Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Simultaneous Control of Error Rates in fMRI Data Analysis
Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David
2015-01-01
The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730
Human operator response to error-likely situations in complex engineering systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1988-01-01
The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Error Rate Report. 98.100 Section 98.100 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.100 Error Rate Report. (a) Applicability—The requirements of this subpart...
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2013 CFR
2013-10-01
....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2014 CFR
2014-10-01
....102 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2012 CFR
2012-10-01
....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
45 CFR 98.102 - Content of Error Rate Reports.
Code of Federal Regulations, 2011 CFR
2011-10-01
....102 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.102 Content of Error Rate Reports. (a) Baseline Submission Report... payments by the total dollar amount of child care payments that the State, the District of Columbia or...
Cheng, Ching-Min; Hwang, Sheue-Ling
2015-03-01
This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
45 CFR 98.100 - Error Rate Report.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND... rates, which is defined as the percentage of cases with an error (expressed as the total number of cases with an error compared to the total number of cases); the percentage of cases with an improper payment...
Information systems and human error in the lab.
Bissell, Michael G
2004-01-01
Health system costs in clinical laboratories are incurred daily due to human error. Indeed, a major impetus for automating clinical laboratories has always been the opportunity it presents to simultaneously reduce cost and improve quality of operations by decreasing human error. But merely automating these processes is not enough. To the extent that introduction of these systems results in operators having less practice in dealing with unexpected events or becoming deskilled in problemsolving, however new kinds of error will likely appear. Clinical laboratories could potentially benefit by integrating findings on human error from modern behavioral science into their operations. Fully understanding human error requires a deep understanding of human information processing and cognition. Predicting and preventing negative consequences requires application of this understanding to laboratory operations. Although the occurrence of a particular error at a particular instant cannot be absolutely prevented, human error rates can be reduced. The following principles are key: an understanding of the process of learning in relation to error; understanding the origin of errors since this knowledge can be used to reduce their occurrence; optimal systems should be forgiving to the operator by absorbing errors, at least for a time; although much is known by industrial psychologists about how to write operating procedures and instructions in ways that reduce the probability of error, this expertise is hardly ever put to use in the laboratory; and a feedback mechanism must be designed into the system that enables the operator to recognize in real time that an error has occurred.
Sultana, Shemaila; Solotchi, Mihai; Ramachandran, Aparna; Patel, Smita S
2017-11-03
Single-subunit RNA polymerases (RNAPs) are present in phage T7 and in mitochondria of all eukaryotes. This RNAP class plays important roles in biotechnology and cellular energy production, but we know little about its fidelity and error rates. Herein, we report the error rates of three single-subunit RNAPs measured from the catalytic efficiencies of correct and all possible incorrect nucleotides. The average error rates of T7 RNAP (2 × 10 -6 ), yeast mitochondrial Rpo41 (6 × 10 -6 ), and human mitochondrial POLRMT (RNA polymerase mitochondrial) (2 × 10 -5 ) indicate high accuracy/fidelity of RNA synthesis resembling those of replicative DNA polymerases. All three RNAPs exhibit a distinctly high propensity for GTP misincorporation opposite dT, predicting frequent A→G errors in RNA with rates of ∼10 -4 The A→C, G→A, A→U, C→U, G→U, U→C, and U→G errors mostly due to pyrimidine-purine mismatches were relatively frequent (10 -5 -10 -6 ), whereas C→G, U→A, G→C, and C→A errors from purine-purine and pyrimidine-pyrimidine mismatches were rare (10 -7 -10 -10 ). POLRMT also shows a high C→A error rate on 8-oxo-dG templates (∼10 -4 ). Strikingly, POLRMT shows a high mutagenic bypass rate, which is exacerbated by TEFM (transcription elongation factor mitochondrial). The lifetime of POLRMT on terminally mismatched elongation substrate is increased in the presence of TEFM, which allows POLRMT to efficiently bypass the error and continue with transcription. This investigation of nucleotide selectivity on normal and oxidatively damaged DNA by three single-subunit RNAPs provides the basic information to understand the error rates in mitochondria and, in the case of T7 RNAP, to assess the quality of in vitro transcribed RNAs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu; Harris, Kendra M.; Ford, Eric
Purpose: Systems to ensure patient safety are of critical importance. The electronic incident reporting systems (IRS) of 2 large academic radiation oncology departments were evaluated for events that may be suitable for submission to a national reporting system (NRS). Methods and Materials: All events recorded in the combined IRS were evaluated from 2007 through 2010. Incidents were graded for potential severity using the validated French Nuclear Safety Authority (ASN) 5-point scale. These incidents were categorized into 7 groups: (1) human error, (2) software error, (3) hardware error, (4) error in communication between 2 humans, (5) error at the human-software interface,more » (6) error at the software-hardware interface, and (7) error at the human-hardware interface. Results: Between the 2 systems, 4407 incidents were reported. Of these events, 1507 (34%) were considered to have the potential for clinical consequences. Of these 1507 events, 149 (10%) were rated as having a potential severity of ≥2. Of these 149 events, the committee determined that 79 (53%) of these events would be submittable to a NRS of which the majority was related to human error or to the human-software interface. Conclusions: A significant number of incidents were identified in this analysis. The majority of events in this study were related to human error and to the human-software interface, further supporting the need for a NRS to facilitate field-wide learning and system improvement.« less
Jeon, Hong Jin; Kim, Ji-Hae; Kim, Bin-Na; Park, Seung Jin; Fava, Maurizio; Mischoulon, David; Kang, Eun-Ho; Roh, Sungwon; Lee, Dongsoo
2014-12-01
Human error is defined as an unintended error that is attributable to humans rather than machines, and that is important to avoid to prevent accidents. We aimed to investigate the association between sleep quality and human errors among train drivers. Cross-sectional. Population-based. A sample of 5,480 subjects who were actively working as train drivers were recruited in South Korea. The participants were 4,634 drivers who completed all questionnaires (response rate 84.6%). None. The Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Impact of Event Scale-Revised (IES-R), the State-Trait Anxiety Inventory (STAI), and the Korean Occupational Stress Scale (KOSS). Of 4,634 train drivers, 349 (7.5%) showed more than one human error per 5 y. Human errors were associated with poor sleep quality, higher PSQI total scores, short sleep duration at night, and longer sleep latency. Among train drivers with poor sleep quality, those who experienced severe posttraumatic stress showed a significantly higher number of human errors than those without. Multiple logistic regression analysis showed that human errors were significantly associated with poor sleep quality and posttraumatic stress, whereas there were no significant associations with depression, trait and state anxiety, and work stress after adjusting for age, sex, education years, marital status, and career duration. Poor sleep quality was found to be associated with more human errors in train drivers, especially in those who experienced severe posttraumatic stress. © 2014 Associated Professional Sleep Societies, LLC.
Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid
NASA Technical Reports Server (NTRS)
VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)
1997-01-01
The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).
Error-associated behaviors and error rates for robotic geology
NASA Technical Reports Server (NTRS)
Anderson, Robert C.; Thomas, Geb; Wagner, Jacob; Glasgow, Justin
2004-01-01
This study explores human error as a function of the decision-making process. One of many models for human decision-making is Rasmussen's decision ladder [9]. The decision ladder identifies the multiple tasks and states of knowledge involved in decision-making. The tasks and states of knowledge can be classified by the level of cognitive effort required to make the decision, leading to the skill, rule, and knowledge taxonomy (Rasmussen, 1987). Skill based decisions require the least cognitive effort and knowledge based decisions require the greatest cognitive effort. Errors can occur at any of the cognitive levels.
Development of an errorable car-following driver model
NASA Astrophysics Data System (ADS)
Yang, H.-H.; Peng, H.
2010-06-01
An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.
Social deviance activates the brain's error-monitoring system.
Kim, Bo-Rin; Liss, Alison; Rao, Monica; Singer, Zachary; Compton, Rebecca J
2012-03-01
Social psychologists have long noted the tendency for human behavior to conform to social group norms. This study examined whether feedback indicating that participants had deviated from group norms would elicit a neural signal previously shown to be elicited by errors and monetary losses. While electroencephalograms were recorded, participants (N = 30) rated the attractiveness of 120 faces and received feedback giving the purported average rating made by a group of peers. The feedback was manipulated so that group ratings either were the same as a participant's rating or deviated by 1, 2, or 3 points. Feedback indicating deviance from the group norm elicited a feedback-related negativity, a brainwave signal known to be elicited by objective performance errors and losses. The results imply that the brain treats deviance from social norms as an error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lon N. Haney; David I. Gertman
2003-04-01
Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less
Fifty Years of THERP and Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronald L. Boring
2012-06-01
In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø Nationalmore » Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.« less
THERP and HEART integrated methodology for human error assessment
NASA Astrophysics Data System (ADS)
Castiglia, Francesco; Giardina, Mariarosa; Tomarchio, Elio
2015-11-01
THERP and HEART integrated methodology is proposed to investigate accident scenarios that involve operator errors during high-dose-rate (HDR) treatments. The new approach has been modified on the basis of fuzzy set concept with the aim of prioritizing an exhaustive list of erroneous tasks that can lead to patient radiological overexposures. The results allow for the identification of human errors that are necessary to achieve a better understanding of health hazards in the radiotherapy treatment process, so that it can be properly monitored and appropriately managed.
A Quality Improvement Project to Decrease Human Milk Errors in the NICU.
Oza-Frank, Reena; Kachoria, Rashmi; Dail, James; Green, Jasmine; Walls, Krista; McClead, Richard E
2017-02-01
Ensuring safe human milk in the NICU is a complex process with many potential points for error, of which one of the most serious is administration of the wrong milk to the wrong infant. Our objective was to describe a quality improvement initiative that was associated with a reduction in human milk administration errors identified over a 6-year period in a typical, large NICU setting. We employed a quasi-experimental time series quality improvement initiative by using tools from the model for improvement, Six Sigma methodology, and evidence-based interventions. Scanned errors were identified from the human milk barcode medication administration system. Scanned errors of interest were wrong-milk-to-wrong-infant, expired-milk, or preparation errors. The scanned error rate and the impact of additional improvement interventions from 2009 to 2015 were monitored by using statistical process control charts. From 2009 to 2015, the total number of errors scanned declined from 97.1 per 1000 bottles to 10.8. Specifically, the number of expired milk error scans declined from 84.0 per 1000 bottles to 8.9. The number of preparation errors (4.8 per 1000 bottles to 2.2) and wrong-milk-to-wrong-infant errors scanned (8.3 per 1000 bottles to 2.0) also declined. By reducing the number of errors scanned, the number of opportunities for errors also decreased. Interventions that likely had the greatest impact on reducing the number of scanned errors included installation of bedside (versus centralized) scanners and dedicated staff to handle milk. Copyright © 2017 by the American Academy of Pediatrics.
Impact of an antiretroviral stewardship strategy on medication error rates.
Shea, Katherine M; Hobbs, Athena Lv; Shumake, Jason D; Templet, Derek J; Padilla-Tolentino, Eimeira; Mondy, Kristin E
2018-05-02
The impact of an antiretroviral stewardship strategy on medication error rates was evaluated. This single-center, retrospective, comparative cohort study included patients at least 18 years of age infected with human immunodeficiency virus (HIV) who were receiving antiretrovirals and admitted to the hospital. A multicomponent approach was developed and implemented and included modifications to the order-entry and verification system, pharmacist education, and a pharmacist-led antiretroviral therapy checklist. Pharmacists performed prospective audits using the checklist at the time of order verification. To assess the impact of the intervention, a retrospective review was performed before and after implementation to assess antiretroviral errors. Totals of 208 and 24 errors were identified before and after the intervention, respectively, resulting in a significant reduction in the overall error rate ( p < 0.001). In the postintervention group, significantly lower medication error rates were found in both patient admissions containing at least 1 medication error ( p < 0.001) and those with 2 or more errors ( p < 0.001). Significant reductions were also identified in each error type, including incorrect/incomplete medication regimen, incorrect dosing regimen, incorrect renal dose adjustment, incorrect administration, and the presence of a major drug-drug interaction. A regression tree selected ritonavir as the only specific medication that best predicted more errors preintervention ( p < 0.001); however, no antiretrovirals reliably predicted errors postintervention. An antiretroviral stewardship strategy for hospitalized HIV patients including prospective audit by staff pharmacists through use of an antiretroviral medication therapy checklist at the time of order verification decreased error rates. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Spacecraft and propulsion technician error
NASA Astrophysics Data System (ADS)
Schultz, Daniel Clyde
Commercial aviation and commercial space similarly launch, fly, and land passenger vehicles. Unlike aviation, the U.S. government has not established maintenance policies for commercial space. This study conducted a mixed methods review of 610 U.S. space launches from 1984 through 2011, which included 31 failures. An analysis of the failure causal factors showed that human error accounted for 76% of those failures, which included workmanship error accounting for 29% of the failures. With the imminent future of commercial space travel, the increased potential for the loss of human life demands that changes be made to the standardized procedures, training, and certification to reduce human error and failure rates. Several recommendations were made by this study to the FAA's Office of Commercial Space Transportation, space launch vehicle operators, and maintenance technician schools in an effort to increase the safety of the space transportation passengers.
Error rates in forensic DNA analysis: definition, numbers, impact and communication.
Kloosterman, Ate; Sjerps, Marjan; Quak, Astrid
2014-09-01
Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed. These should be reported, separately from the match probability, when requested by the court or when there are internal or external indications for error. It should also be made clear that there are various other issues to consider, like DNA transfer. Forensic statistical models, in particular Bayesian networks, may be useful to take the various uncertainties into account and demonstrate their effects on the evidential value of the forensic DNA results. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure Validation Simulation Study
NASA Technical Reports Server (NTRS)
Murdoch, Jennifer L.; Bussink, Frank J. L.; Chamberlain, James P.; Chartrand, Ryan C.; Palmer, Michael T.; Palmer, Susan O.
2008-01-01
The Enhanced Oceanic Operations Human-In-The-Loop In-Trail Procedure (ITP) Validation Simulation Study investigated the viability of an ITP designed to enable oceanic flight level changes that would not otherwise be possible. Twelve commercial airline pilots with current oceanic experience flew a series of simulated scenarios involving either standard or ITP flight level change maneuvers and provided subjective workload ratings, assessments of ITP validity and acceptability, and objective performance measures associated with the appropriate selection, request, and execution of ITP flight level change maneuvers. In the majority of scenarios, subject pilots correctly assessed the traffic situation, selected an appropriate response (i.e., either a standard flight level change request, an ITP request, or no request), and executed their selected flight level change procedure, if any, without error. Workload ratings for ITP maneuvers were acceptable and not substantially higher than for standard flight level change maneuvers, and, for the majority of scenarios and subject pilots, subjective acceptability ratings and comments for ITP were generally high and positive. Qualitatively, the ITP was found to be valid and acceptable. However, the error rates for ITP maneuvers were higher than for standard flight level changes, and these errors may have design implications for both the ITP and the study's prototype traffic display. These errors and their implications are discussed.
NASA Astrophysics Data System (ADS)
Situmorang, B. H.; Setiawan, M. P.; Tosida, E. T.
2017-01-01
Refractive errors are abnormalities of the refraction of light so that the shadows do not focus precisely on the retina resulting in blurred vision [1]. Refractive errors causing the patient should wear glasses or contact lenses in order eyesight returned to normal. The use of glasses or contact lenses in a person will be different from others, it is influenced by patient age, the amount of tear production, vision prescription, and astigmatic. Because the eye is one organ of the human body is very important to see, then the accuracy in determining glasses or contact lenses which will be used is required. This research aims to develop a decision support system that can produce output on the right contact lenses for refractive errors patients with a value of 100% accuracy. Iterative Dichotomize Three (ID3) classification methods will generate gain and entropy values of attributes that include code sample data, age of the patient, astigmatic, the ratio of tear production, vision prescription, and classes that will affect the outcome of the decision tree. The eye specialist test result for the training data obtained the accuracy rate of 96.7% and an error rate of 3.3%, the result test using confusion matrix obtained the accuracy rate of 96.1% and an error rate of 3.1%; for the data testing obtained accuracy rate of 100% and an error rate of 0.
Automated Identification of Abnormal Adult EEGs
López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J.
2016-01-01
The interpretation of electroencephalograms (EEGs) is a process that is still dependent on the subjective analysis of the examiners. Though interrater agreement on critical events such as seizures is high, it is much lower on subtler events (e.g., when there are benign variants). The process used by an expert to interpret an EEG is quite subjective and hard to replicate by machine. The performance of machine learning technology is far from human performance. We have been developing an interpretation system, AutoEEG, with a goal of exceeding human performance on this task. In this work, we are focusing on one of the early decisions made in this process – whether an EEG is normal or abnormal. We explore two baseline classification algorithms: k-Nearest Neighbor (kNN) and Random Forest Ensemble Learning (RF). A subset of the TUH EEG Corpus was used to evaluate performance. Principal Components Analysis (PCA) was used to reduce the dimensionality of the data. kNN achieved a 41.8% detection error rate while RF achieved an error rate of 31.7%. These error rates are significantly lower than those obtained by random guessing based on priors (49.5%). The majority of the errors were related to misclassification of normal EEGs. PMID:27195311
Human Error as an Emergent Property of Action Selection and Task Place-Holding.
Tamborello, Franklin P; Trafton, J Gregory
2017-05-01
A computational process model could explain how the dynamic interaction of human cognitive mechanisms produces each of multiple error types. With increasing capability and complexity of technological systems, the potential severity of consequences of human error is magnified. Interruption greatly increases people's error rates, as does the presence of other information to maintain in an active state. The model executed as a software-instantiated Monte Carlo simulation. It drew on theoretical constructs such as associative spreading activation for prospective memory, explicit rehearsal strategies as a deliberate cognitive operation to aid retrospective memory, and decay. The model replicated the 30% effect of interruptions on postcompletion error in Ratwani and Trafton's Stock Trader task, the 45% interaction effect on postcompletion error of working memory capacity and working memory load from Byrne and Bovair's Phaser Task, as well as the 5% perseveration and 3% omission effects of interruption from the UNRAVEL Task. Error classes including perseveration, omission, and postcompletion error fall naturally out of the theory. The model explains post-interruption error in terms of task state representation and priming for recall of subsequent steps. Its performance suggests that task environments providing more cues to current task state will mitigate error caused by interruption. For example, interfaces could provide labeled progress indicators or facilities for operators to quickly write notes about their task states when interrupted.
Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain
Schwartz, Myrna F.; Kimberg, Daniel Y.; Walker, Grant M.; Brecher, Adelyn; Faseyitan, Olufunsho K.; Dell, Gary S.; Mirman, Daniel; Coslett, H. Branch
2011-01-01
It is thought that semantic memory represents taxonomic information differently from thematic information. This study investigated the neural basis for the taxonomic-thematic distinction in a unique way. We gathered picture-naming errors from 86 individuals with poststroke language impairment (aphasia). Error rates were determined separately for taxonomic errors (“pear” in response to apple) and thematic errors (“worm” in response to apple), and their shared variance was regressed out of each measure. With the segmented lesions normalized to a common template, we carried out voxel-based lesion-symptom mapping on each error type separately. We found that taxonomic errors localized to the left anterior temporal lobe and thematic errors localized to the left temporoparietal junction. This is an indication that the contribution of these regions to semantic memory cleaves along taxonomic-thematic lines. Our findings show that a distinction long recognized in the psychological sciences is grounded in the structure and function of the human brain. PMID:21540329
Human Factors and Ergonomics for the Dental Profession.
Ross, Al
2016-09-01
This paper proposes that the science of Human Factors and Ergonomics (HFE) is suitable for wide application in dental education, training and practice to improve safety, quality and efficiency. Three areas of interest are highlighted. First it is proposed that individual and team Non-Technical Skills (NTS), such as communication, leadership and stress management can improve error rates and efficiency of procedures. Secondly, in a physically and technically challenging environment, staff can benefit from ergonomic principles which examine design in supporting safe work. Finally, examination of organizational human factors can help anticipate stressors and plan for flexible responses to multiple, variable demands, and fluctuating resources. Clinical relevance: HFE is an evidence-based approach to reducing error rates and procedural complications, and avoiding problems associated with stress and fatigue. Improved teamwork and organizational planning and efficiency can impact directly on patient outcomes.
Analysis of the “naming game” with learning errors in communications
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong
2015-07-01
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Analysis of the "naming game" with learning errors in communications.
Lou, Yang; Chen, Guanrong
2015-07-16
Naming game simulates the process of naming an objective by a population of agents organized in a certain communication network. By pair-wise iterative interactions, the population reaches consensus asymptotically. We study naming game with communication errors during pair-wise conversations, with error rates in a uniform probability distribution. First, a model of naming game with learning errors in communications (NGLE) is proposed. Then, a strategy for agents to prevent learning errors is suggested. To that end, three typical topologies of communication networks, namely random-graph, small-world and scale-free networks, are employed to investigate the effects of various learning errors. Simulation results on these models show that 1) learning errors slightly affect the convergence speed but distinctively increase the requirement for memory of each agent during lexicon propagation; 2) the maximum number of different words held by the population increases linearly as the error rate increases; 3) without applying any strategy to eliminate learning errors, there is a threshold of the learning errors which impairs the convergence. The new findings may help to better understand the role of learning errors in naming game as well as in human language development from a network science perspective.
Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development
McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.
2015-01-01
Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility. PMID:26491874
Joint Estimation of Contamination, Error and Demography for Nuclear DNA from Ancient Humans
Slatkin, Montgomery
2016-01-01
When sequencing an ancient DNA sample from a hominin fossil, DNA from present-day humans involved in excavation and extraction will be sequenced along with the endogenous material. This type of contamination is problematic for downstream analyses as it will introduce a bias towards the population of the contaminating individual(s). Quantifying the extent of contamination is a crucial step as it allows researchers to account for possible biases that may arise in downstream genetic analyses. Here, we present an MCMC algorithm to co-estimate the contamination rate, sequencing error rate and demographic parameters—including drift times and admixture rates—for an ancient nuclear genome obtained from human remains, when the putative contaminating DNA comes from present-day humans. We assume we have a large panel representing the putative contaminant population (e.g. European, East Asian or African). The method is implemented in a C++ program called ‘Demographic Inference with Contamination and Error’ (DICE). We applied it to simulations and genome data from ancient Neanderthals and modern humans. With reasonable levels of genome sequence coverage (>3X), we find we can recover accurate estimates of all these parameters, even when the contamination rate is as high as 50%. PMID:27049965
Paediatric in-patient prescribing errors in Malaysia: a cross-sectional multicentre study.
Khoo, Teik Beng; Tan, Jing Wen; Ng, Hoong Phak; Choo, Chong Ming; Bt Abdul Shukor, Intan Nor Chahaya; Teh, Siao Hean
2017-06-01
Background There is a lack of large comprehensive studies in developing countries on paediatric in-patient prescribing errors in different settings. Objectives To determine the characteristics of in-patient prescribing errors among paediatric patients. Setting General paediatric wards, neonatal intensive care units and paediatric intensive care units in government hospitals in Malaysia. Methods This is a cross-sectional multicentre study involving 17 participating hospitals. Drug charts were reviewed in each ward to identify the prescribing errors. All prescribing errors identified were further assessed for their potential clinical consequences, likely causes and contributing factors. Main outcome measures Incidence, types, potential clinical consequences, causes and contributing factors of the prescribing errors. Results The overall prescribing error rate was 9.2% out of 17,889 prescribed medications. There was no significant difference in the prescribing error rates between different types of hospitals or wards. The use of electronic prescribing had a higher prescribing error rate than manual prescribing (16.9 vs 8.2%, p < 0.05). Twenty eight (1.7%) prescribing errors were deemed to have serious potential clinical consequences and 2 (0.1%) were judged to be potentially fatal. Most of the errors were attributed to human factors, i.e. performance or knowledge deficit. The most common contributing factors were due to lack of supervision or of knowledge. Conclusions Although electronic prescribing may potentially improve safety, it may conversely cause prescribing errors due to suboptimal interfaces and cumbersome work processes. Junior doctors need specific training in paediatric prescribing and close supervision to reduce prescribing errors in paediatric in-patients.
Murtazina, E P
2015-01-01
Investigation of the processes of studying human instructions relevant follow-up in terms of systemic mechanisms of learning and memory processes, and moreover affects such a fundamental issue as psychophysiology focused attention, understanding the meaning of the information provided and the formation of social motivation in human activities. Analysis of heart rate variability in reading the instructions compared to the initial state of operational rest showed that this stage of the activity causes pronounced emotional stress, which is manifested in increased heart rate, decrease in variability and pronounced changes in the spectral characteristics of heart rate. Besides, it was revealed that heart rate variability in a state of operational rest before testing, and in the process of reading instructions positively correlated with the duration of the instruction reading and inversely correlated with effectiveness and the level of resistance of the subjects to the error after error when follow-up activities. Showing pronounced gender differences in the relationships between changes in the variability of heart rate when reading the instructions and the subsequent execution indicators of visual-motor test.
[Medical errors: inevitable but preventable].
Giard, R W
2001-10-27
Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.
Giardina, M; Castiglia, F; Tomarchio, E
2014-12-01
Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events.
Usefulness of biological fingerprint in magnetic resonance imaging for patient verification.
Ueda, Yasuyuki; Morishita, Junji; Kudomi, Shohei; Ueda, Katsuhiko
2016-09-01
The purpose of our study is to investigate the feasibility of automated patient verification using multi-planar reconstruction (MPR) images generated from three-dimensional magnetic resonance (MR) imaging of the brain. Several anatomy-related MPR images generated from three-dimensional fast scout scan of each MR examination were used as biological fingerprint images in this study. The database of this study consisted of 730 temporal pairs of MR examination of the brain. We calculated the correlation value between current and prior biological fingerprint images of the same patient and also all combinations of two images for different patients to evaluate the effectiveness of our method for patient verification. The best performance of our system were as follows: a half-total error rate of 1.59 % with a false acceptance rate of 0.023 % and a false rejection rate of 3.15 %, an equal error rate of 1.37 %, and a rank-one identification rate of 98.6 %. Our method makes it possible to verify the identity of the patient using only some existing medical images without the addition of incidental equipment. Also, our method will contribute to patient misidentification error management caused by human errors.
Intravenous Chemotherapy Compounding Errors in a Follow-Up Pan-Canadian Observational Study.
Gilbert, Rachel E; Kozak, Melissa C; Dobish, Roxanne B; Bourrier, Venetia C; Koke, Paul M; Kukreti, Vishal; Logan, Heather A; Easty, Anthony C; Trbovich, Patricia L
2018-05-01
Intravenous (IV) compounding safety has garnered recent attention as a result of high-profile incidents, awareness efforts from the safety community, and increasingly stringent practice standards. New research with more-sensitive error detection techniques continues to reinforce that error rates with manual IV compounding are unacceptably high. In 2014, our team published an observational study that described three types of previously unrecognized and potentially catastrophic latent chemotherapy preparation errors in Canadian oncology pharmacies that would otherwise be undetectable. We expand on this research and explore whether additional potential human failures are yet to be addressed by practice standards. Field observations were conducted in four cancer center pharmacies in four Canadian provinces from January 2013 to February 2015. Human factors specialists observed and interviewed pharmacy managers, oncology pharmacists, pharmacy technicians, and pharmacy assistants as they carried out their work. Emphasis was on latent errors (potential human failures) that could lead to outcomes such as wrong drug, dose, or diluent. Given the relatively short observational period, no active failures or actual errors were observed. However, 11 latent errors in chemotherapy compounding were identified. In terms of severity, all 11 errors create the potential for a patient to receive the wrong drug or dose, which in the context of cancer care, could lead to death or permanent loss of function. Three of the 11 practices were observed in our previous study, but eight were new. Applicable Canadian and international standards and guidelines do not explicitly address many of the potentially error-prone practices observed. We observed a significant degree of risk for error in manual mixing practice. These latent errors may exist in other regions where manual compounding of IV chemotherapy takes place. Continued efforts to advance standards, guidelines, technological innovation, and chemical quality testing are needed.
Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.
Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D
2015-05-01
Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.
Are "Human Factors" the Primary Cause of Complications in the Field of Implant Dentistry?
Renouard, Franck; Amalberti, René; Renouard, Erell
Complications in medicine and dentistry are usually analyzed from a purely technical point of view. Rarely is the role of human behavior or judgment considered as a reason for adverse outcomes. When the role of human factors is considered, these are usually described in general terms rather than specifically identifying the factors responsible for an adverse event. The impact of cognitive and behavioral factors in the explanation of adverse events has been studied in other high-stakes areas such as aviation and nuclear power. Specific protocols have been developed to reduce rates of human error, and, where human error is unavoidable, to lessen its impact. This approach has dramatically reduced the incidence of accidents in these fields. This article aims to review how a similar approach may prove valuable in the reduction of complications in implant dentistry.
The effects of multiple aerospace environmental stressors on human performance
NASA Technical Reports Server (NTRS)
Popper, S. E.; Repperger, D. W.; Mccloskey, K.; Tripp, L. D.
1992-01-01
An extended Fitt's law paradigm reaction time (RT) task was used to evaluate the effects of acceleration on human performance in the Dynamic Environment Simulator (DES) at Armstrong Laboratory, Wright-Patterson AFB, Ohio. This effort was combined with an evaluation of the standard CSU-13 P anti-gravity suit versus three configurations of a 'retrograde inflation anti-G suit'. Results indicated that RT and error rates increased 17 percent and 14 percent respectively from baseline to the end of the simulated aerial combat maneuver and that the most common error was pressing too few buttons.
Zupanc, Christine M; Burgess-Limerick, Robin J; Wallis, Guy
2007-08-01
To investigate error and reaction time consequences of alternating compatible and incompatible steering arrangements during a simulated obstacle avoidance task. Underground coal mine shuttle cars provide an example of a vehicle in which operators are required to alternate between compatible and incompatible steering configurations. This experiment examines the performance of 48 novice participants in a virtual analogy of an underground coal mine shuttle car. Participants were randomly assigned to a compatible condition, an incompatible condition, an alternating condition in which compatibility alternated within and between hands, or an alternating condition in which compatibility alternated between hands. Participants made fewer steering direction errors and made correct steering responses more quickly in the compatible condition. Error rate decreased over time in the incompatible condition. A compatibility effect for both errors and reaction time was also found when the control-response relationship alternated; however, performance improvements over time were not consistent. Isolating compatibility to a hand resulted in reduced error rate and faster reaction time than when compatibility alternated within and between hands. The consequences of alternating control-response relationships are higher error rates and slower responses, at least in the early stages of learning. This research highlights the importance of ensuring consistently compatible human-machine directional control-response relationships.
Reliability of drivers in urban intersections.
Gstalter, Herbert; Fastenmeier, Wolfgang
2010-01-01
The concept of human reliability has been widely used in industrial settings by human factors experts to optimise the person-task fit. Reliability is estimated by the probability that a task will successfully be completed by personnel in a given stage of system operation. Human Reliability Analysis (HRA) is a technique used to calculate human error probabilities as the ratio of errors committed to the number of opportunities for that error. To transfer this notion to the measurement of car driver reliability the following components are necessary: a taxonomy of driving tasks, a definition of correct behaviour in each of these tasks, a list of errors as deviations from the correct actions and an adequate observation method to register errors and opportunities for these errors. Use of the SAFE-task analysis procedure recently made it possible to derive driver errors directly from the normative analysis of behavioural requirements. Driver reliability estimates could be used to compare groups of tasks (e.g. different types of intersections with their respective regulations) as well as groups of drivers' or individual drivers' aptitudes. This approach was tested in a field study with 62 drivers of different age groups. The subjects drove an instrumented car and had to complete an urban test route, the main features of which were 18 intersections representing six different driving tasks. The subjects were accompanied by two trained observers who recorded driver errors using standardized observation sheets. Results indicate that error indices often vary between both the age group of drivers and the type of driving task. The highest error indices occurred in the non-signalised intersection tasks and the roundabout, which exactly equals the corresponding ratings of task complexity from the SAFE analysis. A comparison of age groups clearly shows the disadvantage of older drivers, whose error indices in nearly all tasks are significantly higher than those of the other groups. The vast majority of these errors could be explained by high task load in the intersections, as they represent difficult tasks. The discussion shows how reliability estimates can be used in a constructive way to propose changes in car design, intersection layout and regulation as well as driver training.
Russ, Alissa L; Zillich, Alan J; Melton, Brittany L; Russell, Scott A; Chen, Siying; Spina, Jeffrey R; Weiner, Michael; Johnson, Elizabette G; Daggy, Joanne K; McManus, M Sue; Hawsey, Jason M; Puleo, Anthony G; Doebbeling, Bradley N; Saleem, Jason J
2014-01-01
Objective To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. Materials and methods We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug–allergy, drug–drug interaction, and drug–disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. Results Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1–5) compared to original alerts: 4 (1–7); p=0.024). Discussion Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. Conclusions This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes. PMID:24668841
Russ, Alissa L; Zillich, Alan J; Melton, Brittany L; Russell, Scott A; Chen, Siying; Spina, Jeffrey R; Weiner, Michael; Johnson, Elizabette G; Daggy, Joanne K; McManus, M Sue; Hawsey, Jason M; Puleo, Anthony G; Doebbeling, Bradley N; Saleem, Jason J
2014-10-01
To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug-allergy, drug-drug interaction, and drug-disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1-5) compared to original alerts: 4 (1-7); p=0.024). Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Mumma, Joel M; Durso, Francis T; Ferguson, Ashley N; Gipson, Christina L; Casanova, Lisa; Erukunuakpor, Kimberly; Kraft, Colleen S; Walsh, Victoria L; Zimring, Craig; DuBose, Jennifer; Jacob, Jesse T
2018-03-05
Doffing protocols for personal protective equipment (PPE) are critical for keeping healthcare workers (HCWs) safe during care of patients with Ebola virus disease. We assessed the relationship between errors and self-contamination during doffing. Eleven HCWs experienced with doffing Ebola-level PPE participated in simulations in which HCWs donned PPE marked with surrogate viruses (ɸ6 and MS2), completed a clinical task, and were assessed for contamination after doffing. Simulations were video recorded, and a failure modes and effects analysis and fault tree analyses were performed to identify errors during doffing, quantify their risk (risk index), and predict contamination data. Fifty-one types of errors were identified, many having the potential to spread contamination. Hand hygiene and removing the powered air purifying respirator (PAPR) hood had the highest total risk indexes (111 and 70, respectively) and number of types of errors (9 and 13, respectively). ɸ6 was detected on 10% of scrubs and the fault tree predicted a 10.4% contamination rate, likely occurring when the PAPR hood inadvertently contacted scrubs during removal. MS2 was detected on 10% of hands, 20% of scrubs, and 70% of inner gloves and the predicted rates were 7.3%, 19.4%, 73.4%, respectively. Fault trees for MS2 and ɸ6 contamination suggested similar pathways. Ebola-level PPE can both protect and put HCWs at risk for self-contamination throughout the doffing process, even among experienced HCWs doffing with a trained observer. Human factors methodologies can identify error-prone steps, delineate the relationship between errors and self-contamination, and suggest remediation strategies.
A comparison of acoustic montoring methods for common anurans of the northeastern United States
Brauer, Corinne; Donovan, Therese; Mickey, Ruth M.; Katz, Jonathan; Mitchell, Brian R.
2016-01-01
Many anuran monitoring programs now include autonomous recording units (ARUs). These devices collect audio data for extended periods of time with little maintenance and at sites where traditional call surveys might be difficult. Additionally, computer software programs have grown increasingly accurate at automatically identifying the calls of species. However, increased automation may cause increased error. We collected 435 min of audio data with 2 types of ARUs at 10 wetland sites in Vermont and New York, USA, from 1 May to 1 July 2010. For each minute, we determined presence or absence of 4 anuran species (Hyla versicolor, Pseudacris crucifer, Anaxyrus americanus, and Lithobates clamitans) using 1) traditional human identification versus 2) computer-mediated identification with software package, Song Scope® (Wildlife Acoustics, Concord, MA). Detections were compared with a data set consisting of verified calls in order to quantify false positive, false negative, true positive, and true negative rates. Multinomial logistic regression analysis revealed a strong (P < 0.001) 3-way interaction between the ARU recorder type, identification method, and focal species, as well as a trend in the main effect of rain (P = 0.059). Overall, human surveyors had the lowest total error rate (<2%) compared with 18–31% total errors with automated methods. Total error rates varied by species, ranging from 4% for A. americanus to 26% for L. clamitans. The presence of rain may reduce false negative rates. For survey minutes where anurans were known to be calling, the odds of a false negative were increased when fewer individuals of the same species were calling.
Sollmann, Nico; Tanigawa, Noriko; Tussis, Lorena; Hauck, Theresa; Ille, Sebastian; Maurer, Stefanie; Negwer, Chiara; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M
2015-04-01
Knowledge about the cortical representation of semantic processing is mainly derived from functional magnetic resonance imaging (fMRI) or direct cortical stimulation (DCS) studies. Because DCS is regarded as the gold standard in terms of language mapping but can only be used during awake surgery due to its invasive character, repetitive navigated transcranial magnetic stimulation (rTMS)—a non-invasive modality that uses a similar technique as DCS—seems highly feasible for use in the investigation of semantic processing in the healthy human brain. A total number of 100 (50 left-hemispheric and 50 right-hemispheric) rTMS-based language mappings were performed in 50 purely right-handed, healthy volunteers during an object-naming task. All rTMS-induced semantic naming errors were then counted and evaluated systematically. Furthermore, since the distribution of stimulations within both hemispheres varied between individuals and cortical regions stimulated, all elicited errors were standardized and subsequently related to their cortical sites by projecting the mapping results into the cortical parcellation system (CPS). Overall, the most left-hemispheric semantic errors were observed after targeting the rTMS to the posterior middle frontal gyrus (pMFG; standardized error rate: 7.3‰), anterior supramarginal gyrus (aSMG; 5.6‰), and ventral postcentral gyrus (vPoG; 5.0‰). In contrast to that, the highest right-hemispheric error rates occurred after stimulation of the posterior superior temporal gyrus (pSTG; 12.4‰), middle superior temporal gyrus (mSTG; 6.2‰), and anterior supramarginal gyrus (aSMG; 6.2‰). Although error rates were low, the rTMS-based approach of investigating semantic processing during object naming shows convincing results compared to the current literature. Therefore, rTMS seems a valuable, safe, and reliable tool for the investigation of semantic processing within the healthy human brain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Human Error: A Concept Analysis
NASA Technical Reports Server (NTRS)
Hansen, Frederick D.
2007-01-01
Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.
Residents' numeric inputting error in computerized physician order entry prescription.
Wu, Xue; Wu, Changxu; Zhang, Kan; Wei, Dong
2016-04-01
Computerized physician order entry (CPOE) system with embedded clinical decision support (CDS) can significantly reduce certain types of prescription error. However, prescription errors still occur. Various factors such as the numeric inputting methods in human computer interaction (HCI) produce different error rates and types, but has received relatively little attention. This study aimed to examine the effects of numeric inputting methods and urgency levels on numeric inputting errors of prescription, as well as categorize the types of errors. Thirty residents participated in four prescribing tasks in which two factors were manipulated: numeric inputting methods (numeric row in the main keyboard vs. numeric keypad) and urgency levels (urgent situation vs. non-urgent situation). Multiple aspects of participants' prescribing behavior were measured in sober prescribing situations. The results revealed that in urgent situations, participants were prone to make mistakes when using the numeric row in the main keyboard. With control of performance in the sober prescribing situation, the effects of the input methods disappeared, and urgency was found to play a significant role in the generalized linear model. Most errors were either omission or substitution types, but the proportion of transposition and intrusion error types were significantly higher than that of the previous research. Among numbers 3, 8, and 9, which were the less common digits used in prescription, the error rate was higher, which was a great risk to patient safety. Urgency played a more important role in CPOE numeric typing error-making than typing skills and typing habits. It was recommended that inputting with the numeric keypad had lower error rates in urgent situation. An alternative design could consider increasing the sensitivity of the keys with lower frequency of occurrence and decimals. To improve the usability of CPOE, numeric keyboard design and error detection could benefit from spatial incidence of errors found in this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CBP for Field Workers – Results and Insights from Three Usability and Interface Design Evaluations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Bly, Aaron Douglas
2015-09-01
Nearly all activities that involve human interaction with the systems in a nuclear power plant are guided by procedures. Even though the paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety, improving procedure use could yield significant savings in increased efficiency as well as improved nuclear safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease the human error rate, especially the human errors associated with procedure use. As a step toward the goal of improving procedure use and adherence, researchers in the Light-Water Reactor Sustainability (LWRS) Program, togethermore » with the nuclear industry, have been investigating the possibility and feasibility of replacing the current paper-based procedure process with a computer-based procedure (CBP) system. This report describes a field evaluation of new design concepts of a prototype computer-based procedure system.« less
Clarke, D L; Kong, V Y; Naidoo, L C; Furlong, H; Aldous, C
2013-01-01
Acute surgical patients are particularly vulnerable to human error. The Acute Physiological Support Team (APST) was created with the twin objectives of identifying high-risk acute surgical patients in the general wards and reducing both the incidence of error and impact of error on these patients. A number of error taxonomies were used to understand the causes of human error and a simple risk stratification system was adopted to identify patients who are particularly at risk of error. During the period November 2012-January 2013 a total of 101 surgical patients were cared for by the APST at Edendale Hospital. The average age was forty years. There were 36 females and 65 males. There were 66 general surgical patients and 35 trauma patients. Fifty-six patients were referred on the day of their admission. The average length of stay in the APST was four days. Eleven patients were haemo-dynamically unstable on presentation and twelve were clinically septic. The reasons for referral were sepsis,(4) respiratory distress,(3) acute kidney injury AKI (38), post-operative monitoring (39), pancreatitis,(3) ICU down-referral,(7) hypoxia,(5) low GCS,(1) coagulopathy.(1) The mortality rate was 13%. A total of thirty-six patients experienced 56 errors. A total of 143 interventions were initiated by the APST. These included institution or adjustment of intravenous fluids (101), blood transfusion,(12) antibiotics,(9) the management of neutropenic sepsis,(1) central line insertion,(3) optimization of oxygen therapy,(7) correction of electrolyte abnormality,(8) correction of coagulopathy.(2) CONCLUSION: Our intervention combined current taxonomies of error with a simple risk stratification system and is a variant of the defence in depth strategy of error reduction. We effectively identified and corrected a significant number of human errors in high-risk acute surgical patients. This audit has helped understand the common sources of error in the general surgical wards and will inform on-going error reduction initiatives. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Mental rotation of primate hands: human-likeness and thumb saliency.
Bläsing, Bettina; de Castro Campos, Marcella; Schack, Thomas; Brugger, Peter
2012-08-01
Mental rotation of human hands has been found to differ essentially from mental rotation of objects in such a way that reaction times and error rates of handedness judgements are influenced by the comfort and familiarity of the presented hand postures. To investigate the role of the similarity of the presented hands to the participant's own hand, we used different primates' hands as stimuli in a mental rotation task. Five out of 24 primate hands were chosen for their ratings in human-likeness and saliency of the thumb according to a questionnaire study and presented in two mental rotation experiments; in the second experiment, they were modified in such a way that all hands appeared thumbless. Results of both experiments revealed effects of species and orientation on reaction times, and an interaction between species and hand side occurred in the second experiment. In the first experiment, the thumbless Colobus hand differed from all other hands, showing the highest reaction times and error rates and failing to show the expected medial-over-lateral advantage. In the second experiment, the eccentricity of the Colobus hand was decreased and the facilitating effect of human-likeness was slightly increased. We conclude that motor strategies were applied that relied less on the asymmetry of the stimuli but rather on their similarity to the human hand. We argue that motor simulation might facilitate the processing of incomplete stimuli by mentally completing them, especially if all stimuli can be processed in a consistent manner.
The Uncanny Valley Does Not Interfere with Level 1 Visual Perspective Taking
MacDorman, Karl F.; Srinivas, Preethi; Patel, Himalaya
2014-01-01
When a computer-animated human character looks eerily realistic, viewers report a loss of empathy; they have difficulty taking the character’s perspective. To explain this perspective-taking impairment, known as the uncanny valley, a novel theory is proposed: The more human or less eerie a character looks, the more it interferes with level 1 visual perspective taking when the character’s perspective differs from that of the human observer (e.g., because the character competitively activates shared circuits in the observer’s brain). The proposed theory is evaluated in three experiments involving a dot-counting task in which participants either assumed or ignored the perspective of characters varying in their human photorealism and eeriness. Although response times and error rates were lower when the number of dots faced by the observer and character were the same (congruent condition) than when they were different (incongruent condition), no consistent pattern emerged between the human photorealism or eeriness of the characters and participants’ response times and error rates. Thus, the proposed theory is unsupported for level 1 visual perspective taking. As the effects of the uncanny valley on empathy have not previously been investigated systematically, these results provide evidence to eliminate one possible explanation. PMID:25221383
Human Error In Complex Systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1991-01-01
Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
NASA Technical Reports Server (NTRS)
Alexander, Tiffaney Miller
2017-01-01
Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.
Application of human reliability analysis to nursing errors in hospitals.
Inoue, Kayoko; Koizumi, Akio
2004-12-01
Adverse events in hospitals, such as in surgery, anesthesia, radiology, intensive care, internal medicine, and pharmacy, are of worldwide concern and it is important, therefore, to learn from such incidents. There are currently no appropriate tools based on state-of-the art models available for the analysis of large bodies of medical incident reports. In this study, a new model was developed to facilitate medical error analysis in combination with quantitative risk assessment. This model enables detection of the organizational factors that underlie medical errors, and the expedition of decision making in terms of necessary action. Furthermore, it determines medical tasks as module practices and uses a unique coding system to describe incidents. This coding system has seven vectors for error classification: patient category, working shift, module practice, linkage chain (error type, direct threat, and indirect threat), medication, severity, and potential hazard. Such mathematical formulation permitted us to derive two parameters: error rates for module practices and weights for the aforementioned seven elements. The error rate of each module practice was calculated by dividing the annual number of incident reports of each module practice by the annual number of the corresponding module practice. The weight of a given element was calculated by the summation of incident report error rates for an element of interest. This model was applied specifically to nursing practices in six hospitals over a year; 5,339 incident reports with a total of 63,294,144 module practices conducted were analyzed. Quality assurance (QA) of our model was introduced by checking the records of quantities of practices and reproducibility of analysis of medical incident reports. For both items, QA guaranteed legitimacy of our model. Error rates for all module practices were approximately of the order 10(-4) in all hospitals. Three major organizational factors were found to underlie medical errors: "violation of rules" with a weight of 826 x 10(-4), "failure of labor management" with a weight of 661 x 10(-4), and "defects in the standardization of nursing practices" with a weight of 495 x 10(-4).
Ananda, Guruprasad; Hile, Suzanne E.; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D.; Eckert, Kristin A.
2014-01-01
Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000–40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The genome-wide identification of iMSs in human populations presented here has important implications for current models describing the impact of microsatellite polymorphisms on gene expression. PMID:25033203
Understanding human management of automation errors
McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.
2013-01-01
Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042
Understanding human management of automation errors.
McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D
2014-01-01
Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance.
Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.
2008-04-01
Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.
Changes in medical errors after implementation of a handoff program.
Starmer, Amy J; Spector, Nancy D; Srivastava, Rajendu; West, Daniel C; Rosenbluth, Glenn; Allen, April D; Noble, Elizabeth L; Tse, Lisa L; Dalal, Anuj K; Keohane, Carol A; Lipsitz, Stuart R; Rothschild, Jeffrey M; Wien, Matthew F; Yoon, Catherine S; Zigmont, Katherine R; Wilson, Karen M; O'Toole, Jennifer K; Solan, Lauren G; Aylor, Megan; Bismilla, Zia; Coffey, Maitreya; Mahant, Sanjay; Blankenburg, Rebecca L; Destino, Lauren A; Everhart, Jennifer L; Patel, Shilpa J; Bale, James F; Spackman, Jaime B; Stevenson, Adam T; Calaman, Sharon; Cole, F Sessions; Balmer, Dorene F; Hepps, Jennifer H; Lopreiato, Joseph O; Yu, Clifton E; Sectish, Theodore C; Landrigan, Christopher P
2014-11-06
Miscommunications are a leading cause of serious medical errors. Data from multicenter studies assessing programs designed to improve handoff of information about patient care are lacking. We conducted a prospective intervention study of a resident handoff-improvement program in nine hospitals, measuring rates of medical errors, preventable adverse events, and miscommunications, as well as resident workflow. The intervention included a mnemonic to standardize oral and written handoffs, handoff and communication training, a faculty development and observation program, and a sustainability campaign. Error rates were measured through active surveillance. Handoffs were assessed by means of evaluation of printed handoff documents and audio recordings. Workflow was assessed through time-motion observations. The primary outcome had two components: medical errors and preventable adverse events. In 10,740 patient admissions, the medical-error rate decreased by 23% from the preintervention period to the postintervention period (24.5 vs. 18.8 per 100 admissions, P<0.001), and the rate of preventable adverse events decreased by 30% (4.7 vs. 3.3 events per 100 admissions, P<0.001). The rate of nonpreventable adverse events did not change significantly (3.0 and 2.8 events per 100 admissions, P=0.79). Site-level analyses showed significant error reductions at six of nine sites. Across sites, significant increases were observed in the inclusion of all prespecified key elements in written documents and oral communication during handoff (nine written and five oral elements; P<0.001 for all 14 comparisons). There were no significant changes from the preintervention period to the postintervention period in the duration of oral handoffs (2.4 and 2.5 minutes per patient, respectively; P=0.55) or in resident workflow, including patient-family contact and computer time. Implementation of the handoff program was associated with reductions in medical errors and in preventable adverse events and with improvements in communication, without a negative effect on workflow. (Funded by the Office of the Assistant Secretary for Planning and Evaluation, U.S. Department of Health and Human Services, and others.).
Human error and human factors engineering in health care.
Welch, D L
1997-01-01
Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.
SEPARABLE FACTOR ANALYSIS WITH APPLICATIONS TO MORTALITY DATA
Fosdick, Bailey K.; Hoff, Peter D.
2014-01-01
Human mortality data sets can be expressed as multiway data arrays, the dimensions of which correspond to categories by which mortality rates are reported, such as age, sex, country and year. Regression models for such data typically assume an independent error distribution or an error model that allows for dependence along at most one or two dimensions of the data array. However, failing to account for other dependencies can lead to inefficient estimates of regression parameters, inaccurate standard errors and poor predictions. An alternative to assuming independent errors is to allow for dependence along each dimension of the array using a separable covariance model. However, the number of parameters in this model increases rapidly with the dimensions of the array and, for many arrays, maximum likelihood estimates of the covariance parameters do not exist. In this paper, we propose a submodel of the separable covariance model that estimates the covariance matrix for each dimension as having factor analytic structure. This model can be viewed as an extension of factor analysis to array-valued data, as it uses a factor model to estimate the covariance along each dimension of the array. We discuss properties of this model as they relate to ordinary factor analysis, describe maximum likelihood and Bayesian estimation methods, and provide a likelihood ratio testing procedure for selecting the factor model ranks. We apply this methodology to the analysis of data from the Human Mortality Database, and show in a cross-validation experiment how it outperforms simpler methods. Additionally, we use this model to impute mortality rates for countries that have no mortality data for several years. Unlike other approaches, our methodology is able to estimate similarities between the mortality rates of countries, time periods and sexes, and use this information to assist with the imputations. PMID:25489353
Microscopic saw mark analysis: an empirical approach.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2015-01-01
Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.
Stern, Shani; Biron, David; Moses, Elisha
2016-07-11
Down syndrome incidence in humans increases dramatically with maternal age. This is mainly the result of increased meiotic errors, but factors such as differences in abortion rate may play a role as well. Since the meiotic error rate increases almost exponentially after a certain age, its contribution to the overall incidence aneuploidy may mask the contribution of other processes. To focus on such selection mechanisms we investigated transmission in trisomic females, using data from mouse models and from Down syndrome humans. In trisomic females the a-priori probability for trisomy is independent of meiotic errors and thus approximately constant in the early embryo. Despite this, the rate of transmission of the extra chromosome decreases with age in females of the Ts65Dn and, as we show, for the Tc1 mouse models for Down syndrome. Evaluating progeny of 73 Tc1 births and 112 Ts65Dn births from females aged 130 days to 250 days old showed that both models exhibit a 3-fold reduction of the probability to transmit the trisomy with increased maternal ageing. This is concurrent with a 2-fold reduction of litter size with maternal ageing. Furthermore, analysis of previously reported 30 births in Down syndrome women shows a similar tendency with an almost three fold reduction in the probability to have a Down syndrome child between a 20 and 30 years old Down syndrome woman. In the two types of mice models for Down syndrome that were used for this study, and in human Down syndrome, older females have significantly lower probability to transmit the trisomy to the offspring. Our findings, taken together with previous reports of decreased supportive environment of the older uterus, add support to the notion that an older uterus negatively selects the less fit trisomic embryos.
Human error in airway facilities.
DOT National Transportation Integrated Search
2001-01-01
This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being : passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. : Human factors engin...
Chiu, Ming-Chuan; Hsieh, Min-Chih
2016-05-01
The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
ADP and brucellosis indemnity systems development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, W.M.; Harlan, B.L.
1976-01-01
Our initial study of the USDA/TAHC Brucellosis Indemnity Program in Texas has shown that both the efficiency and rate of claim payments can be increased by the application of present day computer technologies. Two main factors contribute to these increases: the number of discrepancies that are caused by poor penmanship, transposition of numbers, and other human errors can be monitored and minimized; and the documented information can be indexed, sorted, and searched faster, more efficiently, and without human error. The overall flow of documentation that is used to control the movement of infected or exposed animals through commerce should bemore » studied. A new system should be designed that fully utilizes present day computer and electronic technologies.« less
A biometric identification system based on eigenpalm and eigenfinger features.
Ribaric, Slobodan; Fratric, Ivan
2005-11-01
This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people (1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).
Correcting for sequencing error in maximum likelihood phylogeny inference.
Kuhner, Mary K; McGill, James
2014-11-04
Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue. Copyright © 2014 Kuhner and McGill.
Competence in Streptococcus pneumoniae is regulated by the rate of ribosomal decoding errors.
Stevens, Kathleen E; Chang, Diana; Zwack, Erin E; Sebert, Michael E
2011-01-01
Competence for genetic transformation in Streptococcus pneumoniae develops in response to accumulation of a secreted peptide pheromone and was one of the initial examples of bacterial quorum sensing. Activation of this signaling system induces not only expression of the proteins required for transformation but also the production of cellular chaperones and proteases. We have shown here that activity of this pathway is sensitively responsive to changes in the accuracy of protein synthesis that are triggered by either mutations in ribosomal proteins or exposure to antibiotics. Increasing the error rate during ribosomal decoding promoted competence, while reducing the error rate below the baseline level repressed the development of both spontaneous and antibiotic-induced competence. This pattern of regulation was promoted by the bacterial HtrA serine protease. Analysis of strains with the htrA (S234A) catalytic site mutation showed that the proteolytic activity of HtrA selectively repressed competence when translational fidelity was high but not when accuracy was low. These findings redefine the pneumococcal competence pathway as a response to errors during protein synthesis. This response has the capacity to address the immediate challenge of misfolded proteins through production of chaperones and proteases and may also be able to address, through genetic exchange, upstream coding errors that cause intrinsic protein folding defects. The competence pathway may thereby represent a strategy for dealing with lesions that impair proper protein coding and for maintaining the coding integrity of the genome. The signaling pathway that governs competence in the human respiratory tract pathogen Streptococcus pneumoniae regulates both genetic transformation and the production of cellular chaperones and proteases. The current study shows that this pathway is sensitively controlled in response to changes in the accuracy of protein synthesis. Increasing the error rate during ribosomal decoding induced competence, while decreasing the error rate repressed competence. This pattern of regulation was promoted by the HtrA protease, which selectively repressed competence when translational fidelity was high but not when accuracy was low. Our findings demonstrate that this organism is able to monitor the accuracy of information used for protein biosynthesis and suggest that errors trigger a response addressing both the immediate challenge of misfolded proteins and, through genetic exchange, upstream coding errors that may underlie protein folding defects. This pathway may represent an evolutionary strategy for maintaining the coding integrity of the genome.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-03-28
A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
Toward a human-centered aircraft automation philosophy
NASA Technical Reports Server (NTRS)
Billings, Charles E.
1989-01-01
The evolution of automation in civil aircraft is examined in order to discern trends in the respective roles and functions of automation technology and the humans who operate these aircraft. The effects of advances in automation technology on crew reaction is considered and it appears that, though automation may well have decreased the frequency of certain types of human errors in flight, it may also have enabled new categories of human errors, some perhaps less obvious and therefore more serious than those it has alleviated. It is suggested that automation could be designed to keep the pilot closer to the control of the vehicle, while providing an array of information management and aiding functions designed to provide the pilot with data regarding flight replanning, degraded system operation, and the operational status and limits of the aircraft, its systems, and the physical and operational environment. The automation would serve as the pilot's assistant, providing and calculating data, watching for the unexpected, and keeping track of resources and their rate of expenditure.
Humans Optimize Decision-Making by Delaying Decision Onset
Teichert, Tobias; Ferrera, Vincent P.; Grinband, Jack
2014-01-01
Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can strategically delay decision onset to increase response accuracy. To address this question we measured the time course of selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the decision process that can be adjusted to effectively improve decision accuracy. PMID:24599295
Stochastic Models of Human Errors
NASA Technical Reports Server (NTRS)
Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)
2002-01-01
Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
Operational Interventions to Maintenance Error
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki
1997-01-01
A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
Reduction of Maintenance Error Through Focused Interventions
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)
1997-01-01
It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
NASA Technical Reports Server (NTRS)
Diorio, Kimberly A.; Voska, Ned (Technical Monitor)
2002-01-01
This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1981-01-01
Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
"It's All Human Error!": When a School Science Experiment Fails
ERIC Educational Resources Information Center
Viechnicki, Gail Brendel; Kuipers, Joel
2006-01-01
This paper traces the sophisticated negotiations to re-inscribe the authority of Nature when a school science experiment fails during the enactment of a highly rated science curriculum unit. Drawing on transcriptions from classroom videotapes, we identify and describe four primary patterns of interaction that characterize this process, arguing…
45 CFR 98.101 - Case Review Methodology.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 1 2011-10-01 2011-10-01 false Case Review Methodology. 98.101 Section 98.101 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.101 Case Review Methodology. (a) Case Reviews and Sampling—In preparing...
45 CFR 98.101 - Case Review Methodology.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Case Review Methodology. 98.101 Section 98.101 Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.101 Case Review Methodology. (a) Case Reviews and Sampling—In preparing...
45 CFR 98.101 - Case Review Methodology.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 1 2010-10-01 2010-10-01 false Case Review Methodology. 98.101 Section 98.101 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.101 Case Review Methodology. (a) Case Reviews and Sampling—In preparing...
45 CFR 98.101 - Case Review Methodology.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Case Review Methodology. 98.101 Section 98.101 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.101 Case Review Methodology. (a) Case Reviews and Sampling—In preparing...
45 CFR 98.101 - Case Review Methodology.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 1 2012-10-01 2012-10-01 false Case Review Methodology. 98.101 Section 98.101 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Error Rate Reporting § 98.101 Case Review Methodology. (a) Case Reviews and Sampling—In preparing...
The contributions of human factors on human error in Malaysia aviation maintenance industries
NASA Astrophysics Data System (ADS)
Padil, H.; Said, M. N.; Azizan, A.
2018-05-01
Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Clement, W. F.; Allen, R. W.
1980-01-01
Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.
Comparison of medication safety effectiveness among nine critical access hospitals.
Cochran, Gary L; Haynatzki, Gleb
2013-12-15
The rates of medication errors across three different medication dispensing and administration systems frequently used in critical access hospitals (CAHs) were analyzed. Nine CAHs agreed to participate in this prospective study and were assigned to one of three groups based on similarities in their medication-use processes: (1) less than 10 hours per week of onsite pharmacy support and no bedside barcode system, (2) onsite pharmacy support for 40 hours per week and no bedside barcode system, and (3) onsite pharmacy support for 40 or more hours per week with a bedside barcode system. Errors were characterized by severity, phase of origination, type, and cause. Characteristics of the medication being administered and a number of best practices were collected for each medication pass. Logistic regression was used to identify significant predictors of errors. A total of 3103 medication passes were observed. More medication errors originated in hospitals that had onsite pharmacy support for less than 10 hours per week and no bedside barcode system than in other types of hospitals. A bedside barcode system had the greatest impact on lowering the odds of an error reaching the patient. Wrong dose and omission were common error types. Human factors and communication were the two most frequently identified causes of error for all three systems. Medication error rates were lower in CAHs with 40 or more hours per week of onsite pharmacy support with or without a bedside barcode system compared with hospitals with less than 10 hours per week of pharmacy support and no bedside barcode system.
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, Diana
2014-01-01
Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, D. L.
2014-01-01
Human error cannot be defined unambiguously in advance of it happening, it often becomes an error after the fact. The same action can result in a tragic accident for one situation or a heroic action given a more favorable outcome. People often forget that we employ humans in business and industry for the flexibility and capability to change when needed. In complex systems, operations are driven by their specifications of the system and the system structure. People provide the flexibility to make it work. Human error has been reported as being responsible for 60%-80% of failures, accidents and incidents in high-risk industries. We don't have to accept that all human errors are inevitable. Through the use of some basic techniques, many potential human error events can be addressed. There are actions that can be taken to reduce the risk of human error.
NASA Astrophysics Data System (ADS)
Zhang, Yachu; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Kong, Lingqin; Liu, Lingling
2017-09-01
In contrast to humans, who use only visual information for navigation, many mobile robots use laser scanners and ultrasonic sensors along with vision cameras to navigate. This work proposes a vision-based robot control algorithm based on deep convolutional neural networks. We create a large 15-layer convolutional neural network learning system and achieve the advanced recognition performance. Our system is trained from end to end to map raw input images to direction in supervised mode. The images of data sets are collected in a wide variety of weather conditions and lighting conditions. Besides, the data sets are augmented by adding Gaussian noise and Salt-and-pepper noise to avoid overfitting. The algorithm is verified by two experiments, which are line tracking and obstacle avoidance. The line tracking experiment is proceeded in order to track the desired path which is composed of straight and curved lines. The goal of obstacle avoidance experiment is to avoid the obstacles indoor. Finally, we get 3.29% error rate on the training set and 5.1% error rate on the test set in the line tracking experiment, 1.8% error rate on the training set and less than 5% error rate on the test set in the obstacle avoidance experiment. During the actual test, the robot can follow the runway centerline outdoor and avoid the obstacle in the room accurately. The result confirms the effectiveness of the algorithm and our improvement in the network structure and train parameters
At least some errors are randomly generated (Freud was wrong)
NASA Technical Reports Server (NTRS)
Sellen, A. J.; Senders, J. W.
1986-01-01
An experiment was carried out to expose something about human error generating mechanisms. In the context of the experiment, an error was made when a subject pressed the wrong key on a computer keyboard or pressed no key at all in the time allotted. These might be considered, respectively, errors of substitution and errors of omission. Each of seven subjects saw a sequence of three digital numbers, made an easily learned binary judgement about each, and was to press the appropriate one of two keys. Each session consisted of 1,000 presentations of randomly permuted, fixed numbers broken into 10 blocks of 100. One of two keys should have been pressed within one second of the onset of each stimulus. These data were subjected to statistical analyses in order to probe the nature of the error generating mechanisms. Goodness of fit tests for a Poisson distribution for the number of errors per 50 trial interval and for an exponential distribution of the length of the intervals between errors were carried out. There is evidence for an endogenous mechanism that may best be described as a random error generator. Furthermore, an item analysis of the number of errors produced per stimulus suggests the existence of a second mechanism operating on task driven factors producing exogenous errors. Some errors, at least, are the result of constant probability generating mechanisms with error rate idiosyncratically determined for each subject.
Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant
Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar
2015-01-01
Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485
Mentoring Human Performance - 12480
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geis, John A.; Haugen, Christian N.
2012-07-01
Although the positive effects of implementing a human performance approach to operations can be hard to quantify, many organizations and industry areas are finding tangible benefits to such a program. Recently, a unique mentoring program was established and implemented focusing on improving the performance of managers, supervisors, and work crews, using the principles of Human Performance Improvement (HPI). The goal of this mentoring was to affect behaviors and habits that reliably implement the principles of HPI to ensure continuous improvement in implementation of an Integrated Safety Management System (ISMS) within a Conduct of Operations framework. Mentors engaged with personnel inmore » a one-on-one, or one-on-many dialogue, which focused on what behaviors were observed, what factors underlie the behaviors, and what changes in behavior could prevent errors or events, and improve performance. A senior management sponsor was essential to gain broad management support. A clear charter and management plan describing the goals, objectives, methodology, and expected outcomes was established. Mentors were carefully selected with senior management endorsement. Mentors were assigned to projects and work teams based on the following three criteria: 1) knowledge of the work scope; 2) experience in similar project areas; and 3) perceived level of trust they would have with project management, supervision, and work teams. This program was restructured significantly when the American Reinvestment and Recovery Act (ARRA) and the associated funding came to an end. The program was restructured based on an understanding of the observations, attributed successes and identified shortfalls, and the consolidation of those lessons. Mentoring the application of proven methods for improving human performance was shown effective at increasing success in day-to-day activities and increasing confidence and level of skill of supervisors. While mentoring program effectiveness is difficult to measure, and return on investment is difficult to quantify, especially in complex and large organizations where the ability to directly correlate causal factors can be challenging, the evidence presented by Sydney Dekker, James Reason, and others who study the field of human factors does assert managing and reducing error is possible. Employment of key behaviors-HPI techniques and skills-can be shown to have a significant impact on error rates. Our mentoring program demonstrated reduced error rates and corresponding improvements in safety and production. Improved behaviors are the result, of providing a culture with consistent, clear expectations from leadership, and processes and methods applied consistently to error prevention. Mentoring, as envisioned and executed in this program, was effective in helping shift organizational culture and effectively improving safety and production. (authors)« less
Managing human fallibility in critical aerospace situations
NASA Astrophysics Data System (ADS)
Tew, Larry
2014-11-01
Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.
Prediction of human errors by maladaptive changes in event-related brain networks.
Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus
2008-04-22
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.
Prediction of human errors by maladaptive changes in event-related brain networks
Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus
2008-01-01
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123
Defining the Relationship Between Human Error Classes and Technology Intervention Strategies
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.; Rantanen, Eas M.
2003-01-01
The modus operandi in addressing human error in aviation systems is predominantly that of technological interventions or fixes. Such interventions exhibit considerable variability both in terms of sophistication and application. Some technological interventions address human error directly while others do so only indirectly. Some attempt to eliminate the occurrence of errors altogether whereas others look to reduce the negative consequences of these errors. In any case, technological interventions add to the complexity of the systems and may interact with other system components in unforeseeable ways and often create opportunities for novel human errors. Consequently, there is a need to develop standards for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the biggest benefit to flight safety as well as to mitigate any adverse ramifications. The purpose of this project was to help define the relationship between human error and technological interventions, with the ultimate goal of developing a set of standards for evaluating or measuring the potential benefits of new human error fixes.
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1999-01-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less
Applying lessons learned to enhance human performance and reduce human error for ISS operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1998-09-01
A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less
Structured methods for identifying and correcting potential human errors in aviation operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, W.R.
1997-10-01
Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less
Kraemer, Sara; Carayon, Pascale
2007-03-01
This paper describes human errors and violations of end users and network administration in computer and information security. This information is summarized in a conceptual framework for examining the human and organizational factors contributing to computer and information security. This framework includes human error taxonomies to describe the work conditions that contribute adversely to computer and information security, i.e. to security vulnerabilities and breaches. The issue of human error and violation in computer and information security was explored through a series of 16 interviews with network administrators and security specialists. The interviews were audio taped, transcribed, and analyzed by coding specific themes in a node structure. The result is an expanded framework that classifies types of human error and identifies specific human and organizational factors that contribute to computer and information security. Network administrators tended to view errors created by end users as more intentional than unintentional, while errors created by network administrators as more unintentional than intentional. Organizational factors, such as communication, security culture, policy, and organizational structure, were the most frequently cited factors associated with computer and information security.
Intervention strategies for the management of human error
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1993-01-01
This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.
Rekaya, Romdhane; Smith, Shannon; Hay, El Hamidi; Farhat, Nourhene; Aggrey, Samuel E
2016-01-01
Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case-control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness.
ERIC Educational Resources Information Center
Boedigheimer, Dan
2010-01-01
Approximately 70% of aviation accidents are attributable to human error. The greatest opportunity for further improving aviation safety is found in reducing human errors in the cockpit. The purpose of this quasi-experimental, mixed-method research was to evaluate whether there was a difference in pilot attitudes toward reducing human error in the…
Evaluating a medical error taxonomy.
Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie
2002-01-01
Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.
Method and Apparatus for Evaluating the Visual Quality of Processed Digital Video Sequences
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
2002-01-01
A Digital Video Quality (DVQ) apparatus and method that incorporate a model of human visual sensitivity to predict the visibility of artifacts. The DVQ method and apparatus are used for the evaluation of the visual quality of processed digital video sequences and for adaptively controlling the bit rate of the processed digital video sequences without compromising the visual quality. The DVQ apparatus minimizes the required amount of memory and computation. The input to the DVQ apparatus is a pair of color image sequences: an original (R) non-compressed sequence, and a processed (T) sequence. Both sequences (R) and (T) are sampled, cropped, and subjected to color transformations. The sequences are then subjected to blocking and discrete cosine transformation, and the results are transformed to local contrast. The next step is a time filtering operation which implements the human sensitivity to different time frequencies. The results are converted to threshold units by dividing each discrete cosine transform coefficient by its respective visual threshold. At the next stage the two sequences are subtracted to produce an error sequence. The error sequence is subjected to a contrast masking operation, which also depends upon the reference sequence (R). The masked errors can be pooled in various ways to illustrate the perceptual error over various dimensions, and the pooled error can be converted to a visual quality measure.
Development of the Nontechnical Skills for Officers of the Deck (NTSOD) Rating Form
2010-12-01
organizational model of human error commonly described as the ‘ Swiss Cheese ’ model. This model allows for the identification of active failures and latent...complete list). The authors did identify organizational and management issues as underlying causes to mishaps, similar to Reason’s Swiss Cheese model. 24
An extensometer for global measurement of bone strain suitable for use in vivo in humans
NASA Technical Reports Server (NTRS)
Perusek, G. P.; Davis, B. L.; Sferra, J. J.; Courtney, A. C.; D'Andrea, S. E.
2001-01-01
An axial extensometer able to measure global bone strain magnitudes and rates encountered during physiological activity, and suitable for use in vivo in human subjects, is described. The extensometer uses paired capacitive sensors mounted to intraosseus pins and allows measurement of strain due to bending in the plane of the extensometer as well as uniaxial compression or tension. Data are presented for validation of the device against a surface-mounted strain gage in an acrylic specimen under dynamic four-point bending, with square wave and sinusoidal loading inputs up to 1500 mu epsilon and 20 Hz, representative of physiological strain magnitudes and frequencies. Pearson's correlation coefficient (r) between extensometer and strain gage ranged from 0.960 to 0.999. Mean differences between extensometer and strain gage ranged up to 15.3 mu epsilon. Errors in the extensometer output were directly proportional to the degree of bending that occurs in the specimen, however, these errors were predictable and less than 1 mu epsilon for the loading regime studied. The device is capable of tracking strain rates in excess of 90,000 mu epsilon/s.
Liu, Xingguo; Niu, Jianwei; Ran, Linghua; Liu, Taijie
2017-08-01
This study aimed to develop estimation formulae for the total human body volume (BV) of adult males using anthropometric measurements based on a three-dimensional (3D) scanning technique. Noninvasive and reliable methods to predict the total BV from anthropometric measurements based on a 3D scan technique were addressed in detail. A regression analysis of BV based on four key measurements was conducted for approximately 160 adult male subjects. Eight total models of human BV show that the predicted results fitted by the regression models were highly correlated with the actual BV (p < 0.001). Two metrics, the mean value of the absolute difference between the actual and predicted BV (V error ) and the mean value of the ratio between V error and actual BV (RV error ), were calculated. The linear model based on human weight was recommended as the most optimal due to its simplicity and high efficiency. The proposed estimation formulae are valuable for estimating total body volume in circumstances in which traditional underwater weighing or air displacement plethysmography is not applicable or accessible. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Fault detection and isolation in motion monitoring system.
Kim, Duk-Jin; Suk, Myoung Hoon; Prabhakaran, B
2012-01-01
Pervasive computing becomes very active research field these days. A watch that can trace human movement to record motion boundary as well as to study of finding social life pattern by one's localized visiting area. Pervasive computing also helps patient monitoring. A daily monitoring system helps longitudinal study of patient monitoring such as Alzheimer's and Parkinson's or obesity monitoring. Due to the nature of monitoring sensor (on-body wireless sensor), however, signal noise or faulty sensors errors can be present at any time. Many research works have addressed these problems any with a large amount of sensor deployment. In this paper, we present the faulty sensor detection and isolation using only two on-body sensors. We have been investigating three different types of sensor errors: the SHORT error, the CONSTANT error, and the NOISY SENSOR error (see more details on section V). Our experimental results show that the success rate of isolating faulty signals are an average of over 91.5% on fault type 1, over 92% on fault type 2, and over 99% on fault type 3 with the fault prior of 30% sensor errors.
Kaufhold, John P; Tsai, Philbert S; Blinder, Pablo; Kleinfeld, David
2012-08-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by "learned threshold relaxation"; (2) removes spurious segments by "learning to eliminate deletion candidate strands"; and (3) enforces consistency in the joint space of learned vascular graph corrections through "consistency learning." Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with >800(3) voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5-21% and strand elimination performance by 18-57%. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. Copyright © 2012 Elsevier B.V. All rights reserved.
Kaufhold, John P.; Tsai, Philbert S.; Blinder, Pablo; Kleinfeld, David
2012-01-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by “learned threshold relaxation”; (2) removes spurious segments by “learning to eliminate deletion candidate strands”; and (3) enforces consistency in the joint space of learned vascular graph corrections through “consistency learning.” Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with > 8003 voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5 to 21 % and strand elimination performance by 18 to 57 %. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. PMID:22854035
Analyzing human errors in flight mission operations
NASA Technical Reports Server (NTRS)
Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef
1993-01-01
A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.
Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J
2007-01-01
Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury. PMID:17391527
Energy-efficient human body communication receiver chipset using wideband signaling scheme.
Song, Seong-Jun; Cho, Namjun; Kim, Sunyoung; Yoo, Hoi-Jun
2007-01-01
This paper presents an energy-efficient wideband signaling receiver for communication channels using the human body as a data transmission medium. The wideband signaling scheme with the direct-coupled interface provides the energy-efficient transmission of multimedia data around the human body. The wideband signaling receiver incorporates with a receiver AFE exploiting wideband symmetric triggering technique and an all-digital CDR circuit with quadratic sampling technique. The AFE operates at 10-Mb/s data rate with input sensitivity of -27dBm and the operational bandwidth of 200-MHz. The CDR recovers clock and data of 2-Mb/s at a bit error rate of 10(-7). The receiver chipset consumes only 5-mW from a 1-V supply, thereby achieving the bit energy of 2.5-nJ/bit.
Reinhart, Robert M G; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F
2015-09-02
Posterror learning, associated with medial-frontal cortical recruitment in healthy subjects, is compromised in neuropsychiatric disorders. Here we report novel evidence for the mechanisms underlying learning dysfunctions in schizophrenia. We show that, by noninvasively passing direct current through human medial-frontal cortex, we could enhance the event-related potential related to learning from mistakes (i.e., the error-related negativity), a putative index of prediction error signaling in the brain. Following this causal manipulation of brain activity, the patients learned a new task at a rate that was indistinguishable from healthy individuals. Moreover, the severity of delusions interacted with the efficacy of the stimulation to improve learning. Our results demonstrate a causal link between disrupted prediction error signaling and inefficient learning in schizophrenia. These findings also demonstrate the feasibility of nonpharmacological interventions to address cognitive deficits in neuropsychiatric disorders. When there is a difference between what we expect to happen and what we actually experience, our brains generate a prediction error signal, so that we can map stimuli to responses and predict outcomes accurately. Theories of schizophrenia implicate abnormal prediction error signaling in the cognitive deficits of the disorder. Here, we combine noninvasive brain stimulation with large-scale electrophysiological recordings to establish a causal link between faulty prediction error signaling and learning deficits in schizophrenia. We show that it is possible to improve learning rate, as well as the neural signature of prediction error signaling, in patients to a level quantitatively indistinguishable from that of healthy subjects. The results provide mechanistic insight into schizophrenia pathophysiology and suggest a future therapy for this condition. Copyright © 2015 the authors 0270-6474/15/3512232-09$15.00/0.
Human Error and the International Space Station: Challenges and Triumphs in Science Operations
NASA Technical Reports Server (NTRS)
Harris, Samantha S.; Simpson, Beau C.
2016-01-01
Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.
Assessing Mediational Models: Testing and Interval Estimation for Indirect Effects.
Biesanz, Jeremy C; Falk, Carl F; Savalei, Victoria
2010-08-06
Theoretical models specifying indirect or mediated effects are common in the social sciences. An indirect effect exists when an independent variable's influence on the dependent variable is mediated through an intervening variable. Classic approaches to assessing such mediational hypotheses ( Baron & Kenny, 1986 ; Sobel, 1982 ) have in recent years been supplemented by computationally intensive methods such as bootstrapping, the distribution of the product methods, and hierarchical Bayesian Markov chain Monte Carlo (MCMC) methods. These different approaches for assessing mediation are illustrated using data from Dunn, Biesanz, Human, and Finn (2007). However, little is known about how these methods perform relative to each other, particularly in more challenging situations, such as with data that are incomplete and/or nonnormal. This article presents an extensive Monte Carlo simulation evaluating a host of approaches for assessing mediation. We examine Type I error rates, power, and coverage. We study normal and nonnormal data as well as complete and incomplete data. In addition, we adapt a method, recently proposed in statistical literature, that does not rely on confidence intervals (CIs) to test the null hypothesis of no indirect effect. The results suggest that the new inferential method-the partial posterior p value-slightly outperforms existing ones in terms of maintaining Type I error rates while maximizing power, especially with incomplete data. Among confidence interval approaches, the bias-corrected accelerated (BC a ) bootstrapping approach often has inflated Type I error rates and inconsistent coverage and is not recommended; In contrast, the bootstrapped percentile confidence interval and the hierarchical Bayesian MCMC method perform best overall, maintaining Type I error rates, exhibiting reasonable power, and producing stable and accurate coverage rates.
Modeling human response errors in synthetic flight simulator domain
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1992-01-01
This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.
A method for automatic feature points extraction of human vertebrae three-dimensional model
NASA Astrophysics Data System (ADS)
Wu, Zhen; Wu, Junsheng
2017-05-01
A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.
Defining the Relationship Between Human Error Classes and Technology Intervention Strategies
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.; Rantanen, Esa; Crisp, Vicki K. (Technical Monitor)
2002-01-01
One of the main factors in all aviation accidents is human error. The NASA Aviation Safety Program (AvSP), therefore, has identified several human-factors safety technologies to address this issue. Some technologies directly address human error either by attempting to reduce the occurrence of errors or by mitigating the negative consequences of errors. However, new technologies and system changes may also introduce new error opportunities or even induce different types of errors. Consequently, a thorough understanding of the relationship between error classes and technology "fixes" is crucial for the evaluation of intervention strategies outlined in the AvSP, so that resources can be effectively directed to maximize the benefit to flight safety. The purpose of the present project, therefore, was to examine the repositories of human factors data to identify the possible relationship between different error class and technology intervention strategies. The first phase of the project, which is summarized here, involved the development of prototype data structures or matrices that map errors onto "fixes" (and vice versa), with the hope of facilitating the development of standards for evaluating safety products. Possible follow-on phases of this project are also discussed. These additional efforts include a thorough and detailed review of the literature to fill in the data matrix and the construction of a complete database and standards checklists.
Machine Learned Replacement of N-Labels for Basecalled Sequences in DNA Barcoding.
Ma, Eddie Y T; Ratnasingham, Sujeevan; Kremer, Stefan C
2018-01-01
This study presents a machine learning method that increases the number of identified bases in Sanger Sequencing. The system post-processes a KB basecalled chromatogram. It selects a recoverable subset of N-labels in the KB-called chromatogram to replace with basecalls (A,C,G,T). An N-label correction is defined given an additional read of the same sequence, and a human finished sequence. Corrections are added to the dataset when an alignment determines the additional read and human agree on the identity of the N-label. KB must also rate the replacement with quality value of in the additional read. Corrections are only available during system training. Developing the system, nearly 850,000 N-labels are obtained from Barcode of Life Datasystems, the premier database of genetic markers called DNA Barcodes. Increasing the number of correct bases improves reference sequence reliability, increases sequence identification accuracy, and assures analysis correctness. Keeping with barcoding standards, our system maintains an error rate of percent. Our system only applies corrections when it estimates low rate of error. Tested on this data, our automation selects and recovers: 79 percent of N-labels from COI (animal barcode); 80 percent from matK and rbcL (plant barcodes); and 58 percent from non-protein-coding sequences (across eukaryotes).
Customization of user interfaces to reduce errors and enhance user acceptance.
Burkolter, Dina; Weyers, Benjamin; Kluge, Annette; Luther, Wolfram
2014-03-01
Customization is assumed to reduce error and increase user acceptance in the human-machine relation. Reconfiguration gives the operator the option to customize a user interface according to his or her own preferences. An experimental study with 72 computer science students using a simulated process control task was conducted. The reconfiguration group (RG) interactively reconfigured their user interfaces and used the reconfigured user interface in the subsequent test whereas the control group (CG) used a default user interface. Results showed significantly lower error rates and higher acceptance of the RG compared to the CG while there were no significant differences between the groups regarding situation awareness and mental workload. Reconfiguration seems to be promising and therefore warrants further exploration. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Al-Wardi, Yousuf
2017-09-01
Rates of aviation accident differ in different regions; and national culture has been implicated as a factor. This invites a discussion about the role of national culture in aviation accidents. This study makes a cross-cultural comparison between Oman, Taiwan and the USA. A cross-cultural comparison was acquired using data from three studies, including this study, by applying the Human Factors Analysis and Classification System (HFACS) framework. The Taiwan study presented 523 mishaps with 1762 occurrences of human error obtained from the Republic of China Air Force. The study from the USA carried out for commercial aviation had 119 accidents with 245 instances of human error. This study carried out in Oman had a total of 40 aircraft accidents with 129 incidences. Variations were found between Oman, Taiwan and the USA at the levels of organisational influence and unsafe supervision. Seven HFACS categories showed significant differences between the three countries (p < 0.05). Although not given much consideration, national culture can have an impact on aviation safety. This study revealed that national culture plays a role in aircraft accidents related to human factors that cannot be disregarded.
Reflections on human error - Matters of life and death
NASA Technical Reports Server (NTRS)
Wiener, Earl L.
1989-01-01
The last two decades have witnessed a rapid growth in the introduction of automatic devices into aircraft cockpits, and eleswhere in human-machine systems. This was motivated in part by the assumption that when human functioning is replaced by machine functioning, human error is eliminated. Experience to date shows that this is far from true, and that automation does not replace humans, but changes their role in the system, as well as the types and severity of the errors they make. This altered role may lead to fewer, but more critical errors. Intervention strategies to prevent these errors, or ameliorate their consequences include basic human factors engineering of the interface, enhanced warning and alerting systems, and more intelligent interfaces that understand the strategic intent of the crew and can detect and trap inconsistent or erroneous input before it affects the system.
A stochastic dynamic model for human error analysis in nuclear power plants
NASA Astrophysics Data System (ADS)
Delgado-Loperena, Dharma
Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.
Hicks, Christopher M; Bandiera, Glen W; Denny, Christopher J
2008-11-01
Emergency department (ED) resuscitation requires the coordinated efforts of an interdisciplinary team. Human errors are common and have a negative impact on patient safety. Although crisis resource management (CRM) skills are utilized in other clinical domains, most emergency medicine (EM) caregivers currently receive no formal CRM training. The objectives were to compile and compare attitudes toward CRM training among EM staff physicians, nurses, and residents at two Canadian academic teaching hospitals. Emergency physicians (EPs), residents, and nurses were asked to complete a Web survey that included Likert scales and short answer questions. Focus groups and pilot testing were used to inform survey development. Thematic content analysis was performed on the qualitative data set and compared to quantitative results. The response rate was 75.7% (N = 84). There was strong consensus regarding the importance of core CRM principles (i.e., effective communication, team leadership, resource utilization, problem-solving, situational awareness) in ED resuscitation. Problems with coordinating team actions (58.8%), communication (69.6%), and establishing priorities (41.3%) were among factors implicated in adverse events. Interdisciplinary collaboration (95.1%), efficiency of patient care (83.9%), and decreased medical error (82.6%) were proposed benefits of CRM training. Communication between disciplines is a barrier to effective ED resuscitation for 94.4% of nurses and 59.7% of EPs (p = 0.008). Residents reported a lack of exposure to (64.3%), yet had interest in (96.4%) formal CRM education using human patient simulation. Nurses rate communication as a barrier to teamwork more frequently than physicians. EM residents are keen to learn CRM skills. An opportunity exists to create a novel interdisciplinary CRM curriculum to improve EM team performance and mitigate human error.
ERIC Educational Resources Information Center
Ari, Omer
2009-01-01
Fluency instruction has had limited effects on reading comprehension relative to reading rate and prosodic reading (Dowhower, 1987; Herman, 1985; National Institute of Child Health and Human Development, 2000a). More specific components (i.e., error detection) of comprehension may yield larger effects through exposure to a wider range of materials…
Design Guidance for Computer-Based Procedures for Field Workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna; Le Blanc, Katya; Bly, Aaron
Nearly all activities that involve human interaction with nuclear power plant systems are guided by procedures, instructions, or checklists. Paper-based procedures (PBPs) currently used by most utilities have a demonstrated history of ensuring safety; however, improving procedure use could yield significant savings in increased efficiency, as well as improved safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease human error rates, especially human error rates associated with procedure use. As a step toward the goal of improving field workers’ procedure use and adherence and hence improve human performance and overall system reliability, themore » U.S. Department of Energy Light Water Reactor Sustainability (LWRS) Program researchers, together with the nuclear industry, have been investigating the possibility and feasibility of replacing current paper-based procedures with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing, depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to use of PBPs are management of multiple procedures, place-keeping, finding the correct procedure for a task, and relying on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, and Naser, 2009; Le Blanc, Oxstrand, and Waicosky, 2012). This report provides design guidance to be used when designing the human-system interaction and the design of the graphical user interface for a CBP system. The guidance is based on human factors research related to the design and usability of CBPs conducted by Idaho National Laboratory, 2012 - 2016.« less
Common errors of drug administration in infants: causes and avoidance.
Anderson, B J; Ellis, J F
1999-01-01
Drug administration errors are common in infants. Although the infant population has a high exposure to drugs, there are few data concerning pharmacokinetics or pharmacodynamics, or the influence of paediatric diseases on these processes. Children remain therapeutic orphans. Formulations are often suitable only for adults; in addition, the lack of maturation of drug elimination processes, alteration of body composition and influence of size render the calculation of drug doses complex in infants. The commonest drug administration error in infants is one of dose, and the commonest hospital site for this error is the intensive care unit. Drug errors are a consequence of system error, and preventive strategies are possible through system analysis. The goal of a zero drug error rate should be aggressively sought, with systems in place that aim to eliminate the effects of inevitable human error. This involves review of the entire system from drug manufacture to drug administration. The nuclear industry, telecommunications and air traffic control services all practise error reduction policies with zero error as a clear goal, not by finding fault in the individual, but by identifying faults in the system and building into that system mechanisms for picking up faults before they occur. Such policies could be adapted to medicine using interventions both specific (the production of formulations which are for children only and clearly labelled, regular audit by pharmacists, legible prescriptions, standardised dose tables) and general (paediatric drug trials, education programmes, nonpunitive error reporting) to reduce the number of errors made in giving medication to infants.
Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists.
Ruiz, María Herrojo; Jabusch, Hans-Christian; Altenmüller, Eckart
2009-11-01
Music performance is an extremely rapid process with low incidence of errors even at the fast rates of production required. This is possible only due to the fast functioning of the self-monitoring system. Surprisingly, no specific data about error monitoring have been published in the music domain. Consequently, the present study investigated the electrophysiological correlates of executive control mechanisms, in particular error detection, during piano performance. Our target was to extend the previous research efforts on understanding of the human action-monitoring system by selecting a highly skilled multimodal task. Pianists had to retrieve memorized music pieces at a fast tempo in the presence or absence of auditory feedback. Our main interest was to study the interplay between auditory and sensorimotor information in the processes triggered by an erroneous action, considering only wrong pitches as errors. We found that around 70 ms prior to errors a negative component is elicited in the event-related potentials and is generated by the anterior cingulate cortex. Interestingly, this component was independent of the auditory feedback. However, the auditory information did modulate the processing of the errors after their execution, as reflected in a larger error positivity (Pe). Our data are interpreted within the context of feedforward models and the auditory-motor coupling.
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo
1986-01-01
A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
JPEG2000 encoding with perceptual distortion control.
Liu, Zhen; Karam, Lina J; Watson, Andrew B
2006-07-01
In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.
Human factors process failure modes and effects analysis (HF PFMEA) software tool
NASA Technical Reports Server (NTRS)
Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)
2011-01-01
Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.
Chaplain Corps Cadet Chapel Community Center Chapel Institutional Review Board Not Human Subjects Research Requirements 7 Not Human Subjects Research Form 8 Researcher Instructions - Activities Submitted to DoD IRB 9 Review 18 Not Human Subjects Errors 19 Exempt Research Most Frequent Errors 20 Most Frequent Errors for
Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.
DOT National Transportation Integrated Search
2002-07-01
Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...
Human Error: The Stakes Are Raised.
ERIC Educational Resources Information Center
Greenberg, Joel
1980-01-01
Mistakes related to the operation of nuclear power plants and other technologically complex systems are discussed. Recommendations are given for decreasing the chance of human error in the operation of nuclear plants. The causes of the Three Mile Island incident are presented in terms of the human error element. (SA)
Perceptually tuned low-bit-rate video codec for ATM networks
NASA Astrophysics Data System (ADS)
Chou, Chun-Hsien
1996-02-01
In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.
Avoiding Human Error in Mission Operations: Cassini Flight Experience
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2012-01-01
Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.
Brennan, Peter A; Mitchell, David A; Holmes, Simon; Plint, Simon; Parry, David
2016-01-01
Human error is as old as humanity itself and is an appreciable cause of mistakes by both organisations and people. Much of the work related to human factors in causing error has originated from aviation where mistakes can be catastrophic not only for those who contribute to the error, but for passengers as well. The role of human error in medical and surgical incidents, which are often multifactorial, is becoming better understood, and includes both organisational issues (by the employer) and potential human factors (at a personal level). Mistakes as a result of individual human factors and surgical teams should be better recognised and emphasised. Attitudes and acceptance of preoperative briefing has improved since the introduction of the World Health Organization (WHO) surgical checklist. However, this does not address limitations or other safety concerns that are related to performance, such as stress and fatigue, emotional state, hunger, awareness of what is going on situational awareness, and other factors that could potentially lead to error. Here we attempt to raise awareness of these human factors, and highlight how they can lead to error, and how they can be minimised in our day-to-day practice. Can hospitals move from being "high risk industries" to "high reliability organisations"? Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Increased instrument intelligence--can it reduce laboratory error?
Jekelis, Albert W
2005-01-01
Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the nonvortexed specimens. There were no significant differences in overall process time for any of the analyzers when tests were arranged in an optimal configuration. The analyzer with advanced fluidic intelligence demostrated the greatest ability to appropriately deal with an incomplete aspiration by not processing and reporting a result for the sample. This study suggests that preanalytical process-control capabilities could reduce errors. By association, it implies that similar intelligent process controls could favorably impact the error rate and, in the case of this instrument, do it without negatively impacting process throughput. Other improvements may be realized as a result of having an intelligent error-detection process including further reduction in misreported results, fewer repeats, less operator intervention, and less reagent waste.
An educational and audit tool to reduce prescribing error in intensive care.
Thomas, A N; Boxall, E M; Laha, S K; Day, A J; Grundy, D
2008-10-01
To reduce prescribing errors in an intensive care unit by providing prescriber education in tutorials, ward-based teaching and feedback in 3-monthly cycles with each new group of trainee medical staff. Prescribing audits were conducted three times in each 3-month cycle, once pretraining, once post-training and a final audit after 6 weeks. The audit information was fed back to prescribers with their correct prescribing rates, rates for individual error types and total error rates together with anonymised information about other prescribers' error rates. The percentage of prescriptions with errors decreased over each 3-month cycle (pretraining 25%, 19%, (one missing data point), post-training 23%, 6%, 11%, final audit 7%, 3%, 5% (p<0.0005)). The total number of prescriptions and error rates varied widely between trainees (data collection one; cycle two: range of prescriptions written: 1-61, median 18; error rate: 0-100%; median: 15%). Prescriber education and feedback reduce manual prescribing errors in intensive care.
A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.
Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema
2016-01-01
A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.
Data Analysis & Statistical Methods for Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Waggoner, Bruce; Bryant, Larry
2014-01-01
This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.
Chanani, Sheila; Wacksman, Jeremy; Deshmukh, Devika; Pantvaidya, Shanti; Fernandez, Armida; Jayaraman, Anuja
2016-12-01
Acute malnutrition is linked to child mortality and morbidity. Community-Based Management of Acute Malnutrition (CMAM) programs can be instrumental in large-scale detection and treatment of undernutrition. The World Health Organization (WHO) 2006 weight-for-height/length tables are diagnostic tools available to screen for acute malnutrition. Frontline workers (FWs) in a CMAM program in Dharavi, Mumbai, were using CommCare, a mobile application, for monitoring and case management of children in combination with the paper-based WHO simplified tables. A strategy was undertaken to digitize the WHO tables into the CommCare application. To measure differences in diagnostic accuracy in community-based screening for acute malnutrition, by FWs, using a mobile-based solution. Twenty-seven FWs initially used the paper-based tables and then switched to an updated mobile application that included a nutritional grade calculator. Human error rates specifically associated with grade classification were calculated by comparison of the grade assigned by the FW to the grade each child should have received based on the same WHO tables. Cohen kappa coefficient, sensitivity and specificity rates were also calculated and compared for paper-based grade assignments and calculator grade assignments. Comparing FWs (N = 14) who completed at least 40 screenings without and 40 with the calculator, the error rates were 5.5% and 0.7%, respectively (p < .0001). Interrater reliability (κ) increased to an almost perfect level (>.90), from .79 to .97, after switching to the mobile calculator. Sensitivity and specificity also improved significantly. The mobile calculator significantly reduces an important component of human error in using the WHO tables to assess acute malnutrition at the community level. © The Author(s) 2016.
Using a Delphi Method to Identify Human Factors Contributing to Nursing Errors.
Roth, Cheryl; Brewer, Melanie; Wieck, K Lynn
2017-07-01
The purpose of this study was to identify human factors associated with nursing errors. Using a Delphi technique, this study used feedback from a panel of nurse experts (n = 25) on an initial qualitative survey questionnaire followed by summarizing the results with feedback and confirmation. Synthesized factors regarding causes of errors were incorporated into a quantitative Likert-type scale, and the original expert panel participants were queried a second time to validate responses. The list identified 24 items as most common causes of nursing errors, including swamping and errors made by others that nurses are expected to recognize and fix. The responses provided a consensus top 10 errors list based on means with heavy workload and fatigue at the top of the list. The use of the Delphi survey established consensus and developed a platform upon which future study of nursing errors can evolve as a link to future solutions. This list of human factors in nursing errors should serve to stimulate dialogue among nurses about how to prevent errors and improve outcomes. Human and system failures have been the subject of an abundance of research, yet nursing errors continue to occur. © 2016 Wiley Periodicals, Inc.
Detecting Signatures of GRACE Sensor Errors in Range-Rate Residuals
NASA Astrophysics Data System (ADS)
Goswami, S.; Flury, J.
2016-12-01
In order to reach the accuracy of the GRACE baseline, predicted earlier from the design simulations, efforts are ongoing since a decade. GRACE error budget is highly dominated by noise from sensors, dealiasing models and modeling errors. GRACE range-rate residuals contain these errors. Thus, their analysis provides an insight to understand the individual contribution to the error budget. Hence, we analyze the range-rate residuals with focus on contribution of sensor errors due to mis-pointing and bad ranging performance in GRACE solutions. For the analysis of pointing errors, we consider two different reprocessed attitude datasets with differences in pointing performance. Then range-rate residuals are computed from these two datasetsrespectively and analysed. We further compare the system noise of four K-and Ka- band frequencies of the two spacecrafts, with range-rate residuals. Strong signatures of mis-pointing errors can be seen in the range-rate residuals. Also, correlation between range frequency noise and range-rate residuals are seen.
Moon, J; Ota, K T; Driscoll, L L; Levitsky, D A; Strupp, B J
2008-07-01
This study was designed to further assess cognitive and affective functioning in a mouse model of Fragile X syndrome (FXS), the Fmr1(tm1Cgr) or Fmr1 "knockout" (KO) mouse. Male KO mice and wild-type littermate controls were tested on learning set and reversal learning tasks. The KO mice were not impaired in associative learning, transfer of learning, or reversal learning, based on measures of learning rate. Analyses of videotapes of the reversal learning task revealed that both groups of mice exhibited higher levels of activity and wall-climbing during the initial sessions of the task than during the final sessions, a pattern also seen for trials following an error relative to those following a correct response. Notably, the increase in both behavioral measures seen early in the task was significantly more pronounced for the KO mice than for controls, as was the error-induced increase in activity level. This pattern of effects suggests that the KO mice reacted more strongly than controls to the reversal of contingencies and pronounced drop in reinforcement rate, and to errors in general. This pattern of effects is consistent with the heightened emotional reactivity frequently described for humans with FXS. (c) 2008 Wiley Periodicals, Inc.
[Innovative training for enhancing patient safety. Safety culture and integrated concepts].
Rall, M; Schaedle, B; Zieger, J; Naef, W; Weinlich, M
2002-11-01
Patient safety is determined by the performance safety of the medical team. Errors in medicine are amongst the leading causes of death of hospitalized patients. These numbers call for action. Backgrounds, methods and new forms of training are introduced in this article. Concepts from safety research are transformed to the field of emergency medical treatment. Strategies from realistic patient simulator training sessions and innovative training concepts are discussed. The reasons for the high numbers of errors in medicine are not due to a lack of medical knowledge, but due to human factors and organisational circumstances. A first step towards an improved patient safety is to accept this. We always need to be prepared that errors will occur. A next step would be to separate "error" from guilt (culture of blame) allowing for a real analysis of accidents and establishment of meaningful incident reporting systems. Concepts with a good success record from aviation like "crew resource management" (CRM) training have been adapted my medicine and are ready to use. These concepts require theoretical education as well as practical training. Innovative team training sessions using realistic patient simulator systems with video taping (for self reflexion) and interactive debriefing following the sessions are very promising. As the need to reduce error rates in medicine is very high and the reasons, methods and training concepts are known, we are urged to implement these new training concepts widely and consequently. To err is human - not to counteract it is not.
Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression
NASA Astrophysics Data System (ADS)
Daly, Scott J.
1989-08-01
The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
The effect of divided attention on novices and experts in laparoscopic task performance.
Ghazanfar, Mudassar Ali; Cook, Malcolm; Tang, Benjie; Tait, Iain; Alijani, Afshin
2015-03-01
Attention is important for the skilful execution of surgery. The surgeon's attention during surgery is divided between surgery and outside distractions. The effect of this divided attention has not been well studied previously. We aimed to compare the effect of dividing attention of novices and experts on a laparoscopic task performance. Following ethical approval, 25 novices and 9 expert surgeons performed a standardised peg transfer task in a laboratory setup under three randomly assigned conditions: silent as control condition and two standardised auditory distracting tasks requiring response (easy and difficult) as study conditions. Human reliability assessment was used for surgical task analysis. Primary outcome measures were correct auditory responses, task time, number of surgical errors and instrument movements. Secondary outcome measures included error rate, error probability and hand specific differences. Non-parametric statistics were used for data analysis. 21109 movements and 9036 total errors were analysed. Novices had increased mean task completion time (seconds) (171 ± 44SD vs. 149 ± 34, p < 0.05), number of total movements (227 ± 27 vs. 213 ± 26, p < 0.05) and number of errors (127 ± 51 vs. 96 ± 28, p < 0.05) during difficult study conditions compared to control. The correct responses to auditory stimuli were less frequent in experts (68 %) compared to novices (80 %). There was a positive correlation between error rate and error probability in novices (r (2) = 0.533, p < 0.05) but not in experts (r (2) = 0.346, p > 0.05). Divided attention conditions in theatre environment require careful consideration during surgical training as the junior surgeons are less able to focus their attention during these conditions.
McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.
2016-01-01
The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821
Analysis of measured data of human body based on error correcting frequency
NASA Astrophysics Data System (ADS)
Jin, Aiyan; Peipei, Gao; Shang, Xiaomei
2014-04-01
Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.
Wearable Sweat Rate Sensors for Human Thermal Comfort Monitoring.
Sim, Jai Kyoung; Yoon, Sunghyun; Cho, Young-Ho
2018-01-19
We propose watch-type sweat rate sensors capable of automatic natural ventilation by integrating miniaturized thermo-pneumatic actuators, and experimentally verify their performances and applicability. Previous sensors using natural ventilation require manual ventilation process or high-power bulky thermo-pneumatic actuators to lift sweat rate detection chambers above skin for continuous measurement. The proposed watch-type sweat rate sensors reduce operation power by minimizing expansion fluid volume to 0.4 ml through heat circuit modeling. The proposed sensors reduce operation power to 12.8% and weight to 47.6% compared to previous portable sensors, operating for 4 hours at 6 V batteries. Human experiment for thermal comfort monitoring is performed by using the proposed sensors having sensitivity of 0.039 (pF/s)/(g/m 2 h) and linearity of 97.9% in human sweat rate range. Average sweat rate difference for each thermal status measured in three subjects shows (32.06 ± 27.19) g/m 2 h in thermal statuses including 'comfortable', 'slightly warm', 'warm', and 'hot'. The proposed sensors thereby can discriminate and compare four stages of thermal status. Sweat rate measurement error of the proposed sensors is less than 10% under air velocity of 1.5 m/s corresponding to human walking speed. The proposed sensors are applicable for wearable and portable use, having potentials for daily thermal comfort monitoring applications.
Sharing control with haptics: seamless driver support from manual to automatic control.
Mulder, Mark; Abbink, David A; Boer, Erwin R
2012-10-01
Haptic shared control was investigated as a human-machine interface that can intuitively share control between drivers and an automatic controller for curve negotiation. As long as automation systems are not fully reliable, a role remains for the driver to be vigilant to the system and the environment to catch any automation errors. The conventional binary switches between supervisory and manual control has many known issues, and haptic shared control is a promising alternative. A total of 42 respondents of varying age and driving experience participated in a driving experiment in a fixed-base simulator, in which curve negotiation behavior during shared control was compared to during manual control, as well as to three haptic tunings of an automatic controller without driver intervention. Under the experimental conditions studied, the main beneficial effect of haptic shared control compared to manual control was that less control activity (16% in steering wheel reversal rate, 15% in standard deviation of steering wheel angle) was needed for realizing an improved safety performance (e.g., 11% in peak lateral error). Full automation removed the need for any human control activity and improved safety performance (e.g., 35% in peak lateral error) but put the human in a supervisory position. Haptic shared control kept the driver in the loop, with enhanced performance at reduced control activity, mitigating the known issues that plague full automation. Haptic support for vehicular control ultimately seeks to intuitively combine human intelligence and creativity with the benefits of automation systems.
Werner, Benjamin; Sottoriva, Andrea
2018-06-01
The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.
The fitness cost of mis-splicing is the main determinant of alternative splicing patterns.
Saudemont, Baptiste; Popa, Alexandra; Parmley, Joanna L; Rocher, Vincent; Blugeon, Corinne; Necsulea, Anamaria; Meyer, Eric; Duret, Laurent
2017-10-30
Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92-98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift.
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
Studies in automatic speech recognition and its application in aerospace
NASA Astrophysics Data System (ADS)
Taylor, Michael Robinson
Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.
Faerber, Julia; Cummins, Gerard; Pavuluri, Sumanth Kumar; Record, Paul; Rodriguez, Adrian R Ayastuy; Lay, Holly S; McPhillips, Rachael; Cox, Benjamin F; Connor, Ciaran; Gregson, Rachael; Clutton, Richard Eddie; Khan, Sadeque Reza; Cochran, Sandy; Desmulliez, Marc P Y
2018-02-01
This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of -10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10 -3 packet error rate and 10 -5 bit error rate and no temperature increase of the tissue according to IEEE standards.
Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
Meyer, Bernd T; Brand, Thomas; Kollmeier, Birger
2011-01-01
The aim of this study is to quantify the gap between the recognition performance of human listeners and an automatic speech recognition (ASR) system with special focus on intrinsic variations of speech, such as speaking rate and effort, altered pitch, and the presence of dialect and accent. Second, it is investigated if the most common ASR features contain all information required to recognize speech in noisy environments by using resynthesized ASR features in listening experiments. For the phoneme recognition task, the ASR system achieved the human performance level only when the signal-to-noise ratio (SNR) was increased by 15 dB, which is an estimate for the human-machine gap in terms of the SNR. The major part of this gap is attributed to the feature extraction stage, since human listeners achieve comparable recognition scores when the SNR difference between unaltered and resynthesized utterances is 10 dB. Intrinsic variabilities result in strong increases of error rates, both in human speech recognition (HSR) and ASR (with a relative increase of up to 120%). An analysis of phoneme duration and recognition rates indicates that human listeners are better able to identify temporal cues than the machine at low SNRs, which suggests incorporating information about the temporal dynamics of speech into ASR systems.
Arduino-based noise robust online heart-rate detection.
Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda
2017-04-01
This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.
Tailoring a Human Reliability Analysis to Your Industry Needs
NASA Technical Reports Server (NTRS)
DeMott, D. L.
2016-01-01
Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed versus a requirement to provide a numerical value as part of a probabilistic risk assessment. Industries involved with humans operating large equipment or transport systems (ex. railroads or airlines) would have more need to address the man machine interface than medical workers administering medications. Human error occurs in every industry; in most cases the consequences are relatively benign and occasionally beneficial. In cases where the results can have disastrous consequences, the use of Human Reliability techniques to identify and classify the risk of human errors allows a company more opportunities to mitigate or eliminate these types of risks and prevent costly tragedies.
Rate-distortion theory and human perception.
Sims, Chris R
2016-07-01
The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.
A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo
A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).
A new approach for flow-through respirometry measurements in humans
Ingebrigtsen, Jan P.; Bergouignan, Audrey; Ohkawara, Kazunori; Kohrt, Wendy M.; Lighton, John R. B.
2010-01-01
Indirect whole room calorimetry is commonly used in studies of human metabolism. These calorimeters can be configured as either push or pull systems. A major obstacle to accurately calculating gas exchange rates in a pull system is that the excurrent flow rate is increased above the incurrent flow rate, because the organism produces water vapor, which also dilutes the concentrations of respiratory gasses in the excurrent sample. A common approach to this problem is to dry the excurrent gasses prior to measurement, but if drying is incomplete, large errors in the calculated oxygen consumption will result. The other major potential source of error is fluctuations in the concentration of O2 and CO2 in the incurrent airstream. We describe a novel approach to measuring gas exchange using a pull-type whole room indirect calorimeter. Relative humidity and temperature of the incurrent and excurrent airstreams are measured continuously using high-precision, relative humidity and temperature sensors, permitting accurate measurement of water vapor pressure. The excurrent flow rates are then adjusted to eliminate the flow contribution from water vapor, and respiratory gas concentrations are adjusted to eliminate the effect of water vapor dilution. In addition, a novel switching approach is used that permits constant, uninterrupted measurement of the excurrent airstream while allowing frequent measurements of the incurrent airstream. To demonstrate the accuracy of this approach, we present the results of validation trials compared with our existing system and metabolic carts, as well as the results of standard propane combustion tests. PMID:20200135
Cultural background shapes spatial reference frame proclivity
Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter
2015-01-01
Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656
Effect of bar-code technology on the safety of medication administration.
Poon, Eric G; Keohane, Carol A; Yoon, Catherine S; Ditmore, Matthew; Bane, Anne; Levtzion-Korach, Osnat; Moniz, Thomas; Rothschild, Jeffrey M; Kachalia, Allen B; Hayes, Judy; Churchill, William W; Lipsitz, Stuart; Whittemore, Anthony D; Bates, David W; Gandhi, Tejal K
2010-05-06
Serious medication errors are common in hospitals and often occur during order transcription or administration of medication. To help prevent such errors, technology has been developed to verify medications by incorporating bar-code verification technology within an electronic medication-administration system (bar-code eMAR). We conducted a before-and-after, quasi-experimental study in an academic medical center that was implementing the bar-code eMAR. We assessed rates of errors in order transcription and medication administration on units before and after implementation of the bar-code eMAR. Errors that involved early or late administration of medications were classified as timing errors and all others as nontiming errors. Two clinicians reviewed the errors to determine their potential to harm patients and classified those that could be harmful as potential adverse drug events. We observed 14,041 medication administrations and reviewed 3082 order transcriptions. Observers noted 776 nontiming errors in medication administration on units that did not use the bar-code eMAR (an 11.5% error rate) versus 495 such errors on units that did use it (a 6.8% error rate)--a 41.4% relative reduction in errors (P<0.001). The rate of potential adverse drug events (other than those associated with timing errors) fell from 3.1% without the use of the bar-code eMAR to 1.6% with its use, representing a 50.8% relative reduction (P<0.001). The rate of timing errors in medication administration fell by 27.3% (P<0.001), but the rate of potential adverse drug events associated with timing errors did not change significantly. Transcription errors occurred at a rate of 6.1% on units that did not use the bar-code eMAR but were completely eliminated on units that did use it. Use of the bar-code eMAR substantially reduced the rate of errors in order transcription and in medication administration as well as potential adverse drug events, although it did not eliminate such errors. Our data show that the bar-code eMAR is an important intervention to improve medication safety. (ClinicalTrials.gov number, NCT00243373.) 2010 Massachusetts Medical Society
A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring.
Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B; Yelamarthi, Kumar; Kaya, Tolga
2018-02-10
There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm², with an average error in accuracy of 18% compared to manual sweat rate readings.
Hooper, Brionny J; O'Hare, David P A
2013-08-01
Human error classification systems theoretically allow researchers to analyze postaccident data in an objective and consistent manner. The Human Factors Analysis and Classification System (HFACS) framework is one such practical analysis tool that has been widely used to classify human error in aviation. The Cognitive Error Taxonomy (CET) is another. It has been postulated that the focus on interrelationships within HFACS can facilitate the identification of the underlying causes of pilot error. The CET provides increased granularity at the level of unsafe acts. The aim was to analyze the influence of factors at higher organizational levels on the unsafe acts of front-line operators and to compare the errors of fixed-wing and rotary-wing operations. This study analyzed 288 aircraft incidents involving human error from an Australasian military organization occurring between 2001 and 2008. Action errors accounted for almost twice (44%) the proportion of rotary wing compared to fixed wing (23%) incidents. Both classificatory systems showed significant relationships between precursor factors such as the physical environment, mental and physiological states, crew resource management, training and personal readiness, and skill-based, but not decision-based, acts. The CET analysis showed different predisposing factors for different aspects of skill-based behaviors. Skill-based errors in military operations are more prevalent in rotary wing incidents and are related to higher level supervisory processes in the organization. The Cognitive Error Taxonomy provides increased granularity to HFACS analyses of unsafe acts.
Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim
2015-01-01
Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.
2010-03-15
Swiss cheese model of human error causation. ................................................................... 3 2. Results for the classification of...based on Reason’s “ Swiss cheese ” model of human error (1990). Figure 1 describes how an accident is likely to occur when all of the errors, or “holes...align. A detailed description of HFACS can be found in Wiegmann and Shappell (2003). Figure 1. The Swiss cheese model of human error
Seeing the Errors You Feel Enhances Locomotor Performance but Not Learning.
Roemmich, Ryan T; Long, Andrew W; Bastian, Amy J
2016-10-24
In human motor learning, it is thought that the more information we have about our errors, the faster we learn. Here, we show that additional error information can lead to improved motor performance without any concomitant improvement in learning. We studied split-belt treadmill walking that drives people to learn a new gait pattern using sensory prediction errors detected by proprioceptive feedback. When we also provided visual error feedback, participants acquired the new walking pattern far more rapidly and showed accelerated restoration of the normal walking pattern during washout. However, when the visual error feedback was removed during either learning or washout, errors reappeared with performance immediately returning to the level expected based on proprioceptive learning alone. These findings support a model with two mechanisms: a dual-rate adaptation process that learns invariantly from sensory prediction error detected by proprioception and a visual-feedback-dependent process that monitors learning and corrects residual errors but shows no learning itself. We show that our voluntary correction model accurately predicted behavior in multiple situations where visual feedback was used to change acquisition of new walking patterns while the underlying learning was unaffected. The computational and behavioral framework proposed here suggests that parallel learning and error correction systems allow us to rapidly satisfy task demands without necessarily committing to learning, as the relative permanence of learning may be inappropriate or inefficient when facing environments that are liable to change. Copyright © 2016 Elsevier Ltd. All rights reserved.
An evaluation of computer assisted clinical classification algorithms.
Chute, C G; Yang, Y; Buntrock, J
1994-01-01
The Mayo Clinic has a long tradition of indexing patient records in high resolution and volume. Several algorithms have been developed which promise to help human coders in the classification process. We evaluate variations on code browsers and free text indexing systems with respect to their speed and error rates in our production environment. The more sophisticated indexing systems save measurable time in the coding process, but suffer from incompleteness which requires a back-up system or human verification. Expert Network does the best job of rank ordering clinical text, potentially enabling the creation of thresholds for the pass through of computer coded data without human review.
The influence of the structure and culture of medical group practices on prescription drug errors.
Kralewski, John E; Dowd, Bryan E; Heaton, Alan; Kaissi, Amer
2005-08-01
This project was designed to identify the magnitude of prescription drug errors in medical group practices and to explore the influence of the practice structure and culture on those error rates. Seventy-eight practices serving an upper Midwest managed care (Care Plus) plan during 2001 were included in the study. Using Care Plus claims data, prescription drug error rates were calculated at the enrollee level and then were aggregated to the group practice that each enrollee selected to provide and manage their care. Practice structure and culture data were obtained from surveys of the practices. Data were analyzed using multivariate regression. Both the culture and the structure of these group practices appear to influence prescription drug error rates. Seeing more patients per clinic hour, more prescriptions per patient, and being cared for in a rural clinic were all strongly associated with more errors. Conversely, having a case manager program is strongly related to fewer errors in all of our analyses. The culture of the practices clearly influences error rates, but the findings are mixed. Practices with cohesive cultures have lower error rates but, contrary to our hypothesis, cultures that value physician autonomy and individuality also have lower error rates than those with a more organizational orientation. Our study supports the contention that there are a substantial number of prescription drug errors in the ambulatory care sector. Even by the strictest definition, there were about 13 errors per 100 prescriptions for Care Plus patients in these group practices during 2001. Our study demonstrates that the structure of medical group practices influences prescription drug error rates. In some cases, this appears to be a direct relationship, such as the effects of having a case manager program on fewer drug errors, but in other cases the effect appears to be indirect through the improvement of drug prescribing practices. An important aspect of this study is that it provides insights into the relationships of the structure and culture of medical group practices and prescription drug errors and provides direction for future research. Research focused on the factors influencing the high error rates in rural areas and how the interaction of practice structural and cultural attributes influence error rates would add important insights into our findings. For medical practice directors, our data show that they should focus on patient care coordination to reduce errors.
Emergency department discharge prescription errors in an academic medical center
Belanger, April; Devine, Lauren T.; Lane, Aaron; Condren, Michelle E.
2017-01-01
This study described discharge prescription medication errors written for emergency department patients. This study used content analysis in a cross-sectional design to systematically categorize prescription errors found in a report of 1000 discharge prescriptions submitted in the electronic medical record in February 2015. Two pharmacy team members reviewed the discharge prescription list for errors. Open-ended data were coded by an additional rater for agreement on coding categories. Coding was based upon majority rule. Descriptive statistics were used to address the study objective. Categories evaluated were patient age, provider type, drug class, and type and time of error. The discharge prescription error rate out of 1000 prescriptions was 13.4%, with “incomplete or inadequate prescription” being the most commonly detected error (58.2%). The adult and pediatric error rates were 11.7% and 22.7%, respectively. The antibiotics reviewed had the highest number of errors. The highest within-class error rates were with antianginal medications, antiparasitic medications, antacids, appetite stimulants, and probiotics. Emergency medicine residents wrote the highest percentage of prescriptions (46.7%) and had an error rate of 9.2%. Residents of other specialties wrote 340 prescriptions and had an error rate of 20.9%. Errors occurred most often between 10:00 am and 6:00 pm. PMID:28405061
Rational integration of noisy evidence and prior semantic expectations in sentence interpretation.
Gibson, Edward; Bergen, Leon; Piantadosi, Steven T
2013-05-14
Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be "well designed"--in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian "size principle"; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel.
Error Rates in Users of Automatic Face Recognition Software
White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.
2015-01-01
In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631
Rational integration of noisy evidence and prior semantic expectations in sentence interpretation
Gibson, Edward; Bergen, Leon; Piantadosi, Steven T.
2013-01-01
Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be “well designed”–in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian “size principle”; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel. PMID:23637344
NASA Astrophysics Data System (ADS)
Usta, Metin; Tufan, Mustafa Çağatay
2017-11-01
The object of this work is to present the consequences for the stopping power and range values of some human tissues at energies ranging from 1 MeV to 1 GeV and 1-500 MeV, respectively. The considered human tissues are lung, intestine, skin, larynx, breast, bladder, prostate and ovary. In this work, the stopping power is calculated by considering the number of velocity-dependent effective charge and effective mean excitation energies of the target material. We used the Hartree-Fock-Roothaan (HFR) atomic wave function to determine the charge density and the continuous slowing down approximation (CSDA) method for the calculation of the proton range. Electronic stopping power values of tissues results have been compared with the ICRU 44, 46 reports, SRIM, Janni and CasP data over the percent error rate. Range values relate to tissues have compared the range results with the SRIM, FLUKA and Geant4 data. For electronic stopping power results, ICRU, SRIM and Janni's data indicated the best fit with our values at 1-50, 50-250 MeV and 250 MeV-1 GeV, respectively. For range results, the best accordance with the calculated values have been found the SRIM data and the error level is less than 10% in proton therapy. However, greater 30% errors were observed in the 250 MeV and over energies.
Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L
2017-01-01
Background Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. Objectives We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Methods Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Results Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Conclusions Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. PMID:27193033
Application of statistical machine translation to public health information: a feasibility study.
Kirchhoff, Katrin; Turner, Anne M; Axelrod, Amittai; Saavedra, Francisco
2011-01-01
Accurate, understandable public health information is important for ensuring the health of the nation. The large portion of the US population with Limited English Proficiency is best served by translations of public-health information into other languages. However, a large number of health departments and primary care clinics face significant barriers to fulfilling federal mandates to provide multilingual materials to Limited English Proficiency individuals. This article presents a pilot study on the feasibility of using freely available statistical machine translation technology to translate health promotion materials. The authors gathered health-promotion materials in English from local and national public-health websites. Spanish versions were created by translating the documents using a freely available machine-translation website. Translations were rated for adequacy and fluency, analyzed for errors, manually corrected by a human posteditor, and compared with exclusively manual translations. Machine translation plus postediting took 15-53 min per document, compared to the reported days or even weeks for the standard translation process. A blind comparison of machine-assisted and human translations of six documents revealed overall equivalency between machine-translated and manually translated materials. The analysis of translation errors indicated that the most important errors were word-sense errors. The results indicate that machine translation plus postediting may be an effective method of producing multilingual health materials with equivalent quality but lower cost compared to manual translations.
Application of statistical machine translation to public health information: a feasibility study
Turner, Anne M; Axelrod, Amittai; Saavedra, Francisco
2011-01-01
Objective Accurate, understandable public health information is important for ensuring the health of the nation. The large portion of the US population with Limited English Proficiency is best served by translations of public-health information into other languages. However, a large number of health departments and primary care clinics face significant barriers to fulfilling federal mandates to provide multilingual materials to Limited English Proficiency individuals. This article presents a pilot study on the feasibility of using freely available statistical machine translation technology to translate health promotion materials. Design The authors gathered health-promotion materials in English from local and national public-health websites. Spanish versions were created by translating the documents using a freely available machine-translation website. Translations were rated for adequacy and fluency, analyzed for errors, manually corrected by a human posteditor, and compared with exclusively manual translations. Results Machine translation plus postediting took 15–53 min per document, compared to the reported days or even weeks for the standard translation process. A blind comparison of machine-assisted and human translations of six documents revealed overall equivalency between machine-translated and manually translated materials. The analysis of translation errors indicated that the most important errors were word-sense errors. Conclusion The results indicate that machine translation plus postediting may be an effective method of producing multilingual health materials with equivalent quality but lower cost compared to manual translations. PMID:21498805
Human errors and measurement uncertainty
NASA Astrophysics Data System (ADS)
Kuselman, Ilya; Pennecchi, Francesca
2015-04-01
Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.
Zhang, Juanjuan; Collins, Steven H.
2017-01-01
This study uses theory and experiments to investigate the relationship between the passive stiffness of series elastic actuators and torque tracking performance in lower-limb exoskeletons during human walking. Through theoretical analysis with our simplified system model, we found that the optimal passive stiffness matches the slope of the desired torque-angle relationship. We also conjectured that a bandwidth limit resulted in a maximum rate of change in torque error that can be commanded through control input, which is fixed across desired and passive stiffness conditions. This led to hypotheses about the interactions among optimal control gains, passive stiffness and desired quasi-stiffness. Walking experiments were conducted with multiple angle-based desired torque curves. The observed lowest torque tracking errors identified for each combination of desired and passive stiffnesses were shown to be linearly proportional to the magnitude of the difference between the two stiffnesses. The proportional gains corresponding to the lowest observed errors were seen inversely proportional to passive stiffness values and to desired stiffness. These findings supported our hypotheses, and provide guidance to application-specific hardware customization as well as controller design for torque-controlled robotic legged locomotion. PMID:29326580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Kelly, R.T.; Quinn, M.L.
1995-05-01
Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices usedmore » in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.« less
DOT National Transportation Integrated Search
2001-02-01
The Human Factors Analysis and Classification System (HFACS) is a general human error framework : originally developed and tested within the U.S. military as a tool for investigating and analyzing the human : causes of aviation accidents. Based upon ...
Akce, Abdullah; Johnson, Miles; Dantsker, Or; Bretl, Timothy
2013-03-01
This paper presents an interface for navigating a mobile robot that moves at a fixed speed in a planar workspace, with noisy binary inputs that are obtained asynchronously at low bit-rates from a human user through an electroencephalograph (EEG). The approach is to construct an ordered symbolic language for smooth planar curves and to use these curves as desired paths for a mobile robot. The underlying problem is then to design a communication protocol by which the user can, with vanishing error probability, specify a string in this language using a sequence of inputs. Such a protocol, provided by tools from information theory, relies on a human user's ability to compare smooth curves, just like they can compare strings of text. We demonstrate our interface by performing experiments in which twenty subjects fly a simulated aircraft at a fixed speed and altitude with input only from EEG. Experimental results show that the majority of subjects are able to specify desired paths despite a wide range of errors made in decoding EEG signals.
Dispensing error rate after implementation of an automated pharmacy carousel system.
Oswald, Scott; Caldwell, Richard
2007-07-01
A study was conducted to determine filling and dispensing error rates before and after the implementation of an automated pharmacy carousel system (APCS). The study was conducted in a 613-bed acute and tertiary care university hospital. Before the implementation of the APCS, filling and dispensing rates were recorded during October through November 2004 and January 2005. Postimplementation data were collected during May through June 2006. Errors were recorded in three areas of pharmacy operations: first-dose or missing medication fill, automated dispensing cabinet fill, and interdepartmental request fill. A filling error was defined as an error caught by a pharmacist during the verification step. A dispensing error was defined as an error caught by a pharmacist observer after verification by the pharmacist. Before implementation of the APCS, 422 first-dose or missing medication orders were observed between October 2004 and January 2005. Independent data collected in December 2005, approximately six weeks after the introduction of the APCS, found that filling and error rates had increased. The filling rate for automated dispensing cabinets was associated with the largest decrease in errors. Filling and dispensing error rates had decreased by December 2005. In terms of interdepartmental request fill, no dispensing errors were noted in 123 clinic orders dispensed before the implementation of the APCS. One dispensing error out of 85 clinic orders was identified after implementation of the APCS. The implementation of an APCS at a university hospital decreased medication filling errors related to automated cabinets only and did not affect other filling and dispensing errors.
NASA Astrophysics Data System (ADS)
Yellen, H. W.
1983-03-01
Literature pertaining to Voice Recognition abounds with information relevant to the assessment of transitory speech recognition devices. In the past, engineering requirements have dictated the path this technology followed. But, other factors do exist that influence recognition accuracy. This thesis explores the impact of Human Factors on the successful recognition of speech, principally addressing the differences or variability among users. A Threshold Technology T-600 was used for a 100 utterance vocubalary to test 44 subjects. A statistical analysis was conducted on 5 generic categories of Human Factors: Occupational, Operational, Psychological, Physiological and Personal. How the equipment is trained and the experience level of the speaker were found to be key characteristics influencing recognition accuracy. To a lesser extent computer experience, time or week, accent, vital capacity and rate of air flow, speaker cooperativeness and anxiety were found to affect overall error rates.
Yang, Shu-Hui; Jerng, Jih-Shuin; Chen, Li-Chin; Li, Yu-Tsu; Huang, Hsiao-Fang; Wu, Chao-Ling; Chan, Jing-Yuan; Huang, Szu-Fen; Liang, Huey-Wen; Sun, Jui-Sheng
2017-11-03
Intra-hospital transportation (IHT) might compromise patient safety because of different care settings and higher demand on the human operation. Reports regarding the incidence of IHT-related patient safety events and human failures remain limited. To perform a retrospective analysis of IHT-related events, human failures and unsafe acts. A hospital-wide process for the IHT and database from the incident reporting system in a medical centre in Taiwan. All eligible IHT-related patient safety events between January 2010 to December 2015 were included. Incidence rate of IHT-related patient safety events, human failure modes, and types of unsafe acts. There were 206 patient safety events in 2 009 013 IHT sessions (102.5 per 1 000 000 sessions). Most events (n=148, 71.8%) did not involve patient harm, and process events (n=146, 70.9%) were most common. Events at the location of arrival (n=101, 49.0%) were most frequent; this location accounted for 61.0% and 44.2% of events with patient harm and those without harm, respectively (p<0.001). Of the events with human failures (n=186), the most common related process step was the preparation of the transportation team (n=91, 48.9%). Contributing unsafe acts included perceptual errors (n=14, 7.5%), decision errors (n=56, 30.1%), skill-based errors (n=48, 25.8%), and non-compliance (n=68, 36.6%). Multivariate analysis showed that human failure found in the arrival and hand-off sub-process (OR 4.84, p<0.001) was associated with increased patient harm, whereas the presence of omission (OR 0.12, p<0.001) was associated with less patient harm. This study shows a need to reduce human failures to prevent patient harm during intra-hospital transportation. We suggest that the transportation team pay specific attention to the sub-process at the location of arrival and prevent errors other than omissions. Long-term monitoring of IHT-related events is also warranted. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Pavone, Enea Francesco; Tieri, Gaetano; Rizza, Giulia; Tidoni, Emmanuele; Grisoni, Luigi; Aglioti, Salvatore Maria
2016-01-13
Brain monitoring of errors in one's own and other's actions is crucial for a variety of processes, ranging from the fine-tuning of motor skill learning to important social functions, such as reading out and anticipating the intentions of others. Here, we combined immersive virtual reality and EEG recording to explore whether embodying the errors of an avatar by seeing it from a first-person perspective may activate the error monitoring system in the brain of an onlooker. We asked healthy participants to observe, from a first- or third-person perspective, an avatar performing a correct or an incorrect reach-to-grasp movement toward one of two virtual mugs placed on a table. At the end of each trial, participants reported verbally how much they embodied the avatar's arm. Ratings were maximal in first-person perspective, indicating that immersive virtual reality can be a powerful tool to induce embodiment of an artificial agent, even through mere visual perception and in the absence of any cross-modal boosting. Observation of erroneous grasping from a first-person perspective enhanced error-related negativity and medial-frontal theta power in the trials where human onlookers embodied the virtual character, hinting at the tight link between early, automatic coding of error detection and sense of embodiment. Error positivity was similar in 1PP and 3PP, suggesting that conscious coding of errors is similar for self and other. Thus, embodiment plays an important role in activating specific components of the action monitoring system when others' errors are coded as if they are one's own errors. Detecting errors in other's actions is crucial for social functions, such as reading out and anticipating the intentions of others. Using immersive virtual reality and EEG recording, we explored how the brain of an onlooker reacted to the errors of an avatar seen from a first-person perspective. We found that mere observation of erroneous actions enhances electrocortical markers of error detection in the trials where human onlookers embodied the virtual character. Thus, the cerebral system for action monitoring is maximally activated when others' errors are coded as if they are one's own errors. The results have important implications for understanding how the brain can control the external world and thus creating new brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/360268-12$15.00/0.
Fritz, Jan; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.
2012-01-01
Purpose: To prospectively assess overlay technology in providing accurate and efficient targeting for magnetic resonance (MR) imaging–guided shoulder and hip joint arthrography. Materials and Methods: A prototype augmented reality image overlay system was used in conjunction with a clinical 1.5-T MR imager. A total of 24 shoulder joint and 24 hip joint injections were planned in 12 human cadavers. Two operators (A and B) participated, each performing procedures on different cadavers using image overlay guidance. MR imaging was used to confirm needle positions, monitor injections, and perform MR arthrography. Accuracy was assessed according to the rate of needle adjustment, target error, and whether the injection was intraarticular. Efficiency was assessed according to arthrography procedural time. Operator differences were assessed with comparison of accuracy and procedure times between the operators. Mann-Whitney U test and Fisher exact test were used to assess group differences. Results: Forty-five arthrography procedures (23 shoulders, 22 hips) were performed. Three joints had prostheses and were excluded. Operator A performed 12 shoulder and 12 hip injections. Operator B performed 11 shoulder and 10 hip injections. Needle adjustment rate was 13% (six of 45; one for operator A and five for operator B). Target error was 3.1 mm ± 1.2 (standard deviation) (operator A, 2.9 mm ± 1.4; operator B, 3.5 mm ± 0.9). Intraarticular injection rate was 100% (45 of 45). The average arthrography time was 14 minutes (range, 6–27 minutes; 12 minutes [range, 6–25 minutes] for operator A and 16 minutes [range, 6–27 min] for operator B). Operator differences were not significant with regard to needle adjustment rate (P = .08), target error (P = .07), intraarticular injection rate (P > .99), and arthrography time (P = .22). Conclusion: Image overlay technology provides accurate and efficient MR guidance for successful shoulder and hip arthrography in human cadavers. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112640/-/DC1 PMID:22843764
Toward a Natural Speech Understanding System
1989-10-01
WALTER J. SENUS Technical Director Directorate of Intelligence & Reconnaissance FOR THE COMMANDER JAMES W. HYDE III V Directorate of Plans & Programs ...applicable) Human Resources Laboratory F30602-81-C-0193 8 . ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK...error rates for distinctive words produced in isolation by a single speaker, and their simple programming requirements. Template-matching systems rank
Dufresne, Jaimie; Florentinus-Mefailoski, Angelique; Ajambo, Juliet; Ferwa, Ammara; Bowden, Peter; Marshall, John
2017-01-01
Normal human EDTA plasma samples were collected on ice, processed ice cold, and stored in a freezer at - 80 °C prior to experiments. Plasma test samples from the - 80 °C freezer were thawed on ice or intentionally warmed to room temperature. Protein content was measured by CBBR binding and the release of alcohol soluble amines by the Cd ninhydrin assay. Plasma peptides released over time were collected over C18 for random and independent sampling by liquid chromatography micro electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) and correlated with X!TANDEM. Fully tryptic peptides by X!TANDEM returned a similar set of proteins, but was more computationally efficient, than "no enzyme" correlations. Plasma samples maintained on ice, or ice with a cocktail of protease inhibitors, showed lower background amounts of plasma peptides compared to samples incubated at room temperature. Regression analysis indicated that warming plasma to room temperature, versus ice cold, resulted in a ~ twofold increase in the frequency of peptide identification over hours-days of incubation at room temperature. The type I error rate of the protein identification from the X!TANDEM algorithm combined was estimated to be low compared to a null model of computer generated random MS/MS spectra. The peptides of human plasma were identified and quantified with low error rates by random and independent sampling that revealed 1000s of peptides from hundreds of human plasma proteins from endogenous tryptic peptides.
Corrections of clinical chemistry test results in a laboratory information system.
Wang, Sihe; Ho, Virginia
2004-08-01
The recently released reports by the Institute of Medicine, To Err Is Human and Patient Safety, have received national attention because of their focus on the problem of medical errors. Although a small number of studies have reported on errors in general clinical laboratories, there are, to our knowledge, no reported studies that focus on errors in pediatric clinical laboratory testing. To characterize the errors that have caused corrections to have to be made in pediatric clinical chemistry results in the laboratory information system, Misys. To provide initial data on the errors detected in pediatric clinical chemistry laboratories in order to improve patient safety in pediatric health care. All clinical chemistry staff members were informed of the study and were requested to report in writing when a correction was made in the laboratory information system, Misys. Errors were detected either by the clinicians (the results did not fit the patients' clinical conditions) or by the laboratory technologists (the results were double-checked, and the worksheets were carefully examined twice a day). No incident that was discovered before or during the final validation was included. On each Monday of the study, we generated a report from Misys that listed all of the corrections made during the previous week. We then categorized the corrections according to the types and stages of the incidents that led to the corrections. A total of 187 incidents were detected during the 10-month study, representing a 0.26% error detection rate per requisition. The distribution of the detected incidents included 31 (17%) preanalytic incidents, 46 (25%) analytic incidents, and 110 (59%) postanalytic incidents. The errors related to noninterfaced tests accounted for 50% of the total incidents and for 37% of the affected tests and orderable panels, while the noninterfaced tests and panels accounted for 17% of the total test volume in our laboratory. This pilot study provided the rate and categories of errors detected in a pediatric clinical chemistry laboratory based on the corrections of results in the laboratory information system. A direct interface of the instruments to the laboratory information system showed that it had favorable effects on reducing laboratory errors.
Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems
NASA Astrophysics Data System (ADS)
El-Ghandour, Osama M.; Saha, Debabrata
1991-05-01
A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.
Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes
NASA Astrophysics Data System (ADS)
Jing, Lin; Brun, Todd; Quantum Research Team
Quasi-cyclic LDPC codes can approach the Shannon capacity and have efficient decoders. Manabu Hagiwara et al., 2007 presented a method to calculate parity check matrices with high girth. Two distinct, orthogonal matrices Hc and Hd are used. Using submatrices obtained from Hc and Hd by deleting rows, we can alter the code rate. The submatrix of Hc is used to correct Pauli X errors, and the submatrix of Hd to correct Pauli Z errors. We simulated this system for depolarizing noise on USC's High Performance Computing Cluster, and obtained the block error rate (BER) as a function of the error weight and code rate. From the rates of uncorrectable errors under different error weights we can extrapolate the BER to any small error probability. Our results show that this code family can perform reasonably well even at high code rates, thus considerably reducing the overhead compared to concatenated and surface codes. This makes these codes promising as storage blocks in fault-tolerant quantum computation. Error Correction using Quantum Quasi-Cyclic Low-Density Parity-Check(LDPC) Codes.
Non-invasive heart rate monitoring system using giant magneto resistance sensor.
Kalyan, Kubera; Chugh, Vinit Kumar; Anoop, C S
2016-08-01
A simple heart rate (HR) monitoring system designed and developed using the Giant Magneto-Resistance (GMR) sensor is presented in this paper. The GMR sensor is placed on the wrist of the human and it provides the magneto-plethysmographic signal. This signal is processed by the simple analog and digital instrumentation stages to render the heart rate indication. A prototype of the system has been built and test results on 26 volunteers have been reported. The error in HR estimation of the system is merely 1 beat per minute. The performance of the system when layer of cloth is present between the sensor and the human body is investigated. The capability of the system as a HR variability estimator has also been established through experimentation. The proposed technique can be used as an efficient alternative to conventional HR monitors and is well suited for remote and continuous monitoring of HR.
Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning
Griffiths, Oren; Holmes, Nathan; Westbrook, R. Fred
2017-01-01
Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereby manipulating outcome expectancy and, in the absence of any change in reinforcement, prediction error. These prediction error manipulations have each been shown to modulate extinction learning in aversive conditioning studies. While both manipulations resulted in increased prediction error during training, neither enhanced extinction in the present human learning task (one manipulation resulted in less extinction at test). The results are discussed with reference to the types of associations that are regulated by prediction error, the types of error terms involved in their regulation, and how these interact with parameters involved in training. PMID:28232809
Garvey, Katharine C.; Kesselheim, Jennifer C.; Herrick, Daniel B.; Woolf, Alan D.; Leichtner, Alan M.
2014-01-01
The deterioration of humanism and professionalism during graduate medical training is an acknowledged concern, and programs are required to provide professionalism education for pediatric fellows. We conducted a needs assessment survey in a national sample of 138 first- and second-year gastroenterology fellows (82% response rate). Most believed that present humanism and professionalism education met their needs, but this education was largely informal (eg, role modeling). Areas for formal education desired by >70% included competing demands of clinical practice versus research, difficult doctor–patient relationships, depression/burnout, angry parents, medical errors, work–life balance, and the patient illness experience. These results may guide curricula to formalize humanism and professionalism education in pediatric gastroenterology fellowships. PMID:23863327
Garvey, Katharine C; Kesselheim, Jennifer C; Herrick, Daniel B; Woolf, Alan D; Leichtner, Alan M
2014-01-01
The deterioration of humanism and professionalism during graduate medical training is an acknowledged concern, and programs are required to provide professionalism education for pediatric fellows. We conducted a needs assessment survey in a national sample of 138 first- and second-year gastroenterology fellows (82% response rate). Most believed that present humanism and professionalism education met their needs, but this education was largely informal (eg, role modeling). Areas for formal education desired by >70% included competing demands of clinical practice versus research, difficult doctor-patient relationships, depression/burnout, angry parents, medical errors, work-life balance, and the patient illness experience. These results may guide curricula to formalize humanism and professionalism education in pediatric gastroenterology fellowships.
Uy, Raymonde Charles Y; Kury, Fabricio P; Fontelo, Paul A
2015-01-01
The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions.
An automated microphysiological assay for toxicity evaluation.
Eggert, S; Alexander, F A; Wiest, J
2015-08-01
Screening a newly developed drug, food additive or cosmetic ingredient for toxicity is a critical preliminary step before it can move forward in the development pipeline. Due to the sometimes dire consequences when a harmful agent is overlooked, toxicologists work under strict guidelines to effectively catalogue and classify new chemical agents. Conventional assays involve long experimental hours and many manual steps that increase the probability of user error; errors that can potentially manifest as inaccurate toxicology results. Automated assays can overcome many potential mistakes that arise due to human error. In the presented work, we created and validated a novel, automated platform for a microphysiological assay that can examine cellular attributes with sensors measuring changes in cellular metabolic rate, oxygen consumption, and vitality mediated by exposure to a potentially toxic agent. The system was validated with low buffer culture medium with varied conductivities that caused changes in the measured impedance on integrated impedance electrodes.
Sandford, II, Maxwell T.; Handel, Theodore G.; Ettinger, J. Mark
1999-01-01
A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.
Challenges of primate embryonic stem cell research.
Bavister, Barry D; Wolf, Don P; Brenner, Carol A
2005-01-01
Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases.
Executive Council lists and general practitioner files
Farmer, R. D. T.; Knox, E. G.; Cross, K. W.; Crombie, D. L.
1974-01-01
An investigation of the accuracy of general practitioner and Executive Council files was approached by a comparison of the two. High error rates were found, including both file errors and record errors. On analysis it emerged that file error rates could not be satisfactorily expressed except in a time-dimensioned way, and we were unable to do this within the context of our study. Record error rates and field error rates were expressible as proportions of the number of records on both the lists; 79·2% of all records exhibited non-congruencies and particular information fields had error rates ranging from 0·8% (assignation of sex) to 68·6% (assignation of civil state). Many of the errors, both field errors and record errors, were attributable to delayed updating of mutable information. It is concluded that the simple transfer of Executive Council lists to a computer filing system would not solve all the inaccuracies and would not in itself permit Executive Council registers to be used for any health care applications requiring high accuracy. For this it would be necessary to design and implement a purpose designed health care record system which would include, rather than depend upon, the general practitioner remuneration system. PMID:4816588
Westbrook, Johanna I.; Li, Ling; Lehnbom, Elin C.; Baysari, Melissa T.; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O.
2015-01-01
Objectives To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Design Audit of 3291patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as ‘clinically important’. Setting Two major academic teaching hospitals in Sydney, Australia. Main Outcome Measures Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. Results A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6–1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0–253.8), but only 13.0/1000 (95% CI: 3.4–22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4–28.4%) contained ≥1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Conclusions Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. PMID:25583702
Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi
2013-12-01
Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model simulation.
Kim, Jun Sik; Jeong, Byung Yong
2018-05-03
The study aimed to describe the characteristics of occupational injuries of female workers in the residential healthcare facilities for the elderly, and analyze human errors as causes of accidents. From the national industrial accident compensation data, 506 female injuries were analyzed by age and occupation. The results showed that medical service worker was the most prevalent (54.1%), followed by social welfare worker (20.4%). Among injuries, 55.7% were <1 year of work experience, and 37.9% were ≥60 years old. Slips/falls were the most common type of accident (42.7%), and proportion of injured by slips/falls increases with age. Among human errors, action errors were the primary reasons, followed by perception errors, and cognition errors. Besides, the ratios of injuries by perception errors and action errors increase with age, respectively. The findings of this study suggest that there is a need to design workplaces that accommodate the characteristics of older female workers.
Factors associated with aberrant imprint methylation and oligozoospermia
Kobayashi, Norio; Miyauchi, Naoko; Tatsuta, Nozomi; Kitamura, Akane; Okae, Hiroaki; Hiura, Hitoshi; Sato, Akiko; Utsunomiya, Takafumi; Yaegashi, Nobuo; Nakai, Kunihiko; Arima, Takahiro
2017-01-01
Disturbingly, the number of patients with oligozoospermia (low sperm count) has been gradually increasing in industrialized countries. Epigenetic alterations are believed to be involved in this condition. Recent studies have clarified that intrinsic and extrinsic factors can induce epigenetic transgenerational phenotypes through apparent reprogramming of the male germ line. Here we examined DNA methylation levels of 22 human imprinted loci in a total of 221 purified sperm samples from infertile couples and found methylation alterations in 24.8% of the patients. Structural equation model suggested that the cause of imprint methylation errors in sperm might have been environmental factors. More specifically, aberrant methylation and a particular lifestyle (current smoking, excess consumption of carbonated drinks) were associated with severe oligozoospermia, while aging probably affected this pathology indirectly through the accumulation of PCB in the patients. Next we examined the pregnancy outcomes for patients when the sperm had abnormal imprint methylation. The live-birth rate decreased and the miscarriage rate increased with the methylation errors. Our research will be useful for the prevention of methylation errors in sperm from infertile men, and sperm with normal imprint methylation might increase the safety of assisted reproduction technology (ART) by reducing methylation-induced diseases of children conceived via ART. PMID:28186187
[Risk and risk management in aviation].
Müller, Manfred
2004-10-01
RISK MANAGEMENT: The large proportion of human errors in aviation accidents suggested the solution--at first sight brilliant--to replace the fallible human being by an "infallible" digitally-operating computer. However, even after the introduction of the so-called HITEC-airplanes, the factor human error still accounts for 75% of all accidents. Thus, if the computer is ruled out as the ultimate safety system, how else can complex operations involving quick and difficult decisions be controlled? OPTIMIZED TEAM INTERACTION/PARALLEL CONNECTION OF THOUGHT MACHINES: Since a single person is always "highly error-prone", support and control have to be guaranteed by a second person. The independent work of mind results in a safety network that more efficiently cushions human errors. NON-PUNITIVE ERROR MANAGEMENT: To be able to tackle the actual problems, the open discussion of intervened errors must not be endangered by the threat of punishment. It has been shown in the past that progress is primarily achieved by investigating and following up mistakes, failures and catastrophes shortly after they happened. HUMAN FACTOR RESEARCH PROJECT: A comprehensive survey showed the following result: By far the most frequent safety-critical situation (37.8% of all events) consists of the following combination of risk factors: 1. A complication develops. 2. In this situation of increased stress a human error occurs. 3. The negative effects of the error cannot be corrected or eased because there are deficiencies in team interaction on the flight deck. This means, for example, that a negative social climate has the effect of a "turbocharger" when a human error occurs. It needs to be pointed out that a negative social climate is not identical with a dispute. In many cases the working climate is burdened without the responsible person even noticing it: A first negative impression, too much or too little respect, contempt, misunderstandings, not expressing unclear concern, etc. can considerably reduce the efficiency of a team.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herberger, Sarah M.; Boring, Ronald L.
Abstract Objectives: This paper discusses the differences between classical human reliability analysis (HRA) dependence and the full spectrum of probabilistic dependence. Positive influence suggests an error increases the likelihood of subsequent errors or success increases the likelihood of subsequent success. Currently the typical method for dependence in HRA implements the Technique for Human Error Rate Prediction (THERP) positive dependence equations. This assumes that the dependence between two human failure events varies at discrete levels between zero and complete dependence (as defined by THERP). Dependence in THERP does not consistently span dependence values between 0 and 1. In contrast, probabilistic dependencemore » employs Bayes Law, and addresses a continuous range of dependence. Methods: Using the laws of probability, complete dependence and maximum positive dependence do not always agree. Maximum dependence is when two events overlap to their fullest amount. Maximum negative dependence is the smallest amount that two events can overlap. When the minimum probability of two events overlapping is less than independence, negative dependence occurs. For example, negative dependence is when an operator fails to actuate Pump A, thereby increasing his or her chance of actuating Pump B. The initial error actually increases the chance of subsequent success. Results: Comparing THERP and probability theory yields different results in certain scenarios; with the latter addressing negative dependence. Given that most human failure events are rare, the minimum overlap is typically 0. And when the second event is smaller than the first event the max dependence is less than 1, as defined by Bayes Law. As such alternative dependence equations are provided along with a look-up table defining the maximum and maximum negative dependence given the probability of two events. Conclusions: THERP dependence has been used ubiquitously for decades, and has provided approximations of the dependencies between two events. Since its inception, computational abilities have increased exponentially, and alternative approaches that follow the laws of probability dependence need to be implemented. These new approaches need to consider negative dependence and identify when THERP output is not appropriate.« less
Competition between learned reward and error outcome predictions in anterior cingulate cortex.
Alexander, William H; Brown, Joshua W
2010-02-15
The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.
Schroeder, Scott R; Salomon, Meghan M; Galanter, William L; Schiff, Gordon D; Vaida, Allen J; Gaunt, Michael J; Bryson, Michelle L; Rash, Christine; Falck, Suzanne; Lambert, Bruce L
2017-05-01
Drug name confusion is a common type of medication error and a persistent threat to patient safety. In the USA, roughly one per thousand prescriptions results in the wrong drug being filled, and most of these errors involve drug names that look or sound alike. Prior to approval, drug names undergo a variety of tests to assess their potential for confusability, but none of these preapproval tests has been shown to predict real-world error rates. We conducted a study to assess the association between error rates in laboratory-based tests of drug name memory and perception and real-world drug name confusion error rates. Eighty participants, comprising doctors, nurses, pharmacists, technicians and lay people, completed a battery of laboratory tests assessing visual perception, auditory perception and short-term memory of look-alike and sound-alike drug name pairs (eg, hydroxyzine/hydralazine). Laboratory test error rates (and other metrics) significantly predicted real-world error rates obtained from a large, outpatient pharmacy chain, with the best-fitting model accounting for 37% of the variance in real-world error rates. Cross-validation analyses confirmed these results, showing that the laboratory tests also predicted errors from a second pharmacy chain, with 45% of the variance being explained by the laboratory test data. Across two distinct pharmacy chains, there is a strong and significant association between drug name confusion error rates observed in the real world and those observed in laboratory-based tests of memory and perception. Regulators and drug companies seeking a validated preapproval method for identifying confusing drug names ought to consider using these simple tests. By using a standard battery of memory and perception tests, it should be possible to reduce the number of confusing look-alike and sound-alike drug name pairs that reach the market, which will help protect patients from potentially harmful medication errors. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Rong, Hao; Tian, Jin; Zhao, Tingdi
2016-01-01
In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred
2015-01-01
Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.
Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree
NASA Astrophysics Data System (ADS)
Zheng, Amin; Cheung, Gene; Florencio, Dinei
2018-07-01
With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.
A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring
Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B.; Kaya, Tolga
2018-01-01
There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm2, with an average error in accuracy of 18% compared to manual sweat rate readings. PMID:29439398
Classification based upon gene expression data: bias and precision of error rates.
Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L
2007-06-01
Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp
Do Errors on Classroom Reading Tasks Slow Growth in Reading? Technical Report No. 404.
ERIC Educational Resources Information Center
Anderson, Richard C.; And Others
A pervasive finding from research on teaching and classroom learning is that a low rate of error on classroom tasks is associated with large year to year gains in achievement, particularly for reading in the primary grades. The finding of a negative relationship between error rate, especially rate of oral reading errors, and gains in reading…
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. J. Galyean; A. M. Whaley; D. L. Kelly
This guide provides step-by-step guidance on the use of the SPAR-H method for quantifying Human Failure Events (HFEs). This guide is intended to be used with the worksheets provided in: 'The SPAR-H Human Reliability Analysis Method,' NUREG/CR-6883, dated August 2005. Each step in the process of producing a Human Error Probability (HEP) is discussed. These steps are: Step-1, Categorizing the HFE as Diagnosis and/or Action; Step-2, Rate the Performance Shaping Factors; Step-3, Calculate PSF-Modified HEP; Step-4, Accounting for Dependence, and; Step-5, Minimum Value Cutoff. The discussions on dependence are extensive and include an appendix that describes insights obtained from themore » psychology literature.« less
Estimating genotype error rates from high-coverage next-generation sequence data.
Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil
2014-11-01
Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.
Fröberg, Åsa; Mårtensson, Mattias; Larsson, Matilda; Janerot-Sjöberg, Birgitta; D'Hooge, Jan; Arndt, Anton
2016-10-01
Ultrasound speckle tracking offers a non-invasive way of studying strain in the free Achilles tendon where no anatomical landmarks are available for tracking. This provides new possibilities for studying injury mechanisms during sport activity and the effects of shoes, orthotic devices, and rehabilitation protocols on tendon biomechanics. To investigate the feasibility of using a commercial ultrasound speckle tracking algorithm for assessing strain in tendon tissue. A polyvinyl alcohol (PVA) phantom, three porcine tendons, and a human Achilles tendon were mounted in a materials testing machine and loaded to 4% peak strain. Ultrasound long-axis cine-loops of the samples were recorded. Speckle tracking analysis of axial strain was performed using a commercial speckle tracking software. Estimated strain was then compared to reference strain known from the materials testing machine. Two frame rates and two region of interest (ROI) sizes were evaluated. Best agreement between estimated strain and reference strain was found in the PVA phantom (absolute error in peak strain: 0.21 ± 0.08%). The absolute error in peak strain varied between 0.72 ± 0.65% and 10.64 ± 3.40% in the different tendon samples. Strain determined with a frame rate of 39.4 Hz had lower errors than 78.6 Hz as was the case with a 22 mm compared to an 11 mm ROI. Errors in peak strain estimation showed high variability between tendon samples and were large in relation to strain levels previously described in the Achilles tendon. © The Foundation Acta Radiologica 2016.
Wiegmann, D A; Shappell, S A
2001-11-01
The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based on Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. The purpose of the present study was to assess the utility of the HFACS framework as an error analysis and classification tool outside the military. The HFACS framework was used to analyze human error data associated with aircrew-related commercial aviation accidents that occurred between January 1990 and December 1996 using database records maintained by the NTSB and the FAA. Investigators were able to reliably accommodate all the human causal factors associated with the commercial aviation accidents examined in this study using the HFACS system. In addition, the classification of data using HFACS highlighted several critical safety issues in need of intervention research. These results demonstrate that the HFACS framework can be a viable tool for use within the civil aviation arena. However, additional research is needed to examine its applicability to areas outside the flight deck, such as aircraft maintenance and air traffic control domains.
Speech Errors across the Lifespan
ERIC Educational Resources Information Center
Vousden, Janet I.; Maylor, Elizabeth A.
2006-01-01
Dell, Burger, and Svec (1997) proposed that the proportion of speech errors classified as anticipations (e.g., "moot and mouth") can be predicted solely from the overall error rate, such that the greater the error rate, the lower the anticipatory proportion (AP) of errors. We report a study examining whether this effect applies to changes in error…
To Err Is Human; To Structurally Prime from Errors Is Also Human
ERIC Educational Resources Information Center
Slevc, L. Robert; Ferreira, Victor S.
2013-01-01
Natural language contains disfluencies and errors. Do listeners simply discard information that was clearly produced in error, or can erroneous material persist to affect subsequent processing? Two experiments explored this question using a structural priming paradigm. Speakers described dative-eliciting pictures after hearing prime sentences that…
Human factors analysis and classification system-HFACS.
DOT National Transportation Integrated Search
2000-02-01
Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident : reporting systems are not designed around any theoretical framework of human error. As a result, most : accident databases are not conduci...
Computer calculated dose in paediatric prescribing.
Kirk, Richard C; Li-Meng Goh, Denise; Packia, Jeya; Min Kam, Huey; Ong, Benjamin K C
2005-01-01
Medication errors are an important cause of hospital-based morbidity and mortality. However, only a few medication error studies have been conducted in children. These have mainly quantified errors in the inpatient setting; there is very little data available on paediatric outpatient and emergency department medication errors and none on discharge medication. This deficiency is of concern because medication errors are more common in children and it has been suggested that the risk of an adverse drug event as a consequence of a medication error is higher in children than in adults. The aims of this study were to assess the rate of medication errors in predominantly ambulatory paediatric patients and the effect of computer calculated doses on medication error rates of two commonly prescribed drugs. This was a prospective cohort study performed in a paediatric unit in a university teaching hospital between March 2003 and August 2003. The hospital's existing computer clinical decision support system was modified so that doctors could choose the traditional prescription method or the enhanced method of computer calculated dose when prescribing paracetamol (acetaminophen) or promethazine. All prescriptions issued to children (<16 years of age) at the outpatient clinic, emergency department and at discharge from the inpatient service were analysed. A medication error was defined as to have occurred if there was an underdose (below the agreed value), an overdose (above the agreed value), no frequency of administration specified, no dose given or excessive total daily dose. The medication error rates and the factors influencing medication error rates were determined using SPSS version 12. From March to August 2003, 4281 prescriptions were issued. Seven prescriptions (0.16%) were excluded, hence 4274 prescriptions were analysed. Most prescriptions were issued by paediatricians (including neonatologists and paediatric surgeons) and/or junior doctors. The error rate in the children's emergency department was 15.7%, for outpatients was 21.5% and for discharge medication was 23.6%. Most errors were the result of an underdose (64%; 536/833). The computer calculated dose error rate was 12.6% compared with the traditional prescription error rate of 28.2%. Logistical regression analysis showed that computer calculated dose was an important and independent variable influencing the error rate (adjusted relative risk = 0.436, 95% CI 0.336, 0.520, p < 0.001). Other important independent variables were seniority and paediatric training of the person prescribing and the type of drug prescribed. Medication error, especially underdose, is common in outpatient, emergency department and discharge prescriptions. Computer calculated doses can significantly reduce errors, but other risk factors have to be concurrently addressed to achieve maximum benefit.
Őri, Zsolt P
2017-05-01
A mathematical model has been developed to facilitate indirect measurements of difficult to measure variables of the human energy metabolism on a daily basis. The model performs recursive system identification of the parameters of the metabolic model of the human energy metabolism using the law of conservation of energy and principle of indirect calorimetry. Self-adaptive models of the utilized energy intake prediction, macronutrient oxidation rates, and daily body composition changes were created utilizing Kalman filter and the nominal trajectory methods. The accuracy of the models was tested in a simulation study utilizing data from the Minnesota starvation and overfeeding study. With biweekly macronutrient intake measurements, the average prediction error of the utilized carbohydrate intake was -23.2 ± 53.8 kcal/day, fat intake was 11.0 ± 72.3 kcal/day, and protein was 3.7 ± 16.3 kcal/day. The fat and fat-free mass changes were estimated with an error of 0.44 ± 1.16 g/day for fat and -2.6 ± 64.98 g/day for fat-free mass. The daily metabolized macronutrient energy intake and/or daily macronutrient oxidation rate and the daily body composition change from directly measured serial data are optimally predicted with a self-adaptive model with Kalman filter that uses recursive system identification.
Angular rate optimal design for the rotary strapdown inertial navigation system.
Yu, Fei; Sun, Qian
2014-04-22
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.
Bulik, Catharine C.; Fauntleroy, Kathy A.; Jenkins, Stephen G.; Abuali, Mayssa; LaBombardi, Vincent J.; Nicolau, David P.; Kuti, Joseph L.
2010-01-01
We describe the levels of agreement between broth microdilution, Etest, Vitek 2, Sensititre, and MicroScan methods to accurately define the meropenem MIC and categorical interpretation of susceptibility against carbapenemase-producing Klebsiella pneumoniae (KPC). A total of 46 clinical K. pneumoniae isolates with KPC genotypes, all modified Hodge test and blaKPC positive, collected from two hospitals in NY were included. Results obtained by each method were compared with those from broth microdilution (the reference method), and agreement was assessed based on MICs and Clinical Laboratory Standards Institute (CLSI) interpretative criteria using 2010 susceptibility breakpoints. Based on broth microdilution, 0%, 2.2%, and 97.8% of the KPC isolates were classified as susceptible, intermediate, and resistant to meropenem, respectively. Results from MicroScan demonstrated the most agreement with those from broth microdilution, with 95.6% agreement based on the MIC and 2.2% classified as minor errors, and no major or very major errors. Etest demonstrated 82.6% agreement with broth microdilution MICs, a very major error rate of 2.2%, and a minor error rate of 2.2%. Vitek 2 MIC agreement was 30.4%, with a 23.9% very major error rate and a 39.1% minor error rate. Sensititre demonstrated MIC agreement for 26.1% of isolates, with a 3% very major error rate and a 26.1% minor error rate. Application of FDA breakpoints had little effect on minor error rates but increased very major error rates to 58.7% for Vitek 2 and Sensititre. Meropenem MIC results and categorical interpretations for carbapenemase-producing K. pneumoniae differ by methodology. Confirmation of testing results is encouraged when an accurate MIC is required for antibiotic dosing optimization. PMID:20484603
Technical approaches for measurement of human errors
NASA Technical Reports Server (NTRS)
Clement, W. F.; Heffley, R. K.; Jewell, W. F.; Mcruer, D. T.
1980-01-01
Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations.
Kim, Myoung-Soo; Kim, Jung-Soon; Jung, In Sook; Kim, Young Hae; Kim, Ho Jung
2007-03-01
The purpose of this study was to develop and evaluate an error reporting promoting program(ERPP) to systematically reduce the incidence rate of nursing errors in operating room. A non-equivalent control group non-synchronized design was used. Twenty-six operating room nurses who were in one university hospital in Busan participated in this study. They were stratified into four groups according to their operating room experience and were allocated to the experimental and control groups using a matching method. Mann-Whitney U Test was used to analyze the differences pre and post incidence rates of nursing errors between the two groups. The incidence rate of nursing errors decreased significantly in the experimental group compared to the pre-test score from 28.4% to 15.7%. The incidence rate by domains, it decreased significantly in the 3 domains-"compliance of aseptic technique", "management of document", "environmental management" in the experimental group while it decreased in the control group which was applied ordinary error-reporting method. Error-reporting system can make possible to hold the errors in common and to learn from them. ERPP was effective to reduce the errors of recognition-related nursing activities. For the wake of more effective error-prevention, we will be better to apply effort of risk management along the whole health care system with this program.
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection
Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-01-01
Background The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. Objective We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term “validation relaxation.” Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. Methods We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of “required” constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. Results The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. Conclusions A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. PMID:28821474
Validation Relaxation: A Quality Assurance Strategy for Electronic Data Collection.
Kenny, Avi; Gordon, Nicholas; Griffiths, Thomas; Kraemer, John D; Siedner, Mark J
2017-08-18
The use of mobile devices for data collection in developing world settings is becoming increasingly common and may offer advantages in data collection quality and efficiency relative to paper-based methods. However, mobile data collection systems can hamper many standard quality assurance techniques due to the lack of a hardcopy backup of data. Consequently, mobile health data collection platforms have the potential to generate datasets that appear valid, but are susceptible to unidentified database design flaws, areas of miscomprehension by enumerators, and data recording errors. We describe the design and evaluation of a strategy for estimating data error rates and assessing enumerator performance during electronic data collection, which we term "validation relaxation." Validation relaxation involves the intentional omission of data validation features for select questions to allow for data recording errors to be committed, detected, and monitored. We analyzed data collected during a cluster sample population survey in rural Liberia using an electronic data collection system (Open Data Kit). We first developed a classification scheme for types of detectable errors and validation alterations required to detect them. We then implemented the following validation relaxation techniques to enable data error conduct and detection: intentional redundancy, removal of "required" constraint, and illogical response combinations. This allowed for up to 11 identifiable errors to be made per survey. The error rate was defined as the total number of errors committed divided by the number of potential errors. We summarized crude error rates and estimated changes in error rates over time for both individuals and the entire program using logistic regression. The aggregate error rate was 1.60% (125/7817). Error rates did not differ significantly between enumerators (P=.51), but decreased for the cohort with increasing days of application use, from 2.3% at survey start (95% CI 1.8%-2.8%) to 0.6% at day 45 (95% CI 0.3%-0.9%; OR=0.969; P<.001). The highest error rate (84/618, 13.6%) occurred for an intentional redundancy question for a birthdate field, which was repeated in separate sections of the survey. We found low error rates (0.0% to 3.1%) for all other possible errors. A strategy of removing validation rules on electronic data capture platforms can be used to create a set of detectable data errors, which can subsequently be used to assess group and individual enumerator error rates, their trends over time, and categories of data collection that require further training or additional quality control measures. This strategy may be particularly useful for identifying individual enumerators or systematic data errors that are responsive to enumerator training and is best applied to questions for which errors cannot be prevented through training or software design alone. Validation relaxation should be considered as a component of a holistic data quality assurance strategy. ©Avi Kenny, Nicholas Gordon, Thomas Griffiths, John D Kraemer, Mark J Siedner. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.08.2017.
Interobserver Reliability of the Total Body Score System for Quantifying Human Decomposition.
Dabbs, Gretchen R; Connor, Melissa; Bytheway, Joan A
2016-03-01
Several authors have tested the accuracy of the Total Body Score (TBS) method for quantifying decomposition, but none have examined the reliability of the method as a scoring system by testing interobserver error rates. Sixteen participants used the TBS system to score 59 observation packets including photographs and written descriptions of 13 human cadavers in different stages of decomposition (postmortem interval: 2-186 days). Data analysis used a two-way random model intraclass correlation in SPSS (v. 17.0). The TBS method showed "almost perfect" agreement between observers, with average absolute correlation coefficients of 0.990 and average consistency correlation coefficients of 0.991. While the TBS method may have sources of error, scoring reliability is not one of them. Individual component scores were examined, and the influences of education and experience levels were investigated. Overall, the trunk component scores were the least concordant. Suggestions are made to improve the reliability of the TBS method. © 2016 American Academy of Forensic Sciences.
Officer Career Development: Reactions of Two Unrestricted Line Communities to Detailers
1987-08-01
self - esteem scale ( Rosenberg , 1979) (Cronbach alpha = .82). Evaluation of Job History (Box 2)^ 1. "What is your evaluation of the following...rating scales , which are vulnerable to "leniency error" (Kerlinger, 1965 ). That is, constituents may have evaluated detailers more favorably than they...communication in bargaining. Human Communication Research, 8^, 262-280. Rosenberg , M. (1979). Conceiving the self . New York: Basic Books. Turnbull, A. A
Brain-to-text: decoding spoken phrases from phone representations in the brain.
Herff, Christian; Heger, Dominic; de Pesters, Adriana; Telaar, Dominic; Brunner, Peter; Schalk, Gerwin; Schultz, Tanja
2015-01-01
It has long been speculated whether communication between humans and machines based on natural speech related cortical activity is possible. Over the past decade, studies have suggested that it is feasible to recognize isolated aspects of speech from neural signals, such as auditory features, phones or one of a few isolated words. However, until now it remained an unsolved challenge to decode continuously spoken speech from the neural substrate associated with speech and language processing. Here, we show for the first time that continuously spoken speech can be decoded into the expressed words from intracranial electrocorticographic (ECoG) recordings.Specifically, we implemented a system, which we call Brain-To-Text that models single phones, employs techniques from automatic speech recognition (ASR), and thereby transforms brain activity while speaking into the corresponding textual representation. Our results demonstrate that our system can achieve word error rates as low as 25% and phone error rates below 50%. Additionally, our approach contributes to the current understanding of the neural basis of continuous speech production by identifying those cortical regions that hold substantial information about individual phones. In conclusion, the Brain-To-Text system described in this paper represents an important step toward human-machine communication based on imagined speech.
Brain-to-text: decoding spoken phrases from phone representations in the brain
Herff, Christian; Heger, Dominic; de Pesters, Adriana; Telaar, Dominic; Brunner, Peter; Schalk, Gerwin; Schultz, Tanja
2015-01-01
It has long been speculated whether communication between humans and machines based on natural speech related cortical activity is possible. Over the past decade, studies have suggested that it is feasible to recognize isolated aspects of speech from neural signals, such as auditory features, phones or one of a few isolated words. However, until now it remained an unsolved challenge to decode continuously spoken speech from the neural substrate associated with speech and language processing. Here, we show for the first time that continuously spoken speech can be decoded into the expressed words from intracranial electrocorticographic (ECoG) recordings.Specifically, we implemented a system, which we call Brain-To-Text that models single phones, employs techniques from automatic speech recognition (ASR), and thereby transforms brain activity while speaking into the corresponding textual representation. Our results demonstrate that our system can achieve word error rates as low as 25% and phone error rates below 50%. Additionally, our approach contributes to the current understanding of the neural basis of continuous speech production by identifying those cortical regions that hold substantial information about individual phones. In conclusion, the Brain-To-Text system described in this paper represents an important step toward human-machine communication based on imagined speech. PMID:26124702
Zaytsev, Anatoly V.; Grishchuk, Ekaterina L.
2015-01-01
Accuracy of chromosome segregation relies on the ill-understood ability of mitotic kinetochores to biorient, whereupon each sister kinetochore forms microtubule (MT) attachments to only one spindle pole. Because initial MT attachments result from chance encounters with the kinetochores, biorientation must rely on specific mechanisms to avoid and resolve improper attachments. Here we use mathematical modeling to critically analyze the error-correction potential of a simplified biorientation mechanism, which involves the back-to-back arrangement of sister kinetochores and the marked instability of kinetochore–MT attachments. We show that a typical mammalian kinetochore operates in a near-optimal regime, in which the back-to-back kinetochore geometry and the indiscriminate kinetochore–MT turnover provide strong error-correction activity. In human cells, this mechanism alone can potentially enable normal segregation of 45 out of 46 chromosomes during one mitotic division, corresponding to a mis-segregation rate in the range of 10−1–10−2 per chromosome. This theoretical upper limit for chromosome segregation accuracy predicted with the basic mechanism is close to the mis-segregation rate in some cancer cells; however, it cannot explain the relatively low chromosome loss in diploid human cells, consistent with their reliance on additional mechanisms. PMID:26424798
Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio
2018-06-01
Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.;
2006-01-01
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.
Watanabe, Noriya; Sakagami, Masamichi; Haruno, Masahiko
2013-03-06
Learning does not only depend on rationality, because real-life learning cannot be isolated from emotion or social factors. Therefore, it is intriguing to determine how emotion changes learning, and to identify which neural substrates underlie this interaction. Here, we show that the task-independent presentation of an emotional face before a reward-predicting cue increases the speed of cue-reward association learning in human subjects compared with trials in which a neutral face is presented. This phenomenon was attributable to an increase in the learning rate, which regulates reward prediction errors. Parallel to these behavioral findings, functional magnetic resonance imaging demonstrated that presentation of an emotional face enhanced reward prediction error (RPE) signal in the ventral striatum. In addition, we also found a functional link between this enhanced RPE signal and increased activity in the amygdala following presentation of an emotional face. Thus, this study revealed an acceleration of cue-reward association learning by emotion, and underscored a role of striatum-amygdala interactions in the modulation of the reward prediction errors by emotion.
Wedell, Douglas H; Moro, Rodrigo
2008-04-01
Two experiments used within-subject designs to examine how conjunction errors depend on the use of (1) choice versus estimation tasks, (2) probability versus frequency language, and (3) conjunctions of two likely events versus conjunctions of likely and unlikely events. All problems included a three-option format verified to minimize misinterpretation of the base event. In both experiments, conjunction errors were reduced when likely events were conjoined. Conjunction errors were also reduced for estimations compared with choices, with this reduction greater for likely conjuncts, an interaction effect. Shifting conceptual focus from probabilities to frequencies did not affect conjunction error rates. Analyses of numerical estimates for a subset of the problems provided support for the use of three general models by participants for generating estimates. Strikingly, the order in which the two tasks were carried out did not affect the pattern of results, supporting the idea that the mode of responding strongly determines the mode of thinking about conjunctions and hence the occurrence of the conjunction fallacy. These findings were evaluated in terms of implications for rationality of human judgment and reasoning.
The relevance of error analysis in graphical symbols evaluation.
Piamonte, D P
1999-01-01
In an increasing number of modern tools and devices, small graphical symbols appear simultaneously in sets as parts of the human-machine interfaces. The presence of each symbol can influence the other's recognizability and correct association to its intended referents. Thus, aside from correct associations, it is equally important to perform certain error analysis of the wrong answers, misses, confusions, and even lack of answers. This research aimed to show how such error analyses could be valuable in evaluating graphical symbols especially across potentially different user groups. The study tested 3 sets of icons representing 7 videophone functions. The methods involved parameters such as hits, confusions, missing values, and misses. The association tests showed similar hit rates of most symbols across the majority of the participant groups. However, exploring the error patterns helped detect differences in the graphical symbols' performances between participant groups, which otherwise seemed to have similar levels of recognition. These are very valuable not only in determining the symbols to be retained, replaced or re-designed, but also in formulating instructions and other aids in learning to use new products faster and more satisfactorily.
Applications and error correction for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Pudenz, Kristen
Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing that the scheme is robust to qubit loss on-chip, a significant benefit when considering an implemented system.
How good are indirect tests at detecting recombination in human mtDNA?
White, Daniel James; Bryant, David; Gemmell, Neil John
2013-07-08
Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.
How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?
White, Daniel James; Bryant, David; Gemmell, Neil John
2013-01-01
Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874
An error criterion for determining sampling rates in closed-loop control systems
NASA Technical Reports Server (NTRS)
Brecher, S. M.
1972-01-01
The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.
Westbrook, Johanna I; Li, Ling; Lehnbom, Elin C; Baysari, Melissa T; Braithwaite, Jeffrey; Burke, Rosemary; Conn, Chris; Day, Richard O
2015-02-01
To (i) compare medication errors identified at audit and observation with medication incident reports; (ii) identify differences between two hospitals in incident report frequency and medication error rates; (iii) identify prescribing error detection rates by staff. Audit of 3291 patient records at two hospitals to identify prescribing errors and evidence of their detection by staff. Medication administration errors were identified from a direct observational study of 180 nurses administering 7451 medications. Severity of errors was classified. Those likely to lead to patient harm were categorized as 'clinically important'. Two major academic teaching hospitals in Sydney, Australia. Rates of medication errors identified from audit and from direct observation were compared with reported medication incident reports. A total of 12 567 prescribing errors were identified at audit. Of these 1.2/1000 errors (95% CI: 0.6-1.8) had incident reports. Clinically important prescribing errors (n = 539) were detected by staff at a rate of 218.9/1000 (95% CI: 184.0-253.8), but only 13.0/1000 (95% CI: 3.4-22.5) were reported. 78.1% (n = 421) of clinically important prescribing errors were not detected. A total of 2043 drug administrations (27.4%; 95% CI: 26.4-28.4%) contained ≥ 1 errors; none had an incident report. Hospital A had a higher frequency of incident reports than Hospital B, but a lower rate of errors at audit. Prescribing errors with the potential to cause harm frequently go undetected. Reported incidents do not reflect the profile of medication errors which occur in hospitals or the underlying rates. This demonstrates the inaccuracy of using incident frequency to compare patient risk or quality performance within or across hospitals. New approaches including data mining of electronic clinical information systems are required to support more effective medication error detection and mitigation. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care.
Experimental investigation of false positive errors in auditory species occurrence surveys
Miller, David A.W.; Weir, Linda A.; McClintock, Brett T.; Grant, Evan H. Campbell; Bailey, Larissa L.; Simons, Theodore R.
2012-01-01
False positive errors are a significant component of many ecological data sets, which in combination with false negative errors, can lead to severe biases in conclusions about ecological systems. We present results of a field experiment where observers recorded observations for known combinations of electronically broadcast calling anurans under conditions mimicking field surveys to determine species occurrence. Our objectives were to characterize false positive error probabilities for auditory methods based on a large number of observers, to determine if targeted instruction could be used to reduce false positive error rates, and to establish useful predictors of among-observer and among-species differences in error rates. We recruited 31 observers, ranging in abilities from novice to expert, that recorded detections for 12 species during 180 calling trials (66,960 total observations). All observers made multiple false positive errors and on average 8.1% of recorded detections in the experiment were false positive errors. Additional instruction had only minor effects on error rates. After instruction, false positive error probabilities decreased by 16% for treatment individuals compared to controls with broad confidence interval overlap of 0 (95% CI: -46 to 30%). This coincided with an increase in false negative errors due to the treatment (26%; -3 to 61%). Differences among observers in false positive and in false negative error rates were best predicted by scores from an online test and a self-assessment of observer ability completed prior to the field experiment. In contrast, years of experience conducting call surveys was a weak predictor of error rates. False positive errors were also more common for species that were played more frequently, but were not related to the dominant spectral frequency of the call. Our results corroborate other work that demonstrates false positives are a significant component of species occurrence data collected by auditory methods. Instructing observers to only report detections they are completely certain are correct is not sufficient to eliminate errors. As a result, analytical methods that account for false positive errors will be needed, and independent testing of observer ability is a useful predictor for among-observer variation in observation error rates.
Goodyear, Kimberly; Parasuraman, Raja; Chernyak, Sergey; de Visser, Ewart; Madhavan, Poornima; Deshpande, Gopikrishna; Krueger, Frank
2017-10-01
As society becomes more reliant on machines and automation, understanding how people utilize advice is a necessary endeavor. Our objective was to reveal the underlying neural associations during advice utilization from expert human and machine agents with fMRI and multivariate Granger causality analysis. During an X-ray luggage-screening task, participants accepted or rejected good or bad advice from either the human or machine agent framed as experts with manipulated reliability (high miss rate). We showed that the machine-agent group decreased their advice utilization compared to the human-agent group and these differences in behaviors during advice utilization could be accounted for by high expectations of reliable advice and changes in attention allocation due to miss errors. Brain areas involved with the salience and mentalizing networks, as well as sensory processing involved with attention, were recruited during the task and the advice utilization network consisted of attentional modulation of sensory information with the lingual gyrus as the driver during the decision phase and the fusiform gyrus as the driver during the feedback phase. Our findings expand on the existing literature by showing that misses degrade advice utilization, which is represented in a neural network involving salience detection and self-processing with perceptual integration.
Lost in Translation: the Case for Integrated Testing
NASA Technical Reports Server (NTRS)
Young, Aaron
2017-01-01
The building of a spacecraft is complex and often involves multiple suppliers and companies that have their own designs and processes. Standards have been developed across the industries to reduce the chances for critical flight errors at the system level, but the spacecraft is still vulnerable to the introduction of critical errors during integration of these systems. Critical errors can occur at any time during the process and in many cases, human reliability analysis (HRA) identifies human error as a risk driver. Most programs have a test plan in place that is intended to catch these errors, but it is not uncommon for schedule and cost stress to result in less testing than initially planned. Therefore, integrated testing, or "testing as you fly," is essential as a final check on the design and assembly to catch any errors prior to the mission. This presentation will outline the unique benefits of integrated testing by catching critical flight errors that can otherwise go undetected, discuss HRA methods that are used to identify opportunities for human error, lessons learned and challenges over ownership of testing will be discussed.
Human factors in aircraft incidents - Results of a 7-year study (Andre Allard Memorial Lecture)
NASA Technical Reports Server (NTRS)
Billings, C. E.; Reynard, W. D.
1984-01-01
It is pointed out that nearly all fatal aircraft accidents are preventable, and that most such accidents are due to human error. The present discussion is concerned with the results of a seven-year study of the data collected by the NASA Aviation Safety Reporting System (ASRS). The Aviation Safety Reporting System was designed to stimulate as large a flow as possible of information regarding errors and operational problems in the conduct of air operations. It was implemented in April, 1976. In the following 7.5 years, 35,000 reports have been received from pilots, controllers, and the armed forces. Human errors are found in more than 80 percent of these reports. Attention is given to the types of events reported, possible causal factors in incidents, the relationship of incidents and accidents, and sources of error in the data. ASRS reports include sufficient detail to permit authorities to institute changes in the national aviation system designed to minimize the likelihood of human error, and to insulate the system against the effects of errors.
Human factors in surgery: from Three Mile Island to the operating room.
D'Addessi, Alessandro; Bongiovanni, Luca; Volpe, Andrea; Pinto, Francesco; Bassi, PierFrancesco
2009-01-01
Human factors is a definition that includes the science of understanding the properties of human capability, the application of this understanding to the design and development of systems and services, the art of ensuring their successful applications to a program. The field of human factors traces its origins to the Second World War, but Three Mile Island has been the best example of how groups of people react and make decisions under stress: this nuclear accident was exacerbated by wrong decisions made because the operators were overwhelmed with irrelevant, misleading or incorrect information. Errors and their nature are the same in all human activities. The predisposition for error is so intrinsic to human nature that scientifically it is best considered as inherently biologic. The causes of error in medical care may not be easily generalized. Surgery differs in important ways: most errors occur in the operating room and are technical in nature. Commonly, surgical error has been thought of as the consequence of lack of skill or ability, and is the result of thoughtless actions. Moreover the 'operating theatre' has a unique set of team dynamics: professionals from multiple disciplines are required to work in a closely coordinated fashion. This complex environment provides multiple opportunities for unclear communication, clashing motivations, errors arising not from technical incompetence but from poor interpersonal skills. Surgeons have to work closely with human factors specialists in future studies. By improving processes already in place in many operating rooms, safety will be enhanced and quality increased.
Machine Translation of Public Health Materials From English to Chinese: A Feasibility Study
Desai, Loma
2015-01-01
Background Chinese is the second most common language spoken by limited English proficiency individuals in the United States, yet there are few public health materials available in Chinese. Previous studies have indicated that use of machine translation plus postediting by bilingual translators generated quality translations in a lower time and at a lower cost than human translations. Objective The purpose of this study was to investigate the feasibility of using machine translation (MT) tools (eg, Google Translate) followed by human postediting (PE) to produce quality Chinese translations of public health materials. Methods From state and national public health websites, we collected 60 health promotion documents that had been translated from English to Chinese through human translation. The English version of the documents were then translated to Chinese using Google Translate. The MTs were analyzed for translation errors. A subset of the MT documents was postedited by native Chinese speakers with health backgrounds. Postediting time was measured. Postedited versions were then blindly compared against human translations by bilingual native Chinese quality raters. Results The most common machine translation errors were errors of word sense (40%) and word order (22%). Posteditors corrected the MTs at a rate of approximately 41 characters per minute. Raters, blinded to the source of translation, consistently selected the human translation over the MT+PE. Initial investigation to determine the reasons for the lower quality of MT+PE indicate that poor MT quality, lack of posteditor expertise, and insufficient posteditor instructions can be barriers to producing quality Chinese translations. Conclusions Our results revealed problems with using MT tools plus human postediting for translating public health materials from English to Chinese. Additional work is needed to improve MT and to carefully design postediting processes before the MT+PE approach can be used routinely in public health practice for a variety of language pairs. PMID:27227135
Technological Advancements and Error Rates in Radiation Therapy Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margalit, Danielle N., E-mail: dmargalit@partners.org; Harvard Cancer Consortium and Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA; Chen, Yu-Hui
2011-11-15
Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system atmore » Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique. There was a lower error rate with IMRT compared with 3D/conventional RT, highlighting the need for sustained vigilance against errors common to more traditional treatment techniques.« less
The Human Factors Analysis and Classification System : HFACS : final report.
DOT National Transportation Integrated Search
2000-02-01
Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident reporting systems are not designed around any theoretical framework of human error. As a result, most accident databases are not conducive t...
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.
2018-02-01
Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.
Schwantes-An, Tae-Hwi; Sung, Heejong; Sabourin, Jeremy A; Justice, Cristina M; Sorant, Alexa J M; Wilson, Alexander F
2016-01-01
In this study, the effects of (a) the minor allele frequency of the single nucleotide variant (SNV), (b) the degree of departure from normality of the trait, and (c) the position of the SNVs on type I error rates were investigated in the Genetic Analysis Workshop (GAW) 19 whole exome sequence data. To test the distribution of the type I error rate, 5 simulated traits were considered: standard normal and gamma distributed traits; 2 transformed versions of the gamma trait (log 10 and rank-based inverse normal transformations); and trait Q1 provided by GAW 19. Each trait was tested with 313,340 SNVs. Tests of association were performed with simple linear regression and average type I error rates were determined for minor allele frequency classes. Rare SNVs (minor allele frequency < 0.05) showed inflated type I error rates for non-normally distributed traits that increased as the minor allele frequency decreased. The inflation of average type I error rates increased as the significance threshold decreased. Normally distributed traits did not show inflated type I error rates with respect to the minor allele frequency for rare SNVs. There was no consistent effect of transformation on the uniformity of the distribution of the location of SNVs with a type I error.
Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Fisher, Brad L.; Wolff, David B.
2007-01-01
This paper describes the cubic spline based operational system for the generation of the TRMM one-minute rain rate product 2A-56 from Tipping Bucket (TB) gauge measurements. Methodological issues associated with applying the cubic spline to the TB gauge rain rate estimation are closely examined. A simulated TB gauge from a Joss-Waldvogel (JW) disdrometer is employed to evaluate effects of time scales and rain event definitions on errors of the rain rate estimation. The comparison between rain rates measured from the JW disdrometer and those estimated from the simulated TB gauge shows good overall agreement; however, the TB gauge suffers sampling problems, resulting in errors in the rain rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When one minute rain rates are averaged to 4-7 minute or longer time scales, the errors dramatically reduce. The rain event duration is very sensitive to the event definition but the event rain total is rather insensitive, provided that the events with less than 1 millimeter rain totals are excluded. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-minute TB rain rates higher and lower than 3 mm per hour, respectively. These errors decrease to 5% and 14% when TB rain rates are used at 7-minute scale. The radar reflectivity-rainrate (Ze-R) distributions drawn from large amount of 7-minute TB rain rates and radar reflectivity data are mostly insensitive to the event definition.
Kaneko, Takaaki; Tomonaga, Masaki
2014-06-01
Humans are often unaware of how they control their limb motor movements. People pay attention to their own motor movements only when their usual motor routines encounter errors. Yet little is known about the extent to which voluntary actions rely on automatic control and when automatic control shifts to deliberate control in nonhuman primates. In this study, we demonstrate that chimpanzees and humans showed similar limb motor adjustment in response to feedback error during reaching actions, whereas attentional allocation inferred from gaze behavior differed. We found that humans shifted attention to their own motor kinematics as errors were induced in motor trajectory feedback regardless of whether the errors actually disrupted their reaching their action goals. In contrast, chimpanzees shifted attention to motor execution only when errors actually interfered with their achieving a planned action goal. These results indicate that the species differed in their criteria for shifting from automatic to deliberate control of motor actions. It is widely accepted that sophisticated motor repertoires have evolved in humans. Our results suggest that the deliberate monitoring of one's own motor kinematics may have evolved in the human lineage. Copyright © 2014 Elsevier B.V. All rights reserved.
Replicative DNA Polymerase δ but Not ε Proofreads Errors in Cis and in Trans
Flood, Carrie L.; Rodriguez, Gina P.; Bao, Gaobin; Shockley, Arthur H.; Kow, Yoke Wah; Crouse, Gray F.
2015-01-01
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. PMID:25742645
Implementation of smart phone video plethysmography and dependence on lighting parameters.
Fletcher, Richard Ribón; Chamberlain, Daniel; Paggi, Nicholas; Deng, Xinyue
2015-08-01
The remote measurement of heart rate (HR) and heart rate variability (HRV) via a digital camera (video plethysmography) has emerged as an area of great interest for biomedical and health applications. While a few implementations of video plethysmography have been demonstrated on smart phones under controlled lighting conditions, it has been challenging to create a general scalable solution due to the large variability in smart phone hardware performance, software architecture, and the variable response to lighting parameters. In this context, we present a selfcontained smart phone implementation of video plethysmography for Android OS, which employs both stochastic and deterministic algorithms, and we use this to study the effect of lighting parameters (illuminance, color spectrum) on the accuracy of the remote HR measurement. Using two different phone models, we present the median HR error for five different video plethysmography algorithms under three different types of lighting (natural sunlight, compact fluorescent, and halogen incandescent) and variations in brightness. For most algorithms, we found the optimum light brightness to be in the range 1000-4000 lux and the optimum lighting types to be compact fluorescent and natural light. Moderate errors were found for most algorithms with some devices under conditions of low-brightness (<;500 lux) and highbrightness (>4000 lux). Our analysis also identified camera frame rate jitter as a major source of variability and error across different phone models, but this can be largely corrected through non-linear resampling. Based on testing with six human subjects, our real-time Android implementation successfully predicted the measured HR with a median error of -0.31 bpm, and an inter-quartile range of 2.1bpm.
Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.
Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B
2017-01-01
In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.
Harolds, Jay A; Parikh, Jay R; Bluth, Edward I; Dutton, Sharon C; Recht, Michael P
2016-04-01
Burnout is a concern for radiologists. The burnout rate is greater among diagnostic radiologists than the mean for all physicians, while radiation oncologists have a slightly lower burnout rate. Burnout can result in unprofessional behavior, thoughts of suicide, premature retirement, and errors in patient care. Strategies to reduce burnout include addressing the sources of job dissatisfaction, instilling lifestyle balance, finding reasons to work other than money, improving money management, developing a support group, and seeking help when needed. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Approximation of Bit Error Rates in Digital Communications
2007-06-01
and Technology Organisation DSTO—TN—0761 ABSTRACT This report investigates the estimation of bit error rates in digital communi- cations, motivated by...recent work in [6]. In the latter, bounds are used to construct estimates for bit error rates in the case of differentially coherent quadrature phase
Interactive computer graphics - Why's, wherefore's and examples
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Carmichael, R. L.
1983-01-01
The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.
Arba-Mosquera, Samuel; Aslanides, Ioannis M.
2012-01-01
Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.
Failure analysis and modeling of a multicomputer system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Subramani, Sujatha Srinivasan
1990-01-01
This thesis describes the results of an extensive measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating basic system error and failure characteristics, we develop reward models to analyze the impact of failures and errors on the system. The results show that, although 98 percent of errors in the shared resources recover, they result in 48 percent of all system failures. The analysis of rewards shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3 out of 7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The large loss in reward rate for software errors is due to the fact that a large proportion (94 percent) of software errors lead to failure. In comparison, the high reward rate for network errors is due to fast recovery from a majority of these errors (median recovery duration is 0 seconds).
Horberry, Tim; Teng, Yi-Chun; Ward, James; Patil, Vishal; Clarkson, P John
2014-01-01
Central Venous Catheterisation (CVC) has occasionally been associated with cases of retained guidewires in patients after surgery. In theory, this is a completely avoidable complication; however, as with any human procedure, operator error leading to guidewires being occasionally retained cannot be fully eliminated. The work described here investigated the issue in an attempt to better understand it both from an operator and a systems perspective, and to ultimately recommend appropriate safe design solutions that reduce guidewire retention errors. Nine distinct methods were used: observations of the procedure, a literature review, interviewing CVC end-users, task analysis construction, CVC procedural audits, two human reliability assessments, usability heuristics and a comprehensive solution survey with CVC end-users. The three solutions that operators rated most highly, in terms of both practicality and effectiveness, were: making trainees better aware of the potential guidewire complications and strongly emphasising guidewire removal in CVC training, actively checking that the guidewire is present in the waste tray for disposal, and standardising purchase of central line sets so that differences that may affect chances of guidewire loss is minimised. Further work to eliminate/engineer out the possibility of guidewires being retained is proposed.
A periodic pattern of SNPs in the human genome
Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten
2007-01-01
By surveying a filtered, high-quality set of SNPs in the human genome, we have found that SNPs positioned 1, 2, 4, 6, or 8 bp apart are more frequent than SNPs positioned 3, 5, 7, or 9 bp apart. The observed pattern is not restricted to genomic regions that are known to cause sequencing or alignment errors, for example, transposable elements (SINE, LINE, and LTR), tandem repeats, and large duplicated regions. However, we found that the pattern is almost entirely confined to what we define as “periodic DNA.” Periodic DNA is a genomic region with a high degree of periodicity in nucleotide usage. It turned out that periodic DNA is mainly small regions (average length 16.9 bp), widely distributed in the genome. Furthermore, periodic DNA has a 1.8 times higher SNP density than the rest of the genome and SNPs inside periodic DNA have a significantly higher genotyping error rate than SNPs outside periodic DNA. Our results suggest that not all SNPs in the human genome are created by independent single nucleotide mutations, and that care should be taken in analysis of SNPs from periodic DNA. The latter may have important consequences for SNP and association studies. PMID:17673700
Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System
Yu, Fei; Sun, Qian
2014-01-01
Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115
Feyertag, Felix; Chakraborty, Sandip
2017-01-01
Abstract The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. PMID:28854629
Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip
2017-06-01
The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Technical Reports Server (NTRS)
Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.
2005-01-01
This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.
Identity-by-Descent-Based Phasing and Imputation in Founder Populations Using Graphical Models
Palin, Kimmo; Campbell, Harry; Wright, Alan F; Wilson, James F; Durbin, Richard
2011-01-01
Accurate knowledge of haplotypes, the combination of alleles co-residing on a single copy of a chromosome, enables powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on pairwise sharing of haplotypes inferred to be Identical-By-Descent (IBD). We apply the Bayesian network based model in a new phasing algorithm, called systematic long-range phasing (SLRP), that can capitalize on the close genetic relationships in isolated founder populations, and show with simulated and real genome-wide genotype data that SLRP substantially reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies regions of IBD, enabling linkage-like studies without pedigrees, and can be used to impute most genotypes with very low error rate. Genet. Epidemiol. 2011. © 2011 Wiley Periodicals, Inc.35:853-860, 2011 PMID:22006673
Reverse Transcription Errors and RNA-DNA Differences at Short Tandem Repeats.
Fungtammasan, Arkarachai; Tomaszkiewicz, Marta; Campos-Sánchez, Rebeca; Eckert, Kristin A; DeGiorgio, Michael; Makova, Kateryna D
2016-10-01
Transcript variation has important implications for organismal function in health and disease. Most transcriptome studies focus on assessing variation in gene expression levels and isoform representation. Variation at the level of transcript sequence is caused by RNA editing and transcription errors, and leads to nongenetically encoded transcript variants, or RNA-DNA differences (RDDs). Such variation has been understudied, in part because its detection is obscured by reverse transcription (RT) and sequencing errors. It has only been evaluated for intertranscript base substitution differences. Here, we investigated transcript sequence variation for short tandem repeats (STRs). We developed the first maximum-likelihood estimator (MLE) to infer RT error and RDD rates, taking next generation sequencing error rates into account. Using the MLE, we empirically evaluated RT error and RDD rates for STRs in a large-scale DNA and RNA replicated sequencing experiment conducted in a primate species. The RT error rates increased exponentially with STR length and were biased toward expansions. The RDD rates were approximately 1 order of magnitude lower than the RT error rates. The RT error rates estimated with the MLE from a primate data set were concordant with those estimated with an independent method, barcoded RNA sequencing, from a Caenorhabditis elegans data set. Our results have important implications for medical genomics, as STR allelic variation is associated with >40 diseases. STR nonallelic transcript variation can also contribute to disease phenotype. The MLE and empirical rates presented here can be used to evaluate the probability of disease-associated transcripts arising due to RDD. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-05-04
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tortorelli, J.P.
1995-08-01
A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains a summary of that workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medical uses of radioactivemore » materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report. An appendix contains the 8 papers presented at the conference: NRC proposed policy statement on the use of probabilistic risk assessment methods in nuclear regulatory activities; NRC proposed agency-wide implementation plan for probabilistic risk assessment; Risk evaluation of high dose rate remote afterloading brachytherapy at a large research/teaching institution; The pros and cons of using human reliability analysis techniques to analyze misadministration events; Review of medical misadministration event summaries and comparison of human error modeling; Preliminary examples of the development of error influences and effects diagrams to analyze medical misadministration events; Brachytherapy risk assessment program plan; and Principles of brachytherapy quality assurance.« less
MEDICAL ERROR: CIVIL AND LEGAL ASPECT.
Buletsa, S; Drozd, O; Yunin, O; Mohilevskyi, L
2018-03-01
The scientific article is focused on the research of the notion of medical error, medical and legal aspects of this notion have been considered. The necessity of the legislative consolidation of the notion of «medical error» and criteria of its legal estimation have been grounded. In the process of writing a scientific article, we used the empirical method, general scientific and comparative legal methods. A comparison of the concept of medical error in civil and legal aspects was made from the point of view of Ukrainian, European and American scientists. It has been marked that the problem of medical errors is known since ancient times and in the whole world, in fact without regard to the level of development of medicine, there is no country, where doctors never make errors. According to the statistics, medical errors in the world are included in the first five reasons of death rate. At the same time the grant of medical services practically concerns all people. As a man and his life, health in Ukraine are acknowledged by a higher social value, medical services must be of high-quality and effective. The grant of not quality medical services causes harm to the health, and sometimes the lives of people; it may result in injury or even death. The right to the health protection is one of the fundamental human rights assured by the Constitution of Ukraine; therefore the issue of medical errors and liability for them is extremely relevant. The authors make conclusions, that the definition of the notion of «medical error» must get the legal consolidation. Besides, the legal estimation of medical errors must be based on the single principles enshrined in the legislation and confirmed by judicial practice.
Modeling human tracking error in several different anti-tank systems
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1981-01-01
An optimal control model for generating time histories of human tracking errors in antitank systems is outlined. Monte Carlo simulations of human operator responses for three Army antitank systems are compared. System/manipulator dependent data comparisons reflecting human operator limitations in perceiving displayed quantities and executing intended control motions are presented. Motor noise parameters are also discussed.
Vavilov, A Iu; Viter, V I
2007-01-01
Mathematical questions of data errors of modern thermometrical models of postmortem cooling of the human body are considered. The main diagnostic areas used for thermometry are analyzed to minimize these data errors. The authors propose practical recommendations to decrease data errors of determination of prescription of death coming.
Smiley, A M
1990-10-01
In February of 1986 a head-on collision occurred between a freight train and a passenger train in western Canada killing 23 people and causing over $30 million of damage. A Commission of Inquiry appointed by the Canadian government concluded that human error was the major reason for the collision. This report discusses the factors contributing to the human error: mainly poor work-rest schedules, the monotonous nature of the train driving task, insufficient information about train movements, and the inadequate backup systems in case of human error.
A Conceptual Framework for Predicting Error in Complex Human-Machine Environments
NASA Technical Reports Server (NTRS)
Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)
1998-01-01
We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.
Spencer, Bruce D
2012-06-01
Latent class models are increasingly used to assess the accuracy of medical diagnostic tests and other classifications when no gold standard is available and the true state is unknown. When the latent class is treated as the true class, the latent class models provide measures of components of accuracy including specificity and sensitivity and their complements, type I and type II error rates. The error rates according to the latent class model differ from the true error rates, however, and empirical comparisons with a gold standard suggest the true error rates often are larger. We investigate conditions under which the true type I and type II error rates are larger than those provided by the latent class models. Results from Uebersax (1988, Psychological Bulletin 104, 405-416) are extended to accommodate random effects and covariates affecting the responses. The results are important for interpreting the results of latent class analyses. An error decomposition is presented that incorporates an error component from invalidity of the latent class model. © 2011, The International Biometric Society.
Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W
2013-08-01
Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.
Rong, Hao; Tian, Jin
2015-05-01
The study contributes to human reliability analysis (HRA) by proposing a method that focuses more on human error causality within a sociotechnical system, illustrating its rationality and feasibility by using a case of the Minuteman (MM) III missile accident. Due to the complexity and dynamics within a sociotechnical system, previous analyses of accidents involving human and organizational factors clearly demonstrated that the methods using a sequential accident model are inadequate to analyze human error within a sociotechnical system. System-theoretic accident model and processes (STAMP) was used to develop a universal framework of human error causal analysis. To elaborate the causal relationships and demonstrate the dynamics of human error, system dynamics (SD) modeling was conducted based on the framework. A total of 41 contributing factors, categorized into four types of human error, were identified through the STAMP-based analysis. All factors are related to a broad view of sociotechnical systems, and more comprehensive than the causation presented in the accident investigation report issued officially. Recommendations regarding both technical and managerial improvement for a lower risk of the accident are proposed. The interests of an interdisciplinary approach provide complementary support between system safety and human factors. The integrated method based on STAMP and SD model contributes to HRA effectively. The proposed method will be beneficial to HRA, risk assessment, and control of the MM III operating process, as well as other sociotechnical systems. © 2014, Human Factors and Ergonomics Society.
Derivation of an analytic expression for the error associated with the noise reduction rating
NASA Astrophysics Data System (ADS)
Murphy, William J.
2005-04-01
Hearing protection devices are assessed using the Real Ear Attenuation at Threshold (REAT) measurement procedure for the purpose of estimating the amount of noise reduction provided when worn by a subject. The rating number provided on the protector label is a function of the mean and standard deviation of the REAT results achieved by the test subjects. If a group of subjects have a large variance, then it follows that the certainty of the rating should be correspondingly lower. No estimate of the error of a protector's rating is given by existing standards or regulations. Propagation of errors was applied to the Noise Reduction Rating to develop an analytic expression for the hearing protector rating error term. Comparison of the analytic expression for the error to the standard deviation estimated from Monte Carlo simulation of subject attenuations yielded a linear relationship across several protector types and assumptions for the variance of the attenuations.
On the development of voluntary and reflexive components in human saccade generation.
Fischer, B; Biscaldi, M; Gezeck, S
1997-04-18
The saccadic performance of a large number (n = 281) of subjects of different ages (8-70 years) was studied applying two saccade tasks: the prosaccade overlap (PO) task and the antisaccade gap (AG) task. From the PO task, the mean reaction times and the percentage of express saccades were determined for each subject. From the AG task, the mean reaction time of the correct antisaccades and of the erratic prosaccades were measured. In addition, we determined the error rate and the mean correction time, i.e. the time between the end of the first erratic prosaccade and the following corrective antisaccade. These variables were measured separately for stimuli presented (in random order) at the right or left side. While strong correlations were seen between variables for the right and left sides, considerable side asymmetries were obtained from many subjects. A factor analysis revealed that the seven variables (six eye movement variables plus age) were mainly determined by only two factors, V and F. The V factor was dominated by the variables from the AG task (reaction time, correction time, error rate) the F factor by variables from the PO task (reaction time, percentage express saccades) and the reaction time of the errors (prosaccades!) from the AG task. The relationship between the percentage number of express saccades and the percentage number of errors was completely asymmetric: high numbers of express saccades were accompanied by high numbers of errors but not vice versa. Only the variables in the V factor covaried with age. A fast decrease of the antisaccade reaction time (by 50 ms), of the correction times (by 70 ms) and of the error rate (from 60 to 22%) was observed between age 9 and 15 years, followed by a further period of slower decrease until age 25 years. The mean time a subject needed to reach the side opposite to the stimulus as required by the antisaccade task decreased from approximately 350 to 250 ms until age 15 years and decreased further by 20 ms before it increased again to approximately 280 ms. At higher ages, there was a slight indication for a return development. Subjects with high error rates had long antisaccade latencies and needed a long time to reach the opposite side on error trials. The variables obtained from the PO task varied also significantly with age but by smaller amounts. The results are discussed in relation to the subsystems controlling saccade generation: a voluntary and a reflex component the latter being suppressed by active fixation. Both systems seem to develop differentially. The data offer a detailed baseline for clinical studies using the pro- and antisaccade tasks as an indication of functional impairments, circumscribed brain lesions, neurological and psychiatric diseases and cognitive deficits.
Errors in laboratory medicine: practical lessons to improve patient safety.
Howanitz, Peter J
2005-10-01
Patient safety is influenced by the frequency and seriousness of errors that occur in the health care system. Error rates in laboratory practices are collected routinely for a variety of performance measures in all clinical pathology laboratories in the United States, but a list of critical performance measures has not yet been recommended. The most extensive databases describing error rates in pathology were developed and are maintained by the College of American Pathologists (CAP). These databases include the CAP's Q-Probes and Q-Tracks programs, which provide information on error rates from more than 130 interlaboratory studies. To define critical performance measures in laboratory medicine, describe error rates of these measures, and provide suggestions to decrease these errors, thereby ultimately improving patient safety. A review of experiences from Q-Probes and Q-Tracks studies supplemented with other studies cited in the literature. Q-Probes studies are carried out as time-limited studies lasting 1 to 4 months and have been conducted since 1989. In contrast, Q-Tracks investigations are ongoing studies performed on a yearly basis and have been conducted only since 1998. Participants from institutions throughout the world simultaneously conducted these studies according to specified scientific designs. The CAP has collected and summarized data for participants about these performance measures, including the significance of errors, the magnitude of error rates, tactics for error reduction, and willingness to implement each of these performance measures. A list of recommended performance measures, the frequency of errors when these performance measures were studied, and suggestions to improve patient safety by reducing these errors. Error rates for preanalytic and postanalytic performance measures were higher than for analytic measures. Eight performance measures were identified, including customer satisfaction, test turnaround times, patient identification, specimen acceptability, proficiency testing, critical value reporting, blood product wastage, and blood culture contamination. Error rate benchmarks for these performance measures were cited and recommendations for improving patient safety presented. Not only has each of the 8 performance measures proven practical, useful, and important for patient care, taken together, they also fulfill regulatory requirements. All laboratories should consider implementing these performance measures and standardizing their own scientific designs, data analysis, and error reduction strategies according to findings from these published studies.
Statistical Analysis of Hit/Miss Data (Preprint)
2012-07-01
HDBK-1823A, 2009). Other agencies and industries have also made use of this guidance (Gandossi et al., 2010) and ( Drury et al., 2006). It should...better accounting of false call rates such that the POD curve doesn’t converge to 0 for small flaw sizes. The difficulty with conventional methods...2002. Drury , Ghylin, and Holness, Error Analysis and Threat Magnitude for Carry-on Bag Inspection, Proceedings of the Human Factors and Ergonomic
The statistical validity of nursing home survey findings.
Woolley, Douglas C
2011-11-01
The Medicare nursing home survey is a high-stakes process whose findings greatly affect nursing homes, their current and potential residents, and the communities they serve. Therefore, survey findings must achieve high validity. This study looked at the validity of one key assessment made during a nursing home survey: the observation of the rate of errors in administration of medications to residents (med-pass). Statistical analysis of the case under study and of alternative hypothetical cases. A skilled nursing home affiliated with a local medical school. The nursing home administrators and the medical director. Observational study. The probability that state nursing home surveyors make a Type I or Type II error in observing med-pass error rates, based on the current case and on a series of postulated med-pass error rates. In the common situation such as our case, where med-pass errors occur at slightly above a 5% rate after 50 observations, and therefore trigger a citation, the chance that the true rate remains above 5% after a large number of observations is just above 50%. If the true med-pass error rate were as high as 10%, and the survey team wished to achieve 75% accuracy in determining that a citation was appropriate, they would have to make more than 200 med-pass observations. In the more common situation where med pass errors are closer to 5%, the team would have to observe more than 2000 med-passes to achieve even a modest 75% accuracy in their determinations. In settings where error rates are low, large numbers of observations of an activity must be made to reach acceptable validity of estimates for the true rates of errors. In observing key nursing home functions with current methodology, the State Medicare nursing home survey process does not adhere to well-known principles of valid error determination. Alternate approaches in survey methodology are discussed. Copyright © 2011 American Medical Directors Association. Published by Elsevier Inc. All rights reserved.
How does aging affect the types of error made in a visual short-term memory ‘object-recall’ task?
Sapkota, Raju P.; van der Linde, Ian; Pardhan, Shahina
2015-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits. PMID:25653615
How does aging affect the types of error made in a visual short-term memory 'object-recall' task?
Sapkota, Raju P; van der Linde, Ian; Pardhan, Shahina
2014-01-01
This study examines how normal aging affects the occurrence of different types of incorrect responses in a visual short-term memory (VSTM) object-recall task. Seventeen young (Mean = 23.3 years, SD = 3.76), and 17 normally aging older (Mean = 66.5 years, SD = 6.30) adults participated. Memory stimuli comprised two or four real world objects (the memory load) presented sequentially, each for 650 ms, at random locations on a computer screen. After a 1000 ms retention interval, a test display was presented, comprising an empty box at one of the previously presented two or four memory stimulus locations. Participants were asked to report the name of the object presented at the cued location. Errors rates wherein participants reported the names of objects that had been presented in the memory display but not at the cued location (non-target errors) vs. objects that had not been presented at all in the memory display (non-memory errors) were compared. Significant effects of aging, memory load and target recency on error type and absolute error rates were found. Non-target error rate was higher than non-memory error rate in both age groups, indicating that VSTM may have been more often than not populated with partial traces of previously presented items. At high memory load, non-memory error rate was higher in young participants (compared to older participants) when the memory target had been presented at the earliest temporal position. However, non-target error rates exhibited a reversed trend, i.e., greater error rates were found in older participants when the memory target had been presented at the two most recent temporal positions. Data are interpreted in terms of proactive interference (earlier examined non-target items interfering with more recent items), false memories (non-memory items which have a categorical relationship to presented items, interfering with memory targets), slot and flexible resource models, and spatial coding deficits.
Clinical biochemistry laboratory rejection rates due to various types of preanalytical errors.
Atay, Aysenur; Demir, Leyla; Cuhadar, Serap; Saglam, Gulcan; Unal, Hulya; Aksun, Saliha; Arslan, Banu; Ozkan, Asuman; Sutcu, Recep
2014-01-01
Preanalytical errors, along the process from the beginning of test requests to the admissions of the specimens to the laboratory, cause the rejection of samples. The aim of this study was to better explain the reasons of rejected samples, regarding to their rates in certain test groups in our laboratory. This preliminary study was designed on the rejected samples in one-year period, based on the rates and types of inappropriateness. Test requests and blood samples of clinical chemistry, immunoassay, hematology, glycated hemoglobin, coagulation and erythrocyte sedimentation rate test units were evaluated. Types of inappropriateness were evaluated as follows: improperly labelled samples, hemolysed, clotted specimen, insufficient volume of specimen and total request errors. A total of 5,183,582 test requests from 1,035,743 blood collection tubes were considered. The total rejection rate was 0.65 %. The rejection rate of coagulation group was significantly higher (2.28%) than the other test groups (P < 0.001) including insufficient volume of specimen error rate as 1.38%. Rejection rates of hemolysis, clotted specimen and insufficient volume of sample error were found to be 8%, 24% and 34%, respectively. Total request errors, particularly, for unintelligible requests were 32% of the total for inpatients. The errors were especially attributable to unintelligible requests of inappropriate test requests, improperly labelled samples for inpatients and blood drawing errors especially due to insufficient volume of specimens in a coagulation test group. Further studies should be performed after corrective and preventive actions to detect a possible decrease in rejecting samples.
Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-Su; Ramamirtham, Ramkumar; Smith, Earl L
2010-08-23
We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies. Copyright 2010 Elsevier Ltd. All rights reserved.
Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-su; Ramamirtham, Ramkumar; Smith, Earl L.
2010-01-01
We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies. PMID:20600237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk; Tanderup, Kari, E-mail: karitand@rm.dk
Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusivemore » dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. Conclusions: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA’s capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-timein vivo point dosimetry.« less
Error rate information in attention allocation pilot models
NASA Technical Reports Server (NTRS)
Faulkner, W. H.; Onstott, E. D.
1977-01-01
The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.
7 CFR 275.23 - Determination of State agency program performance.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING... section, the adjusted regressed payment error rate shall be calculated to yield the State agency's payment error rate. The adjusted regressed payment error rate is given by r 1″ + r 2″. (ii) If FNS determines...
Derks, E M; Zwinderman, A H; Gamazon, E R
2017-05-01
Population divergence impacts the degree of population stratification in Genome Wide Association Studies. We aim to: (i) investigate type-I error rate as a function of population divergence (F ST ) in multi-ethnic (admixed) populations; (ii) evaluate the statistical power and effect size estimates; and (iii) investigate the impact of population stratification on the results of gene-based analyses. Quantitative phenotypes were simulated. Type-I error rate was investigated for Single Nucleotide Polymorphisms (SNPs) with varying levels of F ST between the ancestral European and African populations. Type-II error rate was investigated for a SNP characterized by a high value of F ST . In all tests, genomic MDS components were included to correct for population stratification. Type-I and type-II error rate was adequately controlled in a population that included two distinct ethnic populations but not in admixed samples. Statistical power was reduced in the admixed samples. Gene-based tests showed no residual inflation in type-I error rate.
NASA Astrophysics Data System (ADS)
Assi, Abed Al Nasser
2018-03-01
Reduction of the patient's received radiation dose to as low as reasonably achievable (ALARA) is based on recommendations of radiation protection organizations such as the International Commission on Radiological Protection (ICRP) and the National Radiological Protection Board (NRPB). The aim of this study was to explore the frequency and characteristics of rejected / repeated radiographic films in governmental and private centers in Jenin city. The radiological centers were chosen based on their high volume of radiographic studies. The evaluation was carried out over a period of four months. The collected data were compiled at the end of each week and entered into a computer for analysis at the end of study. Overall 5000 films (images) were performed in four months, The average repeat rate of radiographic images was 10% (500 films). Repetition rate was the same for both thoracic and abdominal images (42%). The main reason for repeating imaging was inadequate imaging quality (58.2%) and poor film processing (38%). Human error was the most likely reason necessitating the repetition of the radiographs (48 %). Infant and children groups comprised 85% of the patient population that required repetition of the radiographic studies. In conclusion, we have a higher repetition rate of imaging studies compared to the international standards (10% vs. 4-6%, respectively). This is especially noticeable in infants and children, and mainly attributed to human error in obtaining and processing images. This is an important issue that needs to be addressed on a national level due to the ill effects associated with excessive exposure to radiation especially in children, and to reduce cost of the care delivered.
Newman, Craig G J; Bevins, Adam D; Zajicek, John P; Hodges, John R; Vuillermoz, Emil; Dickenson, Jennifer M; Kelly, Denise S; Brown, Simona; Noad, Rupert F
2018-01-01
Ensuring reliable administration and reporting of cognitive screening tests are fundamental in establishing good clinical practice and research. This study captured the rate and type of errors in clinical practice, using the Addenbrooke's Cognitive Examination-III (ACE-III), and then the reduction in error rate using a computerized alternative, the ACEmobile app. In study 1, we evaluated ACE-III assessments completed in National Health Service (NHS) clinics ( n = 87) for administrator error. In study 2, ACEmobile and ACE-III were then evaluated for their ability to capture accurate measurement. In study 1, 78% of clinically administered ACE-IIIs were either scored incorrectly or had arithmetical errors. In study 2, error rates seen in the ACE-III were reduced by 85%-93% using ACEmobile. Error rates are ubiquitous in routine clinical use of cognitive screening tests and the ACE-III. ACEmobile provides a framework for supporting reduced administration, scoring, and arithmetical error during cognitive screening.
Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C
2017-02-15
Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that are modulated by the brain chemical dopamine are sensitive to reward variability. Here, we aimed to directly relate dopamine to learning about variable rewards, and the neural encoding of associated teaching signals. We perturbed dopamine in healthy individuals using dopaminergic medication and asked them to predict variable rewards while we made brain scans. Dopamine perturbations impaired learning and the neural encoding of reward variability, thus establishing a direct link between dopamine and adaptation to reward variability. These results aid our understanding of clinical conditions associated with dopaminergic dysfunction, such as psychosis. Copyright © 2017 Diederen et al.
Fabbretti, G
2010-06-01
Because of its complex nature, surgical pathology practice is prone to error. In this report, we describe our methods for reducing error as much as possible during the pre-analytical and analytical phases. This was achieved by revising procedures, and by using computer technology and automation. Most mistakes are the result of human error in the identification and matching of patient and samples. To avoid faulty data interpretation, we employed a new comprehensive computer system that acquires all patient ID information directly from the hospital's database with a remote order entry; it also provides label and request forms via-Web where clinical information is required before sending the sample. Both patient and sample are identified directly and immediately at the site where the surgical procedures are performed. Barcode technology is used to input information at every step and automation is used for sample blocks and slides to avoid errors that occur when information is recorded or transferred by hand. Quality control checks occur at every step of the process to ensure that none of the steps are left to chance and that no phase is dependent on a single operator. The system also provides statistical analysis of errors so that new strategies can be implemented to avoid repetition. In addition, the staff receives frequent training on avoiding errors and new developments. The results have been shown promising results with a very low error rate (0.27%). None of these compromised patient health and all errors were detected before the release of the diagnosis report.
Alexander, John H; Levy, Elliott; Lawrence, Jack; Hanna, Michael; Waclawski, Anthony P; Wang, Junyuan; Califf, Robert M; Wallentin, Lars; Granger, Christopher B
2013-09-01
In ARISTOTLE, apixaban resulted in a 21% reduction in stroke, a 31% reduction in major bleeding, and an 11% reduction in death. However, approval of apixaban was delayed to investigate a statement in the clinical study report that "7.3% of subjects in the apixaban group and 1.2% of subjects in the warfarin group received, at some point during the study, a container of the wrong type." Rates of study medication dispensing error were characterized through reviews of study medication container tear-off labels in 6,520 participants from randomly selected study sites. The potential effect of dispensing errors on study outcomes was statistically simulated in sensitivity analyses in the overall population. The rate of medication dispensing error resulting in treatment error was 0.04%. Rates of participants receiving at least 1 incorrect container were 1.04% (34/3,273) in the apixaban group and 0.77% (25/3,247) in the warfarin group. Most of the originally reported errors were data entry errors in which the correct medication container was dispensed but the wrong container number was entered into the case report form. Sensitivity simulations in the overall trial population showed no meaningful effect of medication dispensing error on the main efficacy and safety outcomes. Rates of medication dispensing error were low and balanced between treatment groups. The initially reported dispensing error rate was the result of data recording and data management errors and not true medication dispensing errors. These analyses confirm the previously reported results of ARISTOTLE. © 2013.
Impact of Standardized Communication Techniques on Errors during Simulated Neonatal Resuscitation.
Yamada, Nicole K; Fuerch, Janene H; Halamek, Louis P
2016-03-01
Current patterns of communication in high-risk clinical situations, such as resuscitation, are imprecise and prone to error. We hypothesized that the use of standardized communication techniques would decrease the errors committed by resuscitation teams during neonatal resuscitation. In a prospective, single-blinded, matched pairs design with block randomization, 13 subjects performed as a lead resuscitator in two simulated complex neonatal resuscitations. Two nurses assisted each subject during the simulated resuscitation scenarios. In one scenario, the nurses used nonstandard communication; in the other, they used standardized communication techniques. The performance of the subjects was scored to determine errors committed (defined relative to the Neonatal Resuscitation Program algorithm), time to initiation of positive pressure ventilation (PPV), and time to initiation of chest compressions (CC). In scenarios in which subjects were exposed to standardized communication techniques, there was a trend toward decreased error rate, time to initiation of PPV, and time to initiation of CC. While not statistically significant, there was a 1.7-second improvement in time to initiation of PPV and a 7.9-second improvement in time to initiation of CC. Should these improvements in human performance be replicated in the care of real newborn infants, they could improve patient outcomes and enhance patient safety. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Propagation of stage measurement uncertainties to streamflow time series
NASA Astrophysics Data System (ADS)
Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary
2016-04-01
Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.
Tully, Mary P; Buchan, Iain E
2009-12-01
To investigate the prevalence of prescribing errors identified by pharmacists in hospital inpatients and the factors influencing error identification rates by pharmacists throughout hospital admission. 880-bed university teaching hospital in North-west England. Data about prescribing errors identified by pharmacists (median: 9 (range 4-17) collecting data per day) when conducting routine work were prospectively recorded on 38 randomly selected days over 18 months. Proportion of new medication orders in which an error was identified; predictors of error identification rate, adjusted for workload and seniority of pharmacist, day of week, type of ward or stage of patient admission. 33,012 new medication orders were reviewed for 5,199 patients; 3,455 errors (in 10.5% of orders) were identified for 2,040 patients (39.2%; median 1, range 1-12). Most were problem orders (1,456, 42.1%) or potentially significant errors (1,748, 50.6%); 197 (5.7%) were potentially serious; 1.6% (n = 54) were potentially severe or fatal. Errors were 41% (CI: 28-56%) more likely to be identified at patient's admission than at other times, independent of confounders. Workload was the strongest predictor of error identification rates, with 40% (33-46%) less errors identified on the busiest days than at other times. Errors identified fell by 1.9% (1.5-2.3%) for every additional chart checked, independent of confounders. Pharmacists routinely identify errors but increasing workload may reduce identification rates. Where resources are limited, they may be better spent on identifying and addressing errors immediately after admission to hospital.
Uy, Raymonde Charles Y.; Kury, Fabricio P.; Fontelo, Paul A.
2015-01-01
The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions. PMID:26958264
An Automatic Quality Control Pipeline for High-Throughput Screening Hit Identification.
Zhai, Yufeng; Chen, Kaisheng; Zhong, Yang; Zhou, Bin; Ainscow, Edward; Wu, Ying-Ta; Zhou, Yingyao
2016-09-01
The correction or removal of signal errors in high-throughput screening (HTS) data is critical to the identification of high-quality lead candidates. Although a number of strategies have been previously developed to correct systematic errors and to remove screening artifacts, they are not universally effective and still require fair amount of human intervention. We introduce a fully automated quality control (QC) pipeline that can correct generic interplate systematic errors and remove intraplate random artifacts. The new pipeline was first applied to ~100 large-scale historical HTS assays; in silico analysis showed auto-QC led to a noticeably stronger structure-activity relationship. The method was further tested in several independent HTS runs, where QC results were sampled for experimental validation. Significantly increased hit confirmation rates were obtained after the QC steps, confirming that the proposed method was effective in enriching true-positive hits. An implementation of the algorithm is available to the screening community. © 2016 Society for Laboratory Automation and Screening.
Dudoit, Sandrine; Gilbert, Houston N.; van der Laan, Mark J.
2014-01-01
Summary This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad class of Type I error rates, defined as generalized tail probability (gTP) error rates, gTP(q, g) = Pr(g(Vn, Sn) > q), and generalized expected value (gEV) error rates, gEV(g) = E[g(Vn, Sn)], for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. Of particular interest are error rates based on the proportion g(Vn, Sn) = Vn/(Vn + Sn) of Type I errors among the rejected hypotheses, such as the false discovery rate (FDR), FDR = E[Vn/(Vn + Sn)]. The proposed procedures offer several advantages over existing methods. They provide Type I error control for general data generating distributions, with arbitrary dependence structures among variables. Gains in power are achieved by deriving rejection regions based on guessed sets of true null hypotheses and null test statistics randomly sampled from joint distributions that account for the dependence structure of the data. The Type I error and power properties of an FDR-controlling version of the resampling-based empirical Bayes approach are investigated and compared to those of widely-used FDR-controlling linear step-up procedures in a simulation study. The Type I error and power trade-off achieved by the empirical Bayes procedures under a variety of testing scenarios allows this approach to be competitive with or outperform the Storey and Tibshirani (2003) linear step-up procedure, as an alternative to the classical Benjamini and Hochberg (1995) procedure. PMID:18932138
Nickerson, Naomi H; Li, Ying; Benjamin, Simon C
2013-01-01
A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.
Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang
2018-01-01
The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707
NASA Astrophysics Data System (ADS)
Moustris, Konstantinos; Tsiros, Ioannis X.; Tseliou, Areti; Nastos, Panagiotis
2018-04-01
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis
2018-04-11
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or “facts,” are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval). PMID:28910404
Mogull, Scott A
2017-01-01
Previous reviews estimated that approximately 20 to 25% of assertions cited from original research articles, or "facts," are inaccurately quoted in the medical literature. These reviews noted that the original studies were dissimilar and only began to compare the methods of the original studies. The aim of this review is to examine the methods of the original studies and provide a more specific rate of incorrectly cited assertions, or quotation errors, in original research articles published in medical journals. Additionally, the estimate of quotation errors calculated here is based on the ratio of quotation errors to quotations examined (a percent) rather than the more prevalent and weighted metric of quotation errors to the references selected. Overall, this resulted in a lower estimate of the quotation error rate in original medical research articles. A total of 15 studies met the criteria for inclusion in the primary quantitative analysis. Quotation errors were divided into two categories: content ("factual") or source (improper indirect citation) errors. Content errors were further subdivided into major and minor errors depending on the degree that the assertion differed from the original source. The rate of quotation errors recalculated here is 14.5% (10.5% to 18.6% at a 95% confidence interval). These content errors are predominantly, 64.8% (56.1% to 73.5% at a 95% confidence interval), major errors or cited assertions in which the referenced source either fails to substantiate, is unrelated to, or contradicts the assertion. Minor errors, which are an oversimplification, overgeneralization, or trivial inaccuracies, are 35.2% (26.5% to 43.9% at a 95% confidence interval). Additionally, improper secondary (or indirect) citations, which are distinguished from calculations of quotation accuracy, occur at a rate of 10.4% (3.4% to 17.5% at a 95% confidence interval).
Tsuji, Toshikazu; Nagata, Kenichiro; Kawashiri, Takehiro; Yamada, Takaaki; Irisa, Toshihiro; Murakami, Yuko; Kanaya, Akiko; Egashira, Nobuaki; Masuda, Satohiro
2016-01-01
There are many reports regarding various medical institutions' attempts at the prevention of dispensing errors. However, the relationship between occurrence timing of dispensing errors and subsequent danger to patients has not been studied under the situation according to the classification of drugs by efficacy. Therefore, we analyzed the relationship between position and time regarding the occurrence of dispensing errors. Furthermore, we investigated the relationship between occurrence timing of them and danger to patients. In this study, dispensing errors and incidents in three categories (drug name errors, drug strength errors, drug count errors) were classified into two groups in terms of its drug efficacy (efficacy similarity (-) group, efficacy similarity (+) group), into three classes in terms of the occurrence timing of dispensing errors (initial phase errors, middle phase errors, final phase errors). Then, the rates of damage shifting from "dispensing errors" to "damage to patients" were compared as an index of danger between two groups and among three classes. Consequently, the rate of damage in "efficacy similarity (-) group" was significantly higher than that in "efficacy similarity (+) group". Furthermore, the rate of damage is the highest in "initial phase errors", the lowest in "final phase errors" among three classes. From the results of this study, it became clear that the earlier the timing of dispensing errors occurs, the more severe the damage to patients becomes.
ERIC Educational Resources Information Center
Birjandi, Parviz; Siyyari, Masood
2016-01-01
This paper presents the results of an investigation into the role of two personality traits (i.e. Agreeableness and Conscientiousness from the Big Five personality traits) in predicting rating error in the self-assessment and peer-assessment of composition writing. The average self/peer-rating errors of 136 Iranian English major undergraduates…
National Suicide Rates a Century after Durkheim: Do We Know Enough to Estimate Error?
ERIC Educational Resources Information Center
Claassen, Cynthia A.; Yip, Paul S.; Corcoran, Paul; Bossarte, Robert M.; Lawrence, Bruce A.; Currier, Glenn W.
2010-01-01
Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the…
The Relationship of Error Rate and Comprehension in Second and Third Grade Oral Reading Fluency
ERIC Educational Resources Information Center
Abbott, Mary; Wills, Howard; Miller, Angela; Kaufman, Journ
2012-01-01
This study explored the relationships of oral reading speed and error rate on comprehension with second and third grade students with identified reading risk. The study included 920 second and 974 third graders. Results found a significant relationship between error rate, oral reading fluency, and reading comprehension performance, and…
What Are Error Rates for Classifying Teacher and School Performance Using Value-Added Models?
ERIC Educational Resources Information Center
Schochet, Peter Z.; Chiang, Hanley S.
2013-01-01
This article addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using a realistic performance measurement system scheme based on hypothesis testing, the authors develop error rate formulas based on ordinary least squares and…
NASA Technical Reports Server (NTRS)
Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)
1998-01-01
Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.
Simulating Human Cognition in the Domain of Air Traffic Control
NASA Technical Reports Server (NTRS)
Freed, Michael; Johnston, James C.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Experiments intended to assess performance in human-machine interactions are often prohibitively expensive, unethical or otherwise impractical to run. Approximations of experimental results can be obtained, in principle, by simulating the behavior of subjects using computer models of human mental behavior. Computer simulation technology has been developed for this purpose. Our goal is to produce a cognitive model suitable to guide the simulation machinery and enable it to closely approximate a human subject's performance in experimental conditions. The described model is designed to simulate a variety of cognitive behaviors involved in routine air traffic control. As the model is elaborated, our ability to predict the effects of novel circumstances on controller error rates and other performance characteristics should increase. This will enable the system to project the impact of proposed changes to air traffic control procedures and equipment on controller performance.
ERIC Educational Resources Information Center
Shear, Benjamin R.; Zumbo, Bruno D.
2013-01-01
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Decrease in medical command errors with use of a "standing orders" protocol system.
Holliman, C J; Wuerz, R C; Meador, S A
1994-05-01
The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)
Quantifying Data Quality for Clinical Trials Using Electronic Data Capture
Nahm, Meredith L.; Pieper, Carl F.; Cunningham, Maureen M.
2008-01-01
Background Historically, only partial assessments of data quality have been performed in clinical trials, for which the most common method of measuring database error rates has been to compare the case report form (CRF) to database entries and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs typically leveraged for quality measurement are not used in EDC processes. Methods and Principal Findings The National Institute on Drug Abuse Treatment Clinical Trials Network has developed, implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-to-database error rates reported in the published literature. We attribute this largely to an absence of medical record abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions. Conclusions Historically, medical record abstraction is the most significant source of error by an order of magnitude, and should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent on the amount of structured data collection in the clinical setting and on the complexity of the medical record, dependencies that should be considered when developing data quality benchmarks. PMID:18725958
Human error and the search for blame
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Human error is a frequent topic in discussions about risks in using computer systems. A rational analysis of human error leads through the consideration of mistakes to standards that designers use to avoid mistakes that lead to known breakdowns. The irrational side, however, is more interesting. It conditions people to think that breakdowns are inherently wrong and that there is ultimately someone who is responsible. This leads to a search for someone to blame which diverts attention from: learning from the mistakes; seeing the limitations of current engineering methodology; and improving the discourse of design.
Data entry errors and design for model-based tight glycemic control in critical care.
Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey
2012-01-01
Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. The final data entry method tested reduced errors to less than 1-2%, a 60-80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0-20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols. © 2012 Diabetes Technology Society.
Liu, Tongran; Xiao, Tong; Shi, Jiannong
2013-02-13
Response inhibition and preattentive processing are two important cognitive abilities for child development, and the current study adopted both behavioral and electrophysiological protocols to examine whether young children's response inhibition correlated with their preattentive processing. A Go/Nogo task was used to explore young children's response inhibition performances and an Oddball task with event-related potential recordings was used to measure their preattentive processing. The behavioral results showed that girls committed significantly fewer commission error rates, which showed that girls had stronger inhibition control abilities than boys. Girls also achieved higher d' scores in the Go/Nogo task, which indicated that they were more sensitive to the stimulus signals than boys. Although the electrophysiological results of preattentive processing did not show any sex differences, the correlation patterns between children's response inhibition and preattentive processing were different between these two groups: the neural response speed of preattentive processing (mismatch negativity peak latency) negatively correlated with girls' commission error rates and positively correlated with boys' correct hit rates. The current findings supported that the preattentive processing correlated with human inhibition control performances, and further showed that girls' better inhibition responses might be because of the influence of their preattentive processing.
NASA Technical Reports Server (NTRS)
Safren, H. G.
1987-01-01
The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.
[Improvement of team competence in the operating room : Training programs from aviation].
Schmidt, C E; Hardt, F; Möller, J; Malchow, B; Schmidt, K; Bauer, M
2010-08-01
Growing attention has been drawn to patient safety during recent months due to media reports of clinical errors. To date only clinical incident reporting systems have been implemented in acute care hospitals as instruments of risk management. However, these systems only have a limited impact on human factors which account for the majority of all errors in medicine. Crew resource management (CRM) starts here. For the commissioning of a new hospital in Minden, training programs were installed in order to maintain patient safety in a new complex environment. The training was planned in three parts: All relevant processes were defined as standard operating procedures (SOP), visualized and then simulated in the new building. In addition, staff members (trainers) in leading positions were trained in CRM in order to train the complete staff. The training programs were analyzed by questionnaires. Selection of topics, relevance for practice and mode of presentation were rated as very good by 73% of the participants. The staff members ranked the topics communication in crisis situations, individual errors and compensating measures as most important followed by case studies and teamwork. Employees improved in compliance to the SOP, team competence and communication. In high technology environments with escalating workloads and interdisciplinary organization, staff members are confronted with increasing demands in knowledge and skills. To reduce errors under such working conditions relevant processes should be standardized and trained for the emergency situation. Human performance can be supported by well-trained interpersonal skills which are evolved in CRM training. In combination these training programs make a significant contribution to maintaining patient safety.
Why do adult dogs (Canis familiaris) commit the A-not-B search error?
Sümegi, Zsófia; Kis, Anna; Miklósi, Ádám; Topál, József
2014-02-01
It has been recently reported that adult domestic dogs, like human infants, tend to commit perseverative search errors; that is, they select the previously rewarded empty location in Piagetian A-not-B search task because of the experimenter's ostensive communicative cues. There is, however, an ongoing debate over whether these findings reveal that dogs can use the human ostensive referential communication as a source of information or the phenomenon can be accounted for by "more simple" explanations like insufficient attention and learning based on local enhancement. In 2 experiments the authors systematically manipulated the type of human cueing (communicative or noncommunicative) adjacent to the A hiding place during both the A and B trials. Results highlight 3 important aspects of the dogs' A-not-B error: (a) search errors are influenced to a certain extent by dogs' motivation to retrieve the toy object; (b) human communicative and noncommunicative signals have different error-inducing effects; and (3) communicative signals presented at the A hiding place during the B trials but not during the A trials play a crucial role in inducing the A-not-B error and it can be induced even without demonstrating repeated hiding events at location A. These findings further confirm the notion that perseverative search error, at least partially, reflects a "ready-to-obey" attitude in the dog rather than insufficient attention and/or working memory.
The random coding bound is tight for the average code.
NASA Technical Reports Server (NTRS)
Gallager, R. G.
1973-01-01
The random coding bound of information theory provides a well-known upper bound to the probability of decoding error for the best code of a given rate and block length. The bound is constructed by upperbounding the average error probability over an ensemble of codes. The bound is known to give the correct exponential dependence of error probability on block length for transmission rates above the critical rate, but it gives an incorrect exponential dependence at rates below a second lower critical rate. Here we derive an asymptotic expression for the average error probability over the ensemble of codes used in the random coding bound. The result shows that the weakness of the random coding bound at rates below the second critical rate is due not to upperbounding the ensemble average, but rather to the fact that the best codes are much better than the average at low rates.
Common medial frontal mechanisms of adaptive control in humans and rodents
Frank, Michael J.; Laubach, Mark
2013-01-01
In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310
#2 - An Empirical Assessment of Exposure Measurement Error ...
Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation of effect estimates in single and bipollutantepidemiological models The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
A prospective audit of a nurse independent prescribing within critical care.
Carberry, Martin; Connelly, Sarah; Murphy, Jennifer
2013-05-01
To determine the prescribing activity of different staff groups within intensive care unit (ICU) and combined high dependency unit (HDU), namely trainee and consultant medical staff and advanced nurse practitioners in critical care (ANPCC); to determine the number and type of prescription errors; to compare error rates between prescribing groups and to raise awareness of prescribing activity within critical care. The introduction of government legislation has led to the development of non-medical prescribing roles in acute care. This has facilitated an opportunity for the ANPCC working in critical care to develop a prescribing role. The audit was performed over 7 days (Monday-Sunday), on rolling days over a 7-week period in September and October 2011 in three ICUs. All drug entries made on the ICU prescription by the three groups, trainee medical staff, ANPCCs and consultant anaesthetists, were audited once for errors. Data were collected by reviewing all drug entries for errors namely, patient data, drug dose, concentration, rate and frequency, legibility and prescriber signature. A paper data collection tool was used initially; data was later entered onto a Microsoft Access data base. A total of 1418 drug entries were audited from 77 patient prescription Cardexes. Error rates were reported as, 40 errors in 1418 prescriptions (2·8%): ANPCC errors, n = 2 in 388 prescriptions (0·6%); trainee medical staff errors, n = 33 in 984 (3·4%); consultant errors, n = 5 in 73 (6·8%). The error rates were significantly different for different prescribing groups (p < 0·01). This audit shows that prescribing error rates were low (2·8%). Having the lowest error rate, the nurse practitioners are at least as effective as other prescribing groups within this audit, in terms of errors only, in prescribing diligence. National data is required in order to benchmark independent nurse prescribing practice in critical care. These findings could be used to inform research and role development within the critical care. © 2012 The Authors. Nursing in Critical Care © 2012 British Association of Critical Care Nurses.
Viral quasispecies inference from 454 pyrosequencing
2013-01-01
Background Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. Results Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. Conclusions The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses. PMID:24308284
Blood pulsation measurement using cameras operating in visible light: limitations.
Koprowski, Robert
2016-10-03
The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).
Huckels-Baumgart, Saskia; Baumgart, André; Buschmann, Ute; Schüpfer, Guido; Manser, Tanja
2016-12-21
Interruptions and errors during the medication process are common, but published literature shows no evidence supporting whether separate medication rooms are an effective single intervention in reducing interruptions and errors during medication preparation in hospitals. We tested the hypothesis that the rate of interruptions and reported medication errors would decrease as a result of the introduction of separate medication rooms. Our aim was to evaluate the effect of separate medication rooms on interruptions during medication preparation and on self-reported medication error rates. We performed a preintervention and postintervention study using direct structured observation of nurses during medication preparation and daily structured medication error self-reporting of nurses by questionnaires in 2 wards at a major teaching hospital in Switzerland. A volunteer sample of 42 nurses was observed preparing 1498 medications for 366 patients over 17 hours preintervention and postintervention on both wards. During 122 days, nurses completed 694 reporting sheets containing 208 medication errors. After the introduction of the separate medication room, the mean interruption rate decreased significantly from 51.8 to 30 interruptions per hour (P < 0.01), and the interruption-free preparation time increased significantly from 1.4 to 2.5 minutes (P < 0.05). Overall, the mean medication error rate per day was also significantly reduced after implementation of the separate medication room from 1.3 to 0.9 errors per day (P < 0.05). The present study showed the positive effect of a hospital-based intervention; after the introduction of the separate medication room, the interruption and medication error rates decreased significantly.
2011-01-01
Background The generation and analysis of high-throughput sequencing data are becoming a major component of many studies in molecular biology and medical research. Illumina's Genome Analyzer (GA) and HiSeq instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150 bases. Results We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation between read coverage and GC content was found depending on the GC content range. Conclusions The errors and biases we report have implications for the use and the interpretation of Illumina sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a criterion to distinguish sequencing errors from low abundance polymorphisms. PMID:22067484
Kinetics and thermodynamics of exonuclease-deficient DNA polymerases
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-04-01
A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.
ERIC Educational Resources Information Center
Schochet, Peter Z.; Chiang, Hanley S.
2010-01-01
This paper addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using realistic performance measurement system schemes based on hypothesis testing, we develop error rate formulas based on OLS and Empirical Bayes estimators.…
Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De
2016-01-01
The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).
Sethuraman, Usha; Kannikeswaran, Nirupama; Murray, Kyle P; Zidan, Marwan A; Chamberlain, James M
2015-06-01
Prescription errors occur frequently in pediatric emergency departments (PEDs).The effect of computerized physician order entry (CPOE) with electronic medication alert system (EMAS) on these is unknown. The objective was to compare prescription errors rates before and after introduction of CPOE with EMAS in a PED. The hypothesis was that CPOE with EMAS would significantly reduce the rate and severity of prescription errors in the PED. A prospective comparison of a sample of outpatient, medication prescriptions 5 months before and after CPOE with EMAS implementation (7,268 before and 7,292 after) was performed. Error types and rates, alert types and significance, and physician response were noted. Medication errors were deemed significant if there was a potential to cause life-threatening injury, failure of therapy, or an adverse drug effect. There was a significant reduction in the errors per 100 prescriptions (10.4 before vs. 7.3 after; absolute risk reduction = 3.1, 95% confidence interval [CI] = 2.2 to 4.0). Drug dosing error rates decreased from 8 to 5.4 per 100 (absolute risk reduction = 2.6, 95% CI = 1.8 to 3.4). Alerts were generated for 29.6% of prescriptions, with 45% involving drug dose range checking. The sensitivity of CPOE with EMAS in identifying errors in prescriptions was 45.1% (95% CI = 40.8% to 49.6%), and the specificity was 57% (95% CI = 55.6% to 58.5%). Prescribers modified 20% of the dosing alerts, resulting in the error not reaching the patient. Conversely, 11% of true dosing alerts for medication errors were overridden by the prescribers: 88 (11.3%) resulted in medication errors, and 684 (88.6%) were false-positive alerts. A CPOE with EMAS was associated with a decrease in overall prescription errors in our PED. Further system refinements are required to reduce the high false-positive alert rates. © 2015 by the Society for Academic Emergency Medicine.
Performance improvement of robots using a learning control scheme
NASA Technical Reports Server (NTRS)
Krishna, Ramuhalli; Chiang, Pen-Tai; Yang, Jackson C. S.
1987-01-01
Many applications of robots require that the same task be repeated a number of times. In such applications, the errors associated with one cycle are also repeated every cycle of the operation. An off-line learning control scheme is used here to modify the command function which would result in smaller errors in the next operation. The learning scheme is based on a knowledge of the errors and error rates associated with each cycle. Necessary conditions for the iterative scheme to converge to zero errors are derived analytically considering a second order servosystem model. Computer simulations show that the errors are reduced at a faster rate if the error rate is included in the iteration scheme. The results also indicate that the scheme may increase the magnitude of errors if the rate information is not included in the iteration scheme. Modification of the command input using a phase and gain adjustment is also proposed to reduce the errors with one attempt. The scheme is then applied to a computer model of a robot system similar to PUMA 560. Improved performance of the robot is shown by considering various cases of trajectory tracing. The scheme can be successfully used to improve the performance of actual robots within the limitations of the repeatability and noise characteristics of the robot.
Martis, Walston R; Hannam, Jacqueline A; Lee, Tracey; Merry, Alan F; Mitchell, Simon J
2016-09-09
A new approach to administering the surgical safety checklist (SSC) at our institution using wall-mounted charts for each SSC domain coupled with migrated leadership among operating room (OR) sub-teams, led to improved compliance with the Sign Out domain. Since surgical specimens are reviewed at Sign Out, we aimed to quantify any related change in surgical specimen labelling errors. Prospectively maintained error logs for surgical specimens sent to pathology were examined for the six months before and after introduction of the new SSC administration paradigm. We recorded errors made in the labelling or completion of the specimen pot and on the specimen laboratory request form. Total error rates were calculated from the number of errors divided by total number of specimens. Rates from the two periods were compared using a chi square test. There were 19 errors in 4,760 specimens (rate 3.99/1,000) and eight errors in 5,065 specimens (rate 1.58/1,000) before and after the change in SSC administration paradigm (P=0.0225). Improved compliance with administering the Sign Out domain of the SSC can reduce surgical specimen errors. This finding provides further evidence that OR teams should optimise compliance with the SSC.
Citation Help in Databases: The More Things Change, the More They Stay the Same
ERIC Educational Resources Information Center
Van Ullen, Mary; Kessler, Jane
2012-01-01
In 2005, the authors reviewed citation help in databases and found an error rate of 4.4 errors per citation. This article describes a follow-up study that revealed a modest improvement in the error rate to 3.4 errors per citation, still unacceptably high. The most problematic area was retrieval statements. The authors conclude that librarians…
ERIC Educational Resources Information Center
Hodgson, Catherine; Lambon Ralph, Matthew A.
2008-01-01
Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study…
Physical fault tolerance of nanoelectronics.
Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N
2011-04-29
The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Cutting the Cord: Discrimination and Command Responsibility in Autonomous Lethal Weapons
2014-02-13
machine responses to identical stimuli, and it was the job of a third party human “witness” to determine which participant was man and which was...machines may be error free, but there are potential benefits to be gained through autonomy if machines can meet or exceed human performance in...lieu of human operators and reap the benefits that autonomy provides. Human and Machine Error It would be foolish to assert that either humans
Human error identification for laparoscopic surgery: Development of a motion economy perspective.
Al-Hakim, Latif; Sevdalis, Nick; Maiping, Tanaphon; Watanachote, Damrongpan; Sengupta, Shomik; Dissaranan, Charuspong
2015-09-01
This study postulates that traditional human error identification techniques fail to consider motion economy principles and, accordingly, their applicability in operating theatres may be limited. This study addresses this gap in the literature with a dual aim. First, it identifies the principles of motion economy that suit the operative environment and second, it develops a new error mode taxonomy for human error identification techniques which recognises motion economy deficiencies affecting the performance of surgeons and predisposing them to errors. A total of 30 principles of motion economy were developed and categorised into five areas. A hierarchical task analysis was used to break down main tasks of a urological laparoscopic surgery (hand-assisted laparoscopic nephrectomy) to their elements and the new taxonomy was used to identify errors and their root causes resulting from violation of motion economy principles. The approach was prospectively tested in 12 observed laparoscopic surgeries performed by 5 experienced surgeons. A total of 86 errors were identified and linked to the motion economy deficiencies. Results indicate the developed methodology is promising. Our methodology allows error prevention in surgery and the developed set of motion economy principles could be useful for training surgeons on motion economy principles. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Quantizing and sampling considerations in digital phased-locked loops
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.
Organizational safety culture and medical error reporting by Israeli nurses.
Kagan, Ilya; Barnoy, Sivia
2013-09-01
To investigate the association between patient safety culture (PSC) and the incidence and reporting rate of medical errors by Israeli nurses. Self-administered structured questionnaires were distributed to a convenience sample of 247 registered nurses enrolled in training programs at Tel Aviv University (response rate = 91%). The questionnaire's three sections examined the incidence of medication mistakes in clinical practice, the reporting rate for these errors, and the participants' views and perceptions of the safety culture in their workplace at three levels (organizational, departmental, and individual performance). Pearson correlation coefficients, t tests, and multiple regression analysis were used to analyze the data. Most nurses encountered medical errors from a daily to a weekly basis. Six percent of the sample never reported their own errors, while half reported their own errors "rarely or sometimes." The level of PSC was positively and significantly correlated with the error reporting rate. PSC, place of birth, error incidence, and not having an academic nursing degree were significant predictors of error reporting, together explaining 28% of variance. This study confirms the influence of an organizational safety climate on readiness to report errors. Senior healthcare executives and managers can make a major impact on safety culture development by creating and promoting a vision and strategy for quality and safety and fostering their employees' motivation to implement improvement programs at the departmental and individual level. A positive, carefully designed organizational safety culture can encourage error reporting by staff and so improve patient safety. © 2013 Sigma Theta Tau International.
Software for Quantifying and Simulating Microsatellite Genotyping Error
Johnson, Paul C.D.; Haydon, Daniel T.
2007-01-01
Microsatellite genetic marker data are exploited in a variety of fields, including forensics, gene mapping, kinship inference and population genetics. In all of these fields, inference can be thwarted by failure to quantify and account for data errors, and kinship inference in particular can benefit from separating errors into two distinct classes: allelic dropout and false alleles. Pedant is MS Windows software for estimating locus-specific maximum likelihood rates of these two classes of error. Estimation is based on comparison of duplicate error-prone genotypes: neither reference genotypes nor pedigree data are required. Other functions include: plotting of error rate estimates and confidence intervals; simulations for performing power analysis and for testing the robustness of error rate estimates to violation of the underlying assumptions; and estimation of expected heterozygosity, which is a required input. The program, documentation and source code are available from http://www.stats.gla.ac.uk/~paulj/pedant.html. PMID:20066126
Westbrook, Johanna I; Raban, Magdalena Z; Walter, Scott R; Douglas, Heather
2018-01-09
Interruptions and multitasking have been demonstrated in experimental studies to reduce individuals' task performance. These behaviours are frequently used by clinicians in high-workload, dynamic clinical environments, yet their effects have rarely been studied. To assess the relative contributions of interruptions and multitasking by emergency physicians to prescribing errors. 36 emergency physicians were shadowed over 120 hours. All tasks, interruptions and instances of multitasking were recorded. Physicians' working memory capacity (WMC) and preference for multitasking were assessed using the Operation Span Task (OSPAN) and Inventory of Polychronic Values. Following observation, physicians were asked about their sleep in the previous 24 hours. Prescribing errors were used as a measure of task performance. We performed multivariate analysis of prescribing error rates to determine associations with interruptions and multitasking, also considering physician seniority, age, psychometric measures, workload and sleep. Physicians experienced 7.9 interruptions/hour. 28 clinicians were observed prescribing 239 medication orders which contained 208 prescribing errors. While prescribing, clinicians were interrupted 9.4 times/hour. Error rates increased significantly if physicians were interrupted (rate ratio (RR) 2.82; 95% CI 1.23 to 6.49) or multitasked (RR 1.86; 95% CI 1.35 to 2.56) while prescribing. Having below-average sleep showed a >15-fold increase in clinical error rate (RR 16.44; 95% CI 4.84 to 55.81). WMC was protective against errors; for every 10-point increase on the 75-point OSPAN, a 19% decrease in prescribing errors was observed. There was no effect of polychronicity, workload, physician gender or above-average sleep on error rates. Interruptions, multitasking and poor sleep were associated with significantly increased rates of prescribing errors among emergency physicians. WMC mitigated the negative influence of these factors to an extent. These results confirm experimental findings in other fields and raise questions about the acceptability of the high rates of multitasking and interruption in clinical environments. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Managing human error in aviation.
Helmreich, R L
1997-05-01
Crew resource management (CRM) programs were developed to address team and leadership aspects of piloting modern airplanes. The goal is to reduce errors through team work. Human factors research and social, cognitive, and organizational psychology are used to develop programs tailored for individual airlines. Flight crews study accident case histories, group dynamics, and human error. Simulators provide pilots with the opportunity to solve complex flight problems. CRM in the simulator is called line-oriented flight training (LOFT). In automated cockpits CRM promotes the idea of automation as a crew member. Cultural aspects of aviation include professional, business, and national culture. The aviation CRM model has been adapted for training surgeons and operating room staff in human factors.
Empirical Analysis of Systematic Communication Errors.
1981-09-01
human o~ . .... 8 components in communication systems. (Systematic errors were defined to be those that occur regularly in human communication links...phase of the human communication process and focuses on the linkage between a specific piece of information (and the receiver) and the transmission...communication flow. (2) Exchange. Exchange is the next phase in human communication and entails a concerted effort on the part of the sender and receiver to share
NASA Technical Reports Server (NTRS)
DeMott, Diana
2013-01-01
Compared to equipment designed to perform the same function over and over, humans are just not as reliable. Computers and machines perform the same action in the same way repeatedly getting the same result, unless equipment fails or a human interferes. Humans who are supposed to perform the same actions repeatedly often perform them incorrectly due to a variety of issues including: stress, fatigue, illness, lack of training, distraction, acting at the wrong time, not acting when they should, not following procedures, misinterpreting information or inattention to detail. Why not use robots and automatic controls exclusively if human error is so common? In an emergency or off normal situation that the computer, robotic element, or automatic control system is not designed to respond to, the result is failure unless a human can intervene. The human in the loop may be more likely to cause an error, but is also more likely to catch the error and correct it. When it comes to unexpected situations, or performing multiple tasks outside the defined mission parameters, humans are the only viable alternative. Human Reliability Assessments (HRA) identifies ways to improve human performance and reliability and can lead to improvements in systems designed to interact with humans. Understanding the context of the situation that can lead to human errors, which include taking the wrong action, no action or making bad decisions provides additional information to mitigate risks. With improved human reliability comes reduced risk for the overall operation or project.
Identifying Human Factors Issues in Aircraft Maintenance Operations
NASA Technical Reports Server (NTRS)
Veinott, Elizabeth S.; Kanki, Barbara G.; Shafto, Michael G. (Technical Monitor)
1995-01-01
Maintenance operations incidents submitted to the Aviation Safety Reporting System (ASRS) between 1986-1992 were systematically analyzed in order to identify issues relevant to human factors and crew coordination. This exploratory analysis involved 95 ASRS reports which represented a wide range of maintenance incidents. The reports were coded and analyzed according to the type of error (e.g, wrong part, procedural error, non-procedural error), contributing factors (e.g., individual, within-team, cross-team, procedure, tools), result of the error (e.g., aircraft damage or not) as well as the operational impact (e.g., aircraft flown to destination, air return, delay at gate). The main findings indicate that procedural errors were most common (48.4%) and that individual and team actions contributed to the errors in more than 50% of the cases. As for operational results, most errors were either corrected after landing at the destination (51.6%) or required the flight crew to stop enroute (29.5%). Interactions among these variables are also discussed. This analysis is a first step toward developing a taxonomy of crew coordination problems in maintenance. By understanding what variables are important and how they are interrelated, we may develop intervention strategies that are better tailored to the human factor issues involved.
Managing Errors to Reduce Accidents in High Consequence Networked Information Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganter, J.H.
1999-02-01
Computers have always helped to amplify and propagate errors made by people. The emergence of Networked Information Systems (NISs), which allow people and systems to quickly interact worldwide, has made understanding and minimizing human error more critical. This paper applies concepts from system safety to analyze how hazards (from hackers to power disruptions) penetrate NIS defenses (e.g., firewalls and operating systems) to cause accidents. Such events usually result from both active, easily identified failures and more subtle latent conditions that have resided in the system for long periods. Both active failures and latent conditions result from human errors. We classifymore » these into several types (slips, lapses, mistakes, etc.) and provide NIS examples of how they occur. Next we examine error minimization throughout the NIS lifecycle, from design through operation to reengineering. At each stage, steps can be taken to minimize the occurrence and effects of human errors. These include defensive design philosophies, architectural patterns to guide developers, and collaborative design that incorporates operational experiences and surprises into design efforts. We conclude by looking at three aspects of NISs that will cause continuing challenges in error and accident management: immaturity of the industry, limited risk perception, and resource tradeoffs.« less
Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers
NASA Technical Reports Server (NTRS)
Ha, Eunho; North, Gerald R.
1995-01-01
Low-frequency (less than 20 GHz) single-channel microwave retrievals of rain rate encounter the problem of beam-filling error. This error stems from the fact that the relationship between microwave brightness temperature and rain rate is nonlinear, coupled with the fact that the field of view is large or comparable to important scales of variability of the rain field. This means that one may not simply insert the area average of the brightness temperature into the formula for rain rate without incurring both bias and random error. The statistical heterogeneity of the rain-rate field in the footprint of the instrument is key to determining the nature of these errors. This paper makes use of a series of random rain-rate fields to study the size of the bias and random error associated with beam filling. A number of examples are analyzed in detail: the binomially distributed field, the gamma, the Gaussian, the mixed gamma, the lognormal, and the mixed lognormal ('mixed' here means there is a finite probability of no rain rate at a point of space-time). Of particular interest are the applicability of a simple error formula due to Chiu and collaborators and a formula that might hold in the large field of view limit. It is found that the simple formula holds for Gaussian rain-rate fields but begins to fail for highly skewed fields such as the mixed lognormal. While not conclusively demonstrated here, it is suggested that the notionof climatologically adjusting the retrievals to remove the beam-filling bias is a reasonable proposition.
Sarter, Nadine
2008-06-01
The goal of this article is to illustrate the problem-driven, cumulative, and highly interdisciplinary nature of human factors research by providing a brief overview of the work on mode errors on modern flight decks over the past two decades. Mode errors on modem flight decks were first reported in the late 1980s. Poor feedback, inadequate mental models of the automation, and the high degree of coupling and complexity of flight deck systems were identified as main contributors to these breakdowns in human-automation interaction. Various improvements of design, training, and procedures were proposed to address these issues. The author describes when and why the problem of mode errors surfaced, summarizes complementary research activities that helped identify and understand the contributing factors to mode errors, and describes some countermeasures that have been developed in recent years. This brief review illustrates how one particular human factors problem in the aviation domain enabled various disciplines and methodological approaches to contribute to a better understanding of, as well as provide better support for, effective human-automation coordination. Converging operations and interdisciplinary collaboration over an extended period of time are hallmarks of successful human factors research. The reported body of research can serve as a model for future research and as a teaching tool for students in this field of work.
The Swiss cheese model of adverse event occurrence--Closing the holes.
Stein, James E; Heiss, Kurt
2015-12-01
Traditional surgical attitude regarding error and complications has focused on individual failings. Human factors research has brought new and significant insights into the occurrence of error in healthcare, helping us identify systemic problems that injure patients while enhancing individual accountability and teamwork. This article introduces human factors science and its applicability to teamwork, surgical culture, medical error, and individual accountability. Copyright © 2015 Elsevier Inc. All rights reserved.
Behind Human Error: Cognitive Systems, Computers and Hindsight
1994-12-01
evaluations • Organize and/or conduct workshops and conferences CSERIAC is a Department of Defense Information Analysis Cen- ter sponsored by the Defense...Process 185 Neutral Observer Criteria 191 Error Analysis as Causal Judgment 193 Error as Information 195 A Fundamental Surprise 195 What is Human...Kahnemann, 1974), and in risk analysis (Dougherty and Fragola, 1990). The discussions have continued in a wide variety of forums, includ- ing the
Kuselman, Ilya; Pennecchi, Francesca; Epstein, Malka; Fajgelj, Ales; Ellison, Stephen L R
2014-12-01
Monte Carlo simulation of expert judgments on human errors in a chemical analysis was used for determination of distributions of the error quantification scores (scores of likelihood and severity, and scores of effectiveness of a laboratory quality system in prevention of the errors). The simulation was based on modeling of an expert behavior: confident, reasonably doubting and irresolute expert judgments were taken into account by means of different probability mass functions (pmfs). As a case study, 36 scenarios of human errors which may occur in elemental analysis of geological samples by ICP-MS were examined. Characteristics of the score distributions for three pmfs of an expert behavior were compared. Variability of the scores, as standard deviation of the simulated score values from the distribution mean, was used for assessment of the score robustness. A range of the score values, calculated directly from elicited data and simulated by a Monte Carlo method for different pmfs, was also discussed from the robustness point of view. It was shown that robustness of the scores, obtained in the case study, can be assessed as satisfactory for the quality risk management and improvement of a laboratory quality system against human errors. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
Human-computer interaction in multitask situations
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1977-01-01
Human-computer interaction in multitask decisionmaking situations is considered, and it is proposed that humans and computers have overlapping responsibilities. Queueing theory is employed to model this dynamic approach to the allocation of responsibility between human and computer. Results of simulation experiments are used to illustrate the effects of several system variables including number of tasks, mean time between arrivals of action-evoking events, human-computer speed mismatch, probability of computer error, probability of human error, and the level of feedback between human and computer. Current experimental efforts are discussed and the practical issues involved in designing human-computer systems for multitask situations are considered.
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-11-01
Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Prakash, Varuna; Koczmara, Christine; Savage, Pamela; Trip, Katherine; Stewart, Janice; McCurdie, Tara; Cafazzo, Joseph A; Trbovich, Patricia
2014-01-01
Background Nurses are frequently interrupted during medication verification and administration; however, few interventions exist to mitigate resulting errors, and the impact of these interventions on medication safety is poorly understood. Objective The study objectives were to (A) assess the effects of interruptions on medication verification and administration errors, and (B) design and test the effectiveness of targeted interventions at reducing these errors. Methods The study focused on medication verification and administration in an ambulatory chemotherapy setting. A simulation laboratory experiment was conducted to determine interruption-related error rates during specific medication verification and administration tasks. Interventions to reduce these errors were developed through a participatory design process, and their error reduction effectiveness was assessed through a postintervention experiment. Results Significantly more nurses committed medication errors when interrupted than when uninterrupted. With use of interventions when interrupted, significantly fewer nurses made errors in verifying medication volumes contained in syringes (16/18; 89% preintervention error rate vs 11/19; 58% postintervention error rate; p=0.038; Fisher's exact test) and programmed in ambulatory pumps (17/18; 94% preintervention vs 11/19; 58% postintervention; p=0.012). The rate of error commission significantly decreased with use of interventions when interrupted during intravenous push (16/18; 89% preintervention vs 6/19; 32% postintervention; p=0.017) and pump programming (7/18; 39% preintervention vs 1/19; 5% postintervention; p=0.017). No statistically significant differences were observed for other medication verification tasks. Conclusions Interruptions can lead to medication verification and administration errors. Interventions were highly effective at reducing unanticipated errors of commission in medication administration tasks, but showed mixed effectiveness at reducing predictable errors of detection in medication verification tasks. These findings can be generalised and adapted to mitigate interruption-related errors in other settings where medication verification and administration are required. PMID:24906806
Hansen, Heidi; Ben-David, Merav; McDonald, David B
2008-03-01
In noninvasive genetic sampling, when genotyping error rates are high and recapture rates are low, misidentification of individuals can lead to overestimation of population size. Thus, estimating genotyping errors is imperative. Nonetheless, conducting multiple polymerase chain reactions (PCRs) at multiple loci is time-consuming and costly. To address the controversy regarding the minimum number of PCRs required for obtaining a consensus genotype, we compared consumer-style the performance of two genotyping protocols (multiple-tubes and 'comparative method') in respect to genotyping success and error rates. Our results from 48 faecal samples of river otters (Lontra canadensis) collected in Wyoming in 2003, and from blood samples of five captive river otters amplified with four different primers, suggest that use of the comparative genotyping protocol can minimize the number of PCRs per locus. For all but five samples at one locus, the same consensus genotypes were reached with fewer PCRs and with reduced error rates with this protocol compared to the multiple-tubes method. This finding is reassuring because genotyping errors can occur at relatively high rates even in tissues such as blood and hair. In addition, we found that loci that amplify readily and yield consensus genotypes, may still exhibit high error rates (7-32%) and that amplification with different primers resulted in different types and rates of error. Thus, assigning a genotype based on a single PCR for several loci could result in misidentification of individuals. We recommend that programs designed to statistically assign consensus genotypes should be modified to allow the different treatment of heterozygotes and homozygotes intrinsic to the comparative method. © 2007 The Authors.
National suicide rates a century after Durkheim: do we know enough to estimate error?
Claassen, Cynthia A; Yip, Paul S; Corcoran, Paul; Bossarte, Robert M; Lawrence, Bruce A; Currier, Glenn W
2010-06-01
Durkheim's nineteenth-century analysis of national suicide rates dismissed prior concerns about mortality data fidelity. Over the intervening century, however, evidence documenting various types of error in suicide data has only mounted, and surprising levels of such error continue to be routinely uncovered. Yet the annual suicide rate remains the most widely used population-level suicide metric today. After reviewing the unique sources of bias incurred during stages of suicide data collection and concatenation, we propose a model designed to uniformly estimate error in future studies. A standardized method of error estimation uniformly applied to mortality data could produce data capable of promoting high quality analyses of cross-national research questions.
Does Mckuer's Law Hold for Heart Rate Control via Biofeedback Display?
NASA Technical Reports Server (NTRS)
Courter, B. J.; Jex, H. R.
1984-01-01
Some persons can control their pulse rate with the aid of a biofeedback display. If the biofeedback display is modified to show the error between a command pulse-rate and the measured rate, a compensatory (error correcting) heart rate tracking control loop can be created. The dynamic response characteristics of this control loop when subjected to step and quasi-random disturbances were measured. The control loop includes a beat-to-beat cardiotachmeter differenced with a forcing function from a quasi-random input generator; the resulting error pulse-rate is displayed as feedback. The subject acts to null the displayed pulse-rate error, thereby closing a compensatory control loop. McRuer's Law should hold for this case. A few subjects already skilled in voluntary pulse-rate control were tested for heart-rate control response. Control-law properties are derived, such as: crossover frequency, stability margins, and closed-loop bandwidth. These are evaluated for a range of forcing functions and for step as well as random disturbances.
Powerful Inference with the D-Statistic on Low-Coverage Whole-Genome Data
Soraggi, Samuele; Wiuf, Carsten; Albrechtsen, Anders
2017-01-01
The detection of ancient gene flow between human populations is an important issue in population genetics. A common tool for detecting ancient admixture events is the D-statistic. The D-statistic is based on the hypothesis of a genetic relationship that involves four populations, whose correctness is assessed by evaluating specific coincidences of alleles between the groups. When working with high-throughput sequencing data, calling genotypes accurately is not always possible; therefore, the D-statistic currently samples a single base from the reads of one individual per population. This implies ignoring much of the information in the data, an issue especially striking in the case of ancient genomes. We provide a significant improvement to overcome the problems of the D-statistic by considering all reads from multiple individuals in each population. We also apply type-specific error correction to combat the problems of sequencing errors, and show a way to correct for introgression from an external population that is not part of the supposed genetic relationship, and how this leads to an estimate of the admixture rate. We prove that the D-statistic is approximated by a standard normal distribution. Furthermore, we show that our method outperforms the traditional D-statistic in detecting admixtures. The power gain is most pronounced for low and medium sequencing depth (1–10×), and performances are as good as with perfectly called genotypes at a sequencing depth of 2×. We show the reliability of error correction in scenarios with simulated errors and ancient data, and correct for introgression in known scenarios to estimate the admixture rates. PMID:29196497
Haplotype estimation using sequencing reads.
Delaneau, Olivier; Howie, Bryan; Cox, Anthony J; Zagury, Jean-François; Marchini, Jonathan
2013-10-03
High-throughput sequencing technologies produce short sequence reads that can contain phase information if they span two or more heterozygote genotypes. This information is not routinely used by current methods that infer haplotypes from genotype data. We have extended the SHAPEIT2 method to use phase-informative sequencing reads to improve phasing accuracy. Our model incorporates the read information in a probabilistic model through base quality scores within each read. The method is primarily designed for high-coverage sequence data or data sets that already have genotypes called. One important application is phasing of single samples sequenced at high coverage for use in medical sequencing and studies of rare diseases. Our method can also use existing panels of reference haplotypes. We tested the method by using a mother-father-child trio sequenced at high-coverage by Illumina together with the low-coverage sequence data from the 1000 Genomes Project (1000GP). We found that use of phase-informative reads increases the mean distance between switch errors by 22% from 274.4 kb to 328.6 kb. We also used male chromosome X haplotypes from the 1000GP samples to simulate sequencing reads with varying insert size, read length, and base error rate. When using short 100 bp paired-end reads, we found that using mixtures of insert sizes produced the best results. When using longer reads with high error rates (5-20 kb read with 4%-15% error per base), phasing performance was substantially improved. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Online automatic tuning and control for fed-batch cultivation
van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.
2007-01-01
Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554
Total Dose Effects on Error Rates in Linear Bipolar Systems
NASA Technical Reports Server (NTRS)
Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent
2007-01-01
The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.
No evidence of purported lunar effect on hospital admission rates or birth rates.
Margot, Jean-Luc
2015-01-01
Studies indicate that a fraction of nursing professionals believe in a "lunar effect"-a purported correlation between the phases of the Earth's moon and human affairs, such as birth rates, blood loss, or fertility. This article addresses some of the methodological errors and cognitive biases that can explain the human tendency of perceiving a lunar effect where there is none. This article reviews basic standards of evidence and, using an example from the published literature, illustrates how disregarding these standards can lead to erroneous conclusions. Román, Soriano, Fuentes, Gálvez, and Fernández (2004) suggested that the number of hospital admissions related to gastrointestinal bleeding was somehow influenced by the phases of the Earth's moon. Specifically, the authors claimed that the rate of hospital admissions to their bleeding unit is higher during the full moon than at other times. Their report contains a number of methodological and statistical flaws that invalidate their conclusions. Reanalysis of their data with proper procedures shows no evidence that the full moon influences the rate of hospital admissions, a result that is consistent with numerous peer-reviewed studies and meta-analyses. A review of the literature shows that birth rates are also uncorrelated to lunar phases. Data collection and analysis shortcomings, as well as powerful cognitive biases, can lead to erroneous conclusions about the purported lunar effect on human affairs. Adherence to basic standards of evidence can help assess the validity of questionable beliefs.
Performance analysis of a cascaded coding scheme with interleaved outer code
NASA Technical Reports Server (NTRS)
Lin, S.
1986-01-01
A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.
Doytchev, Doytchin E; Szwillus, Gerd
2009-11-01
Understanding the reasons for incident and accident occurrence is important for an organization's safety. Different methods have been developed to achieve this goal. To better understand the human behaviour in incident occurrence we propose an analysis concept that combines Fault Tree Analysis (FTA) and Task Analysis (TA). The former method identifies the root causes of an accident/incident, while the latter analyses the way people perform the tasks in their work environment and how they interact with machines or colleagues. These methods were complemented with the use of the Human Error Identification in System Tools (HEIST) methodology and the concept of Performance Shaping Factors (PSF) to deepen the insight into the error modes of an operator's behaviour. HEIST shows the external error modes that caused the human error and the factors that prompted the human to err. To show the validity of the approach, a case study at a Bulgarian Hydro power plant was carried out. An incident - the flooding of the plant's basement - was analysed by combining the afore-mentioned methods. The case study shows that Task Analysis in combination with other methods can be applied successfully to human error analysis, revealing details about erroneous actions in a realistic situation.
Kis, Anna; Gácsi, Márta; Range, Friederike; Virányi, Zsófia
2012-01-01
In this paper, we describe a behaviour pattern similar to the "A-not-B" error found in human infants and young apes in a monkey species, the common marmosets (Callithrix jacchus). In contrast to the classical explanation, recently it has been suggested that the "A-not-B" error committed by human infants is at least partially due to misinterpretation of the hider's ostensively communicated object hiding actions as potential 'teaching' demonstrations during the A trials. We tested whether this so-called Natural Pedagogy hypothesis would account for the A-not-B error that marmosets commit in a standard object permanence task, but found no support for the hypothesis in this species. Alternatively, we present evidence that lower level mechanisms, such as attention and motivation, play an important role in committing the "A-not-B" error in marmosets. We argue that these simple mechanisms might contribute to the effect of undeveloped object representational skills in other species including young non-human primates that commit the A-not-B error.
Cho, Jin-Young; Lee, Hyoung-Joo; Jeong, Seul-Ki; Kim, Kwang-Youl; Kwon, Kyung-Hoon; Yoo, Jong Shin; Omenn, Gilbert S; Baker, Mark S; Hancock, William S; Paik, Young-Ki
2015-12-04
Approximately 2.9 billion long base-pair human reference genome sequences are known to encode some 20 000 representative proteins. However, 3000 proteins, that is, ~15% of all proteins, have no or very weak proteomic evidence and are still missing. Missing proteins may be present in rare samples in very low abundance or be only temporarily expressed, causing problems in their detection and protein profiling. In particular, some technical limitations cause missing proteins to remain unassigned. For example, current mass spectrometry techniques have high limits and error rates for the detection of complex biological samples. An insufficient proteome coverage in a reference sequence database and spectral library also raises major issues. Thus, the development of a better strategy that results in greater sensitivity and accuracy in the search for missing proteins is necessary. To this end, we used a new strategy, which combines a reference spectral library search and a simulated spectral library search, to identify missing proteins. We built the human iRefSPL, which contains the original human reference spectral library and additional peptide sequence-spectrum match entries from other species. We also constructed the human simSPL, which contains the simulated spectra of 173 907 human tryptic peptides determined by MassAnalyzer (version 2.3.1). To prove the enhanced analytical performance of the combination of the human iRefSPL and simSPL methods for the identification of missing proteins, we attempted to reanalyze the placental tissue data set (PXD000754). The data from each experiment were analyzed using PeptideProphet, and the results were combined using iProphet. For the quality control, we applied the class-specific false-discovery rate filtering method. All of the results were filtered at a false-discovery rate of <1% at the peptide and protein levels. The quality-controlled results were then cross-checked with the neXtProt DB (2014-09-19 release). The two spectral libraries, iRefSPL and simSPL, were designed to ensure no overlap of the proteome coverage. They were shown to be complementary to spectral library searching and significantly increased the number of matches. From this trial, 12 new missing proteins were identified that passed the following criterion: at least 2 peptides of 7 or more amino acids in length or one of 9 or more amino acids in length with one or more unique sequences. Thus, the iRefSPL and simSPL combination can be used to help identify peptides that have not been detected by conventional sequence database searches with improved sensitivity and a low error rate.
The Binding of Learning to Action in Motor Adaptation
Gonzalez Castro, Luis Nicolas; Monsen, Craig Bryant; Smith, Maurice A.
2011-01-01
In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. PMID:21731476
Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I
Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions regarding the direction of change for error type proportions. The current findings argued for an alternative concept of the role of activation and decay in influencing types of serial-order sound errors. Rather than a slow activation decay rate (Dell, 1986), the results of the current study were more compatible with an alternative explanation of rapid activation decay or slow build-up of residual activation.
Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Wolff, David B.
2009-01-01
Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.
Updating expected action outcome in the medial frontal cortex involves an evaluation of error type.
Maier, Martin E; Steinhauser, Marco
2013-10-02
Forming expectations about the outcome of an action is an important prerequisite for action control and reinforcement learning in the human brain. The medial frontal cortex (MFC) has been shown to play an important role in the representation of outcome expectations, particularly when an update of expected outcome becomes necessary because an error is detected. However, error detection alone is not always sufficient to compute expected outcome because errors can occur in various ways and different types of errors may be associated with different outcomes. In the present study, we therefore investigate whether updating expected outcome in the human MFC is based on an evaluation of error type. Our approach was to consider an electrophysiological correlate of MFC activity on errors, the error-related negativity (Ne/ERN), in a task in which two types of errors could occur. Because the two error types were associated with different amounts of monetary loss, updating expected outcomes on error trials required an evaluation of error type. Our data revealed a pattern of Ne/ERN amplitudes that closely mirrored the amount of monetary loss associated with each error type, suggesting that outcome expectations are updated based on an evaluation of error type. We propose that this is achieved by a proactive evaluation process that anticipates error types by continuously monitoring error sources or by dynamically representing possible response-outcome relations.
Evaluation of an Airborne Spacing Concept, On-Board Spacing Tool, and Pilot Interface
NASA Technical Reports Server (NTRS)
Swieringa, Kurt; Murdoch, Jennifer L.; Baxley, Brian; Hubbs, Clay
2011-01-01
The number of commercial aircraft operations is predicted to increase in the next ten years, creating a need for improved operational efficiency. Two areas believed to offer significant increases in efficiency are optimized profile descents and dependent parallel runway operations. It is envisioned that during both of these types of operations, flight crews will precisely space their aircraft behind preceding aircraft at air traffic control assigned intervals to increase runway throughput and maximize the use of existing infrastructure. This paper describes a human-in-the-loop experiment designed to study the performance of an onboard spacing algorithm and pilots ratings of the usability and acceptability of an airborne spacing concept that supports dependent parallel arrivals. Pilot participants flew arrivals into the Dallas Fort-Worth terminal environment using one of three different simulators located at the National Aeronautics and Space Administration s (NASA) Langley Research Center. Scenarios were flown using Interval Management with Spacing (IM-S) and Required Time of Arrival (RTA) control methods during conditions of no error, error in the forecast wind, and offset (disturbance) to the arrival flow. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned arrival time and reported that both the IM-S and RTA procedures were associated with low workload levels. In general, pilots found the IM-S concept, procedures, speeds, and interface acceptable; with 92% of pilots rating the procedures as complete and logical, 218 out of 240 responses agreeing that the IM-S speeds were acceptable, and 63% of pilots reporting that the displays were easy to understand and displayed in appropriate locations. The 22 (out of 240) responses, indicating that the commanded speeds were not acceptable and appropriate occurred during scenarios containing wind error and offset error. Concerns cited included the occurrence of multiple speed changes within a short time period, speed changes required within twenty miles of the runway, and an increase in airspeed followed shortly by a decrease in airspeed. Within this paper, appropriate design recommendations are provided, and the need for continued, iterative human-centered design is discussed.
Adamo, Margaret Peggy; Boten, Jessica A; Coyle, Linda M; Cronin, Kathleen A; Lam, Clara J K; Negoita, Serban; Penberthy, Lynne; Stevens, Jennifer L; Ward, Kevin C
2017-02-15
Researchers have used prostate-specific antigen (PSA) values collected by central cancer registries to evaluate tumors for potential aggressive clinical disease. An independent study collecting PSA values suggested a high error rate (18%) related to implied decimal points. To evaluate the error rate in the Surveillance, Epidemiology, and End Results (SEER) program, a comprehensive review of PSA values recorded across all SEER registries was performed. Consolidated PSA values for eligible prostate cancer cases in SEER registries were reviewed and compared with text documentation from abstracted records. Four types of classification errors were identified: implied decimal point errors, abstraction or coding implementation errors, nonsignificant errors, and changes related to "unknown" values. A total of 50,277 prostate cancer cases diagnosed in 2012 were reviewed. Approximately 94.15% of cases did not have meaningful changes (85.85% correct, 5.58% with a nonsignificant change of <1 ng/mL, and 2.80% with no clinical change). Approximately 5.70% of cases had meaningful changes (1.93% due to implied decimal point errors, 1.54% due to abstract or coding errors, and 2.23% due to errors related to unknown categories). Only 419 of the original 50,277 cases (0.83%) resulted in a change in disease stage due to a corrected PSA value. The implied decimal error rate was only 1.93% of all cases in the current validation study, with a meaningful error rate of 5.81%. The reasons for the lower error rate in SEER are likely due to ongoing and rigorous quality control and visual editing processes by the central registries. The SEER program currently is reviewing and correcting PSA values back to 2004 and will re-release these data in the public use research file. Cancer 2017;123:697-703. © 2016 American Cancer Society. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.
Errors Affect Hypothetical Intertemporal Food Choice in Women
Sellitto, Manuela; di Pellegrino, Giuseppe
2014-01-01
Growing evidence suggests that the ability to control behavior is enhanced in contexts in which errors are more frequent. Here we investigated whether pairing desirable food with errors could decrease impulsive choice during hypothetical temporal decisions about food. To this end, healthy women performed a Stop-signal task in which one food cue predicted high-error rate, and another food cue predicted low-error rate. Afterwards, we measured participants’ intertemporal preferences during decisions between smaller-immediate and larger-delayed amounts of food. We expected reduced sensitivity to smaller-immediate amounts of food associated with high-error rate. Moreover, taking into account that deprivational states affect sensitivity for food, we controlled for participants’ hunger. Results showed that pairing food with high-error likelihood decreased temporal discounting. This effect was modulated by hunger, indicating that, the lower the hunger level, the more participants showed reduced impulsive preference for the food previously associated with a high number of errors as compared with the other food. These findings reveal that errors, which are motivationally salient events that recruit cognitive control and drive avoidance learning against error-prone behavior, are effective in reducing impulsive choice for edible outcomes. PMID:25244534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbee, D; McCarthy, A; Galavis, P
Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# tomore » check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria database queries, and eventual automated plan checks.« less
Bit-error rate for free-space adaptive optics laser communications.
Tyson, Robert K
2002-04-01
An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.
Helle, Samuli
2018-03-01
Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.
Fusing face-verification algorithms and humans.
O'Toole, Alice J; Abdi, Hervé; Jiang, Fang; Phillips, P Jonathon
2007-10-01
It has been demonstrated recently that state-of-the-art face-recognition algorithms can surpass human accuracy at matching faces over changes in illumination. The ranking of algorithms and humans by accuracy, however, does not provide information about whether algorithms and humans perform the task comparably or whether algorithms and humans can be fused to improve performance. In this paper, we fused humans and algorithms using partial least square regression (PLSR). In the first experiment, we applied PLSR to face-pair similarity scores generated by seven algorithms participating in the Face Recognition Grand Challenge. The PLSR produced an optimal weighting of the similarity scores, which we tested for generality with a jackknife procedure. Fusing the algorithms' similarity scores using the optimal weights produced a twofold reduction of error rate over the most accurate algorithm. Next, human-subject-generated similarity scores were added to the PLSR analysis. Fusing humans and algorithms increased the performance to near-perfect classification accuracy. These results are discussed in terms of maximizing face-verification accuracy with hybrid systems consisting of multiple algorithms and humans.
Safety coaches in radiology: decreasing human error and minimizing patient harm.
Dickerson, Julie M; Koch, Bernadette L; Adams, Janet M; Goodfriend, Martha A; Donnelly, Lane F
2010-09-01
Successful programs to improve patient safety require a component aimed at improving safety culture and environment, resulting in a reduced number of human errors that could lead to patient harm. Safety coaching provides peer accountability. It involves observing for safety behaviors and use of error prevention techniques and provides immediate feedback. For more than a decade, behavior-based safety coaching has been a successful strategy for reducing error within the context of occupational safety in industry. We describe the use of safety coaches in radiology. Safety coaches are an important component of our comprehensive patient safety program.
Procedural error monitoring and smart checklists
NASA Technical Reports Server (NTRS)
Palmer, Everett
1990-01-01
Human beings make and usually detect errors routinely. The same mental processes that allow humans to cope with novel problems can also lead to error. Bill Rouse has argued that errors are not inherently bad but their consequences may be. He proposes the development of error-tolerant systems that detect errors and take steps to prevent the consequences of the error from occurring. Research should be done on self and automatic detection of random and unanticipated errors. For self detection, displays should be developed that make the consequences of errors immediately apparent. For example, electronic map displays graphically show the consequences of horizontal flight plan entry errors. Vertical profile displays should be developed to make apparent vertical flight planning errors. Other concepts such as energy circles could also help the crew detect gross flight planning errors. For automatic detection, systems should be developed that can track pilot activity, infer pilot intent and inform the crew of potential errors before their consequences are realized. Systems that perform a reasonableness check on flight plan modifications by checking route length and magnitude of course changes are simple examples. Another example would be a system that checked the aircraft's planned altitude against a data base of world terrain elevations. Information is given in viewgraph form.
Gilmartin-Thomas, Julia Fiona-Maree; Smith, Felicity; Wolfe, Rory; Jani, Yogini
2017-07-01
No published study has been specifically designed to compare medication administration errors between original medication packaging and multi-compartment compliance aids in care homes, using direct observation. Compare the effect of original medication packaging and multi-compartment compliance aids on medication administration accuracy. Prospective observational. Ten Greater London care homes. Nurses and carers administering medications. Between October 2014 and June 2015, a pharmacist researcher directly observed solid, orally administered medications in tablet or capsule form at ten purposively sampled care homes (five only used original medication packaging and five used both multi-compartment compliance aids and original medication packaging). The medication administration error rate was calculated as the number of observed doses administered (or omitted) in error according to medication administration records, compared to the opportunities for error (total number of observed doses plus omitted doses). Over 108.4h, 41 different staff (35 nurses, 6 carers) were observed to administer medications to 823 residents during 90 medication administration rounds. A total of 2452 medication doses were observed (1385 from original medication packaging, 1067 from multi-compartment compliance aids). One hundred and seventy eight medication administration errors were identified from 2493 opportunities for error (7.1% overall medication administration error rate). A greater medication administration error rate was seen for original medication packaging than multi-compartment compliance aids (9.3% and 3.1% respectively, risk ratio (RR)=3.9, 95% confidence interval (CI) 2.4 to 6.1, p<0.001). Similar differences existed when comparing medication administration error rates between original medication packaging (from original medication packaging-only care homes) and multi-compartment compliance aids (RR=2.3, 95%CI 1.1 to 4.9, p=0.03), and between original medication packaging and multi-compartment compliance aids within care homes that used a combination of both medication administration systems (RR=4.3, 95%CI 2.7 to 6.8, p<0.001). A significant difference in error rate was not observed between use of a single or combination medication administration system (p=0.44). The significant difference in, and high overall, medication administration error rate between original medication packaging and multi-compartment compliance aids supports the use of the latter in care homes, as well as local investigation of tablet and capsule impact on medication administration errors and staff training to prevent errors occurring. As a significant difference in error rate was not observed between use of a single or combination medication administration system, common practice of using both multi-compartment compliance aids (for most medications) and original packaging (for medications with stability issues) is supported. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, Edward J., E-mail: edwardc@schoolph.uma
This paper reveals that nearly 25 years after the used Russell's dose-rate data to support the adoption of the linear-no-threshold (LNT) dose response model for genetic and cancer risk assessment, Russell acknowledged a significant under-reporting of the mutation rate of the historical control group. This error, which was unknown to BEIR I, had profound implications, leading it to incorrectly adopt the LNT model, which was a decision that profoundly changed the course of risk assessment for radiation and chemicals to the present. -- Highlights: • The BEAR I Genetics Panel made an error in denying dose rate for mutation. •more » The BEIR I Genetics Subcommittee attempted to correct this dose rate error. • The control group used for risk assessment by BEIR I is now known to be in error. • Correcting this error contradicts the LNT, supporting a threshold model.« less
Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2016-04-01
Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.
2010-06-01
32 2. Low-Cost Framework........................................................................33 3. Low Magnetic Field ...that have a significant impact on the magnetic field measured by a MARG, which could potentially add errors that are due entirely to the test...minimize the impact on the local magnetic field , and the apparatus was made as rigidly as possible using 2 x 4s to minimize any out of plane motions that
Digital visual communications using a Perceptual Components Architecture
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1991-01-01
The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.
Fanning, Laura; Jones, Nick; Manias, Elizabeth
2016-04-01
The implementation of automated dispensing cabinets (ADCs) in healthcare facilities appears to be increasing, in particular within Australian hospital emergency departments (EDs). While the investment in ADCs is on the increase, no studies have specifically investigated the impacts of ADCs on medication selection and preparation error rates in EDs. Our aim was to assess the impact of ADCs on medication selection and preparation error rates in an ED of a tertiary teaching hospital. Pre intervention and post intervention study involving direct observations of nurses completing medication selection and preparation activities before and after the implementation of ADCs in the original and new emergency departments within a 377-bed tertiary teaching hospital in Australia. Medication selection and preparation error rates were calculated and compared between these two periods. Secondary end points included the impact on medication error type and severity. A total of 2087 medication selection and preparations were observed among 808 patients pre and post intervention. Implementation of ADCs in the new ED resulted in a 64.7% (1.96% versus 0.69%, respectively, P = 0.017) reduction in medication selection and preparation errors. All medication error types were reduced in the post intervention study period. There was an insignificant impact on medication error severity as all errors detected were categorised as minor. The implementation of ADCs could reduce medication selection and preparation errors and improve medication safety in an ED setting. © 2015 John Wiley & Sons, Ltd.
Teamwork and clinical error reporting among nurses in Korean hospitals.
Hwang, Jee-In; Ahn, Jeonghoon
2015-03-01
To examine levels of teamwork and its relationships with clinical error reporting among Korean hospital nurses. The study employed a cross-sectional survey design. We distributed a questionnaire to 674 nurses in two teaching hospitals in Korea. The questionnaire included items on teamwork and the reporting of clinical errors. We measured teamwork using the Teamwork Perceptions Questionnaire, which has five subscales including team structure, leadership, situation monitoring, mutual support, and communication. Using logistic regression analysis, we determined the relationships between teamwork and error reporting. The response rate was 85.5%. The mean score of teamwork was 3.5 out of 5. At the subscale level, mutual support was rated highest, while leadership was rated lowest. Of the participating nurses, 522 responded that they had experienced at least one clinical error in the last 6 months. Among those, only 53.0% responded that they always or usually reported clinical errors to their managers and/or the patient safety department. Teamwork was significantly associated with better error reporting. Specifically, nurses with a higher team communication score were more likely to report clinical errors to their managers and the patient safety department (odds ratio = 1.82, 95% confidence intervals [1.05, 3.14]). Teamwork was rated as moderate and was positively associated with nurses' error reporting performance. Hospital executives and nurse managers should make substantial efforts to enhance teamwork, which will contribute to encouraging the reporting of errors and improving patient safety. Copyright © 2015. Published by Elsevier B.V.
Heart rate estimation from FBG sensors using cepstrum analysis and sensor fusion.
Zhu, Yongwei; Fook, Victor Foo Siang; Jianzhong, Emily Hao; Maniyeri, Jayachandran; Guan, Cuntai; Zhang, Haihong; Jiliang, Eugene Phua; Biswas, Jit
2014-01-01
This paper presents a method of estimating heart rate from arrays of fiber Bragg grating (FBG) sensors embedded in a mat. A cepstral domain signal analysis technique is proposed to characterize Ballistocardiogram (BCG) signals. With this technique, the average heart beat intervals can be estimated by detecting the dominant peaks in the cepstrum, and the signals of multiple sensors can be fused together to obtain higher signal to noise ratio than each individual sensor. Experiments were conducted with 10 human subjects lying on 2 different postures on a bed. The estimated heart rate from BCG was compared with heart rate ground truth from ECG, and the mean error of estimation obtained is below 1 beat per minute (BPM). The results show that the proposed fusion method can achieve promising heart rate measurement accuracy and robustness against various sensor contact conditions.
Smartphone Text Input Method Performance, Usability, and Preference With Younger and Older Adults.
Smith, Amanda L; Chaparro, Barbara S
2015-09-01
User performance, perceived usability, and preference for five smartphone text input methods were compared with younger and older novice adults. Smartphones are used for a variety of functions other than phone calls, including text messaging, e-mail, and web browsing. Research comparing performance with methods of text input on smartphones reveals a high degree of variability in reported measures, procedures, and results. This study reports on a direct comparison of five of the most common input methods among a population of younger and older adults, who had no experience with any of the methods. Fifty adults (25 younger, 18-35 years; 25 older, 60-84 years) completed a text entry task using five text input methods (physical Qwerty, onscreen Qwerty, tracing, handwriting, and voice). Entry and error rates, perceived usability, and preference were recorded. Both age groups input text equally fast using voice input, but older adults were slower than younger adults using all other methods. Both age groups had low error rates when using physical Qwerty and voice, but older adults committed more errors with the other three methods. Both younger and older adults preferred voice and physical Qwerty input to the remaining methods. Handwriting consistently performed the worst and was rated lowest by both groups. Voice and physical Qwerty input methods proved to be the most effective for both younger and older adults, and handwriting input was the least effective overall. These findings have implications to the design of future smartphone text input methods and devices, particularly for older adults. © 2015, Human Factors and Ergonomics Society.
CIDER: Enabling Robustness-Power Tradeoffs on a Computational Eyeglass
Mayberry, Addison; Tun, Yamin; Hu, Pan; Smith-Freedman, Duncan; Ganesan, Deepak; Marlin, Benjamin; Salthouse, Christopher
2016-01-01
The human eye offers a fascinating window into an individual’s health, cognitive attention, and decision making, but we lack the ability to continually measure these parameters in the natural environment. The challenges lie in: a) handling the complexity of continuous high-rate sensing from a camera and processing the image stream to estimate eye parameters, and b) dealing with the wide variability in illumination conditions in the natural environment. This paper explores the power–robustness tradeoffs inherent in the design of a wearable eye tracker, and proposes a novel staged architecture that enables graceful adaptation across the spectrum of real-world illumination. We propose CIDER, a system that operates in a highly optimized low-power mode under indoor settings by using a fast Search-Refine controller to track the eye, but detects when the environment switches to more challenging outdoor sunlight and switches models to operate robustly under this condition. Our design is holistic and tackles a) power consumption in digitizing pixels, estimating pupillary parameters, and illuminating the eye via near-infrared, b) error in estimating pupil center and pupil dilation, and c) model training procedures that involve zero effort from a user. We demonstrate that CIDER can estimate pupil center with error less than two pixels (0.6°), and pupil diameter with error of one pixel (0.22mm). Our end-to-end results show that we can operate at power levels of roughly 7mW at a 4Hz eye tracking rate, or roughly 32mW at rates upwards of 250Hz. PMID:27042165
A circadian rhythm in skill-based errors in aviation maintenance.
Hobbs, Alan; Williamson, Ann; Van Dongen, Hans P A
2010-07-01
In workplaces where activity continues around the clock, human error has been observed to exhibit a circadian rhythm, with a characteristic peak in the early hours of the morning. Errors are commonly distinguished by the nature of the underlying cognitive failure, particularly the level of intentionality involved in the erroneous action. The Skill-Rule-Knowledge (SRK) framework of Rasmussen is used widely in the study of industrial errors and accidents. The SRK framework describes three fundamental types of error, according to whether behavior is under the control of practiced sensori-motor skill routines with minimal conscious awareness; is guided by implicit or explicit rules or expertise; or where the planning of actions requires the conscious application of domain knowledge. Up to now, examinations of circadian patterns of industrial errors have not distinguished between different types of error. Consequently, it is not clear whether all types of error exhibit the same circadian rhythm. A survey was distributed to aircraft maintenance personnel in Australia. Personnel were invited to anonymously report a safety incident and were prompted to describe, in detail, the human involvement (if any) that contributed to it. A total of 402 airline maintenance personnel reported an incident, providing 369 descriptions of human error in which the time of the incident was reported and sufficient detail was available to analyze the error. Errors were categorized using a modified version of the SRK framework, in which errors are categorized as skill-based, rule-based, or knowledge-based, or as procedure violations. An independent check confirmed that the SRK framework had been applied with sufficient consistency and reliability. Skill-based errors were the most common form of error, followed by procedure violations, rule-based errors, and knowledge-based errors. The frequency of errors was adjusted for the estimated proportion of workers present at work/each hour of the day, and the 24 h pattern of each error type was examined. Skill-based errors exhibited a significant circadian rhythm, being most prevalent in the early hours of the morning. Variation in the frequency of rule-based errors, knowledge-based errors, and procedure violations over the 24 h did not reach statistical significance. The results suggest that during the early hours of the morning, maintenance technicians are at heightened risk of "absent minded" errors involving failures to execute action plans as intended.
Trial-by-trial adaptation of movements during mental practice under force field.
Anwar, Muhammad Nabeel; Khan, Salman Hameed
2013-01-01
Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.
Determination of Type I Error Rates and Power of Answer Copying Indices under Various Conditions
ERIC Educational Resources Information Center
Yormaz, Seha; Sünbül, Önder
2017-01-01
This study aims to determine the Type I error rates and power of S[subscript 1] , S[subscript 2] indices and kappa statistic at detecting copying on multiple-choice tests under various conditions. It also aims to determine how copying groups are created in order to calculate how kappa statistics affect Type I error rates and power. In this study,…
Vairy, Stephanie; Corny, Jennifer; Jamoulle, Olivier; Levy, Arielle; Lebel, Denis; Carceller, Ana
2017-12-01
A high rate of prescription errors exists in pediatric teaching hospitals, especially during initial training. To determine the effectiveness of a two-hour lecture by a pharmacist on rates of prescription errors and quality of prescriptions. A two-hour lecture led by a pharmacist was provided to 11 junior pediatric residents (PGY-1) as part of a one-month immersion program. A control group included 15 residents without the intervention. We reviewed charts to analyze the first 50 prescriptions of each resident. Data were collected from 1300 prescriptions involving 451 patients, 550 in the intervention group and 750 in the control group. The rate of prescription errors in the intervention group was 9.6% compared to 11.3% in the control group (p=0.32), affecting 106 patients. Statistically significant differences between both groups were prescriptions with unwritten doses (p=0.01) and errors involving overdosing (p=0.04). We identified many errors as well as issues surrounding quality of prescriptions. We found a 10.6% prescription error rate. This two-hour lecture seems insufficient to reduce prescription errors among junior pediatric residents. This study highlights the most frequent types of errors and prescription quality issues that should be targeted by future educational interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirouac, Kevin N.; Ling, Hong; UWO)
Human DNA polymerase iota (pol iota) is a unique member of Y-family polymerases, which preferentially misincorporates nucleotides opposite thymines (T) and halts replication at T bases. The structural basis of the high error rates remains elusive. We present three crystal structures of pol complexed with DNA containing a thymine base, paired with correct or incorrect incoming nucleotides. A narrowed active site supports a pyrimidine to pyrimidine mismatch and excludes Watson-Crick base pairing by pol. The template thymine remains in an anti conformation irrespective of incoming nucleotides. Incoming ddATP adopts a syn conformation with reduced base stacking, whereas incorrect dGTP andmore » dTTP maintain anti conformations with normal base stacking. Further stabilization of dGTP by H-bonding with Gln59 of the finger domain explains the preferential T to G mismatch. A template 'U-turn' is stabilized by pol and the methyl group of the thymine template, revealing the structural basis of T stalling. Our structural and domain-swapping experiments indicate that the finger domain is responsible for pol's high error rates on pyrimidines and determines the incorporation specificity.« less
Booth, Rachelle; Sturgess, Emma; Taberner-Stokes, Alison; Peters, Mark
2012-11-01
To establish the baseline prescribing error rate in a tertiary paediatric intensive care unit (PICU) and to determine the impact of a zero tolerance prescribing (ZTP) policy incorporating a dedicated prescribing area and daily feedback of prescribing errors. A prospective, non-blinded, observational study was undertaken in a 12-bed tertiary PICU over a period of 134 weeks. Baseline prescribing error data were collected on weekdays for all patients for a period of 32 weeks, following which the ZTP policy was introduced. Daily error feedback was introduced after a further 12 months. Errors were sub-classified as 'clinical', 'non-clinical' and 'infusion prescription' errors and the effects of interventions considered separately. The baseline combined prescribing error rate was 892 (95 % confidence interval (CI) 765-1,019) errors per 1,000 PICU occupied bed days (OBDs), comprising 25.6 % clinical, 44 % non-clinical and 30.4 % infusion prescription errors. The combined interventions of ZTP plus daily error feedback were associated with a reduction in the combined prescribing error rate to 447 (95 % CI 389-504) errors per 1,000 OBDs (p < 0.0001), an absolute risk reduction of 44.5 % (95 % CI 40.8-48.0 %). Introduction of the ZTP policy was associated with a significant decrease in clinical and infusion prescription errors, while the introduction of daily error feedback was associated with a significant reduction in non-clinical prescribing errors. The combined interventions of ZTP and daily error feedback were associated with a significant reduction in prescribing errors in the PICU, in line with Department of Health requirements of a 40 % reduction within 5 years.
Motyer, R E; Liddy, S; Torreggiani, W C; Buckley, O
2016-11-01
Voice recognition (VR) dictation of radiology reports has become the mainstay of reporting in many institutions worldwide. Despite benefit, such software is not without limitations, and transcription errors have been widely reported. Evaluate the frequency and nature of non-clinical transcription error using VR dictation software. Retrospective audit of 378 finalised radiology reports. Errors were counted and categorised by significance, error type and sub-type. Data regarding imaging modality, report length and dictation time was collected. 67 (17.72 %) reports contained ≥1 errors, with 7 (1.85 %) containing 'significant' and 9 (2.38 %) containing 'very significant' errors. A total of 90 errors were identified from the 378 reports analysed, with 74 (82.22 %) classified as 'insignificant', 7 (7.78 %) as 'significant', 9 (10 %) as 'very significant'. 68 (75.56 %) errors were 'spelling and grammar', 20 (22.22 %) 'missense' and 2 (2.22 %) 'nonsense'. 'Punctuation' error was most common sub-type, accounting for 27 errors (30 %). Complex imaging modalities had higher error rates per report and sentence. Computed tomography contained 0.040 errors per sentence compared to plain film with 0.030. Longer reports had a higher error rate, with reports >25 sentences containing an average of 1.23 errors per report compared to 0-5 sentences containing 0.09. These findings highlight the limitations of VR dictation software. While most error was deemed insignificant, there were occurrences of error with potential to alter report interpretation and patient management. Longer reports and reports on more complex imaging had higher error rates and this should be taken into account by the reporting radiologist.
2018-01-01
Reports an error in "Facing Humanness: Facial Width-to-Height Ratio Predicts Ascriptions of Humanity" by Jason C. Deska, E. Paige Lloyd and Kurt Hugenberg ( Journal of Personality and Social Psychology , Advanced Online Publication, Aug 28, 2017, np). In the article, there is a data error in the Results section of Study 1c. The fourth sentence of the fourth paragraph should read as follows: High fWHR targets (M= 74.39, SD=18.25) were rated as equivalently evolved as their low fWHR counterparts (M=79.39, SD=15.91). (The following abstract of the original article appeared in record 2017-36694-001.) The ascription of mind to others is central to social cognition. Most research on the ascription of mind has focused on motivated, top-down processes. The current work provides novel evidence that facial width-to-height ratio (fWHR) serves as a bottom-up perceptual signal of humanness. Using a range of well-validated operational definitions of humanness, we provide evidence across 5 studies that target faces with relatively greater fWHR are seen as less than fully human compared with their relatively lower fWHR counterparts. We then present 2 ancillary studies exploring whether the fWHR-to-humanness link is mediated by previously established fWHR-trait links in the literature. Finally, 3 additional studies extend this fWHR-humanness link beyond measurements of humanness, demonstrating that the fWHR-humanness link has consequences for downstream social judgments including the sorts of crimes people are perceived to be guilty of and the social tasks for which they seem helpful. In short, we provide evidence for the hypothesis that individuals with relatively greater facial width-to-height ratio are routinely denied sophisticated, humanlike minds. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Computational substrates of norms and their violations during social exchange.
Xiang, Ting; Lohrenz, Terry; Montague, P Read
2013-01-16
Social norms in humans constrain individual behaviors to establish shared expectations within a social group. Previous work has probed social norm violations and the feelings that such violations engender; however, a computational rendering of the underlying neural and emotional responses has been lacking. We probed norm violations using a two-party, repeated fairness game (ultimatum game) where proposers offer a split of a monetary resource to a responder who either accepts or rejects the offer. Using a norm-training paradigm where subject groups are preadapted to either high or low offers, we demonstrate that unpredictable shifts in expected offers creates a difference in rejection rates exhibited by the two responder groups for otherwise identical offers. We constructed an ideal observer model that identified neural correlates of norm prediction errors in the ventral striatum and anterior insula, regions that also showed strong responses to variance-prediction errors generated by the same model. Subjective feelings about offers correlated with these norm prediction errors, and the two signals displayed overlapping, but not identical, neural correlates in striatum, insula, and medial orbitofrontal cortex. These results provide evidence for the hypothesis that responses in anterior insula can encode information about social norm violations that correlate with changes in overt behavior (changes in rejection rates). Together, these results demonstrate that the brain regions involved in reward prediction and risk prediction are also recruited in signaling social norm violations.
Computational Substrates of Norms and Their Violations during Social Exchange
Xiang, Ting; Lohrenz, Terry; Montague, P. Read
2013-01-01
Social norms in humans constrain individual behaviors to establish shared expectations within a social group. Previous work has probed social norm violations and the feelings that such violations engender; however, a computational rendering of the underlying neural and emotional responses has been lacking. We probed norm violations using a two-party, repeated fairness game (ultimatum game) where proposers offer a split of a monetary resource to a responder who either accepts or rejects the offer. Using a norm-training paradigm where subject groups are preadapted to either high or low offers, we demonstrate that unpredictable shifts in expected offers creates a difference in rejection rates exhibited by the two responder groups for otherwise identical offers. We constructed an ideal observer model that identified neural correlates of norm prediction errors in the ventral striatum and anterior insula, regions that also showed strong responses to variance-prediction errors generated by the same model. Subjective feelings about offers correlated with these norm prediction errors, and the two signals displayed overlapping, but not identical, neural correlates in striatum, insula, and medial orbitofrontal cortex. These results provide evidence for the hypothesis that responses in anterior insula can encode information about social norm violations that correlate with changes in overt behavior (changes in rejection rates). Together, these results demonstrate that the brain regions involved in reward prediction and risk prediction are also recruited in signaling social norm violations. PMID:23325247
Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.
2015-12-01
Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.
Reducing the Familiarity of Conjunction Lures with Pictures
ERIC Educational Resources Information Center
Lloyd, Marianne E.
2013-01-01
Four experiments were conducted to test whether conjunction errors were reduced after pictorial encoding and whether the semantic overlap between study and conjunction items would impact error rates. Across 4 experiments, compound words studied with a single-picture had lower conjunction error rates during a recognition test than those words…
Spatial durbin error model for human development index in Province of Central Java.
NASA Astrophysics Data System (ADS)
Septiawan, A. R.; Handajani, S. S.; Martini, T. S.
2018-05-01
The Human Development Index (HDI) is an indicator used to measure success in building the quality of human life, explaining how people access development outcomes when earning income, health and education. Every year HDI in Central Java has improved to a better direction. In 2016, HDI in Central Java was 69.98 %, an increase of 0.49 % over the previous year. The objective of this study was to apply the spatial Durbin error model using angle weights queen contiguity to measure HDI in Central Java Province. Spatial Durbin error model is used because the model overcomes the spatial effect of errors and the effects of spatial depedency on the independent variable. Factors there use is life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity. Based on the result of research, we get spatial Durbin error model for HDI in Central Java with influencing factors are life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity.
Certification of ICI 1012 optical data storage tape
NASA Technical Reports Server (NTRS)
Howell, J. M.
1993-01-01
ICI has developed a unique and novel method of certifying a Terabyte optical tape. The tape quality is guaranteed as a statistical upper limit on the probability of uncorrectable errors. This is called the Corrected Byte Error Rate or CBER. We developed this probabilistic method because of two reasons why error rate cannot be measured directly. Firstly, written data is indelible, so one cannot employ write/read tests such as used for magnetic tape. Secondly, the anticipated error rates need impractically large samples to measure accurately. For example, a rate of 1E-12 implies only one byte in error per tape. The archivability of ICI 1012 Data Storage Tape in general is well characterized and understood. Nevertheless, customers expect performance guarantees to be supported by test results on individual tapes. In particular, they need assurance that data is retrievable after decades in archive. This paper describes the mathematical basis, measurement apparatus and applicability of the certification method.
Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael
2013-03-27
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.
The dependence of crowding on flanker complexity and target-flanker similarity
Bernard, Jean-Baptiste; Chung, Susana T.L.
2013-01-01
We examined the effects of the spatial complexity of flankers and target-flanker similarity on the performance of identifying crowded letters. On each trial, observers identified the middle character of random strings of three characters (“trigrams”) briefly presented at 10° below fixation. We tested the 26 lowercase letters of the Times-Roman and Courier fonts, a set of 79 characters (letters and non-letters) of the Times-Roman font, and the uppercase letters of two highly complex ornamental fonts, Edwardian and Aristocrat. Spatial complexity of characters was quantified by the length of the morphological skeleton of each character, and target-flanker similarity was defined based on a psychometric similarity matrix. Our results showed that (1) letter identification error rate increases with flanker complexity up to a certain value, beyond which error rate becomes independent of flanker complexity; (2) the increase of error rate is slower for high-complexity target letters; (3) error rate increases with target-flanker similarity; and (4) mislocation error rate increases with target-flanker similarity. These findings, combined with the current understanding of the faulty feature integration account of crowding, provide some constraints of how the feature integration process could cause perceptual errors. PMID:21730225
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
Mental representation of symbols as revealed by vocabulary errors in two bonobos (Pan paniscus).
Lyn, Heidi
2007-10-01
Error analysis has been used in humans to detect implicit representations and categories in language use. The present study utilizes the same technique to report on mental representations and categories in symbol use from two bonobos (Pan paniscus). These bonobos have been shown in published reports to comprehend English at the level of a two-and-a-half year old child and to use a keyboard with over 200 visuographic symbols (lexigrams). In this study, vocabulary test errors from over 10 years of data revealed auditory, visual, and spatio-temporal generalizations (errors were more likely items that looked like sounded like, or were frequently associated with the sample item in space or in time), as well as hierarchical and conceptual categorizations. These error data, like those of humans, are a result of spontaneous responding rather than specific training and do not solely depend upon the sample mode (e.g. auditory similarity errors are not universally more frequent with an English sample, nor were visual similarity errors universally more frequent with a photograph sample). However, unlike humans, these bonobos do not make errors based on syntactical confusions (e.g. confusing semantically unrelated nouns), suggesting that they may not separate syntactical and semantic information. These data suggest that apes spontaneously create a complex, hierarchical, web of representations when exposed to a symbol system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... management of human error in its operations and system safety programs, and the status of PTC implementation... UP's safety management policies and programs associated with human error, operational accident and... Chairman of the Board of Inquiry 2. Introduction of the Board of Inquiry and Technical Panel 3...
Azin, Arash; Saleh, Fady; Cleghorn, Michelle; Yuen, Andrew; Jackson, Timothy; Okrainec, Allan; Quereshy, Fayez A
2017-03-01
Colonoscopy for colorectal cancer (CRC) has a localization error rate as high as 21 %. Such errors can have substantial clinical consequences, particularly in laparoscopic surgery. The primary objective of this study was to compare accuracy of tumor localization at initial endoscopy performed by either the operating surgeon or non-operating referring endoscopist. All patients who underwent surgical resection for CRC at a large tertiary academic hospital between January 2006 and August 2014 were identified. The exposure of interest was the initial endoscopist: (1) surgeon who also performed the definitive operation (operating surgeon group); and (2) referring gastroenterologist or general surgeon (referring endoscopist group). The outcome measure was localization error, defined as a difference in at least one anatomic segment between initial endoscopy and final operative location. Multivariate logistic regression was used to explore the association between localization error rate and the initial endoscopist. A total of 557 patients were included in the study; 81 patients in the operating surgeon cohort and 476 patients in the referring endoscopist cohort. Initial diagnostic colonoscopy performed by the operating surgeon compared to referring endoscopist demonstrated statistically significant lower intraoperative localization error rate (1.2 vs. 9.0 %, P = 0.016); shorter mean time from endoscopy to surgery (52.3 vs. 76.4 days, P = 0.015); higher tattoo localization rate (32.1 vs. 21.0 %, P = 0.027); and lower preoperative repeat endoscopy rate (8.6 vs. 40.8 %, P < 0.001). Initial endoscopy performed by the operating surgeon was protective against localization error on both univariate analysis, OR 7.94 (95 % CI 1.08-58.52; P = 0.016), and multivariate analysis, OR 7.97 (95 % CI 1.07-59.38; P = 0.043). This study demonstrates that diagnostic colonoscopies performed by an operating surgeon are independently associated with a lower localization error rate. Further research exploring the factors influencing localization accuracy and why operating surgeons have lower error rates relative to non-operating endoscopists is necessary to understand differences in care.
Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
Khamassi, Mehdi; Enel, Pierre; Dominey, Peter Ford; Procyk, Emmanuel
2013-01-01
Converging evidence suggest that the medial prefrontal cortex (MPFC) is involved in feedback categorization, performance monitoring, and task monitoring, and may contribute to the online regulation of reinforcement learning (RL) parameters that would affect decision-making processes in the lateral prefrontal cortex (LPFC). Previous neurophysiological experiments have shown MPFC activities encoding error likelihood, uncertainty, reward volatility, as well as neural responses categorizing different types of feedback, for instance, distinguishing between choice errors and execution errors. Rushworth and colleagues have proposed that the involvement of MPFC in tracking the volatility of the task could contribute to the regulation of one of RL parameters called the learning rate. We extend this hypothesis by proposing that MPFC could contribute to the regulation of other RL parameters such as the exploration rate and default action values in case of task shifts. Here, we analyze the sensitivity to RL parameters of behavioral performance in two monkey decision-making tasks, one with a deterministic reward schedule and the other with a stochastic one. We show that there exist optimal parameter values specific to each of these tasks, that need to be found for optimal performance and that are usually hand-tuned in computational models. In contrast, automatic online regulation of these parameters using some heuristics can help producing a good, although non-optimal, behavioral performance in each task. We finally describe our computational model of MPFC-LPFC interaction used for online regulation of the exploration rate and its application to a human-robot interaction scenario. There, unexpected uncertainties are produced by the human introducing cued task changes or by cheating. The model enables the robot to autonomously learn to reset exploration in response to such uncertain cues and events. The combined results provide concrete evidence specifying how prefrontal cortical subregions may cooperate to regulate RL parameters. It also shows how such neurophysiologically inspired mechanisms can control advanced robots in the real world. Finally, the model's learning mechanisms that were challenged in the last robotic scenario provide testable predictions on the way monkeys may learn the structure of the task during the pretraining phase of the previous laboratory experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Alastruey, Jordi; Khir, Ashraf W; Matthys, Koen S; Segers, Patrick; Sherwin, Spencer J; Verdonck, Pascal R; Parker, Kim H; Peiró, Joaquim
2011-08-11
The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476-3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10(-6)) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
Van de Vreede, Melita; McGrath, Anne; de Clifford, Jan
2018-05-14
Objective. The aim of the present study was to identify and quantify medication errors reportedly related to electronic medication management systems (eMMS) and those considered likely to occur more frequently with eMMS. This included developing a new classification system relevant to eMMS errors. Methods. Eight Victorian hospitals with eMMS participated in a retrospective audit of reported medication incidents from their incident reporting databases between May and July 2014. Site-appointed project officers submitted deidentified incidents they deemed new or likely to occur more frequently due to eMMS, together with the Incident Severity Rating (ISR). The authors reviewed and classified incidents. Results. There were 5826 medication-related incidents reported. In total, 93 (47 prescribing errors, 46 administration errors) were identified as new or potentially related to eMMS. Only one ISR2 (moderate) and no ISR1 (severe or death) errors were reported, so harm to patients in this 3-month period was minimal. The most commonly reported error types were 'human factors' and 'unfamiliarity or training' (70%) and 'cross-encounter or hybrid system errors' (22%). Conclusions. Although the results suggest that the errors reported were of low severity, organisations must remain vigilant to the risk of new errors and avoid the assumption that eMMS is the panacea to all medication error issues. What is known about the topic? eMMS have been shown to reduce some types of medication errors, but it has been reported that some new medication errors have been identified and some are likely to occur more frequently with eMMS. There are few published Australian studies that have reported on medication error types that are likely to occur more frequently with eMMS in more than one organisation and that include administration and prescribing errors. What does this paper add? This paper includes a new simple classification system for eMMS that is useful and outlines the most commonly reported incident types and can inform organisations and vendors on possible eMMS improvements. The paper suggests a new classification system for eMMS medication errors. What are the implications for practitioners? The results of the present study will highlight to organisations the need for ongoing review of system design, refinement of workflow issues, staff education and training and reporting and monitoring of errors.
Habibi, Ehsanollah; Dehghan, Habibollah; Dehkordy, Sina Eshraghy; Maracy, Mohammad Reza
2013-01-01
Background: Among the most important and effective factors affecting the efficiency of the human workforce are accuracy, promptness, and ability. In the context of promoting levels and quality of productivity, the aim of this study was to investigate the effects of exposure to noise on the rate of errors, speed of work, and capability in performing manual activities. Methods: This experimental study was conducted on 96 students (52 female and 44 male) of the Isfahan Medical Science University with the average and standard deviations of age, height, and weight of 22.81 (3.04) years, 171.67 (8.51) cm, and 65.05 (13.13) kg, respectively. Sampling was conducted with a randomized block design. Along with controlling for intervening factors, a combination of sound pressure levels [65 dB (A), 85 dB (A), and 95 dB (A)] and exposure times (0, 20, and 40) were used for evaluation of precision and speed of action of the participants, in the ergonomic test of two-hand coordination. Data was analyzed by SPSS18 software using a descriptive and analytical statistical method by analysis of covariance (ANCOVA) repeated measures. Results: The results of this study showed that increasing sound pressure level from 65 to 95 dB in network ‘A’ increased the speed of work (P < 0.05). Increase in the exposure time (0 to 40 min of exposure) and gender showed no significant differences statistically in speed of work (P > 0.05). Male participants got annoyed from the noise more than females. Also, increase in sound pressure level increased the rate of error (P < 0.05). Conclusions: According to the results of this research, increasing the sound pressure level decreased efficiency and increased the errors and in exposure to sounds less than 85 dB in the beginning, the efficiency decreased initially and then increased in a mild slope. PMID:23930164
Fraudulent ID using face morphs: Experiments on human and automatic recognition
Robertson, David J.; Kramer, Robin S. S.
2017-01-01
Matching unfamiliar faces is known to be difficult, and this can give an opportunity to those engaged in identity fraud. Here we examine a relatively new form of fraud, the use of photo-ID containing a graphical morph between two faces. Such a document may look sufficiently like two people to serve as ID for both. We present two experiments with human viewers, and a third with a smartphone face recognition system. In Experiment 1, viewers were asked to match pairs of faces, without being warned that one of the pair could be a morph. They very commonly accepted a morphed face as a match. However, in Experiment 2, following very short training on morph detection, their acceptance rate fell considerably. Nevertheless, there remained large individual differences in people’s ability to detect a morph. In Experiment 3 we show that a smartphone makes errors at a similar rate to ‘trained’ human viewers—i.e. accepting a small number of morphs as genuine ID. We discuss these results in reference to the use of face photos for security. PMID:28328928
Fraudulent ID using face morphs: Experiments on human and automatic recognition.
Robertson, David J; Kramer, Robin S S; Burton, A Mike
2017-01-01
Matching unfamiliar faces is known to be difficult, and this can give an opportunity to those engaged in identity fraud. Here we examine a relatively new form of fraud, the use of photo-ID containing a graphical morph between two faces. Such a document may look sufficiently like two people to serve as ID for both. We present two experiments with human viewers, and a third with a smartphone face recognition system. In Experiment 1, viewers were asked to match pairs of faces, without being warned that one of the pair could be a morph. They very commonly accepted a morphed face as a match. However, in Experiment 2, following very short training on morph detection, their acceptance rate fell considerably. Nevertheless, there remained large individual differences in people's ability to detect a morph. In Experiment 3 we show that a smartphone makes errors at a similar rate to 'trained' human viewers-i.e. accepting a small number of morphs as genuine ID. We discuss these results in reference to the use of face photos for security.
Mathes, Tim; Klaßen, Pauline; Pieper, Dawid
2017-11-28
Our objective was to assess the frequency of data extraction errors and its potential impact on results in systematic reviews. Furthermore, we evaluated the effect of different extraction methods, reviewer characteristics and reviewer training on error rates and results. We performed a systematic review of methodological literature in PubMed, Cochrane methodological registry, and by manual searches (12/2016). Studies were selected by two reviewers independently. Data were extracted in standardized tables by one reviewer and verified by a second. The analysis included six studies; four studies on extraction error frequency, one study comparing different reviewer extraction methods and two studies comparing different reviewer characteristics. We did not find a study on reviewer training. There was a high rate of extraction errors (up to 50%). Errors often had an influence on effect estimates. Different data extraction methods and reviewer characteristics had moderate effect on extraction error rates and effect estimates. The evidence base for established standards of data extraction seems weak despite the high prevalence of extraction errors. More comparative studies are needed to get deeper insights into the influence of different extraction methods.
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation (to index large arrays) have not been widely researched. We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any addressmore » computation scheme that flows an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Enabling the flow of errors allows one to situate detectors at loop exit points, and helps turn silent corruptions into easily detectable error situations. Our experiments using PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
PRESAGE: Protecting Structured Address Generation against Soft Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram
Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation have not been widely researched (especially in the context of indexing large arrays). We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGEmore » is that any address computation scheme that propagates an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Ensuring the propagation of errors allows one to place detectors at loop exit points and helps turn silent corruptions into easily detectable error situations. Our experiments using the PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.« less
Commers, Tessa; Swindells, Susan; Sayles, Harlan; Gross, Alan E; Devetten, Marcel; Sandkovsky, Uriel
2014-01-01
Errors in prescribing antiretroviral therapy (ART) often occur with the hospitalization of HIV-infected patients. The rapid identification and prevention of errors may reduce patient harm and healthcare-associated costs. A retrospective review of hospitalized HIV-infected patients was carried out between 1 January 2009 and 31 December 2011. Errors were documented as omission, underdose, overdose, duplicate therapy, incorrect scheduling and/or incorrect therapy. The time to error correction was recorded. Relative risks (RRs) were computed to evaluate patient characteristics and error rates. A total of 289 medication errors were identified in 146/416 admissions (35%). The most common was drug omission (69%). At an error rate of 31%, nucleoside reverse transcriptase inhibitors were associated with an increased risk of error when compared with protease inhibitors (RR 1.32; 95% CI 1.04-1.69) and co-formulated drugs (RR 1.59; 95% CI 1.19-2.09). Of the errors, 31% were corrected within the first 24 h, but over half (55%) were never remedied. Admissions with an omission error were 7.4 times more likely to have all errors corrected within 24 h than were admissions without an omission. Drug interactions with ART were detected on 51 occasions. For the study population (n = 177), an increased risk of admission error was observed for black (43%) compared with white (28%) individuals (RR 1.53; 95% CI 1.16-2.03) but no significant differences were observed between white patients and other minorities or between men and women. Errors in inpatient ART were common, and the majority were never detected. The most common errors involved omission of medication, and nucleoside reverse transcriptase inhibitors had the highest rate of prescribing error. Interventions to prevent and correct errors are urgently needed.
Online Error Reporting for Managing Quality Control Within Radiology.
Golnari, Pedram; Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L
2016-06-01
Information technology systems within health care, such as picture archiving and communication system (PACS) in radiology, can have a positive impact on production but can also risk compromising quality. The widespread use of PACS has removed the previous feedback loop between radiologists and technologists. Instead of direct communication of quality discrepancies found for an examination, the radiologist submitted a paper-based quality-control report. A web-based issue-reporting tool can help restore some of the feedback loop and also provide possibilities for more detailed analysis of submitted errors. The purpose of this study was to evaluate the hypothesis that data from use of an online error reporting software for quality control can focus our efforts within our department. For the 372,258 radiologic examinations conducted during the 6-month period study, 930 errors (390 exam protocol, 390 exam validation, and 150 exam technique) were submitted, corresponding to an error rate of 0.25 %. Within the category exam protocol, technologist documentation had the highest number of submitted errors in ultrasonography (77 errors [44 %]), while imaging protocol errors were the highest subtype error for computed tomography modality (35 errors [18 %]). Positioning and incorrect accession had the highest errors in the exam technique and exam validation error category, respectively, for nearly all of the modalities. An error rate less than 1 % could signify a system with a very high quality; however, a more likely explanation is that not all errors were detected or reported. Furthermore, staff reception of the error reporting system could also affect the reporting rate.
Ultraaccurate genome sequencing and haplotyping of single human cells.
Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun
2017-11-21
Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.
Automation bias and verification complexity: a systematic review.
Lyell, David; Coiera, Enrico
2017-03-01
While potentially reducing decision errors, decision support systems can introduce new types of errors. Automation bias (AB) happens when users become overreliant on decision support, which reduces vigilance in information seeking and processing. Most research originates from the human factors literature, where the prevailing view is that AB occurs only in multitasking environments. This review seeks to compare the human factors and health care literature, focusing on the apparent association of AB with multitasking and task complexity. EMBASE, Medline, Compendex, Inspec, IEEE Xplore, Scopus, Web of Science, PsycINFO, and Business Source Premiere from 1983 to 2015. Evaluation studies where task execution was assisted by automation and resulted in errors were included. Participants needed to be able to verify automation correctness and perform the task manually. Tasks were identified and grouped. Task and automation type and presence of multitasking were noted. Each task was rated for its verification complexity. Of 890 papers identified, 40 met the inclusion criteria; 6 were in health care. Contrary to the prevailing human factors view, AB was found in single tasks, typically involving diagnosis rather than monitoring, and with high verification complexity. The literature is fragmented, with large discrepancies in how AB is reported. Few studies reported the statistical significance of AB compared to a control condition. AB appears to be associated with the degree of cognitive load experienced in decision tasks, and appears to not be uniquely associated with multitasking. Strategies to minimize AB might focus on cognitive load reduction. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Model and experiments to optimize co-adaptation in a simplified myoelectric control system.
Couraud, M; Cattaert, D; Paclet, F; Oudeyer, P Y; de Rugy, A
2018-04-01
To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.
The development of a public optometry system in Mozambique: a Cost Benefit Analysis.
Thompson, Stephen; Naidoo, Kovin; Harris, Geoff; Bilotto, Luigi; Ferrão, Jorge; Loughman, James
2014-09-23
The economic burden of uncorrected refractive error (URE) is thought to be high in Mozambique, largely as a consequence of the lack of resources and systems to tackle this largely avoidable problem. The Mozambique Eyecare Project (MEP) has established the first optometry training and human resource deployment initiative to address the burden of URE in Lusophone Africa. The nature of the MEP programme provides the opportunity to determine, using Cost Benefit Analysis (CBA), whether investing in the establishment and delivery of a comprehensive system for optometry human resource development and public sector deployment is economically justifiable for Lusophone Africa. A CBA methodology was applied across the period 2009-2049. Costs associated with establishing and operating a school of optometry, and a programme to address uncorrected refractive error, were included. Benefits were calculated using a human capital approach to valuing sight. Disability weightings from the Global Burden of Disease study were applied. Costs were subtracted from benefits to provide the net societal benefit, which was discounted to provide the net present value using a 3% discount rate. Using the most recently published disability weightings, the potential exists, through the correction of URE in 24.3 million potentially economically productive persons, to achieve a net present value societal benefit of up to $1.1 billion by 2049, at a Benefit-Cost ratio of 14:1. When CBA assumptions are varied as part of the sensitivity analysis, the results suggest the societal benefit could lie in the range of $649 million to $9.6 billion by 2049. This study demonstrates that a programme designed to address the burden of refractive error in Mozambique is economically justifiable in terms of the increased productivity that would result due to its implementation.
Zahurancik, Walter J.; Klein, Seth J.; Suo, Zucai
2014-01-01
Most eukaryotic DNA replication is performed by A- and B-family DNA polymerases which possess a faithful polymerase activity that preferentially incorporates correct over incorrect nucleotides. Additionally, many replicative polymerases have an efficient 3′→5′ exonuclease activity that excises misincorporated nucleotides. Together, these activities contribute to overall low polymerase error frequency (one error per 106–108 incorporations) and support faithful eukaryotic genome replication. Eukaryotic DNA polymerase ϵ (Polϵ) is one of three main replicative DNA polymerases for nuclear genomic replication and is responsible for leading strand synthesis. Here, we employed pre-steady-state kinetic methods and determined the overall fidelity of human Polϵ (hPolϵ) by measuring the individual contributions of its polymerase and 3′→5′ exonuclease activities. The polymerase activity of hPolϵ has a high base substitution fidelity (10−4–10−7) resulting from large decreases in both nucleotide incorporation rate constants and ground-state binding affinities for incorrect relative to correct nucleotides. The 3′→5′ exonuclease activity of hPolϵ further enhances polymerization fidelity by an unprecedented 3.5 × 102 to 1.2 × 104-fold. The resulting overall fidelity of hPolϵ (10−6–10−11) justifies hPolϵ to be a primary enzyme to replicate human nuclear genome (0.1–1.0 error per round). Consistently, somatic mutations in hPolϵ, which decrease its exonuclease activity, are connected with mutator phenotypes and cancer formation. PMID:25414327
42 CFR 1005.23 - Harmless error.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Harmless error. 1005.23 Section 1005.23 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES APPEALS OF EXCLUSIONS, CIVIL MONEY PENALTIES AND ASSESSMENTS § 1005.23 Harmless error. No error in either...
42 CFR 1005.23 - Harmless error.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Harmless error. 1005.23 Section 1005.23 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES APPEALS OF EXCLUSIONS, CIVIL MONEY PENALTIES AND ASSESSMENTS § 1005.23 Harmless error. No error in either...
42 CFR 1005.23 - Harmless error.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Harmless error. 1005.23 Section 1005.23 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES APPEALS OF EXCLUSIONS, CIVIL MONEY PENALTIES AND ASSESSMENTS § 1005.23 Harmless error. No error in either...
42 CFR 1005.23 - Harmless error.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Harmless error. 1005.23 Section 1005.23 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES APPEALS OF EXCLUSIONS, CIVIL MONEY PENALTIES AND ASSESSMENTS § 1005.23 Harmless error. No error in either...
42 CFR 1005.23 - Harmless error.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Harmless error. 1005.23 Section 1005.23 Public Health OFFICE OF INSPECTOR GENERAL-HEALTH CARE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OIG AUTHORITIES APPEALS OF EXCLUSIONS, CIVIL MONEY PENALTIES AND ASSESSMENTS § 1005.23 Harmless error. No error in either...
42 CFR 3.552 - Harmless error.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Harmless error. 3.552 Section 3.552 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT Enforcement Program § 3.552 Harmless error. No error in either the...
Defense Mapping Agency (DMA) Raster-to-Vector Analysis
1984-11-30
model) to pinpoint critical deficiencies and understand trade-offs between alternative solutions. This may be exemplified by the allocation of human ...process, prone to errors (i.e., human operator eye/motor control limitations), and its time consuming nature (as a function of data density). It should...achieved through the facilities of coinputer interactive graphics. Each error or anomaly is individually identified by a human operator and corrected
NASA Astrophysics Data System (ADS)
Maginnis, P. A.; West, M.; Dullerud, G. E.
2016-10-01
We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.
The Bayesian Approach to Association
NASA Astrophysics Data System (ADS)
Arora, N. S.
2017-12-01
The Bayesian approach to Association focuses mainly on quantifying the physics of the domain. In the case of seismic association for instance let X be the set of all significant events (above some threshold) and their attributes, such as location, time, and magnitude, Y1 be the set of detections that are caused by significant events and their attributes such as seismic phase, arrival time, amplitude etc., Y2 be the set of detections that are not caused by significant events, and finally Y be the set of observed detections We would now define the joint distribution P(X, Y1, Y2, Y) = P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2) ; where the last term simply states that Y1 and Y2 are a partitioning of Y. Given the above joint distribution the inference problem is simply to find the X, Y1, and Y2 that maximizes posterior probability P(X, Y1, Y2| Y) which reduces to maximizing P(X) P(Y1 | X) P(Y2) I(Y = Y1 + Y2). In this expression P(X) captures our prior belief about event locations. P(Y1 | X) captures notions of travel time, residual error distributions as well as detection and mis-detection probabilities. While P(Y2) captures the false detection rate of our seismic network. The elegance of this approach is that all of the assumptions are stated clearly in the model for P(X), P(Y1|X) and P(Y2). The implementation of the inference is merely a by-product of this model. In contrast some of the other methods such as GA hide a number of assumptions in the implementation details of the inference - such as the so called "driver cells." The other important aspect of this approach is that all seismic knowledge including knowledge from other domains such as infrasound and hydroacoustic can be included in the same model. So, we don't need to separately account for misdetections or merge seismic and infrasound events as a separate step. Finally, it should be noted that the objective of automatic association is to simplify the job of humans who are publishing seismic bulletins based on this output. The error metric for association should accordingly count errors such as missed events much higher than spurious events because the former require more work from humans. Furthermore, the error rate needs to be weighted higher during periods of high seismicity such as an aftershock sequence when the human effort tends to increase.
Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C
2014-03-01
Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward prediction errors and the changes in amplitude of these prediction errors at the time of choice presentation and reward delivery. Our results provide further support that the computations that underlie human learning and decision-making follow reinforcement learning principles.
Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory.
Peräkylä, Jari; Sun, Lihua; Lehtimäki, Kai; Peltola, Jukka; Öhman, Juha; Möttönen, Timo; Ogawa, Keith H; Hartikainen, Kaisa M
2017-12-01
The mediodorsal nucleus of the thalamus (MD), with its extensive connections to the lateral pFC, has been implicated in human working memory and executive functions. However, this understanding is based solely on indirect evidence from human lesion and imaging studies and animal studies. Direct, causal evidence from humans is missing. To obtain direct evidence for MD's role in humans, we studied patients treated with deep brain stimulation (DBS) for refractory epilepsy. This treatment is thought to prevent the generalization of a seizure by disrupting the functioning of the patient's anterior nuclei of the thalamus (ANT) with high-frequency electric stimulation. This structure is located superior and anterior to MD, and when the DBS lead is implanted in ANT, tip contacts of the lead typically penetrate through ANT into the adjoining MD. To study the role of MD in human executive functions and working memory, we periodically disrupted and recovered MD's function with high-frequency electric stimulation using DBS contacts reaching MD while participants performed a cognitive task engaging several aspects of executive functions. We hypothesized that the efficacy of executive functions, specifically working memory, is impaired when the functioning of MD is perturbed by high-frequency stimulation. Eight participants treated with ANT-DBS for refractory epilepsy performed a computer-based test of executive functions while DBS was repeatedly switched ON and OFF at MD and at the control location (ANT). In comparison to stimulation of the control location, when MD was stimulated, participants committed 2.26 times more errors in general (total errors; OR = 2.26, 95% CI [1.69, 3.01]) and 2.86 times more working memory-related errors specifically (incorrect button presses; OR = 2.88, CI [1.95, 4.24]). Similarly, participants committed 1.81 more errors in general ( OR = 1.81, CI [1.45, 2.24]) and 2.08 times more working memory-related errors ( OR = 2.08, CI [1.57, 2.75]) in comparison to no stimulation condition. "Total errors" is a composite score consisting of basic error types and was mostly driven by working memory-related errors. The facts that MD and a control location, ANT, are only few millimeters away from each other and that their stimulation produces very different results highlight the location-specific effect of DBS rather than regionally unspecific general effect. In conclusion, disrupting and recovering MD's function with high-frequency electric stimulation modulated participants' online working memory performance providing causal, in vivo evidence from humans for the role of MD in human working memory.
High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link
NASA Technical Reports Server (NTRS)
Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli
2016-01-01
We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.
A Method for the Study of Human Factors in Aircraft Operations
NASA Technical Reports Server (NTRS)
Barnhart, W.; Billings, C.; Cooper, G.; Gilstrap, R.; Lauber, J.; Orlady, H.; Puskas, B.; Stephens, W.
1975-01-01
A method for the study of human factors in the aviation environment is described. A conceptual framework is provided within which pilot and other human errors in aircraft operations may be studied with the intent of finding out how, and why, they occurred. An information processing model of human behavior serves as the basis for the acquisition and interpretation of information relating to occurrences which involve human error. A systematic method of collecting such data is presented and discussed. The classification of the data is outlined.
An interactive framework for acquiring vision models of 3-D objects from 2-D images.
Motai, Yuichi; Kak, Avinash
2004-02-01
This paper presents a human-computer interaction (HCI) framework for building vision models of three-dimensional (3-D) objects from their two-dimensional (2-D) images. Our framework is based on two guiding principles of HCI: 1) provide the human with as much visual assistance as possible to help the human make a correct input; and 2) verify each input provided by the human for its consistency with the inputs previously provided. For example, when stereo correspondence information is elicited from a human, his/her job is facilitated by superimposing epipolar lines on the images. Although that reduces the possibility of error in the human marked correspondences, such errors are not entirely eliminated because there can be multiple candidate points close together for complex objects. For another example, when pose-to-pose correspondence is sought from a human, his/her job is made easier by allowing the human to rotate the partial model constructed in the previous pose in relation to the partial model for the current pose. While this facility reduces the incidence of human-supplied pose-to-pose correspondence errors, such errors cannot be eliminated entirely because of confusion created when multiple candidate features exist close together. Each input provided by the human is therefore checked against the previous inputs by invoking situation-specific constraints. Different types of constraints (and different human-computer interaction protocols) are needed for the extraction of polygonal features and for the extraction of curved features. We will show results on both polygonal objects and object containing curved features.
Liu, Xiaoming; Fu, Yun-Xin; Maxwell, Taylor J.; Boerwinkle, Eric
2010-01-01
It is known that sequencing error can bias estimation of evolutionary or population genetic parameters. This problem is more prominent in deep resequencing studies because of their large sample size n, and a higher probability of error at each nucleotide site. We propose a new method based on the composite likelihood of the observed SNP configurations to infer population mutation rate θ = 4Neμ, population exponential growth rate R, and error rate ɛ, simultaneously. Using simulation, we show the combined effects of the parameters, θ, n, ɛ, and R on the accuracy of parameter estimation. We compared our maximum composite likelihood estimator (MCLE) of θ with other θ estimators that take into account the error. The results show the MCLE performs well when the sample size is large or the error rate is high. Using parametric bootstrap, composite likelihood can also be used as a statistic for testing the model goodness-of-fit of the observed DNA sequences. The MCLE method is applied to sequence data on the ANGPTL4 gene in 1832 African American and 1045 European American individuals. PMID:19952140
A long-term follow-up evaluation of electronic health record prescribing safety
Abramson, Erika L; Malhotra, Sameer; Osorio, S Nena; Edwards, Alison; Cheriff, Adam; Cole, Curtis; Kaushal, Rainu
2013-01-01
Objective To be eligible for incentives through the Electronic Health Record (EHR) Incentive Program, many providers using older or locally developed EHRs will be transitioning to new, commercial EHRs. We previously evaluated prescribing errors made by providers in the first year following transition from a locally developed EHR with minimal prescribing clinical decision support (CDS) to a commercial EHR with robust CDS. Following system refinements, we conducted this study to assess the rates and types of errors 2 years after transition and determine the evolution of errors. Materials and methods We conducted a mixed methods cross-sectional case study of 16 physicians at an academic-affiliated ambulatory clinic from April to June 2010. We utilized standardized prescription and chart review to identify errors. Fourteen providers also participated in interviews. Results We analyzed 1905 prescriptions. The overall prescribing error rate was 3.8 per 100 prescriptions (95% CI 2.8 to 5.1). Error rates were significantly lower 2 years after transition (p<0.001 compared to pre-implementation, 12 weeks and 1 year after transition). Rates of near misses remained unchanged. Providers positively appreciated most system refinements, particularly reduced alert firing. Discussion Our study suggests that over time and with system refinements, use of a commercial EHR with advanced CDS can lead to low prescribing error rates, although more serious errors may require targeted interventions to eliminate them. Reducing alert firing frequency appears particularly important. Our results provide support for federal efforts promoting meaningful use of EHRs. Conclusions Ongoing error monitoring can allow CDS to be optimally tailored and help achieve maximal safety benefits. Clinical Trials Registration ClinicalTrials.gov, Identifier: NCT00603070. PMID:23578816
Prevalence and cost of hospital medical errors in the general and elderly United States populations.
Mallow, Peter J; Pandya, Bhavik; Horblyuk, Ruslan; Kaplan, Harold S
2013-12-01
The primary objective of this study was to quantify the differences in the prevalence rate and costs of hospital medical errors between the general population and an elderly population aged ≥65 years. Methods from an actuarial study of medical errors were modified to identify medical errors in the Premier Hospital Database using data from 2009. Visits with more than four medical errors were removed from the population to avoid over-estimation of cost. Prevalence rates were calculated based on the total number of inpatient visits. There were 3,466,596 total inpatient visits in 2009. Of these, 1,230,836 (36%) occurred in people aged ≥ 65. The prevalence rate was 49 medical errors per 1000 inpatient visits in the general cohort and 79 medical errors per 1000 inpatient visits for the elderly cohort. The top 10 medical errors accounted for more than 80% of the total in the general cohort and the 65+ cohort. The most costly medical error for the general population was postoperative infection ($569,287,000). Pressure ulcers were most costly ($347,166,257) in the elderly population. This study was conducted with a hospital administrative database, and assumptions were necessary to identify medical errors in the database. Further, there was no method to identify errors of omission or misdiagnoses within the database. This study indicates that prevalence of hospital medical errors for the elderly is greater than the general population and the associated cost of medical errors in the elderly population is quite substantial. Hospitals which further focus their attention on medical errors in the elderly population may see a significant reduction in costs due to medical errors as a disproportionate percentage of medical errors occur in this age group.
The effectiveness of risk management program on pediatric nurses' medication error.
Dehghan-Nayeri, Nahid; Bayat, Fariba; Salehi, Tahmineh; Faghihzadeh, Soghrat
2013-09-01
Medication therapy is one of the most complex and high-risk clinical processes that nurses deal with. Medication error is the most common type of error that brings about damage and death to patients, especially pediatric ones. However, these errors are preventable. Identifying and preventing undesirable events leading to medication errors are the main risk management activities. The aim of this study was to investigate the effectiveness of a risk management program on the pediatric nurses' medication error rate. This study is a quasi-experimental one with a comparison group. In this study, 200 nurses were recruited from two main pediatric hospitals in Tehran. In the experimental hospital, we applied the risk management program for a period of 6 months. Nurses of the control hospital did the hospital routine schedule. A pre- and post-test was performed to measure the frequency of the medication error events. SPSS software, t-test, and regression analysis were used for data analysis. After the intervention, the medication error rate of nurses at the experimental hospital was significantly lower (P < 0.001) and the error-reporting rate was higher (P < 0.007) compared to before the intervention and also in comparison to the nurses of the control hospital. Based on the results of this study and taking into account the high-risk nature of the medical environment, applying the quality-control programs such as risk management can effectively prevent the occurrence of the hospital undesirable events. Nursing mangers can reduce the medication error rate by applying risk management programs. However, this program cannot succeed without nurses' cooperation.
A method for the in vivo measurement of americium-241 at long times post-exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neton, J.W.
1988-01-01
This study investigated an improved method for the quantitative measurement, calibration and calculation of {sup 241}Am organ burdens in humans. The techniques developed correct for cross-talk or count-rate contributions from surrounding and adjacent organ burdens and assures for the proper assignment of activity to the lungs, liver and skeleton. In order to predict the net count-rates for the measurement geometries of the skull, liver and lung, a background prediction method was developed. This method utilizes data obtained from the measurement of a group of control subjects. Based on this data, a linear prediction equation was developed for each measurement geometry.more » In order to correct for the cross-contributions among the various deposition loci, a series of surrogate human phantom structures were measured. The results of measurements of {sup 241}Am depositions in six exposure cases have been evaluated using these new techniques and have indicated that lung burden estimates could be in error by as much as 100 percent when corrections are not made for contributions to the count-rate from other organs.« less
New methodology to reconstruct in 2-D the cuspal enamel of modern human lower molars.
Modesto-Mata, Mario; García-Campos, Cecilia; Martín-Francés, Laura; Martínez de Pinillos, Marina; García-González, Rebeca; Quintino, Yuliet; Canals, Antoni; Lozano, Marina; Dean, M Christopher; Martinón-Torres, María; Bermúdez de Castro, José María
2017-08-01
In the last years different methodologies have been developed to reconstruct worn teeth. In this article, we propose a new 2-D methodology to reconstruct the worn enamel of lower molars. Our main goals are to reconstruct molars with a high level of accuracy when measuring relevant histological variables and to validate the methodology calculating the errors associated with the measurements. This methodology is based on polynomial regression equations, and has been validated using two different dental variables: cuspal enamel thickness and crown height of the protoconid. In order to perform the validation process, simulated worn modern human molars were employed. The associated errors of the measurements were also estimated applying methodologies previously proposed by other authors. The mean percentage error estimated in reconstructed molars for these two variables in comparison with their own real values is -2.17% for the cuspal enamel thickness of the protoconid and -3.18% for the crown height of the protoconid. This error significantly improves the results of other methodologies, both in the interobserver error and in the accuracy of the measurements. The new methodology based on polynomial regressions can be confidently applied to the reconstruction of cuspal enamel of lower molars, as it improves the accuracy of the measurements and reduces the interobserver error. The present study shows that it is important to validate all methodologies in order to know the associated errors. This new methodology can be easily exportable to other modern human populations, the human fossil record and forensic sciences. © 2017 Wiley Periodicals, Inc.
Safety and Performance Analysis of the Non-Radar Oceanic/Remote Airspace In-Trail Procedure
NASA Technical Reports Server (NTRS)
Carreno, Victor A.; Munoz, Cesar A.
2007-01-01
This document presents a safety and performance analysis of the nominal case for the In-Trail Procedure (ITP) in a non-radar oceanic/remote airspace. The analysis estimates the risk of collision between the aircraft performing the ITP and a reference aircraft. The risk of collision is only estimated for the ITP maneuver and it is based on nominal operating conditions. The analysis does not consider human error, communication error conditions, or the normal risk of flight present in current operations. The hazards associated with human error and communication errors are evaluated in an Operational Hazards Analysis presented elsewhere.
Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis G; Atkins, David C; Narayanan, Shrikanth S
2015-01-01
The technology for evaluating patient-provider interactions in psychotherapy-observational coding-has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies.
Effects of Retinal Eccentricity on Human Manual Control
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.
2017-01-01
This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.
Rate, causes and reporting of medication errors in Jordan: nurses' perspectives.
Mrayyan, Majd T; Shishani, Kawkab; Al-Faouri, Ibrahim
2007-09-01
The aim of the study was to describe Jordanian nurses' perceptions about various issues related to medication errors. This is the first nursing study about medication errors in Jordan. This was a descriptive study. A convenient sample of 799 nurses from 24 hospitals was obtained. Descriptive and inferential statistics were used for data analysis. Over the course of their nursing career, the average number of recalled committed medication errors per nurse was 2.2. Using incident reports, the rate of medication errors reported to nurse managers was 42.1%. Medication errors occurred mainly when medication labels/packaging were of poor quality or damaged. Nurses failed to report medication errors because they were afraid that they might be subjected to disciplinary actions or even lose their jobs. In the stepwise regression model, gender was the only predictor of medication errors in Jordan. Strategies to reduce or eliminate medication errors are required.
A cognitive taxonomy of medical errors.
Zhang, Jiajie; Patel, Vimla L; Johnson, Todd R; Shortliffe, Edward H
2004-06-01
Propose a cognitive taxonomy of medical errors at the level of individuals and their interactions with technology. Use cognitive theories of human error and human action to develop the theoretical foundations of the taxonomy, develop the structure of the taxonomy, populate the taxonomy with examples of medical error cases, identify cognitive mechanisms for each category of medical error under the taxonomy, and apply the taxonomy to practical problems. Four criteria were used to evaluate the cognitive taxonomy. The taxonomy should be able (1) to categorize major types of errors at the individual level along cognitive dimensions, (2) to associate each type of error with a specific underlying cognitive mechanism, (3) to describe how and explain why a specific error occurs, and (4) to generate intervention strategies for each type of error. The proposed cognitive taxonomy largely satisfies the four criteria at a theoretical and conceptual level. Theoretically, the proposed cognitive taxonomy provides a method to systematically categorize medical errors at the individual level along cognitive dimensions, leads to a better understanding of the underlying cognitive mechanisms of medical errors, and provides a framework that can guide future studies on medical errors. Practically, it provides guidelines for the development of cognitive interventions to decrease medical errors and foundation for the development of medical error reporting system that not only categorizes errors but also identifies problems and helps to generate solutions. To validate this model empirically, we will next be performing systematic experimental studies.
Differential sensitivity to human communication in dogs, wolves, and human infants.
Topál, József; Gergely, György; Erdohegyi, Agnes; Csibra, Gergely; Miklósi, Adám
2009-09-04
Ten-month-old infants persistently search for a hidden object at its initial hiding place even after observing it being hidden at another location. Recent evidence suggests that communicative cues from the experimenter contribute to the emergence of this perseverative search error. We replicated these results with dogs (Canis familiaris), who also commit more search errors in ostensive-communicative (in 75% of the total trials) than in noncommunicative (39%) or nonsocial (17%) hiding contexts. However, comparative investigations suggest that communicative signals serve different functions for dogs and infants, whereas human-reared wolves (Canis lupus) do not show doglike context-dependent differences of search errors. We propose that shared sensitivity to human communicative signals stems from convergent social evolution of the Homo and the Canis genera.
Metrics for Business Process Models
NASA Astrophysics Data System (ADS)
Mendling, Jan
Up until now, there has been little research on why people introduce errors in real-world business process models. In a more general context, Simon [404] points to the limitations of cognitive capabilities and concludes that humans act rationally only to a certain extent. Concerning modeling errors, this argument would imply that human modelers lose track of the interrelations of large and complex models due to their limited cognitive capabilities and introduce errors that they would not insert in a small model. A recent study by Mendling et al. [275] explores in how far certain complexity metrics of business process models have the potential to serve as error determinants. The authors conclude that complexity indeed appears to have an impact on error probability. Before we can test such a hypothesis in a more general setting, we have to establish an understanding of how we can define determinants that drive error probability and how we can measure them.
Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew
2013-01-01
Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously. PMID:23536092
Image data compression having minimum perceptual error
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1995-01-01
A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
Error analysis of high-rate GNSS precise point positioning for seismic wave measurement
NASA Astrophysics Data System (ADS)
Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan
2017-06-01
High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is rather poor with a large DOP value.
Associations between errors and contributing factors in aircraft maintenance
NASA Technical Reports Server (NTRS)
Hobbs, Alan; Williamson, Ann
2003-01-01
In recent years cognitive error models have provided insights into the unsafe acts that lead to many accidents in safety-critical environments. Most models of accident causation are based on the notion that human errors occur in the context of contributing factors. However, there is a lack of published information on possible links between specific errors and contributing factors. A total of 619 safety occurrences involving aircraft maintenance were reported using a self-completed questionnaire. Of these occurrences, 96% were related to the actions of maintenance personnel. The types of errors that were involved, and the contributing factors associated with those actions, were determined. Each type of error was associated with a particular set of contributing factors and with specific occurrence outcomes. Among the associations were links between memory lapses and fatigue and between rule violations and time pressure. Potential applications of this research include assisting with the design of accident prevention strategies, the estimation of human error probabilities, and the monitoring of organizational safety performance.
Douglas, Julie A.; Skol, Andrew D.; Boehnke, Michael
2002-01-01
Gene-mapping studies routinely rely on checking for Mendelian transmission of marker alleles in a pedigree, as a means of screening for genotyping errors and mutations, with the implicit assumption that, if a pedigree is consistent with Mendel’s laws of inheritance, then there are no genotyping errors. However, the occurrence of inheritance inconsistencies alone is an inadequate measure of the number of genotyping errors, since the rate of occurrence depends on the number and relationships of genotyped pedigree members, the type of errors, and the distribution of marker-allele frequencies. In this article, we calculate the expected probability of detection of a genotyping error or mutation as an inheritance inconsistency in nuclear-family data, as a function of both the number of genotyped parents and offspring and the marker-allele frequency distribution. Through computer simulation, we explore the sensitivity of our analytic calculations to the underlying error model. Under a random-allele–error model, we find that detection rates are 51%–77% for multiallelic markers and 13%–75% for biallelic markers; detection rates are generally lower when the error occurs in a parent than in an offspring, unless a large number of offspring are genotyped. Errors are especially difficult to detect for biallelic markers with equally frequent alleles, even when both parents are genotyped; in this case, the maximum detection rate is 34% for four-person nuclear families. Error detection in families in which parents are not genotyped is limited, even with multiallelic markers. Given these results, we recommend that additional error checking (e.g., on the basis of multipoint analysis) be performed, beyond routine checking for Mendelian consistency. Furthermore, our results permit assessment of the plausibility of an observed number of inheritance inconsistencies for a family, allowing the detection of likely pedigree—rather than genotyping—errors in the early stages of a genome scan. Such early assessments are valuable in either the targeting of families for resampling or discontinued genotyping. PMID:11791214
Huh, Yeamin; Smith, David E.; Feng, Meihau Rose
2014-01-01
Human clearance prediction for small- and macro-molecule drugs was evaluated and compared using various scaling methods and statistical analysis.Human clearance is generally well predicted using single or multiple species simple allometry for macro- and small-molecule drugs excreted renally.The prediction error is higher for hepatically eliminated small-molecules using single or multiple species simple allometry scaling, and it appears that the prediction error is mainly associated with drugs with low hepatic extraction ratio (Eh). The error in human clearance prediction for hepatically eliminated small-molecules was reduced using scaling methods with a correction of maximum life span (MLP) or brain weight (BRW).Human clearance of both small- and macro-molecule drugs is well predicted using the monkey liver blood flow method. Predictions using liver blood flow from other species did not work as well, especially for the small-molecule drugs. PMID:21892879
Bakker, Marjan; Wicherts, Jelte M
2014-09-01
In psychology, outliers are often excluded before running an independent samples t test, and data are often nonnormal because of the use of sum scores based on tests and questionnaires. This article concerns the handling of outliers in the context of independent samples t tests applied to nonnormal sum scores. After reviewing common practice, we present results of simulations of artificial and actual psychological data, which show that the removal of outliers based on commonly used Z value thresholds severely increases the Type I error rate. We found Type I error rates of above 20% after removing outliers with a threshold value of Z = 2 in a short and difficult test. Inflations of Type I error rates are particularly severe when researchers are given the freedom to alter threshold values of Z after having seen the effects thereof on outcomes. We recommend the use of nonparametric Mann-Whitney-Wilcoxon tests or robust Yuen-Welch tests without removing outliers. These alternatives to independent samples t tests are found to have nominal Type I error rates with a minimal loss of power when no outliers are present in the data and to have nominal Type I error rates and good power when outliers are present. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Durand, Casey P
2013-01-01
Statistical interactions are a common component of data analysis across a broad range of scientific disciplines. However, the statistical power to detect interactions is often undesirably low. One solution is to elevate the Type 1 error rate so that important interactions are not missed in a low power situation. To date, no study has quantified the effects of this practice on power in a linear regression model. A Monte Carlo simulation study was performed. A continuous dependent variable was specified, along with three types of interactions: continuous variable by continuous variable; continuous by dichotomous; and dichotomous by dichotomous. For each of the three scenarios, the interaction effect sizes, sample sizes, and Type 1 error rate were varied, resulting in a total of 240 unique simulations. In general, power to detect the interaction effect was either so low or so high at α = 0.05 that raising the Type 1 error rate only served to increase the probability of including a spurious interaction in the model. A small number of scenarios were identified in which an elevated Type 1 error rate may be justified. Routinely elevating Type 1 error rate when testing interaction effects is not an advisable practice. Researchers are best served by positing interaction effects a priori and accounting for them when conducting sample size calculations.
An Evaluation of Commercial Pedometers for Monitoring Slow Walking Speed Populations.
Beevi, Femina H A; Miranda, Jorge; Pedersen, Christian F; Wagner, Stefan
2016-05-01
Pedometers are considered desirable devices for monitoring physical activity. Two population groups of interest include patients having undergone surgery in the lower extremities or who are otherwise weakened through disease, medical treatment, or surgery procedures, as well as the slow walking senior population. For these population groups, pedometers must be able to perform reliably and accurately at slow walking speeds. The objectives of this study were to evaluate the step count accuracy of three commercially available pedometers, the Yamax (Tokyo, Japan) Digi-Walker(®) SW-200 (YM), the Omron (Kyoto, Japan) HJ-720 (OM), and the Fitbit (San Francisco, CA) Zip (FB), at slow walking speeds, specifically at 1, 2, and 3 km/h, and to raise awareness of the necessity of focusing research on step-counting devices and algorithms for slow walking populations. Fourteen participants 29.93 ±4.93 years of age were requested to walk on a treadmill at the three specified speeds, in four trials of 100 steps each. The devices were worn by the participants on the waist belt. The pedometer counts were recorded, and the error percentage was calculated. The error rate of all three evaluated pedometers decreased with the increase of speed: at 1 km/h the error rates varied from 87.11% (YM) to 95.98% (FB), at 2 km/h the error rates varied from 17.27% (FB) to 46.46% (YM), and at 3 km/h the error rates varied from 22.46% (YM) to a slight overcount of 0.70% (FB). It was observed that all the evaluated devices have high error rates at 1 km/h and mixed error rates at 2 km/h, and at 3 km/h the error rates are the smallest of the three assessed speeds, with the OM and the FB having a slight overcount. These results show that research on pedometers' software and hardware should focus more on accurate step detection at slow walking speeds.
Cognitive fallacies and criminal investigations.
Ditrich, Hans
2015-03-01
The human mind is susceptible to inherent fallacies that often hamper fully rational action. Many such misconceptions have an evolutionary background and are thus difficult to avert. Deficits in the reliability of eye-witnesses are well known to legal professionals; however, less attention has been paid to such effects in crime investigators. In order to obtain an "inside view" on the role of cognitive misconceptions in criminalistic work, a list of fallacies from the literature was adapted to criminalistic settings. The statements on this list were rated by highly experienced crime scene investigators according to the assumed likelihood of these errors to appear and their severity of effect. Among others, selective perception, expectation and confirmation bias, anchoring/"pars per toto" errors and "onus probandi"--shifting the burden of proof from the investigator to the suspect--were frequently considered to negatively affect criminal investigations. As a consequence, the following measures are proposed: alerting investigating officers in their training to cognitive fallacies and promoting the exchange of experiences in peer circles of investigators on a regular basis. Furthermore, the improvement of the organizational error culture and the establishment of a failure analysis system in order to identify and alleviate error prone processes are suggested. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts
He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang
2018-01-01
The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments. PMID:29375930
Auditing the Assignments of Top-Level Semantic Types in the UMLS Semantic Network to UMLS Concepts.
He, Zhe; Perl, Yehoshua; Elhanan, Gai; Chen, Yan; Geller, James; Bian, Jiang
2017-11-01
The Unified Medical Language System (UMLS) is an important terminological system. By the policy of its curators, each concept of the UMLS should be assigned the most specific Semantic Types (STs) in the UMLS Semantic Network (SN). Hence, the Semantic Types of most UMLS concepts are assigned at or near the bottom (leaves) of the UMLS Semantic Network. While most ST assignments are correct, some errors do occur. Therefore, Quality Assurance efforts of UMLS curators for ST assignments should concentrate on automatically detected sets of UMLS concepts with higher error rates than random sets. In this paper, we investigate the assignments of top-level semantic types in the UMLS semantic network to concepts, identify potential erroneous assignments, define four categories of errors, and thus provide assistance to curators of the UMLS to avoid these assignments errors. Human experts analyzed samples of concepts assigned 10 of the top-level semantic types and categorized the erroneous ST assignments into these four logical categories. Two thirds of the concepts assigned these 10 top-level semantic types are erroneous. Our results demonstrate that reviewing top-level semantic type assignments to concepts provides an effective way for UMLS quality assurance, comparing to reviewing a random selection of semantic type assignments.
Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y
2014-12-23
Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.
Impact of Measurement Error on Synchrophasor Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include themore » possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.« less