpour, Soheila

    2016-01-01

    Infertility and errors in the process of its treatment have a negative impact on infertile couples. The present study was aimed to identify and assess the common errors in the reception process by applying the approach of "failure modes and effects analysis" (FMEA). In this descriptive cross-sectional study, the admission process of fertility and infertility center of Isfahan was selected for evaluation of its errors based on the team members' decision. At first, the admission process was charted through observations and interviewing employees, holding multiple panels, and using FMEA worksheet, which has been used in many researches all over the world and also in Iran. Its validity was evaluated through content and face validity, and its reliability was evaluated through reviewing and confirmation of the obtained information by the FMEA team, and eventually possible errors, causes, and three indicators of severity of effect, probability of occurrence, and probability of detection were determined and corrective actions were proposed. Data analysis was determined by the number of risk priority (RPN) which is calculated by multiplying the severity of effect, probability of occurrence, and probability of detection. Twenty-five errors with RPN ≥ 125 was detected through the admission process, in which six cases of error had high priority in terms of severity and occurrence probability and were identified as high-risk errors. The team-oriented method of FMEA could be useful for assessment of errors and also to reduce the occurrence probability of errors.

  2. Identification and assessment of common errors in the admission process of patients in Isfahan Fertility and Infertility Center based on “failure modes and effects analysis”

    PubMed Central

    Dehghan, Ashraf; Abumasoudi, Rouhollah Sheikh; Ehsanpour, Soheila

    2016-01-01

    Background: Infertility and errors in the process of its treatment have a negative impact on infertile couples. The present study was aimed to identify and assess the common errors in the reception process by applying the approach of “failure modes and effects analysis” (FMEA). Materials and Methods: In this descriptive cross-sectional study, the admission process of fertility and infertility center of Isfahan was selected for evaluation of its errors based on the team members’ decision. At first, the admission process was charted through observations and interviewing employees, holding multiple panels, and using FMEA worksheet, which has been used in many researches all over the world and also in Iran. Its validity was evaluated through content and face validity, and its reliability was evaluated through reviewing and confirmation of the obtained information by the FMEA team, and eventually possible errors, causes, and three indicators of severity of effect, probability of occurrence, and probability of detection were determined and corrective actions were proposed. Data analysis was determined by the number of risk priority (RPN) which is calculated by multiplying the severity of effect, probability of occurrence, and probability of detection. Results: Twenty-five errors with RPN ≥ 125 was detected through the admission process, in which six cases of error had high priority in terms of severity and occurrence probability and were identified as high-risk errors. Conclusions: The team-oriented method of FMEA could be useful for assessment of errors and also to reduce the occurrence probability of errors. PMID:28194208

  3. Does a better model yield a better argument? An info-gap analysis

    NASA Astrophysics Data System (ADS)

    Ben-Haim, Yakov

    2017-04-01

    Theories, models and computations underlie reasoned argumentation in many areas. The possibility of error in these arguments, though of low probability, may be highly significant when the argument is used in predicting the probability of rare high-consequence events. This implies that the choice of a theory, model or computational method for predicting rare high-consequence events must account for the probability of error in these components. However, error may result from lack of knowledge or surprises of various sorts, and predicting the probability of error is highly uncertain. We show that the putatively best, most innovative and sophisticated argument may not actually have the lowest probability of error. Innovative arguments may entail greater uncertainty than more standard but less sophisticated methods, creating an innovation dilemma in formulating the argument. We employ info-gap decision theory to characterize and support the resolution of this problem and present several examples.

  4. Does the A-not-B error in adult pet dogs indicate sensitivity to human communication?

    PubMed

    Kis, Anna; Topál, József; Gácsi, Márta; Range, Friederike; Huber, Ludwig; Miklósi, Adám; Virányi, Zsófia

    2012-07-01

    Recent dog-infant comparisons have indicated that the experimenter's communicative signals in object hide-and-search tasks increase the probability of perseverative (A-not-B) errors in both species (Topál et al. 2009). These behaviourally similar results, however, might reflect different mechanisms in dogs and in children. Similar errors may occur if the motor response of retrieving the object during the A trials cannot be inhibited in the B trials or if the experimenter's movements and signals toward the A hiding place in the B trials ('sham-baiting') distract the dogs' attention. In order to test these hypotheses, we tested dogs similarly to Topál et al. (2009) but eliminated the motor search in the A trials and 'sham-baiting' in the B trials. We found that neither an inability to inhibit previously rewarded motor response nor insufficiencies in their working memory and/or attention skills can explain dogs' erroneous choices. Further, we replicated the finding that dogs have a strong tendency to commit the A-not-B error after ostensive-communicative hiding and demonstrated the crucial effect of socio-communicative cues as the A-not-B error diminishes when location B is ostensively enhanced. These findings further support the hypothesis that the dogs' A-not-B error may reflect a special sensitivity to human communicative cues. Such object-hiding and search tasks provide a typical case for how susceptibility to human social signals could (mis)lead domestic dogs.

  5. Study of style effects on OCR errors in the MEDLINE database

    NASA Astrophysics Data System (ADS)

    Garrison, Penny; Davis, Diane L.; Andersen, Tim L.; Barney Smith, Elisa H.

    2005-01-01

    The National Library of Medicine has developed a system for the automatic extraction of data from scanned journal articles to populate the MEDLINE database. Although the 5-engine OCR system used in this process exhibits good performance overall, it does make errors in character recognition that must be corrected in order for the process to achieve the requisite accuracy. The correction process works by feeding words that have characters with less than 100% confidence (as determined automatically by the OCR engine) to a human operator who then must manually verify the word or correct the error. The majority of these errors are contained in the affiliation information zone where the characters are in italics or small fonts. Therefore only affiliation information data is used in this research. This paper examines the correlation between OCR errors and various character attributes in the MEDLINE database, such as font size, italics, bold, etc. and OCR confidence levels. The motivation for this research is that if a correlation between the character style and types of errors exists it should be possible to use this information to improve operator productivity by increasing the probability that the correct word option is presented to the human editor. We have determined that this correlation exists, in particular for the case of characters with diacritics.

  6. Science, practice, and human errors in controlling Clostridium botulinum in heat-preserved food in hermetic containers.

    PubMed

    Pflug, Irving J

    2010-05-01

    The incidence of botulism in canned food in the last century is reviewed along with the background science; a few conclusions are reached based on analysis of published data. There are two primary aspects to botulism control: the design of an adequate process and the delivery of the adequate process to containers of food. The probability that the designed process will not be adequate to control Clostridium botulinum is very small, probably less than 1.0 x 10(-6), based on containers of food, whereas the failure of the operator of the processing equipment to deliver the specified process to containers of food may be of the order of 1 in 40, to 1 in 100, based on processing units (retort loads). In the commercial food canning industry, failure to deliver the process will probably be of the order of 1.0 x 10(-4) to 1.0 x 10(-6) when U.S. Food and Drug Administration (FDA) regulations are followed. Botulism incidents have occurred in food canning plants that have not followed the FDA regulations. It is possible but very rare to have botulism result from postprocessing contamination. It may thus be concluded that botulism incidents in canned food are primarily the result of human failure in the delivery of the designed or specified process to containers of food that, in turn, result in the survival, outgrowth, and toxin production of C. botulinum spores. Therefore, efforts in C. botulinum control should be concentrated on reducing human errors in the delivery of the specified process to containers of food.

  7. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations*

    PubMed Central

    Halwani, Rabih; Ma, Cindy S.; Wong, Natalie; Soudais, Claire; Henderson, Lauren A.; Marzouqa, Hiyam; Shamma, Jamal; Gonzalez, Marcela; Martinez-Barricarte, Rubén; Okada, Chizuru; Avery, Danielle T.; Latorre, Daniela; Deswarte, Caroline; Jabot-Hanin, Fabienne; Torrado, Egidio; Fountain, Jeffrey; Belkadi, Aziz; Itan, Yuval; Boisson, Bertrand; Migaud, Mélanie; Arlehamn, Cecilia S. Lindestam; Sette, Alessandro; Breton, Sylvain; McCluskey, James; Rossjohn, Jamie; de Villartay, Jean-Pierre; Moshous, Despina; Hambleton, Sophie; Latour, Sylvain; Arkwright, Peter D.; Picard, Capucine; Lantz, Olivier; Engelhard, Dan; Kobayashi, Masao; Abel, Laurent; Casanova, Jean-Laurent

    2015-01-01

    Human inborn errors of immunity mediated by the cytokines interleukin (IL)-17A/F underlie mucocutaneous candidiasis, whereas inborn errors of interferon (IFN)-γ immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4+CCR6+ CXCR3+ αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, or RORγT, or both. PMID:26160376

  8. Eyewitness identification evidence and innocence risk.

    PubMed

    Clark, Steven E; Godfrey, Ryan D

    2009-02-01

    It is well known that the frailties of human memory and vulnerability to suggestion lead to eyewitness identification errors. However, variations in different aspects of the eyewitnessing conditions produce different kinds of errors that are related to wrongful convictions in very different ways. We present a review of the eyewitness identification literature, organized around underlying cognitive mechanisms, memory, similarity, and decision processes, assessing the effects on both correct and mistaken identification. In addition, we calculate a conditional probability we call innocence risk, which is the probability that the suspect is innocent, given that the suspect was identified. Assessment of innocence risk is critical to the theoretical development of eyewitness identification research, as well as to legal decision making and policy evaluation. Our review shows a complex relationship between misidentification and innocence risk, sheds light on some areas of controversy, and suggests that some issues thought to be resolved are in need of additional research.

  9. Exploring the Cause of English Pronoun Gender Errors by Chinese Learners of English: Evidence from the Self-paced Reading Paradigm.

    PubMed

    Dong, Yanping; Wen, Yun; Zeng, Xiaomeng; Ji, Yifei

    2015-12-01

    To locate the underlying cause of biological gender errors of oral English pronouns by proficient Chinese-English learners, two self-paced reading experiments were conducted to explore whether the reading time for each 'he' or 'she' that matched its antecedent was shorter than that in the corresponding mismatch situation, as with native speakers of English. The critical manipulation was to see whether highlighting the gender information of an antecedent with a human picture would make a difference. The results indicate that such manipulation did make a difference. Since oral Chinese does not distinguish 'he' and 'she', the findings suggest that Chinese speakers probably do not usually process biological gender for linguistic purposes and the mixed use of 'he' and 'she' is probably a result of deficient processing of gender information in the conceptualizer. Theoretical and pedagogical implications are discussed.

  10. Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students

    PubMed Central

    Malone, Amelia S.; Fuchs, Lynn S.

    2016-01-01

    The 3 purposes of this study were to: (a) describe fraction ordering errors among at-risk 4th-grade students; (b) assess the effect of part-whole understanding and accuracy of fraction magnitude estimation on the probability of committing errors; and (c) examine the effect of students' ability to explain comparing problems on the probability of committing errors. Students (n = 227) completed a 9-item ordering test. A high proportion (81%) of problems were completed incorrectly. Most (65% of) errors were due to students misapplying whole number logic to fractions. Fraction-magnitude estimation skill, but not part-whole understanding, significantly predicted the probability of committing this type of error. Implications for practice are discussed. PMID:26966153

  11. Probability of undetected error after decoding for a concatenated coding scheme

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.

    1984-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.

  12. Analysis of the “naming game” with learning errors in communications

    NASA Astrophysics Data System (ADS)

    Lou, Yang; Chen, Guanrong

    2015-07-01

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  13. Analysis of the "naming game" with learning errors in communications.

    PubMed

    Lou, Yang; Chen, Guanrong

    2015-07-16

    Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.

  14. Using satellite radiotelemetry data to delineate and manage wildlife populations

    USGS Publications Warehouse

    Amstrup, Steven C.; McDonald, T.L.; Durner, George M.

    2004-01-01

    The greatest promise of radiotelemetry always has been a better understanding of animal movements. Telemetry has helped us know when animals are active, how active they are, how far and how fast they move, the geographic areas they occupy, and whether individuals vary in these traits. Unfortunately, the inability to estimate the error in animals utilization distributions (UDs), has prevented probabilistic linkage of movements data, which are always retrospective, with future management actions. We used the example of the harvested population of polar bears (Ursus maritimus) in the Southern Beaufort Sea to illustrate a method that provides that linkage. We employed a 2-dimensional Gaussian kernel density estimator to smooth and scale frequencies of polar bear radio locations within cells of a grid overlying our study area. True 2-dimensional smoothing allowed us to create accurate descriptions of the UDs of individuals and groups of bears. We used a new method of clustering, based upon the relative use collared bears made of each cell in our grid, to assign individual animals to populations. We applied the fast Fourier transform to make bootstrapped estimates of the error in UDs computationally feasible. Clustering and kernel smoothing identified 3 populations of polar bears in the region between Wrangel Island, Russia, and Banks Island, Canada. The relative probability of occurrence of animals from each population varied significantly among grid cells distributed across the study area. We displayed occurrence probabilities as contour maps wherein each contour line corresponded with a change in relative probability. Only at the edges of our study area and in some offshore regions were bootstrapped estimates of error in occurrence probabilities too high to allow prediction. Error estimates, which also were displayed as contours, allowed us to show that occurrence probabilities did not vary by season. Near Barrow, Alaska, 50% of bears observed are predicted to be from the Chukchi Sea population and 50% from the Southern Beaufort Sea population. At Tuktoyaktuk, Northwest Territories, Canada, 50% are from the Southern Beaufort Sea and 50% from the Northern Beaufort Sea population. The methods described here will aid managers of all wildlife that can be studied by telemetry to allocate harvests and other human perturbations to the appropriate populations, make risk assessments, and predict impacts of human activities. They will aid researchers by providing the refined descriptions of study populations that are necessary for population estimation and other investigative tasks. Arctic, Beaufort Sea, boundaries, clustering, Fourier transform, kernel, management, polar bears, population delineation, radiotelemetry, satellite, smoothing, Ursus maritimus

  15. Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections

    USGS Publications Warehouse

    McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.

    2010-01-01

    The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.

  16. Challenges in leveraging existing human performance data for quantifying the IDHEAS HRA method

    DOE PAGES

    Liao, Huafei N.; Groth, Katrina; Stevens-Adams, Susan

    2015-07-29

    Our article documents an exploratory study for collecting and using human performance data to inform human error probability (HEP) estimates for a new human reliability analysis (HRA) method, the IntegrateD Human Event Analysis System (IDHEAS). The method was based on cognitive models and mechanisms underlying human behaviour and employs a framework of 14 crew failure modes (CFMs) to represent human failures typical for human performance in nuclear power plant (NPP) internal, at-power events [1]. A decision tree (DT) was constructed for each CFM to assess the probability of the CFM occurring in different contexts. Data needs for IDHEAS quantification aremore » discussed. Then, the data collection framework and process is described and how the collected data were used to inform HEP estimation is illustrated with two examples. Next, five major technical challenges are identified for leveraging human performance data for IDHEAS quantification. Furthermore, these challenges reflect the data needs specific to IDHEAS. More importantly, they also represent the general issues with current human performance data and can provide insight for a path forward to support HRA data collection, use, and exchange for HRA method development, implementation, and validation.« less

  17. On the timing problem in optical PPM communications.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1971-01-01

    Investigation of the effects of imperfect timing in a direct-detection (noncoherent) optical system using pulse-position-modulation bits. Special emphasis is placed on specification of timing accuracy, and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors, from which average error probabilities can be computed for specific synchronization methods. Of significant importance is shown to be the presence of a residual, or irreducible error probability, due entirely to the timing system, that cannot be overcome by the data channel.

  18. Lessons Learned from Dependency Usage in HERA: Implications for THERP-Related HRA Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    April M. Whaley; Ronald L. Boring; Harold S. Blackman

    Dependency occurs when the probability of success or failure on one action changes the probability of success or failure on a subsequent action. Dependency may serve as a modifier on the human error probabilities (HEPs) for successive actions in human reliability analysis (HRA) models. Discretion should be employed when determining whether or not a dependency calculation is warranted: dependency should not be assigned without strongly grounded reasons. Human reliability analysts may sometimes assign dependency in cases where it is unwarranted. This inappropriate assignment is attributed to a lack of clear guidance to encompass the range of scenarios human reliability analystsmore » are addressing. Inappropriate assignment of dependency produces inappropriately elevated HEP values. Lessons learned about dependency usage in the Human Event Repository and Analysis (HERA) system may provide clarification and guidance for analysts using first-generation HRA methods. This paper presents the HERA approach to dependency assessment and discusses considerations for dependency usage in HRA, including the cognitive basis for dependency, direction for determining when dependency should be assessed, considerations for determining the dependency level, temporal issues to consider when assessing dependency, (e.g., considering task sequence versus overall event sequence, and dependency over long periods of time), and diagnosis and action influences on dependency.« less

  19. Sample Size Determination for Rasch Model Tests

    ERIC Educational Resources Information Center

    Draxler, Clemens

    2010-01-01

    This paper is concerned with supplementing statistical tests for the Rasch model so that additionally to the probability of the error of the first kind (Type I probability) the probability of the error of the second kind (Type II probability) can be controlled at a predetermined level by basing the test on the appropriate number of observations.…

  20. [Medical errors: inevitable but preventable].

    PubMed

    Giard, R W

    2001-10-27

    Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.

  1. 78 FR 28597 - State Median Income Estimates for a Four-Person Household: Notice of the Federal Fiscal Year (FFY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ....gov/acs/www/ or contact the Census Bureau's Social, Economic, and Housing Statistics Division at (301...) Sampling Error, which consists of the error that arises from the use of probability sampling to create the... direction; and (2) Sampling Error, which consists of the error that arises from the use of probability...

  2. Sensitivity of feedforward neural networks to weight errors

    NASA Technical Reports Server (NTRS)

    Stevenson, Maryhelen; Widrow, Bernard; Winter, Rodney

    1990-01-01

    An analysis is made of the sensitivity of feedforward layered networks of Adaline elements (threshold logic units) to weight errors. An approximation is derived which expresses the probability of error for an output neuron of a large network (a network with many neurons per layer) as a function of the percentage change in the weights. As would be expected, the probability of error increases with the number of layers in the network and with the percentage change in the weights. The probability of error is essentially independent of the number of weights per neuron and of the number of neurons per layer, as long as these numbers are large (on the order of 100 or more).

  3. Type I error probabilities based on design-stage strategies with applications to noninferiority trials.

    PubMed

    Rothmann, Mark

    2005-01-01

    When testing the equality of means from two different populations, a t-test or large sample normal test tend to be performed. For these tests, when the sample size or design for the second sample is dependent on the results of the first sample, the type I error probability is altered for each specific possibility in the null hypothesis. We will examine the impact on the type I error probabilities for two confidence interval procedures and procedures using test statistics when the design for the second sample or experiment is dependent on the results from the first sample or experiment (or series of experiments). Ways for controlling a desired maximum type I error probability or a desired type I error rate will be discussed. Results are applied to the setting of noninferiority comparisons in active controlled trials where the use of a placebo is unethical.

  4. Inverse sequential detection of parameter changes in developing time series

    NASA Technical Reports Server (NTRS)

    Radok, Uwe; Brown, Timothy J.

    1992-01-01

    Progressive values of two probabilities are obtained for parameter estimates derived from an existing set of values and from the same set enlarged by one or more new values, respectively. One probability is that of erroneously preferring the second of these estimates for the existing data ('type 1 error'), while the second probability is that of erroneously accepting their estimates for the enlarged test ('type 2 error'). A more stable combined 'no change' probability which always falls between 0.5 and 0 is derived from the (logarithmic) width of the uncertainty region of an equivalent 'inverted' sequential probability ratio test (SPRT, Wald 1945) in which the error probabilities are calculated rather than prescribed. A parameter change is indicated when the compound probability undergoes a progressive decrease. The test is explicitly formulated and exemplified for Gaussian samples.

  5. Poster error probability in the Mu-11 Sequential Ranging System

    NASA Technical Reports Server (NTRS)

    Coyle, C. W.

    1981-01-01

    An expression is derived for the posterior error probability in the Mu-2 Sequential Ranging System. An algorithm is developed which closely bounds the exact answer and can be implemented in the machine software. A computer simulation is provided to illustrate the improved level of confidence in a ranging acquisition using this figure of merit as compared to that using only the prior probabilities. In a simulation of 20,000 acquisitions with an experimentally determined threshold setting, the algorithm detected 90% of the actual errors and made false indication of errors on 0.2% of the acquisitions.

  6. Estimating true human and animal host source contribution in quantitative microbial source tracking using the Monte Carlo method.

    PubMed

    Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan

    2010-09-01

    Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and qPCR reaction would greatly improve the performance of the model. This methodology, built upon Bacteroidales assays, is readily transferable to any other microbial source indicator where a universal assay for fecal sources of that indicator exists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. The effect of divided attention on novices and experts in laparoscopic task performance.

    PubMed

    Ghazanfar, Mudassar Ali; Cook, Malcolm; Tang, Benjie; Tait, Iain; Alijani, Afshin

    2015-03-01

    Attention is important for the skilful execution of surgery. The surgeon's attention during surgery is divided between surgery and outside distractions. The effect of this divided attention has not been well studied previously. We aimed to compare the effect of dividing attention of novices and experts on a laparoscopic task performance. Following ethical approval, 25 novices and 9 expert surgeons performed a standardised peg transfer task in a laboratory setup under three randomly assigned conditions: silent as control condition and two standardised auditory distracting tasks requiring response (easy and difficult) as study conditions. Human reliability assessment was used for surgical task analysis. Primary outcome measures were correct auditory responses, task time, number of surgical errors and instrument movements. Secondary outcome measures included error rate, error probability and hand specific differences. Non-parametric statistics were used for data analysis. 21109 movements and 9036 total errors were analysed. Novices had increased mean task completion time (seconds) (171 ± 44SD vs. 149 ± 34, p < 0.05), number of total movements (227 ± 27 vs. 213 ± 26, p < 0.05) and number of errors (127 ± 51 vs. 96 ± 28, p < 0.05) during difficult study conditions compared to control. The correct responses to auditory stimuli were less frequent in experts (68 %) compared to novices (80 %). There was a positive correlation between error rate and error probability in novices (r (2) = 0.533, p < 0.05) but not in experts (r (2) = 0.346, p > 0.05). Divided attention conditions in theatre environment require careful consideration during surgical training as the junior surgeons are less able to focus their attention during these conditions.

  8. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1985-01-01

    A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.

  9. The effect of timing errors in optical digital systems.

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1972-01-01

    The use of digital transmission with narrow light pulses appears attractive for data communications, but carries with it a stringent requirement on system bit timing. The effects of imperfect timing in direct-detection (noncoherent) optical binary systems are investigated using both pulse-position modulation and on-off keying for bit transmission. Particular emphasis is placed on specification of timing accuracy and an examination of system degradation when this accuracy is not attained. Bit error probabilities are shown as a function of timing errors from which average error probabilities can be computed for specific synchronization methods. Of significance is the presence of a residual or irreducible error probability in both systems, due entirely to the timing system, which cannot be overcome by the data channel.

  10. Nematode Damage Functions: The Problems of Experimental and Sampling Error

    PubMed Central

    Ferris, H.

    1984-01-01

    The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865

  11. More on the decoder error probability for Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.

    1987-01-01

    The decoder error probability for Reed-Solomon codes (more generally, linear maximum distance separable codes) is examined. McEliece and Swanson offered an upper bound on P sub E (u), the decoder error probability given that u symbol errors occurs. This upper bound is slightly greater than Q, the probability that a completely random error pattern will cause decoder error. By using a combinatoric technique, the principle of inclusion and exclusion, an exact formula for P sub E (u) is derived. The P sub e (u) for the (255, 223) Reed-Solomon Code used by NASA, and for the (31,15) Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the P sub E (u)'s are observed to approach the Q's of the codes rapidly as u gets larger. An upper bound for the expression is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P sub E (u) indeed approaches Q as u becomes large, and some laws of large numbers come into play.

  12. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations.

    PubMed

    Okada, Satoshi; Markle, Janet G; Deenick, Elissa K; Mele, Federico; Averbuch, Dina; Lagos, Macarena; Alzahrani, Mohammed; Al-Muhsen, Saleh; Halwani, Rabih; Ma, Cindy S; Wong, Natalie; Soudais, Claire; Henderson, Lauren A; Marzouqa, Hiyam; Shamma, Jamal; Gonzalez, Marcela; Martinez-Barricarte, Rubén; Okada, Chizuru; Avery, Danielle T; Latorre, Daniela; Deswarte, Caroline; Jabot-Hanin, Fabienne; Torrado, Egidio; Fountain, Jeffrey; Belkadi, Aziz; Itan, Yuval; Boisson, Bertrand; Migaud, Mélanie; Arlehamn, Cecilia S Lindestam; Sette, Alessandro; Breton, Sylvain; McCluskey, James; Rossjohn, Jamie; de Villartay, Jean-Pierre; Moshous, Despina; Hambleton, Sophie; Latour, Sylvain; Arkwright, Peter D; Picard, Capucine; Lantz, Olivier; Engelhard, Dan; Kobayashi, Masao; Abel, Laurent; Cooper, Andrea M; Notarangelo, Luigi D; Boisson-Dupuis, Stéphanie; Puel, Anne; Sallusto, Federica; Bustamante, Jacinta; Tangye, Stuart G; Casanova, Jean-Laurent

    2015-08-07

    Human inborn errors of immunity mediated by the cytokines interleukin-17A and interleukin-17F (IL-17A/F) underlie mucocutaneous candidiasis, whereas inborn errors of interferon-γ (IFN-γ) immunity underlie mycobacterial disease. We report the discovery of bi-allelic RORC loss-of-function mutations in seven individuals from three kindreds of different ethnic origins with both candidiasis and mycobacteriosis. The lack of functional RORγ and RORγT isoforms resulted in the absence of IL-17A/F-producing T cells in these individuals, probably accounting for their chronic candidiasis. Unexpectedly, leukocytes from RORγ- and RORγT-deficient individuals also displayed an impaired IFN-γ response to Mycobacterium. This principally reflected profoundly defective IFN-γ production by circulating γδ T cells and CD4(+)CCR6(+)CXCR3(+) αβ T cells. In humans, both mucocutaneous immunity to Candida and systemic immunity to Mycobacterium require RORγ, RORγT, or both. Copyright © 2015, American Association for the Advancement of Science.

  13. The SACADA database for human reliability and human performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. James Chang; Dennis Bley; Lawrence Criscione

    2014-05-01

    Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data wouldmore » support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance.« less

  14. Why Current Statistics of Complementary Alternative Medicine Clinical Trials is Invalid.

    PubMed

    Pandolfi, Maurizio; Carreras, Giulia

    2018-06-07

    It is not sufficiently known that frequentist statistics cannot provide direct information on the probability that the research hypothesis tested is correct. The error resulting from this misunderstanding is compounded when the hypotheses under scrutiny have precarious scientific bases, which, generally, those of complementary alternative medicine (CAM) are. In such cases, it is mandatory to use inferential statistics, considering the prior probability that the hypothesis tested is true, such as the Bayesian statistics. The authors show that, under such circumstances, no real statistical significance can be achieved in CAM clinical trials. In this respect, CAM trials involving human material are also hardly defensible from an ethical viewpoint.

  15. Analysis of binary responses with outcome-specific misclassification probability in genome-wide association studies.

    PubMed

    Rekaya, Romdhane; Smith, Shannon; Hay, El Hamidi; Farhat, Nourhene; Aggrey, Samuel E

    2016-01-01

    Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case-control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness.

  16. At least some errors are randomly generated (Freud was wrong)

    NASA Technical Reports Server (NTRS)

    Sellen, A. J.; Senders, J. W.

    1986-01-01

    An experiment was carried out to expose something about human error generating mechanisms. In the context of the experiment, an error was made when a subject pressed the wrong key on a computer keyboard or pressed no key at all in the time allotted. These might be considered, respectively, errors of substitution and errors of omission. Each of seven subjects saw a sequence of three digital numbers, made an easily learned binary judgement about each, and was to press the appropriate one of two keys. Each session consisted of 1,000 presentations of randomly permuted, fixed numbers broken into 10 blocks of 100. One of two keys should have been pressed within one second of the onset of each stimulus. These data were subjected to statistical analyses in order to probe the nature of the error generating mechanisms. Goodness of fit tests for a Poisson distribution for the number of errors per 50 trial interval and for an exponential distribution of the length of the intervals between errors were carried out. There is evidence for an endogenous mechanism that may best be described as a random error generator. Furthermore, an item analysis of the number of errors produced per stimulus suggests the existence of a second mechanism operating on task driven factors producing exogenous errors. Some errors, at least, are the result of constant probability generating mechanisms with error rate idiosyncratically determined for each subject.

  17. Bit Error Probability for Maximum Likelihood Decoding of Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc P. C.; Rhee, Dojun

    1996-01-01

    In this paper, the bit error probability P(sub b) for maximum likelihood decoding of binary linear codes is investigated. The contribution of each information bit to P(sub b) is considered. For randomly generated codes, it is shown that the conventional approximation at high SNR P(sub b) is approximately equal to (d(sub H)/N)P(sub s), where P(sub s) represents the block error probability, holds for systematic encoding only. Also systematic encoding provides the minimum P(sub b) when the inverse mapping corresponding to the generator matrix of the code is used to retrieve the information sequence. The bit error performances corresponding to other generator matrix forms are also evaluated. Although derived for codes with a generator matrix randomly generated, these results are shown to provide good approximations for codes used in practice. Finally, for decoding methods which require a generator matrix with a particular structure such as trellis decoding or algebraic-based soft decision decoding, equivalent schemes that reduce the bit error probability are discussed.

  18. U.S. Maternally Linked Birth Records May Be Biased for Hispanics and Other Population Groups

    PubMed Central

    LEISS, JACK K.; GILES, DENISE; SULLIVAN, KRISTIN M.; MATHEWS, RAHEL; SENTELLE, GLENDA; TOMASHEK, KAY M.

    2010-01-01

    Purpose To advance understanding of linkage error in U.S. maternally linked datasets, and how the error may affect results of studies based on the linked data. Methods North Carolina birth and fetal death records for 1988-1997 were maternally linked (n=1,030,029). The maternal set probability, defined as the probability that all records assigned to the same maternal set do in fact represent events to the same woman, was used to assess differential maternal linkage error across race/ethnic groups. Results Maternal set probabilities were lower for records specifying Asian or Hispanic race/ethnicity, suggesting greater maternal linkage error. The lower probabilities for Hispanics were concentrated in women of Mexican origin who were not born in the United States. Conclusions Differential maternal linkage error may be a source of bias in studies using U.S. maternally linked datasets to make comparisons between Hispanics and other groups or among Hispanic subgroups. Methods to quantify and adjust for this potential bias are needed. PMID:20006273

  19. On the error probability of general tree and trellis codes with applications to sequential decoding

    NASA Technical Reports Server (NTRS)

    Johannesson, R.

    1973-01-01

    An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.

  20. Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students

    ERIC Educational Resources Information Center

    Malone, Amelia Schneider; Fuchs, Lynn S.

    2015-01-01

    The 3 purposes of this study were to: (a) describe fraction ordering errors among at-risk 4th-grade students; (b) assess the effect of part-whole understanding and accuracy of fraction magnitude estimation on the probability of committing errors; and (c) examine the effect of students' ability to explain comparing problems on the probability of…

  1. Lunar crescent visibility

    NASA Technical Reports Server (NTRS)

    Doggett, Leroy E.; Schaefer, Bradley E.

    1994-01-01

    We report the results of five Moonwatches, in which more than 2000 observers throughout North America attempted to sight the thin lunar crescent. For each Moonwatch we were able to determine the position of the Lunar Date Line (LDL), the line along which a normal observer has a 50% probability of spotting the Moon. The observational LDLs were then compared with predicted LDLs derived from crescent visibility prediction algorithms. We find that ancient and medieval rules are higly unreliable. More recent empirical criteria, based on the relative altitude and azimuth of the Moon at the time of sunset, have a reasonable accuracy, with the best specific formulation being due to Yallop. The modern theoretical model by Schaefer (based on the physiology of the human eye and the local observing conditions) is found to have the least systematic error, the least average error, and the least maximum error of all models tested. Analysis of the observations also provided information about atmospheric, optical and human factors that affect the observations. We show that observational lunar calendars have a natural bias to begin early.

  2. A Method to Estimate the Probability That Any Individual Lightning Stroke Contacted the Surface Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William; Merceret, Francis J.

    2010-01-01

    A technique has been developed to calculate the probability that any nearby lightning stroke is within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than the error ellipses centered on the stroke. This process takes the current bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to get the probability that the stroke is inside any specified radius. This new facility-centric technique will be much more useful to the space launch customers and may supersede the lightning error ellipse approach discussed in [5], [6].

  3. Entanglement-enhanced Neyman-Pearson target detection using quantum illumination

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.

    2017-08-01

    Quantum illumination (QI) provides entanglement-based target detection---in an entanglement-breaking environment---whose performance is significantly better than that of optimum classical-illumination target detection. QI's performance advantage was established in a Bayesian setting with the target presumed equally likely to be absent or present and error probability employed as the performance metric. Radar theory, however, eschews that Bayesian approach, preferring the Neyman-Pearson performance criterion to avoid the difficulties of accurately assigning prior probabilities to target absence and presence and appropriate costs to false-alarm and miss errors. We have recently reported an architecture---based on sum-frequency generation (SFG) and feedforward (FF) processing---for minimum error-probability QI target detection with arbitrary prior probabilities for target absence and presence. In this paper, we use our results for FF-SFG reception to determine the receiver operating characteristic---detection probability versus false-alarm probability---for optimum QI target detection under the Neyman-Pearson criterion.

  4. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    PubMed

    Werner, Benjamin; Sottoriva, Andrea

    2018-06-01

    The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  5. The random coding bound is tight for the average code.

    NASA Technical Reports Server (NTRS)

    Gallager, R. G.

    1973-01-01

    The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.

  6. 75 FR 26780 - State Median Income Estimate for a Four-Person Family: Notice of the Federal Fiscal Year (FFY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Household Economic Statistics Division at (301) 763-3243. Under the advice of the Census Bureau, HHS..., which consists of the error that arises from the use of probability sampling to create the sample. For...) Sampling Error, which consists of the error that arises from the use of probability sampling to create the...

  7. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audenaert, Koenraad M. R., E-mail: koenraad.audenaert@rhul.ac.uk; Department of Physics and Astronomy, University of Ghent, S9, Krijgslaan 281, B-9000 Ghent; Mosonyi, Milán, E-mail: milan.mosonyi@gmail.com

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov'smore » classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub j« less

  8. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Fujiwara, T.; Lin, S.

    1986-01-01

    In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.

  9. Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.

    1984-01-01

    A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared.

  10. SPAR-H Step-by-Step Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. J. Galyean; A. M. Whaley; D. L. Kelly

    This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from themore » psychology literature.« less

  11. Probabilistic simulation of the human factor in structural reliability

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1993-01-01

    A formal approach is described in an attempt to computationally simulate the probable ranges of uncertainties of the human factor in structural probabilistic assessments. A multi-factor interaction equation (MFIE) model has been adopted for this purpose. Human factors such as marital status, professional status, home life, job satisfaction, work load and health, are considered to demonstrate the concept. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Suitability of the MFIE in the subsequently probabilistic sensitivity studies are performed to assess the validity of the whole approach. Results obtained show that the uncertainties for no error range from five to thirty percent for the most optimistic case.

  12. Probabilistic simulation of the human factor in structural reliability

    NASA Astrophysics Data System (ADS)

    Chamis, Christos C.; Singhal, Surendra N.

    1994-09-01

    The formal approach described herein computationally simulates the probable ranges of uncertainties for the human factor in probabilistic assessments of structural reliability. Human factors such as marital status, professional status, home life, job satisfaction, work load, and health are studied by using a multifactor interaction equation (MFIE) model to demonstrate the approach. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Subsequently performed probabilistic sensitivity studies assess the suitability of the MFIE as well as the validity of the whole approach. Results show that uncertainties range from 5 to 30 percent for the most optimistic case, assuming 100 percent for no error (perfect performance).

  13. Probabilistic Simulation of the Human Factor in Structural Reliability

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1994-01-01

    The formal approach described herein computationally simulates the probable ranges of uncertainties for the human factor in probabilistic assessments of structural reliability. Human factors such as marital status, professional status, home life, job satisfaction, work load, and health are studied by using a multifactor interaction equation (MFIE) model to demonstrate the approach. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Subsequently performed probabilistic sensitivity studies assess the suitability of the MFIE as well as the validity of the whole approach. Results show that uncertainties range from 5 to 30 percent for the most optimistic case, assuming 100 percent for no error (perfect performance).

  14. An error analysis perspective for patient alignment systems.

    PubMed

    Figl, Michael; Kaar, Marcus; Hoffman, Rainer; Kratochwil, Alfred; Hummel, Johann

    2013-09-01

    This paper analyses the effects of error sources which can be found in patient alignment systems. As an example, an ultrasound (US) repositioning system and its transformation chain are assessed. The findings of this concept can also be applied to any navigation system. In a first step, all error sources were identified and where applicable, corresponding target registration errors were computed. By applying error propagation calculations on these commonly used registration/calibration and tracking errors, we were able to analyse the components of the overall error. Furthermore, we defined a special situation where the whole registration chain reduces to the error caused by the tracking system. Additionally, we used a phantom to evaluate the errors arising from the image-to-image registration procedure, depending on the image metric used. We have also discussed how this analysis can be applied to other positioning systems such as Cone Beam CT-based systems or Brainlab's ExacTrac. The estimates found by our error propagation analysis are in good agreement with the numbers found in the phantom study but significantly smaller than results from patient evaluations. We probably underestimated human influences such as the US scan head positioning by the operator and tissue deformation. Rotational errors of the tracking system can multiply these errors, depending on the relative position of tracker and probe. We were able to analyse the components of the overall error of a typical patient positioning system. We consider this to be a contribution to the optimization of the positioning accuracy for computer guidance systems.

  15. Analysis of the impact of error detection on computer performance

    NASA Technical Reports Server (NTRS)

    Shin, K. C.; Lee, Y. H.

    1983-01-01

    Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.

  16. Triangulation Error Analysis for the Barium Ion Cloud Experiment. M.S. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.

    1973-01-01

    The triangulation method developed specifically for the Barium Ion Cloud Project is discussed. Expression for the four displacement errors, the three slope errors, and the curvature error in the triangulation solution due to a probable error in the lines-of-sight from the observation stations to points on the cloud are derived. The triangulation method is then used to determine the effect of the following on these different errors in the solution: the number and location of the stations, the observation duration, east-west cloud drift, the number of input data points, and the addition of extra cameras to one of the stations. The pointing displacement errors, and the pointing slope errors are compared. The displacement errors in the solution due to a probable error in the position of a moving station plus the weighting factors for the data from the moving station are also determined.

  17. An automated microphysiological assay for toxicity evaluation.

    PubMed

    Eggert, S; Alexander, F A; Wiest, J

    2015-08-01

    Screening a newly developed drug, food additive or cosmetic ingredient for toxicity is a critical preliminary step before it can move forward in the development pipeline. Due to the sometimes dire consequences when a harmful agent is overlooked, toxicologists work under strict guidelines to effectively catalogue and classify new chemical agents. Conventional assays involve long experimental hours and many manual steps that increase the probability of user error; errors that can potentially manifest as inaccurate toxicology results. Automated assays can overcome many potential mistakes that arise due to human error. In the presented work, we created and validated a novel, automated platform for a microphysiological assay that can examine cellular attributes with sensors measuring changes in cellular metabolic rate, oxygen consumption, and vitality mediated by exposure to a potentially toxic agent. The system was validated with low buffer culture medium with varied conductivities that caused changes in the measured impedance on integrated impedance electrodes.

  18. Error reduction in EMG signal decomposition

    PubMed Central

    Kline, Joshua C.

    2014-01-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159

  19. Performance of cellular frequency-hopped spread-spectrum radio networks

    NASA Astrophysics Data System (ADS)

    Gluck, Jeffrey W.; Geraniotis, Evaggelos

    1989-10-01

    Multiple access interference is characterized for cellular mobile networks, in which users are assumed to be Poisson-distributed in the plane and employ frequency-hopped spread-spectrum signaling with transmitter-oriented assignment of frequency-hopping patterns. Exact expressions for the bit error probabilities are derived for binary coherently demodulated systems without coding. Approximations for the packet error probability are derived for coherent and noncoherent systems and these approximations are applied when forward-error-control coding is employed. In all cases, the effects of varying interference power are accurately taken into account according to some propagation law. Numerical results are given in terms of bit error probability for the exact case and throughput for the approximate analyses. Comparisons are made with previously derived bounds and it is shown that these tend to be very pessimistic.

  20. Comparison of rate one-half, equivalent constraint length 24, binary convolutional codes for use with sequential decoding on the deep-space channel

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Virtually all previously-suggested rate 1/2 binary convolutional codes with KE = 24 are compared. Their distance properties are given; and their performance, both in computation and in error probability, with sequential decoding on the deep-space channel is determined by simulation. Recommendations are made both for the choice of a specific KE = 24 code as well as for codes to be included in future coding standards for the deep-space channel. A new result given in this report is a method for determining the statistical significance of error probability data when the error probability is so small that it is not feasible to perform enough decoding simulations to obtain more than a very small number of decoding errors.

  1. Feasibility of streamlining an interactive Bayesian-based diagnostic support tool designed for clinical practice

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa

    2016-03-01

    In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.

  2. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG.

    PubMed

    Akce, Abdullah; Johnson, Miles; Dantsker, Or; Bretl, Timothy

    2013-03-01

    This paper presents an interface for navigating a mobile robot that moves at a fixed speed in a planar workspace, with noisy binary inputs that are obtained asynchronously at low bit-rates from a human user through an electroencephalograph (EEG). The approach is to construct an ordered symbolic language for smooth planar curves and to use these curves as desired paths for a mobile robot. The underlying problem is then to design a communication protocol by which the user can, with vanishing error probability, specify a string in this language using a sequence of inputs. Such a protocol, provided by tools from information theory, relies on a human user's ability to compare smooth curves, just like they can compare strings of text. We demonstrate our interface by performing experiments in which twenty subjects fly a simulated aircraft at a fixed speed and altitude with input only from EEG. Experimental results show that the majority of subjects are able to specify desired paths despite a wide range of errors made in decoding EEG signals.

  3. QR images: optimized image embedding in QR codes.

    PubMed

    Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P

    2014-07-01

    This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.

  4. Radiology's Achilles' heel: error and variation in the interpretation of the Röntgen image.

    PubMed

    Robinson, P J

    1997-11-01

    The performance of the human eye and brain has failed to keep pace with the enormous technical progress in the first full century of radiology. Errors and variations in interpretation now represent the weakest aspect of clinical imaging. Those interpretations which differ from the consensus view of a panel of "experts" may be regarded as errors; where experts fail to achieve consensus, differing reports are regarded as "observer variation". Errors arise from poor technique, failures of perception, lack of knowledge and misjudgments. Observer variation is substantial and should be taken into account when different diagnostic methods are compared; in many cases the difference between observers outweighs the difference between techniques. Strategies for reducing error include attention to viewing conditions, training of the observers, availability of previous films and relevant clinical data, dual or multiple reporting, standardization of terminology and report format, and assistance from computers. Digital acquisition and display will probably not affect observer variation but the performance of radiologists, as measured by receiver operating characteristic (ROC) analysis, may be improved by computer-directed search for specific image features. Other current developments show that where image features can be comprehensively described, computer analysis can replace the perception function of the observer, whilst the function of interpretation can in some cases be performed better by artificial neural networks. However, computer-assisted diagnosis is still in its infancy and complete replacement of the human observer is as yet a remote possibility.

  5. Wald Sequential Probability Ratio Test for Analysis of Orbital Conjunction Data

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Markley, F. Landis; Gold, Dara

    2013-01-01

    We propose a Wald Sequential Probability Ratio Test for analysis of commonly available predictions associated with spacecraft conjunctions. Such predictions generally consist of a relative state and relative state error covariance at the time of closest approach, under the assumption that prediction errors are Gaussian. We show that under these circumstances, the likelihood ratio of the Wald test reduces to an especially simple form, involving the current best estimate of collision probability, and a similar estimate of collision probability that is based on prior assumptions about the likelihood of collision.

  6. Performance Data Errors in Air Carrier Operations: Causes and Countermeasures

    NASA Technical Reports Server (NTRS)

    Berman, Benjamin A.; Dismukes, R Key; Jobe, Kimberly K.

    2012-01-01

    Several airline accidents have occurred in recent years as the result of erroneous weight or performance data used to calculate V-speeds, flap/trim settings, required runway lengths, and/or required climb gradients. In this report we consider 4 recent studies of performance data error, report our own study of ASRS-reported incidents, and provide countermeasures that can reduce vulnerability to accidents caused by performance data errors. Performance data are generated through a lengthy process involving several employee groups and computer and/or paper-based systems. Although much of the airline indUStry 's concern has focused on errors pilots make in entering FMS data, we determined that errors occur at every stage of the process and that errors by ground personnel are probably at least as frequent and certainly as consequential as errors by pilots. Most of the errors we examined could in principle have been trapped by effective use of existing procedures or technology; however, the fact that they were not trapped anywhere indicates the need for better countermeasures. Existing procedures are often inadequately designed to mesh with the ways humans process information. Because procedures often do not take into account the ways in which information flows in actual flight ops and time pressures and interruptions experienced by pilots and ground personnel, vulnerability to error is greater. Some aspects of NextGen operations may exacerbate this vulnerability. We identify measures to reduce the number of errors and to help catch the errors that occur.

  7. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    NASA Astrophysics Data System (ADS)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  8. Modulation/demodulation techniques for satellite communications. Part 1: Background

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  9. Why Do People Make Mistakes?

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel

    2016-01-01

    Multitasking is endemic in modern life and work: drivers talk on cell phones, office workers type while answering phone calls, students do homework while text messaging, nurses prepare injections while responding to doctors calls, and air traffic controllers direct aircraft in one sector while handling additional traffic in another. Whether in daily life or at work, we are constantly bombarded with multiple, concurrent interruptions and demands and we have all somehow come to believe in the myth that we can, and in fact are expected to, easily address them all - without any repercussions. However, accumulating scientific evidence is now suggesting that multitasking increases the probability of human error. This talk presents a set of NASA studies that characterize concurrent demands in one work domain, routine airline cockpit operations, in order to illustrate the ways operational task demands together with the proclivity to manage them all concurrently make human performance in this and in any domain vulnerable to potentially serious errors and to accidents.

  10. Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones.

    PubMed

    Mohino-Herranz, Inma; Gil-Pita, Roberto; Ferreira, Javier; Rosa-Zurera, Manuel; Seoane, Fernando

    2015-10-08

    Determining the stress level of a subject in real time could be of special interest in certain professional activities to allow the monitoring of soldiers, pilots, emergency personnel and other professionals responsible for human lives. Assessment of current mental fitness for executing a task at hand might avoid unnecessary risks. To obtain this knowledge, two physiological measurements were recorded in this work using customized non-invasive wearable instrumentation that measures electrocardiogram (ECG) and thoracic electrical bioimpedance (TEB) signals. The relevant information from each measurement is extracted via evaluation of a reduced set of selected features. These features are primarily obtained from filtered and processed versions of the raw time measurements with calculations of certain statistical and descriptive parameters. Selection of the reduced set of features was performed using genetic algorithms, thus constraining the computational cost of the real-time implementation. Different classification approaches have been studied, but neural networks were chosen for this investigation because they represent a good tradeoff between the intelligence of the solution and computational complexity. Three different application scenarios were considered. In the first scenario, the proposed system is capable of distinguishing among different types of activity with a 21.2% probability error, for activities coded as neutral, emotional, mental and physical. In the second scenario, the proposed solution distinguishes among the three different emotional states of neutral, sadness and disgust, with a probability error of 4.8%. In the third scenario, the system is able to distinguish between low mental load and mental overload with a probability error of 32.3%. The computational cost was calculated, and the solution was implemented in commercially available Android-based smartphones. The results indicate that execution of such a monitoring solution is negligible compared to the nominal computational load of current smartphones.

  11. A simulator for evaluating methods for the detection of lesion-deficit associations

    NASA Technical Reports Server (NTRS)

    Megalooikonomou, V.; Davatzikos, C.; Herskovits, E. H.

    2000-01-01

    Although much has been learned about the functional organization of the human brain through lesion-deficit analysis, the variety of statistical and image-processing methods developed for this purpose precludes a closed-form analysis of the statistical power of these systems. Therefore, we developed a lesion-deficit simulator (LDS), which generates artificial subjects, each of which consists of a set of functional deficits, and a brain image with lesions; the deficits and lesions conform to predefined distributions. We used probability distributions to model the number, sizes, and spatial distribution of lesions, to model the structure-function associations, and to model registration error. We used the LDS to evaluate, as examples, the effects of the complexities and strengths of lesion-deficit associations, and of registration error, on the power of lesion-deficit analysis. We measured the numbers of recovered associations from these simulated data, as a function of the number of subjects analyzed, the strengths and number of associations in the statistical model, the number of structures associated with a particular function, and the prior probabilities of structures being abnormal. The number of subjects required to recover the simulated lesion-deficit associations was found to have an inverse relationship to the strength of associations, and to the smallest probability in the structure-function model. The number of structures associated with a particular function (i.e., the complexity of associations) had a much greater effect on the performance of the analysis method than did the total number of associations. We also found that registration error of 5 mm or less reduces the number of associations discovered by approximately 13% compared to perfect registration. The LDS provides a flexible framework for evaluating many aspects of lesion-deficit analysis.

  12. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  13. Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm

    NASA Astrophysics Data System (ADS)

    Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.

    2017-01-01

    This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.

  14. The calculation of average error probability in a digital fibre optical communication system

    NASA Astrophysics Data System (ADS)

    Rugemalira, R. A. M.

    1980-03-01

    This paper deals with the problem of determining the average error probability in a digital fibre optical communication system, in the presence of message dependent inhomogeneous non-stationary shot noise, additive Gaussian noise and intersymbol interference. A zero-forcing equalization receiver filter is considered. Three techniques for error rate evaluation are compared. The Chernoff bound and the Gram-Charlier series expansion methods are compared to the characteristic function technique. The latter predicts a higher receiver sensitivity

  15. Probability shapes perceptual precision: A study in orientation estimation.

    PubMed

    Jabar, Syaheed B; Anderson, Britt

    2015-12-01

    Probability is known to affect perceptual estimations, but an understanding of mechanisms is lacking. Moving beyond binary classification tasks, we had naive participants report the orientation of briefly viewed gratings where we systematically manipulated contingent probability. Participants rapidly developed faster and more precise estimations for high-probability tilts. The shapes of their error distributions, as indexed by a kurtosis measure, also showed a distortion from Gaussian. This kurtosis metric was robust, capturing probability effects that were graded, contextual, and varying as a function of stimulus orientation. Our data can be understood as a probability-induced reduction in the variability or "shape" of estimation errors, as would be expected if probability affects the perceptual representations. As probability manipulations are an implicit component of many endogenous cuing paradigms, changes at the perceptual level could account for changes in performance that might have traditionally been ascribed to "attention." (c) 2015 APA, all rights reserved).

  16. Effects of preparation time and trial type probability on performance of anti- and pro-saccades.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control optimizes responses to relevant task conditions by balancing bottom-up stimulus processing with top-down goal pursuit. It can be investigated using the ocular motor system by contrasting basic prosaccades (look toward a stimulus) with complex antisaccades (look away from a stimulus). Furthermore, the amount of time allotted between trials, the need to switch task sets, and the time allowed to prepare for an upcoming saccade all impact performance. In this study the relative probabilities of anti- and pro-saccades were manipulated across five blocks of interleaved trials, while the inter-trial interval and trial type cue duration were varied across subjects. Results indicated that inter-trial interval had no significant effect on error rates or reaction times (RTs), while a shorter trial type cue led to more antisaccade errors and faster overall RTs. Responses following a shorter cue duration also showed a stronger effect of trial type probability, with more antisaccade errors in blocks with a low antisaccade probability and slower RTs for each saccade task when its trial type was unlikely. A longer cue duration yielded fewer errors and slower RTs, with a larger switch cost for errors compared to a short cue duration. Findings demonstrated that when the trial type cue duration was shorter, visual motor responsiveness was faster and subjects relied upon the implicit trial probability context to improve performance. When the cue duration was longer, increased fixation-related activity may have delayed saccade motor preparation and slowed responses, guiding subjects to respond in a controlled manner regardless of trial type probability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Simulation of rare events in quantum error correction

    NASA Astrophysics Data System (ADS)

    Bravyi, Sergey; Vargo, Alexander

    2013-12-01

    We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability PL for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d≤20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay PL˜exp[-α(p)d] and provide a simple fitting formula for the decay rate α(p). Both noiseless and noisy syndrome readout circuits are considered.

  18. Cognitive engineering models in space systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1992-01-01

    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.

  19. Human factors of the high technology cockpit

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1990-01-01

    The rapid advance of cockpit automation in the last decade has outstripped the ability of the human factors profession to understand the changes in human functions required. High technology cockpits require less physical (observable) workload, but are highly demanding of cognitive functions such as planning, alternative selection, and monitoring. Furthermore, automation creates opportunity for new and more serious forms of human error, and many pilots are concerned about the possibility of complacency affecting their performance. On the positive side, the equipment works as advertized with high reliability, offering highly efficient, computer-based flight. These findings from the cockpit studies probably apply equally to other industries, such as nuclear power production, other modes of transportation, medicine, and manufacturing, all of which traditionally have looked to aviation for technological leadership. The challenge to the human factors profession is to aid designers, operators, and training departments in exploiting the positive side of automation, while seeking solutions to the negative side. Viewgraphs are given.

  20. Analytic barrage attack model. Final report, January 1986-January 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Ledger, J.W.; Naegeli, R.E.; Dowden, N.A.

    An analytic model is developed for a nuclear barrage attack, assuming weapons with no aiming error and a cookie-cutter damage function. The model is then extended with approximations for the effects of aiming error and distance damage sigma. The final result is a fast running model which calculates probability of damage for a barrage attack. The probability of damage is accurate to within seven percent or better, for weapon reliabilities of 50 to 100 percent, distance damage sigmas of 0.5 or less, and zero to very large circular error probabilities. FORTRAN 77 coding is included in the report for themore » analytic model and for a numerical model used to check the analytic results.« less

  1. Commentary: Reducing diagnostic errors: another role for checklists?

    PubMed

    Winters, Bradford D; Aswani, Monica S; Pronovost, Peter J

    2011-03-01

    Diagnostic errors are a widespread problem, although the true magnitude is unknown because they cannot currently be measured validly. These errors have received relatively little attention despite alarming estimates of associated harm and death. One promising intervention to reduce preventable harm is the checklist. This intervention has proven successful in aviation, in which situations are linear and deterministic (one alarm goes off and a checklist guides the flight crew to evaluate the cause). In health care, problems are multifactorial and complex. A checklist has been used to reduce central-line-associated bloodstream infections in intensive care units. Nevertheless, this checklist was incorporated in a culture-based safety program that engaged and changed behaviors and used robust measurement of infections to evaluate progress. In this issue, Ely and colleagues describe how three checklists could reduce the cognitive biases and mental shortcuts that underlie diagnostic errors, but point out that these tools still need to be tested. To be effective, they must reduce diagnostic errors (efficacy) and be routinely used in practice (effectiveness). Such tools must intuitively support how the human brain works, and under time pressures, clinicians rarely think in conditional probabilities when making decisions. To move forward, it is necessary to accurately measure diagnostic errors (which could come from mapping out the diagnostic process as the medication process has done and measuring errors at each step) and pilot test interventions such as these checklists to determine whether they work.

  2. Assessing flight safety differences between the United States regional and major airlines

    NASA Astrophysics Data System (ADS)

    Sharp, Broderick H.

    During 2008, the U.S. domestic airline departures exceeded 28,000 flights per day. Thirty-nine or less than 0.2 of 1% of these flights resulted in operational incidents or accidents. However, even a low percentage of airline accidents and incidents continue to cause human suffering and property loss. The charge of this study was the comparison of U.S. major and regional airline safety histories. The study spans safety events from January 1982 through December 2008. In this quantitative analysis, domestic major and regional airlines were statistically tested for their flight safety differences. Four major airlines and thirty-seven regional airlines qualified for the safety study which compared the airline groups' fatal accidents, incidents, non-fatal accidents, pilot errors, and the remaining six safety event probable cause types. The six other probable cause types are mechanical failure, weather, air traffic control, maintenance, other, and unknown causes. The National Transportation Safety Board investigated each airline safety event, and assigned a probable cause to each event. A sample of 500 events was randomly selected from the 1,391 airlines' accident and incident population. The airline groups' safety event probabilities were estimated using the least squares linear regression. A probability significance level of 5% was chosen to conclude the appropriate research question hypothesis. The airline fatal accidents and incidents probability levels were 1.2% and 0.05% respectively. These two research questions did not reach the 5% significance level threshold. Therefore, the airline groups' fatal accidents and non-destructive incidents probabilities favored the airline groups' safety differences hypothesis. The linear progression estimates for the remaining three research questions were 71.5% for non-fatal accidents, 21.8% for the pilot errors, and 7.4% significance level for the six probable causes. These research questions' linear regressions are greater than the 5% level. Consequently, these three research questions favored airline groups' safety similarities hypothesis. The study indicates the U.S. domestic major airlines were safer than the regional airlines. Ideas for potential airline safety progress can examine pilot fatigue, the airline groups' hiring policies, the government's airline oversight personnel, or the comparison of individual airline's operational policies.

  3. On the isobaric space of 25-hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues.

    PubMed

    Qi, Yulin; Geib, Timon; Schorr, Pascal; Meier, Florian; Volmer, Dietrich A

    2015-01-15

    Isobaric interferences in human serum can potentially influence the measured concentration levels of 25-hydroxyvitamin D [25(OH)D], when low resolving power liquid chromatography/tandem mass spectrometry (LC/MS/MS) instruments and non-specific MS/MS product ions are employed for analysis. In this study, we provide a detailed characterization of these interferences and a technical solution to reduce the associated systematic errors. Detailed electrospray ionization Fourier transform ion cyclotron resonance (FTICR) high-resolution mass spectrometry (HRMS) experiments were used to characterize co-extracted isobaric components of 25(OH)D from human serum. Differential ion mobility spectrometry (DMS), as a gas-phase ion filter, was implemented on a triple quadrupole mass spectrometer for separation of the isobars. HRMS revealed the presence of multiple isobaric compounds in extracts of human serum for different sample preparation methods. Several of these isobars had the potential to increase the peak areas measured for 25(OH)D on low-resolution MS instruments. A major isobaric component was identified as pentaerythritol oleate, a technical lubricant, which was probably an artifact from the analytical instrumentation. DMS was able to remove several of these isobars prior to MS/MS, when implemented on the low-resolution triple quadrupole mass spectrometer. It was shown in this proof-of-concept study that DMS-MS has the potential to significantly decrease systematic errors, and thus improve accuracy of vitamin D measurements using LC/MS/MS. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Estimating parameters for probabilistic linkage of privacy-preserved datasets.

    PubMed

    Brown, Adrian P; Randall, Sean M; Ferrante, Anna M; Semmens, James B; Boyd, James H

    2017-07-10

    Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. The linkage strategy and associated match probabilities are often estimated through investigations into data quality and manual inspection. However, as privacy-preserved datasets comprise encrypted data, such methods are not possible. In this paper, we present a method for estimating the probabilities and threshold values for probabilistic privacy-preserved record linkage using Bloom filters. Our method was tested through a simulation study using synthetic data, followed by an application using real-world administrative data. Synthetic datasets were generated with error rates from zero to 20% error. Our method was used to estimate parameters (probabilities and thresholds) for de-duplication linkages. Linkage quality was determined by F-measure. Each dataset was privacy-preserved using separate Bloom filters for each field. Match probabilities were estimated using the expectation-maximisation (EM) algorithm on the privacy-preserved data. Threshold cut-off values were determined by an extension to the EM algorithm allowing linkage quality to be estimated for each possible threshold. De-duplication linkages of each privacy-preserved dataset were performed using both estimated and calculated probabilities. Linkage quality using the F-measure at the estimated threshold values was also compared to the highest F-measure. Three large administrative datasets were used to demonstrate the applicability of the probability and threshold estimation technique on real-world data. Linkage of the synthetic datasets using the estimated probabilities produced an F-measure that was comparable to the F-measure using calculated probabilities, even with up to 20% error. Linkage of the administrative datasets using estimated probabilities produced an F-measure that was higher than the F-measure using calculated probabilities. Further, the threshold estimation yielded results for F-measure that were only slightly below the highest possible for those probabilities. The method appears highly accurate across a spectrum of datasets with varying degrees of error. As there are few alternatives for parameter estimation, the approach is a major step towards providing a complete operational approach for probabilistic linkage of privacy-preserved datasets.

  5. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE PAGES

    Butler, Troy; Wildey, Timothy

    2018-01-01

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  6. Utilizing Adjoint-Based Error Estimates for Surrogate Models to Accurately Predict Probabilities of Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Troy; Wildey, Timothy

    In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less

  7. Relation between minimum-error discrimination and optimum unambiguous discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Daowen; SQIG-Instituto de Telecomunicacoes, Departamento de Matematica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Avenida Rovisco Pais PT-1049-001, Lisbon; Li Lvjun

    2010-09-15

    In this paper, we investigate the relationship between the minimum-error probability Q{sub E} of ambiguous discrimination and the optimal inconclusive probability Q{sub U} of unambiguous discrimination. It is known that for discriminating two states, the inequality Q{sub U{>=}}2Q{sub E} has been proved in the literature. The main technical results are as follows: (1) We show that, for discriminating more than two states, Q{sub U{>=}}2Q{sub E} may not hold again, but the infimum of Q{sub U}/Q{sub E} is 1, and there is no supremum of Q{sub U}/Q{sub E}, which implies that the failure probabilities of the two schemes for discriminating somemore » states may be narrowly or widely gapped. (2) We derive two concrete formulas of the minimum-error probability Q{sub E} and the optimal inconclusive probability Q{sub U}, respectively, for ambiguous discrimination and unambiguous discrimination among arbitrary m simultaneously diagonalizable mixed quantum states with given prior probabilities. In addition, we show that Q{sub E} and Q{sub U} satisfy the relationship that Q{sub U{>=}}(m/m-1)Q{sub E}.« less

  8. The evolution of language

    PubMed Central

    Nowak, Martin A.; Krakauer, David C.

    1999-01-01

    The emergence of language was a defining moment in the evolution of modern humans. It was an innovation that changed radically the character of human society. Here, we provide an approach to language evolution based on evolutionary game theory. We explore the ways in which protolanguages can evolve in a nonlinguistic society and how specific signals can become associated with specific objects. We assume that early in the evolution of language, errors in signaling and perception would be common. We model the probability of misunderstanding a signal and show that this limits the number of objects that can be described by a protolanguage. This “error limit” is not overcome by employing more sounds but by combining a small set of more easily distinguishable sounds into words. The process of “word formation” enables a language to encode an essentially unlimited number of objects. Next, we analyze how words can be combined into sentences and specify the conditions for the evolution of very simple grammatical rules. We argue that grammar originated as a simplified rule system that evolved by natural selection to reduce mistakes in communication. Our theory provides a systematic approach for thinking about the origin and evolution of human language. PMID:10393942

  9. On the sensitivity of TG-119 and IROC credentialing to TPS commissioning errors.

    PubMed

    McVicker, Drew; Yin, Fang-Fang; Adamson, Justus D

    2016-01-08

    We investigate the sensitivity of IMRT commissioning using the TG-119 C-shape phantom and credentialing with the IROC head and neck phantom to treatment planning system commissioning errors. We introduced errors into the various aspects of the commissioning process for a 6X photon energy modeled using the analytical anisotropic algorithm within a commercial treatment planning system. Errors were implemented into the various components of the dose calculation algorithm including primary photons, secondary photons, electron contamination, and MLC parameters. For each error we evaluated the probability that it could be committed unknowingly during the dose algorithm commissioning stage, and the probability of it being identified during the verification stage. The clinical impact of each commissioning error was evaluated using representative IMRT plans including low and intermediate risk prostate, head and neck, mesothelioma, and scalp; the sensitivity of the TG-119 and IROC phantoms was evaluated by comparing dosimetric changes to the dose planes where film measurements occur and change in point doses where dosimeter measurements occur. No commissioning errors were found to have both a low probability of detection and high clinical severity. When errors do occur, the IROC credentialing and TG 119 commissioning criteria are generally effective at detecting them; however, for the IROC phantom, OAR point-dose measurements are the most sensitive despite being currently excluded from IROC analysis. Point-dose measurements with an absolute dose constraint were the most effective at detecting errors, while film analysis using a gamma comparison and the IROC film distance to agreement criteria were less effective at detecting the specific commissioning errors implemented here.

  10. Improving specialist drug prescribing in primary care using task and error analysis: an observational study.

    PubMed

    Chana, Narinder; Porat, Talya; Whittlesea, Cate; Delaney, Brendan

    2017-03-01

    Electronic prescribing has benefited from computerised clinical decision support systems (CDSSs); however, no published studies have evaluated the potential for a CDSS to support GPs in prescribing specialist drugs. To identify potential weaknesses and errors in the existing process of prescribing specialist drugs that could be addressed in the development of a CDSS. Semi-structured interviews with key informants followed by an observational study involving GPs in the UK. Twelve key informants were interviewed to investigate the use of CDSSs in the UK. Nine GPs were observed while performing case scenarios depicting requests from hospitals or patients to prescribe a specialist drug. Activity diagrams, hierarchical task analysis, and systematic human error reduction and prediction approach analyses were performed. The current process of prescribing specialist drugs by GPs is prone to error. Errors of omission due to lack of information were the most common errors, which could potentially result in a GP prescribing a specialist drug that should only be prescribed in hospitals, or prescribing a specialist drug without reference to a shared care protocol. Half of all possible errors in the prescribing process had a high probability of occurrence. A CDSS supporting GPs during the process of prescribing specialist drugs is needed. This could, first, support the decision making of whether or not to undertake prescribing, and, second, provide drug-specific parameters linked to shared care protocols, which could reduce the errors identified and increase patient safety. © British Journal of General Practice 2017.

  11. Quantization of high dimensional Gaussian vector using permutation modulation with application to information reconciliation in continuous variable QKD

    NASA Astrophysics Data System (ADS)

    Daneshgaran, Fred; Mondin, Marina; Olia, Khashayar

    This paper is focused on the problem of Information Reconciliation (IR) for continuous variable Quantum Key Distribution (QKD). The main problem is quantization and assignment of labels to the samples of the Gaussian variables observed at Alice and Bob. Trouble is that most of the samples, assuming that the Gaussian variable is zero mean which is de-facto the case, tend to have small magnitudes and are easily disturbed by noise. Transmission over longer and longer distances increases the losses corresponding to a lower effective Signal-to-Noise Ratio (SNR) exasperating the problem. Quantization over higher dimensions is advantageous since it allows for fractional bit per sample accuracy which may be needed at very low SNR conditions whereby the achievable secret key rate is significantly less than one bit per sample. In this paper, we propose to use Permutation Modulation (PM) for quantization of Gaussian vectors potentially containing thousands of samples. PM is applied to the magnitudes of the Gaussian samples and we explore the dependence of the sign error probability on the magnitude of the samples. At very low SNR, we may transmit the entire label of the PM code from Bob to Alice in Reverse Reconciliation (RR) over public channel. The side information extracted from this label can then be used by Alice to characterize the sign error probability of her individual samples. Forward Error Correction (FEC) coding can be used by Bob on each subset of samples with similar sign error probability to aid Alice in error correction. This can be done for different subsets of samples with similar sign error probabilities leading to an Unequal Error Protection (UEP) coding paradigm.

  12. Publisher Correction: Polymorphic design of DNA origami structures through mechanical control of modular components.

    PubMed

    Lee, Chanseok; Lee, Jae Young; Kim, Do-Nyun

    2018-02-07

    The originally published version of this Article contained an error in Figure 5. In panel f, the right y-axis 'Strain energy (kbT)' was labelled 'Probability' and the left y-axis 'Probability' was labelled 'Strain energy (kbT)'. This error has now been corrected in both the PDF and HTML versions of the Article.

  13. A contemporary approach to the problem of determining physical parameters according to the results of measurements

    NASA Technical Reports Server (NTRS)

    Elyasberg, P. Y.

    1979-01-01

    The shortcomings of the classical approach are set forth, and the newer methods resulting from these shortcomings are explained. The problem was approached with the assumption that the probabilities of error were known, as well as without knowledge of the distribution of the probabilities of error. The advantages of the newer approach are discussed.

  14. An Upper Bound on High Speed Satellite Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, PC †, have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum PC. If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but potentially useful Pc upper bound.

  15. The decline and fall of Type II error rates

    Treesearch

    Steve Verrill; Mark Durst

    2005-01-01

    For general linear models with normally distributed random errors, the probability of a Type II error decreases exponentially as a function of sample size. This potentially rapid decline reemphasizes the importance of performing power calculations.

  16. Quantum state discrimination bounds for finite sample size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audenaert, Koenraad M. R.; Mosonyi, Milan; Mathematical Institute, Budapest University of Technology and Economics, Egry Jozsef u 1., Budapest 1111

    2012-12-15

    In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of the two given and completely known states, {rho} or {sigma}. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking {rho} for {sigma}, or the other way around) are treated as of equal importance or not. Results on the quantum Chernoff and Hoeffding bounds and the quantum Stein'smore » lemma show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between {rho} and {sigma} (the Chernoff distance, the Hoeffding distances, and the relative entropy, respectively). While these results provide a complete solution to the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios one has access only to finitely many copies of a system, and therefore it is desirable to have bounds on the error probabilities for finite sample size. In this paper we provide finite-size bounds on the so-called Stein errors, the Chernoff errors, the Hoeffding errors, and the mixed error probabilities related to the Chernoff and the Hoeffding errors.« less

  17. Understanding seasonal variability of uncertainty in hydrological prediction

    NASA Astrophysics Data System (ADS)

    Li, M.; Wang, Q. J.

    2012-04-01

    Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.

  18. Syndrome Diagnosis: Human Intuition or Machine Intelligence?

    PubMed Central

    Braaten, Øivind; Friestad, Johannes

    2008-01-01

    The aim of this study was to investigate whether artificial intelligence methods can represent objective methods that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated patients - a ‘vector method’ and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a naive Bayes’ calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic methods. PMID:19415142

  19. Syndrome diagnosis: human intuition or machine intelligence?

    PubMed

    Braaten, Oivind; Friestad, Johannes

    2008-01-01

    The aim of this study was to investigate whether artificial intelligence methods can represent objective methods that are essential in syndrome diagnosis. Most syndromes have no external criterion standard of diagnosis. The predictive value of a clinical sign used in diagnosis is dependent on the prior probability of the syndrome diagnosis. Clinicians often misjudge the probabilities involved. Syndromology needs objective methods to ensure diagnostic consistency, and take prior probabilities into account. We applied two basic artificial intelligence methods to a database of machine-generated patients - a 'vector method' and a set method. As reference methods we ran an ID3 algorithm, a cluster analysis and a naive Bayes' calculation on the same patient series. The overall diagnostic error rate for the the vector algorithm was 0.93%, and for the ID3 0.97%. For the clinical signs found by the set method, the predictive values varied between 0.71 and 1.0. The artificial intelligence methods that we used, proved simple, robust and powerful, and represent objective diagnostic methods.

  20. Fundamental Bounds for Sequence Reconstruction from Nanopore Sequencers.

    PubMed

    Magner, Abram; Duda, Jarosław; Szpankowski, Wojciech; Grama, Ananth

    2016-06-01

    Nanopore sequencers are emerging as promising new platforms for high-throughput sequencing. As with other technologies, sequencer errors pose a major challenge for their effective use. In this paper, we present a novel information theoretic analysis of the impact of insertion-deletion (indel) errors in nanopore sequencers. In particular, we consider the following problems: (i) for given indel error characteristics and rate, what is the probability of accurate reconstruction as a function of sequence length; (ii) using replicated extrusion (the process of passing a DNA strand through the nanopore), what is the number of replicas needed to accurately reconstruct the true sequence with high probability? Our results provide a number of important insights: (i) the probability of accurate reconstruction of a sequence from a single sample in the presence of indel errors tends quickly (i.e., exponentially) to zero as the length of the sequence increases; and (ii) replicated extrusion is an effective technique for accurate reconstruction. We show that for typical distributions of indel errors, the required number of replicas is a slow function (polylogarithmic) of sequence length - implying that through replicated extrusion, we can sequence large reads using nanopore sequencers. Moreover, we show that in certain cases, the required number of replicas can be related to information-theoretic parameters of the indel error distributions.

  1. Examination of soldier target recognition with direct view optics

    NASA Astrophysics Data System (ADS)

    Long, Frederick H.; Larkin, Gabriella; Bisordi, Danielle; Dorsey, Shauna; Marianucci, Damien; Goss, Lashawnta; Bastawros, Michael; Misiuda, Paul; Rodgers, Glenn; Mazz, John P.

    2017-10-01

    Target recognition and identification is a problem of great military and scientific importance. To examine the correlation between target recognition and optical magnification, ten U.S. Army soldiers were tasked with identifying letters on targets at 800 and 1300 meters away. Letters were used since they are a standard method for measuring visual acuity. The letters were approximately 90 cm high, which is the size of a well-known rifle. Four direct view optics with angular magnifications of 1.5x, 4x, 6x, and 9x were used. The goal of this approach was to measure actual probabilities for correct target identification. Previous scientific literature suggests that target recognition can be modeled as a linear response problem in angular frequency space using the established values for the contrast sensitivity function for a healthy human eye and the experimentally measured modulation transfer function of the optic. At the 9x magnification, the soldiers could identify the letters with almost no errors (i.e., 97% probability of correct identification). At lower magnification, errors in letter identification were more frequent. The identification errors were not random but occurred most frequently with a few pairs of letters (e.g., O and Q), which is consistent with the literature for letter recognition. In addition, in the small subject sample of ten soldiers, there was considerable variation in the observer recognition capability at 1.5x and a range of 800 meters. This can be directly attributed to the variation in the observer visual acuity.

  2. Asymmetric Memory Circuit Would Resist Soft Errors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Perlman, Marvin

    1990-01-01

    Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.

  3. On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels

    DTIC Science & Technology

    2013-12-01

    Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks

  4. Probability of misclassifying biological elements in surface waters.

    PubMed

    Loga, Małgorzata; Wierzchołowska-Dziedzic, Anna

    2017-11-24

    Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the "true" water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.J.; Bouchard, A.M.; Osbourn, G.C.

    Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed formore » discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.« less

  6. Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gutierrez, Alberto, Jr.

    1995-01-01

    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical suboptimal MLSD receiver, requiring only a single receive filter, is evaluated.

  7. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  8. Human Error: A Concept Analysis

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.

    2007-01-01

    Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.

  9. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    USGS Publications Warehouse

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which maximizes the use of available resources. Increased implementation of approaches that consider detection error promote ecological advancements and conservation and management decisions that are better informed.

  10. A method to compute SEU fault probabilities in memory arrays with error correction

    NASA Technical Reports Server (NTRS)

    Gercek, Gokhan

    1994-01-01

    With the increasing packing densities in VLSI technology, Single Event Upsets (SEU) due to cosmic radiations are becoming more of a critical issue in the design of space avionics systems. In this paper, a method is introduced to compute the fault (mishap) probability for a computer memory of size M words. It is assumed that a Hamming code is used for each word to provide single error correction. It is also assumed that every time a memory location is read, single errors are corrected. Memory is read randomly whose distribution is assumed to be known. In such a scenario, a mishap is defined as two SEU's corrupting the same memory location prior to a read. The paper introduces a method to compute the overall mishap probability for the entire memory for a mission duration of T hours.

  11. Multiple statistical tests: Lessons from a d20.

    PubMed

    Madan, Christopher R

    2016-01-01

    Statistical analyses are often conducted with α= .05. When multiple statistical tests are conducted, this procedure needs to be adjusted to compensate for the otherwise inflated Type I error. In some instances in tabletop gaming, sometimes it is desired to roll a 20-sided die (or 'd20') twice and take the greater outcome. Here I draw from probability theory and the case of a d20, where the probability of obtaining any specific outcome is (1)/ 20, to determine the probability of obtaining a specific outcome (Type-I error) at least once across repeated, independent statistical tests.

  12. The price of complexity in financial networks

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; May, Robert M.; Roukny, Tarik; Stiglitz, Joseph E.

    2016-09-01

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises.

  13. The price of complexity in financial networks.

    PubMed

    Battiston, Stefano; Caldarelli, Guido; May, Robert M; Roukny, Tarik; Stiglitz, Joseph E

    2016-09-06

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises.

  14. Culture Representation in Human Reliability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Gertman; Julie Marble; Steven Novack

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991)more » cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.« less

  15. Permanence analysis of a concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.; Kasami, T.

    1983-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.

  16. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  17. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities.

    PubMed

    Blöchliger, Nicolas; Keller, Peter M; Böttger, Erik C; Hombach, Michael

    2017-09-01

    The procedure for setting clinical breakpoints (CBPs) for antimicrobial susceptibility has been poorly standardized with respect to population data, pharmacokinetic parameters and clinical outcome. Tools to standardize CBP setting could result in improved antibiogram forecast probabilities. We propose a model to estimate probabilities for methodological categorization errors and defined zones of methodological uncertainty (ZMUs), i.e. ranges of zone diameters that cannot reliably be classified. The impact of ZMUs on methodological error rates was used for CBP optimization. The model distinguishes theoretical true inhibition zone diameters from observed diameters, which suffer from methodological variation. True diameter distributions are described with a normal mixture model. The model was fitted to observed inhibition zone diameters of clinical Escherichia coli strains. Repeated measurements for a quality control strain were used to quantify methodological variation. For 9 of 13 antibiotics analysed, our model predicted error rates of < 0.1% applying current EUCAST CBPs. Error rates were > 0.1% for ampicillin, cefoxitin, cefuroxime and amoxicillin/clavulanic acid. Increasing the susceptible CBP (cefoxitin) and introducing ZMUs (ampicillin, cefuroxime, amoxicillin/clavulanic acid) decreased error rates to < 0.1%. ZMUs contained low numbers of isolates for ampicillin and cefuroxime (3% and 6%), whereas the ZMU for amoxicillin/clavulanic acid contained 41% of all isolates and was considered not practical. We demonstrate that CBPs can be improved and standardized by minimizing methodological categorization error rates. ZMUs may be introduced if an intermediate zone is not appropriate for pharmacokinetic/pharmacodynamic or drug dosing reasons. Optimized CBPs will provide a standardized antibiotic susceptibility testing interpretation at a defined level of probability. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The Bayesian Approach to Association

    NASA Astrophysics Data System (ADS)

    Arora, N. S.

    2017-12-01

    The Bayesian approach to Association focuses mainly on quantifying the physics of the domain. In the case of seismic association for instance let X be the set of all significant events (above some threshold) and their attributes, such as location, time, and magnitude, Y1 be the set of detections that are caused by significant events and their attributes such as seismic phase, arrival time, amplitude etc., Y2 be the set of detections that are not caused by significant events, and finally Y be the set of observed detections We would now define the joint distribution P(X, Y1, Y2, Y) = P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2) ; where the last term simply states that Y1 and Y2 are a partitioning of Y. Given the above joint distribution the inference problem is simply to find the X, Y1, and Y2 that maximizes posterior probability P(X, Y1, Y2| Y) which reduces to maximizing P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2). In this expression P(X) captures our prior belief about event locations. P(Y1 | X) captures notions of travel time, residual error distributions as well as detection and mis-detection probabilities. While P(Y2) captures the false detection rate of our seismic network. The elegance of this approach is that all of the assumptions are stated clearly in the model for P(X), P(Y1|X) and P(Y2). The implementation of the inference is merely a by-product of this model. In contrast some of the other methods such as GA hide a number of assumptions in the implementation details of the inference - such as the so called "driver cells." The other important aspect of this approach is that all seismic knowledge including knowledge from other domains such as infrasound and hydroacoustic can be included in the same model. So, we don't need to separately account for misdetections or merge seismic and infrasound events as a separate step. Finally, it should be noted that the objective of automatic association is to simplify the job of humans who are publishing seismic bulletins based on this output. The error metric for association should accordingly count errors such as missed events much higher than spurious events because the former require more work from humans. Furthermore, the error rate needs to be weighted higher during periods of high seismicity such as an aftershock sequence when the human effort tends to increase.

  19. The Performance of Noncoherent Orthogonal M-FSK in the Presence of Timing and Frequency Errors

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami; Simon, Marvin K.; Raphaeli, Dan

    1993-01-01

    Practical M-FSK systems experience a combination of time and frequency offsets (errors). This paper assesses the deleterious effect of these offsets, first individually and then combined, on the average bit error probability performance of the system.

  20. Performance analysis of a cascaded coding scheme with interleaved outer code

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.

  1. Parameters affecting of Akkuyu's safety assessment for severe core damages

    NASA Astrophysics Data System (ADS)

    Kavun, Yusuf; Karasulu, Muzaffer

    2015-07-01

    We have looked at all past core meltdowns (Three Mile Island, Chernobyl and Fukushima incidents) and postulated the fourth one might be taking place in the future most probably in a newly built reactors anywhere of the earth in any type of NPP. The probability of this observation is high considering the nature of the machine and human interaction. Operation experience is a very significant parameter as well as the safety culture of the host nation. The concerns is not just a lack of experience with industry with the new comers, but also the infrastructure and established institutions who will be dealing with the Emergencies. Lack of trained and educated Emergency Response Organizations (ERO) is a major concern. The culture on simple fire drills even makes the difference when a severe condition occurs in the industry. The study assumes the fourth event will be taking place at the Akkuyu NGS and works backwards as required by the "what went wrong " scenarios and comes up with interesting results. The differences studied in depth to determine the impact to the severe accidents. The all four design have now core catchers. We have looked at the operator errors'like in TMI); Operator errors combined with design deficiencies(like in Chernobyl) and natural disasters( like in Fukushima) and found operator errors to be more probable event on the Akkuyu's postulated next incident. With respect to experiences of the operators we do not have any data except for long and successful operating history of the Soviet design reactors up until the Chernobyl incident. Since the Akkuyu will be built, own and operated by the Russians we have found no alarming concerns at the moment. At the moment, there is no body be able to operate those units in Turkey. Turkey is planning to build the required manpower during the transition period. The resolution of the observed parameters lies to work and educate, train of the host nation and exercise together.

  2. Deception Undermines the Stability of Cooperation in Games of Indirect Reciprocity.

    PubMed

    Számadó, Szabolcs; Szalai, Ferenc; Scheuring, István

    2016-01-01

    Indirect reciprocity is often claimed as one of the key mechanisms of human cooperation. It works only if there is a reputational score keeping and each individual can inform with high probability which other individuals were good or bad in the previous round. Gossip is often proposed as a mechanism that can maintain such coherence of reputations in the face of errors of transmission. Random errors, however, are not the only source of uncertainty in such situations. The possibility of deceptive communication, where the signallers aim to misinform the receiver cannot be excluded. While there is plenty of evidence for deceptive communication in humans the possibility of deception is not yet incorporated into models of indirect reciprocity. Here we show that when deceptive strategies are allowed in the population it will cause the collapse of the coherence of reputations and thus in turn it results the collapse of cooperation. This collapse is independent of the norms and the cost and benefit values. It is due to the fact that there is no selection for honest communication in the framework of indirect reciprocity. It follows that indirect reciprocity can be only proposed plausibly as a mechanism of human cooperation if additional mechanisms are specified in the model that maintains honesty.

  3. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.

  4. A Sensitivity Analysis of Circular Error Probable Approximation Techniques

    DTIC Science & Technology

    1992-03-01

    SENSITIVITY ANALYSIS OF CIRCULAR ERROR PROBABLE APPROXIMATION TECHNIQUES THESIS Presented to the Faculty of the School of Engineering of the Air Force...programming skills. Major Paul Auclair patiently advised me in this endeavor, and Major Andy Howell added numerous insightful contributions. I thank my...techniques. The two ret(st accuratec techniiques require numerical integration and can take several hours to run ov a personal comlputer [2:1-2,4-6]. Some

  5. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  6. Observation and analysis of high-speed human motion with frequent occlusion in a large area

    NASA Astrophysics Data System (ADS)

    Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng

    2009-12-01

    The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.

  7. Measurement error in earnings data: Using a mixture model approach to combine survey and register data.

    PubMed

    Meijer, Erik; Rohwedder, Susann; Wansbeek, Tom

    2012-01-01

    Survey data on earnings tend to contain measurement error. Administrative data are superior in principle, but they are worthless in case of a mismatch. We develop methods for prediction in mixture factor analysis models that combine both data sources to arrive at a single earnings figure. We apply the methods to a Swedish data set. Our results show that register earnings data perform poorly if there is a (small) probability of a mismatch. Survey earnings data are more reliable, despite their measurement error. Predictors that combine both and take conditional class probabilities into account outperform all other predictors.

  8. Soft-decision decoding techniques for linear block codes and their error performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1996-01-01

    The first paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. The second paper derives an upper bound on the probability of block error for multilevel concatenated codes (MLCC). The bound evaluates difference in performance for different decompositions of some codes. The third paper investigates the bit error probability code for maximum likelihood decoding of binary linear codes. The fourth and final paper included in this report is concerns itself with the construction of multilevel concatenated block modulation codes using a multilevel concatenation scheme for the frequency non-selective Rayleigh fading channel.

  9. The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2008-01-01

    We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.

  10. Probabilistic confidence for decisions based on uncertain reliability estimates

    NASA Astrophysics Data System (ADS)

    Reid, Stuart G.

    2013-05-01

    Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.

  11. Medial prefrontal cortex as an action-outcome predictor.

    PubMed

    Alexander, William H; Brown, Joshua W

    2011-09-18

    The medial prefrontal cortex (mPFC) and especially anterior cingulate cortex is central to higher cognitive function and many clinical disorders, yet its basic function remains in dispute. Various competing theories of mPFC have treated effects of errors, conflict, error likelihood, volatility and reward, using findings from neuroimaging and neurophysiology in humans and monkeys. No single theory has been able to reconcile and account for the variety of findings. Here we show that a simple model based on standard learning rules can simulate and unify an unprecedented range of known effects in mPFC. The model reinterprets many known effects and suggests a new view of mPFC, as a region concerned with learning and predicting the likely outcomes of actions, whether good or bad. Cognitive control at the neural level is then seen as a result of evaluating the probable and actual outcomes of one's actions. © 2011 Nature America, Inc. All rights reserved.

  12. Medial prefrontal cortex as an action-outcome predictor

    PubMed Central

    Alexander, William H.; Brown, Joshua W.

    2011-01-01

    The medial prefrontal cortex (mPFC) and especially anterior cingulate cortex (ACC) is central to higher cognitive function and numerous clinical disorders, yet its basic function remains in dispute. Various competing theories of mPFC have treated effects of errors, conflict, error likelihood, volatility, and reward, based on findings from neuroimaging and neurophysiology in humans and monkeys. To date, no single theory has been able to reconcile and account for the variety of findings. Here we show that a simple model based on standard learning rules can simulate and unify an unprecedented range of known effects in mPFC. The model reinterprets many known effects and suggests a new view of mPFC, as a region concerned with learning and predicting the likely outcomes of actions, whether good or bad. Cognitive control at the neural level is then seen as a result of evaluating the probable and actual outcomes of one's actions. PMID:21926982

  13. The price of complexity in financial networks

    PubMed Central

    May, Robert M.; Roukny, Tarik; Stiglitz, Joseph E.

    2016-01-01

    Financial institutions form multilayer networks by engaging in contracts with each other and by holding exposures to common assets. As a result, the default probability of one institution depends on the default probability of all of the other institutions in the network. Here, we show how small errors on the knowledge of the network of contracts can lead to large errors in the probability of systemic defaults. From the point of view of financial regulators, our findings show that the complexity of financial networks may decrease the ability to mitigate systemic risk, and thus it may increase the social cost of financial crises. PMID:27555583

  14. Gaussian Hypothesis Testing and Quantum Illumination.

    PubMed

    Wilde, Mark M; Tomamichel, Marco; Lloyd, Seth; Berta, Mario

    2017-09-22

    Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.

  15. Latin hypercube approach to estimate uncertainty in ground water vulnerability

    USGS Publications Warehouse

    Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.

    2007-01-01

    A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.

  16. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  17. Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    PubMed Central

    Crawford, Forrest W.; Suchard, Marc A.

    2011-01-01

    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λn and a particle dies with instantaneous rate μn. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics. PMID:21984359

  18. Human Error In Complex Systems

    NASA Technical Reports Server (NTRS)

    Morris, Nancy M.; Rouse, William B.

    1991-01-01

    Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.

  19. From Threat to Fear: The neural organization of defensive fear systems in humans

    PubMed Central

    Mobbs, Dean; Marchant, Jennifer L; Hassabis, Demis; Seymour, Ben; Tan, Geoffrey; Gray, Marcus; Petrovic, Predrag; Dolan, Raymond J.; Frith, Christopher D.

    2009-01-01

    Post-encounter and circa-strike defensive contexts represent two adaptive responses to potential and imminent danger. In the context of a predator, the post-encounter reflects the initial detection of the potential threat, whilst the circa-strike is associated with direct predatory attack. We used fMRI to investigate the neural organization of anticipation and avoidance of artificial predators with high or low probability of capturing the subject across analogous post-encounter and circa-strike contexts of threat. Consistent with defense systems models, post-encounter threat elicited activity in forebrain areas including subgenual anterior cingulate cortex (sgACC), hippocampus and amygdala. Conversely, active avoidance during circa-strike threat increased activity in mid-dorsal ACC and midbrain areas. During the circa-strike condition, subjects showed increased coupling between the midbrain and mid-dorsal ACC and decreased coupling with the sgACC, amygdala and hippocampus. Greater activity was observed in the right pregenual ACC for high compared to low probability of capture during circa-strike threat. This region showed decreased coupling with the amygdala, insula and ventromedial prefrontal cortex. Finally, we found that locomotor errors correlated with subjective reports of panic for the high compared to low probability of capture during the circa-strike threat and these panic-related locomotor errors were correlated with midbrain activity. These findings support models suggesting that higher forebrain areas are involved in early threat responses, including the assignment and control of fear, whereas as imminent danger results in fast, likely “hard-wired”, defensive reactions mediated by the midbrain. PMID:19793982

  20. Understanding human management of automation errors

    PubMed Central

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  1. Understanding human management of automation errors.

    PubMed

    McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D

    2014-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance.

  2. Hybrid computer technique yields random signal probability distributions

    NASA Technical Reports Server (NTRS)

    Cameron, W. D.

    1965-01-01

    Hybrid computer determines the probability distributions of instantaneous and peak amplitudes of random signals. This combined digital and analog computer system reduces the errors and delays of manual data analysis.

  3. Estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean.

    PubMed

    Schillaci, Michael A; Schillaci, Mario E

    2009-02-01

    The use of small sample sizes in human and primate evolutionary research is commonplace. Estimating how well small samples represent the underlying population, however, is not commonplace. Because the accuracy of determinations of taxonomy, phylogeny, and evolutionary process are dependant upon how well the study sample represents the population of interest, characterizing the uncertainty, or potential error, associated with analyses of small sample sizes is essential. We present a method for estimating the probability that the sample mean is within a desired fraction of the standard deviation of the true mean using small (n<10) or very small (n < or = 5) sample sizes. This method can be used by researchers to determine post hoc the probability that their sample is a meaningful approximation of the population parameter. We tested the method using a large craniometric data set commonly used by researchers in the field. Given our results, we suggest that sample estimates of the population mean can be reasonable and meaningful even when based on small, and perhaps even very small, sample sizes.

  4. Quantum-state comparison and discrimination

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2018-05-01

    We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.

  5. Human operator response to error-likely situations in complex engineering systems

    NASA Technical Reports Server (NTRS)

    Morris, Nancy M.; Rouse, William B.

    1988-01-01

    The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.

  6. Type-II generalized family-wise error rate formulas with application to sample size determination.

    PubMed

    Delorme, Phillipe; de Micheaux, Pierre Lafaye; Liquet, Benoit; Riou, Jérémie

    2016-07-20

    Multiple endpoints are increasingly used in clinical trials. The significance of some of these clinical trials is established if at least r null hypotheses are rejected among m that are simultaneously tested. The usual approach in multiple hypothesis testing is to control the family-wise error rate, which is defined as the probability that at least one type-I error is made. More recently, the q-generalized family-wise error rate has been introduced to control the probability of making at least q false rejections. For procedures controlling this global type-I error rate, we define a type-II r-generalized family-wise error rate, which is directly related to the r-power defined as the probability of rejecting at least r false null hypotheses. We obtain very general power formulas that can be used to compute the sample size for single-step and step-wise procedures. These are implemented in our R package rPowerSampleSize available on the CRAN, making them directly available to end users. Complexities of the formulas are presented to gain insight into computation time issues. Comparison with Monte Carlo strategy is also presented. We compute sample sizes for two clinical trials involving multiple endpoints: one designed to investigate the effectiveness of a drug against acute heart failure and the other for the immunogenicity of a vaccine strategy against pneumococcus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Multiple symbol partially coherent detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  8. Probability Theory, Not the Very Guide of Life

    ERIC Educational Resources Information Center

    Juslin, Peter; Nilsson, Hakan; Winman, Anders

    2009-01-01

    Probability theory has long been taken as the self-evident norm against which to evaluate inductive reasoning, and classical demonstrations of violations of this norm include the conjunction error and base-rate neglect. Many of these phenomena require multiplicative probability integration, whereas people seem more inclined to linear additive…

  9. Human error and human factors engineering in health care.

    PubMed

    Welch, D L

    1997-01-01

    Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.

  10. When bad things happen: adverse event reporting and disclosure as patient safety and risk management tools in the neonatal intensive care unit.

    PubMed

    Donn, Steven M; McDonnell, William M

    2012-01-01

    The Institute of Medicine has recommended a change in culture from "name and blame" to patient safety. This will require system redesign to identify and address errors, establish performance standards, and set safety expectations. This approach, however, is at odds with the present medical malpractice (tort) system. The current system is outcomes-based, meaning that health care providers and institutions are often sued despite providing appropriate care. Nevertheless, the focus should remain to provide the safest patient care. Effective peer review may be hindered by the present tort system. Reporting of medical errors is a key piece of peer review and education, and both anonymous reporting and confidential reporting of errors have potential disadvantages. Diagnostic and treatment errors continue to be the leading sources of allegations of malpractice in pediatrics, and the neonatal intensive care unit is uniquely vulnerable. Most errors result from systems failures rather than human error. Risk management can be an effective process to identify, evaluate, and address problems that may injure patients, lead to malpractice claims, and result in financial losses. Risk management identifies risk or potential risk, calculates the probability of an adverse event arising from a risk, estimates the impact of the adverse event, and attempts to control the risk. Implementation of a successful risk management program requires a positive attitude, sufficient knowledge base, and a commitment to improvement. Transparency in the disclosure of medical errors and a strategy of prospective risk management in dealing with medical errors may result in a substantial reduction in medical malpractice lawsuits, lower litigation costs, and a more safety-conscious environment. Thieme Medical Publishers, Inc.

  11. Applications of integrated human error identification techniques on the chemical cylinder change task.

    PubMed

    Cheng, Ching-Min; Hwang, Sheue-Ling

    2015-03-01

    This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Development of a Methodology to Optimally Allocate Visual Inspection Time

    DTIC Science & Technology

    1989-06-01

    Model and then takes into account the costs of the errors. The purpose of the Alternative Model is to not make 104 costly mistakes while meeting the...James Buck, and Virgil Anderson, AIIE Transactions, Volume 11, No.4, December 1979. 26. "Inspection of Sheet Materials - Model and Data", Colin G. Drury ...worker error, the probability of inspector error, and the cost of system error. Paired comparisons of error phenomena from operational personnel are

  13. Discrepancy-based error estimates for Quasi-Monte Carlo III. Error distributions and central limits

    NASA Astrophysics Data System (ADS)

    Hoogland, Jiri; Kleiss, Ronald

    1997-04-01

    In Quasi-Monte Carlo integration, the integration error is believed to be generally smaller than in classical Monte Carlo with the same number of integration points. Using an appropriate definition of an ensemble of quasi-random point sets, we derive various results on the probability distribution of the integration error, which can be compared to the standard Central Limit Theorem for normal stochastic sampling. In many cases, a Gaussian error distribution is obtained.

  14. On the Discriminant Analysis in the 2-Populations Case

    NASA Astrophysics Data System (ADS)

    Rublík, František

    2008-01-01

    The empirical Bayes Gaussian rule, which in the normal case yields good values of the probability of total error, may yield high values of the maximum probability error. From this point of view the presented modified version of the classification rule of Broffitt, Randles and Hogg appears to be superior. The modification included in this paper is termed as a WR method, and the choice of its weights is discussed. The mentioned methods are also compared with the K nearest neighbours classification rule.

  15. Towards automatic Markov reliability modeling of computer architectures

    NASA Technical Reports Server (NTRS)

    Liceaga, C. A.; Siewiorek, D. P.

    1986-01-01

    The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation.

  16. Behavioral economics.

    PubMed

    Chambers, David W

    2009-01-01

    It is human nature to overestimate how rational we are, both in general and even when we are trying to be. Such irrationality is not random, and the search for and explanation of patterns of fuzzy thinking is the basis for a new academic discipline known as behavioral economics. Examples are given of some of the best understood of our foibles, including prospect theory, framing, anchoring, salience, confirmation bias, superstition, and ownership. Humans have two cognitive systems: one conscious, deliberate, slow, and rational; the other fast, pattern-based, emotionally tinged, and intuitive. Each is subject to its own kind of error. In the case of rational thought, we tend to exaggerate our capacity; for intuition, we fail to train it or recognize contexts where it is inappropriate. Humans are especially poor at estimating probabilities, or even understanding what they are. It is a common human failing to reason backwards from random outcomes that are favorable to beliefs about our power to predict the future. Five suggestions are offered for thinking within our means.

  17. Nonparametric probability density estimation by optimization theoretic techniques

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1976-01-01

    Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.

  18. Conflict Probability Estimation for Free Flight

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Heinz

    1996-01-01

    The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.

  19. Memorabeatlia: a naturalistic study of long-term memory.

    PubMed

    Hyman, I E; Rubin, D C

    1990-03-01

    Seventy-six undergraduates were given the titles and first lines of Beatles' songs and asked to recall the songs. Seven hundred and four different undergraduates were cued with one line from each of 25 Beatles' songs and asked to recall the title. The probability of recalling a line was best predicted by the number of times a line was repeated in the song and how early the line first appeared in the song. The probability of cuing to the title was best predicted by whether the line shared words with the title. Although the subjects recalled only 21% of the lines, there were very few errors in recall, and the errors rarely violated the rhythmic, poetic, or thematic constraints of the songs. Acting together, these constraints can account for the near verbatim recall observed. Fourteen subjects, who transcribed one song, made fewer and different errors than the subjects who had recalled the song, indicating that the errors in recall were not primarily the result of errors in encoding.

  20. Human error in airway facilities.

    DOT National Transportation Integrated Search

    2001-01-01

    This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being : passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. : Human factors engin...

  1. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  2. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  3. Fusion of Scores in a Detection Context Based on Alpha Integration.

    PubMed

    Soriano, Antonio; Vergara, Luis; Ahmed, Bouziane; Salazar, Addisson

    2015-09-01

    We present a new method for fusing scores corresponding to different detectors (two-hypotheses case). It is based on alpha integration, which we have adapted to the detection context. Three optimization methods are presented: least mean square error, maximization of the area under the ROC curve, and minimization of the probability of error. Gradient algorithms are proposed for the three methods. Different experiments with simulated and real data are included. Simulated data consider the two-detector case to illustrate the factors influencing alpha integration and demonstrate the improvements obtained by score fusion with respect to individual detector performance. Two real data cases have been considered. In the first, multimodal biometric data have been processed. This case is representative of scenarios in which the probability of detection is to be maximized for a given probability of false alarm. The second case is the automatic analysis of electroencephalogram and electrocardiogram records with the aim of reproducing the medical expert detections of arousal during sleeping. This case is representative of scenarios in which probability of error is to be minimized. The general superior performance of alpha integration verifies the interest of optimizing the fusing parameters.

  4. Learn-as-you-go acceleration of cosmological parameter estimates

    NASA Astrophysics Data System (ADS)

    Aslanyan, Grigor; Easther, Richard; Price, Layne C.

    2015-09-01

    Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.

  5. Learn-as-you-go acceleration of cosmological parameter estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslanyan, Grigor; Easther, Richard; Price, Layne C., E-mail: g.aslanyan@auckland.ac.nz, E-mail: r.easther@auckland.ac.nz, E-mail: lpri691@aucklanduni.ac.nz

    2015-09-01

    Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitlymore » describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.« less

  6. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    PubMed

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. Noise Estimation and Adaptive Encoding for Asymmetric Quantum Error Correcting Codes

    NASA Astrophysics Data System (ADS)

    Florjanczyk, Jan; Brun, Todd; CenterQuantum Information Science; Technology Team

    We present a technique that improves the performance of asymmetric quantum error correcting codes in the presence of biased qubit noise channels. Our study is motivated by considering what useful information can be learned from the statistics of syndrome measurements in stabilizer quantum error correcting codes (QECC). We consider the case of a qubit dephasing channel where the dephasing axis is unknown and time-varying. We are able to estimate the dephasing angle from the statistics of the standard syndrome measurements used in stabilizer QECC's. We use this estimate to rotate the computational basis of the code in such a way that the most likely type of error is covered by the highest distance of the asymmetric code. In particular, we use the [ [ 15 , 1 , 3 ] ] shortened Reed-Muller code which can correct one phase-flip error but up to three bit-flip errors. In our simulations, we tune the computational basis to match the estimated dephasing axis which in turn leads to a decrease in the probability of a phase-flip error. With a sufficiently accurate estimate of the dephasing axis, our memory's effective error is dominated by the much lower probability of four bit-flips. Aro MURI Grant No. W911NF-11-1-0268.

  8. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  9. Inference of emission rates from multiple sources using Bayesian probability theory.

    PubMed

    Yee, Eugene; Flesch, Thomas K

    2010-03-01

    The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.

  10. Precoded spatial multiplexing MIMO system with spatial component interleaver.

    PubMed

    Gao, Xiang; Wu, Zhanji

    In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.

  11. Radar detection with the Neyman-Pearson criterion using supervised-learning-machines trained with the cross-entropy error

    NASA Astrophysics Data System (ADS)

    Jarabo-Amores, María-Pilar; la Mata-Moya, David de; Gil-Pita, Roberto; Rosa-Zurera, Manuel

    2013-12-01

    The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is explored in this article. The detector is implemented with a learning machine that implements a discriminant function, which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the calculation of the function the learning machine approximates to during training, and the application of a sufficient condition for a discriminant function to be used to approximate the optimum Neyman-Pearson (NP) detector. In this article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some experiments about signal detection using neural networks are also presented to test the validity of the study.

  12. A multistate dynamic site occupancy model for spatially aggregated sessile communities

    USGS Publications Warehouse

    Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2017-01-01

    Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.

  13. Maximizing the probability of satisfying the clinical goals in radiation therapy treatment planning under setup uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredriksson, Albin, E-mail: albin.fredriksson@raysearchlabs.com; Hårdemark, Björn; Forsgren, Anders

    2015-07-15

    Purpose: This paper introduces a method that maximizes the probability of satisfying the clinical goals in intensity-modulated radiation therapy treatments subject to setup uncertainty. Methods: The authors perform robust optimization in which the clinical goals are constrained to be satisfied whenever the setup error falls within an uncertainty set. The shape of the uncertainty set is included as a variable in the optimization. The goal of the optimization is to modify the shape of the uncertainty set in order to maximize the probability that the setup error will fall within the modified set. Because the constraints enforce the clinical goalsmore » to be satisfied under all setup errors within the uncertainty set, this is equivalent to maximizing the probability of satisfying the clinical goals. This type of robust optimization is studied with respect to photon and proton therapy applied to a prostate case and compared to robust optimization using an a priori defined uncertainty set. Results: Slight reductions of the uncertainty sets resulted in plans that satisfied a larger number of clinical goals than optimization with respect to a priori defined uncertainty sets, both within the reduced uncertainty sets and within the a priori, nonreduced, uncertainty sets. For the prostate case, the plans taking reduced uncertainty sets into account satisfied 1.4 (photons) and 1.5 (protons) times as many clinical goals over the scenarios as the method taking a priori uncertainty sets into account. Conclusions: Reducing the uncertainty sets enabled the optimization to find better solutions with respect to the errors within the reduced as well as the nonreduced uncertainty sets and thereby achieve higher probability of satisfying the clinical goals. This shows that asking for a little less in the optimization sometimes leads to better overall plan quality.« less

  14. On the Determinants of the Conjunction Fallacy: Probability versus Inductive Confirmation

    ERIC Educational Resources Information Center

    Tentori, Katya; Crupi, Vincenzo; Russo, Selena

    2013-01-01

    Major recent interpretations of the conjunction fallacy postulate that people assess the probability of a conjunction according to (non-normative) averaging rules as applied to the constituents' probabilities or represent the conjunction fallacy as an effect of random error in the judgment process. In the present contribution, we contrast such…

  15. Asteroid orbital error analysis: Theory and application

    NASA Technical Reports Server (NTRS)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  16. A Method to Estimate the Probability That Any Individual Cloud-to-Ground Lightning Stroke Was Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.

    2010-01-01

    A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonen, E.P.; Johnson, K.I.; Simonen, F.A.

    The Vessel Integrity Simulation Analysis (VISA-II) code was developed to allow calculations of the failure probability of a reactor pressure vessel subject to defined pressure/temperature transients. A version of the code, revised by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission, was used to evaluate the sensitivities of calculated through-wall flaw probability to material, flaw and calculational assumptions. Probabilities were more sensitive to flaw assumptions than to material or calculational assumptions. Alternative flaw assumptions changed the probabilities by one to two orders of magnitude, whereas alternative material assumptions typically changed the probabilities by a factor of two or less.more » Flaw shape, flaw through-wall position and flaw inspection were sensitivities examined. Material property sensitivities included the assumed distributions in copper content and fracture toughness. Methods of modeling flaw propagation that were evaluated included arrest/reinitiation toughness correlations, multiple toughness values along the length of a flaw, flaw jump distance for each computer simulation and added error in estimating irradiated properties caused by the trend curve correlation error.« less

  18. Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students

    ERIC Educational Resources Information Center

    Malone, Amelia S.; Fuchs, Lynn S.

    2017-01-01

    The three purposes of this study were to (a) describe fraction ordering errors among at-risk fourth grade students, (b) assess the effect of part-whole understanding and accuracy of fraction magnitude estimation on the probability of committing errors, and (c) examine the effect of students' ability to explain comparing problems on the probability…

  19. Auditing as part of the terminology design life cycle.

    PubMed

    Min, Hua; Perl, Yehoshua; Chen, Yan; Halper, Michael; Geller, James; Wang, Yue

    2006-01-01

    To develop and test an auditing methodology for detecting errors in medical terminologies satisfying systematic inheritance. This methodology is based on various abstraction taxonomies that provide high-level views of a terminology and highlight potentially erroneous concepts. Our auditing methodology is based on dividing concepts of a terminology into smaller, more manageable units. First, we divide the terminology's concepts into areas according to their relationships/roles. Then each multi-rooted area is further divided into partial-areas (p-areas) that are singly-rooted. Each p-area contains a set of structurally and semantically uniform concepts. Two kinds of abstraction networks, called the area taxonomy and p-area taxonomy, are derived. These taxonomies form the basis for the auditing approach. Taxonomies tend to highlight potentially erroneous concepts in areas and p-areas. Human reviewers can focus their auditing efforts on the limited number of problematic concepts following two hypotheses on the probable concentration of errors. A sample of the area taxonomy and p-area taxonomy for the Biological Process (BP) hierarchy of the National Cancer Institute Thesaurus (NCIT) was derived from the application of our methodology to its concepts. These views led to the detection of a number of different kinds of errors that are reported, and to confirmation of the hypotheses on error concentration in this hierarchy. Our auditing methodology based on area and p-area taxonomies is an efficient tool for detecting errors in terminologies satisfying systematic inheritance of roles, and thus facilitates their maintenance. This methodology concentrates a domain expert's manual review on portions of the concepts with a high likelihood of errors.

  20. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    PubMed Central

    McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.

    2016-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821

  1. Stochastic Models of Human Errors

    NASA Technical Reports Server (NTRS)

    Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)

    2002-01-01

    Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.

  2. Operational Interventions to Maintenance Error

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki

    1997-01-01

    A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  3. Reduction of Maintenance Error Through Focused Interventions

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)

    1997-01-01

    It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  4. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  5. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  6. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.; Marino, J. T., Jr.

    1974-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-emperical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. Bit error probabilities for non-optimum threshold detection system were also investigated.

  7. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.

    1975-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-empirical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. The bit error probabilities for nonoptimum threshold detection systems were also investigated.

  8. Objective Analysis of Oceanic Data for Coast Guard Trajectory Models Phase II

    DTIC Science & Technology

    1997-12-01

    as outliers depends on the desired probability of false alarm, Pfa values, which is the probability of marking a valid point as an outlier. Table 2-2...constructed to minimize the mean-squared prediction error of the grid point estimate under the constraint that the estimate is unbiased . The...prediction error, e= Zl(S) _oizl(Si)+oC1iZz(S) (2.44) subject to the constraints of unbiasedness , • c/1 = 1,and (2.45) i SCC12 = 0. (2.46) Denoting

  9. Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off

    PubMed Central

    Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.

    2015-01-01

    Fitts’ Law describes the speed-accuracy trade-off of human movements, and it is an elegant strategy that compensates for random and uncontrollable noise in the motor system. The control strategy during targeted movements may also take into account the rewards or costs of any outcomes that may occur. The aim of this study was to test the hypothesis that movement time in Fitts’ Law emerges not only from the accuracy constraints of the task, but also depends on the perceived cost of error for missing the targets. Subjects were asked to touch targets on an iPad® screen with different costs for missed targets. We manipulated the probability of error by comparing children with dystonia (who are characterized by increased intrinsic motor variability) to typically developing children. The results show a strong effect of the cost of error on the Fitts’ Law relationship characterized by an increase in movement time as cost increased. In addition, we observed a greater sensitivity to increased cost for children with dystonia, and this behavior appears to minimize the average cost. The findings support a proposed mathematical model that explains how movement time in a Fitts-like task is related to perceived risk. PMID:26447874

  10. Factors associated with aberrant imprint methylation and oligozoospermia

    PubMed Central

    Kobayashi, Norio; Miyauchi, Naoko; Tatsuta, Nozomi; Kitamura, Akane; Okae, Hiroaki; Hiura, Hitoshi; Sato, Akiko; Utsunomiya, Takafumi; Yaegashi, Nobuo; Nakai, Kunihiko; Arima, Takahiro

    2017-01-01

    Disturbingly, the number of patients with oligozoospermia (low sperm count) has been gradually increasing in industrialized countries. Epigenetic alterations are believed to be involved in this condition. Recent studies have clarified that intrinsic and extrinsic factors can induce epigenetic transgenerational phenotypes through apparent reprogramming of the male germ line. Here we examined DNA methylation levels of 22 human imprinted loci in a total of 221 purified sperm samples from infertile couples and found methylation alterations in 24.8% of the patients. Structural equation model suggested that the cause of imprint methylation errors in sperm might have been environmental factors. More specifically, aberrant methylation and a particular lifestyle (current smoking, excess consumption of carbonated drinks) were associated with severe oligozoospermia, while aging probably affected this pathology indirectly through the accumulation of PCB in the patients. Next we examined the pregnancy outcomes for patients when the sperm had abnormal imprint methylation. The live-birth rate decreased and the miscarriage rate increased with the methylation errors. Our research will be useful for the prevention of methylation errors in sperm from infertile men, and sperm with normal imprint methylation might increase the safety of assisted reproduction technology (ART) by reducing methylation-induced diseases of children conceived via ART. PMID:28186187

  11. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  12. Understanding Decision Making in Critical Care

    PubMed Central

    Lighthall, Geoffrey K.; Vazquez-Guillamet, Cristina

    2015-01-01

    Background Human decision making involves the deliberate formulation of hypotheses and plans as well as the use of subconscious means of judging probability, likely outcome, and proper action. Rationale There is a growing recognition that intuitive strategies such as use of heuristics and pattern recognition described in other industries are applicable to high-acuity environments in medicine. Despite the applicability of theories of cognition to the intensive care unit, a discussion of decision-making strategies is currently absent in the critical care literature. Content This article provides an overview of known cognitive strategies, as well as a synthesis of their use in critical care. By understanding the ways by which humans formulate diagnoses and make critical decisions, we may be able to minimize errors in our own judgments as well as build training activities around known strengths and limitations of cognition. PMID:26387708

  13. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  14. Does prediction error drive one-shot declarative learning?

    PubMed

    Greve, Andrea; Cooper, Elisa; Kaula, Alexander; Anderson, Michael C; Henson, Richard

    2017-06-01

    The role of prediction error (PE) in driving learning is well-established in fields such as classical and instrumental conditioning, reward learning and procedural memory; however, its role in human one-shot declarative encoding is less clear. According to one recent hypothesis, PE reflects the divergence between two probability distributions: one reflecting the prior probability (from previous experiences) and the other reflecting the sensory evidence (from the current experience). Assuming unimodal probability distributions, PE can be manipulated in three ways: (1) the distance between the mode of the prior and evidence, (2) the precision of the prior, and (3) the precision of the evidence. We tested these three manipulations across five experiments, in terms of peoples' ability to encode a single presentation of a scene-item pairing as a function of previous exposures to that scene and/or item. Memory was probed by presenting the scene together with three choices for the previously paired item, in which the two foil items were from other pairings within the same condition as the target item. In Experiment 1, we manipulated the evidence to be either consistent or inconsistent with prior expectations, predicting PE to be larger, and hence memory better, when the new pairing was inconsistent. In Experiments 2a-c, we manipulated the precision of the priors, predicting better memory for a new pairing when the (inconsistent) priors were more precise. In Experiment 3, we manipulated both visual noise and prior exposure for unfamiliar faces, before pairing them with scenes, predicting better memory when the sensory evidence was more precise. In all experiments, the PE hypotheses were supported. We discuss alternative explanations of individual experiments, and conclude the Predictive Interactive Multiple Memory Signals (PIMMS) framework provides the most parsimonious account of the full pattern of results.

  15. The contributions of human factors on human error in Malaysia aviation maintenance industries

    NASA Astrophysics Data System (ADS)

    Padil, H.; Said, M. N.; Azizan, A.

    2018-05-01

    Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.

  16. Effects of structural error on the estimates of parameters of dynamical systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1986-01-01

    In this paper, the notion of 'near-equivalence in probability' is introduced for identifying a system in the presence of several error sources. Following some basic definitions, necessary and sufficient conditions for the identifiability of parameters are given. The effects of structural error on the parameter estimates for both the deterministic and stochastic cases are considered.

  17. Position Error Covariance Matrix Validation and Correction

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  18. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1980-01-01

    Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven

    The PyForecastTools package provides Python routines for calculating metrics for model validation, forecast verification and model comparison. For continuous predictands the package provides functions for calculating bias (mean error, mean percentage error, median log accuracy, symmetric signed bias), and for calculating accuracy (mean squared error, mean absolute error, mean absolute scaled error, normalized RMSE, median symmetric accuracy). Convenience routines to calculate the component parts (e.g. forecast error, scaled error) of each metric are also provided. To compare models the package provides: generic skill score; percent better. Robust measures of scale including median absolute deviation, robust standard deviation, robust coefficient ofmore » variation and the Sn estimator are all provided by the package. Finally, the package implements Python classes for NxN contingency tables. In the case of a multi-class prediction, accuracy and skill metrics such as proportion correct and the Heidke and Peirce skill scores are provided as object methods. The special case of a 2x2 contingency table inherits from the NxN class and provides many additional metrics for binary classification: probability of detection, probability of false detection, false alarm ration, threat score, equitable threat score, bias. Confidence intervals for many of these quantities can be calculated using either the Wald method or Agresti-Coull intervals.« less

  20. Modeling the probability distribution of positional errors incurred by residential address geocoding.

    PubMed

    Zimmerman, Dale L; Fang, Xiangming; Mazumdar, Soumya; Rushton, Gerard

    2007-01-10

    The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km) outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m) than 100%-matched automated geocoding (median error length = 168 m). The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  1. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  2. Probabilistic analysis on the failure of reactivity control for the PWR

    NASA Astrophysics Data System (ADS)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  3. Impact of nonzero boresight pointing errors on the performance of a relay-assisted free-space optical communication system over exponentiated Weibull fading channels.

    PubMed

    Wang, Ping; Liu, Xiaoxia; Cao, Tian; Fu, Huihua; Wang, Ranran; Guo, Lixin

    2016-09-20

    The impact of nonzero boresight pointing errors on the system performance of decode-and-forward protocol-based multihop parallel optical wireless communication systems is studied. For the aggregated fading channel, the atmospheric turbulence is simulated by an exponentiated Weibull model, and pointing errors are described by one recently proposed statistical model including both boresight and jitter. The binary phase-shift keying subcarrier intensity modulation-based analytical average bit error rate (ABER) and outage probability expressions are achieved for a nonidentically and independently distributed system. The ABER and outage probability are then analyzed with different turbulence strengths, receiving aperture sizes, structure parameters (P and Q), jitter variances, and boresight displacements. The results show that aperture averaging offers almost the same system performance improvement with boresight included or not, despite the values of P and Q. The performance enhancement owing to the increase of cooperative path (P) is more evident with nonzero boresight than that with zero boresight (jitter only), whereas the performance deterioration because of the increasing hops (Q) with nonzero boresight is almost the same as that with zero boresight. Monte Carlo simulation is offered to verify the validity of ABER and outage probability expressions.

  4. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  5. Human Reliability and the Cost of Doing Business

    NASA Technical Reports Server (NTRS)

    DeMott, D. L.

    2014-01-01

    Human error cannot be defined unambiguously in advance of it happening, it often becomes an error after the fact. The same action can result in a tragic accident for one situation or a heroic action given a more favorable outcome. People often forget that we employ humans in business and industry for the flexibility and capability to change when needed. In complex systems, operations are driven by their specifications of the system and the system structure. People provide the flexibility to make it work. Human error has been reported as being responsible for 60%-80% of failures, accidents and incidents in high-risk industries. We don't have to accept that all human errors are inevitable. Through the use of some basic techniques, many potential human error events can be addressed. There are actions that can be taken to reduce the risk of human error.

  6. Modeling habitat dynamics accounting for possible misclassification

    USGS Publications Warehouse

    Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.

    2012-01-01

    Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.

  7. Study on the Rationality and Validity of Probit Models of Domino Effect to Chemical Process Equipment caused by Overpressure

    NASA Astrophysics Data System (ADS)

    Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong

    2013-04-01

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.

  8. Estimating alarm thresholds and the number of components in mixture distributions

    NASA Astrophysics Data System (ADS)

    Burr, Tom; Hamada, Michael S.

    2012-09-01

    Mixtures of probability distributions arise in many nuclear assay and forensic applications, including nuclear weapon detection, neutron multiplicity counting, and in solution monitoring (SM) for nuclear safeguards. SM data is increasingly used to enhance nuclear safeguards in aqueous reprocessing facilities having plutonium in solution form in many tanks. This paper provides background for mixture probability distributions and then focuses on mixtures arising in SM data. SM data can be analyzed by evaluating transfer-mode residuals defined as tank-to-tank transfer differences, and wait-mode residuals defined as changes during non-transfer modes. A previous paper investigated impacts on transfer-mode and wait-mode residuals of event marking errors which arise when the estimated start and/or stop times of tank events such as transfers are somewhat different from the true start and/or stop times. Event marking errors contribute to non-Gaussian behavior and larger variation than predicted on the basis of individual tank calibration studies. This paper illustrates evidence for mixture probability distributions arising from such event marking errors and from effects such as condensation or evaporation during non-transfer modes, and pump carryover during transfer modes. A quantitative assessment of the sample size required to adequately characterize a mixture probability distribution arising in any context is included.

  9. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  10. Average BER and outage probability of the ground-to-train OWC link in turbulence with rain

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Yang, Yanqiu; Hu, Beibei; Yu, Lin; Hu, Zheng-Da

    2017-09-01

    The bit-error rate (BER) and outage probability of optical wireless communication (OWC) link for the ground-to-train of the curved track in turbulence with rain is evaluated. Considering the re-modulation effects of raining fluctuation on optical signal modulated by turbulence, we set up the models of average BER and outage probability in the present of pointing errors, based on the double inverse Gaussian (IG) statistical distribution model. The numerical results indicate that, for the same covered track length, the larger curvature radius increases the outage probability and average BER. The performance of the OWC link in turbulence with rain is limited mainly by the rain rate and pointing errors which are induced by the beam wander and train vibration. The effect of the rain rate on the performance of the link is more severe than the atmospheric turbulence, but the fluctuation owing to the atmospheric turbulence affects the laser beam propagation more greatly than the skewness of the rain distribution. Besides, the turbulence-induced beam wander has a more significant impact on the system in heavier rain. We can choose the size of transmitting and receiving apertures and improve the shockproof performance of the tracks to optimize the communication performance of the system.

  11. How to minimize perceptual error and maximize expertise in medical imaging

    NASA Astrophysics Data System (ADS)

    Kundel, Harold L.

    2007-03-01

    Visual perception is such an intimate part of human experience that we assume that it is entirely accurate. Yet, perception accounts for about half of the errors made by radiologists using adequate imaging technology. The true incidence of errors that directly affect patient well being is not known but it is probably at the lower end of the reported values of 3 to 25%. Errors in screening for lung and breast cancer are somewhat better characterized than errors in routine diagnosis. About 25% of cancers actually recorded on the images are missed and cancer is falsely reported in about 5% of normal people. Radiologists must strive to decrease error not only because of the potential impact on patient care but also because substantial variation among observers undermines confidence in the reliability of imaging diagnosis. Observer variation also has a major impact on technology evaluation because the variation between observers is frequently greater than the difference in the technologies being evaluated. This has become particularly important in the evaluation of computer aided diagnosis (CAD). Understanding the basic principles that govern the perception of medical images can provide a rational basis for making recommendations for minimizing perceptual error. It is convenient to organize thinking about perceptual error into five steps. 1) The initial acquisition of the image by the eye-brain (contrast and detail perception). 2) The organization of the retinal image into logical components to produce a literal perception (bottom-up, global, holistic). 3) Conversion of the literal perception into a preferred perception by resolving ambiguities in the literal perception (top-down, simulation, synthesis). 4) Selective visual scanning to acquire details that update the preferred perception. 5) Apply decision criteria to the preferred perception. The five steps are illustrated with examples from radiology with suggestions for minimizing error. The role of perceptual learning in the development of expertise is also considered.

  12. Managing human fallibility in critical aerospace situations

    NASA Astrophysics Data System (ADS)

    Tew, Larry

    2014-11-01

    Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.

  13. Identification of dynamic systems, theory and formulation

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1985-01-01

    The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.

  14. Quantum illumination for enhanced detection of Rayleigh-fading targets

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.

    2017-08-01

    Quantum illumination (QI) is an entanglement-enhanced sensing system whose performance advantage over a comparable classical system survives its usage in an entanglement-breaking scenario plagued by loss and noise. In particular, QI's error-probability exponent for discriminating between equally likely hypotheses of target absence or presence is 6 dB higher than that of the optimum classical system using the same transmitted power. This performance advantage, however, presumes that the target return, when present, has known amplitude and phase, a situation that seldom occurs in light detection and ranging (lidar) applications. At lidar wavelengths, most target surfaces are sufficiently rough that their returns are speckled, i.e., they have Rayleigh-distributed amplitudes and uniformly distributed phases. QI's optical parametric amplifier receiver—which affords a 3 dB better-than-classical error-probability exponent for a return with known amplitude and phase—fails to offer any performance gain for Rayleigh-fading targets. We show that the sum-frequency generation receiver [Zhuang et al., Phys. Rev. Lett. 118, 040801 (2017), 10.1103/PhysRevLett.118.040801]—whose error-probability exponent for a nonfading target achieves QI's full 6 dB advantage over optimum classical operation—outperforms the classical system for Rayleigh-fading targets. In this case, QI's advantage is subexponential: its error probability is lower than the classical system's by a factor of 1 /ln(M κ ¯NS/NB) , when M κ ¯NS/NB≫1 , with M ≫1 being the QI transmitter's time-bandwidth product, NS≪1 its brightness, κ ¯ the target return's average intensity, and NB the background light's brightness.

  15. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning

    PubMed Central

    McGregor, Heather R.; Mohatarem, Ayman

    2017-01-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634

  16. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.

    PubMed

    Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L

    2017-07-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.

  17. Defining the Relationship Between Human Error Classes and Technology Intervention Strategies

    NASA Technical Reports Server (NTRS)

    Wiegmann, Douglas A.; Rantanen, Eas M.

    2003-01-01

    The modus operandi in addressing human error in aviation systems is predominantly that of technological interventions or fixes. Such interventions exhibit considerable variability both in terms of sophistication and application. Some technological interventions address human error directly while others do so only indirectly. Some attempt to eliminate the occurrence of errors altogether whereas others look to reduce the negative consequences of these errors. In any case, technological interventions add to the complexity of the systems and may interact with other system components in unforeseeable ways and often create opportunities for novel human errors. Consequently, there is a need to develop standards for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the biggest benefit to flight safety as well as to mitigate any adverse ramifications. The purpose of this project was to help define the relationship between human error and technological interventions, with the ultimate goal of developing a set of standards for evaluating or measuring the potential benefits of new human error fixes.

  18. A fast Monte Carlo EM algorithm for estimation in latent class model analysis with an application to assess diagnostic accuracy for cervical neoplasia in women with AGC

    PubMed Central

    Kang, Le; Carter, Randy; Darcy, Kathleen; Kauderer, James; Liao, Shu-Yuan

    2013-01-01

    In this article we use a latent class model (LCM) with prevalence modeled as a function of covariates to assess diagnostic test accuracy in situations where the true disease status is not observed, but observations on three or more conditionally independent diagnostic tests are available. A fast Monte Carlo EM (MCEM) algorithm with binary (disease) diagnostic data is implemented to estimate parameters of interest; namely, sensitivity, specificity, and prevalence of the disease as a function of covariates. To obtain standard errors for confidence interval construction of estimated parameters, the missing information principle is applied to adjust information matrix estimates. We compare the adjusted information matrix based standard error estimates with the bootstrap standard error estimates both obtained using the fast MCEM algorithm through an extensive Monte Carlo study. Simulation demonstrates that the adjusted information matrix approach estimates the standard error similarly with the bootstrap methods under certain scenarios. The bootstrap percentile intervals have satisfactory coverage probabilities. We then apply the LCM analysis to a real data set of 122 subjects from a Gynecologic Oncology Group (GOG) study of significant cervical lesion (S-CL) diagnosis in women with atypical glandular cells of undetermined significance (AGC) to compare the diagnostic accuracy of a histology-based evaluation, a CA-IX biomarker-based test and a human papillomavirus (HPV) DNA test. PMID:24163493

  19. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1999-01-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less

  20. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less

  1. Structured methods for identifying and correcting potential human errors in aviation operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1997-10-01

    Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less

  2. Human errors and violations in computer and information security: the viewpoint of network administrators and security specialists.

    PubMed

    Kraemer, Sara; Carayon, Pascale

    2007-03-01

    This paper describes human errors and violations of end users and network administration in computer and information security. This information is summarized in a conceptual framework for examining the human and organizational factors contributing to computer and information security. This framework includes human error taxonomies to describe the work conditions that contribute adversely to computer and information security, i.e. to security vulnerabilities and breaches. The issue of human error and violation in computer and information security was explored through a series of 16 interviews with network administrators and security specialists. The interviews were audio taped, transcribed, and analyzed by coding specific themes in a node structure. The result is an expanded framework that classifies types of human error and identifies specific human and organizational factors that contribute to computer and information security. Network administrators tended to view errors created by end users as more intentional than unintentional, while errors created by network administrators as more unintentional than intentional. Organizational factors, such as communication, security culture, policy, and organizational structure, were the most frequently cited factors associated with computer and information security.

  3. Method of estimating natural recharge to the Edwards Aquifer in the San Antonio area, Texas

    USGS Publications Warehouse

    Puente, Celso

    1978-01-01

    The principal errors in the estimates of annual recharge are related to errors in estimating runoff in ungaged areas, which represent about 30 percent of the infiltration area. The estimated long-term average annual recharge in each basin, however, is probably representative of the actual recharge because the averaging procedure tends to cancel out the major errors.

  4. State space truncation with quantified errors for accurate solutions to discrete Chemical Master Equation

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEG), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of 1) the birth and death model, 2) the single gene expression model, 3) the genetic toggle switch model, and 4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate out theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks. PMID:27105653

  5. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Youfang; Terebus, Anna; Liang, Jie

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. Wemore » further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.« less

  6. State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation

    DOE PAGES

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-04-22

    The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. Wemore » further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks.« less

  7. A Method to Estimate the Probability that any Individual Cloud-to-Ground Lightning Stroke was Within any Radius of any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.

    2011-01-01

    A new technique has been developed to estimate the probability that a nearby cloud to ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  8. A Method to Estimate the Probability that Any Individual Cloud-to-Ground Lightning Stroke was Within Any Radius of Any Point

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.

    2011-01-01

    A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.

  9. Legal consequences of the moral duty to report errors.

    PubMed

    Hall, Jacqulyn Kay

    2003-09-01

    Increasingly, clinicians are under a moral duty to report errors to the patients who are injured by such errors. The sources of this duty are identified, and its probable impact on malpractice litigation and criminal law is discussed. The potential consequences of enforcing this new moral duty as a minimum in law are noted. One predicted consequence is that the trend will be accelerated toward government payment of compensation for errors. The effect of truth-telling on individuals is discussed.

  10. An extended Reed Solomon decoder design

    NASA Technical Reports Server (NTRS)

    Chen, J.; Owsley, P.; Purviance, J.

    1991-01-01

    It has previously been shown that the Reed-Solomon (RS) codes can correct errors beyond the Singleton and Rieger Bounds with an arbitrarily small probability of a miscorrect. That is, an (n,k) RS code can correct more than (n-k)/2 errors. An implementation of such an RS decoder is presented in this paper. An existing RS decoder, the AHA4010, is utilized in this work. This decoder is especially useful for errors which are patterned with a long burst plus some random errors.

  11. Exploring Reactions to Pilot Reliability Certification and Changing Attitudes on the Reduction of Errors

    ERIC Educational Resources Information Center

    Boedigheimer, Dan

    2010-01-01

    Approximately 70% of aviation accidents are attributable to human error. The greatest opportunity for further improving aviation safety is found in reducing human errors in the cockpit. The purpose of this quasi-experimental, mixed-method research was to evaluate whether there was a difference in pilot attitudes toward reducing human error in the…

  12. Relating Regime Structure to Probability Distribution and Preferred Structure of Small Errors in a Large Atmospheric GCM

    NASA Astrophysics Data System (ADS)

    Straus, D. M.

    2007-12-01

    The probability distribution (pdf) of errors is followed in identical twin studies using the COLA T63 AGCM, integrated with observed SST for 15 recent winters. 30 integrations per winter (for 15 winters) are available with initial errors that are extremely small. The evolution of the pdf is tested for multi-modality, and the results interpreted in terms of clusters / regimes found in: (a) the set of 15x30 integrations mentioned, and (b) a larger ensemble of 55x15 integrations made with the same GCM using the same SSTs. The mapping of pdf evolution and clusters is also carried out for each winter separately, using the clusters found in the 55-member ensemble for the same winter alone. This technique yields information on the change in regimes caused by different boundary forcing (Straus and Molteni, 2004; Straus, Corti and Molteni, 2006). Analysis of the growing errors in terms of baroclinic and barotropic components allows for interpretation of the corresponding instabilities.

  13. Performance Analysis of an Inter-Relay Co-operation in FSO Communication System

    NASA Astrophysics Data System (ADS)

    Khanna, Himanshu; Aggarwal, Mona; Ahuja, Swaran

    2018-04-01

    In this work, we analyze the outage and error performance of a one-way inter-relay assisted free space optical link. The assumption of the absence of direct link between the source and destination node is being made for the analysis, and the feasibility of such system configuration is studied. We consider the influence of path loss, atmospheric turbulence and pointing error impairments, and investigate the effect of these parameters on the system performance. The turbulence-induced fading is modeled by independent but not necessarily identically distributed gamma-gamma fading statistics. The closed-form expressions for outage probability and probability of error are derived and illustrated by numerical plots. It is concluded that the absence of line of sight path between source and destination nodes does not lead to significant performance degradation. Moreover, for the system model under consideration, interconnected relaying provides better error performance than the non-interconnected relaying and dual-hop serial relaying techniques.

  14. SEC proton prediction model: verification and analysis.

    PubMed

    Balch, C C

    1999-06-01

    This paper describes a model that has been used at the NOAA Space Environment Center since the early 1970s as a guide for the prediction of solar energetic particle events. The algorithms for proton event probability, peak flux, and rise time are described. The predictions are compared with observations. The current model shows some ability to distinguish between proton event associated flares and flares that are not associated with proton events. The comparisons of predicted and observed peak flux show considerable scatter, with an rms error of almost an order of magnitude. Rise time comparisons also show scatter, with an rms error of approximately 28 h. The model algorithms are analyzed using historical data and improvements are suggested. Implementation of the algorithm modifications reduces the rms error in the log10 of the flux prediction by 21%, and the rise time rms error by 31%. Improvements are also realized in the probability prediction by deriving the conditional climatology for proton event occurrence given flare characteristics.

  15. The probability of object-scene co-occurrence influences object identification processes.

    PubMed

    Sauvé, Geneviève; Harmand, Mariane; Vanni, Léa; Brodeur, Mathieu B

    2017-07-01

    Contextual information allows the human brain to make predictions about the identity of objects that might be seen and irregularities between an object and its background slow down perception and identification processes. Bar and colleagues modeled the mechanisms underlying this beneficial effect suggesting that the brain stocks information about the statistical regularities of object and scene co-occurrence. Their model suggests that these recurring regularities could be conceptualized along a continuum in which the probability of seeing an object within a given scene can be high (probable condition), moderate (improbable condition) or null (impossible condition). In the present experiment, we propose to disentangle the electrophysiological correlates of these context effects by directly comparing object-scene pairs found along this continuum. We recorded the event-related potentials of 30 healthy participants (18-34 years old) and analyzed their brain activity in three time windows associated with context effects. We observed anterior negativities between 250 and 500 ms after object onset for the improbable and impossible conditions (improbable more negative than impossible) compared to the probable condition as well as a parieto-occipital positivity (improbable more positive than impossible). The brain may use different processing pathways to identify objects depending on whether the probability of co-occurrence with the scene is moderate (rely more on top-down effects) or null (rely more on bottom-up influences). The posterior positivity could index error monitoring aimed to ensure that no false information is integrated into mental representations of the world.

  16. Evaluating a medical error taxonomy.

    PubMed

    Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie

    2002-01-01

    Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.

  17. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    NASA Technical Reports Server (NTRS)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  18. An Evaluation of Departmental Radiation Oncology Incident Reports: Anticipating a National Reporting System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu; Harris, Kendra M.; Ford, Eric

    Purpose: Systems to ensure patient safety are of critical importance. The electronic incident reporting systems (IRS) of 2 large academic radiation oncology departments were evaluated for events that may be suitable for submission to a national reporting system (NRS). Methods and Materials: All events recorded in the combined IRS were evaluated from 2007 through 2010. Incidents were graded for potential severity using the validated French Nuclear Safety Authority (ASN) 5-point scale. These incidents were categorized into 7 groups: (1) human error, (2) software error, (3) hardware error, (4) error in communication between 2 humans, (5) error at the human-software interface,more » (6) error at the software-hardware interface, and (7) error at the human-hardware interface. Results: Between the 2 systems, 4407 incidents were reported. Of these events, 1507 (34%) were considered to have the potential for clinical consequences. Of these 1507 events, 149 (10%) were rated as having a potential severity of ≥2. Of these 149 events, the committee determined that 79 (53%) of these events would be submittable to a NRS of which the majority was related to human error or to the human-software interface. Conclusions: A significant number of incidents were identified in this analysis. The majority of events in this study were related to human error and to the human-software interface, further supporting the need for a NRS to facilitate field-wide learning and system improvement.« less

  19. Sleep quality, posttraumatic stress, depression, and human errors in train drivers: a population-based nationwide study in South Korea.

    PubMed

    Jeon, Hong Jin; Kim, Ji-Hae; Kim, Bin-Na; Park, Seung Jin; Fava, Maurizio; Mischoulon, David; Kang, Eun-Ho; Roh, Sungwon; Lee, Dongsoo

    2014-12-01

    Human error is defined as an unintended error that is attributable to humans rather than machines, and that is important to avoid to prevent accidents. We aimed to investigate the association between sleep quality and human errors among train drivers. Cross-sectional. Population-based. A sample of 5,480 subjects who were actively working as train drivers were recruited in South Korea. The participants were 4,634 drivers who completed all questionnaires (response rate 84.6%). None. The Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Impact of Event Scale-Revised (IES-R), the State-Trait Anxiety Inventory (STAI), and the Korean Occupational Stress Scale (KOSS). Of 4,634 train drivers, 349 (7.5%) showed more than one human error per 5 y. Human errors were associated with poor sleep quality, higher PSQI total scores, short sleep duration at night, and longer sleep latency. Among train drivers with poor sleep quality, those who experienced severe posttraumatic stress showed a significantly higher number of human errors than those without. Multiple logistic regression analysis showed that human errors were significantly associated with poor sleep quality and posttraumatic stress, whereas there were no significant associations with depression, trait and state anxiety, and work stress after adjusting for age, sex, education years, marital status, and career duration. Poor sleep quality was found to be associated with more human errors in train drivers, especially in those who experienced severe posttraumatic stress. © 2014 Associated Professional Sleep Societies, LLC.

  20. Error-related negativities elicited by monetary loss and cues that predict loss.

    PubMed

    Dunning, Jonathan P; Hajcak, Greg

    2007-11-19

    Event-related potential studies have reported error-related negativity following both error commission and feedback indicating errors or monetary loss. The present study examined whether error-related negativities could be elicited by a predictive cue presented prior to both the decision and subsequent feedback in a gambling task. Participants were presented with a cue that indicated the probability of reward on the upcoming trial (0, 50, and 100%). Results showed a negative deflection in the event-related potential in response to loss cues compared with win cues; this waveform shared a similar latency and morphology with the traditional feedback error-related negativity.

  1. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models

    NASA Astrophysics Data System (ADS)

    Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.

    2017-06-01

    We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.

  2. Outage probability of a relay strategy allowing intra-link errors utilizing Slepian-Wolf theorem

    NASA Astrophysics Data System (ADS)

    Cheng, Meng; Anwar, Khoirul; Matsumoto, Tad

    2013-12-01

    In conventional decode-and-forward (DF) one-way relay systems, a data block received at the relay node is discarded, if the information part is found to have errors after decoding. Such errors are referred to as intra-link errors in this article. However, in a setup where the relay forwards data blocks despite possible intra-link errors, the two data blocks, one from the source node and the other from the relay node, are highly correlated because they were transmitted from the same source. In this article, we focus on the outage probability analysis of such a relay transmission system, where source-destination and relay-destination links, Link 1 and Link 2, respectively, are assumed to suffer from the correlated fading variation due to block Rayleigh fading. The intra-link is assumed to be represented by a simple bit-flipping model, where some of the information bits recovered at the relay node are the flipped version of their corresponding original information bits at the source. The correlated bit streams are encoded separately by the source and relay nodes, and transmitted block-by-block to a common destination using different time slots, where the information sequence transmitted over Link 2 may be a noise-corrupted interleaved version of the original sequence. The joint decoding takes place at the destination by exploiting the correlation knowledge of the intra-link (source-relay link). It is shown that the outage probability of the proposed transmission technique can be expressed by a set of double integrals over the admissible rate range, given by the Slepian-Wolf theorem, with respect to the probability density function ( pdf) of the instantaneous signal-to-noise power ratios (SNR) of Link 1 and Link 2. It is found that, with the Slepian-Wolf relay technique, so far as the correlation ρ of the complex fading variation is | ρ|<1, the 2nd order diversity can be achieved only if the two bit streams are fully correlated. This indicates that the diversity order exhibited in the outage curve converges to 1 when the bit streams are not fully correlated. Moreover, the Slepian-Wolf outage probability is proved to be smaller than that of the 2nd order maximum ratio combining (MRC) diversity, if the average SNRs of the two independent links are the same. Exact as well as asymptotic expressions of the outage probability are theoretically derived in the article. In addition, the theoretical outage results are compared with the frame-error-rate (FER) curves, obtained by a series of simulations for the Slepian-Wolf relay system based on bit-interleaved coded modulation with iterative detection (BICM-ID). It is shown that the FER curves exhibit the same tendency as the theoretical results.

  3. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP).

    PubMed

    Boughalia, A; Marcie, S; Fellah, M; Chami, S; Mekki, F

    2015-06-01

    The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy-oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose-volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans before treating the patients.

  4. Use of attribute association error probability estimates to evaluate quality of medical record geocodes.

    PubMed

    Klaus, Christian A; Carrasco, Luis E; Goldberg, Daniel W; Henry, Kevin A; Sherman, Recinda L

    2015-09-15

    The utility of patient attributes associated with the spatiotemporal analysis of medical records lies not just in their values but also the strength of association between them. Estimating the extent to which a hierarchy of conditional probability exists between patient attribute associations such as patient identifying fields, patient and date of diagnosis, and patient and address at diagnosis is fundamental to estimating the strength of association between patient and geocode, and patient and enumeration area. We propose a hierarchy for the attribute associations within medical records that enable spatiotemporal relationships. We also present a set of metrics that store attribute association error probability (AAEP), to estimate error probability for all attribute associations upon which certainty in a patient geocode depends. A series of experiments were undertaken to understand how error estimation could be operationalized within health data and what levels of AAEP in real data reveal themselves using these methods. Specifically, the goals of this evaluation were to (1) assess if the concept of our error assessment techniques could be implemented by a population-based cancer registry; (2) apply the techniques to real data from a large health data agency and characterize the observed levels of AAEP; and (3) demonstrate how detected AAEP might impact spatiotemporal health research. We present an evaluation of AAEP metrics generated for cancer cases in a North Carolina county. We show examples of how we estimated AAEP for selected attribute associations and circumstances. We demonstrate the distribution of AAEP in our case sample across attribute associations, and demonstrate ways in which disease registry specific operations influence the prevalence of AAEP estimates for specific attribute associations. The effort to detect and store estimates of AAEP is worthwhile because of the increase in confidence fostered by the attribute association level approach to the assessment of uncertainty in patient geocodes, relative to existing geocoding related uncertainty metrics.

  5. Cost effectiveness of a pharmacist-led information technology intervention for reducing rates of clinically important errors in medicines management in general practices (PINCER).

    PubMed

    Elliott, Rachel A; Putman, Koen D; Franklin, Matthew; Annemans, Lieven; Verhaeghe, Nick; Eden, Martin; Hayre, Jasdeep; Rodgers, Sarah; Sheikh, Aziz; Avery, Anthony J

    2014-06-01

    We recently showed that a pharmacist-led information technology-based intervention (PINCER) was significantly more effective in reducing medication errors in general practices than providing simple feedback on errors, with cost per error avoided at £79 (US$131). We aimed to estimate cost effectiveness of the PINCER intervention by combining effectiveness in error reduction and intervention costs with the effect of the individual errors on patient outcomes and healthcare costs, to estimate the effect on costs and QALYs. We developed Markov models for each of six medication errors targeted by PINCER. Clinical event probability, treatment pathway, resource use and costs were extracted from literature and costing tariffs. A composite probabilistic model combined patient-level error models with practice-level error rates and intervention costs from the trial. Cost per extra QALY and cost-effectiveness acceptability curves were generated from the perspective of NHS England, with a 5-year time horizon. The PINCER intervention generated £2,679 less cost and 0.81 more QALYs per practice [incremental cost-effectiveness ratio (ICER): -£3,037 per QALY] in the deterministic analysis. In the probabilistic analysis, PINCER generated 0.001 extra QALYs per practice compared with simple feedback, at £4.20 less per practice. Despite this extremely small set of differences in costs and outcomes, PINCER dominated simple feedback with a mean ICER of -£3,936 (standard error £2,970). At a ceiling 'willingness-to-pay' of £20,000/QALY, PINCER reaches 59 % probability of being cost effective. PINCER produced marginal health gain at slightly reduced overall cost. Results are uncertain due to the poor quality of data to inform the effect of avoiding errors.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Chen, Z; Nath, R

    Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less

  7. Auditing as Part of the Terminology Design Life Cycle

    PubMed Central

    Min, Hua; Perl, Yehoshua; Chen, Yan; Halper, Michael; Geller, James; Wang, Yue

    2006-01-01

    Objective To develop and test an auditing methodology for detecting errors in medical terminologies satisfying systematic inheritance. This methodology is based on various abstraction taxonomies that provide high-level views of a terminology and highlight potentially erroneous concepts. Design Our auditing methodology is based on dividing concepts of a terminology into smaller, more manageable units. First, we divide the terminology’s concepts into areas according to their relationships/roles. Then each multi-rooted area is further divided into partial-areas (p-areas) that are singly-rooted. Each p-area contains a set of structurally and semantically uniform concepts. Two kinds of abstraction networks, called the area taxonomy and p-area taxonomy, are derived. These taxonomies form the basis for the auditing approach. Taxonomies tend to highlight potentially erroneous concepts in areas and p-areas. Human reviewers can focus their auditing efforts on the limited number of problematic concepts following two hypotheses on the probable concentration of errors. Results A sample of the area taxonomy and p-area taxonomy for the Biological Process (BP) hierarchy of the National Cancer Institute Thesaurus (NCIT) was derived from the application of our methodology to its concepts. These views led to the detection of a number of different kinds of errors that are reported, and to confirmation of the hypotheses on error concentration in this hierarchy. Conclusion Our auditing methodology based on area and p-area taxonomies is an efficient tool for detecting errors in terminologies satisfying systematic inheritance of roles, and thus facilitates their maintenance. This methodology concentrates a domain expert’s manual review on portions of the concepts with a high likelihood of errors. PMID:16929044

  8. Analyzing human errors in flight mission operations

    NASA Technical Reports Server (NTRS)

    Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef

    1993-01-01

    A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.

  9. Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain

    ERIC Educational Resources Information Center

    Nelson, Jonathan D.

    2005-01-01

    Several norms for how people should assess a question's usefulness have been proposed, notably Bayesian diagnosticity, information gain (mutual information), Kullback-Liebler distance, probability gain (error minimization), and impact (absolute change). Several probabilistic models of previous experiments on categorization, covariation assessment,…

  10. Teaching Uncertainties

    ERIC Educational Resources Information Center

    Duerdoth, Ian

    2009-01-01

    The subject of uncertainties (sometimes called errors) is traditionally taught (to first-year science undergraduates) towards the end of a course on statistics that defines probability as the limit of many trials, and discusses probability distribution functions and the Gaussian distribution. We show how to introduce students to the concepts of…

  11. Circular Probable Error for Circular and Noncircular Gaussian Impacts

    DTIC Science & Technology

    2012-09-01

    1M simulated impacts ph(k)=mean(imp(:,1).^2+imp(:,2).^2<=CEP^2); % hit frequency on CEP end phit (j)=mean(ph...avg 100 hit frequencies to “incr n” end % GRAPHICS plot(i, phit ,’r-’); % error exponent versus Ph estimate

  12. Theoretical Analysis of Rain Attenuation Probability

    NASA Astrophysics Data System (ADS)

    Roy, Surendra Kr.; Jha, Santosh Kr.; Jha, Lallan

    2007-07-01

    Satellite communication technologies are now highly developed and high quality, distance-independent services have expanded over a very wide area. As for the system design of the Hokkaido integrated telecommunications(HIT) network, it must first overcome outages of satellite links due to rain attenuation in ka frequency bands. In this paper theoretical analysis of rain attenuation probability on a slant path has been made. The formula proposed is based Weibull distribution and incorporates recent ITU-R recommendations concerning the necessary rain rates and rain heights inputs. The error behaviour of the model was tested with the loading rain attenuation prediction model recommended by ITU-R for large number of experiments at different probability levels. The novel slant path rain attenuastion prediction model compared to the ITU-R one exhibits a similar behaviour at low time percentages and a better root-mean-square error performance for probability levels above 0.02%. The set of presented models exhibits the advantage of implementation with little complexity and is considered useful for educational and back of the envelope computations.

  13. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Herzog, James P. (Inventor); Bickford, Randall L. (Inventor)

    2005-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  14. Surveillance system and method having an adaptive sequential probability fault detection test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2006-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  15. Surveillance System and Method having an Adaptive Sequential Probability Fault Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor); Herzog, James P. (Inventor)

    2008-01-01

    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance.

  16. Distributed Immune Systems for Wireless Network Information Assurance

    DTIC Science & Technology

    2010-04-26

    ratio test (SPRT), where the goal is to optimize a hypothesis testing problem given a trade-off between the probability of errors and the...using cumulative sum (CUSUM) and Girshik-Rubin-Shiryaev (GRSh) statistics. In sequential versions of the problem the sequential probability ratio ...the more complicated problems, in particular those where no clear mean can be established. We developed algorithms based on the sequential probability

  17. Human Error and the International Space Station: Challenges and Triumphs in Science Operations

    NASA Technical Reports Server (NTRS)

    Harris, Samantha S.; Simpson, Beau C.

    2016-01-01

    Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.

  18. Probability differently modulating the effects of reward and punishment on visuomotor adaptation.

    PubMed

    Song, Yanlong; Smiley-Oyen, Ann L

    2017-12-01

    Recent human motor learning studies revealed that punishment seemingly accelerated motor learning but reward enhanced consolidation of motor memory. It is not evident how intrinsic properties of reward and punishment modulate the potentially dissociable effects of reward and punishment on motor learning and motor memory. It is also not clear what causes the dissociation of the effects of reward and punishment. By manipulating probability of distribution, a critical property of reward and punishment, the present study demonstrated that probability had distinct modulation on the effects of reward and punishment in adapting to a sudden visual rotation and consolidation of the adaptation memory. Specifically, two probabilities of monetary reward and punishment distribution, 50 and 100%, were applied during young adult participants adapting to a sudden visual rotation. Punishment and reward showed distinct effects on motor adaptation and motor memory. The group that received punishments in 100% of the adaptation trials adapted significantly faster than the other three groups, but the group that received rewards in 100% of the adaptation trials showed marked savings in re-adapting to the same rotation. In addition, the group that received punishments in 50% of the adaptation trials that were randomly selected also had savings in re-adapting to the same rotation. Sensitivity to sensory prediction error or difference in explicit process induced by reward and punishment may likely contribute to the distinct effects of reward and punishment.

  19. Impact of an atrazine-based herbicide on an agrobiont wolf spider.

    PubMed

    Godfrey, Jake A; Rypstra, Ann L

    2018-06-01

    For animals that live in association with humans, a key ecological question is how anthropogenic factors influence their life history. While major negative effects are obvious, subtle non-lethal responses to anthropogenic stimuli may provide insight into the features that lead to the success of species that thrive in habitats heavily impacted by humans. Here we explored the influence of the herbicide atrazine on various life history traits of a wolf spider that thrives in agroecosystems where it is commonly applied. We found that exposure delayed maturation and increased the probability of having molting errors. Atrazine also decreased the probability of producing an egg sac after mating, but increased the average mass of the initial egg sacs that were produced while not impacting the average number of eggs inside. The total number of eggs produced from a single mating on the other hand, was increased in the presence of atrazine through the production of multiple egg sacs. Finally, adult lifespan was shortened with exposure to atrazine. These results suggest that the atrazine based herbicides that are routinely applied to agricultural fields result in altered life history traits, potentially through endocrine disruption, that may counteract one another to allow persistence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Power and type I error results for a bias-correction approach recently shown to provide accurate odds ratios of genetic variants for the secondary phenotypes associated with primary diseases.

    PubMed

    Wang, Jian; Shete, Sanjay

    2011-11-01

    We recently proposed a bias correction approach to evaluate accurate estimation of the odds ratio (OR) of genetic variants associated with a secondary phenotype, in which the secondary phenotype is associated with the primary disease, based on the original case-control data collected for the purpose of studying the primary disease. As reported in this communication, we further investigated the type I error probabilities and powers of the proposed approach, and compared the results to those obtained from logistic regression analysis (with or without adjustment for the primary disease status). We performed a simulation study based on a frequency-matching case-control study with respect to the secondary phenotype of interest. We examined the empirical distribution of the natural logarithm of the corrected OR obtained from the bias correction approach and found it to be normally distributed under the null hypothesis. On the basis of the simulation study results, we found that the logistic regression approaches that adjust or do not adjust for the primary disease status had low power for detecting secondary phenotype associated variants and highly inflated type I error probabilities, whereas our approach was more powerful for identifying the SNP-secondary phenotype associations and had better-controlled type I error probabilities. © 2011 Wiley Periodicals, Inc.

  1. A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes.

    PubMed

    Mondol, Samrat; Navya, R; Athreya, Vidya; Sunagar, Kartik; Selvaraj, Velu Mani; Ramakrishnan, Uma

    2009-12-04

    Leopards are the most widely distributed of the large cats, ranging from Africa to the Russian Far East. Because of habitat fragmentation, high human population densities and the inherent adaptability of this species, they now occupy landscapes close to human settlements. As a result, they are the most common species involved in human wildlife conflict in India, necessitating their monitoring. However, their elusive nature makes such monitoring difficult. Recent advances in DNA methods along with non-invasive sampling techniques can be used to monitor populations and individuals across large landscapes including human dominated ones. In this paper, we describe a DNA-based method for leopard individual identification where we used fecal DNA samples to obtain genetic material. Further, we apply our methods to non-invasive samples collected in a human-dominated landscape to estimate the minimum number of leopards in this human-leopard conflict area in Western India. In this study, 25 of the 29 tested cross-specific microsatellite markers showed positive amplification in 37 wild-caught leopards. These loci revealed varied levels of polymorphism (four-12 alleles) and heterozygosity (0.05-0.79). Combining data on amplification success (including non-invasive samples) and locus specific polymorphisms, we showed that eight loci provide a sibling probability of identity of 0.0005, suggesting that this panel can be used to discriminate individuals in the wild. When this microsatellite panel was applied to fecal samples collected from a human-dominated landscape, we identified 7 individuals, with a sibling probability of identity of 0.001. Amplification success of field collected scats was up to 72%, and genotype error ranged from 0-7.4%. Our results demonstrated that the selected panel of eight microsatellite loci can conclusively identify leopards from various kinds of biological samples. Our methods can be used to monitor leopards over small and large landscapes to assess population trends, as well as could be tested for population assignment in forensic applications.

  2. A panel of microsatellites to individually identify leopards and its application to leopard monitoring in human dominated landscapes

    PubMed Central

    2009-01-01

    Background Leopards are the most widely distributed of the large cats, ranging from Africa to the Russian Far East. Because of habitat fragmentation, high human population densities and the inherent adaptability of this species, they now occupy landscapes close to human settlements. As a result, they are the most common species involved in human wildlife conflict in India, necessitating their monitoring. However, their elusive nature makes such monitoring difficult. Recent advances in DNA methods along with non-invasive sampling techniques can be used to monitor populations and individuals across large landscapes including human dominated ones. In this paper, we describe a DNA-based method for leopard individual identification where we used fecal DNA samples to obtain genetic material. Further, we apply our methods to non-invasive samples collected in a human-dominated landscape to estimate the minimum number of leopards in this human-leopard conflict area in Western India. Results In this study, 25 of the 29 tested cross-specific microsatellite markers showed positive amplification in 37 wild-caught leopards. These loci revealed varied levels of polymorphism (four-12 alleles) and heterozygosity (0.05-0.79). Combining data on amplification success (including non-invasive samples) and locus specific polymorphisms, we showed that eight loci provide a sibling probability of identity of 0.0005, suggesting that this panel can be used to discriminate individuals in the wild. When this microsatellite panel was applied to fecal samples collected from a human-dominated landscape, we identified 7 individuals, with a sibling probability of identity of 0.001. Amplification success of field collected scats was up to 72%, and genotype error ranged from 0-7.4%. Conclusion Our results demonstrated that the selected panel of eight microsatellite loci can conclusively identify leopards from various kinds of biological samples. Our methods can be used to monitor leopards over small and large landscapes to assess population trends, as well as could be tested for population assignment in forensic applications. PMID:19961605

  3. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  4. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). Version 3.5, Quick Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, B.G.; Richards, R.E.; Reece, W.J.

    1992-10-01

    This Reference Guide contains instructions on how to install and use Version 3.5 of the NRC-sponsored Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The NUCLARR data management system is contained in compressed files on the floppy diskettes that accompany this Reference Guide. NUCLARR is comprised of hardware component failure data (HCFD) and human error probability (HEP) data, both of which are available via a user-friendly, menu driven retrieval system. The data may be saved to a file in a format compatible with IRRAS 3.0 and commercially available statistical packages, or used to formulate log-plots and reports of data retrievalmore » and aggregation findings.« less

  5. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, B.G.; Richards, R.E.; Reece, W.J.

    1992-10-01

    This Reference Guide contains instructions on how to install and use Version 3.5 of the NRC-sponsored Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR). The NUCLARR data management system is contained in compressed files on the floppy diskettes that accompany this Reference Guide. NUCLARR is comprised of hardware component failure data (HCFD) and human error probability (HEP) data, both of which are available via a user-friendly, menu driven retrieval system. The data may be saved to a file in a format compatible with IRRAS 3.0 and commercially available statistical packages, or used to formulate log-plots and reports of data retrievalmore » and aggregation findings.« less

  6. Distribution of Causes in Selected US Aviation Accident Reports Between 1996 and 2003

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, C. W.

    2004-01-01

    This paper describes the results of an independent analysis of the probable and contributory causes of selected aviation accidents in the United States between 1996 and 2003. The purpose of the study was to assess the comparative frequency of a variety of causal factors in the reporting of these adverse events. Although our results show that more of these high consequence accidents were attributed to human error than to any other single factor, a large number of reports also mentioned wider systemic issues, including the managerial and regulatory context of aviation operations. These wider issues are more likely to appear as contributory rather than primary causes in this set of accident reports.

  7. Reciprocally-Benefited Secure Transmission for Spectrum Sensing-Based Cognitive Radio Sensor Networks

    PubMed Central

    Wang, Dawei; Ren, Pinyi; Du, Qinghe; Sun, Li; Wang, Yichen

    2016-01-01

    The rapid proliferation of independently-designed and -deployed wireless sensor networks extremely crowds the wireless spectrum and promotes the emergence of cognitive radio sensor networks (CRSN). In CRSN, the sensor node (SN) can make full use of the unutilized licensed spectrum, and the spectrum efficiency is greatly improved. However, inevitable spectrum sensing errors will adversely interfere with the primary transmission, which may result in primary transmission outage. To compensate the adverse effect of spectrum sensing errors, we propose a reciprocally-benefited secure transmission strategy, in which SN’s interference to the eavesdropper is employed to protect the primary confidential messages while the CRSN is also rewarded with a loose spectrum sensing error probability constraint. Specifically, according to the spectrum sensing results and primary users’ activities, there are four system states in this strategy. For each state, we analyze the primary secrecy rate and the SN’s transmission rate by taking into account the spectrum sensing errors. Then, the SN’s transmit power is optimally allocated for each state so that the average transmission rate of CRSN is maximized under the constraint of the primary maximum permitted secrecy outage probability. In addition, the performance tradeoff between the transmission rate of CRSN and the primary secrecy outage probability is investigated. Moreover, we analyze the primary secrecy rate for the asymptotic scenarios and derive the closed-form expression of the SN’s transmission outage probability. Simulation results show that: (1) the performance of the SN’s average throughput in the proposed strategy outperforms the conventional overlay strategy; (2) both the primary network and CRSN benefit from the proposed strategy. PMID:27897988

  8. Defining the Relationship Between Human Error Classes and Technology Intervention Strategies

    NASA Technical Reports Server (NTRS)

    Wiegmann, Douglas A.; Rantanen, Esa; Crisp, Vicki K. (Technical Monitor)

    2002-01-01

    One of the main factors in all aviation accidents is human error. The NASA Aviation Safety Program (AvSP), therefore, has identified several human-factors safety technologies to address this issue. Some technologies directly address human error either by attempting to reduce the occurrence of errors or by mitigating the negative consequences of errors. However, new technologies and system changes may also introduce new error opportunities or even induce different types of errors. Consequently, a thorough understanding of the relationship between error classes and technology "fixes" is crucial for the evaluation of intervention strategies outlined in the AvSP, so that resources can be effectively directed to maximize the benefit to flight safety. The purpose of the present project, therefore, was to examine the repositories of human factors data to identify the possible relationship between different error class and technology intervention strategies. The first phase of the project, which is summarized here, involved the development of prototype data structures or matrices that map errors onto "fixes" (and vice versa), with the hope of facilitating the development of standards for evaluating safety products. Possible follow-on phases of this project are also discussed. These additional efforts include a thorough and detailed review of the literature to fill in the data matrix and the construction of a complete database and standards checklists.

  9. Investigation of an Optimum Detection Scheme for a Star-Field Mapping System

    NASA Technical Reports Server (NTRS)

    Aldridge, M. D.; Credeur, L.

    1970-01-01

    An investigation was made to determine the optimum detection scheme for a star-field mapping system that uses coded detection resulting from starlight shining through specially arranged multiple slits of a reticle. The computer solution of equations derived from a theoretical model showed that the greatest probability of detection for a given star and background intensity occurred with the use of a single transparent slit. However, use of multiple slits improved the system's ability to reject the detection of undesirable lower intensity stars, but only by decreasing the probability of detection for lower intensity stars to be mapped. Also, it was found that the coding arrangement affected the root-mean-square star-position error and that detection is possible with error in the system's detected spin rate, though at a reduced probability.

  10. Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum.

    PubMed

    Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2015-11-01

    To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. Copyright © 2015 the American Physiological Society.

  11. Discrete coding of stimulus value, reward expectation, and reward prediction error in the dorsal striatum

    PubMed Central

    Oyama, Kei; Tateyama, Yukina; Hernádi, István; Tobler, Philippe N.; Iijima, Toshio

    2015-01-01

    To investigate how the striatum integrates sensory information with reward information for behavioral guidance, we recorded single-unit activity in the dorsal striatum of head-fixed rats participating in a probabilistic Pavlovian conditioning task with auditory conditioned stimuli (CSs) in which reward probability was fixed for each CS but parametrically varied across CSs. We found that the activity of many neurons was linearly correlated with the reward probability indicated by the CSs. The recorded neurons could be classified according to their firing patterns into functional subtypes coding reward probability in different forms such as stimulus value, reward expectation, and reward prediction error. These results suggest that several functional subgroups of dorsal striatal neurons represent different kinds of information formed through extensive prior exposure to CS-reward contingencies. PMID:26378201

  12. Multiplicity Control in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  13. Probabilities of Occurrence of Baro-Fuze System Errors More Than 1000 Feet Too Low Due to Ignoring the Meteorological Forecast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, B.N.

    1955-05-12

    Charts of the geographical distribution of the annual and seasonal D-values and their standard deviations at altitudes of 4500, 6000, and 7000 feeet over Eurasia are derived, which are used to estimate the frequency of baro system errors.

  14. Rewriting evolution--"been there, done that".

    PubMed

    Penny, David

    2013-01-01

    A recent paper by a science journalist in Nature shows major errors in understanding phylogenies, in this case of placental mammals. The underlying unrooted tree is probably correct, but the placement of the root just reflects a well-known error from the acceleration in the rate of evolution among some myomorph rodents.

  15. Causal inference with measurement error in outcomes: Bias analysis and estimation methods.

    PubMed

    Shu, Di; Yi, Grace Y

    2017-01-01

    Inverse probability weighting estimation has been popularly used to consistently estimate the average treatment effect. Its validity, however, is challenged by the presence of error-prone variables. In this paper, we explore the inverse probability weighting estimation with mismeasured outcome variables. We study the impact of measurement error for both continuous and discrete outcome variables and reveal interesting consequences of the naive analysis which ignores measurement error. When a continuous outcome variable is mismeasured under an additive measurement error model, the naive analysis may still yield a consistent estimator; when the outcome is binary, we derive the asymptotic bias in a closed-form. Furthermore, we develop consistent estimation procedures for practical scenarios where either validation data or replicates are available. With validation data, we propose an efficient method for estimation of average treatment effect; the efficiency gain is substantial relative to usual methods of using validation data. To provide protection against model misspecification, we further propose a doubly robust estimator which is consistent even when either the treatment model or the outcome model is misspecified. Simulation studies are reported to assess the performance of the proposed methods. An application to a smoking cessation dataset is presented.

  16. Development and implementation of a human accuracy program in patient foodservice.

    PubMed

    Eden, S H; Wood, S M; Ptak, K M

    1987-04-01

    For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.

  17. The effects of recall errors and of selection bias in epidemiologic studies of mobile phone use and cancer risk.

    PubMed

    Vrijheid, Martine; Deltour, Isabelle; Krewski, Daniel; Sanchez, Marie; Cardis, Elisabeth

    2006-07-01

    This paper examines the effects of systematic and random errors in recall and of selection bias in case-control studies of mobile phone use and cancer. These sensitivity analyses are based on Monte-Carlo computer simulations and were carried out within the INTERPHONE Study, an international collaborative case-control study in 13 countries. Recall error scenarios simulated plausible values of random and systematic, non-differential and differential recall errors in amount of mobile phone use reported by study subjects. Plausible values for the recall error were obtained from validation studies. Selection bias scenarios assumed varying selection probabilities for cases and controls, mobile phone users, and non-users. Where possible these selection probabilities were based on existing information from non-respondents in INTERPHONE. Simulations used exposure distributions based on existing INTERPHONE data and assumed varying levels of the true risk of brain cancer related to mobile phone use. Results suggest that random recall errors of plausible levels can lead to a large underestimation in the risk of brain cancer associated with mobile phone use. Random errors were found to have larger impact than plausible systematic errors. Differential errors in recall had very little additional impact in the presence of large random errors. Selection bias resulting from underselection of unexposed controls led to J-shaped exposure-response patterns, with risk apparently decreasing at low to moderate exposure levels. The present results, in conjunction with those of the validation studies conducted within the INTERPHONE study, will play an important role in the interpretation of existing and future case-control studies of mobile phone use and cancer risk, including the INTERPHONE study.

  18. Reflections on human error - Matters of life and death

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    The last two decades have witnessed a rapid growth in the introduction of automatic devices into aircraft cockpits, and eleswhere in human-machine systems. This was motivated in part by the assumption that when human functioning is replaced by machine functioning, human error is eliminated. Experience to date shows that this is far from true, and that automation does not replace humans, but changes their role in the system, as well as the types and severity of the errors they make. This altered role may lead to fewer, but more critical errors. Intervention strategies to prevent these errors, or ameliorate their consequences include basic human factors engineering of the interface, enhanced warning and alerting systems, and more intelligent interfaces that understand the strategic intent of the crew and can detect and trap inconsistent or erroneous input before it affects the system.

  19. A stochastic dynamic model for human error analysis in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Delgado-Loperena, Dharma

    Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.

  20. Probability of Detection of Genotyping Errors and Mutations as Inheritance Inconsistencies in Nuclear-Family Data

    PubMed Central

    Douglas, Julie A.; Skol, Andrew D.; Boehnke, Michael

    2002-01-01

    Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel’s laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele–error model, we find that detection rates are 51%–77% for multiallelic markers and 13%–75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree—rather than genotyping—errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping. PMID:11791214

  1. Error Discounting in Probabilistic Category Learning

    PubMed Central

    Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.

    2011-01-01

    Some current theories of probabilistic categorization assume that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report two probabilistic-categorization experiments that investigated error discounting by shifting feedback probabilities to new values after different amounts of training. In both experiments, responding gradually became less responsive to errors, and learning was slowed for some time after the feedback shift. Both results are indicative of error discounting. Quantitative modeling of the data revealed that adding a mechanism for error discounting significantly improved the fits of an exemplar-based and a rule-based associative learning model, as well as of a recency-based model of categorization. We conclude that error discounting is an important component of probabilistic learning. PMID:21355666

  2. Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.

    NASA Technical Reports Server (NTRS)

    Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.

    1973-01-01

    Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.

  3. Reassessing the human health benefits from cleaner air.

    PubMed

    Cox, Louis Anthony

    2012-05-01

    Recent proposals to further reduce permitted levels of air pollution emissions are supported by high projected values of resulting public health benefits. For example, the Environmental Protection Agency recently estimated that the 1990 Clean Air Act Amendment (CAAA) will produce human health benefits in 2020, from reduced mortality rates, valued at nearly $2 trillion per year, compared to compliance costs of $65 billion ($0.065 trillion). However, while compliance costs can be measured, health benefits are unproved: they depend on a series of uncertain assumptions. Among these are that additional life expectancy gained by a beneficiary (with median age of about 80 years) should be valued at about $80,000 per month; that there is a 100% probability that a positive, linear, no-threshold, causal relation exists between PM(2.5) concentration and mortality risk; and that progress in medicine and disease prevention will not greatly diminish this relationship. We present an alternative uncertainty analysis that assigns a positive probability of error to each assumption. This discrete uncertainty analysis suggests (with probability >90% under plausible alternative assumptions) that the costs of CAAA exceed its benefits. Thus, instead of suggesting to policymakers that CAAA benefits are almost certainly far larger than its costs, we believe that accuracy requires acknowledging that the costs purchase a relatively uncertain, possibly much smaller, benefit. The difference between these contrasting conclusions is driven by different approaches to uncertainty analysis, that is, excluding or including discrete uncertainties about the main assumptions required for nonzero health benefits to exist at all. © 2011 Society for Risk Analysis.

  4. Optimistic, pessimistic, realistic: Event-related potential evidence for how depressive symptoms influences expectation formation in the Human brain.

    PubMed

    Hsu, Yi-Fang; Vincent, Romain; Waszak, Florian

    2015-08-27

    Recent research suggested a link between the prediction mechanism and depressive symptoms. While healthy people tend to maintain unrealistic optimism in the face of reality challenging their beliefs, depressed people show systematic pessimism. However, it remains unclear at which stage these individual differences in optimism/pessimism arise in the brain. In the current study we designed a simple gambling task with two difficulty levels, the easy game and the hard game. Participants were required to press one of four keys to gain a bonus signalled by a sinusoidal tone. For three of the four keys, the probability of getting a large bonus was 80% in the easy game and 8% in the hard game. In both games, the fourth key, randomly determined in each trial, yielded a large bonus with a probability of 100%. This arrangement allowed us to observe less/more depressed participants׳ optimistic/pessimistic expectations about hitting the key that guarantees a large bonus. The opposite expectation patterns of less/more depressed participants were reflected on the N1 amplitude. Meanwhile, all participants were well aware of the true probability of obtaining certain bonus in each game as reflected on the P3 amplitude. The results suggest that the subjective system (tracking subjective beliefs) and the objective system (tracking objective evidence) are dissociable in the human brain, with the former feeding information into sensory areas and the latter representing prediction errors on a higher level. Moreover, individual differences arise from variability in the former rather than the latter. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Experimental investigation of false positive errors in auditory species occurrence surveys

    USGS Publications Warehouse

    Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.

    2012-01-01

    False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.

  6. Measurement-device-independent quantum key distribution with source state errors and statistical fluctuation

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin

    2017-03-01

    We show how to calculate the secure final key rate in the four-intensity decoy-state measurement-device-independent quantum key distribution protocol with both source errors and statistical fluctuations with a certain failure probability. Our results rely only on the range of only a few parameters in the source state. All imperfections in this protocol have been taken into consideration without assuming any specific error patterns of the source.

  7. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  8. Asymmetries in Predictive and Diagnostic Reasoning

    ERIC Educational Resources Information Center

    Fernbach, Philip M.; Darlow, Adam; Sloman, Steven A.

    2011-01-01

    In this article, we address the apparent discrepancy between causal Bayes net theories of cognition, which posit that judgments of uncertainty are generated from causal beliefs in a way that respects the norms of probability, and evidence that probability judgments based on causal beliefs are systematically in error. One purported source of bias…

  9. Anytime synthetic projection: Maximizing the probability of goal satisfaction

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John L.

    1990-01-01

    A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans.

  10. Bounds on Block Error Probability for Multilevel Concatenated Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Moorthy, Hari T.; Stojanovic, Diana

    1996-01-01

    Maximum likelihood decoding of long block codes is not feasable due to large complexity. Some classes of codes are shown to be decomposable into multilevel concatenated codes (MLCC). For these codes, multistage decoding provides good trade-off between performance and complexity. In this paper, we derive an upper bound on the probability of block error for MLCC. We use this bound to evaluate difference in performance for different decompositions of some codes. Examples given show that a significant reduction in complexity can be achieved when increasing number of stages of decoding. Resulting performance degradation varies for different decompositions. A guideline is given for finding good m-level decompositions.

  11. Performance of DPSK with convolutional encoding on time-varying fading channels

    NASA Technical Reports Server (NTRS)

    Mui, S. Y.; Modestino, J. W.

    1977-01-01

    The bit error probability performance of a differentially-coherent phase-shift keyed (DPSK) modem with convolutional encoding and Viterbi decoding on time-varying fading channels is examined. Both the Rician and the lognormal channels are considered. Bit error probability upper bounds on fully-interleaved (zero-memory) fading channels are derived and substantiated by computer simulation. It is shown that the resulting coded system performance is a relatively insensitive function of the choice of channel model provided that the channel parameters are related according to the correspondence developed as part of this paper. Finally, a comparison of DPSK with a number of other modulation strategies is provided.

  12. Exploiting Outage and Error Probability of Cooperative Incremental Relaying in Underwater Wireless Sensor Networks

    PubMed Central

    Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim

    2016-01-01

    This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061

  13. Modeling workplace contact networks: The effects of organizational structure, architecture, and reporting errors on epidemic predictions.

    PubMed

    Potter, Gail E; Smieszek, Timo; Sailer, Kerstin

    2015-09-01

    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0-5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models.

  14. Modeling workplace contact networks: The effects of organizational structure, architecture, and reporting errors on epidemic predictions

    PubMed Central

    Potter, Gail E.; Smieszek, Timo; Sailer, Kerstin

    2015-01-01

    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0–5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models. PMID:26634122

  15. Human factors process failure modes and effects analysis (HF PFMEA) software tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)

    2011-01-01

    Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.

  16. Air Force Academy Homepage

    Science.gov Websites

    Chaplain Corps Cadet Chapel Community Center Chapel Institutional Review Board Not Human Subjects Research Requirements 7 Not Human Subjects Research Form 8 Researcher Instructions - Activities Submitted to DoD IRB 9 Review 18 Not Human Subjects Errors 19 Exempt Research Most Frequent Errors 20 Most Frequent Errors for

  17. Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.

    DOT National Transportation Integrated Search

    2002-07-01

    Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...

  18. Human Error: The Stakes Are Raised.

    ERIC Educational Resources Information Center

    Greenberg, Joel

    1980-01-01

    Mistakes related to the operation of nuclear power plants and other technologically complex systems are discussed. Recommendations are given for decreasing the chance of human error in the operation of nuclear plants. The causes of the Three Mile Island incident are presented in terms of the human error element. (SA)

  19. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  20. Good people who try their best can have problems: recognition of human factors and how to minimise error.

    PubMed

    Brennan, Peter A; Mitchell, David A; Holmes, Simon; Plint, Simon; Parry, David

    2016-01-01

    Human error is as old as humanity itself and is an appreciable cause of mistakes by both organisations and people. Much of the work related to human factors in causing error has originated from aviation where mistakes can be catastrophic not only for those who contribute to the error, but for passengers as well. The role of human error in medical and surgical incidents, which are often multifactorial, is becoming better understood, and includes both organisational issues (by the employer) and potential human factors (at a personal level). Mistakes as a result of individual human factors and surgical teams should be better recognised and emphasised. Attitudes and acceptance of preoperative briefing has improved since the introduction of the World Health Organization (WHO) surgical checklist. However, this does not address limitations or other safety concerns that are related to performance, such as stress and fatigue, emotional state, hunger, awareness of what is going on situational awareness, and other factors that could potentially lead to error. Here we attempt to raise awareness of these human factors, and highlight how they can lead to error, and how they can be minimised in our day-to-day practice. Can hospitals move from being "high risk industries" to "high reliability organisations"? Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Asymmetric soft-error resistant memory

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)

    1991-01-01

    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.

  2. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmann, Christoffer; Sych, Denis; Leuchs, Gerd

    2010-06-15

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental realization of a homodyne receiver with postselection. Inmore » the comparison, it becomes clear that the performance of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within any Gaussian operations and conditional dynamics.« less

  3. The genomic structure: proof of the role of non-coding DNA.

    PubMed

    Bouaynaya, Nidhal; Schonfeld, Dan

    2006-01-01

    We prove that the introns play the role of a decoy in absorbing mutations in the same way hollow uninhabited structures are used by the military to protect important installations. Our approach is based on a probability of error analysis, where errors are mutations which occur in the exon sequences. We derive the optimal exon length distribution, which minimizes the probability of error in the genome. Furthermore, to understand how can Nature generate the optimal distribution, we propose a diffusive random walk model for exon generation throughout evolution. This model results in an alpha stable exon length distribution, which is asymptotically equivalent to the optimal distribution. Experimental results show that both distributions accurately fit the real data. Given that introns also drive biological evolution by increasing the rate of unequal crossover between genes, we conclude that the role of introns is to maintain a genius balance between stability and adaptability in eukaryotic genomes.

  4. Peelle's pertinent puzzle using the Monte Carlo technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawano, Toshihiko; Talou, Patrick; Burr, Thomas

    2009-01-01

    We try to understand the long-standing problem of the Peelle's Pertinent Puzzle (PPP) using the Monte Carlo technique. We allow the probability density functions to be any kind of form to assume the impact of distribution, and obtain the least-squares solution directly from numerical simulations. We found that the standard least squares method gives the correct answer if a weighting function is properly provided. Results from numerical simulations show that the correct answer of PPP is 1.1 {+-} 0.25 if the common error is multiplicative. The thought-provoking answer of 0.88 is also correct, if the common error is additive, andmore » if the error is proportional to the measured values. The least squares method correctly gives us the most probable case, where the additive component has a negative value. Finally, the standard method fails for PPP due to a distorted (non Gaussian) joint distribution.« less

  5. Driver landmark and traffic sign identification in early Alzheimer's disease.

    PubMed

    Uc, E Y; Rizzo, M; Anderson, S W; Shi, Q; Dawson, J D

    2005-06-01

    To assess visual search and recognition of roadside targets and safety errors during a landmark and traffic sign identification task in drivers with Alzheimer's disease. 33 drivers with probable Alzheimer's disease of mild severity and 137 neurologically normal older adults underwent a battery of visual and cognitive tests and were asked to report detection of specific landmarks and traffic signs along a segment of an experimental drive. The drivers with mild Alzheimer's disease identified significantly fewer landmarks and traffic signs and made more at-fault safety errors during the task than control subjects. Roadside target identification performance and safety errors were predicted by scores on standardised tests of visual and cognitive function. Drivers with Alzheimer's disease are impaired in a task of visual search and recognition of roadside targets; the demands of these targets on visual perception, attention, executive functions, and memory probably increase the cognitive load, worsening driving safety.

  6. Using a Delphi Method to Identify Human Factors Contributing to Nursing Errors.

    PubMed

    Roth, Cheryl; Brewer, Melanie; Wieck, K Lynn

    2017-07-01

    The purpose of this study was to identify human factors associated with nursing errors. Using a Delphi technique, this study used feedback from a panel of nurse experts (n = 25) on an initial qualitative survey questionnaire followed by summarizing the results with feedback and confirmation. Synthesized factors regarding causes of errors were incorporated into a quantitative Likert-type scale, and the original expert panel participants were queried a second time to validate responses. The list identified 24 items as most common causes of nursing errors, including swamping and errors made by others that nurses are expected to recognize and fix. The responses provided a consensus top 10 errors list based on means with heavy workload and fatigue at the top of the list. The use of the Delphi survey established consensus and developed a platform upon which future study of nursing errors can evolve as a link to future solutions. This list of human factors in nursing errors should serve to stimulate dialogue among nurses about how to prevent errors and improve outcomes. Human and system failures have been the subject of an abundance of research, yet nursing errors continue to occur. © 2016 Wiley Periodicals, Inc.

  7. Using Marginal Structural Measurement-Error Models to Estimate the Long-term Effect of Antiretroviral Therapy on Incident AIDS or Death

    PubMed Central

    Cole, Stephen R.; Jacobson, Lisa P.; Tien, Phyllis C.; Kingsley, Lawrence; Chmiel, Joan S.; Anastos, Kathryn

    2010-01-01

    To estimate the net effect of imperfectly measured highly active antiretroviral therapy on incident acquired immunodeficiency syndrome or death, the authors combined inverse probability-of-treatment-and-censoring weighted estimation of a marginal structural Cox model with regression-calibration methods. Between 1995 and 2007, 950 human immunodeficiency virus–positive men and women were followed in 2 US cohort studies. During 4,054 person-years, 374 initiated highly active antiretroviral therapy, 211 developed acquired immunodeficiency syndrome or died, and 173 dropped out. Accounting for measured confounders and determinants of dropout, the weighted hazard ratio for acquired immunodeficiency syndrome or death comparing use of highly active antiretroviral therapy in the prior 2 years with no therapy was 0.36 (95% confidence limits: 0.21, 0.61). This association was relatively constant over follow-up (P = 0.19) and stronger than crude or adjusted hazard ratios of 0.75 and 0.95, respectively. Accounting for measurement error in reported exposure using external validation data on 331 men and women provided a hazard ratio of 0.17, with bias shifted from the hazard ratio to the estimate of precision as seen by the 2.5-fold wider confidence limits (95% confidence limits: 0.06, 0.43). Marginal structural measurement-error models can simultaneously account for 3 major sources of bias in epidemiologic research: validated exposure measurement error, measured selection bias, and measured time-fixed and time-varying confounding. PMID:19934191

  8. Probable cause in helicopter emergency medical services crashes: what role does ownership play?

    PubMed

    Habib, Fahim A; Shatz, David; Habib, Aliya I; Bukur, Marko; Puente, Ivan; Catino, Joe; Farrington, Robyn

    2014-12-01

    The National Transportation Safety Board (NTSB) ranks helicopter emergency medical services (HEMS) as one of the most perilous occupations in the United States, with improvements in its safety of highest priority. As many injured patients are transported by helicopter, this is of particular concern to the trauma community. The use of HEMS is associated with a heightened degree of inherent risk. We hypothesized that this risk is not uniform and varies with the entity providing HEMS, specifically, commercial versus public safety providers. The NTSB accident database was queried to identify all HEMS-involved events for the 15-year period 1998 to 2012. The NTSB investigation report was reviewed to obtain crash details including probable cause. These were analyzed on the basis of HEMS ownership. Statistical analyses were performed using analysis of variance and Fisher's exact test as appropriate. During the study period, 139 (6.8%) of 2,040 crashes involved HEMS and occurred across 134 cities in 37 states, killing 120 and seriously injuring 146. Of these, 118 involved commercial, 14 not-for-profit, and 7 public safety HEMS. Analyzed in 5-year blocks, no decrease in crash incidence was seen (p = 0.7, analysis of variance). Human and pilot errors were significantly more common among commercial HEMS compared with public safety HEMS (91 of 118 vs. 2 of 7, p = 0.013, and 75 of 116 vs. 1 of 7, p = 0.017, Fisher's exact test). Conditions for which training was not adequate, limited resources, inadequate equipment, and the undertaking of suboptimal trips were identified as key factors. Trauma patients were involved in 34 transports (24.5%), with a fatal or serious outcome in 68 crew/patients on 12 flights. Potentially preventable human and pilot error-related HEMS crashes are significantly more frequent among commercial compared with public safety providers. Deficiencies in training, reduced availability of equipment and resources, as well as questionable flight selection seem to play a key role. Epidemiologic study, level III.

  9. Evaluating the Evidence for Transmission Distortion in Human Pedigrees

    PubMed Central

    Meyer, Wynn K.; Arbeithuber, Barbara; Ober, Carole; Ebner, Thomas; Tiemann-Boege, Irene; Hudson, Richard R.; Przeworski, Molly

    2012-01-01

    Children of a heterozygous parent are expected to carry either allele with equal probability. Exceptions can occur, however, due to meiotic drive, competition among gametes, or viability selection, which we collectively term “transmission distortion” (TD). Although there are several well-characterized examples of these phenomena, their existence in humans remains unknown. We therefore performed a genome-wide scan for TD by applying the transmission disequilibrium test (TDT) genome-wide to three large sets of human pedigrees of European descent: the Framingham Heart Study (FHS), a founder population of European origin (HUTT), and a subset of the Autism Genetic Resource Exchange (AGRE). Genotyping error is an important confounder in this type of analysis. In FHS and HUTT, despite extensive quality control, we did not find sufficient evidence to exclude genotyping error in the strongest signals. In AGRE, however, many signals extended across multiple SNPs, a pattern highly unlikely to arise from genotyping error. We identified several candidate regions in this data set, notably a locus in 10q26.13 displaying a genome-wide significant TDT in combined female and male transmissions and a signature of recent positive selection, as well as a paternal TD signal in 6p21.1, the same region in which a significant TD signal was previously observed in 30 European males. Neither region replicated in FHS, however, and the paternal signal was not visible in sperm competition assays or as allelic imbalance in sperm. In maternal transmissions, we detected no strong signals near centromeres or telomeres, the regions predicted to be most susceptible to female-specific meiotic drive, but we found a significant enrichment of top signals among genes involved in cell junctions. These results illustrate both the potential benefits and the challenges of using the TDT to study transmission distortion and provide candidates for investigation in future studies. PMID:22377632

  10. 29 CFR 18.103 - Rulings on evidence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is more probably true than not true that the error did not materially contribute to the decision or... if explicitly not relied upon by the judge in support of the decision or order. (b) Record of offer... making of an offer in question and answer form. (c) Plain error. Nothing in this rule precludes taking...

  11. Student Distractor Choices on the Mathematics Virginia Standards of Learning Middle School Assessments

    ERIC Educational Resources Information Center

    Lewis, Virginia Vimpeny

    2011-01-01

    Number Concepts; Measurement; Geometry; Probability; Statistics; and Patterns, Functions and Algebra. Procedural Errors were further categorized into the following content categories: Computation; Measurement; Statistics; and Patterns, Functions, and Algebra. The results of the analysis showed the main sources of error for 6th, 7th, and 8th…

  12. Rewriting Evolution—“Been There, Done That”

    PubMed Central

    Penny, David

    2013-01-01

    A recent paper by a science journalist in Nature shows major errors in understanding phylogenies, in this case of placental mammals. The underlying unrooted tree is probably correct, but the placement of the root just reflects a well-known error from the acceleration in the rate of evolution among some myomorph rodents. PMID:23558594

  13. Dosimetric effects of patient rotational setup errors on prostate IMRT treatments

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Yang, Yong; Li, Xiang; Heron, Dwight E.; Saiful Huq, M.; Yue, Ning J.

    2006-10-01

    The purpose of this work is to determine dose delivery errors that could result from systematic rotational setup errors (ΔΦ) for prostate cancer patients treated with three-phase sequential boost IMRT. In order to implement this, different rotational setup errors around three Cartesian axes were simulated for five prostate patients and dosimetric indices, such as dose-volume histogram (DVH), tumour control probability (TCP), normal tissue complication probability (NTCP) and equivalent uniform dose (EUD), were employed to evaluate the corresponding dosimetric influences. Rotational setup errors were simulated by adjusting the gantry, collimator and horizontal couch angles of treatment beams and the dosimetric effects were evaluated by recomputing the dose distributions in the treatment planning system. Our results indicated that, for prostate cancer treatment with the three-phase sequential boost IMRT technique, the rotational setup errors do not have significant dosimetric impacts on the cumulative plan. Even in the worst-case scenario with ΔΦ = 3°, the prostate EUD varied within 1.5% and TCP decreased about 1%. For seminal vesicle, slightly larger influences were observed. However, EUD and TCP changes were still within 2%. The influence on sensitive structures, such as rectum and bladder, is also negligible. This study demonstrates that the rotational setup error degrades the dosimetric coverage of target volume in prostate cancer treatment to a certain degree. However, the degradation was not significant for the three-phase sequential boost prostate IMRT technique and for the margin sizes used in our institution.

  14. A Probabilistic, Facility-Centric Approach to Lightning Strike Location

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.

    2012-01-01

    A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

  15. Maximum likelihood estimation of label imperfections and its use in the identification of mislabeled patterns

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.

  16. Qualitative fusion technique based on information poor system and its application to factor analysis for vibration of rolling bearings

    NASA Astrophysics Data System (ADS)

    Xia, Xintao; Wang, Zhongyu

    2008-10-01

    For some methods of stability analysis of a system using statistics, it is difficult to resolve the problems of unknown probability distribution and small sample. Therefore, a novel method is proposed in this paper to resolve these problems. This method is independent of probability distribution, and is useful for small sample systems. After rearrangement of the original data series, the order difference and two polynomial membership functions are introduced to estimate the true value, the lower bound and the supper bound of the system using fuzzy-set theory. Then empirical distribution function is investigated to ensure confidence level above 95%, and the degree of similarity is presented to evaluate stability of the system. Cases of computer simulation investigate stable systems with various probability distribution, unstable systems with linear systematic errors and periodic systematic errors and some mixed systems. The method of analysis for systematic stability is approved.

  17. Clinical implementation and failure mode and effects analysis of HDR skin brachytherapy using Valencia and Leipzig surface applicators.

    PubMed

    Sayler, Elaine; Eldredge-Hindy, Harriet; Dinome, Jessie; Lockamy, Virginia; Harrison, Amy S

    2015-01-01

    The planning procedure for Valencia and Leipzig surface applicators (VLSAs) (Nucletron, Veenendaal, The Netherlands) differs substantially from CT-based planning; the unfamiliarity could lead to significant errors. This study applies failure modes and effects analysis (FMEA) to high-dose-rate (HDR) skin brachytherapy using VLSAs to ensure safety and quality. A multidisciplinary team created a protocol for HDR VLSA skin treatments and applied FMEA. Failure modes were identified and scored by severity, occurrence, and detectability. The clinical procedure was then revised to address high-scoring process nodes. Several key components were added to the protocol to minimize risk probability numbers. (1) Diagnosis, prescription, applicator selection, and setup are reviewed at weekly quality assurance rounds. Peer review reduces the likelihood of an inappropriate treatment regime. (2) A template for HDR skin treatments was established in the clinic's electronic medical record system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planner as well as increases the detectability of an error. (3) A screen check was implemented during the second check to increase detectability of an error. (4) To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display, facilitating data entry and verification. (5) VLSAs are color coded and labeled to match the electronic medical record prescriptions, simplifying in-room selection and verification. Multidisciplinary planning and FMEA increased detectability and reduced error probability during VLSA HDR brachytherapy. This clinical model may be useful to institutions implementing similar procedures. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Analysis of measured data of human body based on error correcting frequency

    NASA Astrophysics Data System (ADS)

    Jin, Aiyan; Peipei, Gao; Shang, Xiaomei

    2014-04-01

    Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.

  19. Resampling-Based Empirical Bayes Multiple Testing Procedures for Controlling Generalized Tail Probability and Expected Value Error Rates: Focus on the False Discovery Rate and Simulation Study

    PubMed Central

    Dudoit, Sandrine; Gilbert, Houston N.; van der Laan, Mark J.

    2014-01-01

    Summary This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad class of Type I error rates, defined as generalized tail probability (gTP) error rates, gTP(q, g) = Pr(g(Vn, Sn) > q), and generalized expected value (gEV) error rates, gEV(g) = E[g(Vn, Sn)], for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. Of particular interest are error rates based on the proportion g(Vn, Sn) = Vn/(Vn + Sn) of Type I errors among the rejected hypotheses, such as the false discovery rate (FDR), FDR = E[Vn/(Vn + Sn)]. The proposed procedures offer several advantages over existing methods. They provide Type I error control for general data generating distributions, with arbitrary dependence structures among variables. Gains in power are achieved by deriving rejection regions based on guessed sets of true null hypotheses and null test statistics randomly sampled from joint distributions that account for the dependence structure of the data. The Type I error and power properties of an FDR-controlling version of the resampling-based empirical Bayes approach are investigated and compared to those of widely-used FDR-controlling linear step-up procedures in a simulation study. The Type I error and power trade-off achieved by the empirical Bayes procedures under a variety of testing scenarios allows this approach to be competitive with or outperform the Storey and Tibshirani (2003) linear step-up procedure, as an alternative to the classical Benjamini and Hochberg (1995) procedure. PMID:18932138

  20. Field evaluation of distance-estimation error during wetland-dependent bird surveys

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2012-01-01

    Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.

  1. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  2. Assessment and quantification of patient set-up errors in nasopharyngeal cancer patients and their biological and dosimetric impact in terms of generalized equivalent uniform dose (gEUD), tumour control probability (TCP) and normal tissue complication probability (NTCP)

    PubMed Central

    Marcie, S; Fellah, M; Chami, S; Mekki, F

    2015-01-01

    Objective: The aim of this study is to assess and quantify patients' set-up errors using an electronic portal imaging device and to evaluate their dosimetric and biological impact in terms of generalized equivalent uniform dose (gEUD) on predictive models, such as the tumour control probability (TCP) and the normal tissue complication probability (NTCP). Methods: 20 patients treated for nasopharyngeal cancer were enrolled in the radiotherapy–oncology department of HCA. Systematic and random errors were quantified. The dosimetric and biological impact of these set-up errors on the target volume and the organ at risk (OARs) coverage were assessed using calculation of dose–volume histogram, gEUD, TCP and NTCP. For this purpose, an in-house software was developed and used. Results: The standard deviations (1SDs) of the systematic set-up and random set-up errors were calculated for the lateral and subclavicular fields and gave the following results: ∑ = 0.63 ± (0.42) mm and σ = 3.75 ± (0.79) mm, respectively. Thus a planning organ at risk volume (PRV) margin of 3 mm was defined around the OARs, and a 5-mm margin used around the clinical target volume. The gEUD, TCP and NTCP calculations obtained with and without set-up errors have shown increased values for tumour, where ΔgEUD (tumour) = 1.94% Gy (p = 0.00721) and ΔTCP = 2.03%. The toxicity of OARs was quantified using gEUD and NTCP. The values of ΔgEUD (OARs) vary from 0.78% to 5.95% in the case of the brainstem and the optic chiasm, respectively. The corresponding ΔNTCP varies from 0.15% to 0.53%, respectively. Conclusion: The quantification of set-up errors has a dosimetric and biological impact on the tumour and on the OARs. The developed in-house software using the concept of gEUD, TCP and NTCP biological models has been successfully used in this study. It can be used also to optimize the treatment plan established for our patients. Advances in knowledge: The gEUD, TCP and NTCP may be more suitable tools to assess the treatment plans before treating the patients. PMID:25882689

  3. An Upper Bound on Orbital Debris Collision Probability When Only One Object has Position Uncertainty Information

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    Upper bounds on high speed satellite collision probability, P (sub c), have been investigated. Previous methods assume an individual position error covariance matrix is available for each object. The two matrices being combined into a single, relative position error covariance matrix. Components of the combined error covariance are then varied to obtain a maximum P (sub c). If error covariance information for only one of the two objects was available, either some default shape has been used or nothing could be done. An alternative is presented that uses the known covariance information along with a critical value of the missing covariance to obtain an approximate but useful P (sub c) upper bound. There are various avenues along which an upper bound on the high speed satellite collision probability has been pursued. Typically, for the collision plane representation of the high speed collision probability problem, the predicted miss position in the collision plane is assumed fixed. Then the shape (aspect ratio of ellipse), the size (scaling of standard deviations) or the orientation (rotation of ellipse principal axes) of the combined position error ellipse is varied to obtain a maximum P (sub c). Regardless as to the exact details of the approach, previously presented methods all assume that an individual position error covariance matrix is available for each object and the two are combined into a single, relative position error covariance matrix. This combined position error covariance matrix is then modified according to the chosen scheme to arrive at a maximum P (sub c). But what if error covariance information for one of the two objects is not available? When error covariance information for one of the objects is not available the analyst has commonly defaulted to the situation in which only the relative miss position and velocity are known without any corresponding state error covariance information. The various usual methods of finding a maximum P (sub c) do no good because the analyst defaults to no knowledge of the combined, relative position error covariance matrix. It is reasonable to think, given an assumption of no covariance information, an analyst might still attempt to determine the error covariance matrix that results in an upper bound on the P (sub c). Without some guidance on limits to the shape, size and orientation of the unknown covariance matrix, the limiting case is a degenerate ellipse lying along the relative miss vector in the collision plane. Unless the miss position is exceptionally large or the at-risk object is exceptionally small, this method results in a maximum P (sub c) too large to be of practical use. For example, assuming that the miss distance is equal to the current ISS alert volume along-track (+ or -) distance of 25 kilometers and that the at-risk area has a 70 meter radius. The maximum (degenerate ellipse) P (sub c) is about 0.00136. At 40 kilometers, the maximum P (sub c) would be 0.00085 which is still almost an order of magnitude larger than the ISS maneuver threshold of 0.0001. In fact, a miss distance of almost 340 kilometers is necessary to reduce the maximum P (sub c) associated with this degenerate ellipse to the ISS maneuver threshold value. Such a result is frequently of no practical value to the analyst. Some improvement may be made with respect to this problem by realizing that while the position error covariance matrix of one of the objects (usually the debris object) may not be known the position error covariance matrix of the other object (usually the asset) is almost always available. Making use of the position error covariance information for the one object provides an improvement in finding a maximum P (sub c) which, in some cases, may offer real utility. The equations to be used are presented and their use discussed.

  4. Statistical Orbit Determination using the Particle Filter for Incorporating Non-Gaussian Uncertainties

    NASA Technical Reports Server (NTRS)

    Mashiku, Alinda; Garrison, James L.; Carpenter, J. Russell

    2012-01-01

    The tracking of space objects requires frequent and accurate monitoring for collision avoidance. As even collision events with very low probability are important, accurate prediction of collisions require the representation of the full probability density function (PDF) of the random orbit state. Through representing the full PDF of the orbit state for orbit maintenance and collision avoidance, we can take advantage of the statistical information present in the heavy tailed distributions, more accurately representing the orbit states with low probability. The classical methods of orbit determination (i.e. Kalman Filter and its derivatives) provide state estimates based on only the second moments of the state and measurement errors that are captured by assuming a Gaussian distribution. Although the measurement errors can be accurately assumed to have a Gaussian distribution, errors with a non-Gaussian distribution could arise during propagation between observations. Moreover, unmodeled dynamics in the orbit model could introduce non-Gaussian errors into the process noise. A Particle Filter (PF) is proposed as a nonlinear filtering technique that is capable of propagating and estimating a more complete representation of the state distribution as an accurate approximation of a full PDF. The PF uses Monte Carlo runs to generate particles that approximate the full PDF representation. The PF is applied in the estimation and propagation of a highly eccentric orbit and the results are compared to the Extended Kalman Filter and Splitting Gaussian Mixture algorithms to demonstrate its proficiency.

  5. Landsat D Thematic Mapper image dimensionality reduction and geometric correction accuracy

    NASA Technical Reports Server (NTRS)

    Ford, G. E.

    1986-01-01

    To characterize and quantify the performance of the Landsat thematic mapper (TM), techniques for dimensionality reduction by linear transformation have been studied and evaluated and the accuracy of the correction of geometric errors in TM images analyzed. Theoretical evaluations and comparisons for existing methods for the design of linear transformation for dimensionality reduction are presented. These methods include the discrete Karhunen Loeve (KL) expansion, Multiple Discriminant Analysis (MDA), Thematic Mapper (TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). A unified approach to these design problems is presented in which each method involves optimizing an objective function with respect to the linear transformation matrix. From these studies, four modified methods are proposed. They are referred to as the Space Variant Linear Transformation, the KL Transform-MDA hybrid method, and the First and Second Version of the Weighted MDA method. The modifications involve the assignment of weights to classes to achieve improvements in the class conditional probability of error for classes with high weights. Experimental evaluations of the existing and proposed methods have been performed using the six reflective bands of the TM data. It is shown that in terms of probability of classification error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data require only a three dimensional feature space. It is shown experimentally as well that for the proposed methods, the classes with high weights have improvements in class conditional probability of error estimates as expected.

  6. Clarification of terminology in medication errors: definitions and classification.

    PubMed

    Ferner, Robin E; Aronson, Jeffrey K

    2006-01-01

    We have previously described and analysed some terms that are used in drug safety and have proposed definitions. Here we discuss and define terms that are used in the field of medication errors, particularly terms that are sometimes misunderstood or misused. We also discuss the classification of medication errors. A medication error is a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient. Errors can be classified according to whether they are mistakes, slips, or lapses. Mistakes are errors in the planning of an action. They can be knowledge based or rule based. Slips and lapses are errors in carrying out an action - a slip through an erroneous performance and a lapse through an erroneous memory. Classification of medication errors is important because the probabilities of errors of different classes are different, as are the potential remedies.

  7. Tailoring a Human Reliability Analysis to Your Industry Needs

    NASA Technical Reports Server (NTRS)

    DeMott, D. L.

    2016-01-01

    Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed versus a requirement to provide a numerical value as part of a probabilistic risk assessment. Industries involved with humans operating large equipment or transport systems (ex. railroads or airlines) would have more need to address the man machine interface than medical workers administering medications. Human error occurs in every industry; in most cases the consequences are relatively benign and occasionally beneficial. In cases where the results can have disastrous consequences, the use of Human Reliability techniques to identify and classify the risk of human errors allows a company more opportunities to mitigate or eliminate these types of risks and prevent costly tragedies.

  8. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Peter R., E-mail: pmarti46@uwo.ca; Cool, Derek W.; Romagnoli, Cesare

    2014-07-15

    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiologymore » resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each tumor was consistently greater when using spherical tumor shapes as opposed to no shape assumption. However, an assumption of spherical tumor shape for RMSE = 3.5 mm led to a mean overestimation of tumor sampling probabilities of 3%, implying that assuming spherical tumor shape may be reasonable for many prostate tumors. The authors also determined that a biopsy system would need to have a RMS needle delivery error of no more than 1.6 mm in order to sample 95% of tumors with one core. The authors’ experiments also indicated that the effect of axial-direction error on the measured tumor burden was mitigated by the 18 mm core length at 3.5 mm RMSE. Conclusions: For biopsy systems with RMSE ≥ 3.5 mm, more than one biopsy core must be taken from the majority of tumors to achieveP ≥ 95%. These observations support the authors’ perspective that some tumors of clinically significant sizes may require more than one biopsy attempt in order to be sampled during the first biopsy session. This motivates the authors’ ongoing development of an approach to optimize biopsy plans with the aim of achieving a desired probability of obtaining a sample from each tumor, while minimizing the number of biopsies. Optimized planning of within-tumor targets for MRI-3D TRUS fusion biopsy could support earlier diagnosis of prostate cancer while it remains localized to the gland and curable.« less

  9. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  10. Error protection capability of space shuttle data bus designs

    NASA Technical Reports Server (NTRS)

    Proch, G. E.

    1974-01-01

    Error protection assurance in the reliability of digital data communications is discussed. The need for error protection on the space shuttle data bus system has been recognized and specified as a hardware requirement. The error protection techniques of particular concern are those designed into the Shuttle Main Engine Interface (MEI) and the Orbiter Multiplex Interface Adapter (MIA). The techniques and circuit design details proposed for these hardware are analyzed in this report to determine their error protection capability. The capability is calculated in terms of the probability of an undetected word error. Calculated results are reported for a noise environment that ranges from the nominal noise level stated in the hardware specifications to burst levels which may occur in extreme or anomalous conditions.

  11. The Effects and Side-Effects of Statistics Education: Psychology Students' (Mis-)Conceptions of Probability

    ERIC Educational Resources Information Center

    Morsanyi, Kinga; Primi, Caterina; Chiesi, Francesca; Handley, Simon

    2009-01-01

    In three studies we looked at two typical misconceptions of probability: the representativeness heuristic, and the equiprobability bias. The literature on statistics education predicts that some typical errors and biases (e.g., the equiprobability bias) increase with education, whereas others decrease. This is in contrast with reasoning theorists'…

  12. Robust Connectivity in Sensory and Ad Hoc Network

    DTIC Science & Technology

    2011-02-01

    as the prior probability is π0 = 0.8, the error probability should be capped at 0.2. This seemingly pathological result is due to the fact that the...publications and is the author of the book Multirate and Wavelet Signal Processing (Academic Press, 1998). His research interests include multiscale signal and

  13. Laser damage metrology in biaxial nonlinear crystals using different test beams

    NASA Astrophysics Data System (ADS)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  14. The root cause of ability and inability to assemble and install components using written manual with or without diagrams among non-native English speakers: Root cause analysis

    NASA Astrophysics Data System (ADS)

    Shukri, S. Ahmad; Millar, R.; Gratton, G.; Garner, M.; Noh, H. Mohd

    2017-12-01

    Documentation errors and human errors are often claimed to be the contributory factors for aircraft maintenance mistakes. This paper highlights the preliminary results of the third phase of a four-phased research on communication media that are utilised in an aircraft maintenance organisation. The second phase has looked into the probability of success and failure in completing a task by 60 subjects while in this third phase, the same subjects have been interviewed immediately after completing the task by using Root Cause Analysis (RCA) method. It is discovered that the root cause of their inability to finish the task while using only written manual is the absence of diagrams. However, haste is identified to be the root cause for the incompletion of the task when both manual and diagram are given to the participants. It is observed that those who are able to complete the task is due to their reference to both manual and diagram, simultaneously.

  15. Localization of virtual sound at 4 Gz.

    PubMed

    Sandor, Patrick M B; McAnally, Ken I; Pellieux, Lionel; Martin, Russell L

    2005-02-01

    Acceleration directed along the body's z-axis (Gz) leads to misperception of the elevation of visual objects (the "elevator illusion"), most probably as a result of errors in the transformation from eye-centered to head-centered coordinates. We have investigated whether the location of sound sources is misperceived under increased Gz. Visually guided localization responses were made, using a remotely controlled laser pointer, to virtual auditory targets under conditions of 1 and 4 Gz induced in a human centrifuge. As these responses would be expected to be affected by the elevator illusion, we also measured the effect of Gz on the accuracy with which subjects could point to the horizon. Horizon judgments were lower at 4 Gz than at 1 Gz, so sound localization responses at 4 Gz were corrected for this error in the transformation from eye-centered to head-centered coordinates. We found that the accuracy and bias of sound localization are not significantly affected by increased Gz. The auditory modality is likely to provide a reliable means of conveying spatial information to operators in dynamic environments in which Gz can vary.

  16. Neuropsychological analysis of a typewriting disturbance following cerebral damage.

    PubMed

    Boyle, M; Canter, G J

    1987-01-01

    Following a left CVA, a skilled professional typist sustained a disturbance of typing disproportionate to her handwriting disturbance. Typing errors were predominantly of the sequencing type, with spatial errors much less frequent, suggesting that the impairment was based on a relatively early (premotor) stage of processing. Depriving the subject of visual feedback during handwriting greatly increased her error rate. Similarly, interfering with auditory feedback during speech substantially reduced her self-correction of speech errors. These findings suggested that impaired ability to utilize somesthetic information--probably caused by the subject's parietal lobe lesion--may have been the basis of the typing disorder.

  17. Exploring human error in military aviation flight safety events using post-incident classification systems.

    PubMed

    Hooper, Brionny J; O'Hare, David P A

    2013-08-01

    Human error classification systems theoretically allow researchers to analyze postaccident data in an objective and consistent manner. The Human Factors Analysis and Classification System (HFACS) framework is one such practical analysis tool that has been widely used to classify human error in aviation. The Cognitive Error Taxonomy (CET) is another. It has been postulated that the focus on interrelationships within HFACS can facilitate the identification of the underlying causes of pilot error. The CET provides increased granularity at the level of unsafe acts. The aim was to analyze the influence of factors at higher organizational levels on the unsafe acts of front-line operators and to compare the errors of fixed-wing and rotary-wing operations. This study analyzed 288 aircraft incidents involving human error from an Australasian military organization occurring between 2001 and 2008. Action errors accounted for almost twice (44%) the proportion of rotary wing compared to fixed wing (23%) incidents. Both classificatory systems showed significant relationships between precursor factors such as the physical environment, mental and physiological states, crew resource management, training and personal readiness, and skill-based, but not decision-based, acts. The CET analysis showed different predisposing factors for different aspects of skill-based behaviors. Skill-based errors in military operations are more prevalent in rotary wing incidents and are related to higher level supervisory processes in the organization. The Cognitive Error Taxonomy provides increased granularity to HFACS analyses of unsafe acts.

  18. Modelling the spatial distribution of the nuisance mosquito species Anopheles plumbeus (Diptera: Culicidae) in the Netherlands.

    PubMed

    Ibañez-Justicia, Adolfo; Cianci, Daniela

    2015-05-01

    Landscape modifications, urbanization or changes of use of rural-agricultural areas can create more favourable conditions for certain mosquito species and therefore indirectly cause nuisance problems for humans. This could potentially result in mosquito-borne disease outbreaks when the nuisance is caused by mosquito species that can transmit pathogens. Anopheles plumbeus is a nuisance mosquito species and a potential malaria vector. It is one of the most frequently observed species in the Netherlands. Information on the distribution of this species is essential for risk assessments. The purpose of the study was to investigate the potential spatial distribution of An. plumbeus in the Netherlands. Random forest models were used to link the occurrence and the abundance of An. plumbeus with environmental features and to produce distribution maps in the Netherlands. Mosquito data were collected using a cross-sectional study design in the Netherlands, from April to October 2010-2013. The environmental data were obtained from satellite imagery and weather stations. Statistical measures (accuracy for the occurrence model and mean squared error for the abundance model) were used to evaluate the models performance. The models were externally validated. The maps show that forested areas (centre of the Netherlands) and the east of the country were predicted as suitable for An. plumbeus. In particular high suitability and high abundance was predicted in the south-eastern provinces Limburg and North Brabant. Elevation, precipitation, day and night temperature and vegetation indices were important predictors for calculating the probability of occurrence for An. plumbeus. The probability of occurrence, vegetation indices and precipitation were important for predicting its abundance. The AUC value was 0.73 and the error in the validation was 0.29; the mean squared error value was 0.12. The areas identified by the model as suitable and with high abundance of An. plumbeus, are consistent with the areas from which nuisance was reported. Our results can be helpful in the assessment of vector-borne disease risk.

  19. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice.

    PubMed

    Schipler, Agnes; Iliakis, George

    2013-09-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice.

  20. Relay-aided free-space optical communications using α - μ distribution over atmospheric turbulence channels with misalignment errors

    NASA Astrophysics Data System (ADS)

    Upadhya, Abhijeet; Dwivedi, Vivek K.; Singh, G.

    2018-06-01

    In this paper, we have analyzed the performance of dual hop radio frequency (RF)/free-space optical (FSO) fixed gain relay environment confined by atmospheric turbulence induced fading channel over FSO link and modeled using α - μ distribution. The RF hop of the amplify-and-forward scheme undergoes the Rayleigh fading and the proposed system model also considers the pointing error effect on the FSO link. A novel and accurate mathematical expression of the probability density function for a FSO link experiencing α - μ distributed atmospheric turbulence in the presence of pointing error is derived. Further, we have presented analytical expressions of outage probability and bit error rate in terms of Meijer-G function. In addition to this, a useful and mathematically tractable closed-form expression for the end-to-end ergodic capacity of the dual hop scheme in terms of bivariate Fox's H function is derived. The atmospheric turbulence, misalignment errors and various binary modulation schemes for intensity modulation on optical wireless link are considered to yield the results. Finally, we have analyzed each of the three performance metrics for high SNR in order to represent them in terms of elementary functions and the achieved analytical results are supported by computer-based simulations.

  1. A theoretical basis for the analysis of redundant software subject to coincident errors

    NASA Technical Reports Server (NTRS)

    Eckhardt, D. E., Jr.; Lee, L. D.

    1985-01-01

    Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; Matalgah, Mustafa M; Bobrek, Miljko

    Traditional encryption techniques require packet overhead, produce processing time delay, and suffer from severe quality of service deterioration due to fades and interference in wireless channels. These issues reduce the effective transmission data rate (throughput) considerably in wireless communications, where data rate with limited bandwidth is the main constraint. In this paper, performance evaluation analyses are conducted for an integrated signaling-encryption mechanism that is secure and enables improved throughput and probability of bit-error in wireless channels. This mechanism eliminates the drawbacks stated herein by encrypting only a small portion of an entire transmitted frame, while the rest is not subjectmore » to traditional encryption but goes through a signaling process (designed transformation) with the plaintext of the portion selected for encryption. We also propose to incorporate error correction coding solely on the small encrypted portion of the data to drastically improve the overall bit-error rate performance while not noticeably increasing the required bit-rate. We focus on validating the signaling-encryption mechanism utilizing Hamming and convolutional error correction coding by conducting an end-to-end system-level simulation-based study. The average probability of bit-error and throughput of the encryption mechanism are evaluated over standard Gaussian and Rayleigh fading-type channels and compared to the ones of the conventional advanced encryption standard (AES).« less

  3. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    PubMed

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  4. An Analysis of U.S. Army Fratricide Incidents during the Global War on Terror (11 September 2001 to 31 March 2008)

    DTIC Science & Technology

    2010-03-15

    Swiss cheese model of human error causation. ................................................................... 3  2. Results for the classification of...based on Reason’s “ Swiss cheese ” model of human error (1990). Figure 1 describes how an accident is likely to occur when all of the errors, or “holes...align. A detailed description of HFACS can be found in Wiegmann and Shappell (2003). Figure 1. The Swiss cheese model of human error

  5. Fractional poisson--a simple dose-response model for human norovirus.

    PubMed

    Messner, Michael J; Berger, Philip; Nappier, Sharon P

    2014-10-01

    This study utilizes old and new Norovirus (NoV) human challenge data to model the dose-response relationship for human NoV infection. The combined data set is used to update estimates from a previously published beta-Poisson dose-response model that includes parameters for virus aggregation and for a beta-distribution that describes variable susceptibility among hosts. The quality of the beta-Poisson model is examined and a simpler model is proposed. The new model (fractional Poisson) characterizes hosts as either perfectly susceptible or perfectly immune, requiring a single parameter (the fraction of perfectly susceptible hosts) in place of the two-parameter beta-distribution. A second parameter is included to account for virus aggregation in the same fashion as it is added to the beta-Poisson model. Infection probability is simply the product of the probability of nonzero exposure (at least one virus or aggregate is ingested) and the fraction of susceptible hosts. The model is computationally simple and appears to be well suited to the data from the NoV human challenge studies. The model's deviance is similar to that of the beta-Poisson, but with one parameter, rather than two. As a result, the Akaike information criterion favors the fractional Poisson over the beta-Poisson model. At low, environmentally relevant exposure levels (<100), estimation error is small for the fractional Poisson model; however, caution is advised because no subjects were challenged at such a low dose. New low-dose data would be of great value to further clarify the NoV dose-response relationship and to support improved risk assessment for environmentally relevant exposures. © 2014 Society for Risk Analysis Published 2014. This article is a U.S. Government work and is in the public domain for the U.S.A.

  6. Decision-Making under Risk of Loss in Children

    PubMed Central

    Steelandt, Sophie; Broihanne, Marie-Hélène; Romain, Amélie; Thierry, Bernard; Dufour, Valérie

    2013-01-01

    In human adults, judgment errors are known to often lead to irrational decision-making in risky contexts. While these errors can affect the accuracy of profit evaluation, they may have once enhanced survival in dangerous contexts following a “better be safe than sorry” rule of thumb. Such a rule can be critical for children, and it could develop early on. Here, we investigated the rationality of choices and the possible occurrence of judgment errors in children aged 3 to 9 years when exposed to a risky trade. Children were allocated with a piece of cookie that they could either keep or risk in exchange of the content of one cup among 6, visible in front of them. In the cups, cookies could be of larger, equal or smaller sizes than the initial allocation. Chances of losing or winning were manipulated by presenting different combinations of cookie sizes in the cups (for example 3 large, 2 equal and 1 small cookie). We investigated the rationality of children's response using the theoretical models of Expected Utility Theory (EUT) and Cumulative Prospect Theory. Children aged 3 to 4 years old were unable to discriminate the profitability of exchanging in the different combinations. From 5 years, children were better at maximizing their benefit in each combination, their decisions were negatively induced by the probability of losing, and they exhibited a framing effect, a judgment error found in adults. Confronting data to the EUT indicated that children aged over 5 were risk-seekers but also revealed inconsistencies in their choices. According to a complementary model, the Cumulative Prospect Theory (CPT), they exhibited loss aversion, a pattern also found in adults. These findings confirm that adult-like judgment errors occur in children, which suggests that they possess a survival value. PMID:23349682

  7. Hydrologic Design in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Vogel, R. M.; Farmer, W. H.; Read, L.

    2014-12-01

    In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood of future hydrologic events of interest.

  8. Decision-making under risk of loss in children.

    PubMed

    Steelandt, Sophie; Broihanne, Marie-Hélène; Romain, Amélie; Thierry, Bernard; Dufour, Valérie

    2013-01-01

    In human adults, judgment errors are known to often lead to irrational decision-making in risky contexts. While these errors can affect the accuracy of profit evaluation, they may have once enhanced survival in dangerous contexts following a "better be safe than sorry" rule of thumb. Such a rule can be critical for children, and it could develop early on. Here, we investigated the rationality of choices and the possible occurrence of judgment errors in children aged 3 to 9 years when exposed to a risky trade. Children were allocated with a piece of cookie that they could either keep or risk in exchange of the content of one cup among 6, visible in front of them. In the cups, cookies could be of larger, equal or smaller sizes than the initial allocation. Chances of losing or winning were manipulated by presenting different combinations of cookie sizes in the cups (for example 3 large, 2 equal and 1 small cookie). We investigated the rationality of children's response using the theoretical models of Expected Utility Theory (EUT) and Cumulative Prospect Theory. Children aged 3 to 4 years old were unable to discriminate the profitability of exchanging in the different combinations. From 5 years, children were better at maximizing their benefit in each combination, their decisions were negatively induced by the probability of losing, and they exhibited a framing effect, a judgment error found in adults. Confronting data to the EUT indicated that children aged over 5 were risk-seekers but also revealed inconsistencies in their choices. According to a complementary model, the Cumulative Prospect Theory (CPT), they exhibited loss aversion, a pattern also found in adults. These findings confirm that adult-like judgment errors occur in children, which suggests that they possess a survival value.

  9. Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Ranjith

    2011-09-15

    We consider the problem of distinguishing, with minimum probability of error, two optical beam-splitter channels with unequal complex-valued reflectivities using general quantum probe states entangled over M signal and M' idler mode pairs of which the signal modes are bounced off the beam splitter while the idler modes are retained losslessly. We obtain a lower bound on the output state fidelity valid for any pure input state. We define number-diagonal signal (NDS) states to be input states whose density operator in the signal modes is diagonal in the multimode number basis. For such input states, we derive series formulas formore » the optimal error probability, the output state fidelity, and the Chernoff-type upper bounds on the error probability. For the special cases of quantum reading of a classical digital memory and target detection (for which the reflectivities are real valued), we show that for a given input signal photon probability distribution, the fidelity is minimized by the NDS states with that distribution and that for a given average total signal energy N{sub s}, the fidelity is minimized by any multimode Fock state with N{sub s} total signal photons. For reading of an ideal memory, it is shown that Fock state inputs minimize the Chernoff bound. For target detection under high-loss conditions, a no-go result showing the lack of appreciable quantum advantage over coherent state transmitters is derived. A comparison of the error probability performance for quantum reading of number state and two-mode squeezed vacuum state (or EPR state) transmitters relative to coherent state transmitters is presented for various values of the reflectances. While the nonclassical states in general perform better than the coherent state, the quantitative performance gains differ depending on the values of the reflectances. The experimental outlook for realizing nonclassical gains from number state transmitters with current technology at moderate to high values of the reflectances is argued to be good.« less

  10. On Two-Stage Multiple Comparison Procedures When There Are Unequal Sample Sizes in the First Stage.

    ERIC Educational Resources Information Center

    Wilcox, Rand R.

    1984-01-01

    Two stage multiple-comparison procedures give an exact solution to problems of power and Type I errors, but require equal sample sizes in the first stage. This paper suggests a method of evaluating the experimentwise Type I error probability when the first stage has unequal sample sizes. (Author/BW)

  11. Planned Hypothesis Tests Are Not Necessarily Exempt from Multiplicity Adjustment

    ERIC Educational Resources Information Center

    Frane, Andrew V.

    2015-01-01

    Scientific research often involves testing more than one hypothesis at a time, which can inflate the probability that a Type I error (false discovery) will occur. To prevent this Type I error inflation, adjustments can be made to the testing procedure that compensate for the number of tests. Yet many researchers believe that such adjustments are…

  12. Stimulus-Outcome Learnability Differentially Activates Anterior Cingulate and Hippocampus at Feedback Processing

    ERIC Educational Resources Information Center

    Rodriguez, Paul F.

    2009-01-01

    Memory systems are known to be influenced by feedback and error processing, but it is not well known what aspects of outcome contingencies are related to different memory systems. Here we use the Rescorla-Wagner model to estimate prediction errors in an fMRI study of stimulus-outcome association learning. The conditional probabilities of outcomes…

  13. Microcircuit radiation effects databank

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Radiation test data submitted by many testers is collated to serve as a reference for engineers who are concerned with and have some knowledge of the effects of the natural radiation environment on microcircuits. Total dose damage information and single event upset cross sections, i.e., the probability of a soft error (bit flip) or of a hard error (latchup) are presented.

  14. Extracting and Converting Quantitative Data into Human Error Probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuan Q. Tran; Ronald L. Boring; Jeffrey C. Joe

    2007-08-01

    This paper discusses a proposed method using a combination of advanced statistical approaches (e.g., meta-analysis, regression, structural equation modeling) that will not only convert different empirical results into a common metric for scaling individual PSFs effects, but will also examine the complex interrelationships among PSFs. Furthermore, the paper discusses how the derived statistical estimates (i.e., effect sizes) can be mapped onto a HRA method (e.g. SPAR-H) to generate HEPs that can then be use in probabilistic risk assessment (PRA). The paper concludes with a discussion of the benefits of using academic literature in assisting HRA analysts in generating sound HEPsmore » and HRA developers in validating current HRA models and formulating new HRA models.« less

  15. Interim reliability-evaluation program: analysis of the Browns Ferry, Unit 1, nuclear plant. Appendix B - system descriptions and fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.

    1982-07-01

    This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix B provides a description of Browns Ferry, Unit 1, plant systems and the failure evaluation of those systems as they apply to accidents at Browns Ferry. Information is presented concerning front-line system fault analysis; support system fault analysis; human error models andmore » probabilities; and generic control circuit analyses.« less

  16. Computer-aided diagnosis with potential application to rapid detection of disease outbreaks.

    PubMed

    Burr, Tom; Koster, Frederick; Picard, Rick; Forslund, Dave; Wokoun, Doug; Joyce, Ed; Brillman, Judith; Froman, Phil; Lee, Jack

    2007-04-15

    Our objectives are to quickly interpret symptoms of emergency patients to identify likely syndromes and to improve population-wide disease outbreak detection. We constructed a database of 248 syndromes, each syndrome having an estimated probability of producing any of 85 symptoms, with some two-way, three-way, and five-way probabilities reflecting correlations among symptoms. Using these multi-way probabilities in conjunction with an iterative proportional fitting algorithm allows estimation of full conditional probabilities. Combining these conditional probabilities with misdiagnosis error rates and incidence rates via Bayes theorem, the probability of each syndrome is estimated. We tested a prototype of computer-aided differential diagnosis (CADDY) on simulated data and on more than 100 real cases, including West Nile Virus, Q fever, SARS, anthrax, plague, tularaemia and toxic shock cases. We conclude that: (1) it is important to determine whether the unrecorded positive status of a symptom means that the status is negative or that the status is unknown; (2) inclusion of misdiagnosis error rates produces more realistic results; (3) the naive Bayes classifier, which assumes all symptoms behave independently, is slightly outperformed by CADDY, which includes available multi-symptom information on correlations; as more information regarding symptom correlations becomes available, the advantage of CADDY over the naive Bayes classifier should increase; (4) overlooking low-probability, high-consequence events is less likely if the standard output summary is augmented with a list of rare syndromes that are consistent with observed symptoms, and (5) accumulating patient-level probabilities across a larger population can aid in biosurveillance for disease outbreaks. c 2007 John Wiley & Sons, Ltd.

  17. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  18. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  19. Exploration of multiphoton entangled states by using weak nonlinearities

    PubMed Central

    He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons. PMID:26751044

  20. A Quality Improvement Project to Decrease Human Milk Errors in the NICU.

    PubMed

    Oza-Frank, Reena; Kachoria, Rashmi; Dail, James; Green, Jasmine; Walls, Krista; McClead, Richard E

    2017-02-01

    Ensuring safe human milk in the NICU is a complex process with many potential points for error, of which one of the most serious is administration of the wrong milk to the wrong infant. Our objective was to describe a quality improvement initiative that was associated with a reduction in human milk administration errors identified over a 6-year period in a typical, large NICU setting. We employed a quasi-experimental time series quality improvement initiative by using tools from the model for improvement, Six Sigma methodology, and evidence-based interventions. Scanned errors were identified from the human milk barcode medication administration system. Scanned errors of interest were wrong-milk-to-wrong-infant, expired-milk, or preparation errors. The scanned error rate and the impact of additional improvement interventions from 2009 to 2015 were monitored by using statistical process control charts. From 2009 to 2015, the total number of errors scanned declined from 97.1 per 1000 bottles to 10.8. Specifically, the number of expired milk error scans declined from 84.0 per 1000 bottles to 8.9. The number of preparation errors (4.8 per 1000 bottles to 2.2) and wrong-milk-to-wrong-infant errors scanned (8.3 per 1000 bottles to 2.0) also declined. By reducing the number of errors scanned, the number of opportunities for errors also decreased. Interventions that likely had the greatest impact on reducing the number of scanned errors included installation of bedside (versus centralized) scanners and dedicated staff to handle milk. Copyright © 2017 by the American Academy of Pediatrics.

  1. A validation study of a stochastic model of human interaction

    NASA Astrophysics Data System (ADS)

    Burchfield, Mitchel Talmadge

    The purpose of this dissertation is to validate a stochastic model of human interactions which is part of a developmentalism paradigm. Incorporating elements of ancient and contemporary philosophy and science, developmentalism defines human development as a progression of increasing competence and utilizes compatible theories of developmental psychology, cognitive psychology, educational psychology, social psychology, curriculum development, neurology, psychophysics, and physics. To validate a stochastic model of human interactions, the study addressed four research questions: (a) Does attitude vary over time? (b) What are the distributional assumptions underlying attitudes? (c) Does the stochastic model, {-}N{intlimitssbsp{-infty}{infty}}varphi(chi,tau)\\ Psi(tau)dtau, have utility for the study of attitudinal distributions and dynamics? (d) Are the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein theories applicable to human groups? Approximately 25,000 attitude observations were made using the Semantic Differential Scale. Positions of individuals varied over time and the logistic model predicted observed distributions with correlations between 0.98 and 1.0, with estimated standard errors significantly less than the magnitudes of the parameters. The results bring into question the applicability of Fisherian research designs (Fisher, 1922, 1928, 1938) for behavioral research based on the apparent failure of two fundamental assumptions-the noninteractive nature of the objects being studied and normal distribution of attributes. The findings indicate that individual belief structures are representable in terms of a psychological space which has the same or similar properties as physical space. The psychological space not only has dimension, but individuals interact by force equations similar to those described in theoretical physics models. Nonlinear regression techniques were used to estimate Fermi-Dirac parameters from the data. The model explained a high degree of the variance in each probability distribution. The correlation between predicted and observed probabilities ranged from a low of 0.955 to a high value of 0.998, indicating that humans behave in psychological space as Fermions behave in momentum space.

  2. Human errors and measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Kuselman, Ilya; Pennecchi, Francesca

    2015-04-01

    Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.

  3. Comprehensive Anti-error Study on Power Grid Dispatching Based on Regional Regulation and Integration

    NASA Astrophysics Data System (ADS)

    Zhang, Yunju; Chen, Zhongyi; Guo, Ming; Lin, Shunsheng; Yan, Yinyang

    2018-01-01

    With the large capacity of the power system, the development trend of the large unit and the high voltage, the scheduling operation is becoming more frequent and complicated, and the probability of operation error increases. This paper aims at the problem of the lack of anti-error function, single scheduling function and low working efficiency for technical support system in regional regulation and integration, the integrated construction of the error prevention of the integrated architecture of the system of dispatching anti - error of dispatching anti - error of power network based on cloud computing has been proposed. Integrated system of error prevention of Energy Management System, EMS, and Operation Management System, OMS have been constructed either. The system architecture has good scalability and adaptability, which can improve the computational efficiency, reduce the cost of system operation and maintenance, enhance the ability of regional regulation and anti-error checking with broad development prospects.

  4. Quality Issues in Propulsion

    NASA Technical Reports Server (NTRS)

    McCarty, John P.; Lyles, Garry M.

    1997-01-01

    Propulsion system quality is defined in this paper as having high reliability, that is, quality is a high probability of within-tolerance performance or operation. Since failures are out-of-tolerance performance, the probability of failures and their occurrence is the difference between high and low quality systems. Failures can be described at 3 levels: the system failure (which is the detectable end of a failure), the failure mode (which is the failure process), and the failure cause (which is the start). Failure causes can be evaluated & classified by type. The results of typing flight history failures shows that most failures are in unrecognized modes and result from human error or noise, i.e. failures are when engineers learn how things really work. Although the study based on US launch vehicles, a sampling of failures from other countries indicates the finding has broad application. The parameters of the design of a propulsion system are not single valued, but have dispersions associated with the manufacturing of parts. Many tests are needed to find failures, if the dispersions are large relative to tolerances, which could contribute to the large number of failures in unrecognized modes.

  5. A probabilistic method for the estimation of residual risk in donated blood.

    PubMed

    Bish, Ebru K; Ragavan, Prasanna K; Bish, Douglas R; Slonim, Anthony D; Stramer, Susan L

    2014-10-01

    The residual risk (RR) of transfusion-transmitted infections, including the human immunodeficiency virus and hepatitis B and C viruses, is typically estimated by the incidence[Formula: see text]window period model, which relies on the following restrictive assumptions: Each screening test, with probability 1, (1) detects an infected unit outside of the test's window period; (2) fails to detect an infected unit within the window period; and (3) correctly identifies an infection-free unit. These assumptions need not hold in practice due to random or systemic errors and individual variations in the window period. We develop a probability model that accurately estimates the RR by relaxing these assumptions, and quantify their impact using a published cost-effectiveness study and also within an optimization model. These assumptions lead to inaccurate estimates in cost-effectiveness studies and to sub-optimal solutions in the optimization model. The testing solution generated by the optimization model translates into fewer expected infections without an increase in the testing cost. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L.

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices usedmore » in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.« less

  7. Human error analysis of commercial aviation accidents using the human factors analysis and classification system (HFACS)

    DOT National Transportation Integrated Search

    2001-02-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework : originally developed and tested within the U.S. military as a tool for investigating and analyzing the human : causes of aviation accidents. Based upon ...

  8. On the use of biomathematical models in patient-specific IMRT dose QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen Heming; Nelms, Benjamin E.; Tome, Wolfgang A.

    2013-07-15

    Purpose: To investigate the use of biomathematical models such as tumor control probability (TCP) and normal tissue complication probability (NTCP) as new quality assurance (QA) metrics.Methods: Five different types of error (MLC transmission, MLC penumbra, MLC tongue and groove, machine output, and MLC position) were intentionally induced to 40 clinical intensity modulated radiation therapy (IMRT) patient plans (20 H and N cases and 20 prostate cases) to simulate both treatment planning system errors and machine delivery errors in the IMRT QA process. The changes in TCP and NTCP for eight different anatomic structures (H and N: CTV, GTV, both parotids,more » spinal cord, larynx; prostate: CTV, rectal wall) were calculated as the new QA metrics to quantify the clinical impact on patients. The correlation between the change in TCP/NTCP and the change in selected DVH values was also evaluated. The relation between TCP/NTCP change and the characteristics of the TCP/NTCP curves is discussed.Results:{Delta}TCP and {Delta}NTCP were summarized for each type of induced error and each structure. The changes/degradations in TCP and NTCP caused by the errors vary widely depending on dose patterns unique to each plan, and are good indicators of each plan's 'robustness' to that type of error.Conclusions: In this in silico QA study the authors have demonstrated the possibility of using biomathematical models not only as patient-specific QA metrics but also as objective indicators that quantify, pretreatment, a plan's robustness with respect to possible error types.« less

  9. Maximizing the Detection Probability of Kilonovae Associated with Gravitational Wave Observations

    NASA Astrophysics Data System (ADS)

    Chan, Man Leong; Hu, Yi-Ming; Messenger, Chris; Hendry, Martin; Heng, Ik Siong

    2017-01-01

    Estimates of the source sky location for gravitational wave signals are likely to span areas of up to hundreds of square degrees or more, making it very challenging for most telescopes to search for counterpart signals in the electromagnetic spectrum. To boost the chance of successfully observing such counterparts, we have developed an algorithm that optimizes the number of observing fields and their corresponding time allocations by maximizing the detection probability. As a proof-of-concept demonstration, we optimize follow-up observations targeting kilonovae using telescopes including the CTIO-Dark Energy Camera, Subaru-HyperSuprimeCam, Pan-STARRS, and the Palomar Transient Factory. We consider three simulated gravitational wave events with 90% credible error regions spanning areas from ∼ 30 {\\deg }2 to ∼ 300 {\\deg }2. Assuming a source at 200 {Mpc}, we demonstrate that to obtain a maximum detection probability, there is an optimized number of fields for any particular event that a telescope should observe. To inform future telescope design studies, we present the maximum detection probability and corresponding number of observing fields for a combination of limiting magnitudes and fields of view over a range of parameters. We show that for large gravitational wave error regions, telescope sensitivity rather than field of view is the dominating factor in maximizing the detection probability.

  10. Errors in Seismic Hazard Assessment are Creating Huge Human Losses

    NASA Astrophysics Data System (ADS)

    Bela, J.

    2015-12-01

    The current practice of representing earthquake hazards to the public based upon their perceived likelihood or probability of occurrence is proven now by the global record of actual earthquakes to be not only erroneous and unreliable, but also too deadly! Earthquake occurrence is sporadic and therefore assumptions of earthquake frequency and return-period are both not only misleading, but also categorically false. More than 700,000 people have now lost their lives (2000-2011), wherein 11 of the World's Deadliest Earthquakes have occurred in locations where probability-based seismic hazard assessments had predicted only low seismic low hazard. Unless seismic hazard assessment and the setting of minimum earthquake design safety standards for buildings and bridges are based on a more realistic deterministic recognition of "what can happen" rather than on what mathematical models suggest is "most likely to happen" such future huge human losses can only be expected to continue! The actual earthquake events that did occur were at or near the maximum potential-size event that either already had occurred in the past; or were geologically known to be possible. Haiti's M7 earthquake, 2010 (with > 222,000 fatalities) meant the dead could not even be buried with dignity. Japan's catastrophic Tohoku earthquake, 2011; a M9 Megathrust earthquake, unleashed a tsunami that not only obliterated coastal communities along the northern Japanese coast, but also claimed > 20,000 lives. This tsunami flooded nuclear reactors at Fukushima, causing 4 explosions and 3 reactors to melt down. But while this history of huge human losses due to erroneous and misleading seismic hazard estimates, despite its wrenching pain, cannot be unlived; if faced with courage and a more realistic deterministic estimate of "what is possible", it need not be lived again. An objective testing of the results of global probability based seismic hazard maps against real occurrences has never been done by the GSHAP team; even though the obvious inadequacy of the GSHAP map could have been established in the course of a simple check before the project completion. The doctrine of "psha exceptionalism" that created the maps can only be esponged by carefully examining the facts . . . which unfortunately include huge human losses!

  11. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence

    PubMed Central

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-01-01

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10−3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered. PMID:27924865

  12. A Short History of Probability Theory and Its Applications

    ERIC Educational Resources Information Center

    Debnath, Lokenath; Basu, Kanadpriya

    2015-01-01

    This paper deals with a brief history of probability theory and its applications to Jacob Bernoulli's famous law of large numbers and theory of errors in observations or measurements. Included are the major contributions of Jacob Bernoulli and Laplace. It is written to pay the tricentennial tribute to Jacob Bernoulli, since the year 2013…

  13. The Conjunction Fallacy: A Misunderstanding about Conjunction?

    ERIC Educational Resources Information Center

    Tentori, Katya; Bonini, Nicolao; Osherson, Daniel

    2004-01-01

    It is easy to construct pairs of sentences X, Y that lead many people to ascribe higher probability to the conjunction X-and-Y than to the conjuncts X, Y. Whether an error is thereby committed depends on reasoners' interpretation of the expressions "probability" and "and." We report two experiments designed to clarify the normative status of…

  14. The Influence of Improper Sets of Information on Judgment: How Irrelevant Information Can Bias Judged Probability

    ERIC Educational Resources Information Center

    Dougherty, Michael R.; Sprenger, Amber

    2006-01-01

    This article introduces 2 new sources of bias in probability judgment, discrimination failure and inhibition failure, which are conceptualized as arising from an interaction between error prone memory processes and a support theory like comparison process. Both sources of bias stem from the influence of irrelevant information on participants'…

  15. Aggregate and Individual Replication Probability within an Explicit Model of the Research Process

    ERIC Educational Resources Information Center

    Miller, Jeff; Schwarz, Wolf

    2011-01-01

    We study a model of the research process in which the true effect size, the replication jitter due to changes in experimental procedure, and the statistical error of effect size measurement are all normally distributed random variables. Within this model, we analyze the probability of successfully replicating an initial experimental result by…

  16. Fovea detection in optical coherence tomography using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Liefers, Bart; Venhuizen, Freerk G.; Theelen, Thomas; Hoyng, Carel; van Ginneken, Bram; Sánchez, Clara I.

    2017-02-01

    The fovea is an important clinical landmark that is used as a reference for assessing various quantitative measures, such as central retinal thickness or drusen count. In this paper we propose a novel method for automatic detection of the foveal center in Optical Coherence Tomography (OCT) scans. Although the clinician will generally aim to center the OCT scan on the fovea, post-acquisition image processing will give a more accurate estimate of the true location of the foveal center. A Convolutional Neural Network (CNN) was trained on a set of 781 OCT scans that classifies each pixel in the OCT B-scan with a probability of belonging to the fovea. Dilated convolutions were used to obtain a large receptive field, while maintaining pixel-level accuracy. In order to train the network more effectively, negative patches were sampled selectively after each epoch. After CNN classification of the entire OCT volume, the predicted foveal center was chosen as the voxel with maximum output probability, after applying an optimized three-dimensional Gaussian blurring. We evaluate the performance of our method on a data set of 99 OCT scans presenting different stages of Age-related Macular Degeneration (AMD). The fovea was correctly detected in 96:9% of the cases, with a mean distance error of 73 μm(+/-112 μm). This result was comparable to the performance of a second human observer who obtained a mean distance error of 69 μm (+/-94 μm). Experiments showed that the proposed method is accurate and robust even in retinas heavily affected by pathology.

  17. Practical Application of PRA as an Integrated Design Tool for Space Systems

    NASA Technical Reports Server (NTRS)

    Kalia, Prince; Shi, Ying; Pair, Robin; Quaney, Virginia; Uhlenbrock, John

    2013-01-01

    This paper presents the application of the first comprehensive Probabilistic Risk Assessment (PRA) during the design phase of a joint NASA/NOAA weather satellite program, Geostationary Operational Environmental Satellite Series R (GOES-R). GOES-R is the next generation weather satellite primarily to help understand the weather and help save human lives. PRA has been used at NASA for Human Space Flight for many years. PRA was initially adopted and implemented in the operational phase of manned space flight programs and more recently for the next generation human space systems. Since its first use at NASA, PRA has become recognized throughout the Agency as a method of assessing complex mission risks as part of an overall approach to assuring safety and mission success throughout project lifecycles. PRA is now included as a requirement during the design phase of both NASA next generation manned space vehicles as well as for high priority robotic missions. The influence of PRA on GOES-R design and operation concepts are discussed in detail. The GOES-R PRA is unique at NASA for its early implementation. It also represents a pioneering effort to integrate risks from both Spacecraft (SC) and Ground Segment (GS) to fully assess the probability of achieving mission objectives. PRA analysts were actively involved in system engineering and design engineering to ensure that a comprehensive set of technical risks were correctly identified and properly understood from a design and operations perspective. The analysis included an assessment of SC hardware and software, SC fault management system, GS hardware and software, common cause failures, human error, natural hazards, solar weather and infrastructure (such as network and telecommunications failures, fire). PRA findings directly resulted in design changes to reduce SC risk from micro-meteoroids. PRA results also led to design changes in several SC subsystems, e.g. propulsion, guidance, navigation and control (GNC), communications, mechanisms, and command and data handling (C&DH). The fault tree approach assisted in the development of the fault management system design. Human error analysis, which examined human response to failure, indicated areas where automation could reduce the overall probability of gaps in operation by half. In addition, the PRA brought to light many potential root causes of system disruptions, including earthquakes, inclement weather, solar storms, blackouts and other extreme conditions not considered in the typical reliability and availability analyses. Ultimately the PRA served to identify potential failures that, when mitigated, resulted in a more robust design, as well as to influence the program's concept of operations. The early and active integration of PRA with system and design engineering provided a well-managed approach for risk assessment that increased reliability and availability, optimized lifecyc1e costs, and unified the SC and GS developments.

  18. Accurate recapture identification for genetic mark–recapture studies with error-tolerant likelihood-based match calling and sample clustering

    USGS Publications Warehouse

    Sethi, Suresh; Linden, Daniel; Wenburg, John; Lewis, Cara; Lemons, Patrick R.; Fuller, Angela K.; Hare, Matthew P.

    2016-01-01

    Error-tolerant likelihood-based match calling presents a promising technique to accurately identify recapture events in genetic mark–recapture studies by combining probabilities of latent genotypes and probabilities of observed genotypes, which may contain genotyping errors. Combined with clustering algorithms to group samples into sets of recaptures based upon pairwise match calls, these tools can be used to reconstruct accurate capture histories for mark–recapture modelling. Here, we assess the performance of a recently introduced error-tolerant likelihood-based match-calling model and sample clustering algorithm for genetic mark–recapture studies. We assessed both biallelic (i.e. single nucleotide polymorphisms; SNP) and multiallelic (i.e. microsatellite; MSAT) markers using a combination of simulation analyses and case study data on Pacific walrus (Odobenus rosmarus divergens) and fishers (Pekania pennanti). A novel two-stage clustering approach is demonstrated for genetic mark–recapture applications. First, repeat captures within a sampling occasion are identified. Subsequently, recaptures across sampling occasions are identified. The likelihood-based matching protocol performed well in simulation trials, demonstrating utility for use in a wide range of genetic mark–recapture studies. Moderately sized SNP (64+) and MSAT (10–15) panels produced accurate match calls for recaptures and accurate non-match calls for samples from closely related individuals in the face of low to moderate genotyping error. Furthermore, matching performance remained stable or increased as the number of genetic markers increased, genotyping error notwithstanding.

  19. Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning

    PubMed Central

    Griffiths, Oren; Holmes, Nathan; Westbrook, R. Fred

    2017-01-01

    Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereby manipulating outcome expectancy and, in the absence of any change in reinforcement, prediction error. These prediction error manipulations have each been shown to modulate extinction learning in aversive conditioning studies. While both manipulations resulted in increased prediction error during training, neither enhanced extinction in the present human learning task (one manipulation resulted in less extinction at test). The results are discussed with reference to the types of associations that are regulated by prediction error, the types of error terms involved in their regulation, and how these interact with parameters involved in training. PMID:28232809

  20. Development of a Nonlinear Probability of Collision Tool for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    McKinley, David P.

    2006-01-01

    The Earth Observing System (EOS) spacecraft Terra, Aqua, and Aura fly in constellation with several other spacecraft in 705-kilometer mean altitude sun-synchronous orbits. All three spacecraft are operated by the Earth Science Mission Operations (ESMO) Project at Goddard Space Flight Center (GSFC). In 2004, the ESMO project began assessing the probability of collision of the EOS spacecraft with other space objects. In addition to conjunctions with high relative velocities, the collision assessment method for the EOS spacecraft must address conjunctions with low relative velocities during potential collisions between constellation members. Probability of Collision algorithms that are based on assumptions of high relative velocities and linear relative trajectories are not suitable for these situations; therefore an algorithm for handling the nonlinear relative trajectories was developed. This paper describes this algorithm and presents results from its validation for operational use. The probability of collision is typically calculated by integrating a Gaussian probability distribution over the volume swept out by a sphere representing the size of the space objects involved in the conjunction. This sphere is defined as the Hard Body Radius. With the assumption of linear relative trajectories, this volume is a cylinder, which translates into simple limits of integration for the probability calculation. For the case of nonlinear relative trajectories, the volume becomes a complex geometry. However, with an appropriate choice of coordinate systems, the new algorithm breaks down the complex geometry into a series of simple cylinders that have simple limits of integration. This nonlinear algorithm will be discussed in detail in the paper. The nonlinear Probability of Collision algorithm was first verified by showing that, when used in high relative velocity cases, it yields similar answers to existing high relative velocity linear relative trajectory algorithms. The comparison with the existing high velocity/linear theory will also be used to determine at what relative velocity the analysis should use the new nonlinear theory in place of the existing linear theory. The nonlinear algorithm was also compared to a known exact solution for the probability of collision between two objects when the relative motion is strictly circular and the error covariance is spherically symmetric. Figure I shows preliminary results from this comparison by plotting the probabilities calculated from the new algorithm and those from the exact solution versus the Hard Body Radius to Covariance ratio. These results show about 5% error when the Hard Body Radius is equal to one half the spherical covariance magnitude. The algorithm was then combined with a high fidelity orbit state and error covariance propagator into a useful tool for analyzing low relative velocity nonlinear relative trajectories. The high fidelity propagator is capable of using atmospheric drag, central body gravitational, solar radiation, and third body forces to provide accurate prediction of the relative trajectories and covariance evolution. The covariance propagator also includes a process noise model to ensure realistic evolutions of the error covariance. This paper will describe the integration of the nonlinear probability algorithm and the propagators into a useful collision assessment tool. Finally, a hypothetical case study involving a low relative velocity conjunction between members of the Earth Observation System constellation will be presented.

  1. Simple summation rule for optimal fixation selection in visual search.

    PubMed

    Najemnik, Jiri; Geisler, Wilson S

    2009-06-01

    When searching for a known target in a natural texture, practiced humans achieve near-optimal performance compared to a Bayesian ideal searcher constrained with the human map of target detectability across the visual field [Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387-391]. To do so, humans must be good at choosing where to fixate during the search [Najemnik, J., & Geisler, W.S. (2008). Eye movement statistics in humans are consistent with an optimal strategy. Journal of Vision, 8(3), 1-14. 4]; however, it seems unlikely that a biological nervous system would implement the computations for the Bayesian ideal fixation selection because of their complexity. Here we derive and test a simple heuristic for optimal fixation selection that appears to be a much better candidate for implementation within a biological nervous system. Specifically, we show that the near-optimal fixation location is the maximum of the current posterior probability distribution for target location after the distribution is filtered by (convolved with) the square of the retinotopic target detectability map. We term the model that uses this strategy the entropy limit minimization (ELM) searcher. We show that when constrained with human-like retinotopic map of target detectability and human search error rates, the ELM searcher performs as well as the Bayesian ideal searcher, and produces fixation statistics similar to human.

  2. POOLMS: A computer program for fitting and model selection for two level factorial replication-free experiments

    NASA Technical Reports Server (NTRS)

    Amling, G. E.; Holms, A. G.

    1973-01-01

    A computer program is described that performs a statistical multiple-decision procedure called chain pooling. It uses a number of mean squares assigned to error variance that is conditioned on the relative magnitudes of the mean squares. The model selection is done according to user-specified levels of type 1 or type 2 error probabilities.

  3. Analysis of synchronous digital-modulation schemes for satellite communication

    NASA Technical Reports Server (NTRS)

    Takhar, G. S.; Gupta, S. C.

    1975-01-01

    The multipath communication channel for space communications is modeled as a multiplicative channel. This paper discusses the effects of multiplicative channel processes on the symbol error rate for quadrature modulation (QM) digital modulation schemes. An expression for the upper bound on the probability of error is derived and numerically evaluated. The results are compared with those obtained for additive channels.

  4. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  5. Estimation of distributional parameters for censored trace level water quality data: 1. Estimation techniques

    USGS Publications Warehouse

    Gilliom, Robert J.; Helsel, Dennis R.

    1986-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.

  6. Estimation of distributional parameters for censored trace level water quality data. 1. Estimation Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1986-02-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less

  7. Estimation of distributional parameters for censored trace-level water-quality data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1984-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less

  8. Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

    NASA Astrophysics Data System (ADS)

    Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo

    2017-01-01

    We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

  9. Conditions for the optical wireless links bit error ratio determination

    NASA Astrophysics Data System (ADS)

    Kvíčala, Radek

    2017-11-01

    To determine the quality of the Optical Wireless Links (OWL), there is necessary to establish the availability and the probability of interruption. This quality can be defined by the optical beam bit error rate (BER). Bit error rate BER presents the percentage of successfully transmitted bits. In practice, BER runs into the problem with the integration time (measuring time) determination. For measuring and recording of BER at OWL the bit error ratio tester (BERT) has been developed. The 1 second integration time for the 64 kbps radio links is mentioned in the accessible literature. However, it is impossible to use this integration time for singularity of coherent beam propagation.

  10. Type I error probability spending for post-market drug and vaccine safety surveillance with binomial data.

    PubMed

    Silva, Ivair R

    2018-01-15

    Type I error probability spending functions are commonly used for designing sequential analysis of binomial data in clinical trials, but it is also quickly emerging for near-continuous sequential analysis of post-market drug and vaccine safety surveillance. It is well known that, for clinical trials, when the null hypothesis is not rejected, it is still important to minimize the sample size. Unlike in post-market drug and vaccine safety surveillance, that is not important. In post-market safety surveillance, specially when the surveillance involves identification of potential signals, the meaningful statistical performance measure to be minimized is the expected sample size when the null hypothesis is rejected. The present paper shows that, instead of the convex Type I error spending shape conventionally used in clinical trials, a concave shape is more indicated for post-market drug and vaccine safety surveillance. This is shown for both, continuous and group sequential analysis. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Investigating the Association of Eye Gaze Pattern and Diagnostic Error in Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Sophie; Pinto, Frank M; Xu, Songhua

    2013-01-01

    The objective of this study was to investigate the association between eye-gaze patterns and the diagnostic accuracy of radiologists for the task of assessing the likelihood of malignancy of mammographic masses. Six radiologists (2 expert breast imagers and 4 Radiology residents of variable training) assessed the likelihood of malignancy of 40 biopsy-proven mammographic masses (20 malignant and 20 benign) on a computer monitor. Eye-gaze data were collected using a commercial remote eye-tracker. Upon reviewing each mass, the radiologists were also asked to provide their assessment regarding the probability of malignancy of the depicted mass as well as a rating regardingmore » the perceived difficulty of the diagnostic task. The collected data were analyzed using established algorithms and various quantitative metrics were extracted to characterize the recorded gaze patterns. The extracted metrics were correlated with the radiologists diagnostic decisions and perceived complexity scores. Results showed that the visual gaze pattern of radiologists varies substantially, not only depending on their experience level but also among individuals. However, some eye gaze metrics appear to correlate with diagnostic error and perceived complexity more consistently. These results suggest that although gaze patterns are generally associated with diagnostic error and the human perceived difficulty of the diagnostic task, there are substantially individual differences that are not explained simply by the experience level of the individual performing the diagnostic task.« less

  12. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  13. Human errors and occupational injuries of older female workers in the residential healthcare facilities for the elderly.

    PubMed

    Kim, Jun Sik; Jeong, Byung Yong

    2018-05-03

    The study aimed to describe the characteristics of occupational injuries of female workers in the residential healthcare facilities for the elderly, and analyze human errors as causes of accidents. From the national industrial accident compensation data, 506 female injuries were analyzed by age and occupation. The results showed that medical service worker was the most prevalent (54.1%), followed by social welfare worker (20.4%). Among injuries, 55.7% were <1 year of work experience, and 37.9% were ≥60 years old. Slips/falls were the most common type of accident (42.7%), and proportion of injured by slips/falls increases with age. Among human errors, action errors were the primary reasons, followed by perception errors, and cognition errors. Besides, the ratios of injuries by perception errors and action errors increase with age, respectively. The findings of this study suggest that there is a need to design workplaces that accommodate the characteristics of older female workers.

  14. Using the principles of circadian physiology enhances shift schedule design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connolly, J.J.; Moore-Ede, M.C.

    1987-01-01

    Nuclear power plants must operate 24 h, 7 days a week. For the most part, shift schedules currently in use at nuclear power plants have been designed to meet operational needs without considering the biological clocks of the human operators. The development of schedules that also take circadian principles into account is a positive step that can be taken to improve plant safety by optimizing operator alertness. These schedules reduce the probability of human errors especially during backshifts. In addition, training programs that teach round-the-clock workers how to deal with the problems of shiftwork can help to optimize performance andmore » alertness. These programs teach shiftworkers the underlying causes of the sleep problems associated with shiftwork and also provide coping strategies for improving sleep and dealing with the transition between shifts. When these training programs are coupled with an improved schedule, the problems associated with working round-the-clock can be significantly reduced.« less

  15. Risk analysis by FMEA as an element of analytical validation.

    PubMed

    van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Oldenhof, M T; Vredenbregt, M J; Barends, D M

    2009-12-05

    We subjected a Near-Infrared (NIR) analytical procedure used for screening drugs on authenticity to a Failure Mode and Effects Analysis (FMEA), including technical risks as well as risks related to human failure. An FMEA team broke down the NIR analytical method into process steps and identified possible failure modes for each step. Each failure mode was ranked on estimated frequency of occurrence (O), probability that the failure would remain undetected later in the process (D) and severity (S), each on a scale of 1-10. Human errors turned out to be the most common cause of failure modes. Failure risks were calculated by Risk Priority Numbers (RPNs)=O x D x S. Failure modes with the highest RPN scores were subjected to corrective actions and the FMEA was repeated, showing reductions in RPN scores and resulting in improvement indices up to 5.0. We recommend risk analysis as an addition to the usual analytical validation, as the FMEA enabled us to detect previously unidentified risks.

  16. Delay Analysis and Optimization of Bandwidth Request under Unicast Polling in IEEE 802.16e over Gilbert-Elliot Error Channel

    NASA Astrophysics Data System (ADS)

    Hwang, Eunju; Kim, Kyung Jae; Roijers, Frank; Choi, Bong Dae

    In the centralized polling mode in IEEE 802.16e, a base station (BS) polls mobile stations (MSs) for bandwidth reservation in one of three polling modes; unicast, multicast, or broadcast pollings. In unicast polling, the BS polls each individual MS to allow to transmit a bandwidth request packet. This paper presents an analytical model for the unicast polling of bandwidth request in IEEE 802.16e networks over Gilbert-Elliot error channel. We derive the probability distribution for the delay of bandwidth requests due to wireless transmission errors and find the loss probability of request packets due to finite retransmission attempts. By using the delay distribution and the loss probability, we optimize the number of polling slots within a frame and the maximum retransmission number while satisfying QoS on the total loss probability which combines two losses: packet loss due to the excess of maximum retransmission and delay outage loss due to the maximum tolerable delay bound. In addition, we obtain the utilization of polling slots, which is defined as the ratio of the number of polling slots used for the MS's successful transmission to the total number of polling slots used by the MS over a long run time. Analysis results are shown to well match with simulation results. Numerical results give examples of the optimal number of polling slots within a frame and the optimal maximum retransmission number depending on delay bounds, the number of MSs, and the channel conditions.

  17. Many tests of significance: new methods for controlling type I errors.

    PubMed

    Keselman, H J; Miller, Charles W; Holland, Burt

    2011-12-01

    There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise control is intended to deal with the multiplicity issue of computing many tests of significance, yet such control is conservative--that is, less powerful--compared to per test/hypothesis control. The purpose of our article is to introduce the readership, particularly those readers familiar with issues related to controlling Type I errors when many tests of significance are computed, to newer methods that provide protection from the effects of multiple testing, yet are more powerful than familywise controlling methods. Specifically, we introduce a number of procedures that control the k-FWER. These methods--say, 2-FWER instead of 1-FWER (i.e., FWER)--are equivalent to specifying that the probability of 2 or more false rejections is controlled at .05, whereas FWER controls the probability of any (i.e., 1 or more) false rejections at .05. 2-FWER implicitly tolerates 1 false rejection and makes no explicit attempt to control the probability of its occurrence, unlike FWER, which tolerates no false rejections at all. More generally, k-FWER tolerates k - 1 false rejections, but controls the probability of k or more false rejections at α =.05. We demonstrate with two published data sets how more hypotheses can be rejected with k-FWER methods compared to FWER control.

  18. A Track Initiation Method for the Underwater Target Tracking Environment

    NASA Astrophysics Data System (ADS)

    Li, Dong-dong; Lin, Yang; Zhang, Yao

    2018-04-01

    A novel efficient track initiation method is proposed for the harsh underwater target tracking environment (heavy clutter and large measurement errors): track splitting, evaluating, pruning and merging method (TSEPM). Track initiation demands that the method should determine the existence and initial state of a target quickly and correctly. Heavy clutter and large measurement errors certainly pose additional difficulties and challenges, which deteriorate and complicate the track initiation in the harsh underwater target tracking environment. There are three primary shortcomings for the current track initiation methods to initialize a target: (a) they cannot eliminate the turbulences of clutter effectively; (b) there may be a high false alarm probability and low detection probability of a track; (c) they cannot estimate the initial state for a new confirmed track correctly. Based on the multiple hypotheses tracking principle and modified logic-based track initiation method, in order to increase the detection probability of a track, track splitting creates a large number of tracks which include the true track originated from the target. And in order to decrease the false alarm probability, based on the evaluation mechanism, track pruning and track merging are proposed to reduce the false tracks. TSEPM method can deal with the track initiation problems derived from heavy clutter and large measurement errors, determine the target's existence and estimate its initial state with the least squares method. What's more, our method is fully automatic and does not require any kind manual input for initializing and tuning any parameter. Simulation results indicate that our new method improves significantly the performance of the track initiation in the harsh underwater target tracking environment.

  19. Design and Weighting Methods for a Nationally Representative Sample of HIV-infected Adults Receiving Medical Care in the United States-Medical Monitoring Project

    PubMed Central

    Iachan, Ronaldo; H. Johnson, Christopher; L. Harding, Richard; Kyle, Tonja; Saavedra, Pedro; L. Frazier, Emma; Beer, Linda; L. Mattson, Christine; Skarbinski, Jacek

    2016-01-01

    Background: Health surveys of the general US population are inadequate for monitoring human immunodeficiency virus (HIV) infection because the relatively low prevalence of the disease (<0.5%) leads to small subpopulation sample sizes. Objective: To collect a nationally and locally representative probability sample of HIV-infected adults receiving medical care to monitor clinical and behavioral outcomes, supplementing the data in the National HIV Surveillance System. This paper describes the sample design and weighting methods for the Medical Monitoring Project (MMP) and provides estimates of the size and characteristics of this population. Methods: To develop a method for obtaining valid, representative estimates of the in-care population, we implemented a cross-sectional, three-stage design that sampled 23 jurisdictions, then 691 facilities, then 9,344 HIV patients receiving medical care, using probability-proportional-to-size methods. The data weighting process followed standard methods, accounting for the probabilities of selection at each stage and adjusting for nonresponse and multiplicity. Nonresponse adjustments accounted for differing response at both facility and patient levels. Multiplicity adjustments accounted for visits to more than one HIV care facility. Results: MMP used a multistage stratified probability sampling design that was approximately self-weighting in each of the 23 project areas and nationally. The probability sample represents the estimated 421,186 HIV-infected adults receiving medical care during January through April 2009. Methods were efficient (i.e., induced small, unequal weighting effects and small standard errors for a range of weighted estimates). Conclusion: The information collected through MMP allows monitoring trends in clinical and behavioral outcomes and informs resource allocation for treatment and prevention activities. PMID:27651851

  20. [Risk and risk management in aviation].

    PubMed

    Müller, Manfred

    2004-10-01

    RISK MANAGEMENT: The large proportion of human errors in aviation accidents suggested the solution--at first sight brilliant--to replace the fallible human being by an "infallible" digitally-operating computer. However, even after the introduction of the so-called HITEC-airplanes, the factor human error still accounts for 75% of all accidents. Thus, if the computer is ruled out as the ultimate safety system, how else can complex operations involving quick and difficult decisions be controlled? OPTIMIZED TEAM INTERACTION/PARALLEL CONNECTION OF THOUGHT MACHINES: Since a single person is always "highly error-prone", support and control have to be guaranteed by a second person. The independent work of mind results in a safety network that more efficiently cushions human errors. NON-PUNITIVE ERROR MANAGEMENT: To be able to tackle the actual problems, the open discussion of intervened errors must not be endangered by the threat of punishment. It has been shown in the past that progress is primarily achieved by investigating and following up mistakes, failures and catastrophes shortly after they happened. HUMAN FACTOR RESEARCH PROJECT: A comprehensive survey showed the following result: By far the most frequent safety-critical situation (37.8% of all events) consists of the following combination of risk factors: 1. A complication develops. 2. In this situation of increased stress a human error occurs. 3. The negative effects of the error cannot be corrected or eased because there are deficiencies in team interaction on the flight deck. This means, for example, that a negative social climate has the effect of a "turbocharger" when a human error occurs. It needs to be pointed out that a negative social climate is not identical with a dispute. In many cases the working climate is burdened without the responsible person even noticing it: A first negative impression, too much or too little respect, contempt, misunderstandings, not expressing unclear concern, etc. can considerably reduce the efficiency of a team.

  1. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    PubMed

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  2. The effect of covariate mean differences on the standard error and confidence interval for the comparison of treatment means.

    PubMed

    Liu, Xiaofeng Steven

    2011-05-01

    The use of covariates is commonly believed to reduce the unexplained error variance and the standard error for the comparison of treatment means, but the reduction in the standard error is neither guaranteed nor uniform over different sample sizes. The covariate mean differences between the treatment conditions can inflate the standard error of the covariate-adjusted mean difference and can actually produce a larger standard error for the adjusted mean difference than that for the unadjusted mean difference. When the covariate observations are conceived of as randomly varying from one study to another, the covariate mean differences can be related to a Hotelling's T(2) . Using this Hotelling's T(2) statistic, one can always find a minimum sample size to achieve a high probability of reducing the standard error and confidence interval width for the adjusted mean difference. ©2010 The British Psychological Society.

  3. Airborne radar technology for windshear detection

    NASA Technical Reports Server (NTRS)

    Hibey, Joseph L.; Khalaf, Camille S.

    1988-01-01

    The objectives and accomplishments of the two-and-a-half year effort to describe how returns from on-board Doppler radar are to be used to detect the presence of a wind shear are reported. The problem is modeled as one of first passage in terms of state variables, the state estimates are generated by a bank of extended Kalman filters working in parallel, and the decision strategy involves the use of a voting algorithm for a series of likelihood ratio tests. The performance issue for filtering is addressed in terms of error-covariance reduction and filter divergence, and the performance issue for detection is addressed in terms of using a probability measure transformation to derive theoretical expressions for the error probabilities of a false alarm and a miss.

  4. Systematic analysis of video data from different human-robot interaction studies: a categorization of social signals during error situations.

    PubMed

    Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred

    2015-01-01

    Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.

  5. 77 FR 15376 - State Median Income Estimates for a Four-Person Household: Notice of the Federal Fiscal Year (FFY...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... contact the Census Bureau's Social, Economic and Housing Statistics Division at (301) 763- 3243. Under the... the use of probability sampling to create the sample. For additional information about the accuracy of... consists of the error that arises from the use of probability sampling to create the sample. \\2\\ These...

  6. Image Security

    DTIC Science & Technology

    1999-01-01

    34. twenty-first century. These papers illustrate topics such as a development ofvirtual environment applications, different uses ofVRML in information system...interfaces, an examination of research in virtual reality environment interfaces, and five approaches to supporting changes’ in virtuaI environments...we get false negatives that contribute to the probability of false rejection Prrj). { l � Taking these error probabilities into account, we define a

  7. "Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain": Correction to Nelson (2005)

    ERIC Educational Resources Information Center

    Nelson, Jonathan D.

    2007-01-01

    Reports an error in "Finding Useful Questions: On Bayesian Diagnosticity, Probability, Impact, and Information Gain" by Jonathan D. Nelson (Psychological Review, 2005[Oct], Vol 112[4], 979-999). In Table 13, the data should indicate that 7% of females had short hair and 93% of females had long hair. The calculations and discussion in the article…

  8. Frequency, probability, and prediction: easy solutions to cognitive illusions?

    PubMed

    Griffin, D; Buehler, R

    1999-02-01

    Many errors in probabilistic judgment have been attributed to people's inability to think in statistical terms when faced with information about a single case. Prior theoretical analyses and empirical results imply that the errors associated with case-specific reasoning may be reduced when people make frequentistic predictions about a set of cases. In studies of three previously identified cognitive biases, we find that frequency-based predictions are different from-but no better than-case-specific judgments of probability. First, in studies of the "planning fallacy, " we compare the accuracy of aggregate frequency and case-specific probability judgments in predictions of students' real-life projects. When aggregate and single-case predictions are collected from different respondents, there is little difference between the two: Both are overly optimistic and show little predictive validity. However, in within-subject comparisons, the aggregate judgments are significantly more conservative than the single-case predictions, though still optimistically biased. Results from studies of overconfidence in general knowledge and base rate neglect in categorical prediction underline a general conclusion. Frequentistic predictions made for sets of events are no more statistically sophisticated, nor more accurate, than predictions made for individual events using subjective probability. Copyright 1999 Academic Press.

  9. Disparity between online and offline tests in accelerated aging tests of LED lamps under electric stress.

    PubMed

    Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun

    2016-09-20

    The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively.

  10. DNA double-strand–break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice

    PubMed Central

    Schipler, Agnes; Iliakis, George

    2013-01-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice. PMID:23804754

  11. Impact of Data Assimilation on Cost-Accuracy Tradeoff in Multi-Fidelity Models at the Example of an Infiltration Problem

    NASA Astrophysics Data System (ADS)

    Sinsbeck, Michael; Tartakovsky, Daniel

    2015-04-01

    Infiltration into top soil can be described by alternative models with different degrees of fidelity: Richards equation and the Green-Ampt model. These models typically contain uncertain parameters and forcings, rendering predictions of the state variables uncertain as well. Within the probabilistic framework, solutions of these models are given in terms of their probability density functions (PDFs) that, in the presence of data, can be treated as prior distributions. The assimilation of soil moisture data into model predictions, e.g., via a Bayesian updating of solution PDFs, poses a question of model selection: Given a significant difference in computational cost, is a lower-fidelity model preferable to its higher-fidelity counter-part? We investigate this question in the context of heterogeneous porous media, whose hydraulic properties are uncertain. While low-fidelity (reduced-complexity) models introduce a model error, their moderate computational cost makes it possible to generate more realizations, which reduces the (e.g., Monte Carlo) sampling or stochastic error. The ratio between these two errors determines the model with the smallest total error. We found assimilation of measurements of a quantity of interest (the soil moisture content, in our example) to decrease the model error, increasing the probability that the predictive accuracy of a reduced-complexity model does not fall below that of its higher-fidelity counterpart.

  12. Reducing number entry errors: solving a widespread, serious problem.

    PubMed

    Thimbleby, Harold; Cairns, Paul

    2010-10-06

    Number entry is ubiquitous: it is required in many fields including science, healthcare, education, government, mathematics and finance. People entering numbers are to be expected to make errors, but shockingly few systems make any effort to detect, block or otherwise manage errors. Worse, errors may be ignored but processed in arbitrary ways, with unintended results. A standard class of error (defined in the paper) is an 'out by 10 error', which is easily made by miskeying a decimal point or a zero. In safety-critical domains, such as drug delivery, out by 10 errors generally have adverse consequences. Here, we expose the extent of the problem of numeric errors in a very wide range of systems. An analysis of better error management is presented: under reasonable assumptions, we show that the probability of out by 10 errors can be halved by better user interface design. We provide a demonstration user interface to show that the approach is practical.To kill an error is as good a service as, and sometimes even better than, the establishing of a new truth or fact. (Charles Darwin 1879 [2008], p. 229).

  13. Analysis of the Hessian for Inverse Scattering Problems. Part 3. Inverse Medium Scattering of Electromagnetic Waves in Three Dimensions

    DTIC Science & Technology

    2012-08-01

    small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This in turn enables fast solution of an appropriately...implication of the compactness of the Hessian is that for small data noise and model error, the discrete Hessian can be approximated by a low-rank matrix. This...probability distribution is given by the inverse of the Hessian of the negative log likelihood function. For Gaussian data noise and model error, this

  14. Human error analysis of commercial aviation accidents: application of the Human Factors Analysis and Classification system (HFACS).

    PubMed

    Wiegmann, D A; Shappell, S A

    2001-11-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based on Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. The purpose of the present study was to assess the utility of the HFACS framework as an error analysis and classification tool outside the military. The HFACS framework was used to analyze human error data associated with aircrew-related commercial aviation accidents that occurred between January 1990 and December 1996 using database records maintained by the NTSB and the FAA. Investigators were able to reliably accommodate all the human causal factors associated with the commercial aviation accidents examined in this study using the HFACS system. In addition, the classification of data using HFACS highlighted several critical safety issues in need of intervention research. These results demonstrate that the HFACS framework can be a viable tool for use within the civil aviation arena. However, additional research is needed to examine its applicability to areas outside the flight deck, such as aircraft maintenance and air traffic control domains.

  15. Prediction-error variance in Bayesian model updating: a comparative study

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.

  16. To Err Is Human; To Structurally Prime from Errors Is Also Human

    ERIC Educational Resources Information Center

    Slevc, L. Robert; Ferreira, Victor S.

    2013-01-01

    Natural language contains disfluencies and errors. Do listeners simply discard information that was clearly produced in error, or can erroneous material persist to affect subsequent processing? Two experiments explored this question using a structural priming paradigm. Speakers described dative-eliciting pictures after hearing prime sentences that…

  17. Human factors analysis and classification system-HFACS.

    DOT National Transportation Integrated Search

    2000-02-01

    Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident : reporting systems are not designed around any theoretical framework of human error. As a result, most : accident databases are not conduci...

  18. Role of Human-Mediated Dispersal in the Spread of the Pinewood Nematode in China

    PubMed Central

    Robinet, Christelle; Roques, Alain; Pan, Hongyang; Fang, Guofei; Ye, Jianren; Zhang, Yanzhuo; Sun, Jianghua

    2009-01-01

    Background Intensification of world trade is responsible for an increase in the number of alien species introductions. Human-mediated dispersal promotes not only introductions but also expansion of the species distribution via long-distance dispersal. Thus, understanding the role of anthropogenic pathways in the spread of invading species has become one of the most important challenges nowadays. Methodology/Principal Findings We analysed the invasion pattern of the pinewood nematode in China based on invasion data from 1982 to 2005 and monitoring data on 7 locations over 15 years. Short distance spread mediated by long-horned beetles was estimated at 7.5 km per year. Infested sites located further away represented more than 90% of observations and the mean long distance spread was estimated at 111–339 km. Railways, river ports, and lakes had significant effects on the spread pattern. Human population density levels explained 87% of the variation in the invasion probability (P<0.05). Since 2001, the number of new records of the nematode was multiplied by a factor of 5 and the spread distance by a factor of 2. We combined a diffusion model to describe the short distance spread with a stochastic, individual based model to describe the long distance jumps. This combined model generated an error of only 13% when used to predict the presence of the nematode. Under two climate scenarios (stable climate or moderate warming), projections of the invasion probability suggest that this pest could expand its distribution 40–55% by 2025. Conclusions/Significance This study provides evidence that human-induced dispersal plays a fundamental role in the spread of the pinewood nematode, and appropriate control measures should be taken to stop or slow its expansion. This model can be applied to Europe, where the nematode had been introduced later, and is currently expanding its distribution. Similar models could also be derived for other species that could be accidentally transported by humans. PMID:19247498

  19. Estimating the probability that the Taser directly causes human ventricular fibrillation.

    PubMed

    Sun, H; Haemmerich, D; Rahko, P S; Webster, J G

    2010-04-01

    This paper describes the first methodology and results for estimating the order of probability for Tasers directly causing human ventricular fibrillation (VF). The probability of an X26 Taser causing human VF was estimated using: (1) current density near the human heart estimated by using 3D finite-element (FE) models; (2) prior data of the maximum dart-to-heart distances that caused VF in pigs; (3) minimum skin-to-heart distances measured in erect humans by echocardiography; and (4) dart landing distribution estimated from police reports. The estimated mean probability of human VF was 0.001 for data from a pig having a chest wall resected to the ribs and 0.000006 for data from a pig with no resection when inserting a blunt probe. The VF probability for a given dart location decreased with the dart-to-heart horizontal distance (radius) on the skin surface.

  20. Performance of optimum detector structures for noisy intersymbol interference channels

    NASA Technical Reports Server (NTRS)

    Womer, J. D.; Fritchman, B. D.; Kanal, L. N.

    1971-01-01

    The errors which arise in transmitting digital information by radio or wireline systems because of additive noise from successively transmitted signals interfering with one another are described. The probability of error and the performance of optimum detector structures are examined. A comparative study of the performance of certain detector structures and approximations to them, and the performance of a transversal equalizer are included.

  1. Power of one nonclean qubit

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Fujii, Keisuke; Nishimura, Harumichi

    2017-04-01

    The one-clean qubit model (or the DQC1 model) is a restricted model of quantum computing where only a single qubit of the initial state is pure and others are maximally mixed. Although the model is not universal, it can efficiently solve several problems whose classical efficient solutions are not known. Furthermore, it was recently shown that if the one-clean qubit model is classically efficiently simulated, the polynomial hierarchy collapses to the second level. A disadvantage of the one-clean qubit model is, however, that the clean qubit is too clean: for example, in realistic NMR experiments, polarizations are not high enough to have the perfectly pure qubit. In this paper, we consider a more realistic one-clean qubit model, where the clean qubit is not clean, but depolarized. We first show that, for any polarization, a multiplicative-error calculation of the output probability distribution of the model is possible in a classical polynomial time if we take an appropriately large multiplicative error. The result is in strong contrast with that of the ideal one-clean qubit model where the classical efficient multiplicative-error calculation (or even the sampling) with the same amount of error causes the collapse of the polynomial hierarchy. We next show that, for any polarization lower-bounded by an inverse polynomial, a classical efficient sampling (in terms of a sufficiently small multiplicative error or an exponentially small additive error) of the output probability distribution of the model is impossible unless BQP (bounded error quantum polynomial time) is contained in the second level of the polynomial hierarchy, which suggests the hardness of the classical efficient simulation of the one nonclean qubit model.

  2. Technical approaches for measurement of human errors

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Heffley, R. K.; Jewell, W. F.; Mcruer, D. T.

    1980-01-01

    Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations.

  3. A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF.

    PubMed

    Sheng, Ke; Cai, Jing; Brookeman, James; Molloy, Janelle; Christopher, John; Read, Paul

    2006-09-01

    Lung tumor motion trajectories measured by four-dimensional CT or dynamic MRI can be converted to a probability density function (PDF), which describes the probability of the tumor at a certain position, for PDF based treatment planning. Using this method in simulated sequential tomotherapy, we study the dose reduction of normal tissues and more important, the effect of PDF reproducibility on the accuracy of dosimetry. For these purposes, realistic PDFs were obtained from two dynamic MRI scans of a healthy volunteer within a 2 week interval. The first PDF was accumulated from a 300 s scan and the second PDF was calculated from variable scan times from 5 s (one breathing cycle) to 300 s. Optimized beam fluences based on the second PDF were delivered to the hypothetical gross target volume (GTV) of a lung phantom that moved following the first PDF The reproducibility between two PDFs varied from low (78%) to high (94.8%) when the second scan time increased from 5 s to 300 s. When a highly reproducible PDF was used in optimization, the dose coverage of GTV was maintained; phantom lung receiving 10%-20% prescription dose was reduced by 40%-50% and the mean phantom lung dose was reduced by 9.6%. However, optimization based on PDF with low reproducibility resulted in a 50% underdosed GTV. The dosimetric error increased nearly exponentially as the PDF error increased. Therefore, although the dose of the tumor surrounding tissue can be theoretically reduced by PDF based treatment planning, the reliability and applicability of this method highly depend on if a reproducible PDF exists and is measurable. By correlating the dosimetric error and PDF error together, a useful guideline for PDF data acquisition and patient qualification for PDF based planning can be derived.

  4. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    NASA Astrophysics Data System (ADS)

    Audenaert, Koenraad M. R.; Mosonyi, Milán

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ1, …, σr. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ1, …, σr), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov's classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min _{j

  5. A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Ke; Cai Jing; Brookeman, James

    2006-09-15

    Lung tumor motion trajectories measured by four-dimensional CT or dynamic MRI can be converted to a probability density function (PDF), which describes the probability of the tumor at a certain position, for PDF based treatment planning. Using this method in simulated sequential tomotherapy, we study the dose reduction of normal tissues and more important, the effect of PDF reproducibility on the accuracy of dosimetry. For these purposes, realistic PDFs were obtained from two dynamic MRI scans of a healthy volunteer within a 2 week interval. The first PDF was accumulated from a 300 s scan and the second PDF wasmore » calculated from variable scan times from 5 s (one breathing cycle) to 300 s. Optimized beam fluences based on the second PDF were delivered to the hypothetical gross target volume (GTV) of a lung phantom that moved following the first PDF. The reproducibility between two PDFs varied from low (78%) to high (94.8%) when the second scan time increased from 5 s to 300 s. When a highly reproducible PDF was used in optimization, the dose coverage of GTV was maintained; phantom lung receiving 10%-20% prescription dose was reduced by 40%-50% and the mean phantom lung dose was reduced by 9.6%. However, optimization based on PDF with low reproducibility resulted in a 50% underdosed GTV. The dosimetric error increased nearly exponentially as the PDF error increased. Therefore, although the dose of the tumor surrounding tissue can be theoretically reduced by PDF based treatment planning, the reliability and applicability of this method highly depend on if a reproducible PDF exists and is measurable. By correlating the dosimetric error and PDF error together, a useful guideline for PDF data acquisition and patient qualification for PDF based planning can be derived.« less

  6. SU-C-BRD-02: A Team Focused Clinical Implementation and Failure Mode and Effects Analysis of HDR Skin Brachytherapy Using Valencia and Leipzig Surface Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, E; Harrison, A; Eldredge-Hindy, H

    Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less

  7. A case of poor substructure diagnostics

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1992-01-01

    The NASTRAN Manuals in the substructuring area are all geared toward instant success, but the solution paths are fraught with many traps for human error. Thus, the probability of suffering a fatal abort is high. In such circumstances, the necessity for diagnostics that are user friendly is paramount. This paper is written in the spirit of improving the diagnostics as well as the documentation in one area where the author felt he was backed into a blind corner as a result of his having committed a data oversight. This topic is aired by referring to an analysis of a particular structure. The structure, under discussion, used a number of local coordinate systems that simplified the preparation of input data. The principle features of this problem are introduced by reference to a series of figures.

  8. The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG.

    PubMed

    Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio

    2018-06-01

    Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  10. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  11. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Gardner, Chester S.

    1989-01-01

    Given the rms transmitter pointing error and the desired probability of bit error (PBE), it can be shown that an optimal transmitter antenna gain exists which minimizes the required transmitter power. Given the rms local oscillator tracking error, an optimum receiver antenna gain can be found which optimizes the receiver performance. The impact of pointing and tracking errors on the design of direct-detection pulse-position modulation (PPM) and heterodyne noncoherent frequency-shift keying (NCFSK) systems are then analyzed in terms of constraints on the antenna size and the power penalty incurred. It is shown that in the limit of large spatial tracking errors, the advantage in receiver sensitivity for the heterodyne system is quickly offset by the smaller antenna gain and the higher power penalty due to tracking errors. In contrast, for systems with small spatial tracking errors, the heterodyne system is superior because of the higher receiver sensitivity.

  12. Using hyperentanglement to enhance resolution, signal-to-noise ratio, and measurement time

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2017-03-01

    A hyperentanglement-based atmospheric imaging/detection system involving only a signal and an ancilla photon will be considered for optical and infrared frequencies. Only the signal photon will propagate in the atmosphere and its loss will be classical. The ancilla photon will remain within the sensor experiencing low loss. Closed form expressions for the wave function, normalization, density operator, reduced density operator, symmetrized logarithmic derivative, quantum Fisher information, quantum Cramer-Rao lower bound, coincidence probabilities, probability of detection, probability of false alarm, probability of error after M measurements, signal-to-noise ratio, quantum Chernoff bound, time-on-target expressions related to probability of error, and resolution will be provided. The effect of noise in every mode will be included as well as loss. The system will provide the basic design for an imaging/detection system functioning at optical or infrared frequencies that offers better than classical angular and range resolution. Optimization for enhanced resolution will be included. The signal-to-noise ratio will be increased by a factor equal to the number of modes employed during the hyperentanglement process. Likewise, the measurement time can be reduced by the same factor. The hyperentanglement generator will typically make use of entanglement in polarization, energy-time, orbital angular momentum and so on. Mathematical results will be provided describing the system's performance as a function of loss mechanisms and noise.

  13. Development of an errorable car-following driver model

    NASA Astrophysics Data System (ADS)

    Yang, H.-H.; Peng, H.

    2010-06-01

    An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.

  14. Lost in Translation: the Case for Integrated Testing

    NASA Technical Reports Server (NTRS)

    Young, Aaron

    2017-01-01

    The building of a spacecraft is complex and often involves multiple suppliers and companies that have their own designs and processes. Standards have been developed across the industries to reduce the chances for critical flight errors at the system level, but the spacecraft is still vulnerable to the introduction of critical errors during integration of these systems. Critical errors can occur at any time during the process and in many cases, human reliability analysis (HRA) identifies human error as a risk driver. Most programs have a test plan in place that is intended to catch these errors, but it is not uncommon for schedule and cost stress to result in less testing than initially planned. Therefore, integrated testing, or "testing as you fly," is essential as a final check on the design and assembly to catch any errors prior to the mission. This presentation will outline the unique benefits of integrated testing by catching critical flight errors that can otherwise go undetected, discuss HRA methods that are used to identify opportunities for human error, lessons learned and challenges over ownership of testing will be discussed.

  15. Basic Diagnosis and Prediction of Persistent Contrail Occurrence using High-resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part I: Effects of Random Error

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick

    2009-01-01

    Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.

  16. Neyman-Pearson classification algorithms and NP receiver operating characteristics

    PubMed Central

    Tong, Xin; Feng, Yang; Li, Jingyi Jessica

    2018-01-01

    In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies. PMID:29423442

  17. How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models.

    PubMed

    Francq, Bernard G; Govaerts, Bernadette

    2016-06-30

    Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Neyman-Pearson classification algorithms and NP receiver operating characteristics.

    PubMed

    Tong, Xin; Feng, Yang; Li, Jingyi Jessica

    2018-02-01

    In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies.

  19. Limitations of Medical Research and Evidence at the Patient-Clinician Encounter Scale

    PubMed Central

    Ioannidis, John P. A.

    2013-01-01

    We explore some philosophical and scientific underpinnings of clinical research and evidence at the patient-clinician encounter scale. Insufficient evidence and a common failure to use replicable and sound research methods limit us. Both patients and health care may be, in part, complex nonlinear chaotic systems, and predicting their outcomes is a challenge. When trustworthy (credible) evidence is lacking, making correct clinical choices is often a low-probability exercise. Thus, human (clinician) error and consequent injury to patients appear inevitable. Individual clinician decision-makers operate under the philosophical influence of Adam Smith’s “invisible hand” with resulting optimism that they will eventually make the right choices and cause health benefits. The presumption of an effective “invisible hand” operating in health-care delivery has supported a model in which individual clinicians struggle to practice medicine, as they see fit based on their own intuitions and preferences (and biases) despite the obvious complexity, errors, noise, and lack of evidence pervading the system. Not surprisingly, the “invisible hand” does not appear to produce the desired community health benefits. Obtaining a benefit at the patient-clinician encounter scale requires human (clinician) behavior modification. We believe that serious rethinking and restructuring of the clinical research and care delivery systems is necessary to assure the profession and the public that we continue to do more good than harm. We need to evaluate whether, and how, detailed decision-support tools may enable reproducible clinician behavior and beneficial use of evidence. PMID:23546485

  20. No unified reward prediction error in local field potentials from the human nucleus accumbens: evidence from epilepsy patients

    PubMed Central

    Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Kopitzki, Klaus; Kowski, Alexander B.; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.

    2015-01-01

    Functional magnetic resonance imaging (fMRI), cyclic voltammetry, and single-unit electrophysiology studies suggest that signals measured in the nucleus accumbens (Nacc) during value-based decision making represent reward prediction errors (RPEs), the difference between actual and predicted rewards. Here, we studied the precise temporal and spectral pattern of reward-related signals in the human Nacc. We recorded local field potentials (LFPs) from the Nacc of six epilepsy patients during an economic decision-making task. On each trial, patients decided whether to accept or reject a gamble with equal probabilities of a monetary gain or loss. The behavior of four patients was consistent with choices being guided by value expectations. Expected value signals before outcome onset were observed in three of those patients, at varying latencies and with nonoverlapping spectral patterns. Signals after outcome onset were correlated with RPE regressors in all subjects. However, further analysis revealed that these signals were better explained as outcome valence rather than RPE signals, with gamble gains and losses differing in the power of beta oscillations and in evoked response amplitudes. Taken together, our results do not support the idea that postsynaptic potentials in the Nacc represent a RPE that unifies outcome magnitude and prior value expectation. We discuss the generalizability of our findings to healthy individuals and the relation of our results to measurements of RPE signals obtained from the Nacc with other methods. PMID:26019312

Top