Sample records for human exposures effects

  1. American association of poison control centers database characterization of human tilmicosin exposures, 2001-2005.

    PubMed

    Oakes, Jennifer; Seifert, Steven

    2008-12-01

    Tilmicosin is a veterinary antibiotic with significant human toxicity at doses commonly used in animals, but the parenteral dose-response relationship has not been well characterized. Human exposures to tilmicosin in the database of the American Association of Poison Control Centers (AAPCC) from 2001 to 2005 were analyzed for demographic associations, exposure dose, clinical effects and outcomes. Over the 5-year period, there were 1,291 single-substance human exposures to tilmicosin. The mean age was 39.1 years, and 80% were male. By route there were 768 (54%) parenteral exposures. Patients with parenteral exposures had a significantly increased likelihood of being seen at a healthcare facility, admission, and admission to an ICU. With nonparenteral exposure, most had no clinical effects or minor effects, and there were no major effects or deaths. With parenteral exposure, moderate effects occurred in 46 (6%), major effects in 2 (0.3%) and there were 4 (0.5%) deaths, two of which were suicides. A dose-response relationship could be demonstrated. Clinical effect durations of up to a week occurred at even the lowest dose range. Over 250 cases of human tilmicosin exposure are reported to poison centers per year and over 150 of those are parenteral. Most exposures produce no or minor effects, but fatalities have occurred with parenteral exposure. The case fatality rate in parenteral exposures is 10 times the case fatality rate for all human exposures in the AAPCC database. Significant adverse and prolonged effects are reported at parenteral doses > 0.5 mL, suggesting that all parenteral exposures should be referred for healthcare facility evaluation.

  2. Utility of controlled human exposure studies for assessing the health effects of complex mixtures and indoor air pollutants.

    PubMed Central

    McDonnell, W F

    1993-01-01

    The study of health effects induced by exposure to mixtures of pollutants is a complex task. The purpose of this paper is to identify areas of research in which the conduct of human controlled exposure (clinical) studies may contribute to better understanding health effects of exposure to indoor air and other mixtures. The strengths and weaknesses of clinical studies in general are reviewed, as well as examples from the literature of approaches that have been used. Human chamber studies play an important role alongside epidemiologic and animal toxicologic studies in such research. Human chamber studies are limited with regard to assessing chronic effects, rare effects, or effects from long-duration exposures but are powerful in assessing acute, reversible effects from short-duration exposures in humans. The areas in which human chamber studies are most likely to contribute include identification of effects or markers of effects for exposure to a given pollutant or mix of pollutants; direct dose-response assessment of effects for individual compounds and mixtures of set composition; identification of individual compounds responsible for the effects of a mixture; study of the joint effects of a binary mixture; development of markers of acute exposure for particular compounds; development of outcome measurements to be used in the field; and identification, characterization, and testing of sensitive subpopulations. PMID:8206031

  3. 40 CFR 159.170 - Human epidemiological and exposure studies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...

  4. 40 CFR 159.170 - Human epidemiological and exposure studies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...

  5. 40 CFR 159.170 - Human epidemiological and exposure studies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...

  6. 40 CFR 159.170 - Human epidemiological and exposure studies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Human epidemiological and exposure... Information § 159.170 Human epidemiological and exposure studies. Information must be submitted which concerns... that a correlation may exist between exposure to a pesticide and observed adverse effects in humans...

  7. AN APPROACH TO METHODS DEVELOPMENT FOR HUMAN EXPOSURE ASSESSMENT STUDIES

    EPA Science Inventory

    Human exposure assessment studies require methods that are rapid, cost-effective and have a high sample through-put. The development of analytical methods for exposure studies should be based on specific information for individual studies. Human exposure studies suggest that di...

  8. Building associations between markers of environmental stressors and adverse human health impacts using frequent itemset mining

    EPA Science Inventory

    Building associations between markers of exposure and effect using frequent itemset mining The human-health impact of environmental contaminant exposures is unclear. While some exposure-effect relationships are well studied, health effects are unknown for the vast majority of the...

  9. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review.

    PubMed

    Cimino, Andria M; Boyles, Abee L; Thayer, Kristina A; Perry, Melissa J

    2017-02-01

    Numerous studies have identified detectable levels of neonicotinoids (neonics) in the environment, adverse effects of neonics in many species, including mammals, and pathways through which human exposure to neonics could occur, yet little is known about the human health effects of neonic exposure. In this systematic review, we sought to identify human population studies on the health effects of neonics. Studies published in English between 2005 and 2015 were searched using PubMed, Scopus, and Web of Science databases. No restrictions were placed on the type of health outcome assessed. Risk of bias was assessed using guidance developed by the National Toxicology Program's Office of Health Assessment and Translation. Eight studies investigating the human health effects of exposure to neonics were identified. Four examined acute exposure: Three neonic poisoning studies reported two fatalities (n = 1,280 cases) and an occupational exposure study of 19 forestry workers reported no adverse effects. Four general population studies reported associations between chronic neonic exposure and adverse developmental or neurological outcomes, including tetralogy of Fallot (AOR 2.4, 95% CI: 1.1, 5.4), anencephaly (AOR 2.9, 95% CI: 1.0, 8.2), autism spectrum disorder [AOR 1.3, 95% credible interval (CrI): 0.78, 2.2], and a symptom cluster including memory loss and finger tremor (OR 14, 95% CI: 3.5, 57). Reported odds ratios were based on exposed compared to unexposed groups. The studies conducted to date were limited in number with suggestive but methodologically weak findings related to chronic exposure. Given the wide-scale use of neonics, more studies are needed to fully understand their effects on human health. Citation: Cimino AM, Boyles AL, Thayer KA, Perry MJ. 2017. Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environ Health Perspect 125:155-162; http://dx.doi.org/10.1289/EHP515.

  10. The Adverse Effects of Heavy Metals with and without Noise Exposure on the Human Peripheral and Central Auditory System: A Literature Review.

    PubMed

    Castellanos, Marie-Josée; Fuente, Adrian

    2016-12-09

    Exposure to some chemicals in the workplace can lead to occupational chemical-induced hearing loss. Attention has mainly focused on the adverse auditory effects of solvents. However, other chemicals such as heavy metals have been also identified as ototoxic agents. The aim of this work was to review the current scientific knowledge about the adverse auditory effects of heavy metal exposure with and without co-exposure to noise in humans. PubMed and Medline were accessed to find suitable articles. A total of 49 articles met the inclusion criteria. Results from the review showed that no evidence about the ototoxic effects in humans of manganese is available. Contradictory results have been found for arsenic, lead and mercury as well as for the possible interaction between heavy metals and noise. All studies found in this review have found that exposure to cadmium and mixtures of heavy metals induce auditory dysfunction. Most of the studies investigating the adverse auditory effects of heavy metals in humans have investigated human populations exposed to lead. Some of these studies suggest peripheral and central auditory dysfunction induced by lead exposure. It is concluded that further evidence from human studies about the adverse auditory effects of heavy metal exposure is still required. Despite this issue, audiologists and other hearing health care professionals should be aware of the possible auditory effects of heavy metals.

  11. A review of the health impacts of barium from natural and anthropogenic exposure.

    PubMed

    Kravchenko, Julia; Darrah, Thomas H; Miller, Richard K; Lyerly, H Kim; Vengosh, Avner

    2014-08-01

    There is an increasing public awareness of the relatively new and expanded industrial barium uses which are potential sources of human exposure (e.g., a shale gas development that causes an increased awareness of environmental exposures to barium). However, absorption of barium in exposed humans and a full spectrum of its health effects, especially among chronically exposed to moderate and low doses of barium populations, remain unclear. We suggest a systematic literature review (from 1875 to 2014) on environmental distribution of barium, its bioaccumulation, and potential and proven health impacts (in animal models and humans) to provide the information that can be used for optimization of future experimental and epidemiological studies and developing of mitigative and preventive strategies to minimize negative health effects in exposed populations. The potential health effects of barium exposure are largely based on animal studies, while epidemiological data for humans, specifically for chronic low-level exposures, are sparse. The reported health effects include cardiovascular and kidney diseases, metabolic, neurological, and mental disorders. Age, race, dietary patterns, behavioral risks (e.g., smoking), use of medications (those that interfere with absorbed barium in human organism), and specific physiological status (e.g., pregnancy) can modify barium effects on human health. Identifying, evaluating, and predicting the health effects of chronic low-level and moderate-level barium exposures in humans is challenging: Future research is needed to develop an understanding of barium bioaccumulation in order to mitigate its potential health impacts in various exposured populations. Further, while occupationally exposed at-risk populations exist, it is also important to identify potentially vulnerable subgroups among non-occupationally exposed populations (e.g., elderly, pregnant women, children) who are at higher risk of barium exposure from drinking water and food.

  12. The die is cast: arsenic exposure in early life and disease susceptibility.

    PubMed

    Thomas, David J

    2013-12-16

    Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for the development and progression of disease in both species. Mode of action and dosimetric studies in the mouse may help assess the role of age at exposure as a factor in susceptibility to the toxic and carcinogenic effects of arsenic in humans.

  13. Temporal Profile of Gene Expression Alterations in Primary Human Bronchial Epithelial Cells Following In Vivo Exposure to Ozone

    EPA Science Inventory

    RATIONALE: Ozone (Os) isa ubiquitous air pollutant that has been shown to have a detrimental effect on human health. Controlled exposure studies in humans have demonstrated that acute exposure to 03 results in reversible reduction in lung function immediately post-exposure, incre...

  14. HUMAN EXPOSURE ASSESSMENT USING IMMUNOASSAY

    EPA Science Inventory

    The National Exposure Research Laboratory-Las Vegas is developing analytical methods for human exposure assessment studies. Critical exposure studies generate a large number of samples which must be analyzed in a reliable, cost-effective and timely manner. TCP (3,5,6-trichlor...

  15. Bisphenol A and human health: a review of the literature.

    PubMed

    Rochester, Johanna R

    2013-12-01

    There is growing evidence that bisphenol A (BPA) may adversely affect humans. BPA is an endocrine disruptor that has been shown to be harmful in laboratory animal studies. Until recently, there were relatively few epidemiological studies examining the relationship between BPA and health effects in humans. However, in the last year, the number of these studies has more than doubled. A comprehensive literature search found 91 studies linking BPA to human health; 53 published within the last year. This review outlines this body of literature, showing associations between BPA exposure and adverse perinatal, childhood, and adult health outcomes, including reproductive and developmental effects, metabolic disease, and other health effects. These studies encompass both prenatal and postnatal exposures, and include several study designs and population types. While it is difficult to make causal links with epidemiological studies, the growing human literature correlating environmental BPA exposure to adverse effects in humans, along with laboratory studies in many species including primates, provides increasing support that environmental BPA exposure can be harmful to humans, especially in regards to behavioral and other effects in children. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Deleterious Effects From Occupational Exposure to Ethylene Thiourea in Pregnant Women.

    PubMed

    Mutic, Abby D; Baker, Brenda J; McCauley, Linda A

    2017-12-01

    Human exposure to endocrine disrupting chemicals (EDCs) has become common as a result of widespread application of these chemicals to the food supply, environmental contamination, and occupational exposures (Caserta et al., 2011). However, relatively little is known about the effects of EDCs such as ethylene thiourea (ETU) in developing fetuses and the lasting implications of this disruption on human development from birth through adulthood. Of highest concern are chronic, low-dose exposures among industrial and agricultural workers. Current knowledge regarding the significance of endocrine thyroid signaling on normal human development raises serious concerns about the possible deleterious effects of EDCs in the developing fetus, children, and mature adults. Occupational health nurses are critical in identifying women and families at increased risk of ETU exposure and mitigating early exposures in pregnancy.

  17. Human Health Effects of Biphenyl: Key Findings and Scientific Issues.

    PubMed

    Li, Zheng; Hogan, Karen A; Cai, Christine; Rieth, Susan

    2016-06-01

    In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. We review key findings and scientific issues regarding expected human health effects of biphenyl. Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703-712; http://dx.doi.org/10.1289/ehp.1509730.

  18. Analysis of reports of human exposure to Micotil 300 (tilmicosin injection).

    PubMed

    Veenhuizen, Melissa F; Wright, Theressa J; McManus, Robert F; Owens, Jane G

    2006-12-01

    To identify clinical signs associated with and outcome of human exposure to Micotil 300 (tilmicosin injection). Retrospective case series. Reports of 3,168 human exposures to Micotil 300. Reports of human exposure to Micotil 300 submitted to the Elanco Animal Health Pharmacovigilance Unit between March 1992 and March 2005 were reviewed. At least 1 clinical sign was described in 1,404 (44%) reports, whereas the remaining 1,764 (56%) exposures were presumably asymptomatic. Eighty percent of exposures involved males; mean age was 38 years. Sixty-one percent of exposures were a result of accidental injection, with injection site pain, bleeding, swelling, or inflammation being the most common signs, followed by nausea, tachycardia, dizziness, anxiety, an abnormal taste, headache, lightheadedness, limb pain, paresthesia, chest pain, and soreness. Only 156 (5%) reports involved serious adverse effects (ie, tachycardia, bradycardia, hypertension, hypotension, heart disorder, chest pain, tachypnea, or death). There were reports of 13 deaths following tilmicosin exposure, but only 2 of those deaths were related to accidental exposure. Time to onset of clinical signs was < or = 60 minutes in 63 of the 156 (40%) reports involving serious adverse effects. Results suggest that the overall risk of accidental human exposure to tilmicosin resulting in serious adverse effects is low (approx 2 people for every 1 million doses administered). Nevertheless, safe handling and proper use should be emphasized.

  19. Translational toxicology: a developmental focus for integrated research strategies.

    PubMed

    Hughes, Claude; Waters, Michael; Allen, David; Obasanjo, Iyabo

    2013-09-30

    Given that toxicology studies the potential adverse effects of environmental exposures on various forms of life and that clinical toxicology typically focuses on human health effects, what can and should the relatively new term of "translational toxicology" be taken to mean? Our assertion is that the core concept of translational toxicology must incorporate existing principles of toxicology and epidemiology, but be driven by the aim of developing safe and effective interventions beyond simple reduction or avoidance of exposure to prevent, mitigate or reverse adverse human health effects of exposures.The field of toxicology has now reached a point where advances in multiple areas of biomedical research and information technologies empower us to make fundamental transitions in directly impacting human health. Translational toxicology must encompass four action elements as follows: 1) Assessing human exposures in critical windows across the lifespan; 2) Defining modes of action and relevance of data from animal models; 3) Use of mathematical models to develop plausible predictions as the basis for: 4) Protective and restorative human health interventions. The discussion focuses on the critical window of in-utero development. Exposure assessment, basic toxicology and development of certain categories of mathematical models are not new areas of research; however overtly integrating these in order to conceive, assess and validate effective interventions to mitigate or reverse adverse effects of environmental exposures is our novel opportunity. This is what we should do in translational toxicology so that we have a portfolio of interventional options to improve human health that include both minimizing exposures and specific preventative/restorative/mitigative therapeutics.

  20. Role of Light in Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Richard G.; Anderson, Larry E.; Michael F. Holick

    1999-06-14

    There is a prima facie reason for studying possible biological effects of light-at-night (LAN) in the laboratory and human health effects in the population at large: LAN from the use of electricity represent exposures in the human environment not previously encountered in human evolution. These LAN exposures are pervasive in industrialized societies, and any adverse health effects from them could result in considerable consequences for the population. In particular, exposures of pregnant women to LAN that might result in increased estrogen exposure in utero to their child may lead to increased tissue mass and increased lifetime risk of breast cancermore » of the child.« less

  1. A REVIEW OF HUMAN STUDIES ON THE REPRODUCTIVE AND DEVELOPMENTAL EFFECTS OF PESTICIDE EXPOSURE

    EPA Science Inventory

    Many pesticides cxause reproductive or developmental toxicity at high doses in animal models, but effects in humans at environmental exposure levels are difficult to assess. Human data on reproductive and developmental outcomes for currently used pesticides may help to define ris...

  2. ASSESSING HUMAN EXPOSURE AND GENOTOXIC EFFECTS IN HUMAN EXFOLIATED EPITHELIA FROM INDIVDUALS IVING IN AN ENDEMIC REGION IN INNER MONGOLAI

    EPA Science Inventory

    A pilot study was conducted to characterize arsenic exposure and genotoxic effects in Ba Men located in West Central Inner Mongolia in an attempt to identify biomarkers useful for assessing health risk resulting from chronic arsenic exposure. The study subjects included 19 high ...

  3. Effects of exposure to oil spills on human health: Updated review.

    PubMed

    Laffon, Blanca; Pásaro, Eduardo; Valdiglesias, Vanessa

    2016-01-01

    Oil spills may involve health risks for people participating in the cleanup operations and coastal inhabitants, given the toxicological properties of the oil components. In spite of this, only after a few major oil spills (crude oil or fuel oil no. 6) have studies on effects of exposure to diverse aspects of human health been performed. Previously, Aguilera et al. (2010) examined all documents published to that date dealing with any type of human health outcome in populations exposed to oil spills. The aim of the present review was to compile all new information available and determine whether evidence reported supports the existence of an association between exposure and adverse human health risks. Studies were classified in three groups according to type of health outcome addressed: (i) effects on mental health, (ii) physical/physiological effects, and (iii) genotoxic, immunotoxic, and endocrine toxicity. New studies published on oil-spill-exposed populations-coastal residents in the vicinity of the spills or participants in cleanup operations-provide additional support to previous evidence on adverse health effects related to exposure regarding different parameters in all three categories considered. Some of the observed effects even indicated that several symptoms may persist for some years after exposure. Hence, (1) health protection in these individuals should be a matter of concern; and (2) health risk assessment needs to be carried out not only at the time of exposure but also for prolong periods following exposure, to enable early detection of any potential exposure-related harmful effects.

  4. Prenatal exposure to amphetamines. Risks and adverse outcomes in pregnancy.

    PubMed

    Plessinger, M A

    1998-03-01

    Based on findings in humans and the confirmation of prenatal exposures in animals, amphetamines and methamphetamines increase the risk of an adverse outcome when abused during pregnancy. Clefting, cardiac anomalies, and fetal growth reduction deficits that have been seen in infants exposed to amphetamines during pregnancy have all been reproduced in animal studies involving prenatal exposures to amphetamines. The differential effects of amphetamines between genetic strains of mice and between species demonstrate that pharmacokinetics and the genetic disposition of the mother and developing embryo can have an enormous influence on enhancing or reducing these potential risks. The effects of prenatal exposure to amphetamines in producing altered behavior in humans appear less compelling when one considers other confounding variables of human environment, genetics, and polydrug abuse. In view of the animal data concerning altered behavior and learning tasks in comparison with learning deficits observed in humans, the influence of the confounding variables in humans may serve to increase the sensitivity of the developing embryo/fetus to prenatal exposure to amphetamines. These factors and others may predispose the developing conceptus to the damaging effects of amphetamines by actually lowering the threshold of susceptibility at the sites where damage occurs. Knowledge of the effects of prenatal exposure of the fetus and the mother to designer amphetamines is lacking. Based on the few studies in which designer drugs have been examined in animal models, more questions are raised than answered. Possible reasons why no malformations or significant fetal effects were found in the study by St. Omer include the genetic strain of rat used, the conservative exposure profile, or the fact that the placenta metabolized MDMA before reaching the embryo. These questions underscore the need for further investigations concerning the prenatal exposure effects of designer compounds and the effects of amphetamine and methamphetamine in general.

  5. HUMAN EXPOSURE MODELING: CONCEPTS, METHODS, AND TOOLS

    EPA Science Inventory

    Understanding human exposure is critical when estimating the occurrence of deleterious effects that could follow contact with environmental contaminants. For many pollutants, the intensity, duration, frequency, route, and timing of exposure is highly variable, particularly whe...

  6. Human Health Effects of Biphenyl: Key Findings and Scientific Issues

    PubMed Central

    Li, Zheng; Hogan, Karen A.; Cai, Christine; Rieth, Susan

    2015-01-01

    Background: In support of the Integrated Risk Information System (IRIS), the U.S. Environmental Protection Agency (EPA) has evaluated the human health hazards of biphenyl exposure. Objectives: We review key findings and scientific issues regarding expected human health effects of biphenyl. Methods: Scientific literature from 1926 through September 2012 was critically evaluated to identify potential human health hazards associated with biphenyl exposure. Key issues related to the carcinogenicity and noncancer health hazards of biphenyl were examined based on evidence from experimental animal bioassays and mechanistic studies. Discussion: Systematic consideration of experimental animal studies of oral biphenyl exposure took into account the variety of study designs (e.g., study sizes, exposure levels, and exposure durations) to reconcile differing reported results. The available mechanistic and toxicokinetic evidence supports the hypothesis that male rat urinary bladder tumors arise through urinary bladder calculi formation but is insufficient to hypothesize a mode of action for liver tumors in female mice. Biphenyl and its metabolites may induce genetic damage, but a role for genotoxicity in biphenyl-induced carcinogenicity has not been established. Conclusions: The available health effects data for biphenyl provides suggestive evidence for carcinogenicity in humans, based on increased incidences of male rat urinary bladder tumors at high exposure levels and on female mouse liver tumors. Kidney toxicity is also a potential human health hazard of biphenyl exposure. Citation: Li Z, Hogan KA, Cai C, Rieth S. 2016. Human health effects of biphenyl: key findings and scientific issues. Environ Health Perspect 124:703–712; http://dx.doi.org/10.1289/ehp.1509730 PMID:26529796

  7. Ochratoxin A and human health risk: a review of the evidence.

    PubMed

    Bui-Klimke, Travis R; Wu, Felicia

    2015-01-01

    Ochratoxin A (OTA) is a mycotoxin produced by several fungal species including Aspergillus ochraceus, A. carbonarius, A. niger, and Penicillium verrucosum. OTA causes nephrotoxicity and renal tumors in a variety of animal species; however, human health effects are less well-characterized. Various studies have linked OTA exposure with the human diseases Balkan endemic nephropathy (BEN) and chronic interstitial nephropathy (CIN), as well as other renal diseases. This study reviews the epidemiological literature on OTA exposure and adverse health effects in different populations worldwide, and assesses the potential human health risks of OTA exposure. Epidemiological studies identified in a systematic review were used to calculate unadjusted odds ratios for OTA associated with various health endpoints. With one exception, there appears to be no statistically significant evidence for human health risks associated with OTA exposure. One Egyptian study showed a significantly higher risk of nephritic syndrome in those with very high urinary OTA levels compared with relatively unexposed individuals; however, other potential risk factors were not controlled for in the study. Larger cohort or case-control studies are needed in the future to better establish potential OTA-related human health effects, and further duplicate-diet studies are needed to validate biomarkers of OTA exposure in humans.

  8. Monitoring of human populations for early markers of cadmium toxicity: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Bruce A.

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure.more » Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.« less

  9. Monitoring of human populations for early markers of cadmium toxicity: a review.

    PubMed

    Fowler, Bruce A

    2009-08-01

    Exposure of human populations to cadmium (Cd) from air, food and water may produce effects in organs such as the kidneys, liver, lungs, cardiovascular, immune and reproductive systems. Since Cd has been identified as a human carcinogen, biomarkers for early detection of susceptibility to cancer are of an importance to public health. The ability to document Cd exposure and uptake of this element through biological monitoring is a first step towards understanding its health effects. Interpretation and application of biological monitoring data for predicting human health outcomes require correlation with biological measures of organ system responses to the documented exposure. Essential to this understanding is the detection and linkage of early biological responses toxic effects in target cell populations. Fortunately, advances in cell biology have resulted in the development of pre-clinical biological markers (biomarkers) that demonstrate measurable and characteristic molecular changes in organ systems following chemical exposures that occur prior to the onset of overt clinical disease or development of cancer. Technical advances have rendered a number of these biomarkers practical for monitoring Cd-exposed human populations. Biomarkers will be increasingly important in relation to monitoring effects from the exposure to new Cd-based high technology materials. For example, cadmium-selenium (CdSe), nano-materials made from combinations of these elements have greatly altered cellular uptake characteristics due to particle size. These differences may greatly alter effects at the target cell level and hence risks for organ toxicities from such exposures. The value of validated biomarkers for early detection of systemic Cd-induced effects in humans cannot be underestimated due to the rapid expansion of nano-material technologies. This review will attempt to briefly summarize the applications, to date, of biomarker endpoints for assessing target organ system effects in humans and experimental systems from Cd exposure. Further, it will attempt to provide a prospective look at the possible future of biomarkers. The emphasis will be on the detection of early toxic effects from exposure to Cd in new products such as nano-materials and identification of populations at special risk for Cd toxicity.

  10. Rare earth elements in human and animal health: State of art and research priorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagano, Giovanni, E-mail: gbpagano@tin.it; Aliberti, Francesco; Guida, Marco

    Background: A number of applications have been developed using rare earth elements (REE), implying several human exposures and raising unsolved questions as to REE-associated health effects. Methods: A MedLine survey was retrieved from early reports (1980s) up to June 2015, focused on human and animal exposures to REE. Literature from animal models was selected focusing on REE-associated health effects. Results: Some REE occupational exposures, in jobs such as glass polishers, photoengravers and movie projectionists showed a few case reports on health effects affecting the respiratory system. No case-control or cohort studies of occupational REE exposures were retrieved. Environmental exposures havemore » been biomonitored in populations residing in REE mining areas, showing REE accumulation. The case for a iatrogenic REE exposure was raised by the use of gadolinium-based contrast agents for nuclear magnetic resonance. Animal toxicity studies have shown REE toxicity, affecting a number of endpoints in liver, lungs and blood. On the other hand, the use of REE as feed additives in livestock is referred as a safe and promising device in zootechnical activities, possibly suggesting a hormetic effect both known for REE and for other xenobiotics. Thus, investigations on long-term exposures and observations are warranted. Conclusion: The state of art provides a limited definition of the health effects in occupationally or environmentally REE-exposed human populations. Research priorities should be addressed to case-control or cohort studies of REE-exposed humans and to life-long animal experiments. - Highlights: • An extensive number of activities have been developed utilizing rare earth elements (REE). • The literature of REE-associated health effects in humans, and on animal studies is reviewed. • The main literature gaps are discussed, in epidemiological and in animal studies. • Prospects studies are suggested, aimed at evaluating long-term effects of REE exposures. • The relevance of REE-related hormesis, speciation and acidic pollution are discussed.« less

  11. Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment.

    PubMed

    Karunasena, Enusha; Larrañaga, Michael D; Simoni, Jan S; Douglas, David R; Straus, David C

    2010-12-01

    Damage to human neurological system cells resulting from exposure to mycotoxins confirms a previously controversial public health threat for occupants of water-damaged buildings. Leading scientific organizations disagree about the ability of inhaled mycotoxins in the indoor environment to cause adverse human health effects. Damage to the neurological system can result from exposure to trichothecene mycotoxins in the indoor environment. This study demonstrates that neurological system cell damage can occur from satratoxin H exposure to neurological cells at exposure levels that can be found in water-damaged buildings contaminated with fungal growth. The constant activation of inflammatory and apoptotic pathways at low levels of exposure in human brain capillary endothelial cells, astrocytes, and neural progenitor cells may amplify devastation to neurological tissues and lead to neurological system cell damage from indirect events triggered by the presence of trichothecenes.

  12. Rare earth elements in human and animal health: State of art and research priorities.

    PubMed

    Pagano, Giovanni; Aliberti, Francesco; Guida, Marco; Oral, Rahime; Siciliano, Antonietta; Trifuoggi, Marco; Tommasi, Franca

    2015-10-01

    A number of applications have been developed using rare earth elements (REE), implying several human exposures and raising unsolved questions as to REE-associated health effects. A MedLine survey was retrieved from early reports (1980s) up to June 2015, focused on human and animal exposures to REE. Literature from animal models was selected focusing on REE-associated health effects. Some REE occupational exposures, in jobs such as glass polishers, photoengravers and movie projectionists showed a few case reports on health effects affecting the respiratory system. No case-control or cohort studies of occupational REE exposures were retrieved. Environmental exposures have been biomonitored in populations residing in REE mining areas, showing REE accumulation. The case for a iatrogenic REE exposure was raised by the use of gadolinium-based contrast agents for nuclear magnetic resonance. Animal toxicity studies have shown REE toxicity, affecting a number of endpoints in liver, lungs and blood. On the other hand, the use of REE as feed additives in livestock is referred as a safe and promising device in zootechnical activities, possibly suggesting a hormetic effect both known for REE and for other xenobiotics. Thus, investigations on long-term exposures and observations are warranted. The state of art provides a limited definition of the health effects in occupationally or environmentally REE-exposed human populations. Research priorities should be addressed to case-control or cohort studies of REE-exposed humans and to life-long animal experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Nanoparticles: health effects--pros and cons.

    PubMed

    Gwinn, Maureen R; Vallyathan, Val

    2006-12-01

    With the advent of nanotechnology, the prospects for using engineered nanomaterials with diameters of < 100 nm in industrial applications, medical imaging, disease diagnoses, drug delivery, cancer treatment, gene therapy, and other areas have progressed rapidly. The potential for nanoparticles (NPs) in these areas is infinite, with novel new applications constantly being explored. The possible toxic health effects of these NPs associated with human exposure are unknown. Many fine particles generally considered "nuisance dusts" are likely to acquire unique surface properties when engineered to nanosize and may exhibit toxic biological effects. Consequently, the nuisance dust may be transported to distant sites and could induce adverse health effects. In addition the beneficial uses of NPs in drug delivery, cancer treatment, and gene therapy may cause unintentional human exposure. Because of our lack of knowledge about the health effects associated with NP exposure, we have an ethical duty to take precautionary measures regarding their use. In this review we highlight the possible toxic human health effects that can result from exposure to ultrafine particles (UFPs) generated by anthropogenic activities and their cardiopulmonary outcomes. The comparability of engineered NPs to UFPs suggests that the human health effects are likely to be similar. Therefore, it is prudent to elucidate their toxicologic effect to minimize occupational and environmental exposure. Highlighting the human health outcomes caused by UFPs is not intended to give a lesser importance to either the unprecedented technologic and industrial rewards of the nanotechnology or their beneficial human uses.

  14. NORMAL MAMMARY GLAND MORPHOLOGY IN PUBERTAL FEMALE MICE FOLLOWING IN UTERO AND LACTATIONAL EXPOSURE TO GENISTEIN AT LEVELS COMPARABLE TO HUMAN DIETARY EXPOSURE. (R827402)

    EPA Science Inventory

    The objective of the study was to determine the effect of in utero and lactational exposure to genistein (0, 0.1, 0.5, 2.5 and 10 mg/kg/day) on mammary gland morphology in female B6D2F1 mice at levels comparable to or greater than human exposures. The effect of diethylstilbest...

  15. Risk assessment of human health from exposure to the discharged ballast water after full-scale electrolysis treatment.

    PubMed

    Zhang, Nahui; Wang, Yidan; Xue, Junzeng; Yuan, Lin; Wang, Qiong; Liu, Liang; Wu, Huixian; Hu, Kefeng

    2016-06-01

    The presence of disinfection by-products (DBPs) releasing from ballast water management systems (BWMS) can cause a possible adverse effects on humans. The objectives of this study were to compute the Derived No Effect Levels (DNELs) for different exposure scenarios and to compare these levels with the exposure levels from the measured DBPs in treated ballast water. The risk assessment showed that when using animal toxicity data, all the DNELs values were approximately 10(3)-10(12) times higher than the exposure levels of occupational and general public exposure scenarios, indicating the level of risk was low (risk characterization ratios (RCRs) < 1). However, when using human data, the RCRs were higher than 1 for dichlorobromomethane and trichloromethane, indicating that the risk of adverse effects on human were significant. This implies that there are apparent discrepancies between risk characterization from animal and human data, which may affect the overall results. We therefore recommend that when appropriate, human data should be used in risk assessment as much as possible, although human data are very limited. Moreover, more appropriate assessment factors can be considered to be employed in estimating the DNELs for human when the animal data is selected as the dose descriptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue.

    PubMed

    Black, Carolyn; Tesfaigzi, Yohannes; Bassein, Jed A; Miller, Lisa A

    2017-10-01

    Understanding the effect of wildfire smoke exposure on human health represents a unique interdisciplinary challenge to the scientific community. Population health studies indicate that wildfire smoke is a risk to human health and increases the healthcare burden of smoke-impacted areas. However, wildfire smoke composition is complex and dynamic, making characterization and modeling difficult. Furthermore, current efforts to study the effect of wildfire smoke are limited by availability of air quality measures and inconsistent air quality reporting among researchers. To help address these issues, we conducted a substantive review of wildfire smoke effects on population health, wildfire smoke exposure in occupational health, and experimental wood smoke exposure. Our goal was to evaluate the current literature on wildfire smoke and highlight important gaps in research. In particular we emphasize long-term health effects of wildfire smoke, recovery following wildfire smoke exposure, and health consequences of exposure in children. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence

    PubMed Central

    Morello-Frosch, Rachel; Sen, Saunak; Zeise, Lauren; Woodruff, Tracey J.

    2017-01-01

    Background Adverse effects of prenatal stress or environmental chemical exposures on fetal growth are well described, yet their combined effect remains unclear. Objectives To conduct a systematic review on the combined impact and interaction of prenatal exposure to stress and chemicals on developmental outcomes. Methods We used the first three steps of the Navigation Guide systematic review. We wrote a protocol, performed a robust literature search to identify relevant animal and human studies and extracted data on developmental outcomes. For the most common outcome (fetal growth), we evaluated risk of bias, calculated effect sizes for main effects of individual and combined exposures, and performed a random effects meta-analysis of those studies reporting on odds of low birthweight (LBW) by smoking and socioeconomic status (SES). Results We identified 17 human- and 22 animal-studies of combined chemical and stress exposures and fetal growth. Human studies tended to have a lower risk of bias across nine domains. Generally, we found stronger effects for chemicals than stress, and these exposures were associated with reduced fetal growth in the low-stress group and the association was often greater in high stress groups, with limited evidence of effect modification. We found smoking associated with significantly increased odds of LBW, with a greater effect for high stress (low SES; OR 4.75 (2.46–9.16)) compared to low stress (high SES; OR 1.95 (95% CI 1.53–2.48)). Animal studies generally had a high risk of bias with no significant combined effect or effect modification. Conclusions We found that despite concern for the combined effects of environmental chemicals and stress, this is still an under-studied topic, though limited available human studies indicate chemical exposures exert stronger effects than stress, and this effect is generally larger in the presence of stress. PMID:28700705

  18. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: Systematic-review of the human and animal evidence.

    PubMed

    Vesterinen, Hanna M; Morello-Frosch, Rachel; Sen, Saunak; Zeise, Lauren; Woodruff, Tracey J

    2017-01-01

    Adverse effects of prenatal stress or environmental chemical exposures on fetal growth are well described, yet their combined effect remains unclear. To conduct a systematic review on the combined impact and interaction of prenatal exposure to stress and chemicals on developmental outcomes. We used the first three steps of the Navigation Guide systematic review. We wrote a protocol, performed a robust literature search to identify relevant animal and human studies and extracted data on developmental outcomes. For the most common outcome (fetal growth), we evaluated risk of bias, calculated effect sizes for main effects of individual and combined exposures, and performed a random effects meta-analysis of those studies reporting on odds of low birthweight (LBW) by smoking and socioeconomic status (SES). We identified 17 human- and 22 animal-studies of combined chemical and stress exposures and fetal growth. Human studies tended to have a lower risk of bias across nine domains. Generally, we found stronger effects for chemicals than stress, and these exposures were associated with reduced fetal growth in the low-stress group and the association was often greater in high stress groups, with limited evidence of effect modification. We found smoking associated with significantly increased odds of LBW, with a greater effect for high stress (low SES; OR 4.75 (2.46-9.16)) compared to low stress (high SES; OR 1.95 (95% CI 1.53-2.48)). Animal studies generally had a high risk of bias with no significant combined effect or effect modification. We found that despite concern for the combined effects of environmental chemicals and stress, this is still an under-studied topic, though limited available human studies indicate chemical exposures exert stronger effects than stress, and this effect is generally larger in the presence of stress.

  19. Controlled human exposures to diesel exhaust

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gaseous and particulate compounds resulting from an incomplete combustion of diesel fuel. Controlled human exposures to DE and diesel exhaust particles (DEP) have contributed to understanding health effects. Such exposure studies of h...

  20. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    PubMed

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683-1693; http://dx.doi.org/10.1289/EHP136.

  1. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment.

    PubMed

    Cho, YongMin; Ryu, Seung-Hun; Lee, Byeo Ri; Kim, Kyung Hee; Lee, Eunil; Choi, Jaewook

    2015-01-01

    It has frequently been reported that exposure to artificial light at night (ALAN) may cause negative health effects, such as breast cancer, circadian phase disruption and sleep disorders. Here, we reviewed the literature assessing the effects of human exposure to ALAN in order to list the health effects of various aspects of ALAN. Several electronic databases were searched for articles, published through August 2014, related to assessing the effects of exposure to ALAN on human health; these also included the details of experiments on such exposure. A total of 85 articles were included in the review. Several observational studies showed that outdoor ALAN levels are a risk factor for breast cancer and reported that indoor light intensity and individual lighting habits were relevant to this risk. Exposure to artificial bright light during the nighttime suppresses melatonin secretion, increases sleep onset latency (SOL) and increases alertness. Circadian misalignment caused by chronic ALAN exposure may have negative effects on the psychological, cardiovascular and/or metabolic functions. ALAN also causes circadian phase disruption, which increases with longer duration of exposure and with exposure later in the evening. It has also been reported that shorter wavelengths of light preferentially disturb melatonin secretion and cause circadian phase shifts, even if the light is not bright. This literature review may be helpful to understand the health effects of ALAN exposure and suggests that it is necessary to consider various characteristics of artificial light, beyond mere intensity.

  2. Nanoparticles: Health Effects—Pros and Cons

    PubMed Central

    Gwinn, Maureen R.; Vallyathan, Val

    2006-01-01

    With the advent of nanotechnology, the prospects for using engineered nanomaterials with diameters of < 100 nm in industrial applications, medical imaging, disease diagnoses, drug delivery, cancer treatment, gene therapy, and other areas have progressed rapidly. The potential for nanoparticles (NPs) in these areas is infinite, with novel new applications constantly being explored. The possible toxic health effects of these NPs associated with human exposure are unknown. Many fine particles generally considered “nuisance dusts” are likely to acquire unique surface properties when engineered to nanosize and may exhibit toxic biological effects. Consequently, the nuisance dust may be transported to distant sites and could induce adverse health effects. In addition the beneficial uses of NPs in drug delivery, cancer treatment, and gene therapy may cause unintentional human exposure. Because of our lack of knowledge about the health effects associated with NP exposure, we have an ethical duty to take precautionary measures regarding their use. In this review we highlight the possible toxic human health effects that can result from exposure to ultrafine particles (UFPs) generated by anthropogenic activities and their cardiopulmonary outcomes. The comparability of engineered NPs to UFPs suggests that the human health effects are likely to be similar. Therefore, it is prudent to elucidate their toxicologic effect to minimize occupational and environmental exposure. Highlighting the human health outcomes caused by UFPs is not intended to give a lesser importance to either the unprecedented technologic and industrial rewards of the nanotechnology or their beneficial human uses. PMID:17185269

  3. Blood transcriptomics: applications in toxicology

    PubMed Central

    Joseph, Pius; Umbright, Christina; Sellamuthu, Rajendran

    2015-01-01

    The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article. PMID:23456664

  4. Human melatonin during continuous magnetic field exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, C.; Cook, M.R.; Riffle, D.W.

    This report describes the third in a series of double-blind, laboratory-based studies that were aimed at determining the effects of nocturnal exposure to power frequency magnetic fields on blood levels of melatonin in human volunteers. The two earlier studies evaluated effects on melatonin of intermittent exposure to 60 Hz circularly polarized magnetic fields at 10 and 200 mG. No overall effects on melatonin levels were found. In the present study, men were exposed continuously rather than intermittently through the night to the same 200 mG magnetic field condition that was used previously; again, no overall effects on melatonin levels weremore » found. The authors conclude that the intermittent and continuous exposure conditions used in the laboratory to date are not effective in altering nocturnal blood levels of melatonin in human volunteers.« less

  5. A systematic review of Bisphenol A "low dose" studies in the context of human exposure: a case for establishing standards for reporting "low-dose" effects of chemicals.

    PubMed

    Teeguarden, Justin G; Hanson-Drury, Sesha

    2013-12-01

    Human exposure to the chemical Bisphenol A is almost ubiquitous in surveyed industrialized societies. Structural features similar to estrogen confer the ability of Bisphenol A (BPA) to bind estrogen receptors, giving BPA membership in the group of environmental pollutants called endocrine disruptors. References by scientists, the media, political entities, and non-governmental organizations to many toxicity studies as "low dose" has led to the belief that exposure levels in these studies are similar to humans, implying that BPA is toxic to humans at current exposures. Through systematic, objective comparison of our current, and a previous compilation of the "low-dose" literature to multiple estimates of human external and internal exposure levels, we found that the "low-dose" moniker describes exposures covering 8-12 orders of magnitude, the majority (91-99% of exposures) being greater than the upper bound of human exposure in the general infant, child and adult U.S. Population. "low dose" is therefore a descriptor without specific meaning regarding human exposure. Where human exposure data are available, for BPA and other environmental chemicals, reference to toxicity study exposures by direct comparison to human exposure would be more informative, more objective, and less susceptible to misunderstanding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells.

    PubMed

    Nylund, Reetta; Kuster, Niels; Leszczynski, Dariusz

    2010-10-18

    Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined immediately after the end of the exposure and when the false discovery rate correction was applied to analysis. This observation agrees with our earlier study showing that the 1800 MHz GSM radiation exposure had only very limited effect on the proteome of human endothelial cell line EA.hy926, as compared with the effect of 900 MHz GSM radiation.

  7. USE OF EXHALED BREATH CONDENSATE IN A HUMAN EXPOSURE STUDY

    EPA Science Inventory

    Exhaled breath condensate (EBC) is a noninvasive, repeatable collection technique to sample biomarkers of lung inflammation, oxidative stress, and environmental exposure. It is unclear whether EBC is an effective tool in human environmental exposure studies with multi-day samplin...

  8. Minimizing Exposure at Work

    Science.gov Websites

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Ingredients Low-Risk Pesticides Organic Pesticide Ingredients Pesticide Incidents Human Exposure Pet Exposure (chronic) exposure to certain pesticides may increase your risk of chronic health effects. Therefore, it is

  9. Human Health Effects Associated with Exposure to Toxic Cyanobacteria

    EPA Science Inventory

    Reports of toxic cyanobacteria blooms are increasing worldwide. Warming and eutrophic surface water systems support the development of blooms. We examine the evidence for adverse human health effects associated with exposure to toxic blooms in drinking water, recreational water a...

  10. A systematic review of the human body burden of e-waste exposure in China.

    PubMed

    Song, Qingbin; Li, Jinhui

    2014-07-01

    As China is one of the countries facing the most serious pollution and human exposure effects of e-waste in the world, much of the population there is exposed to potentially hazardous substances due to informal e-waste recycling processes. This report reviews recent studies on human exposure to e-waste in China, with particular focus on exposure routes (e.g. dietary intake, inhalation, and soil/dust ingestion) and human body burden markers (e.g. placenta, umbilical cord blood, breast milk, blood, hair, and urine) and assesses the evidence for the association between such e-waste exposure and the human body burden in China. The results suggest that residents in the e-waste exposure areas, located mainly in the three traditional e-waste recycling sites (Taizhou, Guiyu, and Qingyuan), are faced with a potential higher daily intake of these pollutants than residents in the control areas, especially via food ingestion. Moreover, pollutants (PBBs, PBDEs, PCBs, PCDD/Fs, and heavy metals) from the e-waste recycling processes were all detectable in the tissue samples at high levels, showing that they had entered residents' bodies through the environment and dietary exposure. Children and neonates are the groups most sensitive to the human body effects of e-waste exposure. We also recorded plausible outcomes associated with exposure to e-waste, including 7 types of human body burden. Although the data suggest that exposure to e-waste is harmful to health, better designed epidemiological investigations in vulnerable populations, especially neonates and children, are needed to confirm these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The intermixed-blocked effect in human perceptual learning is not the consequence of trial spacing.

    PubMed

    Mitchell, Chris; Nash, Scott; Hall, Geoffrey

    2008-01-01

    A robust finding in humans and animals is that intermixed exposure to 2 similar stimuli (AX/BX) results in better discriminability of those stimuli on test than does exposure to 2 equally similar stimuli in 2 separate blocks (CX_DX)--the intermixed-blocked effect. This intermixed-blocked effect may be an example of the superiority of spaced over massed practice; in the intermixed, but not the blocked exposure regime, each presentation of a given stimulus (e.g., AX) is separated from the next by the presentation of its partner (BX). Two experiments with human participants replicated the intermixed-blocked effect and showed that the effect was not due to the spacing of exposure trials. A mechanism for the intermixed-blocked effect is proposed, which combines theories from associative learning and memory. PsycINFO Database Record (c) 2008 APA, all rights reserved.

  12. Human Health Effects Associated with Exposure to Cyanobacteria and Cyanotoxins: What Do We Know?

    EPA Science Inventory

    The study of environmental health typically focuses on human populations. However, companion animals, livestock and wildlife also experience adverse health effects from environmental pollutants. Animals may experience direct exposure to pollutants unlike people in most ambient ex...

  13. Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Maryka H.

    Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure,more » within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention.« less

  14. Impacts of environment on human diseases: a web service for the human exposome

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Vaartjes, Ilonca; Kamphuis, Carlijn; Strak, Maciek; Schmitz, Oliver; Soenario, Ivan; de Jong, Kor

    2017-04-01

    The exposome is the totality of human environmental exposures from conception onwards. Identifying the contribution of the exposome to human diseases and health is a key issue in health research. Examples include the effect of air pollution exposure on cardiovascular diseases, the impact of disease vectors (mosquitos) and surface hydrology exposure on malaria, and the effect of fast food restaurant exposure on obesity. Essential to health research is to disentangle the effects of the exposome and genome on health. Ultimately this requires quantifying the totality of all human exposures, for each individual in the studied human population. This poses a massive challenge to geoscientists, as environmental data are required at a high spatial and temporal resolution, with a large spatial and temporal coverage representing the area inhabited by the population studied and the time span representing several decades. Then, these data need to be combined with space-time paths of individuals to calculate personal exposures for each individual in the population. The Global and Geo Health Data Centre is taking this challenge by providing a web service capable of enriching population data with exposome information. Our web service can generate environmental information either from archived national (up to 5 m spatial and 1 h temporal resolution) and global environmental information or generated on the fly using environmental models running as microservices. On top of these environmental data services runs an individual exposure service enabling health researchers to select different spatial and temporal aggregation methods and to upload space-time paths of individuals. These are then enriched with personal exposures and eventually returned to the user. We illustrate the service in an example of individual exposures to air pollutants calculated from hyper resolution air pollution data and various approaches to estimate space-time paths of individuals.

  15. 40 CFR 158.2230 - Toxicology.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pesticide is likely to result in repeated human exposure over a considerable portion of the human lifespan... exposures and adverse neurological effects in human epidemiological studies. iv. The pesticide evokes a... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS...

  16. EDCs Mixtures: A Stealthy Hazard for Human Health?

    PubMed

    Ribeiro, Edna; Ladeira, Carina; Viegas, Susana

    2017-02-07

    Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed "body burden" of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex "body burden" of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce.

  17. EDCs Mixtures: A Stealthy Hazard for Human Health?

    PubMed Central

    Ribeiro, Edna; Ladeira, Carina; Viegas, Susana

    2017-01-01

    Endocrine disrupting chemicals (EDCs) are exogenous chemicals that may occur naturally (e.g., phytoestrogens), while others are industrial substances and plasticizers commonly utilized worldwide to which human exposure, particularly at low-doses, is omnipresent, persistent and occurs in complex mixtures. EDCs can interfere with/or mimic estrogenic hormones and, consequently, can simultaneously trigger diverse signaling pathways which result in diverse and divergent biological responses. Additionally, EDCs can also bioaccumulate in lipid compartments of the organism forming a mixed “body burden” of contaminants. Although the independent action of chemicals has been considered the main principle in EDCs mixture toxicity, recent studies have demonstrated that numerous effects cannot be predicted when analyzing single compounds independently. Co-exposure to these agents, particularly in critical windows of exposure, may induce hazardous health effects potentially associated with a complex “body burden” of different origins. Here, we performed an exhaustive review of the available literature regarding EDCs mixtures exposure, toxicity mechanisms and effects, particularly at the most vulnerable human life stages. Although the assessment of potential risks to human health due to exposure to EDCs mixtures is a major topic for consumer safety, information regarding effective mixtures effects is still scarce. PMID:29051438

  18. Human health risk assessment related to contaminated land: state of the art.

    PubMed

    Swartjes, F A

    2015-08-01

    Exposure of humans to contaminants from contaminated land may result in many types of health damage ranging from relatively innocent symptoms such as skin eruption or nausea, on up to cancer or even death. Human health protection is generally considered as a major protection target. State-of-the-art possibilities and limitations of human health risk assessment tools are described in this paper. Human health risk assessment includes two different activities, i.e. the exposure assessment and the hazard assessment. The combination of these is called the risk characterization, which results in an appraisal of the contaminated land. Exposure assessment covers a smart combination of calculations, using exposure models, and measurements in contact media and body liquids and tissue (biomonitoring). Regarding the time frame represented by exposure estimates, biomonitoring generally relates to exposure history, measurements in contact media to actual exposures, while exposure calculations enable a focus on exposure in future situations. The hazard assessment, which is different for contaminants with or without a threshold for effects, results in a critical exposure value. Good human health risk assessment practice accounts for tiered approaches and multiple lines of evidence. Specific attention is given here to phenomena such as the time factor in human health risk assessment, suitability for the local situation, background exposure, combined exposure and harmonization of human health risk assessment tools.

  19. Weight-of-evidence evaluation of short-term ozone exposure and cardiovascular effects.

    PubMed

    Goodman, Julie E; Prueitt, Robyn L; Sax, Sonja N; Lynch, Heather N; Zu, Ke; Lemay, Julie C; King, Joseph M; Venditti, Ferdinand J

    2014-10-01

    There is a relatively large body of research on the potential cardiovascular (CV) effects associated with short-term ozone exposure (defined by EPA as less than 30 days in duration). We conducted a weight-of-evidence (WoE) analysis to assess whether it supports a causal relationship using a novel WoE framework adapted from the US EPA's National Ambient Air Quality Standards causality framework. Specifically, we synthesized and critically evaluated the relevant epidemiology, controlled human exposure, and experimental animal data and made a causal determination using the same categories proposed by the Institute of Medicine report Improving the Presumptive Disability Decision-making Process for Veterans ( IOM 2008). We found that the totality of the data indicates that the results for CV effects are largely null across human and experimental animal studies. The few statistically significant associations reported in epidemiology studies of CV morbidity and mortality are very small in magnitude and likely attributable to confounding, bias, or chance. In experimental animal studies, the reported statistically significant effects at high exposures are not observed at lower exposures and thus not likely relevant to current ambient ozone exposures in humans. The available data also do not support a biologically plausible mechanism for CV effects of ozone. Overall, the current WoE provides no convincing case for a causal relationship between short-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation. Thus, we categorize the strength of evidence for a causal relationship between short-term exposure to ozone and CV effects as "below equipoise."

  20. Systematic review on the health effects of exposure to radiofrequency electromagnetic fields from mobile phone base stations.

    PubMed

    Röösli, Martin; Frei, Patrizia; Mohler, Evelyn; Hug, Kerstin

    2010-12-01

    to review and evaluate the recent literature on the health effects of exposure to mobile phone base station (MPBS) radiation. we performed a systematic review of randomized human trials conducted in laboratory settings and of epidemiological studies that investigated the health effects of MPBS radiation in the everyday environment. we included in the analysis 17 articles that met our basic quality criteria: 5 randomized human laboratory trials and 12 epidemiological studies. The majority of the papers (14) examined self-reported non-specific symptoms of ill-health. Most of the randomized trials did not detect any association between MPBS radiation and the development of acute symptoms during or shortly after exposure. The sporadically observed associations did not show a consistent pattern with regard to symptoms or types of exposure. We also found that the more sophisticated the exposure assessment, the less likely it was that an effect would be reported. Studies on health effects other than non-specific symptoms and studies on MPBS exposure in children were scarce. the evidence for a missing relationship between MPBS exposure up to 10 volts per metre and acute symptom development can be considered strong because it is based on randomized, blinded human laboratory trials. At present, there is insufficient data to draw firm conclusions about health effects from long-term low-level exposure typically occurring in the everyday environment.

  1. TOLUENE EXPERIMENTAL EXPOSURES IN HUMANS: PHARMACOKINETICS AND BEHAVIOR

    EPA Science Inventory

    Toluene Experimental Exposures in Humans:
    Pharmacokinetics and Behavioral Effects
    (Ongoing Research)

    Vernon A. Benignus1, Philip J. Bushnell2 and William K. Boyes2

    Human subjects will be exposed to 250 and 500 ppm toluene for one hour in the Human St...

  2. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish.

    PubMed

    Mathur, Priya; Guo, Su

    2011-06-01

    Zebrafish, a vertebrate model organism amenable to high throughput screening, is an attractive system to model and study the mechanisms underlying human diseases. Alcoholism and alcoholic medical disorders are among the most debilitating diseases, yet the mechanisms by which ethanol inflicts the disease states are not well understood. In recent years zebrafish behavior assays have been used to study learning and memory, fear and anxiety, and social behavior. It is important to characterize the effects of ethanol on zebrafish behavioral repertoires in order to successfully harvest the strength of zebrafish for alcohol research. One prominent effect of alcohol in humans is its effect on anxiety, with acute intermediate doses relieving anxiety and withdrawal from chronic exposure increasing anxiety, both of which have significant contributions to alcohol dependence. In this study, we assess the effects of both acute and chronic ethanol exposure on anxiety-like behaviors in zebrafish, using two behavioral paradigms, the Novel Tank Diving Test and the Light/Dark Choice Assay. Acute ethanol exposure exerted significant dose-dependent anxiolytic effects. However, withdrawal from repeated intermittent ethanol exposure disabled recovery from heightened anxiety. These results demonstrate that zebrafish exhibit different anxiety-like behavioral responses to acute and chronic ethanol exposure, which are remarkably similar to these effects of alcohol in humans. Because of the accessibility of zebrafish to high throughput screening, our results suggest that genes and small molecules identified in zebrafish will be of relevance to understand how acute versus chronic alcohol exposure have opposing effects on the state of anxiety in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Prenatal exposure to bisphenol A and hyperactivity in children: a systematic review and meta-analysis.

    PubMed

    Rochester, Johanna R; Bolden, Ashley L; Kwiatkowski, Carol F

    2018-05-01

    Attention-deficit hyperactivity disorder (ADHD) has increased in prevalence in the past decade. Studies attempting to identify a specific genetic component have not been able to account for much of the heritability of ADHD, indicating there may be gene-environment interactions underlying the disorder, including early exposure to environmental chemicals. Based on several relevant studies, we chose to examine bisphenol A (BPA) as a possible contributor to ADHD in humans. BPA is a widespread environmental chemical that has been shown to disrupt neurodevelopment in rodents and humans. Using the Office of Health Assessment and Translation (OHAT) framework, a systematic review and meta-analysis was designed to determine the relationship between early life exposure to BPA and hyperactivity, a key diagnostic criterion of ADHD. Searches of PubMed, Web of Science, and Toxline were completed for all literature to January 1, 2017. For inclusion, the studies had to publish original data, be in the English language, include a measure of BPA exposure, and assess if BPA exposure affected hyperactive behaviors in mice, rats or humans. Exposure to BPA had to occur at <3 months of age for humans, up to postnatal day 35 for rats and up to postnatal day 40 for mice. Exposure could occur either gestationally (via maternal exposure) or directly to the offspring. Studies were evaluated using the OHAT risk of bias tool. The effects in humans were assessed qualitatively. For rodents exposed to 20 μg/kg/day BPA, we evaluated the study findings in a random effects meta-analytical model. A review of the literature identified 29 rodent and 3 human studies. A random effects meta-analysis showed significantly increased hyperactivity in male rodents. In humans, early BPA exposure was associated with hyperactivity in boys and girls. We concluded that early life BPA exposure is a presumed human hazard for the development of hyperactivity. Possible limitations of this systematic review include deficiencies in author reporting, exclusion of some literature based on language, and insufficient similarity between human studies. SRs that result in hazard-based conclusions are the first step in assessing and mitigating risks. Given the widespread exposure of BPA and increasing diagnoses of ADHD, we recommend immediate actions to complete such risk analyses and take next steps for the protection of human health. In the meantime, precautionary measures should be taken to reduce exposure in pregnant women, infants and children. The present analysis also discusses potential mechanisms by which BPA affects hyperactivity, and the most effective avenues for future research. Not available. Copyright © 2017. Published by Elsevier Ltd.

  4. Assessing Human Health Risk to Endocrine Disrupting Chemicals: a Focus on Prenatal Exposures and Oxidative Stress

    PubMed Central

    Neier, Kari; Marchlewicz, Elizabeth H.; Dolinoy, Dana C.; Padmanabhan, Vasantha

    2016-01-01

    Understanding the health risk posed by endocrine disrupting chemicals (EDCs) is a challenge that is receiving intense attention. The following study criteria should be considered to facilitate risk assessment for exposure to EDCs: 1) characterization of target health outcomes and their mediators, 2) study of exposures in the context of critical periods of development, 3) accurate estimates of human exposures and use of human-relevant exposures in animal studies, and 4) cross-species comparisons. In this commentary, we discuss the importance and relevance of each of these criteria in studying the effects of prenatal exposure to EDCs. Our discussion focuses on oxidative stress as a mediator of EDC-related health effects due to its association with both EDC exposure and health outcomes. Our recent study (Veiga-Lopez et al. 2015)1 addressed each of the four outlined criteria and demonstrated that prenatal bisphenol-A exposure is associated with oxidative stress, a risk factor for developing diabetes and cardiovascular diseases in adulthood. PMID:27231701

  5. Human Health Risk Assessment Calculator. In: SMARTe20ll, EPA/600/C-10/007

    EPA Science Inventory

    This calculator is aimed at supporting a human health risk assessment. Risk scenarios can be built by combining various health effects, exposure pathways, exposure parameters, and analytes. Scenario risk are calculated for each exposure pathway and analyte combination. The out...

  6. Developing a Salivary Antibody Multiplex Immunoassay to Measure Human Exposure to Environmental Pathogens

    EPA Science Inventory

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to devel...

  7. Repeated or long-duration TASER electronic control device exposures: acidemia and lack of respiration.

    PubMed

    Jauchem, James R

    2010-03-01

    Conducted energy weapons (CEWs), such as TASER devices, may be applied to subjects in repeated or long-duration modes. Such applications may result in more potentially harmful effects (as reflected in blood factor changes) than shorter exposures. In this review, results from a number of studies of repeated and long-duration CEW exposures in an animal model are examined. Additionally, a few limited investigations of shorter CEW applications to human subjects are considered. Specifically, in anesthetized swine, increased blood acidity (acidemia) and lack of effective respiration were found to be common during or immediately after CEW exposure. The acidemia could have been due to both metabolic and respiratory acidosis. A relatively rapid recovery toward baseline pH levels occurred. The lack of effective respiration has not been verified in experiments of CEW applications to human subjects; however, in some incidents of human deaths after CEW exposures subjects have been reported to stop breathing immediately after the exposure. It is not known if all human subjects exposed to CEW applications in the field (often "on drugs" or "in excited delirium") would be able to maintain adequate breathing. Since a limited number of short CEW applications would be less likely to cause adverse effects, however, CEWs can still be a valuable tool for law enforcement activities.

  8. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muczynski, V.; CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses; INSERM, Unité 967, F-92265, Fontenay aux Roses

    The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation andmore » cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.« less

  9. Toxicological effects of nanoparticles from photocopiers

    NASA Astrophysics Data System (ADS)

    Khatri, Madhu

    Nanotechnology is expanding rapidly and its fast-track to commercialization offering highly promising products and materials. Various physical, chemical and biological processes also results in unintentional generation of nanoparticles (NPs) leading to much higher concentrations at certain workplaces. Thus, human exposures to NPs from anthropogenic sources have increased dramatically in the past few decades. Recently, concerns have been expressed about the potential risks to human health occurring due to NP exposures in various workplaces. Although, a few recent studies have shown that the workplace exposure to NPs has the potential to cause serious human health problems such as pulmonary and related cardiovascular diseases, yet the evidence to establish their association is still lacking. This is partly due to lack of easily accessible settings with continuous NP exposures and the unavailability of sufficiently large cohorts of exposed workers. High volume photocopy (PC) centers are common and are generally operated by a permanent staff. It is now well known that laser printers and photocopiers emit NPs. We have observed that photocopiers emit significantly more NPs than laser printers and that the copy center environments had more than 20 times elevated NP levels over the background. It is evident that a significant fraction of airborne NPs get deposited in the alveolar and nasal cavity regions. Therefore, photocopy centers not only offer an opportunity to study response pattern in workers who are chronically exposed to NPs, but also to test and develop necessary methodologies to link exposures to engineered NPs and early health effects. In this study, early human health effects associated with acute NP exposure were studied. This was done by exposing a few health subjects to PC center environment for a short duration and measuring inflammatory and oxidative stress biomarkers in their nasal lavage and urine samples in response to such exposure. Additionally, potential in-vitro cytotoxicity and induction of cytokines of the collected NP generated during photocopying was studied. Furthermore, airborne fine PM collected from copy center was evaluated for their capability to induce in-vitro cytotoxicity and induction of cytokines. The research addresses one major knowledge gap between possible adverse effects on human health caused due to NP exposure. Additionally, this would help develop useful biomarkers for such exposures. These biomarkers could then assists in early detection of such effects and can potentially be used to assess human health risk from exposures to such NPs and device effective interventions if needed.

  10. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - Implications for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.; Vander Kaaden, K. E.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2018-01-01

    New initiatives to send humans to Mars within the next few decades are illustrative of the resurgence of interest in space travel. However, as with all exploration, there are risks. The Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts.

  11. Effect of endocrine disruptors on male reproduction in humans: why the evidence is still lacking?

    PubMed

    Bliatka, D; Lymperi, S; Mastorakos, G; Goulis, D G

    2017-05-01

    The so-called "endocrine disruption hypothesis" suggests that exposures to endocrine disruption (EDs) during fetal, neonatal and adult life may interfere with the development of reproductive organs and alter semen quality and reproductive hormone production. Even though animal studies provide substantial evidence of adverse effects of EDs on male reproductive system, epidemiological studies in humans arrive at conflicting results. The aim of the present study was to systematically review the literature to locate methodological characteristics of the studies that struggle the formation of an association between EDs and human male reproduction. Such characteristics include: (i) definition of the exposed and the non-exposed population, (ii) age, (iii) insufficient control for confounders, (iv) ED assay and threshold, (v) time parameters of ED exposure, and (vi) study outcomes. Additional issues are: (i) the late effect of an early exposure, (ii) the multiple exposure effect, and (iii) the fact the same ED may exhibit different modes of action. Unfortunately, the nature of the field precludes the conduction of randomized-controlled trials, which could result to etiological associations between EDs and human male reproduction. Consequently, there is a great need to conduct well-designed studies of case-control or cohort type to evaluate EDs effects on human male reproductive health, and apply possible measures that could limit dangerous exposures. © 2017 American Society of Andrology and European Academy of Andrology.

  12. Germline and reproductive tract effects intensify in male mice with successive generations of estrogenic exposure

    PubMed Central

    Horan, Tegan S.; Marre, Alyssa; Hassold, Terry; Lawson, Crystal; Hunt, Patricia A.

    2017-01-01

    The hypothesis that developmental estrogenic exposure induces a constellation of male reproductive tract abnormalities is supported by experimental and human evidence. Experimental data also suggest that some induced effects persist in descendants of exposed males. These multi- and transgenerational effects are assumed to result from epigenetic changes to the germline, but few studies have directly analyzed germ cells. Typically, studies of transgenerational effects have involved exposing one generation and monitoring effects in subsequent unexposed generations. This approach, however, has limited human relevance, since both the number and volume of estrogenic contaminants has increased steadily over time, intensifying rather than reducing or eliminating exposure. Using an outbred CD-1 mouse model, and a sensitive and quantitative marker of germline development, meiotic recombination, we tested the effect of successive generations of exposure on the testis. We targeted the germline during a narrow, perinatal window using oral exposure to the synthetic estrogen, ethinyl estradiol. A complex three generation exposure protocol allowed us to compare the effects of individual, paternal, and grandpaternal (ancestral) exposure. Our data indicate that multiple generations of exposure not only exacerbate germ cell exposure effects, but also increase the incidence and severity of reproductive tract abnormalities. Taken together, our data suggest that male sensitivity to environmental estrogens is increased by successive generations of exposure. PMID:28727826

  13. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature.

    PubMed

    Post, Gloria B; Cohn, Perry D; Cooper, Keith R

    2012-07-01

    Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other well-studied drinking water contaminants, the human dose-response curve for several effects appears to be steepest at the lower exposure levels, including the general population range, with no apparent threshold for some endpoints. There is concordance in animals and humans for some effects, while humans and animals appear to react differently for other effects such as lipid metabolism. PFOA was classified as "likely to be carcinogenic in humans" by the USEPA Science Advisory Board. In animal studies, developmental effects have been identified as more sensitive endpoints for toxicity than carcinogenicity or the long-established hepatic effects. Notably, exposure to an environmentally relevant drinking water concentration caused adverse effects on mammary gland development in mice. This paper reviews current information relevant to the assessment of PFOA as an emerging drinking water contaminant. This information suggests that continued human exposure to even relatively low concentrations of PFOA in drinking water results in elevated body burdens that may increase the risk of health effects. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Fathers Matter: Why It’s Time to Consider the Impact of Paternal Environmental Exposures on Children’s Health

    PubMed Central

    Braun, Joseph M.; Messerlian, Carmen; Hauser, Russ

    2017-01-01

    Purpose Despite accumulating evidence from experimental animal studies showing that paternal environmental exposures induce genetic and epigenetic alterations in sperm which in turn increase the risk of adverse health outcomes in offspring, there is limited epidemiological data on the effects of human paternal preconception exposures on children’s health. We summarize animal and human studies showing that paternal preconception environmental exposures influence offspring health. We discuss specific approaches and designs for human studies to investigate the health effects of paternal preconception exposures, the specific challenges these studies may face, and how we might address them. Recent Findings In animal studies, paternal preconception diet, stress, and chemical exposures have been associated with offspring health and these effects are mediated by epigenetic modifications transmitted through sperm DNA, histones, and RNA. Most epidemiological studies have examined paternal preconception occupational exposures and their effect on the risk of birth defects and childhood cancer; few have examined the effects of low-level general population exposure to environmental toxicants. While the design and execution of epidemiological studies of paternal preconception exposures face challenges, particularly with regard to selection bias and recruitment, we believe these are tractable and that preconception studies are feasible. Summary New or augmented prospective cohort studies would be the optimal method to address the critical knowledge gaps on the effect of paternal preconception exposures on prevalent childhood health outcomes. Determining if this period of life represents a window of heightened vulnerability would improve our understanding of modifiable risk factors for children’s health and wellbeing. PMID:28848695

  15. Effects of Ambient Air Pollution Exposure on Olfaction: A Review

    PubMed Central

    Ajmani, Gaurav S.; Suh, Helen H.; Pinto, Jayant M.

    2016-01-01

    Background: Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. Objectives: To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. Methods: We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. Results: We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Conclusions: Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution–related olfactory impacts on the general population using measured pollution exposures and to link pollution exposure with olfactory dysfunction and related pathology. Citation: Ajmani GS, Suh HH, Pinto JM. 2016. Effects of ambient air pollution exposure on olfaction: a review. Environ Health Perspect 124:1683–1693; http://dx.doi.org/10.1289/EHP136 PMID:27285588

  16. Effects of A 60 Hz Magnetic Field of Up to 50 milliTesla on Human Tremor and EEG: A Pilot Study.

    PubMed

    Davarpanah Jazi, Shirin; Modolo, Julien; Baker, Cadence; Villard, Sebastien; Legros, Alexandre

    2017-11-24

    Humans are surrounded by sources of daily exposure to power-frequency (60 Hz in North America) magnetic fields (MFs). Such time-varying MFs induce electric fields and currents in living structures which possibly lead to biological effects. The present pilot study examined possible extremely low frequency (ELF) MF effects on human neuromotor control in general, and physiological postural tremor and electroencephalography (EEG) in particular. Since the EEG cortical mu-rhythm (8-12 Hz) from the primary motor cortex and physiological tremor are related, it was hypothesized that a 60 Hz MF exposure focused on this cortical region could acutely modulate human physiological tremor. Ten healthy volunteers (age: 23.8 ± 4 SD) were fitted with a MRI-compatible EEG cap while exposed to 11 MF conditions (60 Hz, 0 to 50 mT rms , 5 mT rms increments). Simultaneously, physiological tremor (recorded from the contralateral index finger) and EEG (from associated motor and somatosensory brain regions) were measured. Results showed no significant main effect of MF exposure conditions on any of the analyzed physiological tremor characteristics. In terms of EEG, no significant effects of the MF were observed for C1, C3, C5 and CP1 electrodes. However, a significant main effect was found for CP3 and CP5 electrodes, both suggesting a decreased mu-rhythm spectral power with increasing MF flux density. This is however not confirmed by Bonferroni corrected pairwise comparisons. Considering both EEG and tremor findings, no effect of the MF exposure on human motor control was observed. However, MF exposure had a subtle effect on the mu-rhythm amplitude in the brain region involved in tactile perception. Current findings are to be considered with caution due to the small size of this pilot work, but they provide preliminary insights to international agencies establishing guidelines regarding electromagnetic field exposure with new experimental data acquired in humans exposed to high mT-range MFs.

  17. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.

    PubMed

    Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J

    2009-04-01

    Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.

  18. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    PubMed

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 75 FR 37812 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... and Human Services (HHS) gives notice concerning the final effect of the HHS decision to designate a...

  20. The Importance of Exposure in Addressing Current and Emerging Air Quality Issues

    EPA Science Inventory

    The air quality issues that we face today and will face in the future are becoming increasingly more complex and require an improved understanding of human exposure to be effectively addressed. The objectives of this paper are (1) to discuss how concepts of human exposure and ex...

  1. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  2. Simulation of Longitudinal Exposure Data with Variance-Covariance Structures Based on Mixed Models

    EPA Science Inventory

    Longitudinal data are important in exposure and risk assessments, especially for pollutants with long half-lives in the human body and where chronic exposures to current levels in the environment raise concerns for human health effects. It is usually difficult and expensive to ob...

  3. Induction of oxidative stress by bisphenol A and its pleiotropic effects

    PubMed Central

    Gassman, Natalie R.

    2016-01-01

    Bisphenol A (BPA) has become a target of intense public scrutiny since concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer have emerged. BPA is a highly prevalent chemical in consumer products, and human exposure is thought to be ubiquitous. Numerous studies have demonstrated its endocrine disrupting properties and attributed exposure with cytotoxic, genotoxic, and carcinogenic effects; however, the results of these studies are still highly debated and a consensus about BPA's safety and its role in human disease has not been reached. One of the contributing factors is a lack of molecular mechanisms or modes of action that explain the diverse and pleiotropic effects observed after BPA exposure. The increase in BPA research seen over the last ten years has resulted in more studies that examine molecular mechanisms and revealed links between BPA-induced oxidative stress and human disease. Here, a review of the current literature examining BPA exposure and the induction of reactive oxygen species (ROS) or oxidative stress will be provided to examine the landscape of the current BPA literature and provide a framework for understanding how induction of oxidative stress by BPA may contribute to the pleiotropic effects observed after exposure. PMID:28181297

  4. Biomarkers of human cardiopulmonary response after short-term exposures to medical laser generated particulate matter from simulated procedures: a pilot study

    PubMed Central

    Lopez, Ramon; Farber, Mark O.; Wong, Vincent; Lacey, Steven E.

    2016-01-01

    Objective We conducted an exposure chamber study in humans using a simulated clinical procedure lasing porcine tissue to demonstrate evidence of effects of exposure to laser generated particulate matter (LGPM). Methods We measured pre- and post-exposure changes in exhaled nitric oxide (eNO), spirometry, heart rate variability (HRV), and blood markers of inflammation in five volunteers. Results Change in pre- and post-exposure measurements of eNO and spirometry were unremarkable. Neutrophil and lymphocyte counts increased and fibrinogen levels decreased in four of the five subjects. Measures of HRV showed decreases in the standard deviation of normal between beat intervals and sequential five-minute intervals. Conclusion These data represent the first evidence of human physiologic response to LGPM exposure. Further exploration of coagulation effects and HRV are warranted. PMID:27465102

  5. Chlorpyrifos PBPK/PD model for multiple routes of exposure.

    PubMed

    Poet, Torka S; Timchalk, Charles; Hotchkiss, Jon A; Bartels, Michael J

    2014-10-01

    1. Chlorpyrifos (CPF) is an important pesticide used to control crop insects. Human Exposures to CPF will occur primarily through oral exposure to residues on foods. A physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model has been developed that describes the relationship between oral, dermal and inhalation doses of CPF and key events in the pathway for cholinergic effects. The model was built on a prior oral model that addressed age-related changes in metabolism and physiology. This multi-route model was developed in rats and humans to validate all scenarios in a parallelogram design. 2. Critical biological effects from CPF exposure require metabolic activation to CPF oxon, and small amounts of metabolism in tissues will potentially have a great effect on pharmacokinetics and pharmacodynamic outcomes. Metabolism (bioactivation and detoxification) was therefore added in diaphragm, brain, lung and skin compartments. Pharmacokinetic data are available for controlled human exposures via the oral and dermal routes and from oral and inhalation studies in rats. The validated model was then used to determine relative dermal versus inhalation uptake from human volunteers exposed to CPF in an indoor scenario.

  6. Bayesian Analysis of Silica Exposure and Lung Cancer Using Human and Animal Studies.

    PubMed

    Bartell, Scott M; Hamra, Ghassan Badri; Steenland, Kyle

    2017-03-01

    Bayesian methods can be used to incorporate external information into epidemiologic exposure-response analyses of silica and lung cancer. We used data from a pooled mortality analysis of silica and lung cancer (n = 65,980), using untransformed and log-transformed cumulative exposure. Animal data came from chronic silica inhalation studies using rats. We conducted Bayesian analyses with informative priors based on the animal data and different cross-species extrapolation factors. We also conducted analyses with exposure measurement error corrections in the absence of a gold standard, assuming Berkson-type error that increased with increasing exposure. The pooled animal data exposure-response coefficient was markedly higher (log exposure) or lower (untransformed exposure) than the coefficient for the pooled human data. With 10-fold uncertainty, the animal prior had little effect on results for pooled analyses and only modest effects in some individual studies. One-fold uncertainty produced markedly different results for both pooled and individual studies. Measurement error correction had little effect in pooled analyses using log exposure. Using untransformed exposure, measurement error correction caused a 5% decrease in the exposure-response coefficient for the pooled analysis and marked changes in some individual studies. The animal prior had more impact for smaller human studies and for one-fold versus three- or 10-fold uncertainty. Adjustment for Berkson error using Bayesian methods had little effect on the exposure-response coefficient when exposure was log transformed or when the sample size was large. See video abstract at, http://links.lww.com/EDE/B160.

  7. Overview of aerosolized Florida red tide toxins: exposures and effects.

    PubMed

    Fleming, Lora E; Backer, Lorraine C; Baden, Daniel G

    2005-05-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins.

  8. E-waste environmental contamination and harm to public health in China.

    PubMed

    Xu, Xijin; Zeng, Xiang; Boezen, H Marike; Huo, Xia

    2015-06-01

    The adverse effects of electronic waste (e-waste) on the human body have stirred up concern in recent years. China is one of the countries that confront serious pollution and human exposure of e-waste, and the majority of the population is exposed to potentially hazardous substances that are derived from informal e-waste recycling processes. This study reviews recent reports on human exposure to e-waste in China, with particular focus on exposure routes (e.g., inhalation and ingestion) and several toxicities of human (e.g., endocrine system, respiratory system, reproductive system, developmental toxicity, neurotoxicity, and genetic toxicity). Pieces of evidence that associate e-waste exposure with human health effects in China are assessed. The role of toxic heavy metals (e.g., lead, cadmium, chromium, mercury, and nickel) and organic pollutants (e.g., polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyl (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated biphenyls (PBBs), polyhalogenated aromatic hydrocarbons (PHAHs), bisphenol A (BPA)) on human health is also briefly discussed.

  9. Indicative and complementary effects of human biological indicators for heavy metal exposure assessment.

    PubMed

    Xing, Ruiya; Li, Yonghua; Zhang, Biao; Li, Hairong; Liao, Xiaoyong

    2017-10-01

    Although human biological indicators have been widely utilized for biomonitoring environmental pollutants in health exposure assessment, the relationship between internal and external exposure has not yet been adequately established. In this study, we collected and analyzed 61 rice, 56 pepper, and 58 soil samples, together with 107 hair, 107 blood, and 107 urine samples from residents living in selected intensive mining areas in China. Concentrations of most of the four elements considered (Pb, Cd, Hg, and Se) exceeded national standards, implying high exposure risk in the study areas. Regression analysis also revealed a correlation (0.33, P < 0.001) between the concentration of Pb in soil and that in human hair (as well as in human blood); to some extent, Pb content in hair and blood could therefore be used to characterize external Pb exposure. The correlation between Hg in rice and in human hair (up to 0.5, P < 0.001) further confirmed a significant indicative effect of human hair for Hg exposure. A significant correlation was also noted between concentrations of some elements in different human samples, for example, between Hg in hair and blood (0.641, P < 0.01) and between Cd in urine and blood (0.339, P < 0.01). To some extent, there could thus be mutual reflectance of the same heavy metal in different samples, with the possibility for complementary use in assessing heavy metal exposure.

  10. Low dose or low dose rate ionizing radiation-induced health effect in the human.

    PubMed

    Tang, Feng Ru; Loganovsky, Konstantin

    2018-06-05

    The extensive literature review on human epidemiological studies suggests that low dose ionizing radiation (LDIR) (≤100 mSv) or low dose rate ionizing radiation (LDRIR) (<6mSv/H) exposure could induce either negative or positive health effects. These changes may depend on genetic background, age (prenatal day for embryo), sex, nature of radiation exposure, i.e., acute or chronic irradiation, radiation sources (such as atomic bomb attack, fallout from nuclear weapon test, nuclear power plant accidents, 60 Co-contaminated building, space radiation, high background radiation, medical examinations or procedures) and radionuclide components and human epidemiological experimental designs. Epidemiological and clinical studies show that LDIR or LDRIR exposure may induce cancer, congenital abnormalities, cardiovascular and cerebrovascular diseases, cognitive and other neuropsychiatric disorders, cataracts and other eye and somatic pathology (endocrine, bronchopulmonary, digestive, etc). LDIR or LDRIR exposure may also reduce mutation and cancer mortality rates. So far, the mechanisms of LDIR- or LDRIR -induced health effect are poorly understood. Further extensive studies are still needed to clarify under what circumstances, LDIR or LDRIR exposure may induce positive or negative effects, which may facilitate development of new therapeutic approaches to prevent or treat the radiation-induced human diseases or enhance radiation-induced positive health effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Human environmental and occupational exposures to boric acid: reconciliation with experimental reproductive toxicity data.

    PubMed

    Bolt, Hermann M; Başaran, Nurşen; Duydu, Yalçın

    2012-01-01

    The reproductive toxicity of boric acid and borates is a matter of current regulatory concern. Based on experimental studies in rats, no-observed-adverse-effect levels (NOAELs) were found to be 17.5 mg boron (B)/kg body weight (b.w.) for male fertility and 9.6 mg B/kg b.w. for developmental toxicity. Recently, occupational human field studies in highly exposed cohorts were reported from China and Turkey, with both studies showing negative results regarding male reproduction. A comparison of the conditions of these studies with the experimental NOAEL conditions are based on reported B blood levels, which is clearly superior to a scaling according to estimated B exposures. A comparison of estimated daily B exposure levels and measured B blood levels confirms the preference of biomonitoring data for a comparison of human field studies. In general, it appears that high environmental exposures to B are lower than possible high occupational exposures. The comparison reveals no contradiction between human and experimental reproductive toxicity data. It clearly appears that human B exposures, even in the highest exposed cohorts, are too low to reach the blood (and target tissue) concentrations that would be required to exert adverse effects on reproductive functions.

  12. Toxicity of cadmium and its health risks from leafy vegetable consumption.

    PubMed

    Huang, Yingying; He, Chuntao; Shen, Chuang; Guo, Jingjie; Mubeen, Samavia; Yuan, Jiangang; Yang, Zhongyi

    2017-04-19

    Cadmium (Cd) is a highly toxic heavy metal and has spread widely in the environment in recent decades. This review summarizes current knowledge about Cd contamination of leafy vegetables, its toxicity, exposure, health risks, and approaches to reducing its toxicity in humans. Leafy vegetable consumption has been identified as a dominant exposure pathway of Cd in the human body. An overview of Cd pollution in leafy vegetables as well as the main sources of Cd is given. Notable estimated daily intakes and health risks of Cd exposure through vegetable consumption for humans are revealed in occupational exposure areas and even in some reference areas. Vegetable consumption is one of the most significant sources of exposure to Cd, particularly in occupational exposure regions. Therefore, numerous approaches have been developed to minimize the accumulation of Cd in leafy vegetables, among which the breeding of Cd pollution-safe cultivars is one of the most effective tools. Furthermore, dietary supplements from leafy vegetables perform positive roles in alleviating Cd toxicity in humans with regard to the effects of essential mineral elements, vitamins and phytochemicals taken into the human body via leafy vegetable consumption.

  13. Effects of Low-Level Blast Exposure on the Nervous System: Is There Really a Controversy?

    PubMed Central

    Elder, Gregory A.; Stone, James R.; Ahlers, Stephen T.

    2014-01-01

    High-pressure blast waves can cause extensive CNS injury in human beings. However, in combat settings, such as Iraq and Afghanistan, lower level exposures associated with mild traumatic brain injury (mTBI) or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD). We describe how TBI is defined in human beings and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in human beings is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments, a condition of “low-level” blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet, animal studies show that low-level blast pressure waves are transmitted to the brain. In brain, low-level blast exposures cause behavioral, biochemical, pathological, and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system. PMID:25566175

  14. Sarin Exposures in A Cohort of British Military Participants in Human Experimental Research at Porton Down 1945-1987.

    PubMed

    Keegan, Thomas J; Carpenter, Lucy M; Brooks, Claire; Langdon, Toby; Venables, Katherine M

    2017-12-15

    The effects of exposure to chemical warfare agents in humans are topical. Porton Down is the UK's centre for research on chemical warfare where, since WWI, a programme of experiments involving ~30000 participants drawn from the UK armed services has been undertaken. Our aim is to report on exposures to nerve agents, particularly sarin, using detailed exposure data not explored in a previous analysis. In this paper, we have used existing data on exposures to servicemen who attended the human volunteer programme at Porton Down to examine exposures to nerve agents in general and to sarin in particular. Six principal nerve agents were tested on humans between 1945 and 1987. Of all 4299 nerve agent tests recorded, 3511 (82%) were with sarin, most commonly in an exposure chamber, with inhalation being the commonest exposure route (85%). Biological response to sarin exposure was expressed as percentage change in cholinesterase activity and, less commonly, change in pupil size. For red blood cell cholinesterase, median inhibition for inhalation tests was 41% (interquartile range 28-51%), with a maximum of 87%. For dermal exposures the maximum inhibition recorded was 99%. There was a clear association between increasing exposure to sarin and depression of cholinesterase activity but the strength and direction of the association varied by exposure route and the presence of chemical or physical protection. Pupil size decreased with increased exposure but this relationship was less clear when modifiers, such as atropine drops, were present. These results, drawn from high quality experimental data, offer a unique insight into the effects of these chemical agents on humans. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  15. Human occupational and nonoccupational exposure to fibers.

    PubMed Central

    Esmen, N A; Erdal, S

    1990-01-01

    Human exposure to fibers in occupational and nonoccupational environments has been a health concern for nearly a century. In this review, selected results from the literature are presented to highlight the availability, limitations, and interpretive difficulties associated with the past and current human fiber exposure data sets. In the traditionally defined asbestos fibers, large amounts of the data available suffer from the diversity of sample collection and analysis methods. Two simple generalizations suggest that occupational exposures are several orders of magnitude higher than that of environmental exposures; and currently extant data and the current routine measurement practices present significant difficulties in the consistent interpretation of the data with respect to health effects. The data on the human exposures to man-made vitreous fibers are much more complete than the data on asbestos exposure, while exposure data on other man-made fibrous materials are lacking. The human exposure data to many minerals which, at times, exist in fibrous habit, are very scanty, and in view of the biological activity of some of these fibers, this lack may be of significant concern. PMID:2272324

  16. Systematic review on the health effects of exposure to radiofrequency electromagnetic fields from mobile phone base stations

    PubMed Central

    Frei, Patrizia; Mohler, Evelyn; Hug, Kerstin

    2010-01-01

    Abstract Objective To review and evaluate the recent literature on the health effects of exposure to mobile phone base station (MPBS) radiation. Methods We performed a systematic review of randomized human trials conducted in laboratory settings and of epidemiological studies that investigated the health effects of MPBS radiation in the everyday environment. Findings We included in the analysis 17 articles that met our basic quality criteria: 5 randomized human laboratory trials and 12 epidemiological studies. The majority of the papers (14) examined self-reported non-specific symptoms of ill-health. Most of the randomized trials did not detect any association between MPBS radiation and the development of acute symptoms during or shortly after exposure. The sporadically observed associations did not show a consistent pattern with regard to symptoms or types of exposure. We also found that the more sophisticated the exposure assessment, the less likely it was that an effect would be reported. Studies on health effects other than non-specific symptoms and studies on MPBS exposure in children were scarce. Conclusion The evidence for a missing relationship between MPBS exposure up to 10 volts per metre and acute symptom development can be considered strong because it is based on randomized, blinded human laboratory trials. At present, there is insufficient data to draw firm conclusions about health effects from long-term low-level exposure typically occurring in the everyday environment. PMID:21124713

  17. 40 CFR 264.601 - Environmental performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...

  18. 40 CFR 264.601 - Environmental performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...

  19. 40 CFR 264.601 - Environmental performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other vegetation; (8) The potential for health risks caused by human exposure to waste constituents; and... effects on human health or the environment due to migration of waste constituents in surface water, or... human exposure to waste constituents; and (11) The potential for damage to domestic animals, wildlife...

  20. The die is cast - Arsenic exposure in early life and disease susceptibility

    EPA Science Inventory

    Abstract Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for development and progression of disease in bo...

  1. Human health risk assessment related to cyanotoxins exposure.

    PubMed

    Funari, Enzo; Testai, Emanuela

    2008-01-01

    This review focuses on the risk assessment associated with human exposure to cyanotoxins, secondary metabolites of an ubiquitous group of photosynthetic procariota. Cyanobacteria occur especially in eutrophic inland and coastal surface waters, where under favorable conditions they attain high densities and may form blooms and scums. Cyanotoxins can be grouped according to their biological effects into hepatotoxins, neurotoxins, cytotoxins, and toxins with irritating potential, also acting on the gastrointestinal system. The chemical and toxicological properties of the main cyanotoxins, relevant for the evaluation of possible risks for human health, are presented. Humans may be exposed to cyanotoxins via several routes, with the oral one being by far the most important, occurring by ingesting contaminated drinking water, food, some dietary supplements, or water during recreational activities. Acute and short-term toxic effects have been associated in humans with exposure to high levels of cyanotoxins in drinking and bathing waters. However, the chronic exposure to low cyanotoxin levels remains a critical issue. This article identifies the actual risky exposure scenarios, provides toxicologically derived reference values, and discusses open issues and research needs.

  2. MOVING FROM EXTERNAL EXPOSURE CONCENTRATION TO INTERNAL DOSE: DURATION EXTRAPOLATION BASED ON PHYSIOLOGICALLY-BASED PHARMACOKINETIC-MODEL DERIVED ESTIMATES OF INTERNAL DOSE

    EPA Science Inventory

    The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...

  3. TOWARDS RELIABLE AND COST-EFFECTIVE OZONE EXPOSURE ASSESSMENT: PARAMETER EVALUATION AND MODEL VALIDATION USING THE HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    EPA Science Inventory

    Accurate assessment of chronic human exposure to atmospheric criteria pollutants, such as ozone, is critical for understanding human health risks associated with living in environments with elevated ambient pollutant concentrations. In this study, we analyzed a data set from a...

  4. Human infertility: are endocrine disruptors to blame?

    PubMed Central

    Marques-Pinto, André; Carvalho, Davide

    2013-01-01

    Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthetic and natural substances have endocrine-disruptive effects, acting through several mechanisms. The main route of exposure to these chemicals is the ingestion of contaminated food and water. They may disturb intrauterine development, resulting in irreversible effects and may also induce transgenerational effects. This review aims to summarise the major scientific developments on the topic of human infertility associated with exposure to endocrine disruptors (EDs), integrating epidemiological and experimental evidence. Current data suggest that environmental levels of EDs may affect the development and functioning of the reproductive system in both sexes, particularly in foetuses, causing developmental and reproductive disorders, including infertility. EDs may be blamed for the rising incidence of human reproductive disorders. This constitutes a serious public health issue that should not be overlooked. The exposure of pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance of exposure to EDs is a prudent attitude in order to protect humans and wildlife from permanent harmful effects on fertility. PMID:23985363

  5. Health effects of oxygenated fuels.

    PubMed Central

    Costantini, M G

    1993-01-01

    The use of oxygenated fuels is anticipated to increase over the next decades. This paper reviews the toxicological and exposure information for methyl tertiary-butyl ether (MTBE), a fuel additive, and methanol, a replacement fuel, and discusses the possible health consequences of exposure of the general public to these compounds. For MTBE, the health effects information available is derived almost exclusively from rodent studies, and the exposure data are limited to a few measurements at some service stations. Based on these data, it appears unlikely that the normal population is at high risk of exposure to MTBE vapor. However, in the absence of health and pharmacokinetic data in humans or in nonhuman primates, this conclusion is not strongly supported. Similarly, there are a number of uncertainties to take into consideration in estimating human risk from the use of methanol as a fuel. Although methanol may be toxic to humans at concentrations that overwhelm certain enzymes involved in methanol metabolism, the data available provide little evidence to indicate that exposure to methanol vapors from the use of methanol as a motor vehicle fuel will result in adverse health effects. The uncertainties in this conclusion are based on the lack of information on dose-response relationship at reasonable, projected exposure levels and of studies examining end points of concern in sensitive species. In developing a quantitative risk assessment, more needs to be known about health effects in primates or humans and the range of exposure expected for the general public for both compounds. PMID:8020439

  6. Long-term reduction in infrared autofluorescence caused by infrared light below the maximum permissible exposure.

    PubMed

    Masella, Benjamin D; Williams, David R; Fischer, William S; Rossi, Ethan A; Hunter, Jennifer J

    2014-05-20

    Many retinal imaging instruments use infrared wavelengths to reduce the risk of light damage. However, we have discovered that exposure to infrared illumination causes a long-lasting reduction in infrared autofluorescence (IRAF). We have characterized the dependence of this effect on radiant exposure and investigated its origin. A scanning laser ophthalmoscope was used to obtain IRAF images from two macaques before and after exposure to 790-nm light (15-450 J/cm(2)). Exposures were performed with either raster-scanning or uniform illumination. Infrared autofluorescence images also were obtained in two humans exposed to 790-nm light in a separate study. Humans were assessed with direct ophthalmoscopy, Goldmann visual fields, multifocal ERG, and photopic microperimetry to determine whether these measures revealed any effects in the exposed locations. A significant decrease in IRAF after exposure to infrared light was seen in both monkeys and humans. In monkeys, the magnitude of this reduction increased with retinal radiant exposure. Partial recovery was seen at 1 month, with full recovery within 21 months. Consistent with a photochemical origin, IRAF decreases caused by either raster-scanning or uniform illumination were not significantly different. We were unable to detect any effect of the light exposure with any measure other than IRAF imaging. We cannot exclude the possibility that changes could be detected with more sensitive tests or longer follow-up. This long-lasting effect of infrared illumination in both humans and monkeys occurs at exposure levels four to five times below current safety limits. The photochemical basis for this phenomenon remains unknown. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Biological monitoring to determine worker dose in a butadiene processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, W.E.; Hayes, R.B.

    1995-12-01

    Butadiene (BD) is a reactive gas used extensively in the rubber industry and is also found in combustion products. Although BD is genotoxic and acts as an animal carcinogen, the evidence for carcinogenicity in humans is limited. Extrapolation from animal studies on BD carcinogenicity to risk in humans has been controversial because of uncertainties regarding relative biologic exposure and related effects in humans vs. experimental animals. To reduce this uncertainty, a study was designed to characterize exposure to BD at a polymer production facility and to relate this exposure to mutational and cytogenetic effects. Biological monitoring was used to bettermore » assess the internal dose of BD received by the workers. Measurement of 1,2-dihydroxy-4-(N-acetylcysteinyl) butane (M1) in urine served as the biomarker in this study. M1 has been shown to correlate with area monitoring in previous studies. Most studies that relate exposure to a toxic chemical with its biological effects rely on exposure concentration as the dose metric; however, exposure concentration may or may not reflect the actual internal dose of the chemical.« less

  8. Breathing easier? The known impacts of biodiesel on air quality

    PubMed Central

    Traviss, Nora

    2013-01-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a ‘green’, more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure – defined in this instance as human contact with tailpipe emissions – is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health. PMID:23585814

  9. Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects

    PubMed Central

    Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.

    2005-01-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773

  10. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  11. The Effect on Ecological Systems of Remediation to Protect Human Health

    PubMed Central

    Burger, Joanna

    2007-01-01

    Environmental remediation of contaminated eco-sytems reduces stresses to these ecosystems, including stresses caused by the production, use, and storage of weapons of mass destruction. The effects of these various stressors on humans can be reduced by remediation or by blocking the exposure of humans, but blocking the exposure of resident biota is almost impossible. Remediation may involve trade-offs between reducing a minor risk to public health and increasing risks to workers and ecosystems. Remediation practices such as soil removal disrupt ecosystems, which take decades to recover. Without further human disturbances, and with low levels of exposure to stress-ors, ecosystems can recover from physical disruptions and spills. Remediation to remove negligible risk to humans can destroy delicate ecosystems for very little gain in public health. PMID:17666693

  12. Interim methods for development of inhalation reference concentrations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, K.; Dourson, M.; Erdreich, L.

    1990-08-01

    An inhalation reference concentration (RfC) is an estimate of continuous inhalation exposure over a human lifetime that is unlikely to pose significant risk of adverse noncancer health effects and serves as a benchmark value for assisting in risk management decisions. Derivation of an RfC involves dose-response assessment of animal data to determine the exposure levels at which no significant increase in the frequency or severity of adverse effects between the exposed population and its appropriate control exists. The assessment requires an interspecies dose extrapolation from a no-observed-adverse-effect level (NOAEL) exposure concentration of an animal to a human equivalent NOAEL (NOAEL(HBC)).more » The RfC is derived from the NOAEL(HBC) by the application of generally order-of-magnitude uncertainty factors. Intermittent exposure scenarios in animals are extrapolated to chronic continuous human exposures. Relationships between external exposures and internal doses depend upon complex simultaneous and consecutive processes of absorption, distribution, metabolism, storage, detoxification, and elimination. To estimate NOAEL(HBC)s when chemical-specific physiologically-based pharmacokinetic models are not available, a dosimetric extrapolation procedure based on anatomical and physiological parameters of the exposed human and animal and the physical parameters of the toxic chemical has been developed which gives equivalent or more conservative exposure concentrations values than those that would be obtained with a PB-PK model.« less

  13. Pfiesteria: review of the science and identification of research gaps. Report for the National Center for Environmental Health, Centers for Disease Control and Prevention.

    PubMed Central

    Samet, J; Bignami, G S; Feldman, R; Hawkins, W; Neff, J; Smayda, T

    2001-01-01

    In connection with the CDC National Conference on Pfiesteria, a multidisciplinary panel evaluated Pfiesteria-related research. The panel set out what was known and what was not known about adverse effects of the organism on estuarine ecology, fish, and human health; assessed the methods used in Pfiesteria research; and offered suggestions to address data gaps. The panel's expertise covered dinoflagellate ecology; fish pathology and toxicology; laboratory measurement of toxins, epidemiology, and neurology. The panel evaluated peer-reviewed and non-peer-reviewed literature available through June 2000 in a systematic conceptual framework that moved from the source of exposure, through exposure research and dose, to human health effects. Substantial uncertainties remain throughout the conceptual framework the panel used to guide its evaluation. Firm evidence demonstrates that Pfiesteria is toxic to fish, but the specific toxin has not been isolated or characterized. Laboratory and field evidence indicate that the organism has a complex life cycle. The consequences of human exposure to Pfiesteria toxin and the magnitude of the human health problem remain obscure. The patchwork of approaches used in clinical evaluation and surrogate measures of exposure to the toxin are major limitations of this work. To protect public health, the panel suggests that priority be given research that will provide better insight into the effects of Pfiesteria on human health. Key gaps include the identity and mechanism of action of the toxin(s), the incomplete description of effects of exposure in invertebrates, fish, and humans, and the nature and extent of exposures that place people at risk. PMID:11687383

  14. Human primordial germ cell formation is diminished by exposure to environmental toxicants acting through the AHR signaling pathway.

    PubMed

    Kee, Kehkooi; Flores, Martha; Cedars, Marcelle I; Reijo Pera, Renee A

    2010-09-01

    Historically, effects of environmental toxicants on human development have been deduced via epidemiological studies because direct experimental analysis has not been possible. However, in recent years, the derivation of human pluripotent stem cells has provided a potential experimental system to directly probe human development. Here, we used human embryonic stem cells (hESCs) to study the effect of environmental toxicants on human germ cell development, with a focus on differentiation of the founding population of primordial germ cells (PGCs), which will go on to form the oocytes of the adult. We demonstrate that human PGC numbers are specifically reduced by exposure to polycyclic aromatic hydrocarbons (PAHs), a group of toxicants common in air pollutants released from gasoline combustion or tobacco smoke. Further, we demonstrate that the adverse effects of PAH exposure are mediated through the aromatic hydrocarbon receptor (AHR) and BAX pathway. This study demonstrates the utility of hESCs as a model system for direct examination of the molecular and genetic pathways of environmental toxicants on human germ cell development.

  15. SCALING THE PHYSIOLOGICAL EFFECTS OF EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC RADIATION: CONSEQUENCES OF BODY SIZE

    EPA Science Inventory

    The authors have demonstrated that a comparative analysis of the physiological effects of exposure of laboratory mammals to radiofrequency electromagnetic radiation (RFR) may be useful in predicting exposure thresholds for humans if the effect is assumed to be due only to heating...

  16. Analgesic use in pregnancy and male reproductive development

    PubMed Central

    Hurtado-Gonzalez, Pablo; Mitchell, Rod T.

    2017-01-01

    Purpose of review Male reproductive disorders are common and increasing in incidence in many countries. Environmental factors (including pharmaceuticals) have been implicated in the development of these disorders. This review aims to summarise the emerging epidemiological and experimental evidence for a potential role of in-utero exposure to analgesics in the development of male reproductive disorders. Recent findings A number of epidemiological studies have demonstrated an association between in-utero exposure to analgesics and the development of cryptorchidism, although these findings are not consistent across all studies. Where present, these associations primarily relate to exposure during the second trimester of pregnancy. In-vivo and in-vitro experimental studies have demonstrated variable effects of exposure to analgesics on Leydig cell function in the fetal testis of rodents, particularly in terms of testosterone production. These effects frequently involve exposures that are in excess of those to which humans are exposed. Investigation of the effects of analgesics on human fetal testis have also demonstrated effects on Leydig cell function. Variation in species, model system, dosage and timing of exposure is likely to contribute to differences in the findings between studies. Summary There is increasing evidence for analgesic effects on the developing testis that have the potential to impair reproductive function. However, the importance of these findings in relation to human-relevant exposures and the risk of male reproductive disorders remains unclear. PMID:28277341

  17. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review.

    PubMed

    Ziccardi, Linda M; Edgington, Aaron; Hentz, Karyn; Kulacki, Konrad J; Kane Driscoll, Susan

    2016-07-01

    A state-of-the-science review was conducted to examine the potential for microplastics to sorb hydrophobic organic chemicals (HOCs) from the marine environment, for aquatic organisms to take up these HOCs from the microplastics, and for this exposure to result in adverse effects to ecological and human health. Despite concentrations of HOCs associated with microplastics that can be orders of magnitude greater than surrounding seawater, the relative importance of microplastics as a route of exposure is difficult to quantify because aquatic organisms are typically exposed to HOCs from various compartments, including water, sediment, and food. Results of laboratory experiments and modeling studies indicate that HOCs can partition from microplastics to organisms or from organisms to microplastics, depending on experimental conditions. Very little information is available to evaluate ecological or human health effects from this exposure. Most of the available studies measured biomarkers that are more indicative of exposure than effects, and no studies showed effects to ecologically relevant endpoints. Therefore, evidence is weak to support the occurrence of ecologically significant adverse effects on aquatic life as a result of exposure to HOCs sorbed to microplastics or to wildlife populations and humans from secondary exposure via the food chain. More data are needed to fully understand the relative importance of exposure to HOCs from microplastics compared with other exposure pathways. Environ Toxicol Chem 2016;35:1667-1676. © 2016 SETAC. © 2016 SETAC.

  18. EFFECTS OF ACTIVATED CHARCOAL FILTRATION AND OZONATION ON HYDROCARBON AND CARBONYL LEVELS OF AMBIENT AIR USED IN CONTROLLED-EXPOSURE CHAMBER STUDIES OF AIR POLLUTANT HUMAN HEALTH EFFECTS

    EPA Science Inventory

    Air sampling experiments were done in 1985, 1987, and 1993 at the human-exposure chamber facility of the U.S. EPA Health Effects Research Laboratory in Chapel Hill, NC. easurements of VOC's by GC-FID and aldehyde measurements by the DNPH silica gel cartridge method were made, com...

  19. Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo

    PubMed Central

    Rao, Chinthalapally V.; Pal, Sanya; Mohammed, Altaf; Farooqui, Mudassir; Doescher, Mark P.; Asch, Adam S.; Yamada, Hiroshi Y.

    2017-01-01

    Through contaminated diet, water, and other forms of environmental exposure, arsenic affects human health. There are many U.S. and worldwide “hot spots” where the arsenic level in public water exceeds the maximum exposure limit. The biological effects of chronic arsenic exposure include generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage, epigenetic DNA modification, induction of genomic instability, and inflammation and immunomodulation, all of which can initiate carcinogenesis. High arsenic exposure is epidemiologically associated with skin, lung, bladder, liver, kidney and pancreatic cancer, and cardiovascular, neuronal, and other diseases. This review briefly summarizes the biological effects of arsenic exposure and epidemiological cancer studies worldwide, and provides an overview for emerging rodent-based studies of reagents that can ameliorate the effects of arsenic exposure in vivo. These reagents may be translated to human populations for disease prevention. We propose the importance of developing a biomarker-based precision prevention approach for the health issues associated with arsenic exposure that affects millions of people worldwide. PMID:28915699

  20. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection

    PubMed Central

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Françoise

    2014-01-01

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320–400 nm and UVB, 280–320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure. PMID:25546388

  1. Exposure to non-extreme solar UV daylight: spectral characterization, effects on skin and photoprotection.

    PubMed

    Marionnet, Claire; Tricaud, Caroline; Bernerd, Françoise

    2014-12-23

    The link between chronic sun exposure of human skin and harmful clinical consequences such as photo-aging and skin cancers is now indisputable. These effects are mostly due to ultraviolet (UV) rays (UVA, 320-400 nm and UVB, 280-320 nm). The UVA/UVB ratio can vary with latitude, season, hour, meteorology and ozone layer, leading to different exposure conditions. Zenithal sun exposure (for example on a beach around noon under a clear sky) can rapidly induce visible and well-characterized clinical consequences such as sunburn, predominantly induced by UVB. However, a limited part of the global population is exposed daily to such intense irradiance and until recently little attention has been paid to solar exposure that does not induce any short term clinical impact. This paper will review different studies on non-extreme daily UV exposures with: (1) the characterization and the definition of the standard UV daylight and its simulation in the laboratory; (2) description of the biological and clinical effects of such UV exposure in an in vitro reconstructed human skin model and in human skin in vivo, emphasizing the contribution of UVA rays and (3) analysis of photoprotection approaches dedicated to prevent the harmful impact of such UV exposure.

  2. Analysis of Coupled Model Uncertainties in Source to Dose Modeling of Human Exposures to Ambient Air Pollution: a PM2.5 Case-Study

    EPA Science Inventory

    Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into acco...

  3. IDENTIFICATION OF TIME-INTEGRATED SAMPLING AND MEASUREMENT TECHNIQUES TO SUPPORT HUMAN EXPOSURE STUDIES

    EPA Science Inventory

    Accurate exposure classification tools are required to link exposure with health effects in epidemiological studies. Long-term, time-integrated exposure measures would be desirable to address the problem of developing appropriate residential childhood exposure classifications. ...

  4. Mass spectrometry profiling of oxylipins, endocannabinoids, and N-acylethanolamines in human lung lavage fluids reveals responsiveness of prostaglandin E2 and associated lipid metabolites to biodiesel exhaust exposure.

    PubMed

    Gouveia-Figueira, Sandra; Karimpour, Masoumeh; Bosson, Jenny A; Blomberg, Anders; Unosson, Jon; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Nording, Malin L

    2017-04-01

    The adverse effects of petrodiesel exhaust exposure on the cardiovascular and respiratory systems are well recognized. While biofuels such as rapeseed methyl ester (RME) biodiesel may have ecological advantages, the exhaust generated may cause adverse health effects. In the current study, we investigated the responses of bioactive lipid mediators in human airways after biodiesel exhaust exposure using lipidomic profiling methods. Lipid mediator levels in lung lavage were assessed following 1-h biodiesel exhaust (average particulate matter concentration, 159 μg/m 3 ) or filtered air exposure in 15 healthy individuals in a double-blinded, randomized, controlled, crossover study design. Bronchoscopy was performed 6 h post exposure and lung lavage fluids, i.e., bronchial wash (BW) and bronchoalveolar lavage (BAL), were sequentially collected. Mass spectrometry methods were used to detect a wide array of oxylipins (including eicosanoids), endocannabinoids, N-acylethanolamines, and related lipid metabolites in the collected BW and BAL samples. Six lipids in the human lung lavage samples were altered following biodiesel exhaust exposure, three from BAL samples and three from BW samples. Of these, elevated levels of PGE 2 , 12,13-DiHOME, and 13-HODE, all of which were found in BAL samples, reached Bonferroni-corrected significance. This is the first study in humans reporting responses of bioactive lipids following biodiesel exhaust exposure and the most pronounced responses were seen in the more peripheral and alveolar lung compartments, reflected by BAL collection. Since the responsiveness and diagnostic value of a subset of the studied lipid metabolites were established in lavage fluids, we conclude that our mass spectrometry profiling method is useful to assess effects of human exposure to vehicle exhaust.

  5. Effects of metals within ambient air particulate matter (PM) on human health.

    PubMed

    Chen, Lung Chi; Lippmann, Morton

    2009-01-01

    We review literature providing insights on health-related effects caused by inhalation of ambient air particulate matter (PM) containing metals, emphasizing effects associated with in vivo exposures at or near contemporary atmospheric concentrations. Inhalation of much higher concentrations, and high-level exposures via intratracheal (IT) instillation that inform mechanistic processes, are also reviewed. The most informative studies of effects at realistic exposure levels, in terms of identifying influential individual PM components or source-related mixtures, have been based on (1) human and laboratory animal exposures to concentrated ambient particles (CAPs), and (2) human population studies for which both health-related effects were observed and PM composition data were available for multipollutant regression analyses or source apportionment. Such studies have implicated residual oil fly ash (ROFA) as the most toxic source-related mixture, and Ni and V, which are characteristic tracers of ROFA, as particularly influential components in terms of acute cardiac function changes and excess short-term mortality. There is evidence that other metals within ambient air PM, such as Pb and Zn, also affect human health. Most evidence now available is based on the use of ambient air PM components concentration data, rather than actual exposures, to determine significant associations and/or effects coefficients. Therefore, considerable uncertainties about causality are associated with exposure misclassification and measurement errors. As more PM speciation data and more refined modeling techniques become available, and as more CAPs studies involving PM component analyses are performed, the roles of specific metals and other components within PM will become clearer.

  6. Multifactorial analysis of human blood cell responses to clinical total body irradiation

    NASA Technical Reports Server (NTRS)

    Yuhas, J. M.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    Multiple regression analysis techniques are used to study the effects of therapeutic radiation exposure, number of fractions, and time on such quantal responses as tumor control and skin injury. The potential of these methods for the analysis of human blood cell responses is demonstrated and estimates are given of the effects of total amount of exposure and time of protraction in determining the minimum white blood cell concentration observed after exposure of patients from four disease groups.

  7. Triclosan exposure, transformation, and human health effects.

    PubMed

    Weatherly, Lisa M; Gosse, Julie A

    2017-01-01

    Triclosan (TCS) is an antimicrobial used so ubiquitously that 75% of the US population is likely exposed to this compound via consumer goods and personal care products. In September 2016, TCS was banned from soap products following the risk assessment by the US Food and Drug Administration (FDA). However, TCS still remains, at high concentrations, in other personal care products such as toothpaste, mouthwash, hand sanitizer, and surgical soaps. TCS is readily absorbed into human skin and oral mucosa and found in various human tissues and fluids. The aim of this review was to describe TCS exposure routes and levels as well as metabolism and transformation processes. The burgeoning literature on human health effects associated with TCS exposure, such as reproductive problems, was also summarized.

  8. Acute Lung Injury and Persistent Small Airway Disease in a Rabbit Model of Chlorine Inhalation

    PubMed Central

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, David M.; Powell, Karen S.; Roberts, Andrew M.; Hoyle, Gary W.

    2016-01-01

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. PMID:27913141

  9. 78 FR 70949 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for... (NIOSH), Centers for Disease Control and Prevention, Department of Health and Human Services (HHS... class of employees from the Pantex Plant in Amarillo, Texas, as an addition to the Special Exposure...

  10. Role of H2O2 in the Oxidative Effects of Zinc Exposure in Human Airway Epithelial Cells

    EPA Science Inventory

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H202 and Zn(2+) hav...

  11. Animal studies on growth and development.

    PubMed

    Lerchl, Alexander

    2011-12-01

    Despite the fact that no plausible biological mechanism has yet been identified how electromagnetic fields below recommended exposure limits could negatively affect health of animals or humans, many experiments have been performed in various animal species, mainly mice and rats, to investigate the possible effects on growth and development. While older studies often suffered from sub-optimal exposure conditions, recent investigations, using sophisticated exposure devices and thus preventing thermal effects, have been performed without these limitations. In principle, two types of studies can be addressed: those which have investigated the carcinogenic or co-carcinogenic effects of exposure in developing animals, and those which have been done in developing animals without the focus on carcinogenic or co-carcinogenic effects. In both areas, the vast majority of publications did not show adverse effects. The largest study so far has been done in normal mice which have been chronically exposed to UMTS signals up to 1.3 W/kg SAR, thus 16 times higher than the whole-body exposure limit for humans. Even after four generations, no systematic or dose-dependent alterations in development or fertility could be found, supporting the view that negative effects on humans are very unlikely. Ongoing experiments in our laboratory investigate the effects of head-only exposure in rats (up to 10 W/kg local SAR) which are exposed from 14 days of age daily for 2 h. A battery of behavioral tests is performed in young, adult, and pre-senile animals. The results will help to clarify possible effects of exposure on brain development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The EPA's Human Exposure Research Program for Assessing Cumulative Risk in Communities

    EPA Science Inventory

    Communities are faced with challenges in identifying and prioritizing environmental issues, taking actions to reduce their exposures, and determining their effectiveness for reducing human health risks. Additional challenges include determining what scientific tools are available...

  13. Biomolecular Profiling of Jet Fuel Toxicity Using Proteomics

    DTIC Science & Technology

    2006-02-28

    pulmonary alveolar type II cells and macrophages, and human epidermal keratinocytes in various exposure models. Results strongly suggest an injurious effect ...of exposure on all cells studied. In both pulmonary and skin cells, the protein profiles of JP-8 effect corroborates previous histological findings...potential intervention by Substance P (SP) in the pulmonary effects of JP-8 exposure , studies incorporating SP treatment along with JP-8 exposure

  14. Human exposures to tilmicosin reported to poison centres, Texas, 1998-2003.

    PubMed

    Forrester, Mathias B

    2005-05-01

    Tilmicosin, or 20-deoxo-20-(3,5-dimethylpiperidin-1-yl)-desmycosin, is a macrolide antibiotic primarily utilized in livestock. This study examined 46 human exposure calls involving tilmicosin received by Texas poison centres during 1998-2003. The majority (91%) of the calls were received from northern and central Texas. All of the cases were unintentional exposures. The most frequent route of exposure was parenteral (48%). The majority of the patients were males (80%) and adults (84%). Only 46% of the patients were managed outside of health care facilities. Some sort of adverse medical outcome was reported in 93% of parenteral exposures and 54% of other-route exposures. However, only 21% of parenteral exposures and 15% of other-route exposures involved medical outcomes that were judged to be moderate or worse. No deaths were reported. The most frequently reported clinical effects among parenteral cases were dermal (79%), while only 9% of other-route exposures had dermal effects. Cardiovascular clinical effects were observed in a single case of parenteral exposure and a single case of other-route exposure. Although the majority of cases were managed with the assistance of health care facilities, the medical outcomes were usually not serious. Outcome depended on the route of exposure.

  15. Benefits of Stimulus Exposure: Developmental Learning Independent of Task Performance

    PubMed Central

    Green, David B.; Ohlemacher, Jocelyn; Rosen, Merri J.

    2016-01-01

    Perceptual learning (training-induced performance improvement) can be elicited by task-irrelevant stimulus exposure in humans. In contrast, task-irrelevant stimulus exposure in animals typically disrupts perception in juveniles while causing little to no effect in adults. This may be due to the extent of exposure, which is brief in humans while chronic in animals. Here we assessed the effects of short bouts of passive stimulus exposure on learning during development in gerbils, compared with non-passive stimulus exposure (i.e., during testing). We used prepulse inhibition of the acoustic startle response, a method that can be applied at any age, to measure gap detection thresholds across four age groups, spanning development. First, we showed that both gap detection thresholds and gap detection learning across sessions displayed a long developmental trajectory, improving throughout the juvenile period. Additionally, we demonstrated larger within- and across-animal performance variability in younger animals. These results are generally consistent with results in humans, where there are extended developmental trajectories for both the perception of temporally-varying signals, and the effects of perceptual training, as well as increased variability and poorer performance consistency in children. We then chose an age (mid-juveniles) that displayed clear learning over sessions in order to assess effects of brief passive stimulus exposure on this learning. We compared learning in mid-juveniles exposed to either gap detection testing (gaps paired with startles) or equivalent gap exposure without testing (gaps alone) for three sessions. Learning was equivalent in both these groups and better than both naïve age-matched animals and controls receiving no gap exposure but only startle testing. Thus, short bouts of exposure to gaps independent of task performance is sufficient to induce learning at this age, and is as effective as gap detection testing. PMID:27378837

  16. Human mutagens: evidence from paternal exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narod, S.A.; Douglas, G.R.; Nestmann, E.R.

    1988-01-01

    The importance of inherited mutations as a cause of human disease has been established clearly through examples of well-defined genetic anomalies, such as Down syndrome and retinoblastoma. Furthermore, it is suspected that environmental contaminants induce mutations resulting in increased risk for such defects in subsequent generations of persons exposed. The present lack of direct evidence for induced inherited genetic disorders in human beings hampers the development of risk estimation techniques for extrapolation from animal models. The most extensive prospective epidemiologic studies of inherited genetic effects have involved survivors of atomic bomb detonations and patients treated with cancer chemotherapy. In neithermore » case has a significant elevation in inherited genetic effects or cancer been detected in the offspring of exposed individuals. Epidemiologic studies of subjects receiving chronic exposure may be confounded by the effect of maternal exposure during pregnancy. Consideration of only paternal exposure can minimize the confounding influence of teratogenicity, enhancing the resolving power of studies for inherited effects. Using this approach, retrospective (case-control) studies of childhood cancer patients have provided limited but suggestive evidence for inheritance of induced effects. Endpoints, such as congenital malformations and spontaneous abortion following paternal exposure, can also be considered as indicators of heritable mutagenic effects. For example, there is limited evidence suggesting that paternal exposure to anaesthetic gases may cause miscarriage and congenital abnormalities as a result of induced male germ cell mutations. 104 references.« less

  17. Prolonged particulate chromate exposure does not inhibit homologous recombination repair in North Atlantic right whale (Eubalaena glacialis) lung cells.

    PubMed

    Browning, Cynthia L; Wise, Catherine F; Wise, John Pierce

    2017-09-15

    Chromosome instability is a common feature of cancers that forms due to the misrepair of DNA double strand breaks. Homologous recombination (HR) repair is a high fidelity DNA repair pathway that utilizes a homologous DNA sequence to accurately repair such damage and protect the genome. Prolonged exposure (>72h) to the human lung carcinogen, particulate hexavalent chromium (Cr(VI)), inhibits HR repair, resulting in increased chromosome instability in human cells. Comparative studies have shown acute Cr(VI) exposure induces less chromosome damage in whale cells than human cells, suggesting investigating the effect of this carcinogen in other species may inform efforts to prevent Cr(VI)-induced chromosome instability. Thus, the goal of this study was to determine the effect of prolonged Cr(VI) exposure on HR repair and clastogenesis in North Atlantic right whale (Eubalaena glacialis) lung cells. We show particulate Cr(VI) induces HR repair activity after both acute (24h) and prolonged (120h) exposure in North Atlantic right whale cells. Although the RAD51 response was lower following prolonged Cr(VI) exposure compared to acute exposure, the response was sufficient for HR repair to occur. In accordance with active HR repair, no increase in Cr(VI)-induced clastogenesis was observed with increased exposure time. These results suggest prolonged Cr(VI) exposure affects HR repair and genomic stability differently in whale and human lung cells. Future investigation of the differences in how human and whale cells respond to chemical carcinogens may provide valuable insight into mechanisms of preventing chemical carcinogenesis. Copyright © 2017. Published by Elsevier Inc.

  18. Naphthalene and Naphthoquinone: Distributions and Human Exposure in the Los Angeles Basin

    NASA Astrophysics Data System (ADS)

    Lu, R.; Wu, J.; Turco, R.; Winer, A. M.; Atkinson, R.; Paulson, S.; Arey, J.; Lurmann, F.

    2003-12-01

    Naphthalene is the simplest and most abundant of the polycyclic aromatic hydrocarbons (PAHs). Naphthalene is found primarily in the gas-phase and has been detected in both outdoor and indoor samples. Evaporation from naphthalene-containing products (including gasoline), and during refining operations, are important sources of naphthalene in air. Naphthalene is also emitted during the combustion of fossil fuels and wood, and is a component of vehicle exhaust. Exposure to high concentrations of naphthalene can damage or destroy red blood cells, causing hemolytic anemia. If inhaled over a long period of time, naphthalene may cause kidney and liver damage, skin allergy and dermatitis, cataracts and retinal damage, as well as attack the central nervous system. Naphthalene has been found to cause cancer as a result of inhalation in animal tests. Naphthoquinones are photooxidation products of naphthalene and the potential health effects of exposure to these quinones are a current focus of research. We are developing and applying models that can be used to assess human exposure to naphthalene and its photooxidation products in major air basins such as California South Coast Air Basin (SoCAB). The work utilizes the Surface Meteorology and Ozone Generation (SMOG) airshed model, and the REgional Human EXposure (REHEX) model, including an analysis of individual exposure. We will present and discuss simulations of basin-wide distributions of, and human exposures to, naphthalene and naphthoquinone, with emphasis on the uncertainties in these estimates of atmospheric concentrations and human exposure. Regional modeling of pollutant sources and exposures can lead to cost-effective and optimally health-protective emission control strategies.

  19. AS 2008: Arsenic exposure a nd health effects in Inner Mongolia: studies on cardiac, diabetes and cancer-related effects

    EPA Science Inventory

    Chronic arsenic exposure via drinking water has been of great public health concern world wide. Arsenic exposure has been associated with human cancers, diabetes and cardiovascular diseases. The objectives of this study were to investigate health effects of arsenic and to asses...

  20. Potential human health effects of acid rain: report of a workshop

    PubMed Central

    Goyer, Robert A.; Bachmann, John; Clarkson, Thomas W.; Ferris, Benjamin G.; Graham, Judith; Mushak, Paul; Perl, Daniel P.; Rall, David P.; Schlesinger, Richard; Sharpe, William; Wood, John M.

    1985-01-01

    This report summarizes the potential impact of the acid precipitation phenomenon on human health. There are two major components to this phenomenon: the predepositional phase, during which there is direct human exposure to acidic substances from ambient air, and the post-depositional phase, in which the deposition of acid materials on water and soil results in the mobilization, transport, and even chemical transformation of toxic metals. Acidification increases bioconversion of mercury to methylmercury, which accumulates in fish, increasing the risk to toxicity in people who eat fish. Increase in water and soil content of lead and cadmium increases human exposure to these metals which become additive to other sources presently under regulatory control. The potential adverse health effects of increased human exposure to aluminum is not known at the present time. PMID:3896772

  1. Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment

    PubMed Central

    Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.

    2012-01-01

    Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278

  2. 2016 Annual Report of the University of Kansas Health System Poison Control Center.

    PubMed

    Thornton, Stephen L; Oller, Lisa; Coons, Doyle M

    2018-05-01

    This is the 2016 Annual Report of the University of Kansas Health System Poison Control Center (PCC). The PCC is one of 55 certified poison control centers in the United States and serves the state of Kansas 24-hours a day, 365 days a year, with certified specialists in poison information and medical toxicologists. The PCC receives calls from the public, law enforcement, health care professionals, and public health agencies. All calls to the PCC are recorded electronically in the Toxicall® data management system and uploaded in near real-time to the National Poison Data System (NPDS), which is the data repository for all poison control centers in the United States. All encounters reported to the PCC from January 1, 2016 to December 31, 2016 were analyzed. Data recorded for each exposure includes caller location, age, weight, gender, substance exposed to, nature of exposure, route of exposure, interventions, medical outcome, disposition and location of care. Encounters were classified further as human exposure, animal exposure, confirmed non-exposure, or information call (no exposure reported). The PCC logged 21,965 total encounters in 2016, including 20,713 human exposure cases. The PCC received calls from every county in Kansas. The majority of human exposure cases (50.4%, n = 10,174) were female. Approximately 67% (n = 13,903) of human exposures involved a child (defined as age 19 years or less). Most encounters occurred at a residence (94.0%, n = 19,476) and most calls (72.3%, n = 14,964) originated from a residence. The majority of human exposures (n = 18,233) were acute cases (exposures occurring over eight hours or less). Ingestion was the most common route of exposure documented (86.3%, n = 17,882). The most common reported substance in pediatric encounters was cosmetics/personal care products (n = 1,362), followed by household cleaning product (n = 1,301). For adult encounters, sedatives/hypnotics/antipsychotics (n = 1,130) and analgesics (n = 1,103) were the most frequently involved substances. Unintentional exposures were the most common reason for exposures (81.3%, n = 16,836). Most encounters (71.1%, n = 14,732) were managed in a non-healthcare facility (i.e., a residence). Among human exposures, 14,679 involved exposures to pharmaceutical agents while 10,176 involved exposure to non-pharmaceuticals. Medical outcomes were 32% (n = 6,582) no effect, 19% (n = 3,911) minor effect, 8% (n = 1,623) moderate effect, and 2% (n = 348) major effects. There were 15 deaths in 2016 reported to the PCC. Number of exposures, calls from healthcare facilities, cases with moderate or major medical outcomes, and deaths all increased in 2016 compared to 2015. The results of the 2016 University of Kansas Health System Poison Control annual report demonstrates that the center receives calls from the entire state of Kansas totaling over 20,000 human exposures per year. While pediatric exposures remain the most common, there is an increasing number of calls from healthcare facilities and for cases with serious outcomes. The experience of the PCC is similar to national data. This report supports the continued value of the PCC to both public and acute health care in the state of Kansas.

  3. 2016 Annual Report of the University of Kansas Health System Poison Control Center

    PubMed Central

    Thornton, Stephen L.; Oller, Lisa; Coons, Doyle M.

    2018-01-01

    Introduction This is the 2016 Annual Report of the University of Kansas Health System Poison Control Center (PCC). The PCC is one of 55 certified poison control centers in the United States and serves the state of Kansas 24-hours a day, 365 days a year, with certified specialists in poison information and medical toxicologists. The PCC receives calls from the public, law enforcement, health care professionals, and public health agencies. All calls to the PCC are recorded electronically in the Toxicall® data management system and uploaded in near real-time to the National Poison Data System (NPDS), which is the data repository for all poison control centers in the United States. Methods All encounters reported to the PCC from January 1, 2016 to December 31, 2016 were analyzed. Data recorded for each exposure includes caller location, age, weight, gender, substance exposed to, nature of exposure, route of exposure, interventions, medical outcome, disposition and location of care. Encounters were classified further as human exposure, animal exposure, confirmed non-exposure, or information call (no exposure reported). Results The PCC logged 21,965 total encounters in 2016, including 20,713 human exposure cases. The PCC received calls from every county in Kansas. The majority of human exposure cases (50.4%, n = 10,174) were female. Approximately 67% (n = 13,903) of human exposures involved a child (defined as age 19 years or less). Most encounters occurred at a residence (94.0%, n = 19,476) and most calls (72.3%, n = 14,964) originated from a residence. The majority of human exposures (n = 18,233) were acute cases (exposures occurring over eight hours or less). Ingestion was the most common route of exposure documented (86.3%, n = 17,882). The most common reported substance in pediatric encounters was cosmetics/personal care products (n = 1,362), followed by household cleaning product (n = 1,301). For adult encounters, sedatives/hypnotics/antipsychotics (n = 1,130) and analgesics (n = 1,103) were the most frequently involved substances. Unintentional exposures were the most common reason for exposures (81.3%, n = 16,836). Most encounters (71.1%, n = 14,732) were managed in a non-healthcare facility (i.e., a residence). Among human exposures, 14,679 involved exposures to pharmaceutical agents while 10,176 involved exposure to non-pharmaceuticals. Medical outcomes were 32% (n = 6,582) no effect, 19% (n = 3,911) minor effect, 8% (n = 1,623) moderate effect, and 2% (n = 348) major effects. There were 15 deaths in 2016 reported to the PCC. Number of exposures, calls from healthcare facilities, cases with moderate or major medical outcomes, and deaths all increased in 2016 compared to 2015. Conclusion The results of the 2016 University of Kansas Health System Poison Control annual report demonstrates that the center receives calls from the entire state of Kansas totaling over 20,000 human exposures per year. While pediatric exposures remain the most common, there is an increasing number of calls from healthcare facilities and for cases with serious outcomes. The experience of the PCC is similar to national data. This report supports the continued value of the PCC to both public and acute health care in the state of Kansas. PMID:29796151

  4. TOWARD COST-BENEFIT ANALYSIS OF ACUTE BEHAVIORAL EFFECTS OF TOLUENE IN HUMANS

    EPA Science Inventory

    There is increasing interest in being able to express the consequences of exposure to potentially toxic compounds in monetary terms in order to evaluate potential cost-benefit relationships of controlling exposure. Behavioral effects of acute toluene exposure could be subjected ...

  5. Identification of Surrogate Measures of Diesel Exhaust Exposure in a Controlled Chamber Study

    EPA Science Inventory

    Exposure to diesel exhaust (DE) has been associated with acute cardiopulmonary and vascular responses, chronic noncancer health effects, and respiratory cancers in humans. To better understand DE exposures and eventually their related health effects, we established a controlled c...

  6. A paler shade of green? The toxicology of biodiesel emissions: Recent findings from studies with this alternative fuel.

    PubMed

    Madden, Michael C

    2016-12-01

    Biodiesel produced primarily from plants and algal feedstocks is believed to have advantages for production and use compared to petroleum and to some other fuel sources. There is some speculation that exposure to biodiesel combustion emissions may not induce biological responses or health effects or at a minimum reduce the effects relative to other fuels. In evaluating the overall environmental and health effects of biodiesel production to end use scenario, empirical data or modeling data based on such data are needed. This manuscript examines the available toxicology reports examining combustion derived biodiesel emissions since approximately 2007, when our last review of the topic occurred. Toxicity derived from other end uses of biodiesel - e.g., spills, dermal absorption, etc. - are not examined. Findings from biodiesel emissions are roughly divided into three areas: whole non-human animal model exposures; in vitro exposures of mammalian and bacterial cells (used for mutation studies primarily); and human exposures in controlled or other exposure fashions. Overall, these more current studies clearly demonstrate that biodiesel combustion emission exposure- to either 100% biodiesel or a blend in petroleum diesel- can induce biological effects. There are reports that show biodiesel exposure generally induces more effects or a greater magnitude of effect than petroleum diesel, however there are also a similar number of reports showing the opposite trend. It is unclear whether effects induced by exposure to a blend are greater than exposure to 100% biodiesel. Taken together, the evidence suggest biodiesel emissions can have some similar effects as diesel emissions on inflammatory, vascular, mutagenic, and other responses. While acute biodiesel exposures can show toxicity with a variety of endpoints, the potential effects on human health need further validation. Additionally there are few or no findings to date on whether biodiesel emissions can induce effects or even a weaker response that petroleum diesel with repeated exposure scenarios such as in an occupational setting. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016. Published by Elsevier B.V.

  7. Safety assessment for hair-spray resins: risk assessment based on rodent inhalation studies.

    PubMed

    Carthew, Philip; Griffiths, Heather; Keech, Stephen; Hartop, Peter

    2002-04-01

    The methods involved in the safety assessment of resins used in hair-spray products have received little peer review, or debate in the published literature, despite their widespread use, in both hairdressing salons and the home. The safety assessment for these resins currently involves determining the type of lung pathology that can be caused in animal inhalation exposure studies, and establishing the no-observable-effect level (NOEL) for these pathologies. The likely human consumer exposure is determined by techniques that model the simulated exposure under "in use" conditions. From these values it is then possible to derive the likely safety factors for human exposure. An important part of this process would be to recognize the intrinsic differences between rodents and humans in terms of the respiratory doses that each species experiences during inhalation exposures, for the purpose of the safety assessment. Interspecies scaling factors become necessary when comparing the exposure doses experienced by rats, compared to humans, because of basic differences between species in lung clearance rates and the alveolar area in the lungs. The rodent inhalation data and modeled human exposure to Resin 6965, a resin polymer that is based on vinyl acetate, has been used to calculate the safety factor for human consumer exposure to this resin, under a range of "in use" exposure conditions. The use of this safety assessment process clearly demonstrates that Resin 6965 is acceptable for human consumer exposure under the conditions considered in this risk assessment.

  8. Dynamic resetting of the human circadian pacemaker by intermittent bright light

    NASA Technical Reports Server (NTRS)

    Rimmer, D. W.; Boivin, D. B.; Shanahan, T. L.; Kronauer, R. E.; Duffy, J. F.; Czeisler, C. A.

    2000-01-01

    In humans, experimental studies of circadian resetting typically have been limited to lengthy episodes of exposure to continuous bright light. To evaluate the time course of the human endogenous circadian pacemaker's resetting response to brief episodes of intermittent bright light, we studied 16 subjects assigned to one of two intermittent lighting conditions in which the subjects were presented with intermittent episodes of bright-light exposure at 25- or 90-min intervals. The effective duration of bright-light exposure was 31% or 63% compared with a continuous 5-h bright-light stimulus. Exposure to intermittent bright light elicited almost as great a resetting response compared with 5 h of continuous bright light. We conclude that exposure to intermittent bright light produces robust phase shifts of the endogenous circadian pacemaker. Furthermore, these results demonstrate that humans, like other species, exhibit an enhanced sensitivity to the initial minutes of bright-light exposure.

  9. #2 - An Empirical Assessment of Exposure Measurement Error ...

    EPA Pesticide Factsheets

    Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation of effect estimates in single and bipollutantepidemiological models The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  10. Controlled human exposures to ambient pollutant particles in susceptible populations

    EPA Science Inventory

    Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in suscep...

  11. HExpoChem: a systems biology resource to explore human exposure to chemicals.

    PubMed

    Taboureau, Olivier; Jacobsen, Ulrik Plesner; Kalhauge, Christian; Edsgärd, Daniel; Rigina, Olga; Gupta, Ramneek; Audouze, Karine

    2013-05-01

    Humans are exposed to diverse hazardous chemicals daily. Although an exposure to these chemicals is suspected to have adverse effects on human health, mechanistic insights into how they interact with the human body are still limited. Therefore, acquisition of curated data and development of computational biology approaches are needed to assess the health risks of chemical exposure. Here we present HExpoChem, a tool based on environmental chemicals and their bioactivities on human proteins with the objective of aiding the qualitative exploration of human exposure to chemicals. The chemical-protein interactions have been enriched with a quality-scored human protein-protein interaction network, a protein-protein association network and a chemical-chemical interaction network, thus allowing the study of environmental chemicals through formation of protein complexes and phenotypic outcomes enrichment. HExpoChem is available at http://www.cbs.dtu.dk/services/HExpoChem-1.0/.

  12. Plastic and Human Health: A Micro Issue?

    PubMed

    Wright, Stephanie L; Kelly, Frank J

    2017-06-20

    Microplastics are a pollutant of environmental concern. Their presence in food destined for human consumption and in air samples has been reported. Thus, microplastic exposure via diet or inhalation could occur, the human health effects of which are unknown. The current review article draws upon cross-disciplinary scientific literature to discuss and evaluate the potential human health impacts of microplastics and outlines urgent areas for future research. Key literature up to September 2016 relating to accumulation, particle toxicity, and chemical and microbial contaminants was critically examined. Although microplastics and human health is an emerging field, complementary existing fields indicate potential particle, chemical and microbial hazards. If inhaled or ingested, microplastics may accumulate and exert localized particle toxicity by inducing or enhancing an immune response. Chemical toxicity could occur due to the localized leaching of component monomers, endogenous additives, and adsorbed environmental pollutants. Chronic exposure is anticipated to be of greater concern due to the accumulative effect that could occur. This is expected to be dose-dependent, and a robust evidence-base of exposure levels is currently lacking. Although there is potential for microplastics to impact human health, assessing current exposure levels and burdens is key. This information will guide future research into the potential mechanisms of toxicity and hence therein possible health effects.

  13. Review of genotoxicity biomonitoring studies of glyphosate-based formulations

    PubMed Central

    Kier, Larry D.

    2015-01-01

    Abstract Human and environmental genotoxicity biomonitoring studies involving exposure to glyphosate-based formulations (GBFs) were reviewed to complement an earlier review of experimental genotoxicity studies of glyphosate and GBFs. The environmental and most of the human biomonitoring studies were not informative because there was either a very low frequency of GBF exposure or exposure to a large number of pesticides without analysis of specific pesticide effects. One pesticide sprayer biomonitoring study indicated there was not a statistically significant relationship between frequency of GBF exposure reported for the last spraying season and oxidative DNA damage. There were three studies of human populations in regions of GBF aerial spraying. One study found increases for the cytokinesis-block micronucleus endpoint but these increases did not show statistically significant associations with self-reported spray exposure and were not consistent with application rates. A second study found increases for the blood cell comet endpoint at high exposures causing toxicity. However, a follow-up to this study 2 years after spraying did not indicate chromosomal effects. The results of the biomonitoring studies do not contradict an earlier conclusion derived from experimental genotoxicity studies that typical GBFs do not appear to present significant genotoxic risk under normal conditions of human or environmental exposures. PMID:25687244

  14. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression

    NASA Technical Reports Server (NTRS)

    Zeitzer, J. M.; Dijk, D. J.; Kronauer, R.; Brown, E.; Czeisler, C.

    2000-01-01

    Ocular exposure to early morning room light can significantly advance the timing of the human circadian pacemaker. The resetting response to such light has a non-linear relationship to illuminance. The dose-response relationship of the human circadian pacemaker to late evening light of dim to moderate intensity has not been well established. Twenty-three healthy young male and female volunteers took part in a 9 day protocol in which a single experimental light exposure6.5 h in duration was given in the early biological night. The effects of the light exposure on the endogenous circadian phase of the melatonin rhythm and the acute effects of the light exposure on plasma melatonin concentration were calculated. We demonstrate that humans are highly responsive to the phase-delaying effects of light during the early biological night and that both the phase resetting response to light and the acute suppressive effects of light on plasma melatonin follow a logistic dose-response curve, as do many circadian responses to light in mammals. Contrary to expectations, we found that half of the maximal phase-delaying response achieved in response to a single episode of evening bright light ( approximately 9000 lux (lx)) can be obtained with just over 1 % of this light (dim room light of approximately 100 lx). The same held true for the acute suppressive effects of light on plasma melatonin concentrations. This indicates that even small changes in ordinary light exposure during the late evening hours can significantly affect both plasma melatonin concentrations and the entrained phase of the human circadian pacemaker.

  15. Biochemical, endocrine, and hematological factors in human oxygen tolerance extension: Predictive studies 6

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Clark, J. M.

    1992-01-01

    The Predictive Studies VI (Biochemical, endocrine, and hematological factors in human oxygen tolerance extension) Program consisted of two related areas of research activity, integrated in design and performance, that were each based on an ongoing analysis of human organ oxygen tolerance data obtained for the continuous oxygen exposures of the prior Predictive Studies V Program. The two research areas effectively blended broad investigation of systematically varied intermittent exposure patterns in animals with very selective evaluation of specific exposure patterns in man.

  16. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis.

    PubMed

    Almeida-Porada, Graça; Rodman, Christopher; Kuhlman, Bradford; Brudvik, Egil; Moon, John; George, Sunil; Guida, Peter; Sajuthi, Satria P; Langefeld, Carl D; Walker, Stephen J; Wilson, Paul F; Porada, Christopher D

    2018-04-26

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.

  17. Environmental epigenomics: Current approaches to assess epigenetic effects of endocrine disrupting compounds (EDC's) on human health.

    PubMed

    Tapia-Orozco, Natalia; Santiago-Toledo, Gerardo; Barrón, Valeria; Espinosa-García, Ana María; García-García, José Antonio; García-Arrazola, Roeb

    2017-04-01

    Environmental Epigenomics is a developing field to study the epigenetic effect on human health from exposure to environmental factors. Endocrine disrupting chemicals have been detected primarily in pharmaceutical drugs, personal care products, food additives, and food containers. Exposure to endocrine-disrupting chemicals (EDCs) has been associated with a high incidence and prevalence of many endocrine-related disorders in humans. Nevertheless, further evidence is needed to establish a correlation between exposure to EDC and human disorders. Conventional detection of EDCs is based on chemical structure and concentration sample analysis. However, substantial evidence has emerged, suggesting that cell exposure to EDCs leads to epigenetic changes, independently of its chemical structure with non-monotonic low-dose responses. Consequently, a paradigm shift in toxicology assessment of EDCs is proposed based on a comprehensive review of analytical techniques used to evaluate the epigenetic effects. Fundamental insights reported elsewhere are compared in order to establish DNA methylation analysis as a viable method for assessing endocrine disruptors beyond the conventional study approach of chemical structure and concentration analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans

    NASA Technical Reports Server (NTRS)

    Glickman, Gena; Hanifin, John P.; Rollag, Mark D.; Wang, Jenny; Cooper, Howard; Brainard, George C.

    2003-01-01

    Illumination of different areas of the human retina elicits differences in acute light-induced suppression of melatonin. The aim of this study was to compare changes in plasma melatonin levels when light exposures of equal illuminance and equal photon dose were administered to superior, inferior, and full retinal fields. Nine healthy subjects participated in the study. Plexiglass eye shields were modified to permit selective exposure of the superior and inferior halves of the retinas of each subject. The Humphrey Visual Field Analyzer was used both to confirm intact full visual fields and to quantify exposure of upper and lower visual fields. On study nights, eyes were dilated, and subjects were exposed to patternless white light for 90 min between 0200 and 0330 under five conditions: (1) full retinal exposure at 200 lux, (2) full retinal exposure at 100 lux, (3) inferior retinal exposure at 200 lux, (4) superior retinal exposure at 200 lux, and (5) a dark-exposed control. Plasma melatonin levels were determined by radioimmunoassay. ANOVA demonstrated a significant effect of exposure condition (F = 5.91, p < 0.005). Post hoc Fisher PLSD tests showed significant (p < 0.05) melatonin suppression of both full retinal exposures as well as the inferior retinal exposure; however, superior retinal exposure was significantly less effective in suppressing melatonin. Furthermore, suppression with superior retinal exposure was not significantly different from that of the dark control condition. The results indicate that the inferior retina contributes more to the light-induced suppression of melatonin than the superior retina at the photon dosages tested in this study. Findings suggest a greater sensitivity or denser distribution of photoreceptors in the inferior retina are involved in light detection for the retinohypothalamic tract of humans.

  19. Biomarkers of Dose and Effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    EPA Science Inventory

    Background: Human controlled exposure studies have generally focused on subjects exposed to ozone (O3) while exercising while exposures in rats have been done at rest. We exposed resting subjects to labeled O3 (18O3, 0.4 ppm, for 2 hr) and compared O3 dose and effects with our...

  20. ARE ENVIRONMENTAL EXPOSURES TO CHLOROPHENOXY HERBICIDES ASSOCIATED WITH AN INCREASE IN ADVERSE HUMAN HEALTH EFFECTS?

    EPA Science Inventory

    Background: Associations between adverse health effects and environmental exposures are difficult to study because exposures may be widespread, low-dose in nature, and common throughout the study population. Individual risk-factor epidemiology may not be able to initially ident...

  1. Chemical Risk Assessment: Traditional vs Public Health Perspectives

    PubMed Central

    Axelrad, Daniel A.; Bahadori, Tina; Bussard, David; Cascio, Wayne E.; Deener, Kacee; Dix, David; Thomas, Russell S.; Kavlock, Robert J.; Burke, Thomas A.

    2017-01-01

    Preventing adverse health effects of environmental chemical exposure is fundamental to protecting individual and public health. When done efficiently and properly, chemical risk assessment enables risk management actions that minimize the incidence and effects of environmentally induced diseases related to chemical exposure. However, traditional chemical risk assessment is faced with multiple challenges with respect to predicting and preventing disease in human populations, and epidemiological studies increasingly report observations of adverse health effects at exposure levels predicted from animal studies to be safe for humans. This discordance reinforces concerns about the adequacy of contemporary risk assessment practices for protecting public health. It is becoming clear that to protect public health more effectively, future risk assessments will need to use the full range of available data, draw on innovative methods to integrate diverse data streams, and consider health endpoints that also reflect the range of subtle effects and morbidities observed in human populations. Considering these factors, there is a need to reframe chemical risk assessment to be more clearly aligned with the public health goal of minimizing environmental exposures associated with disease. PMID:28520487

  2. No Effects of Acute Exposure to Wi-Fi Electromagnetic Fields on Spontaneous EEG Activity and Psychomotor Vigilance in Healthy Human Volunteers.

    PubMed

    Zentai, Norbert; Csathó, Árpád; Trunk, Attila; Fiocchi, Serena; Parazzini, Marta; Ravazzani, Paolo; Thuróczy, György; Hernádi, István

    2015-12-01

    Mobile equipment use of wireless fidelity (Wi-Fi) signal modulation has increased exponentially in the past few decades. However, there is inconclusive scientific evidence concerning the potential risks associated with the energy deposition in the brain from Wi-Fi and whether Wi-Fi electromagnetism interacts with cognitive function. In this study we investigated possible neurocognitive effects caused by Wi-Fi exposure. First, we constructed a Wi-Fi exposure system from commercial parts. Dosimetry was first assessed by free space radiofrequency field measurements. The experimental exposure system was then modeled based on real geometry and physical characteristics. Specific absorption rate (SAR) calculations were performed using a whole-body, realistic human voxel model with values corresponding to conventional everyday Wi-Fi exposure (peak SAR10g level was 99.22 mW/kg with 1 W output power and 100% duty cycle). Then, in two provocation experiments involving healthy human volunteers we tested for two hypotheses: 1. Whether a 60 min long 2.4 GHz Wi-Fi exposure affects the spectral power of spontaneous awake electroencephalographic (sEEG) activity (N = 25); and 2. Whether similar Wi-Fi exposure modulates the sustained attention measured by reaction time in a computerized psychomotor vigilance test (PVT) (N = 19). EEG data were recorded at midline electrode sites while volunteers watched a silent documentary. In the PVT task, button press reaction time was recorded. No measurable effects of acute Wi-Fi exposure were found on spectral power of sEEG or reaction time in the psychomotor vigilance test. These results indicate that a single, 60 min Wi-Fi exposure does not alter human oscillatory brain function or objective measures of sustained attention.

  3. Effect of brief exposure to mitomycin C on cultured human nasal mucosa fibroblasts.

    PubMed

    Hu, D; Sires, B S; Tong, D C; Royack, G A; Oda, D

    2000-03-01

    To observe the effect of mitomycin C (MMC) on cultured human nasal mucosa fibroblasts. Cultured human nasal mucosa fibroblasts were exposed to MMC (0.1-0.4 mg/ml) for 1 to 5 minutes. The viability of the fibroblasts was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay; DNA fragmentation (apoptosis) by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL); apoptotic percentage by flow cytometry; and morphology by light microscopy. A portion of the fibroblasts survived the mitomycin treatment and showed evidence of regrowth within 2 to 3 days. These cells reached confluence in 5 to 7 days. The inhibition rates by MTT assay of 0.4 mg/ml MMC for 5-minute exposures was 31.3%. Dose-response effect was noted with the lower concentrations and shorter exposure times where the inhibition rates were lower (but not significantly so). DNA fragmentation was observed in fibroblasts 24 hours after MMC exposure (0.4 mg/ml) for 5 minutes compared with normal control. The apoptotic rate of fibroblasts treated by 0.4 mg/ml MMC was significantly higher than the control (p < 0.05). Short MMC exposure times have a variable cytotoxic effect and inhibit proliferation of cultured nasal mucosa fibroblasts. MMC also can induce apoptosis with a 5-minute exposure time. Therefore, it is possible that MMC has a complex effect in dacryocystorhinostomy.

  4. An efficient use of mixing model for computing the effective dielectric and thermal properties of the human head.

    PubMed

    Mishra, Varsha; Puthucheri, Smitha; Singh, Dharmendra

    2018-05-07

    As a preventive measure against the electromagnetic (EM) wave exposure to human body, EM radiation regulatory authorities such as ICNIRP and FCC defined the value of specific absorption rate (SAR) for the human head during EM wave exposure from mobile phone. SAR quantifies the absorption of EM waves in the human body and it mainly depends on the dielectric properties (ε', σ) of the corresponding tissues. The head part of the human body is more susceptible to EM wave exposure due to the usage of mobile phones. The human head is a complex structure made up of multiple tissues with intermixing of many layers; thus, the accurate measurement of permittivity (ε') and conductivity (σ) of the tissues of the human head is still a challenge. For computing the SAR, researchers are using multilayer model, which has some challenges for defining the boundary for layers. Therefore, in this paper, an attempt has been made to propose a method to compute effective complex permittivity of the human head in the range of 0.3 to 3.0 GHz by applying De-Loor mixing model. Similarly, for defining the thermal effect in the tissue, thermal properties of the human head have also been computed using the De-Loor mixing method. The effective dielectric and thermal properties of equivalent human head model are compared with the IEEE Std. 1528. Graphical abstract ᅟ.

  5. Methylmercury Exposure and Health Effects from Rice and Fish Consumption: A Review

    PubMed Central

    Li, Ping; Feng, Xinbin; Qiu, Guangle

    2010-01-01

    Methylmercury (MeHg) is highly toxic, and its principal target tissue in humans is the nervous system, which has made MeHg intoxication a public health concern for many decades. The general population is primarily exposed to MeHg through consumption of contaminated fish and marine mammals, but recent studies have reported high levels of MeHg in rice and confirmed that in China the main human exposure to MeHg is related to frequent rice consumption in mercury (Hg) polluted areas. This article reviews the progress in the research on MeHg accumulation in rice, human exposure and health effects, and nutrient and co-contaminant interactions. Compared with fish, rice is of poor nutritional quality and lacks specific micronutrients identified as having health benefits (e.g., n-3 long chain polyunsaturated fatty acid, selenium, essential amino acids). The effects of these nutrients on the toxicity of MeHg should be better addressed in future epidemiologic and clinical studies. More emphasis should be given to assessing the health effects of low level MeHg exposure in the long term, with appropriate recommendations, as needed, to reduce MeHg exposure in the rice-eating population. PMID:20644695

  6. Human and animal evidence of potential transgenerational inheritance of health effects: An evidence map and state-of-the-science evaluation.

    PubMed

    Walker, Vickie R; Boyles, Abee L; Pelch, Katherine E; Holmgren, Stephanie D; Shapiro, Andrew J; Blystone, Chad R; Devito, Michael J; Newbold, Retha R; Blain, Robyn; Hartman, Pamela; Thayer, Kristina A; Rooney, Andrew A

    2018-06-01

    An increasing number of reports suggest early life exposures result in adverse effects in offspring who were never directly exposed; this phenomenon is termed "transgenerational inheritance." Given concern for public health implications for potential effects of exposures transmitted to subsequent generations, it is critical to determine how widespread and robust this phenomenon is and to identify the range of exposures and possible outcomes. This scoping report examines the evidence for transgenerational inheritance associated with exposure to a wide range of stressors in humans and animals to identify areas of consistency, uncertainty, data gaps, and to evaluate general risk of bias issues for the transgenerational study design. A protocol was developed to collect and categorize the literature into a systematic evidence map for transgenerational inheritance by health effects, exposures, and evidence streams following the Office of Health Assessment and Translation (OHAT) approach for conducting literature-based health assessments. A PubMed search yielded 63,758 unique records from which 257 relevant studies were identified and categorized into a systematic evidence map by evidence streams (46 human and 211 animal), broad health effect categories, and exposures. Data extracted from the individual studies are available in the Health Assessment Workspace Collaborative (HAWC) program. There are relatively few bodies of evidence where multiple studies evaluated the same exposure and the same or similar outcomes. Studies evaluated for risk of bias generally had multiple issues in design or conduct. The evidence mapping illustrated that risk of bias, few studies, and heterogeneity in exposures and endpoints examined present serious limitations to available bodies of evidence for assessing transgenerational effects. Targeted research is suggested to addressed inconsistencies and risk of bias issues identified, and thereby establish more robust bodies of evidence to critically assess transgenerational effects - particularly by adding data on exposure-outcome pairs where there is some evidence (i.e., reproductive, metabolic, and neurological effects). Copyright © 2017. Published by Elsevier Ltd.

  7. Human health risk associated with brominated flame-retardants (BFRs).

    PubMed

    Lyche, Jan L; Rosseland, Carola; Berge, Gunnar; Polder, Anuschka

    2015-01-01

    The purposes of this review are to assess the human exposure and human and experimental evidence for adverse effects of brominated flame-retardants (BFRs) with specific focus on intake from seafood. The leakage of BFRs from consumer products leads to exposure of humans from fetal life to adulthood. Fish and fish products contain the highest levels of BFRs and dominate the dietary intake of frequent fish eaters in Europe, while meat, followed by seafood and dairy products accounted for the highest US dietary intake. House dust is also reported as an important source of exposure for children as well as adults. The levels of BFRs in the general North American populations are higher than those in Europe and Japan and the highest levels are detected in infants and toddlers. The daily intake via breast milk exceeds the RfD in 10% of US infants. BFRs including PBDEs, HBCDs and TBBP-A have induced endocrine-, reproductive- and behavior effects in laboratory animals. Furthermore, recent human epidemiological data demonstrated association between exposure to BFRs and similar adverse effects as observed in animal studies. Fish including farmed fish and crude fish oil for human consumption may contain substantial levels of BFRs and infants and toddlers consuming these products on a daily basis may exceed the tolerable daily intake suggesting that fish and fish oil alone represent a risk to human health. This intake comes in addition to exposure from other sources (breast milk, other food, house dust). Because potential harmful concentrations of BFRs and other toxicants occur in fish and fish products, research on a wider range of products is warranted, to assess health hazard related to the contamination of fish and fish products for human consumption. Copyright © 2014. Published by Elsevier Ltd.

  8. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A.

    PubMed

    Shelby, Michael D

    2008-09-01

    The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for bisphenol A to cause adverse effects on reproduction and development in humans. The CERHR Expert Panel on Bisphenol A completed its evaluation in August 2007. CERHR selected bisphenol A for evaluation because of the: widespread human exposure; public concern for possible health effects from human exposures; high production volume; evidence of reproductive and developmental toxicity in laboratory animal studies Bisphenol A (CAS RN: 80-05-7) is a high production volume chemical used primarily in the production of polycarbonate plastics and epoxy resins. Polycarbonate plastics are used in some food and drink containers; the resins are used as lacquers to coat metal products such as food cans, bottle tops, and water supply pipes. To a lesser extent bisphenol A is used in the production of polyester resins, polysulfone resins, polyacrylate resins, and flame retardants. In addition, bisphenol A is used in the processing of polyvinyl chloride plastic and in the recycling of thermal paper. Some polymers used in dental sealants and tooth coatings contain bisphenol A. The primary source of exposure to bisphenol A for most people is assumed to occur through the diet. While air, dust, and water (including skin contact during bathing and swimming) are other possible sources of exposure, bisphenol A in food and beverages accounts for the majority of daily human exposure. The highest estimated daily intakes of bisphenol A in the general population occur in infants and children. The results of this bisphenol A evaluation are published in an NTP-CERHR Monograph that includes the (1) NTP Brief and (2) Expert Panel Report on the Reproductive and Developmental Toxicity of Bisphenol A. Additional information related to the evaluation process, including the peer review report for the NTP Brief and public comments received on the draft NTP Brief and the final expert panel report, are available on the CERHR website (http://cerhr.niehs.nih.gov/). See bisphenol A under "CERHR Chemicals" on the homepage or go directly to http://cerhr.niehs. nih.gov/chemicals/bisphenol/bisphenol.html). The NTP reached the following conclusions on the possible effects of exposure to bisphenol A on human development and reproduction. Note that the possible levels of concern, from lowest to highest, are negligible concern, minimal concern, some concern, concern, and serious concern. The NTP has some concern for effects on the brain, behavior, and prostate gland in fetuses, infants, and children at current human exposures to bisphenol A. The NTP has minimal concern for effects on the mammary gland and an earlier age for puberty for females in fetuses, infants, and children at current human exposures to bisphenol A. The NTP has negligible concern that exposure of pregnant women to bisphenol A will result in fetal or neonatal mortality, birth defects, or reduced birth weight and growth in their offspring. The NTP has negligible concern that exposure to bisphenol A will cause reproductive effects in non-occupationally exposed adults and minimal concern for workers exposed to higher levels in occupational settings. NTP will transmit the NTP-CERHR Monograph on Bisphenol A to federal and state agencies, interested parties, and the public and make it available in electronic PDF format on the CERHR web site (http://cerhr.niehs.nih.gov) and in printed text or CD from CERHR.

  9. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... “Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields,” NCRP Report No. 86... of “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic...

  10. Assessing human exposure to power-frequency electric and magnetic fields.

    PubMed Central

    Kaune, W T

    1993-01-01

    This paper reviews published literature and current problems relating to the assessment of occupational and residential human exposures to power-frequency electric and magnetic fields. Available occupational exposure data suggest that the class of job titles known as electrical workers may be an effective surrogate for time-weighted-average (TWA) magnetic-field (but not electric-field) exposure. Current research in occupational-exposure assessment is directed to the construction of job-exposure matrices based on electric- and magnetic-field measurements and estimates of worker exposures to chemicals and other factors of interest. Recent work has identified five principal sources of residential magnetic fields: electric power transmission lines, electric power distribution lines, ground currents, home wiring, and home appliances. Existing residential-exposure assessments have used one or more of the following techniques: questionnaires, wiring configuration coding, theoretical field calculations, spot electric- and magnetic-field measurements, fixed-site magnetic-field recordings, personal- exposure measurements, and geomagnetic-field measurements. Available normal-power magnetic-field data for residences differ substantially between studies. It is not known if these differences are due to geographical differences, differences in measurement protocols, or instrumentation differences. Wiring codes and measured magnetic fields (but not electric fields) are associated weakly. Available data suggest, but are far from proving, that spot measurements may be more effective than wire codes as predictors of long-term historical magnetic-field exposure. Two studies find that away-from-home TWA magnetic-field exposures are less variable than at-home exposures. The importance of home appliances as contributors to total residential magnetic-field exposure is not known at this time. It also is not known what characteristics (if any) of residential electric and magnetic fields are determinants of human health effects. PMID:8206021

  11. Exposure and Health Effects of Fungi on Humans

    PubMed Central

    Baxi, Sachin N.; Portnoy, Jay M.; Larenas-Linnemann, Désirée; Phipatanakul, Wanda

    2016-01-01

    Fungi are ubiquitous microorganisms that are present in outdoor and indoor environments. Previous research has found relationships between environmental fungal exposures and human health effects. We reviewed recent articles focused on fungal exposure and dampness as risk factors for respiratory disease development, symptoms and hypersensitivity. In particular, we reviewed the evidence suggesting that early exposure to dampness or fungi is associated with development of asthma and increased asthma morbidity. While outdoor exposure to high concentrations of spores can cause health effects such as asthma attacks in association with thunderstorms, most people appear to be relatively unaffected unless they are sensitized to specific genera. Indoor exposure and dampness, on the other hand, appears to be associated with increased risk of developing asthma in young children and asthma morbidity in individuals who have asthma. These are important issues because they provide a rationale for interventions that might be considered for homes and buildings in which there is increased fungal exposure. In addition to rhinitis and asthma, fungus exposure is associated with a number of other illnesses including allergic bronchopulmonary mycoses, allergic fungal sinusitis and hypersensitivity pneumonitis. Additional research is necessary to establish causality and evaluate interventions for fungal and dampness-related health effects. PMID:26947460

  12. Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans

    EPA Science Inventory

    Exposure to single pollutants such as ambient particulate matter (PM) is associated with adverse health effects. It is unclear, however, if simultaneous exposure to multiple air pollutants (e.g. PM and ozone or nitrogen dioxide), a more real world scenario, results in non-additiv...

  13. An Overview of the Effects of Dioxins and Dioxin-like Compounds on Vertebrates, as Documented in Human and Ecological Epidemiology

    PubMed Central

    White, Sally S.; Birnbaum, Linda S.

    2009-01-01

    Dioxins and dioxin-like compounds are primary examples of persistent organic pollutants that induce toxicity in both wildlife and humans. Over the past 200 years these compounds have been almost exclusively generated by human activity and have left a string of disasters in the wake of their accidental release. Most recently, the contamination of the Irish pork supply with dioxins resulted in an international recall of all Irish pork products. Epidemiologic data on human and ecological dioxin exposures have revealed a common pattern of biological response among vertebrate species, which is mediated through activation of the Aryl hydrocarbon Receptor (AhR). These AhR-mediated effects include profound consequences on the vertebrate individual exposed in early-life, with respect to myriad developmental endpoints including neurologic, immunologic, and reproductive parameters. Humans appear to be susceptible to these effects, in a manner similar to that of the laboratory and wildlife species which have demonstrated such outcomes. Furthermore, epidemiologic data suggest that there is little or no margin of exposure for humans, with respect to these developmental effects. Given these concerns, prudent public health policy should include the continued reduction of exposures. PMID:19953395

  14. CHEMICAL CHARACTERIZATION & SPECIATION OF MOBILE SOURCE EMISSIONS: HUMAN EXPOSURE IMPLICATIONS & IMPLEMENTATION PERSPECTIVES

    EPA Science Inventory

    A significant number of epidemiological studies have identified an increase in occurrence of adverse health effects associated with exposures to mobile source emissions. These adverse effects include asthma, other respiratory diseases, cardiovascular effects, cancer, development...

  15. Air pollution exposure prediction approaches used in air pollution epidemiology studies.

    PubMed

    Özkaynak, Halûk; Baxter, Lisa K; Dionisio, Kathie L; Burke, Janet

    2013-01-01

    Epidemiological studies of the health effects of outdoor air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and misclassification of exposures for pollutants that are spatially heterogeneous, such as those associated with traffic emissions (e.g., carbon monoxide, elemental carbon, nitrogen oxides, and particulate matter). We review alternative air quality and human exposure metrics applied in recent air pollution health effect studies discussed during the International Society of Exposure Science 2011 conference in Baltimore, MD. Symposium presenters considered various alternative exposure metrics, including: central site or interpolated monitoring data, regional pollution levels predicted using the national scale Community Multiscale Air Quality model or from measurements combined with local-scale (AERMOD) air quality models, hybrid models that include satellite data, statistically blended modeling and measurement data, concentrations adjusted by home infiltration rates, and population-based human exposure model (Stochastic Human Exposure and Dose Simulation, and Air Pollutants Exposure models) predictions. These alternative exposure metrics were applied in epidemiological applications to health outcomes, including daily mortality and respiratory hospital admissions, daily hospital emergency department visits, daily myocardial infarctions, and daily adverse birth outcomes. This paper summarizes the research projects presented during the symposium, with full details of the work presented in individual papers in this journal issue.

  16. Dietary Intervention to Mitigate the Health Effects of PM Exposure in Humans

    EPA Science Inventory

    Exposure to ambient air pollution is a major cause of global morbidity and mortality. This presentation will highlight previously published, ongoing and planned studies conducted at the Human Studies Facility that have examined the efficacy of nutritional supplementation in modul...

  17. IMMUNO-DETECTION OF SIGNALING INTERMEDIATES IN AN INTACT LUNG PREPARATION FOLLOWING METALLIC EXPOSURE

    EPA Science Inventory

    Residual oil fly ash (ROFA) is a particulate pollutant produced during the combustion of fuel oil. ROFA exposure causes adverse respiratory effects in humans and induces lung inflammation in animals and inflammatory mediator expression in cultured human airway epithelial cells....

  18. Development of screening assays for nanoparticle toxicity assessment in human blood: preliminary studies with charged Au nanoparticles.

    PubMed

    Love, Sara A; Thompson, John W; Haynes, Christy L

    2012-09-01

    As nanoparticles have found increased use in both consumer and medical applications, corresponding increases in possible exposure to humans necessitate studies examining the impacts of these nanomaterials in biological systems. This article examines the effects of approximately 30-nm-diameter gold nanoparticles, with positively and negatively charged surface coatings in human blood. Here, we study the exposure effects, with up to 72 h of exposure to 5, 15, 25 and 50 µg/ml nanoparticles on hemolysis, reactive oxygen species (ROS) generation and platelet aggregation in subsets of cells from human blood. Assessing viability with hemolysis, results show significant changes in a concentration-dependent fashion. Rates of ROS generation were investigated using the dichlorofluorscein diacetate-based assay as ROS generation is a commonly suspected mechanism of nanoparticle toxicity; herein, ROS was not a significant factor. Optical monitoring of platelet aggregation revealed that none of the examined nanoparticles induced aggregation upon short-term exposure.

  19. International and National Expert Group Evaluations: Biological/Health Effects of Radiofrequency Fields

    PubMed Central

    Vijayalaxmi; Scarfi, Maria R.

    2014-01-01

    The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF) fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the “weight of scientific evidence” approach) for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research. PMID:25211777

  20. Relative effect potency estimates of dioxin-like activity for dioxins, furans, and dioxin-like PCBs in adults based on two thyroid outcomes.

    PubMed

    Trnovec, Tomáš; Jusko, Todd A; Šovčíková, Eva; Lancz, Kinga; Chovancová, Jana; Patayová, Henrieta; Palkovičová, L'ubica; Drobná, Beata; Langer, Pavel; Van den Berg, Martin; Dedik, Ladislav; Wimmerová, Soňa

    2013-08-01

    Toxic equivalency factors (TEFs) are an important component in the risk assessment of dioxin-like human exposures. At present, this concept is based mainly on in vivo animal experiments using oral dosage. Consequently, the current human TEFs derived from mammalian experiments are applicable only for exposure situations in which oral ingestion occurs. Nevertheless, these "intake" TEFs are commonly-but incorrectly-used by regulatory authorities to calculate "systemic" toxic equivalents (TEQs) based on human blood and tissue concentrations, which are used as biomarkers for either exposure or effect. We sought to determine relative effect potencies (REPs) for systemic human concentrations of dioxin-like mixture components using thyroid volume or serum free thyroxine (FT4) concentration as the outcomes of interest. We used a benchmark concentration and a regression-based approach to compare the strength of association between each dioxin-like compound and the thyroid end points in 320 adults residing in an organochlorine-polluted area of eastern Slovakia. REPs calculated from thyroid volume and FT4 were similar. The regression coefficient (β)-derived REP data from thyroid volume and FT4 level were correlated with the World Health Organization (WHO) TEF values (Spearman r = 0.69, p = 0.01 and r = 0.62, p = 0.03, respectively). The calculated REPs were mostly within the minimum and maximum values for in vivo REPs derived by other investigators. Our REPs calculated from thyroid end points realistically reflect human exposure scenarios because they are based on chronic, low-dose human exposures and on biomarkers reflecting body burden. Compared with previous results, our REPs suggest higher sensitivity to the effects of dioxin-like compounds.

  1. Nanoparticles in the environment: assessment using the causal diagram approach

    PubMed Central

    2012-01-01

    Nanoparticles (NPs) cause concern for health and safety as their impact on the environment and humans is not known. Relatively few studies have investigated the toxicological and environmental effects of exposure to naturally occurring NPs (NNPs) and man-made or engineered NPs (ENPs) that are known to have a wide variety of effects once taken up into an organism. A review of recent knowledge (between 2000-2010) on NP sources, and their behaviour, exposure and effects on the environment and humans was performed. An integrated approach was used to comprise available scientific information within an interdisciplinary logical framework, to identify knowledge gaps and to describe environment and health linkages for NNPs and ENPs. The causal diagram has been developed as a method to handle the complexity of issues on NP safety, from their exposure to the effects on the environment and health. It gives an overview of available scientific information starting with common sources of NPs and their interactions with various environmental processes that may pose threats to both human health and the environment. Effects of NNPs on dust cloud formation and decrease in sunlight intensity were found to be important environmental changes with direct and indirect implication in various human health problems. NNPs and ENPs exposure and their accumulation in biological matrices such as microbiota, plants and humans may result in various adverse effects. The impact of some NPs on human health by ROS generation was found to be one of the major causes to develop various diseases. A proposed cause-effects diagram for NPs is designed considering both NNPs and ENPs. It represents a valuable information package and user-friendly tool for various stakeholders including students, researchers and policy makers, to better understand and communicate on issues related to NPs. PMID:22759495

  2. Ultraviolet radiation, human health, and the urban forest

    Treesearch

    Gordon M. Heisler; Richard H. Grant

    2000-01-01

    Excess exposure to ultraviolet (UV) radiation from the sun, particularly the ultraviolet B (UVB) portion, has been linked with adverse effects on human health ranging from skin cancers to eye diseases such as cataracts. Trees may prevent even greater disease rates in humans by reducing UV exposure. Tree shade greatly reduces UV irradiance when both the sun and sky are...

  3. Xenotransplantation as a model for human testicular development.

    PubMed

    Hutka, Marsida; Smith, Lee B; Mitchell, Rod T

    The developing male reproductive system may be sensitive to disruption by a wide range of exogenous 'endocrine disruptors'. In-utero exposure to environmental chemicals and pharmaceuticals have been hypothesized to have an impact in the increasing incidence of male reproductive disorders. The vulnerability to adverse effects as a consequence of such exposures is elevated during a specific 'window of susceptibility' in fetal life referred to as the masculinisation programing window (MPW). Exposures that occur during prepuberty, such as chemotherapy treatment for cancer during childhood, may also affect future fertility. Much of our current knowledge about fetal and early postnatal human testicular development derives from studies conducted in animal models predictive for humans. Therefore, over recent years, testicular transplantation has been employed as a 'direct' approach to understand the development of human fetal and prepubertal testis in health and disease. In this review we describe the potential use of human testis xenotransplantation to study testicular development and its application for (i) assessing the effects of environmental exposures in humans, and (ii) establishing fertility preservation options for prepubertal boys with cancer. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Solar radiation and human health

    NASA Astrophysics Data System (ADS)

    Juzeniene, Asta; Brekke, Pål; Dahlback, Arne; Andersson-Engels, Stefan; Reichrath, Jörg; Moan, Kristin; Holick, Michael F.; Grant, William B.; Moan, Johan

    2011-06-01

    The Sun has played a major role in the development of life on Earth. In Western culture, people are warned against Sun exposure because of its adverse effects: erythema, photoimmunosuppression, photoageing, photocarcinogenesis, cataracts and photokeratitis. However, Sun exposure is also beneficial, since moderate doses give beneficial physiological effects: vitamin D synthesis, reduction of blood pressure and mental health. Shortage of Sun exposure may be even more dangerous to human health than excessive exposure. Avoiding Sun exposure leads to vitamin D deficiency which is associated not only with rickets and osteomalacia, but also with increased risk of cardiovascular disease, multiple sclerosis, rheumatoid arthritis, diabetes, influenza, many types of cancer and adverse pregnancy outcomes. Solar radiation induces nitric oxide release in tissue and immediate pigment darkening which certainly play important roles, although these are still unknown. Action spectra relevant for health are described. We will also review what is known about spectral and intensity variations of terrestrial solar radiation as well as its penetration through the atmosphere and into human skin and tissue.

  5. Symptoms in Response to Controlled Diesel Exhaust More Closely Reflect Exposure Perception Than True Exposure

    PubMed Central

    Carlsten, Chris; Oron, Assaf P.; Curtiss, Heidi; Jarvis, Sara; Daniell, William; Kaufman, Joel D.

    2013-01-01

    Background Diesel exhaust (DE) exposures are very common, yet exposure-related symptoms haven’t been rigorously examined. Objective Describe symptomatic responses to freshly generated and diluted DE and filtered air (FA) in a controlled human exposure setting; assess whether such responses are altered by perception of exposure. Methods 43 subjects participated within three double-blind crossover experiments to order-randomized DE exposure levels (FA and DE calibrated at 100 and/or 200 micrograms/m3 particulate matter of diameter less than 2.5 microns), and completed questionnaires regarding symptoms and dose perception. Results For a given symptom cluster, the majority of those exposed to moderate concentrations of diesel exhaust do not report such symptoms. The most commonly reported symptom cluster was of the nose (29%). Blinding to exposure is generally effective. Perceived exposure, rather than true exposure, is the dominant modifier of symptom reporting. Conclusion Controlled human exposure to moderate-dose diesel exhaust is associated with a range of mild symptoms, though the majority of individuals will not experience any given symptom. Blinding to DE exposure is generally effective. Perceived DE exposure, rather than true DE exposure, is the dominant modifier of symptom reporting. PMID:24358296

  6. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  7. Safety assessment in macaques of light exposures for functional two-photon ophthalmoscopy in humans

    PubMed Central

    Schwarz, Christina; Sharma, Robin; Fischer, William S.; Chung, Mina; Palczewska, Grazyna; Palczewski, Krzysztof; Williams, David R.; Hunter, Jennifer J.

    2016-01-01

    Two-photon ophthalmoscopy has potential for in vivo assessment of function of normal and diseased retina. However, light safety of the sub-100 fs laser typically used is a major concern and safety standards are not well established. To test the feasibility of safe in vivo two-photon excitation fluorescence (TPEF) imaging of photoreceptors in humans, we examined the effects of ultrashort pulsed light and the required light levels with a variety of clinical and high resolution imaging methods in macaques. The only measure that revealed a significant effect due to exposure to pulsed light within existing safety standards was infrared autofluorescence (IRAF) intensity. No other structural or functional alterations were detected by other imaging techniques for any of the exposures. Photoreceptors and retinal pigment epithelium appeared normal in adaptive optics images. No effect of repeated exposures on TPEF time course was detected, suggesting that visual cycle function was maintained. If IRAF reduction is hazardous, it is the only hurdle to applying two-photon retinal imaging in humans. To date, no harmful effects of IRAF reduction have been detected. PMID:28018732

  8. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview.

    PubMed

    Han, Wenchao; Tian, Ying; Shen, Xiaoming

    2018-02-01

    Neonicotinoid insecticides have become the fastest growing class of insecticides over the past few decades. The insecticidal activity of neonicotinoids is attributed to their agonist action on nicotinic acetylcholine receptors (nAChRs). Because of the special selective action on nAChRs in central nervous system of insects, and versatility in application methods, neonicotinoids are used to protect crops and pets from insect attacks globally. Although neonicotinoids are considered low toxicity to mammals and humans in comparison with traditional insecticides, more and more studies show exposure to neonicotinoids pose potential risk to mammals and even humans. In recent years, neonicotinoids and their metabolites have been successfully detected in various human biological samples. Meanwhile, many studies have focused on the health effects of neonicotinoids on humans. Our aims here are to review studies on human neonicotinoid exposure levels, health effect, evaluation of potential toxicity and to suggest possible directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A paler shade of green? The toxicology of biodiesel emissions ...

    EPA Pesticide Factsheets

    Background: Biodiesel produced primarily from plants and algal feedstocks is believed to have advantages for production and use compared to petroleum and to some other fuel sources. There is some speculation that exposure to biodiesel combustion emissions may not induce biological responses or health effects or at a minimum reduce the effects relative to other fuels. In evaluating the overall environmental and health effects of biodiesel production to end use scenario, empirical data or modeling data based on such data are needed.Scope of Review: This manuscript examines the available toxicology reports examining combustion derived biodiesel emissions since approximately 2007, when our last review of the topic occurred. Toxicity derived from other end uses of biodiesel- eg, spills, dermal absorption, etc- are not examined. Findings from biodiesel emissions are roughly divided into three areas: whole non-human animal model exposures; in vitro exposures of mammalian and bacterial cells (used for mutation studies primarily); and human exposures in controlled or other exposure fashions. Major Conclusions: Overall, these more current studies clearly demonstrate that biodiesel combustion emission exposure- to either 100% biodiesel or a blend in petroleum diesel- can induce biological effects. There are reports that show biodiesel exposure generally induces more effects or a greater magnitude of effect than petroleum diesel, however there are also a similar number

  10. Are environmental exposures to chlorophenoxy herbicides associated with adverse human health effects?

    EPA Science Inventory

    Background: Exposures to environmental pollutants are suspected of playing a role in the observed increases of many diseases. However, it is difficult to establish a firm link between exposure and disease, because environmental exposures are usually widespread, low-dose in natu...

  11. Assessment of health risks due to arsenic from iron ore lumps in a beach setting.

    PubMed

    Swartjes, Frank A; Janssen, Paul J C M

    2016-09-01

    In 2011, an artificial hook-shaped peninsula of 128ha beach area was created along the Dutch coast, containing thousands of iron ore lumps, which include arsenic from natural origin. Elemental arsenic and inorganic arsenic induce a range of toxicological effects and has been classified as proven human carcinogens. The combination of easy access to the beach and the presence of arsenic raised concern about possible human health effects by the local authorities. The objective of this study is therefore to investigate human health risks from the presence of arsenic-containing iron ore lumps in a beach setting. The exposure scenarios underlying the human health-based risk limits for contaminated land in The Netherlands, based on soil material ingestion and a residential setting, are not appropriate. Two specific exposure scenarios related to the playing with iron ore lumps on the beach ('sandcastle building') are developed on the basis of expert judgement, relating to children in the age of 2 to 12years, i.e., a worst case exposure scenario and a precautionary scenario. Subsequently, exposure is calculated by the quantification of the following factors: hand loading, soil-mouth transfer effectivity, hand-mouth contact frequency, contact surface, body weight and the relative oral bioavailability factor. By lack of consensus on a universal reference dose for arsenic for use in the stage of risk characterization, three different types of assessments have been evaluated: on the basis of the current Provisional Tolerable Daily Intake (PTWI), on the basis of the Benchmark Dose Lower limit (BMDL), and by a comparison of exposure from the iron ore lumps with background exposure. It is concluded, certainly from the perspective of the conservative exposure assessment, that unacceptable human health risks due to exposure to arsenic from the iron ore lumps are unlikely and there is no need for risk management actions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. #2) EPA Perspective - Exposure and Effects Prediction and ...

    EPA Pesticide Factsheets

    Outline •Biomarkers as a risk assessment tool–exposure assessment & risk characterization•CDC’s NHANES as a source of biomarker data–history, goals & available data•Review of NHANES publications (1999-2013)–chemicals, uses, trends & challenges•NHANES biomarker case study–recommendations for future research The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  13. The evaluation of stack metal emissions from hazardous waste incinerators: assessing human exposure through noninhalation pathways.

    PubMed Central

    Sedman, R M; Polisini, J M; Esparza, J R

    1994-01-01

    Potential public health effects associated with exposure to metal emissions from hazardous waste incinerators through noninhalation pathways were evaluated. Instead of relying on modeling the movement of toxicants through various environmental media, an approach based on estimating changes from baseline levels of exposure was employed. Changes in soil and water As, Cd, Hg, Pb, Cr, and Be concentrations that result from incinerator emissions were first determined. Estimates of changes in human exposure due to direct contact with shallow soil or the ingestion of surface water were then ascertained. Projected changes in dietary intakes of metals due to incinerator emissions were estimated based on changes from baseline dietary intakes that are monitored in U.S. Food and Drug Administration total diet studies. Changes from baseline intake were deemed to be proportional to the projected changes in soil or surface water metal concentrations. Human exposure to metals emitted from nine hazardous waste incinerators were then evaluated. Metal emissions from certain facilities resulted in tangible human exposure through noninhalation pathways. However, the analysis indicated that the deposition of metals from ambient air would result in substantially greater human exposure through noninhalation pathways than the emissions from most of the facilities. PMID:7925180

  14. The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen

    2007-01-01

    The moon's surface is covered with a thin layer of fine, charged, reactive dust capable of layer of fine, charged, reactive dust capable of capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to study the effects of exposure to Lunar Dust on human health. To date, no scientifically defensible toxicological studies have been performed on lunar dusts, specifically the determination of exposure limits and their affect on human health. The multi-center LADTAG (Lunar Airborne Dust Toxicology center LADTAG (Lunar Airborne Dust Toxicology Advisory Group) was formed in response to the Office of the Chief Health and Medical Office s (OCHMO) request to develop recommendations for defining risk (OCHMO) request to develop recommendations for defining risk defining risk criteria for human lunar dust exposure.

  15. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    PubMed

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-03-23

    Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  16. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation.

    PubMed

    Musah, Sadiatu; Schlueter, Connie F; Humphrey, David M; Powell, Karen S; Roberts, Andrew M; Hoyle, Gary W

    2017-01-15

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbits were extubated and were allowed to survive for up to 24h after exposure to 800ppm chlorine for 4min to study acute effects or up to 7days after exposure to 400ppm for 8min to study longer term effects. Acute effects observed 6 or 24h after inhalation of 800ppm chlorine for 4min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400ppm chlorine for 8min, rabbits exhibited mild hypoxemia, increased area of pressure-volume loops, and airway hyperreactivity. Lung histology 7days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Biological Effects of Nonionizing Electromagnetic Radiation. Volume IV. Number 3.

    DTIC Science & Technology

    1980-03-01

    lines that produce EMR. perimental evidence on human health effects due to electromagnetic field exposures from high-voltage transmission lines is...1311, Mrch YOW that a permissible occupational exposure level to The biologic effects of electromagnetic fields on MW and RF radiation of 500 PW/cm 2...along with the principal physical param- eters of exposure . 6402 REGULATING POSSIBLE HEALTH EFFECTS FROM AC TRANSMISSION LINE ELECTROMAGNETIC FIELDS

  18. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection

    EPA Science Inventory

    Exposure to oxidant air pollution is associated with Increased respiratory morbiditses and susceptibility to Infections Ozone is a commonly encountered oxidant air pollutant, yet Its effects on influenza infections in humans are not known ‘the greater Mexico City area was the pri...

  19. Examination of cytokines and metals in exhaled breath condensate and lung lavage fluids after diesel exhaust exposure

    EPA Science Inventory

    Epidemiology studies link human exposure to ambient air pollution with the development and exacerbation of cardiopulmonary disease. Diesel exhaust (DE) is a significant source of ambient air pollution, and thus may contribute to adverse pulmonary health effects. Previous human re...

  20. APOPTOSIS GENE EXPRESSION IN HUMAN EPDERMAL KERATINOCYTES TREATED WITH SODIUM ARSENITE USING REAL TIME PCR ARRAY

    EPA Science Inventory

    Arsenic exposure via contaminated drinking water is a great public health concern worldwide. Chronic arsenic exposure has been associated with human skin, lung and bladder cancer and other chronic effects. We have previous reported that sodium arsenite stimulated cell proliferati...

  1. CONTROLLED DIESEL EXPOSURES: INTER-PHASING HUMAN AND ANIMAL STUDIES AND THEIR USE IN THE RISK ASSESSMENT

    EPA Science Inventory

    Controlled diesel exposures: Inter-phasing human and animal studies and their use in the risk assessment process.
    Michael C. Madden, US EPA.

    Particulate matter (PM) has been reported to be associated with health effects (e.g., premature deaths, hospitalizations, lung ...

  2. Repeated measures of inflammation, blood pressure, and heart rate variability associated with personal traffic exposures in healthy adults

    EPA Science Inventory

    BACKGROUND: Previous human exposure studies of traffic-related air pollutants have demonstrated adverse health effects in human populations by comparing areas of high and low traffic, but few studies have utilized microenvironmental monitoring of pollutants at multiple traffic lo...

  3. Meeting Report: Methylmercury in Marine Ecosystems—From Sources to Seafood Consumers

    PubMed Central

    Chen, Celia Y.; Serrell, Nancy; Evers, David C.; Fleishman, Bethany J.; Lambert, Kathleen F.; Weiss, Jeri; Mason, Robert P.; Bank, Michael S.

    2008-01-01

    Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences–Superfund Basic Research Program workshop titled “Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure,” convened by the Dartmouth Toxic Metals Research Program on 15–16 November 2006 in Durham, New Hampshire, brought together human health experts, marine scientists, and ecotoxicologists to encourage cross-disciplinary discussion between ecosystem and human health scientists and to articulate research and monitoring priorities to better understand how marine food webs have become contaminated with MeHg. Although human health effects of Hg contamination were a major theme, the workshop also explored effects on marine biota. The workgroup focused on three major topics: a) the biogeochemical cycling of Hg in marine ecosystems, b) the trophic transfer and bioaccumulation of MeHg in marine food webs, and c) human exposure to Hg from marine fish and shellfish consumption. The group concluded that current understanding of Hg in marine ecosystems across a range of habitats, chemical conditions, and ocean basins is severely data limited. An integrated research and monitoring program is needed to link the processes and mechanisms of MeHg production, bioaccumulation, and transfer with MeHg exposure in humans. PMID:19079724

  4. Exposure Science and Its Applications for Effective Environmental Management

    EPA Science Inventory

    Exposure is the link between environmental pollution and human/ecosystem health. Exposure science entails understanding the scientific processes that affect source emissions, transport and fate, spatio-temporal variability in the ambient concentrations, levels of contaminants tha...

  5. 40 CFR 158.1010 - Applicator exposure-criteria for testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1010 Applicator exposure—criteria... epidemiological or poisoning incident data indicate that adverse health effects may have resulted from handling of the pesticide. (b) Exposure criteria. (1) Dermal exposure may occur during the prescribed use. (2...

  6. 40 CFR 158.1010 - Applicator exposure-criteria for testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1010 Applicator exposure—criteria... epidemiological or poisoning incident data indicate that adverse health effects may have resulted from handling of the pesticide. (b) Exposure criteria. (1) Dermal exposure may occur during the prescribed use. (2...

  7. 40 CFR 158.1010 - Applicator exposure-criteria for testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1010 Applicator exposure—criteria... epidemiological or poisoning incident data indicate that adverse health effects may have resulted from handling of the pesticide. (b) Exposure criteria. (1) Dermal exposure may occur during the prescribed use. (2...

  8. 40 CFR 158.1010 - Applicator exposure-criteria for testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1010 Applicator exposure—criteria... epidemiological or poisoning incident data indicate that adverse health effects may have resulted from handling of the pesticide. (b) Exposure criteria. (1) Dermal exposure may occur during the prescribed use. (2...

  9. 40 CFR 158.1010 - Applicator exposure-criteria for testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Human Exposure § 158.1010 Applicator exposure—criteria... epidemiological or poisoning incident data indicate that adverse health effects may have resulted from handling of the pesticide. (b) Exposure criteria. (1) Dermal exposure may occur during the prescribed use. (2...

  10. The importance of inclusion of kinetic information in the extrapolation of high-to-low concentrations for human limit setting.

    PubMed

    Geraets, Liesbeth; Zeilmaker, Marco J; Bos, Peter M J

    2018-01-05

    Human health risk assessment of inhalation exposures generally includes a high-to-low concentration extrapolation. Although this is a common step in human risk assessment, it introduces various uncertainties. One of these uncertainties is related to the toxicokinetics. Many kinetic processes such as absorption, metabolism or excretion can be subject to saturation at high concentration levels. In the presence of saturable kinetic processes of the parent compound or metabolites, disproportionate increases in internal blood or tissue concentration relative to the external concentration administered may occur resulting in nonlinear kinetics. The present paper critically reviews human health risk assessment of inhalation exposure. More specific, it emphasizes the importance of kinetic information for the determination of a safe exposure in human risk assessment of inhalation exposures assessed by conversion from a high animal exposure to a low exposure in humans. For two selected chemicals, i.e. methyl tert-butyl ether and 1,2-dichloroethane, PBTK-modelling was used, for illustrative purposes, to follow the extrapolation and conversion steps as performed in existing risk assessments for these chemicals. Human health-based limit values based on an external dose metric without sufficient knowledge on kinetics might be too high to be sufficiently protective. Insight in the actual internal exposure, the toxic agent, the appropriate dose metric, and whether an effect is related to internal concentration or dose is important. Without this, application of assessment factors on an external dose metric and the conversion to continuous exposure results in an uncertain human health risk assessment of inhalation exposures. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 75 FR 38521 - Registration Review; Biopesticide Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... adverse human health impacts or environmental effects from exposure to the pesticides discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... perform its intended function without unreasonable adverse effects on human health or the environment...

  12. 75 FR 60117 - Registration Review; Biopesticides Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... adverse human health impacts or environmental effects from exposure to the pesticides discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... its intended function without unreasonable adverse effects on human health or the environment...

  13. 77 FR 74479 - Registration Review; Pesticide Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... adverse human health impacts or environmental effects from exposure to the pesticides discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... function without unreasonable adverse effects on human health or the environment. Registration review...

  14. 77 FR 59188 - Registration Review; Pesticide Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... adverse human health impacts or environmental effects from exposure to the pesticide(s) discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... without unreasonable adverse effects on human health or the environment. Registration review dockets...

  15. Human exposure to power frequency magnetic fields up to 7.6 mT: An integrated EEG/fMRI study.

    PubMed

    Modolo, Julien; Thomas, Alex W; Legros, Alexandre

    2017-09-01

    We assessed the effects of power-line frequency (60 Hz in North America) magnetic fields (MF) in humans using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Twenty-five participants were enrolled in a pseudo-double-blind experiment involving "real" or "sham" exposure to sinusoidal 60 Hz MF exposures delivered using the gradient coil of an MRI scanner following two conditions: (i) 10 s exposures at 3 mT (10 repetitions); (ii) 2 s exposures at 7.6 mT (100 repetitions). Occipital EEG spectral power was computed in the alpha range (8-12 Hz, reportedly the most sensitive to MF exposure in the literature) with/without exposure. Brain functional activation was studied using fMRI blood oxygen level-dependent (BOLD, inversely correlated with EEG alpha power) maps. No significant effects were detected on occipital EEG alpha power during or post-exposure for any exposure condition. Consistent with EEG results, no effects were observed on fMRI BOLD maps in any brain region. Our results suggest that acute exposure (2-10 s) to 60 Hz MF from 3 to 7.6 mT (30,000 to 76,000 times higher than average public exposure levels for 60 Hz MF) does not induce detectable changes in EEG or BOLD signals. Combined with previous findings in which effects were observed on the BOLD signal after 1 h exposure to 3 mT, 60 Hz MF, this suggests that MF exposure in the low mT range (<10 mT) might require prolonged durations of exposure to induce detectable effects. Bioelectromagnetics. 38:425-435, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. The Human Bitumen Study: executive summary.

    PubMed

    Raulf-Heimsoth, Monika; Pesch, Beate; Rühl, Reinhold; Brüning, Thomas

    2011-06-01

    Bitumen has attracted attention from the scientific community and regulating agencies. The debate on health effects of exposure to vapours and aerosols of bitumen during the hot application of bitumen ranges from respiratory and neurological effects to carcinogenicity. In 2000, the German Hazardous Substances Committee (AGS), in collaboration with the German Bitumen Forum, initiated the examination of a group of mastic asphalt workers and a same number of construction workers without exposure bitumen using a cross-shift design. The study was then extended to the Human Bitumen Study, and the recruitment was finished in 2008 after examination of 500 workers on 80 construction sites. Three hundred and twenty workers exposed to vapours and aerosols of bitumen at high processing temperatures and 118 workers at outdoor construction sites were included. In the Human Bitumen Study external exposure to vapours and aerosols of bitumen, internal exposure to PAH by analysing urinary 1-hydroxypyrene, the sum of hydroxyphenanthrenes and the sum of 1- and 2-hydroxynaphthalenes, irritative effects in the upper and lower airways and genotoxic effects in blood cells were investigated. The study turned out to be one of the largest investigations of workers exposed to vapours and aerosols of bitumen under current exposure conditions. The present paper summarizes its background and main topics.

  17. Chemical Risk Assessment: Traditional vs Public Health ...

    EPA Pesticide Factsheets

    Preventing adverse health impacts from exposures to environmental chemicals is fundamental to protecting individual and public health. When done efficiently and properly, chemical risk assessment enables risk management actions that minimize the incidence and impacts of environmentally-induced diseases related to chemical exposure. However, traditional chemical risk assessment is faced with multiple challenges with respect to predicting and preventing disease in human populations, and epidemiological studies increasingly report observations of adverse health effects at exposure levels predicted from animal studies to be safe for humans. This discordance reinforces concerns about the adequacy of contemporary risk assessment practices (Birnbaum, Burke, & Jones, 2016) for protecting public health. It is becoming clear that to protect public health more effectively, future risk assessments will need to use the full range of available data, draw on innovative methods to integrate diverse data streams, and consider health endpoints that also reflect the range of subtle effects and morbidities observed in human populations. Given these factors, there is a need to reframe chemical risk assessment to be more clearly aligned with the public health goal of minimizing environmental exposures associated with disease. Preventing adverse health impacts from exposures to environmental chemicals is fundamental to protecting individual and public health. Chemical risk assessments

  18. The effects of wood dusts on the redox status and cell death in mouse macrophages (RAW 264.7) and human leukocytes in vitro.

    PubMed

    Naarala, J; Kasanen, J-P; Pasanen, P; Pasanen, A-L; Liimatainen, A; Pennanen, S; Liesivuori, J

    2003-07-11

    Wood dusts are classified as carcinogenic to humans and also produce other toxic, allergic, and acute effects in woodworkers. However, little is known about causative agents in wood dusts and their mechanisms of action. The effects of different tree species and particle size for biological activity were studied. The differences in the production of reactive oxygen species (ROS) and cell death (necrotic and apoptotic) between mouse macrophage (RAW 264.7) cells and human polymorphonuclear leukocytes (PMNL) for pine, birch, and beech dust exposures were investigated in vitro. The pine and birch dust exposure (1-100 microg/ml) produced concentration-dependent ROS production in both the cells, which was one order of magnitude higher with pine dust. The ROS production was faster in human PNML than murine RAW cells. The higher concentrations (500 and/or 1000 microg/ml) decreased ROS formation. With pine and birch dust exposure, this was probably due to the necrotic cell death. The pine dust concentrations of 500 and 1000 microg/ml were cytotoxic to human PMNL. The beech dust exposure activated the ROS production and decreased the cell viability only at the highest concentrations, being least potent of the three dusts. A sign of the apoptotic cell death in the murine RAW cells was observed at the pine dust concentration of 100 microg/ml. The exposure to the birch and beech dusts with a smaller particle size (<5 microm) produced greater ROS production than exposure to the corresponding dust with a wide range of particle sizes. However, changing the particle size did not affect the cell viability. The results indicate that the type of wood dust (tree species and possibly particle size) has a significant impact on the function and viability of phagocytic cells.

  19. Alcohol, Methamphetamine, and Marijuana Exposure Have Distinct Effects on the Human Placenta.

    PubMed

    Carter, R Colin; Wainwright, Helen; Molteno, Christopher D; Georgieff, Michael K; Dodge, Neil C; Warton, Fleur; Meintjes, Ernesta M; Jacobson, Joseph L; Jacobson, Sandra W

    2016-04-01

    Animal studies have demonstrated adverse effects of prenatal alcohol exposure on placental development, but few studies have examined these effects in humans. Little is known about effects of prenatal exposure to methamphetamine, marijuana, and cigarette smoking on placental development. Placentas were collected from 103 Cape Coloured (mixed ancestry) pregnant women recruited at their first antenatal clinic visit in Cape Town, South Africa. Sixty-six heavy drinkers and 37 nondrinkers were interviewed about their alcohol, cigarette smoking, and drug use at 3 antenatal visits. A senior pathologist, blinded to exposure status, performed comprehensive pathology examinations on each placenta using a standardized protocol. In multivariable regression models, effects of prenatal exposure were examined on placental size, structure, and presence of infections and meconium. Drinkers reported a binge pattern of heavy drinking, averaging 8.0 drinks/occasion across pregnancy on 1.4 d/wk. 79.6% smoked cigarettes; 22.3% used marijuana; and 17.5% used methamphetamine. Alcohol exposure was related to decreased placental weight and a smaller placenta-to-birthweight ratio. By contrast, methamphetamine was associated with larger placental weight and a larger placenta-to-birthweight ratio. Marijuana was also associated with larger placental weight. Alcohol exposure was associated with increased risk of placental hemorrhage. Prenatal alcohol, drug, and cigarette use were not associated with chorioamnionitis, villitis, deciduitis, or maternal vascular underperfusion. Alcohol and cigarette smoking were associated with a decreased risk of intrauterine passing of meconium, a sign of acute fetal stress and/or hypoxia; methamphetamine, with an increased risk. This is the first human study to show that alcohol, methamphetamine, and marijuana were associated with distinct patterns of pathology, suggesting different mechanisms mediating their effects on placental development. Given the growing body of evidence linking placental abnormalities to neurodevelopmental deficits, these findings may be important in the long-term teratogenic effects of prenatal alcohol and drug exposure. Copyright © 2016 by the Research Society on Alcoholism.

  20. [The methods of assessment of health risk from exposure to radon and radon daughters].

    PubMed

    Demin, V F; Zhukovskiy, M V; Kiselev, S M

    2014-01-01

    The critical analysis of existing models of the relationship dose-effect (RDE) for radon exposure on human health has been performed. Conclusion about the necessity and possibility of improving these models has been made. A new improved version ofthe RDE has been developed. A technique for assessing the human health risk of exposure to radon, including the method for estimating of exposure doses of radon, an improved model of RDE, proper methodology risk assessment has been described. Methodology is proposed for the use in the territory of Russia.

  1. Human exposures to pentobarbital-phenytoin combination veterinary drugs.

    PubMed

    Forrester, M B

    2017-07-01

    A combination of pentobarbital and phenytoin is used as a veterinary euthanasia drug. Because of its lethal effect, this study described pentobarbital-phenytoin combination veterinary drug human exposures reported to Texas poison centers during 2000-2015. Of 66 exposures, 73% involved female and 27% male patients. The distribution by patient age was 3% 0-5 years, 5% 6-19 years, 91% 20+ years, and 2% unknown. The most common routes were ocular (41%), ingestion (32%), injection (23%), and dermal (18%). The exposure reasons were unintentional (77%) and intentional (23%). The exposure site was the workplace (52%), patient's own residence (38%), health-care facility (2%), and other/unknown (9%). The management site was managed on site (48%), at/en route to health-care facility (45%), referred to health-care facility (5%), and other (2%). The medical outcomes were no effect (23%), minor effect (30%), moderate effect (8%), major effect (8%), not followed nontoxic (3%), not followed minimal effects (24%), unable to follow potentially toxic (2%), and unrelated (3%). The most common adverse effects were ocular irritation/pain (18%), drowsiness/lethargy (15%), and coma (9%). The most common treatments were dilution/irrigation (70%), intravenous fluids (21%), and oxygen (14%). This study found few pentobarbital-phenytoin combination veterinary drug exposures were reported to Texas poison centers during a 16-year period. Although meant to be administered intravenously, the most common exposure routes were ocular and ingestion. Many of the exposures appeared to be unintentional and occurred at the workplace.

  2. Components of plastic: experimental studies in animals and relevance for human health

    PubMed Central

    Talsness, Chris E.; Andrade, Anderson J. M.; Kuriyama, Sergio N.; Taylor, Julia A.; vom Saal, Frederick S.

    2009-01-01

    Components used in plastics, such as phthalates, bisphenol A (BPA), polybrominated diphenyl ethers (PBDE) and tetrabromobisphenol A (TBBPA), are detected in humans. In addition to their utility in plastics, an inadvertent characteristic of these chemicals is the ability to alter the endocrine system. Phthalates function as anti-androgens while the main action attributed to BPA is oestrogen-like activity. PBDE and TBBPA have been shown to disrupt thyroid hormone homeostasis while PBDEs also exhibit anti-androgen action. Experimental investigations in animals indicate a wide variety of effects associated with exposure to these compounds, causing concern regarding potential risk to human health. For example, the spectrum of effects following perinatal exposure of male rats to phthalates has remarkable similarities to the testicular dysgenesis syndrome in humans. Concentrations of BPA in the foetal mouse within the range of unconjugated BPA levels observed in human foetal blood have produced effects in animal experiments. Finally, thyroid hormones are essential for normal neurological development and reproductive function. Human body burdens of these chemicals are detected with high prevalence, and concentrations in young children, a group particularly sensitive to exogenous insults, are typically higher, indicating the need to decrease exposure to these compounds. PMID:19528057

  3. THE 1998 BALTIMORE PARTICULATE MATTER EPIDEMIOLOGY-EXPOSURE STUDY: PART 2-PERSONAL EXPOSURE ASSESSMENT ASSOCIATED WITH AN ELDERLY STUDY POPULATION

    EPA Science Inventory

    An integrated epidemiological-exposure panel study was conducted during the summer of 1998 which focused upon establishing relationships between potential human exposures to particulate matter (PM) and related co-pollutants with detectable health effects. The study design incor...

  4. THE POTENTIAL EFFECT OF AMBIENT ARSENIC IN DRINKING WATER ON ODOR IDENTIFICATION IN AN AGRICULTURAL SAMPLE IN INNER MONGOLIA

    EPA Science Inventory

    There is some evidence that chronic exposure to arsenic (As) can have neuropathic and neurosensory effects in humans. It is unknown if As exposure affects the sense of smell. To determine if the ability to identify odors is impaired by chronic As exposure via drinking water, 15...

  5. Fine Ambient Particulate and Ozone Co-Exposures in Durham, North Carolina: Influence of Season on Particle Chemistry and Cardiovascular Responses in Rats

    EPA Science Inventory

    Epidemiological studies have shown that the presence of one air pollutant modifies the cardiovascular health effects of another while controlled exposure studies in humans have documented synergistic effects of co-exposure to ambient particulate matter (PM) and ozone (O3) on bloo...

  6. MODELING POPULATION EXPOSURES TO OUTDOOR SOURCES OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration ...

  7. DARTAB: a program to combine airborne radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of predicted health impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.

    1981-08-01

    The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less

  8. 77 FR 40048 - Registration Review; Pesticide Dockets Opened for Review and Comment and Other Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... adverse human health impacts or environmental effects from exposure to the pesticide(s) discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... its intended function without unreasonable adverse effects on human health or the environment...

  9. 77 FR 18810 - Registration Review; Pesticide Dockets Opened for Review and Comment and Other Docket Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... adverse human health impacts or environmental effects from exposure to the pesticide(s) discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... its intended function without unreasonable adverse effects on human health or the environment...

  10. 75 FR 35810 - Registration Review; Pesticide Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticides... can still be used without unreasonable adverse effects on human health or the environment. A pesticide... function without unreasonable adverse effects on human health or the environment. Registration review...

  11. 78 FR 8522 - Chlorpyrifos Registration Review; Preliminary Evaluation of the Potential Risk From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... pesticide can perform its intended function without unreasonable adverse effects on human health or the... high and adverse human health impacts or environmental effects from exposure to the pesticides... knowledge, including its effects on human health and the environment. DATES: Comments must be received on or...

  12. 75 FR 16114 - Registration Review; Biopesticides Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticide(s... its intended function without unreasonable adverse effects on human health or the environment... and other knowledge, including its effects on human health and the environment. DATES: Comments must...

  13. 78 FR 38328 - Registration Review; Pesticide Dockets Opened for Review and Comment; Announcement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... high and adverse human health impacts or environmental effects from exposure to the pesticide(s... is, the pesticide can perform its intended function without unreasonable adverse effects on human... scientific and other knowledge, including its effects on human health and the environment. This document also...

  14. 75 FR 16100 - Antimicrobial Pesticide Registration Review Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticide(s... its intended function without unreasonable adverse effects on human health or the environment... knowledge, including its effects on human health and the environment. DATES: Comments must be received on or...

  15. 75 FR 60119 - Registration Review; Antimicrobial Pesticide Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticides... can still be used without unreasonable adverse effects on human health or the environment. A pesticide... its intended function without unreasonable adverse effects on human health or the environment...

  16. 76 FR 79173 - Registration Review; Pesticide Dockets Opened for Review and Comment, and Notice of Availability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... adverse human health impacts or environmental effects from exposure to the pesticides discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... adverse effects on human health or the environment. Registration review dockets contain information that...

  17. 76 FR 38166 - Registration Review; Pesticide Dockets Opened for Review and Comment and Other Docket Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... adverse human health impacts or environmental effects from exposure to the pesticides discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... perform its intended function without unreasonable adverse effects on human health or the environment...

  18. Human radiation tolerance

    NASA Technical Reports Server (NTRS)

    Lushbaugh, C. C.

    1974-01-01

    The acute radiation syndrome in man is clinically bounded by death at high dose levels and by the prodromal syndrome of untoward physiological effects at minimal levels of clinically effective exposure. As in lower animals, man experiences principally three acute modes of death from radiation exposure (Bond et al., 1965). These are known collectively as the lethal radiation syndromes: central nervous system death, gastrointestinal death, and hematopoietic death. The effect of multiple exposure on lethality, the effect of multiple exposure on hematopoietic recovery, and quantitative aspects of cell and tissue repair are discussed.

  19. Application of in Vitro Biotransformation Data and ...

    EPA Pesticide Factsheets

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the target tissues of an exposed organism. The exposure concentration of a toxic substance is usually not the same as the concentration of the active form of the toxicant that reaches the target tissues following absorption, distribution, and biotransformation of the parent toxicant. Biotransformation modulates the biological activity of chemicals through bioactivation and detoxication pathways. Many toxicants require biotransformation to exert their adverse biological effects. Considerable species differences in biotransformation and other pharmacokinetic processes can make extrapolation of toxicity data from laboratory animals to humans problematic. Additionally, interindividual differences in biotransformation among human populations with diverse genetics and lifestyles can lead to considerable variability in the bioactivation of toxic chemicals. Compartmental pharmacokinetic models of animals and humans are needed to understand the quantitative relationships between chemical exposure and target tissue dose as well as animal to human differences and interindividual differences in human populations. The data-based compartmental pharmacokinetic models widely used in clinical pharmacology ha

  20. Effects of Variable Spot Size on Human Exposure to 95 GHz Millimeter Wave Energy

    DTIC Science & Technology

    2017-05-11

    AFRL -RH-FS-TR-2017-0017 Effects of Variable Spot Size on Human Exposure to 95-GHz Millimeter Wave Energy James E. Parker Eric J. Nelson...Defense Technical Information Center (DTIC) (http://www.dtic.mil). ( AFRL -RH-FS- - - ) has been reviewed and is approved for publication in accordance with...REPORT NUMBER(S) AFRL -RH-FS-TR-2017-0017 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution

  1. Toxicokinetics of ethers used as fuel oxygenates.

    PubMed

    Dekant, W; Bernauer, U; Rosner, E; Amberg, A

    2001-10-15

    The toxicokinetics and biotransformation of methyl-tert.butyl ether (MTBE), ethyl-tert.butyl ether (ETBE) and tert.amyl-methyl ether (TAME) in rats and humans are summarized. These ethers are used as gasoline additives in large amounts, and thus, a considerable potential for human exposure exists. After inhalation exposure MTBE, ETBE and TAME are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. The results suggest that reactive and potentially toxic metabolites are not formed during biotransformation of these ethers and that toxic effects of these compounds initiated by covalent binding to cellular macromolecules are unlikely.

  2. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  3. Measuring the Bioenergetic Effects of 1,2-Naphthoquinone Exposure on Human Lung Macrophages Using Seahorse Extracellular Flux Analyses

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) is one of the leading causes of morbidity and mortality in humans. Quinones are organic PM components that induce inflammatory responses through redox cycling and electrophilic attack. 1,2-naphthoquinone (1,2-NQ) has previously been sho...

  4. 76 FR 787 - Notice of Availability of the Recommended Toxicity Equivalence Factors (TEFs) for Human Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... manufacturing, combustion, and metal processing. There is global contamination of air, soil and water with trace... food chain, and accumulate in the tissues of animals. Human exposures to these compounds occur primarily through eating contaminated foods. The health effects from exposures to dioxins and DLCs have been...

  5. Effects of combinations of diesel exhaust and ozone exposure on lung function in human volunteers.

    EPA Science Inventory

    Ozone (03) exposure induces changes in human lung function, typically seen as a decrease in forced expiratory volume in one sec (FEV1) and forced vital capacity (FVC). Because people are usually exposed to other ambient air pollutants simultaneously with 03, there may be interact...

  6. GENE ARRAYS FOR ELUCIDATING MECHANISTIC DATA FROM MODELS OF MALE INFERTILITY AND CHEMICAL EXPOSURE IN MICE, RATS AND HUMANS

    EPA Science Inventory

    Gene arrays for elucidating mechanistic data from models of male infertility and chemical exposure in mice, rats and humans
    John C. Rockett and David J. Dix
    Gamete and Early Embryo Biology Branch, Reproductive Toxicology Division, National Health and Environmental Effects ...

  7. Elevated ERCC-1 Gene Expression in blood cells associated with exposure to arsenic from drinking water in Inner Mongolia

    EPA Science Inventory

    Background: Chronic arsenic exposure has been associated with human cancers. The objective of this study was to investigate arsenic effects on a DNA nucleotide excision repair gene, ERCC1, expression in human blood cells. Material and Methods: Water and toe nail samples were coll...

  8. Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China.

    PubMed

    Liu, Li-Hua; Ma, Wan-Li; Liu, Li-Yan; Huo, Chun-Yan; Li, Wen-Long; Gao, Chong-Jing; Li, Hai-Ling; Li, Yi-Fan; Chan, Hing Man

    2017-06-01

    Short-chain chlorinated paraffins (SCCPs) are widely used chemicals in household products and might cause adverse human health effects. However, limited information is available on the occurrence of SCCPs in indoor environments and their exposure risks on humans. In this study the concentrations, profiles and human exposure of SCCPs in indoor dust from five different indoor environments, including commercial stores, residential apartments, dormitories, offices and laboratories were characterized. The SCCPs levels ranged from 10.1 to 173.0 μg/g, with the median and mean concentration of 47.2 and 53.6 μg/g, respectively. No significant difference was found on concentrations among the five microenvironments. The most abundant compounds in indoor dust samples were homologues of C 13 group, Cl 7 group and N 20 (N is the total number of C and Cl) group. In the five microenvironments, commercial stores were more frequently exposed to shorter carbon chained and higher chlorinated homologues. Three potential sources for SCCPs were identified by the multiple linear regression of factor score model and correspondence analysis. The major sources of SCCPs in indoor dust were technical mixtures of CP-42 (42% chlorine, w/w) and CP-52 b (52% chlorine, w/w). The total daily exposure doses and hazard quotients (HQ) were calculated by the human exposure models, and they were all below the reference doses and threshold values, respectively. Monte Carlo simulation was applied to predict the human exposure risk of SCCPs. Infants and toddlers were at risk of SCCPs based on predicted HQ values, which were exceeded the threshold for neoplastic effects in the worst case. Our results on the occurrences, sources and human exposures of SCCPs will be useful to provide a better understanding of SCCPs behaviors in indoor environment in China, and to support environmental risk evaluation and regulation of SCCPs in the world. Copyright © 2017. Published by Elsevier Ltd.

  9. Comparative assessment of three in vitro exposure methods for combustion toxicity.

    PubMed

    Lestari, Fatma; Markovic, Boban; Green, Anthony R; Chattopadhyay, Gautam; Hayes, Amanda J

    2006-01-01

    A comparative assessment of three approaches for the use of human cells in vitro to investigate combustion toxicity was conducted. These included one indirect and two direct (passive and dynamic) exposure methods. The indirect method used an impinger system in which culture medium was used to trap the toxicants, whilst the direct exposure involved the use of a Horizontal Harvard Navicyte Chamber at the air/liquid interface. The cytotoxic effects of thermal decomposition products were assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega) on a selection of human cells including: HepG2, A549 and skin fibroblasts. A small scale laboratory fire test using a vertical tube furnace was designed for the generation of combustion products. Polymethyl methacrylate (PMMA) was selected as a model polymer to study the cytotoxic effects of combustion products. NOAEC (no observable adverse effect concentration), IC10 (10% inhibitory concentration), IC50 (50% inhibitory concentration) and TLC (total lethal concentration) values were determined from dose response curves. Assessment using the NRU (neutral red uptake) and ATP (adenosine triphosphate) assays on human lung derived cells (A549) was also undertaken. Comparison between in vitro cytotoxicity results against published toxicity data for PMMA combustion and predicted LC50 (50% lethal concentration) values calculated from identified compounds using GCMS (gas chromatography mass spectrometry) was determined. The results suggested that the indirect exposure method did not appear to simulate closely exposure via inhalation, whilst exposure at the air/liquid interface by using the dynamic method proved to be a more representative method of human inhalation. This exposure method may be a potential system for in vitro cytotoxicity testing in combustion toxicity. Copyright 2005 John Wiley & Sons, Ltd.

  10. Human exposure assessment to antibiotic-resistant Escherichia coli through drinking water.

    PubMed

    O'Flaherty, E; Borrego, C M; Balcázar, J L; Cummins, E

    2018-03-01

    Antibiotic-resistant bacteria (ARB) are a potential threat to human health through drinking water with strong evidence of ARB presence in post treated tap water around the world. This study examines potential human exposure to antibiotic-resistant (AR) Escherichia coli (E. coli) through drinking water, the effect of different drinking water treatments on AR E. coli and the concentration of AR E. coli required in the source water for the EU Drinking Water Directive (DWD) (Council Directive 98/83/EC, 0CFU/100ml of E. coli in drinking water) to be exceeded. A number of scenarios were evaluated to examine different water treatment combinations and to reflect site specific conditions at a study site in Europe. A literature search was carried out to collate data on the effect of environmental conditions on AR E. coli, the effect of different water treatments on AR E. coli and typical human consumption levels of tap water. A human exposure assessment model was developed with probability distributions used to characterise uncertainty and variability in the input data. Overall results show the mean adult human exposure to AR E. coli from tap water consumption ranged between 3.44×10 -7 and 2.95×10 -1 cfu/day for the scenarios tested and varied depending on the water treatments used. The level of AR E. coli required in the source water pre-treatment to exceed the DWD varied between 1 and 5logcfu/ml, depending on the water treatments used. This can be used to set possible monitoring criteria in pre-treated water for potential ARB exposure in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biomarkers - Key to Exposure Reconstruction

    EPA Science Inventory

    The goal of environmental health science is to understand the interplay between environment and humans in order to evaluate the effects of human activities on the environment, as well as to evaluate the effects of various aspects of the environment on human health. When investig...

  12. Mass spectrometry profiling reveals altered plasma levels of monohydroxy fatty acids and related lipids in healthy humans after controlled exposure to biodiesel exhaust.

    PubMed

    Gouveia-Figueira, Sandra; Karimpour, Masoumeh; Bosson, Jenny A; Blomberg, Anders; Unosson, Jon; Sehlstedt, Maria; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Nording, Malin L

    2018-08-14

    Experimental human exposure studies are an effective tool to study adverse health effects from acute inhalation of particulate matter and other constituents of air pollution. In this randomized and double-blinded crossover study, we investigated the systemic effect on bioactive lipid metabolite levels after controlled biodiesel exhaust exposure of healthy humans and compared it to filtered air at a separate exposure occasion. Eicosanoids and other oxylipins, as well as endocannabinoids and related lipids, were quantified in plasma from 14 healthy volunteers at baseline and at three subsequent time points (2, 6, and 24 h) after 1 h exposure sessions. Protocols based on liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) methods were developed to detect temporal changes in circulating levels after biodiesel exhaust exposure. The exhaust was generated by a diesel engine fed with an undiluted rapeseed methyl ester fuel. Among the 51 analyzed lipid metabolites, PGF 2α , 9,10-DiHOME, 9-HODE, 5-HETE, 11-HETE, 12-HETE, and DEA displayed significant responsiveness to the biodiesel exhaust exposure as opposed to filtered air. Of these, 9-HODE and 5-HETE at 24 h survived the 10% false discovery rate cutoff (p < 0.003). Hence, the majority of the responsive lipid metabolites were monohydroxy fatty acids. We conclude that it is possible to detect alterations in circulating bioactive lipid metabolites in response to biodiesel exhaust exposure using LC-MS/MS, with emphasis on metabolites with inflammation related properties and implications on cardiovascular health and disease. These observations aid future investigations on air pollution effects, especially with regard to cardiovascular outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Measurement methods for human exposure analysis.

    PubMed Central

    Lioy, P J

    1995-01-01

    The general methods used to complete measurements of human exposures are identified and illustrations are provided for the cases of indirect and direct methods used for exposure analysis. The application of the techniques for external measurements of exposure, microenvironmental and personal monitors, are placed in the context of the need to test hypotheses concerning the biological effects of concern. The linkage of external measurements to measurements made in biological fluids is explored for a suite of contaminants. This information is placed in the context of the scientific framework used to conduct exposure assessment. Examples are taken from research on volatile organics and for a large scale problem: hazardous waste sites. PMID:7635110

  14. Glycol ethers and semen quality: a cross‐sectional study among male workers in the Paris Municipality

    PubMed Central

    Multigner, L; Brik, E Ben; Arnaud, I; Haguenoer, J M; Jouannet, P; Auger, J; Eustache, F

    2007-01-01

    Objectives Apparent increases in human male reproductive disorders, including low sperm production, may have occurred because of increased chemical exposure. Various glycol ether‐based solvents have pronounced adverse effects on sperm production and male fertility in laboratory animals. The authors investigated the effects of past and current exposure to glycol ether‐containing products on semen quality and reproductive hormones among men employed by the Paris Municipality. Methods Between 2000 and 2001 the authors recruited 109 men who gave semen, blood and urine samples and underwent an andrological examination. Information on lifestyle, occupation, exposure and medical history was obtained by interview. According to their job and chemical products used during the period 1990–2000, men were classified as either occupationally exposed or non‐exposed. Current exposure levels to glycol ethers at the time of the study were evaluated by biological monitoring of six urinary metabolites. Results Previous exposure to glycol ethers was associated with an increased risk for sperm concentration, for rapid progressive motility and for morphologically normal sperm below the World Health Organization semen reference values. No effect of previous glycol ether exposure on hormones levels was observed. By contrast, current glycol ether exposure levels were low and not correlated with either seminal quality or hormone levels. Conclusions This study suggests that most glycol ethers currently used do not impact on human semen characteristics. Those that were more prevalent from the 1960s until recently may have long lasting negative effects on human semen quality. PMID:17332140

  15. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders

    PubMed Central

    Kundakovic, Marija; Jaric, Ivana

    2017-01-01

    Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders. PMID:28335457

  16. Human Bisphenol A Exposure and the “Diabesity Phenotype”

    PubMed Central

    Leone, Alessandro; Battezzati, Alberto

    2015-01-01

    Bisphenol A (BPA), a known endocrine disruptor, is a food contaminant suspected of being a contributing factor to the present-day increase in obesity, diabetes, and cardiovascular disease. This issue is of increasing interest in the field of diabetes research and has become a matter of concern for regulatory agencies and food industries. Recently, the number of studies involving BPA has increased exponentially, but there are still many gaps in the knowledge of the relationship between actual BPA exposure and cardiometabolic risk and of the modalities of food intake exposure, all of which prevents sound judgments concerning the risks to human health. This review focuses on the association between human exposure to BPA and obesity, thyroid function, diabetes, insulin resistance, metabolic syndrome, cardiovascular diseases, and BPA content in food. Many cross-sectional studies support, sometimes contradictorily, an adverse effect of BPA exposure on obesity, diabetes, and cardiovascular diseases. Few prospective studies support an adverse effect of BPA exposure on such pathologies. Moreover, no intervention studies have been conducted to evaluate the causality of such associations. This is mainly due to lack of an appropriate database of BPA content in foods, thus hindering any estimation of the usual dietary BPA intake. PMID:26858585

  17. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue.

    PubMed

    Ishikawa, Shinkichi; Ito, Shigeaki

    2017-02-01

    In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response, and observed a significant increase in secretion of IL-8, GRO-α, IL-1β, and GM-CSF. Interestingly, secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Importance of Primary Martian Surface and Airfall Dust Sample Return for Toxicological Hazard Evaluations for Human Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.

    2018-01-01

    Manned missions to the Moon highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness" . It was further reported that the allergic response to the dust worsened with each exposure. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment.

  19. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis

    DOE PAGES

    Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford; ...

    2018-04-26

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less

  20. Wastewater-based epidemiology to assess human exposure to pyrethroid pesticides.

    PubMed

    Rousis, Nikolaos I; Zuccato, Ettore; Castiglioni, Sara

    2017-02-01

    Pesticides are active substances with potentially adverse effects on human health, and therefore great effort is addressed to study the relation between their widespread use and the effects on humans. To track human exposure to pesticides, novel approaches are needed to give additional information on exposure at population level. In this study, a novel application of Wastewater-Based Epidemiology (WBE) was developed to measure the intake of pyrethroid pesticides in a population. Three human urinary metabolites of pyrethroids were selected and validated as biomarkers of exposure by evaluating their sources and stability in wastewater. They were measured by liquid chromatography-tandem mass spectrometry in raw urban wastewater collected from the wastewater treatment plants of six Italian cities. Their concentrations were used as biomarkers to back-calculate the intake of pyrethroid pesticides in the population. WBE results were in line with the urinary biomarker levels of biomonitoring studies considering dilution in wastewater. Significant differences in the metabolites levels were observed among different cities. Seasonal variations in human intake of pyrethroids were also seen, as expected, with higher intakes during spring/summer. Intakes in the six cities were compared with the acceptable daily intake (ADI) and it was concluded that some of the populations examined might face significant health risks. Results confirm that this method can provide supplementary information to biomonitoring studies and can be a valuable tool for obtaining objective, direct information on the real levels of exposure to pyrethroids of different populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford

    The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less

  2. EPA perspective - exposure and effects prediction and monitoring

    EPA Science Inventory

    Risk-based decisions for environmental chemicals often rely on estimates of human exposure and biological response. Biomarkers have proven a useful empirical tool for evaluating exposure and hazard predictions. In the United States, the Centers for Disease Control and Preventio...

  3. ZINC-DEFICIENCY ENHANCES PRO-INFLAMMATORY RESPONSES AFTER OZONE EXPOSURE

    EPA Science Inventory

    Epidemiological and controlled exposure studies have demonstrated that humans are differentially susceptible to adverse health effects induced by exposure to ozone. Serum analysis of vitamins and trace elements have shown that the elderly (people >65 years) are deficient in sever...

  4. Tobacco and Pregnancy: Overview of exposures and effects

    EPA Science Inventory

    This opening paper will review the epidemiology of the impact of cigarette smoking and other forms of tobacco exposure on human development. Sources of exposure described include cigarettes and other forms of smoked tobacco, secondhand (environmental) tobacco smoke, several forms...

  5. Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-01-01

    Background Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Methodology/Principal Findings Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. Conclusions The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome. PMID:21448285

  6. Reproductive and Developmental Toxicity of Formaldehyde: A Systematic Review

    PubMed Central

    Duong, Anh; Steinmaus, Craig; McHale, Cliona M.; Vaughan, Charles P.; Zhang, Luoping

    2011-01-01

    Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20–2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27–1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure. PMID:21787879

  7. Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology

    PubMed Central

    Kensler, Thomas W.; Roebuck, Bill D.; Wogan, Gerald N.; Groopman, John D.

    2011-01-01

    Since their discovery 50 years ago, the aflatoxins have become recognized as ubiquitous contaminants of the human food supply throughout the economically developing world. The adverse toxicological consequences of these compounds in populations are quite varied because of a wide range of exposures leading to acute effects, including rapid death, and chronic outcomes such as hepatocellular carcinoma. Furthermore, emerging studies describe a variety of general adverse health effects associated with aflatoxin, such as impaired growth in children. Aflatoxin exposures have also been demonstrated to multiplicatively increase the risk of liver cancer in people chronically infected with hepatitis B virus (HBV) illustrating the deleterious impact that even low toxin levels in the diet can pose for human health. The public health impact of aflatoxin exposure is pervasive. Aflatoxin biomarkers of internal and biologically effective doses have been integral to the establishment of the etiologic role of this toxin in human disease through better estimates of exposure, expanded knowledge of the mechanisms of disease pathogenesis, and as tools for implementing and evaluating preventive interventions. PMID:20881231

  8. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices.

    PubMed

    Zradziński, Patryk

    2013-06-01

    According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.

  9. Synergistic Effects of Heavy Metals and Pesticides in Living Systems.

    PubMed

    Singh, Nitika; Gupta, Vivek Kumar; Kumar, Abhishek; Sharma, Bechan

    2017-01-01

    There is a widespread repeated exposure of the population to the pesticides and heavy metals of occupational and environmental origin. Such population is forced to undergo continuous stress imposed by combined exposure of the heavy metals and different classes of the pesticides used in agricultural as well as health practices. The existing reports from several workers have indicated that heavy metals and pesticides in combination may lead more severe impact on the human health when compared to their individual effects. Such a combination of pesticides and heavy metals may also change or influence the detection of exposure. Several studies in past have shown the synergistic toxic effects of heavy metals and pesticides. Such evaluations have revealed the synergistic interactions of various heavy metals and pesticides in animals as well as humans. The aim of the present article is to provide a synthesis of existing knowledge on the synergistic effects of heavy metal and pesticides in living systems. The information included in this article may be useful for different environment protection agencies and policy makers to consider the combined effects of heavy metals and pesticides on humans while designing strategies toward environmental protection and safety regulations about human health.

  10. Prolonged exposure to acetaminophen reduces testosterone production by the human fetal testis in a xenograft model

    PubMed Central

    Anderson, Richard A.; Johnston, Zoe C.; Chetty, Tarini; Smith, Lee B.; Mckinnell, Chris; Dean, Afshan; Homer, Natalie Z.; Jorgensen, Anne; Camacho-Moll, Maria-Elena; Sharpe, Richard M.; Mitchell, Rod T.

    2016-01-01

    Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; p=0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; p=0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect. PMID:25995226

  11. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity-A Review.

    PubMed

    Chen, Da; Kannan, Kurunthachalam; Tan, Hongli; Zheng, Zhengui; Feng, Yong-Lai; Wu, Yan; Widelka, Margaret

    2016-06-07

    Numerous studies have investigated the environmental occurrence, human exposure, and toxicity of bisphenol A (BPA). Following stringent regulations on the production and usage of BPA, several bisphenol analogues have been produced as a replacement for BPA in various applications. The present review outlines the current state of knowledge on the occurrence of bisphenol analogues (other than BPA) in the environment, consumer products and foodstuffs, human exposure and biomonitoring, and toxicity. Whereas BPA was still the major bisphenol analogue found in most environmental monitoring studies, BPF and BPS were also frequently detected. Elevated concentrations of BPAF, BPF, and BPS (i.e., similar to or greater than that of BPA) have been reported in the abiotic environment and human urine from some regions. Many analogues exhibit endocrine disrupting effects, cytotoxicity, genotoxicity, reproductive toxicity, dioxin-like effects, and neurotoxicity in laboratory studies. BPAF, BPB, BPF, and BPS have been shown to exhibit estrogenic and/or antiandrogenic activities similar to or even greater than that of BPA. Knowledge gaps and research needs have been identified, which include the elucidation of environmental occurrences, persistence, and fate of bisphenol analogues (other than BPA), sources and pathways for human exposure, effects on reproductive systems and the mammary gland, mechanisms of toxicity from coexposure to multiple analogues, metabolic pathways and products, and the impact of metabolic modification on toxicity.

  12. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates

    PubMed Central

    Elsworth, John D.; Jentsch, J. David; VandeVoort, Catherine A.; Roth, Robert H.; Redmond, D. Eugene; Leranth, Csaba

    2013-01-01

    Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14–18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA. PMID:23337607

  13. The influence of endocrine disruptors on growth and development of children.

    PubMed

    DiVall, Sara A

    2013-02-01

    This review describes the most recent data about the effects of endocrine disrupting compounds (EDCs) on infant and early childhood growth and reproductive tract development as well as controversies in the field. EDCs are present in pregnant women, young children and adolescents. Whether the level of exposure contributes to disease is an ongoing debate. Epidemiological studies suggest associations between prenatal EDC exposure and disease outcome, but animal studies using controlled EDC exposure have varying results with underlying mechanisms largely unknown. Human exposure to EDCs is widespread; bisphenol A, phthalates and persistent organic pollutants are detectable in all age groups and geographical locations in the USA. Epidemiological and animal studies suggest that phthalates and bisphenol A have adverse effects on birth weight, promote development of childhood obesity and adversely affect male reproductive tract development. Differences in the interpretation of available studies underlie the disparate conclusions of scientific and regulatory body's panels on potential toxicological effects of EDCs at current levels of human exposure.

  14. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health.

    PubMed

    Xiang, Ping; Liu, Rong-Yan; Li, Chao; Gao, Peng; Cui, Xin-Yi; Ma, Lena Q

    2017-11-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is one of the most detected organophosphorus flame retardants (OPFRs) in the environment, especially in indoor dust. Continuous daily exposure to TDCPP-containing dust may adversely impact human cornea. However, its detrimental effects on human corneal epithelium are largely unknown. In this study, we investigated the cell apoptosis in normal human corneal epithelial cells (HCECs) after TDCPP exposure and elucidated the underlying molecular mechanisms. Our data indicated a dose-dependent decrease of cell viability after TDCPP exposure with LC 50 at 202 μg/mL. A concentration-dependent apoptotic sign was observed in HCECs after exposing to ≥2 μg/mL TDCPP. Endoplasmic reticulum stress induction was evidenced by up-regulation of its biomarker genes (ATF-4, CHOP, BiP, and XBP1). Furthermore, alternation of Bcl-2/Bax expression, mitochondrial membrane potential loss, cellular ATP content decrease, and caspase-3 and -9 activity increase were observed after exposing to 2 or 20 μg/mL TDCPP. Taken together, the data implicated the involvement of endoplasmic reticulum stress in TDCPP-induced HCEC apoptosis, probably mediated by mitochondrial apoptotic pathway. Our findings showed TDCPP exposure induced toxicity to human cornea. Due to TDCPP's presence at high levels in indoor dust, further study is warranted to evaluate its health risk on human corneas. Published by Elsevier Ltd.

  15. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data.

    PubMed

    Rasier, G; Toppari, J; Parent, A-S; Bourguignon, J-P

    2006-07-25

    Natural hormones and some synthetic chemicals spread into our surrounding environment share the capacity to interact with hormone action and metabolism. Exposure to such compounds can cause a variety of developmental and reproductive detrimental abnormalities in wildlife species and, potentially, in human. Many experimental and epidemiological data have reported that exposure of the developing fetus or neonate to environmentally relevant concentrations of some among these endocrine disrupters induces morphological, biochemical and/or physiological disorders in brain and reproductive organs, by interfering with the hormone actions. The impact of such exposures on the hypothalamic-pituitary-gonadal axis and subsequent sexual maturation is the subject of the present review. We will highlight epidemiological human studies and the effects of early exposure during gestational, perinatal or postnatal life in female rodents.

  16. Exposure to toxic waste sites: an investigative approach.

    PubMed

    Stehr-Green, P A; Lybarger, J A

    1989-01-01

    Improper dumping and storage of hazardous substances and whether these practices produce significant human exposure and health effects are growing concerns. A sequential approach has been used by the Centers for Disease Control and the Agency for Toxic Substances and Disease Registry in investigating potential exposure to and health effects resulting from environmental contamination with materials such as heavy metals, volatile organic compounds, and pesticide residues at sites throughout the United States. The strategy consists of four phases: site evaluation, pilot studies of exposure or health effects, analytic epidemiology studies, and public health surveillance. This approach offers a logical, phased strategy to use limited personnel and financial resources of local, State, national, or global health agency jurisdictions optimally in evaluating populations potentially exposed to hazardous materials in waste sites. Primarily, this approach is most helpful in identifying sites for etiologic studies and providing investigative leads to direct and focus these studies. The results of such studies provide information needed for making risk-management decisions to mitigate or eliminate human exposures and for developing interventions to prevent or minimize health problems resulting from exposures that already have occurred.

  17. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  18. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  19. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  20. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  1. 40 CFR 799.9325 - TSCA 90-day dermal toxicity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Health Effects Test Guidelines § 799.9325 TSCA 90-day dermal toxicity. (a) Scope. This section is...-observed-effects level (NOEL) and toxic effects associated with continuous or repeated exposure to a test... human exposure. (b) Source. The source material used in developing this TSCA test guideline is the...

  2. Exposure to Concentrated Ambient PM2.5 Shortens Lifespan and Induces Inflammation-Associated Signaling and Oxidative Stress in Drosophila.

    PubMed

    Wang, Xiaoke; Chen, Minjie; Zhong, Mianhua; Hu, Ziying; Qiu, Lianglin; Rajagopalan, Sanjay; Fossett, Nancy G; Chen, Lung-Chi; Ying, Zhekang

    2017-03-01

    Exposure to ambient PM 2.5 is associated with human premature mortality. However, it has not yet been toxicologically replicated, likely due to the lack of suitable animal models. Drosophila is frequently used in longevity research due to many incomparable merits. The present study aims to validate Drosophila models for PM 2.5 toxicity study through characterizing their biological responses to exposure to concentrated ambient PM 2.5 (CAP). The survivorship curve demonstrated that exposure to CAP markedly reduced lifespan of Drosophila. This antilongevity effect of CAP exposure was observed in both male and female Drosophila, and by comparison, the male was more sensitive [50% survivals: 20 and 48 days, CAP- and filtered air (FA)-exposed males, respectively; 21 and 40 days, CAP- and FA-exposed females, respectively]. Similar to its putative pathogenesis in humans, CAP exposure-induced premature mortality in Drosophila was also coincided with activation of pro-inflammatory signaling pathways including Jak, Jnk, and Nf-κb and increased systemic oxidative stress. Furthermore, like in humans and mammals, exposure to CAP significantly increased whole-body and circulating glucose levels and increased mRNA expression of Ilp2 and Ilp5 , indicating that CAP exposure induces dysregulated insulin signaling in Drosophila. Similar to effects on humans exposure to CAP leads to premature mortality likely through induction of inflammation-associated signaling, oxidative stress, and metabolic abnormality in Drosophila, strongly supporting that it can be a useful model organism for PM 2.5 toxicity study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. IMPROVING MEASURES OF BIOLOGIC EFFECT: MEASURING EFFECTS IN HUMAN MALES

    EPA Science Inventory

    Animal toxicology studies have demonstrated spermatogenesis and sperm quality effects after exposure to several drinking water disinfection byproducts (DBPs), including DCA, BDCM, chloral hydrate and DBA. Population-based field studies to identify human male reproductive risks o...

  4. Using exposure prediction tools to link exposure and dosimetry for risk based decisions: a case study with phthalates

    EPA Science Inventory

    The Population Life-course Exposure to Health Effects Modeling (PLETHEM) platform being developed provides a tool that links results from emerging toxicity testing tools to exposure estimates for humans as defined by the USEPA. A reverse dosimetry case study using phthalates was ...

  5. 76 FR 60822 - Registration Review; Pesticide Dockets Opened for Review and Comment and Other Docket Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticides... perform its intended function without unreasonable adverse effects on human health or the environment... knowledge, including its effects on human health and the environment. EPA is also announcing that the docket...

  6. 75 FR 80496 - Registration Review; Pesticide Dockets Opened for Review and Comment and Other Docket Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... high and adverse human health impacts or environmental effects from exposure to the pesticide(s... can still be used without unreasonable adverse effects on human health or the environment. A pesticide... perform its intended function without unreasonable adverse effects on human health or the environment...

  7. 78 FR 18586 - Registration Review; Pesticide Dockets Opened for Review and Comment and Other Docket Acts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... adverse human health impacts or environmental effects from exposure to the pesticide(s) discussed in this... without unreasonable adverse effects on human health or the environment. A pesticide's registration review... perform its intended function without unreasonable adverse effects on human health or the environment...

  8. 75 FR 35796 - Busan 74 (2-hydroxypropyl methanethiosulfonate); Chlorine Gas; and Dichromic Acid, et al...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticide(s... without unreasonable adverse effects on human health or the environment. Registration review dockets... its effects on human health and the environment. DATES: Comments must be received on or before August...

  9. An In Situ and In Silico Evaluation of Biophysical Effects of 27 MHz Electromagnetic Whole Body Humans Exposure Expressed by the Limb Current

    PubMed Central

    2017-01-01

    Objectives The aim was to evaluate correlations between biophysical effects of 27 MHz electromagnetic field exposure in humans (limb induced current (LIC)) and (1) parameters of affecting heterogeneous electric field and (2) body anthropometric properties, in order to improve the evaluation of electromagnetic environmental hazards. Methods Biophysical effects of exposure were studied in situ by measurements of LIC in 24 volunteers (at the ankle) standing near radio communication rod antenna and in silico in 4 numerical body phantoms exposed near a model of antenna. Results Strong, positive, statistically significant correlations were found in all exposure scenarios between LIC and body volume index (body height multiplied by mass) (r > 0.7; p < 0.001). The most informative exposure parameters, with respect to the evaluation of electromagnetic hazards by measurements (i.e., the ones strongest correlated with LIC), were found to be the value of electric field (unperturbed field, in the absence of body) in front of the chest (50 cm from body axis) or the maximum value in space occupied by human. Such parameters were not analysed in previous studies. Conclusions Exposed person's body volume and electric field strength in front of the chest determine LIC in studied exposure scenarios, but their wider applicability needs further studies. PMID:28758119

  10. Acute lung injury and persistent small airway disease in a rabbit model of chlorine inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musah, Sadiatu; Schlueter, Connie F.; Humphrey, Da

    Chlorine is a pulmonary toxicant to which humans can be exposed through accidents or intentional releases. Acute effects of chlorine inhalation in humans and animal models have been well characterized, but less is known about persistent effects of acute, high-level chlorine exposures. In particular, animal models that reproduce the long-term effects suggested to occur in humans are lacking. Here, we report the development of a rabbit model in which both acute and persistent effects of chlorine inhalation can be assessed. Male New Zealand White rabbits were exposed to chlorine while the lungs were mechanically ventilated. After chlorine exposure, the rabbitsmore » were extubated and were allowed to survive for up to 24 h after exposure to 800 ppm chlorine for 4 min to study acute effects or up to 7 days after exposure to 400 ppm for 8 min to study longer term effects. Acute effects observed 6 or 24 h after inhalation of 800 ppm chlorine for 4 min included hypoxemia, pulmonary edema, airway epithelial injury, inflammation, altered baseline lung mechanics, and airway hyperreactivity to inhaled methacholine. Seven days after recovery from inhalation of 400 ppm chlorine for 8 min, rabbits exhibited mild hypoxemia, increased area of pressure–volume loops, and airway hyperreactivity. Lung histology 7 days after chlorine exposure revealed abnormalities in the small airways, including inflammation and sporadic bronchiolitis obliterans lesions. Immunostaining showed a paucity of club and ciliated cells in the epithelium at these sites. These results suggest that small airway disease may be an important component of persistent respiratory abnormalities that occur following acute chlorine exposure. This non-rodent chlorine exposure model should prove useful for studying persistent effects of acute chlorine exposure and for assessing efficacy of countermeasures for chlorine-induced lung injury. - Highlights: • A novel rabbit model of chlorine-induced lung disease was developed. • Acute effects of chlorine were pulmonary edema, hypoxemia and impaired lung function. • Persistent small airway disease developed following recovery from acute injury. • Small airway disease included inflammation and bronchiolitis obliterans lesions. • The model should be useful for studying chlorine lung injury and testing treatments.« less

  11. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    EPA Science Inventory

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objective: Test whether acute exposure to diesel modif...

  12. EXPOSURE ANALYSIS FROM PERSONAL AND AMBIENT AIR SAMPLING: RESULTS OF THE 1998 BALTIMORE STUDY

    EPA Science Inventory

    An integrated epidemiological-exposure panel study was conducted during July-August 1998 which focused upon establishing relationships between potential human exposures to particulate matter (PM) and related co-pollutants with detectable health effects. The study design incorpo...

  13. Effect of home food processing on chlordecone (organochlorine) content in vegetables.

    PubMed

    Clostre, Florence; Letourmy, Philippe; Thuriès, Laurent; Lesueur-Jannoyer, Magalie

    2014-08-15

    Decades after their use and their ban, organochlorine pesticides still pollute soil, water and food and lead to human and ecosystem exposure. In the case of chlordecone, human exposure is mainly due to the consumption of polluted food. We studied the effect of preparation and cooking in five vegetable products, three root vegetables (yam, dasheen and sweet potato) and two cucurbits (cucumber and pumpkin), among the main contributors to exposure to chlordecone in food in the French West Indies. Boiling the vegetables in water had no effect on chlordecone content of the vegetables and consequently on consumer exposure. The peel was three to 40-fold more contaminated than the pulp except cucumber, where the difference was less contrasted. The edible part is thus significantly less contaminated and peeling is recommended after rinsing to reduce consumer exposure, particularly for food grown in home gardens with contaminated soils. The type of soil had no consistent effect on CLD distribution but plot did. Peel and pulp composition (lipids and fibers) appear to partially account for CLD distribution in the product. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis

    PubMed Central

    Guerquin, Marie-Justine; Matilionyte, Gabriele; Kilcoyne, Karen; N’Tumba-Byn, Thierry; Messiaen, Sébastien; Deceuninck, Yoann; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Antignac, Jean-Philippe; Mitchell, Rod; Rouiller-Fabre, Virginie

    2018-01-01

    Background Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. Methods Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. Results With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. Conclusions Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures. PMID:29385186

  15. Sun Exposure and Its Effects on Human Health: Mechanisms through Which Sun Exposure Could Reduce the Risk of Developing Obesity and Cardiometabolic Dysfunction

    PubMed Central

    Fleury, Naomi; Geldenhuys, Sian; Gorman, Shelley

    2016-01-01

    Obesity is a significant burden on global healthcare due to its high prevalence and associations with chronic health conditions. In our animal studies, ongoing exposure to low dose ultraviolet radiation (UVR, found in sunlight) reduced weight gain and the development of signs of cardiometabolic dysfunction in mice fed a high fat diet. These observations suggest that regular exposure to safe levels of sunlight could be an effective means of reducing the burden of obesity. However, there is limited knowledge around the nature of associations between sun exposure and the development of obesity and cardiometabolic dysfunction, and we do not know if sun exposure (independent of outdoor activity) affects the metabolic processes that determine obesity in humans. In addition, excessive sun exposure has strong associations with a number of negative health consequences such as skin cancer. This means it is very important to “get the balance right” to ensure that we receive benefits without increasing harm. In this review, we detail the evidence around the cardiometabolic protective effects of UVR and suggest mechanistic pathways through which UVR could be beneficial. PMID:27727191

  16. Are men talking their reproductive health away?

    PubMed

    Agarwal, Ashok; Durairajanayagam, Damayanthi

    2015-01-01

    The advent of mobile phones has revolutionized communication trends across the globe. As the popularity of mobile phone usage continues to escalate, there is now growing concern about the effects of radiofrequency electromagnetic waves (RF-EMW) exposure on biological tissues, such as the brain and testes. Researchers have sought to link the much debated decline in human sperm quality in the last decade, with increased exposure to RF-EMW, particularly through mobile phone usage. In a recent systematic review and meta-analysis on the effect of mobile phone RF-EMW radiation on sperm quality, Adams et al. [1] demonstrated an association between mobile phone exposure and reduced sperm motility and viability, with inconsistent effects on sperm concentration. [1] Results from 10 pooled experimental (in vitro) and observational (in vivo)human studies (n = 1492) led these researchers to suggest that exposure to RF-EMW radiation from carrying a mobile phone in the trouser pocket negatively impacts sperm quality.

  17. Contested evidence: Exposure to competing scientific claims and public support for banning bisphenol A.

    PubMed

    Brewer, Paul R; Ley, Barbara L

    2014-05-01

    The public controversy surrounding bisphenol A (BPA) revolves around competing claims about what scientific evidence shows regarding the effects of the chemical on human health. This study uses an experiment embedded within a public opinion survey to test the effects of exposure to such claims on public support for banning the use of BPA in products. Exposure to the claim that "there is not enough scientific evidence that BPA harms human health" reduced support, whereas exposure to the claim that there "is enough scientific evidence" failed to increase support. No effect emerged among those simultaneously exposed to both claims. The "not enough evidence" claim influenced less educated respondents and women but not college-educated respondents or men. Aspects of the underlying structure of opinion also differed depending on which claim(s) respondents received. The results illuminate how members of the public respond to competing scientific claims regarding controversial issues.

  18. ENVIRONMENTAL POLLUTANTS AND ADVERSE HUMAN HEALTH EFFECTS: HAZARD IDENTIFICATION USING INTERREGION COMPARISONS

    EPA Science Inventory

    Background: Associations between adverse health effects and environmental exposures are difficult to study, because exposures may be widespread, low-dose in nature, and common throughout the study population. Therefore, individual risk-factor epidemiology may not be the right to...

  19. THE EFFECTS OF ETHINYL ESTRADIOL ON SPERMATOGENESIS IN THE ADULT MALE RAT

    EPA Science Inventory

    Recently, increases in male infertility have been attributed to exposure to environmental estrogens. Decreased sperm concentrations and increased infertility have been reported in the human, while many reports have documented reproductive effects due to estrogenic exposure in ani...

  20. Placental transport and in vitro effects of Bisphenol A.

    PubMed

    Mørck, Thit J; Sorda, Giuseppina; Bechi, Nicoletta; Rasmussen, Brian S; Nielsen, Jesper B; Ietta, Francesca; Rytting, Erik; Mathiesen, Line; Paulesu, Luana; Knudsen, Lisbeth E

    2010-08-01

    Bisphenol A (BPA), an estrogen-like chemical, leaches from consumer products potentially causing human exposure. To examine the effects of BPA exposure during pregnancy, we performed studies using the BeWo trophoblast cell line, placental explant cultures, placental perfusions and skin diffusion models, all of human origin. Results showed BPA cytotoxicity in BeWo cells with an apparent EC50 at 100-125 microM. BPA exposure significantly increased beta-hCG secretion and caspase-3 expression in placental explants at an environmentally relevant concentration of 1 nM. In the transport studies, a rapid transfer of BPA was observed across the term placentae and the BeWo cell monolayer. Further, transdermal transport of BPA was observed. These results indicate that fetal BPA exposure through placental exchange occurs with potential adverse implications for placental and fetal development. This battery of test systems within the realm of human implantation and fetal development represents important elements in risk assessment of reproductive toxicity. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Thermal Injury in Human Subjects Due to 94-GHz Radio Frequency Radiation Exposures

    DTIC Science & Technology

    2016-02-24

    5 3.1 Histopathology ...and third-degree reactions” (i.e., complete epidermal necrosis ) requires application of fluids at 48 °C for 18 min, 51 °C for 4 min, and 60 °C for 5...Human Effectiveness Directorate, Veterinary Sciences Branch (711 HPW/RHDV) for histopathologic processing and analysis. For each exposure, a

  2. Effects of millimeter-wave electromagnetic exposure on the morphology and function of human cryopreserved spermatozoa.

    PubMed

    Volkova, N A; Pavlovich, E V; Gapon, A A; Nikolov, O T

    2014-09-01

    Exposure of human cryopreserved spermatozoa to millimeter-wave electromagnetic radiation of 0.03 mW/cm2 density for 5 min in normozoospermia and for 15 min in asthenozoospermia lead to increase of the fraction of mobile spermatozoa without impairing the membrane integrity and nuclear chromatin status and without apoptosis generation.

  3. Role of Ionizing Radiation in Neurodegenerative Diseases

    PubMed Central

    Sharma, Neel K.; Sharma, Rupali; Mathur, Deepali; Sharad, Shashwat; Minhas, Gillipsie; Bhatia, Kulsajan; Anand, Akshay; Ghosh, Sanchita P.

    2018-01-01

    Ionizing radiation (IR) from terrestrial sources is continually an unprotected peril to human beings. However, the medical radiation and global radiation background are main contributors to human exposure and causes of radiation sickness. At high-dose exposures acute radiation sickness occurs, whereas chronic effects may persist for a number of years. Radiation can increase many circulatory, age related and neurodegenerative diseases. Neurodegenerative diseases occur a long time after exposure to radiation, as demonstrated in atomic bomb survivors, and are still controversial. This review discuss the role of IR in neurodegenerative diseases and proposes an association between neurodegenerative diseases and exposure to IR. PMID:29867445

  4. [The key problems in the population exposure assessment of hazardous chemicals accidents].

    PubMed

    Pan, L J; Liu, F P; Zhang, X; Bai, X T; Shi, X M

    2016-07-06

    Serious accidents of hazardous chemicals can cause a variety of acute or chronic impairment in human health. The effects of hazardous chemicals on human health can be identified by carrying on population exposure assessment. Through analyzing the domestic and overseas population exposure assessment cases related to hazardous chemicals accidents, we summarized that the base and key of the population exposure assessment were to identify the characteristics of the chemicals , delimit the area and the population exposed to the chemicals, and collect the data of the monitored chemicals and the population health in the polluted area.

  5. Cadmium: Simulation of environmental control strategies to reduce exposure

    NASA Astrophysics Data System (ADS)

    Yost, K. J.; Miles, L. J.; Greenkorn, R. A.

    1981-07-01

    The effects of selected environmental control strategies on human dietary and respiratory exposure to environmental cadmium (Cd) have been simulated. For each control strategy, mean Cd dietary and respiratory exposures are presented for a twenty-year simulation period. Human exposures related to cadmium are associated with both process waste disposal and product disposal. Dietary exposure is by far the dominant mechanism for Cd intake. Dietary exposure related to aqueous discharges is primarily a result of municipal sludge landspreading, whereas that associated with emissions to the atmosphere derives mainly from the deposition on cropland of airborne particulates from product incineration. Only relatively small dietary exposure reductions are possible through restrictions on any single Cd use. Combinations of waste management and environmental control measures promise greater reductions in dietary and respiratory exposure than those achievable through use restrictions.

  6. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey.

    PubMed

    Duydu, Yalçın; Başaran, Nurşen; Üstündağ, Aylin; Aydin, Sevtap; Ündeğer, Ülkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2011-06-01

    Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL (no observed adverse effect level) of 17.5 mg B/kg-bw/day has been identified for the (male) reproductive effects of boron in a multigeneration study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day. These values are being taken as the basis of current EU safety assessments. The present study was conducted to investigate the reproductive effects of boron exposure in workers employed in boric acid production plant in Bandirma, Turkey. In order to characterize the external and internal boron exposures, boron was determined in biological samples (blood, urine, semen), in workplace air, in food, and in water sources. Unfavorable effects of boron exposure on the reproductive toxicity indicators (concentration, motility, morphology of the sperm cells and blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone) were not observed. The mean calculated daily boron exposure (DBE) of the highly exposed group was 14.45 ± 6.57 (3.32-35.62) mg/day. These human exposures represent worst-case exposure conditions to boric acid/borates in Turkey. These exposure levels are considerably lower than exposures, which have previously led to reproductive effects in experimental animals. In conclusion, this means that dose levels of boron associated with developmental and reproductive toxic effects in animals are by far not reachable for humans under conditions of normal handling and use.

  7. Inhaled ozone as a mutagen. II - Effect on the frequency of chromosome aberrations observed in irradiated Chinese hamsters.

    NASA Technical Reports Server (NTRS)

    Zelac, R. E.; Cromroy, H. L.; Bolch, W. E., Jr.; Dunavant, B. G.; Bevis, H. A.

    1971-01-01

    Exposure-adjusted break frequencies for chromosome aberrations produced in Chinese hamster circulating blood lymphocytes were the quantitative indicator of damage from 5 hrs of exposure to X-radiation and/or to ozone. Radiation produced 5.51 x 0.0001 breaks/cell rad for cells withdrawn 2 weeks after exposure, a reasonable value when compared with data from in vivo exposure of human lymphocytes and Chinese hamster bone marrow cells. Animals exposed to the two agents simultaneously exhibited more than 70% of the total breaks anticipated assuming the expected equal contributions to be additive. Extending to humans, at presently permitted levels, exposure to ozone would be much more detrimental than exposure to radiati*n.

  8. Cumulative effects from repeated exposures to ultraviolet radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaidbey, K.H.; Kligman, A.M.

    Repeated exposures to subliminal doses of UVR, given at 24-hr intervals, resulted in a lowering of the erythema threshold dose. At erythemogenically equivalent doses, UV-A was the most effective and UV-C the least. A similar and more pronounced effect was observed following repeated exposures to subthreshold doses of UV-A and topically applied 8-methoxypsoralen. These findings provide quantitative evidence for the cumulative nature of acute UVR damage in human skin.

  9. Short GSM mobile phone exposure does not alter human auditory brainstem response.

    PubMed

    Stefanics, Gábor; Kellényi, Lóránd; Molnár, Ferenc; Kubinyi, Györgyi; Thuróczy, György; Hernádi, István

    2007-11-12

    There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Auditory Brainstem Response (ABR) was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18-26 years) with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF) emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  10. Cell phones: modern man's nemesis?

    PubMed

    Makker, Kartikeya; Varghese, Alex; Desai, Nisarg R; Mouradi, Rand; Agarwal, Ashok

    2009-01-01

    Over the past decade, the use of mobile phones has increased significantly. However, with every technological development comes some element of health concern, and cell phones are no exception. Recently, various studies have highlighted the negative effects of cell phone exposure on human health, and concerns about possible hazards related to cell phone exposure have been growing. This is a comprehensive, up-to-the-minute overview of the effects of cell phone exposure on human health. The types of cell phones and cell phone technologies currently used in the world are discussed in an attempt to improve the understanding of the technical aspects, including the effect of cell phone exposure on the cardiovascular system, sleep and cognitive function, as well as localized and general adverse effects, genotoxicity potential, neurohormonal secretion and tumour induction. The proposed mechanisms by which cell phones adversely affect various aspects of human health, and male fertility in particular, are explained, and the emerging molecular techniques and approaches for elucidating the effects of mobile phone radiation on cellular physiology using high-throughput screening techniques, such as metabolomics and microarrays, are discussed. A novel study is described, which is looking at changes in semen parameters, oxidative stress markers and sperm DNA damage in semen samples exposed in vitro to cell phone radiation.

  11. IMPROVING MEASURES OF BIOLOGIC EFFECT: MEASURING EFFECTS IN HUMAN MALES.

    EPA Science Inventory

    Animal toxicology studies have demonstrated spermatogenesis and sperm quality effects after exposure to DCA, BDCM, chloral hydrate and DBA. Population-based field studies to identify human male reproductive risks of DBPs require preliminary work to develop specific epidemiologi...

  12. Exposure Is Not Enough: Suppressing Stimuli from Awareness Can Abolish the Mere Exposure Effect

    PubMed Central

    Newell, Ben R.; Pearson, Joel

    2013-01-01

    Passive exposure to neutral stimuli increases subsequent liking of those stimuli – the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect. PMID:24147067

  13. Exposure is not enough: suppressing stimuli from awareness can abolish the mere exposure effect.

    PubMed

    de Zilva, Daniel; Vu, Luke; Newell, Ben R; Pearson, Joel

    2013-01-01

    Passive exposure to neutral stimuli increases subsequent liking of those stimuli--the mere exposure effect. Because of the broad implications for understanding and controlling human preferences, the role of conscious awareness in mere exposure has received much attention. Previous studies have claimed that the mere exposure effect can occur without conscious awareness of the stimuli. In two experiments, we applied a technique new to the mere exposure literature, called continuous flash suppression, to expose stimuli for a controlled duration with and without awareness. To ensure the reliability of the awareness manipulation, awareness was monitored on a trial-by-trial basis. Our results show that under these conditions the mere exposure effect does not occur without conscious awareness. In contrast, only when participants were aware of the stimuli did exposure increase liking and recognition. Together these data are consistent with the idea that the mere exposure effect requires conscious awareness and has important implications for theories of memory and affect.

  14. Research on Exposure to Perfluorinated Chemicals

    EPA Pesticide Factsheets

    Certain PFCs have been linked to adverse health effects in laboratory animals that may reflect associations between exposure to these chemicals and some health problems in the general human population.

  15. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro.

    PubMed

    Roth, Michèle; Usemann, Jakob; Bisig, Christoph; Comte, Pierre; Czerwinski, Jan; Mayer, Andreas C R; Beier, Konstantin; Rothen-Rutishauser, Barbara; Latzin, Philipp; Müller, Loretta

    2017-12-01

    Air pollution exposure, including passenger car emissions, may cause substantial respiratory health effects and cancer death. In western countries, the majority of passenger cars are driven by gasoline fuel. Recently, new motor technologies and ethanol fuels have been introduced to the market, but potential health effects have not been thoroughly investigated. We developed and verified a coculture model composed of bronchial epithelial cells (ECs) and natural killer cells (NKs) mimicking the human airways to compare toxic effects between pure gasoline (E0) and ethanol-gasoline-blend (E85, 85% ethanol, 15% gasoline) exhaust emitted from a flexfuel gasoline car. We drove a steady state cycle, exposed ECs for 6h and added NKs. We assessed exhaust effects in ECs alone and in cocultures by RT-PCR, flow cytometry, and oxidative stress assay. We found no toxic effects after exposure to E0 or E85 compared to air controls. Comparison between E0 and E85 exposure showed a weak association for less oxidative DNA damage after E85 exposure compared to E0. Our results indicate that short-term exposure to gasoline exhaust may have no major toxic effects in ECs and NKs and that ethanol as part of fuel for gasoline cars may be favorable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs).

    PubMed

    Wang, Feidi; Zhang, Haijun; Geng, Ningbo; Ren, Xiaoqian; Zhang, Baoqin; Gong, Yufeng; Chen, Jiping

    2018-03-01

    The combined toxicity of mixed chemicals is usually evaluated according to several specific endpoints, and other potentially toxic effects are disregarded. In this study, we provided a metabolomics strategy to achieve a comprehensive understanding of toxicological interactions between mixed chemicals on metabolism. The metabolic changes were quantified by a pseudotargeted analysis, and the types of combined effects were quantitatively discriminated according to the calculation of metabolic effect level index (MELI). The metabolomics strategy was used to assess the combined effects of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) on the metabolism of human hepatoma HepG2 cells. Our data suggested that exposure to a combination of PAHs and SCCPs at human internal exposure levels could result in an additive effect on the overall metabolism, whereas diverse joint effects were observed on various metabolic pathways. The combined exposure could induce a synergistic up-regulation of phospholipid metabolism, an additive up-regulation of fatty acid metabolism, an additive down-regulation of tricarboxylic acid cycle and glycolysis, and an antagonistic effect on purine metabolism. SCCPs in the mixture acted as the primary driver for the acceleration of phospholipid and fatty acid metabolism. Lipid metabolism disorder caused by exposure to a combination of PAHs and SCCPs should be an important concern for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quantitative comparisons of the actute neurotoxicity of toulene in rats and humans.

    EPA Science Inventory

    The behavioral and neurophysiological effects of acute exposure to toluene are the most thoroughly explored of all the hydrocarbon solvents. Behavioral effects have been experimentally studied in humans and other species, for example, rats. The existence of both rat and human dos...

  18. 75 FR 16117 - Registration Review; Pesticide Dockets Opened for Review and Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ..., human health, farmworker, and agricultural advocates; the chemical industry; pesticide users; and... disproportionately high and adverse human health impacts or environmental effects from exposure to the pesticides... can still be used without unreasonable adverse effects on human health or the environment. A pesticide...

  19. A veterinary perspective on One Health in the Arctic.

    PubMed

    Sonne, Christian; Letcher, Robert James; Jenssen, Bjørn Munro; Desforges, Jean-Pierre; Eulaers, Igor; Andersen-Ranberg, Emilie; Gustavson, Kim; Styrishave, Bjarne; Dietz, Rune

    2017-12-16

    Exposure to long-range transported industrial chemicals, climate change and diseases is posing a risk to the overall health and populations of Arctic wildlife. Since local communities are relying on the same marine food web as marine mammals in the Arctic, it requires a One Health approach to understand the holistic ecosystem health including that of humans. Here we collect and identify gaps in the current knowledge of health in the Arctic and present the veterinary perspective of One Health and ecosystem dynamics. The review shows that exposure to persistent organic pollutants (POPs) is having multiple organ-system effects across taxa, including impacts on neuroendocrine disruption, immune suppression and decreased bone density among others. Furthermore, the warming Arctic climate is suspected to influence abiotic and biotic long-range transport and exposure pathways of contaminants to the Arctic resulting in increases in POP exposure of both wildlife and human populations. Exposure to vector-borne diseases and zoonoses may increase as well through range expansion and introduction of invasive species. It will be important in the future to investigate the effects of these multiple stressors on wildlife and local people to better predict the individual-level health risks. It is within this framework that One Health approaches offer promising opportunities to survey and pinpoint environmental changes that have effects on wildlife and human health.

  20. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se.

    PubMed

    Haussmann, Hans-Juergen; Fariss, Marc W

    2016-09-01

    The effects of long-term use of nicotine per se on cancer risk, in the absence of tobacco extract or smoke, are not clearly understood. This review evaluates the strength of published scientific evidence, in both epidemiological and animal studies, for the potential carcinogenic effects of nicotine per se; that is to act as a complete carcinogen or as a modulator of carcinogenesis. For human studies, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a carcinogenic effect due to the limited information available. In animal studies, limited evidence suggests an association between long-term nicotine exposure and a lack of a complete carcinogenic effect. Conclusive studies using current bioassay guidelines, however, are missing. In studies using chemical/physical carcinogens or transgenic models, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a modulating (stimulating) effect on carcinogenesis. This is primarily due to the large number of conflicting studies. In contrast, a majority of studies provides sufficient evidence for an association between nicotine exposure and enhanced carcinogenesis of cancer cells inoculated in mice. This modulating effect was especially prominent in immunocompromized mice. Overall, taking the human and animal studies into consideration, there appears to be inadequate evidence to conclude that nicotine per se does or does not cause or modulate carcinogenesis in humans. This conclusion is in agreement with the recent US Surgeon General's 2014 report on the health consequences of nicotine exposure.

  1. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se

    PubMed Central

    Haussmann, Hans-Juergen; Fariss, Marc W.

    2016-01-01

    Abstract The effects of long-term use of nicotine per se on cancer risk, in the absence of tobacco extract or smoke, are not clearly understood. This review evaluates the strength of published scientific evidence, in both epidemiological and animal studies, for the potential carcinogenic effects of nicotine per se; that is to act as a complete carcinogen or as a modulator of carcinogenesis. For human studies, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a carcinogenic effect due to the limited information available. In animal studies, limited evidence suggests an association between long-term nicotine exposure and a lack of a complete carcinogenic effect. Conclusive studies using current bioassay guidelines, however, are missing. In studies using chemical/physical carcinogens or transgenic models, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a modulating (stimulating) effect on carcinogenesis. This is primarily due to the large number of conflicting studies. In contrast, a majority of studies provides sufficient evidence for an association between nicotine exposure and enhanced carcinogenesis of cancer cells inoculated in mice. This modulating effect was especially prominent in immunocompromized mice. Overall, taking the human and animal studies into consideration, there appears to be inadequate evidence to conclude that nicotine per se does or does not cause or modulate carcinogenesis in humans. This conclusion is in agreement with the recent US Surgeon General’s 2014 report on the health consequences of nicotine exposure. PMID:27278157

  2. CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit.

    PubMed

    Lee, Chun-Ting; Chen, Jia; Kindberg, Abigail A; Bendriem, Raphael M; Spivak, Charles E; Williams, Melanie P; Richie, Christopher T; Handreck, Annelie; Mallon, Barbara S; Lupica, Carl R; Lin, Da-Ting; Harvey, Brandon K; Mash, Deborah C; Freed, William J

    2017-02-01

    Because of unavoidable confounding variables in the direct study of human subjects, it has been difficult to unravel the effects of prenatal cocaine exposure on the human fetal brain, as well as the cellular and biochemical mechanisms involved. Here, we propose a novel approach using a human pluripotent stem cell (hPSC)-based 3D neocortical organoid model. This model retains essential features of human neocortical development by encompassing a single self-organized neocortical structure, without including an animal-derived gelatinous matrix. We reported previously that prenatal cocaine exposure to rats during the most active period of neural progenitor proliferation induces cytoarchitectural changes in the embryonic neocortex. We also identified a role of CYP450 and consequent oxidative ER stress signaling in these effects. However, because of differences between humans and rodents in neocorticogenesis and brain CYP metabolism, translation of the research findings from the rodent model to human brain development is uncertain. Using hPSC 3D neocortical organoids, we demonstrate that the effects of cocaine are mediated through CYP3A5-induced generation of reactive oxygen species, inhibition of neocortical progenitor cell proliferation, induction of premature neuronal differentiation, and interruption of neural tissue development. Furthermore, knockdown of CYP3A5 reversed these cocaine-induced pathological phenotypes, suggesting CYP3A5 as a therapeutic target to mitigate the deleterious neurodevelopmental effects of prenatal cocaine exposure in humans. Moreover, 3D organoid methodology provides an innovative platform for identifying adverse effects of abused psychostimulants and pharmaceutical agents, and can be adapted for use in neurodevelopmental disorders with genetic etiologies.

  3. Current progress on understanding the impact of mercury on human health.

    PubMed

    Ha, Eunhee; Basu, Niladri; Bose-O'Reilly, Stephan; Dórea, José G; McSorley, Emeir; Sakamoto, Mineshi; Chan, Hing Man

    2017-01-01

    Mercury pollution and its impacts on human health is of global concern. The authors of this paper were members of the Plenary Panel on Human Health in the 12th International Conference on Mercury as a Global Pollutant held in Korea in June 2015. The Panel was asked by the conference organizers to address two questions: what is the current understanding of the impacts of mercury exposure on human health and what information is needed to evaluate the effectiveness of the Minamata Convention in lowering exposure and preventing adverse effects. The authors conducted a critical review of the literature published since January 2012 and discussed the current state-of-knowledge in the following areas: environmental exposure and/or risk assessment; kinetics and biomonitoring; effects on children development; effects on adult general populations; effects on artisanal and small-scale gold miners (ASGM); effects on dental workers; risk of ethylmercury in thimerosal-containing vaccines; interactions with nutrients; genetic determinants and; risk communication and management. Knowledge gaps in each area were identified and recommendations for future research were made. The Panel concluded that more knowledge synthesis efforts are needed to translate the research results into management tools for health professionals and policy makers. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of Acute Exposure to an Environmental Electrophile on Human Platelet Bioenergetics

    EPA Science Inventory

    Exposure to air pollution is a global public health problem associated with cardiovascular morbidity and mortality. Exposure to particulate matter (PM) has been reported to activate circulating platelets in vulnerable populations (patients with type 2 diabetes or coronary heart d...

  5. High Throughput Heuristics for Prioritizing Human Exposure to ...

    EPA Pesticide Factsheets

    The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the potential hazard presented by the chemical, and the possibility of being exposed. Without the capacity to make quantitative, albeit uncertain, forecasts of exposure, the putative risk of adverse health effect from a chemical cannot be evaluated. We used Bayesian methodology to infer ranges of exposure intakes that are consistent with biomarkers of chemical exposures identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We perform linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using high throughput chemical descriptors gleaned from databases and chemical structure-based calculators. We find that five of these descriptors are capable of explaining roughly 50% of the variability across chemicals for all the demographic groups examined, including children aged 6-11. For the thousands of chemicals with no other source of information, this approach allows rapid and efficient prediction of average exposure intake of environmental chemicals. The methods described by this manuscript provide a highly improved methodology for HTS of human exposure to environmental chemicals. The manuscript includes a ranking of 7785 environmental chemicals with respect to potential human exposure, including most of the Tox21 in vit

  6. Effect of a single 3-hour exposure to bright light on core body temperature and sleep in humans.

    PubMed

    Dijk, D J; Cajochen, C; Borbély, A A

    1991-01-02

    Seven human subjects were exposed to bright light (BL, approx. 2500 lux) and dim light (DL, approx. 6 lux) during 3 h prior to nocturnal sleep, in a cross-over design. At the end of the BL exposure period core body temperature was significantly higher than at the end of the DL exposure period. The difference in core body temperature persisted during the first 4 h of sleep. The latency to sleep onset was increased after BL exposure. Rapid-eye movement sleep (REMS) and slow-wave sleep (SWS; stage 3 + 4 of non-REMS) were not significantly changed. Eight subjects were exposed to BL from 20.30 to 23.30 h while their eyes were covered or uncovered. During BL exposure with uncovered eyes, core body temperature decreased significantly less than during exposure with covered eyes. We conclude that bright light immediately affects core body temperature and that this effect is mediated via the eyes.

  7. Heat-mediated reduction of apoptosis in UVB-damaged keratinocytes in vitro and in human skin ex vivo.

    PubMed

    Calapre, Leslie; Gray, Elin S; Kurdykowski, Sandrine; David, Anthony; Hart, Prue; Descargues, Pascal; Ziman, Mel

    2016-05-26

    UV radiation induces significant DNA damage in keratinocytes and is a known risk factor for skin carcinogenesis. However, it has been reported previously that repeated and simultaneous exposure to UV and heat stress increases the rate of cutaneous tumour formation in mice. Since constant exposure to high temperatures and UV are often experienced in the environment, the effects of exposure to UV and heat needs to be clearly addressed in human epidermal cells. In this study, we determined the effects of repeated UVB exposure 1 kJ/m(2) followed by heat (39 °C) to human keratinocytes. Normal human ex vivo skin models and primary keratinocytes (NHEK) were exposed once a day to UVB and/or heat stress for four consecutive days. Cells were then assessed for changes in proliferation, apoptosis and gene expression at 2 days post-exposure, to determine the cumulative and persistent effects of UV and/or heat in skin keratinocytes. Using ex vivo skin models and primary keratinocytes in vitro, we showed that UVB plus heat treated keratinocytes exhibit persistent DNA damage, as observed with UVB alone. However, we found that apoptosis was significantly reduced in UVB plus heat treated samples. Immunohistochemical and whole genome transcription analysis showed that multiple UVB plus heat exposures induced inactivation of the p53-mediated stress response. Furthermore, we demonstrated that repeated exposure to UV plus heat induced SIRT1 expression and a decrease in acetylated p53 in keratinocytes, which is consistent with the significant downregulation of p53-regulated pro-apoptotic and DNA damage repair genes in these cells. Our results suggest that UVB-induced p53-mediated cell cycle arrest and apoptosis are reduced in the presence of heat stress, leading to increased survival of DNA damaged cells. Thus, exposure to UVB and heat stress may act synergistically to allow survival of damaged cells, which could have implications for initiation skin carcinogenesis.

  8. Effects of radiofrequency radiation emitted by cellular telephones on the cognitive functions of humans.

    PubMed

    Eliyahu, Ilan; Luria, Roy; Hareuveny, Ronen; Margaliot, Menachem; Meiran, Nachshon; Shani, Gad

    2006-02-01

    The present study examined the effects of exposure to Electromagnetic Radiation emitted by a standard GSM phone at 890 MHz on human cognitive functions. This study attempted to establish a connection between the exposure of a specific area of the brain and the cognitive functions associated with that area. A total of 36 healthy right-handed male subjects performed four distinct cognitive tasks: spatial item recognition, verbal item recognition, and two spatial compatibility tasks. Tasks were chosen according to the brain side they are assumed to activate. All subjects performed the tasks under three exposure conditions: right side, left side, and sham exposure. The phones were controlled by a base station simulator and operated at their full power. We have recorded the reaction times (RTs) and accuracy of the responses. The experiments consisted of two sections, of 1 h each, with a 5 min break in between. The tasks and the exposure regimes were counterbalanced. The results indicated that the exposure of the left side of the brain slows down the left-hand response time, in the second-later-part of the experiment. This effect was apparent in three of the four tasks, and was highly significant in only one of the tests. The exposure intensity and its duration exceeded the common exposure of cellular phone users.

  9. Modeling adverse environmental impacts on the reproductive system.

    PubMed

    Sussman, N B; Mazumdar, S; Mattison, D R

    1999-03-01

    When priority topics are being established for the study of women's health, it is generally agreed that one important area on which to focus research is reproduction. For example, increasing attention has been directed to environmental exposures that disrupt the endocrine system and alter reproduction. These concerns also suggest the need to give greater attention to the use of animal toxicologic testing to draw inferences about human reproductive risks. Successful reproduction requires multiple simultaneous and sequential processes in both the male and female, and the effect of toxicity on reproduction-related processes is time dependent. Currently, however, the risk assessment approach does not allow for the use of multiple processes or for considering the reproductive process response as a function of time. We discuss several issues in modeling exposure effects on reproductive function for risk assessment and present an overview of approaches for reproductive risk assessment. Recommendations are provided for an effective animal study design for determining reproductive risk that addresses optimization of the duration of dosing, observation of the effects of exposure on validated biomarkers, analysis of several biomarkers for complete characterization of the exposure on the underlying biologic processes, the need for longitudinally observed exposure effects, and a procedure for estimating human reproductive risk from the animal findings. An approach to characterizing reproductive toxicity to estimate the increased fertility risks in a dibromochloropropane (DBCP)-exposed human population is illustrated, using several reproductive biomarkers simultaneously from a longitudinal rabbit inhalation study of DBCP and an interspecies extrapolation method.

  10. Nitrogen Dioxide Exposure and Airway Responsiveness in Individuals with Asthma

    EPA Science Inventory

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway r...

  11. ACUTE BEHAVORIAL EFFECTS FROM EXPOSURE TO TWO-STROKE ENGINE EXHAUST

    EPA Science Inventory

    Benefits of changing from two-stroke to four-stroke engines (and other remedial requirements) can be evaluated (monetized) from the standpoint of acute behavioral effects of human exposure to exhaust from these engines. The monetization process depends upon estimates of the magn...

  12. EFFECTS OF DOPAMINERGIC DRUGS ON WORKING AND REFERENCE MEMORY IN RATS

    EPA Science Inventory

    Occupational exposure to styrene monomer has been associated with cognitive dysfunction in humans, and changes in dopaminergic function have been suggested to underly effects of repeated exposure to styrene monomer in animals. his study was designed to determine whether styrene a...

  13. Biomarkers for assessing potential carcinogenic effects of chronic arsenic exposure in Inner Mongolia, CHINA

    EPA Science Inventory

    Arsenic is ubiquitous in the environment. Chronic arsenic exposure via drinking water has been associated. with carcinogenic, cardiovascular, neurological and diabetic effects in humans and has been of great public health concern worldwide. In 2001, U.S. Environmental Protection ...

  14. [ARTCEREB irrigation and perfusion solution for cerebrospinal surgery: pharmacological assessment using human astrocytes exposed to test solutions].

    PubMed

    Nishimura, Masuhiro; Doi, Kazuhisa; Enomoto, Riyo; Lee, Eibai; Naito, Shinsaku; Yamauchi, Aiko

    2009-09-01

    ARTCEREB irrigation and perfusion solution (Artcereb) is a preparation intended for the irrigation and perfusion of the cerebral ventricles, and it is therefore important to evaluate the effects of Artcereb on brain cells. In vitro assessment of the effects of Artcereb in cell cultures of human fetal astrocytes was conducted in comparison with normal saline and lactated Ringer's solution. The effects of exposure to Artcereb were evaluated based on microscopic images of the mitochondria stained with rhodamine 123. The effects of exposure to Artcereb on cell function were also evaluated by quantitative analysis of mitochondrial activity based on rhodamine 123 and (3)H-thymidine incorporation. Morphological changes in nuclear structure were also evaluated. The results of the present study showed that cell function in cell cultures of human astrocytes was relatively unaffected by exposure to Artcereb as compared with normal saline or lactated Ringer's solution, suggesting that Artcereb has less effect on brain cells than normal saline or lactated Ringer's solution when used for the irrigation or perfusion of the cerebral ventricles.

  15. OVERVIEW OF EXPOSURE TO DIOXIN-LIKE COMPOUNDS AND PCBS ON DEVELOPMENTAL, IMMUNOSUPPRESSIVE, AND HORMONE-RELATED EFFECTS IN MAMMALS, INCLUDING HUMANS

    EPA Science Inventory

    Exposure to TCDD and related compounds leads to a plethora of effects in multiple species, tissues and stages of development. The response spectrum ranges from simple biochemical alterations to overtly toxic responses, including lethality. Many of the effects of TCDD and relate...

  16. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity

    USGS Publications Warehouse

    Lefebvre, Kathi A.; Frame, Elizabeth R.; Gulland, Frances; Hansen, John D.; Kendrick, Preston S.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Hiolski, Emma M.; Smith, Donald R.; Marcinek, David J.

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  17. A novel antibody-based biomarker for chronic algal toxin exposure and sub-acute neurotoxicity.

    PubMed

    Lefebvre, Kathi A; Frame, Elizabeth R; Gulland, Frances; Hansen, John D; Kendrick, Preston S; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Hiolski, Emma M; Smith, Donald R; Marcinek, David J

    2012-01-01

    The neurotoxic amino acid, domoic acid (DA), is naturally produced by marine phytoplankton and presents a significant threat to the health of marine mammals, seabirds and humans via transfer of the toxin through the foodweb. In humans, acute exposure causes a neurotoxic illness known as amnesic shellfish poisoning characterized by seizures, memory loss, coma and death. Regular monitoring for high DA levels in edible shellfish tissues has been effective in protecting human consumers from acute DA exposure. However, chronic low-level DA exposure remains a concern, particularly in coastal and tribal communities that subsistence harvest shellfish known to contain low levels of the toxin. Domoic acid exposure via consumption of planktivorous fish also has a profound health impact on California sea lions (Zalophus californianus) affecting hundreds of animals yearly. Due to increasing algal toxin exposure threats globally, there is a critical need for reliable diagnostic tests for assessing chronic DA exposure in humans and wildlife. Here we report the discovery of a novel DA-specific antibody response that is a signature of chronic low-level exposure identified initially in a zebrafish exposure model and confirmed in naturally exposed wild sea lions. Additionally, we found that chronic exposure in zebrafish caused increased neurologic sensitivity to DA, revealing that repetitive exposure to DA well below the threshold for acute behavioral toxicity has underlying neurotoxic consequences. The discovery that chronic exposure to low levels of a small, water-soluble single amino acid triggers a detectable antibody response is surprising and has profound implications for the development of diagnostic tests for exposure to other pervasive environmental toxins.

  18. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  19. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    PubMed

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  20. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  1. Prenatal alcohol exposure affects vasculature development in the neonatal brain.

    PubMed

    Jégou, Sylvie; El Ghazi, Faiza; de Lendeu, Pamela Kwetieu; Marret, Stéphane; Laudenbach, Vincent; Uguen, Arnaud; Marcorelles, Pascale; Roy, Vincent; Laquerrière, Annie; Gonzalez, Bruno José

    2012-12-01

    In humans, antenatal alcohol exposure elicits various developmental disorders, in particular in the brain. Numerous studies focus on the deleterious effects of alcohol on neural cells. Although recent studies suggest that alcohol can affect angiogenesis in adults, the impact of prenatal alcohol exposure on brain microvasculature remains poorly understood. We used a mouse model to investigate effects of prenatal alcohol exposure on the cortical microvascular network in vivo and ex vivo and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF) on activity, plasticity, and survival of microvessels. We used quantitative reverse transcriptase polymerase chain reaction, Western blot, immunohistochemistry, calcimetry, and videomicroscopy. We characterized the effect of prenatal alcohol exposure on the cortical microvascular network in human controls and fetal alcohol syndrome (FAS)/partial FAS (pFAS) patients at different developmental stages. In mice, prenatal alcohol exposure induced a reduction of cortical vascular density, loss of the radial orientation of microvessels, and altered expression of VEGF receptors. Time-lapse experiments performed on brain slices revealed that ethanol inhibited glutamate-induced calcium mobilization in endothelial cells, affected plasticity, and promoted death of microvessels. These effects were prevented by VEGF. In humans, we evidenced a stage-dependent alteration of the vascular network in the cortices of fetuses with pFAS/FAS. Whereas no modification was observed from gestational week 20 (WG20) to WG22, the radial organization of cortical microvessels was clearly altered in pFAS/FAS patients from WG30 to WG38. Prenatal alcohol exposure affects cortical angiogenesis both in mice and in pFAS/FAS patients, suggesting that vascular defects contribute to alcohol-induced brain abnormalities. Copyright © 2012 American Neurological Association.

  2. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines

    PubMed Central

    Zgair, Atheer; Wong, Jonathan CM; Lee, Jong Bong; Mistry, Jatin; Sivak, Olena; Wasan, Kishor M; Hennig, Ivo M; Barrett, David A; Constantinescu, Cris S; Fischer, Peter M; Gershkovich, Pavel

    2016-01-01

    There has been an escalating interest in the medicinal use of Cannabis sativa in recent years. Cannabis is often administered orally with fat-containing foods, or in lipid-based pharmaceutical preparations. However, the impact of lipids on the exposure of patients to cannabis components has not been explored. Therefore, the aim of this study is to elucidate the effect of oral co-administration of lipids on the exposure to two main active cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). In this study, oral co-administration of lipids enhanced the systemic exposure of rats to THC and CBD by 2.5-fold and 3-fold, respectively, compared to lipid-free formulations. In vitro lipolysis was conducted to explore the effect of lipids on the intestinal solubilisation of cannabinoids. More than 30% of THC and CBD were distributed into micellar fraction following lipolysis, suggesting that at least one-third of the administered dose will be available for absorption following co-administration with lipids. Both cannabinoids showed very high affinity for artificial CM-like particles, as well as for rat and human CM, suggesting high potential for intestinal lymphatic transport. Moreover, comparable affinity of cannabinoids for rat and human CM suggests that similar increased exposure effects may be expected in humans. In conclusion, co-administration of dietary lipids or pharmaceutical lipid excipients has the potential to substantially increase the exposure to orally administered cannabis and cannabis-based medicines. The increase in patient exposure to cannabinoids is of high clinical importance as it could affect the therapeutic effect, but also toxicity, of orally administered cannabis or cannabis-based medicines. PMID:27648135

  3. NTP-CERHR monograph on the potential human reproductive and developmental effects of di (2-ethylhexyl) phthalate (DEHP).

    PubMed

    Shelby, Michael D

    2006-11-01

    The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an updated evaluation of the potential for DEHP to cause adverse effects on reproduction and development in humans. The first CERHR expert panel evaluation of DEHP was completed in 2000 by the Phthalates Expert Panel. CERHR selected DEHP for an updated evaluation because of: (1) widespread human exposure, (2) public and government interest in adverse health effects, (3) recently available human exposure studies, and (4) the large number of relevant toxicity papers published since the earlier evaluation. DEHP (CAS RN: 117-81-7) is a high production volume chemical used as a plasticizer of polyvinyl chloride in the manufacture of a wide variety of consumer goods, such as building products, car products, clothing, food packaging, children's products (but not in toys intended for mouthing), and in medical devices made of polyvinyl chloride. The public can be exposed to DEHP by ingesting food, drink or dust that has been in contact with DEHP-containing materials, by inhaling contaminated air or dust, or by undergoing a medical procedure that uses polyvinyl chloride medical tubing or storage bags. It is estimated that the general population of the United States is exposed to DEHP levels ranging from 1 to 30 microg/kg bw/day (micrograms per kilogram body weight per day). The results of this DEHP update evaluation are published in an NTP-CERHR monograph that includes: (1) the NTP Brief, (2) the Expert Panel Update on the Reproductive and Developmental Toxicity of DEHP, and (3) public comments on the expert panel report. The NTP reached the following conclusions on the possible effects of exposure to DEHP on human development and reproduction. Note that the possible levels of concern, from lowest to highest, are negligible concern, minimal concern, some concern, concern, and serious concern. There is serious concern that certain intensive medical treatments of male infants may result in DEHP exposure levels that adversely affect development of the male reproductive tract. DEHP exposure from medical procedures in infants was estimated to be as high as 6000 microg/kg bw/day. There is concern for adverse effects on development of the reproductive tract in male offspring of pregnant and breast feeding women undergoing certain medical procedures that may result in exposure to high levels of DEHP. There is concern for effects of DEHP exposure on development of the male reproductive tract for infants less than one year old. Diet, mouthing of DEHP-containing objects, and certain medical treatments may lead to DEHP exposures that are higher than those experienced by the general population. There is some concern for effects of DEHP exposure on development of the reproductive tract of male children older than one year. As in infants, exposures of children to DEHP may be higher than in the general population. There is some concern for adverse effects of DEHP exposure on development of the male reproductive tract in male offspring of pregnant women not medically exposed to DEHP. Although DEHP exposures are assumed to be the same as for the general population, the developing male reproductive tract is sensitive to the adverse effects of DEHP. There is minimal concern for reproductive toxicity in adults exposed to DEHP at 1 - 30 microg/kg bw/day. This level of concern is not altered for adults medically exposed to DEHP. NTP will transmit the NTP-CERHR Monograph on DEHP to federal and state agencies, interested parties, and the public and it will be available in electronic PDF format on the CERHR web site http://cerhr.niehs.nih.gov and in printed text or CD-ROM from the CERHR.

  4. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  5. Perspectives on repeated low-level blast and the measurement of neurotrauma in humans as an occupational exposure risk

    NASA Astrophysics Data System (ADS)

    Carr, W.; Dell, K. C.; Yanagi, M. A.; Hassan, D. M.; LoPresti, M. L.

    2017-11-01

    A pressing question in military medical research is the nature and degree of effects on the human brain from occupational repeated exposure to low-level explosive blast, but reliable and effective means to objectively measure such effects remain elusive. In survey results, headache, difficulty sleeping, irritability, cognitive impairment, and a variety of other symptoms consistent with post-concussive syndrome have been reported by those exposed to blast and there was positive correlation between degree of blast exposure and degree of symptomology, but an important goal is to obtain more objective evidence of an effect than self-report alone. This review reflects recent efforts to measure and evaluate such hypothesized effects and current recommendations for ongoing study. Optimal measures are likely those with sensitivity and specificity to systemic effects in mild neurotrauma, that have minimal to no volitional component, and that can be sampled relatively quickly with minimal intrusion in prospective, observational field studies during routine training with explosives. An understanding of an association between parameters of exposure to repeated low-level blast and negative neurologic effects would support the evaluation of clinical implications and development of protective equipment and surveillance protocols where warranted. At present, low-level blast exposure surveillance measurements do not exist as a systematic record for any professional community.

  6. Human exposure to cyanotoxins and their effects on health.

    PubMed

    Drobac, Damjana; Tokodi, Nada; Simeunović, Jelica; Baltić, Vladimir; Stanić, Dina; Svirčev, Zorica

    2013-06-01

    Cyanotoxins are secondary metabolites produced by cyanobacteria. They pose a threat to human health and the environment. This review summarises the existing data on human exposure to cyanotoxins through drinking water, recreational activities (e.g., swimming, canoeing or bathing), the aquatic food web, terrestrial plants, food supplements, and haemodialysis. Furthermore, it discusses the tolerable daily intake and guideline values for cyanotoxins (especially microcystins) as well as the need to implement risk management measures via national and international legislation.

  7. Models for mesothelioma incidence following exposure to fibers in terms of timing and duration of exposure and the biopersistence of the fibers.

    PubMed

    Berry, G

    1999-02-01

    The health effects of inhaled fibers are related to the intensity and duration of exposure and occur many years after the exposure. In particular, the incidence of mesothelioma after exposure to asbestos is proportional to the intensity of exposure (fibers per milliliter of air) and the duration of exposure, and to the time that has elapsed since the exposure. The incidence increases with time since exposure to a power of between 3 and 4. The disease process resulting from exposure to fibers in the air is presumably related to the dose of fibers in the lungs, which depends on the exposure level and duration, and also on the size characteristics of the fibers influencing their inhalation and retention in the lungs. Models incorporating these characteristics have been found to be satisfactory in explaining the incidence of mesothelioma over time after exposure to asbestos. Most of the epidemiological modeling has been for occupational exposure to one of the amphibole asbestos types (crocidolite or amosite), for which heavy exposure produces a high incidence of mesothelioma. Occupational exposure to chrysotile asbestos has resulted in a much lower incidence of mesothelioma. Crocidolite asbestos is much more biopersistent than chrysotile asbestos in the sense that after retention in the lungs it is eliminated only slowly (half-time of several years). If fibers are eliminated then the dose in the lungs declines following exposure, and this may influence the disease process. This concept is more important for synthetic mineral fibers, such as glass wool, which are used as a substitute for asbestos. These fibers are much less biopersistent than asbestos, with half-times of weeks or even days. Biopersistence is related to the dissolution of fibers. This is a physical-chemical process that may be expected to proceed at about the same rate in rats and humans. The predicted effect of biopersistence of fibers has been explored using the basic mesothelioma incidence model generalized to include a term representing exponential elimination over time. The influence of solubility of fibers on the mesothelioma rate is 17 times higher in humans than in rats. This is because rats are aging and developing cancer at a much quicker rate than humans, and hence the influence of dissolution is less. Thus, the predicted mesothelioma incidence in humans is highly dependent on the rate of elimination across the range covering asbestos and the more durable synthetic fibers, but in rats a similar dependence occurs at a 17 times higher rate of elimination corresponding to the less durable synthetic fibers. The possible carcinogenic effects of fibers are often determined from animal experiments, but these results suggest that the extrapolation from rats to humans is highly dependent on the biopersistence of fibers, in the situation where the elimination is through dissolution of fibers at a rate independent of species and the speed of the cancer process is species dependent. This implies that relatively soluble fibers that do not produce disease in rat experiments are even less likely to produce disease in humans.

  8. Long-term impacts of unconventional drilling operations on human and animal health.

    PubMed

    Bamberger, Michelle; Oswald, Robert E

    2015-01-01

    Public health concerns related to the expansion of unconventional oil and gas drilling have sparked intense debate. In 2012, we published case reports of animals and humans affected by nearby drilling operations. Because of the potential for long-term effects of even low doses of environmental toxicants and the cumulative impact of exposures of multiple chemicals by multiple routes of exposure, a longitudinal study of these cases is necessary. Twenty-one cases from five states were followed longitudinally; the follow-up period averaged 25 months. In addition to humans, cases involved food animals, companion animals and wildlife. More than half of all exposures were related to drilling and hydraulic fracturing operations; these decreased slightly over time. More than a third of all exposures were associated with wastewater, processing and production operations; these exposures increased slightly over time. Health impacts decreased for families and animals moving from intensively drilled areas or remaining in areas where drilling activity decreased. In cases of families remaining in the same area and for which drilling activity either remained the same or increased, no change in health impacts was observed. Over the course of the study, the distribution of symptoms was unchanged for humans and companion animals, but in food animals, reproductive problems decreased and both respiratory and growth problems increased. This longitudinal case study illustrates the importance of obtaining detailed epidemiological data on the long-term health effects of multiple chemical exposures and multiple routes of exposure that are characteristic of the environmental impacts of unconventional drilling operations.

  9. Toxico-pathological effects in rats induced by lambda-cyhalothrin.

    PubMed

    Dahamna, S; Harzallah, D; Guemache, A; Sekfali, N

    2009-01-01

    Pesticides are widely used chemicals making human exposure to pesticides a realistic possibility. Biomonitoring is a common and useful tool for assessing human exposure to pesticides. Pyrethroids are effective insecticides that are often used in household sprays, aerosol bombs, insect repellents, pet shampoos, and lice treatments. Using products containing these compounds will expose people to these chemicals. Since these compounds frequently are used on crOPs, they are often detected in fruits and vegetables. Biomonitoring of exposure is a useful tool for assessing exposure to pesticides. Biomonitoring involves the measurement of the parent pesticide, its metabolite or reaction product in biological media, typically blood or urine, to determine if an exposure has occurred and the extent of that exposure. Although not without its limitations, biomonitoring has great utility in integrating all routes of exposure allowing for one exposure measurement. Pesticides have much shorter environmental half-lives and tend not to bioaccumulate. In fact, from humans within 24 hr as the parent pesticide, a mercapturic acid detoxification product, oxidative or dealkylation metabolites, and/or glucuronide or sulphate-bound metabolites. However, because of the heavy agricultural and residential use of these chemicals, humans are continually exposed to many of these chemicals. The objective of the present study was to explore modification in toxico-pathological responses of rats treated with lambda-cyhalothrin (commercially called karate). Rats (250 g weight), were gavaged by 1/100 LD50 for 4 weeks (one dose every week). Blood was collected before dosing and after 48 hours from the treatment. Enzyme activities were assayed in the plasma samples obtained. Glutamate oxaloacetate transaminase (GOT), Glutamate pyruvate transaminase (GPT), Alkaline phosphatase (ALPH) and Glucose. The results showed a decrease in RBC; WBC and Hb. This probably explained by the effect of lambda cyhalothrin on the erythropoiesis and the destruction of cells. An increase of plasma enzyme activities in GOT and GPT were recorded, explain a high energy-generating product. The histopathological results showed alteration on the target organs such as liver and kidney, these biochemical and histological modifications are probably due to the effect of lambda cyhalothrin or their metabolites.

  10. 20171015 - Integrating Toxicity, Toxicokinetic, and Exposure Data for Risk-based Chemical Alternatives Assessment (ISES)

    EPA Science Inventory

    In order to predict the margin between the dose needed for adverse chemical effects and actual human exposure rates, data on hazard, exposure, and toxicokinetics are needed. In vitro methods, biomonitoring, and mathematical modeling have provided initial estimates for many extant...

  11. Gene expression profiles in the cerebellum and hippocampus following exposure to a neurotoxicant, Aroclor 1254: Developmental effects.

    EPA Science Inventory

    The developmental consequences of exposure to the polychlorinated biphenyls (PCBs) have been widely studied, making PCBs a unique model to understand issues related to environmental mixture of persistent chemicals. PCB exposure in humans adversely affects neurocognitive developm...

  12. EXPOSURE-DOSE-RESPONSE MODELING OF THE NEUROTOXIC EFFECTS OF ORGANIC SOLVENTS.

    EPA Science Inventory

    Risk assessments based on exposure to volatile organic compounds (VOCs) are hampered by the complexities of exposure scenarios, a lack of data regarding the mode of action of the VOCs, and uncertainties about extrapolating from animal data to human health risk. We are developing ...

  13. Oral exposure to polystyrene nanoparticles effects iron absorption

    USDA-ARS?s Scientific Manuscript database

    The use of engineered nanoparticles in food and pharmaceuticals is expected to increase, but the impact of chronic oral exposure to nanoparticles on human health remains unknown. Here, we show that chronic and acute oral exposure to polystyrene nanoparticles can influence iron uptake and iron trans...

  14. Approach and Issues Relating to Shield Material Design to Protect Astronauts from Space Radiation

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.

    2001-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.

  15. Mapping the spatio-temporal risk of lead exposure in apex species for more effective mitigation

    PubMed Central

    Mateo-Tomás, Patricia; Olea, Pedro P.; Jiménez-Moreno, María; Camarero, Pablo R.; Sánchez-Barbudo, Inés S.; Rodríguez Martín-Doimeadios, Rosa C.; Mateo, Rafael

    2016-01-01

    Effective mitigation of the risks posed by environmental contaminants for ecosystem integrity and human health requires knowing their sources and spatio-temporal distribution. We analysed the exposure to lead (Pb) in griffon vulture Gyps fulvus—an apex species valuable as biomonitoring sentinel. We determined vultures' lead exposure and its main sources by combining isotope signatures and modelling analyses of 691 bird blood samples collected over 5 years. We made yearlong spatially explicit predictions of the species risk of lead exposure. Our results highlight elevated lead exposure of griffon vultures (i.e. 44.9% of the studied population, approximately 15% of the European, showed lead blood levels more than 200 ng ml−1) partly owing to environmental lead (e.g. geological sources). These exposures to environmental lead of geological sources increased in those vultures exposed to point sources (e.g. lead-based ammunition). These spatial models and pollutant risk maps are powerful tools that identify areas of wildlife exposure to potentially harmful sources of lead that could affect ecosystem and human health. PMID:27466455

  16. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells.

    PubMed

    Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu

    2016-10-02

    Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.

  17. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells

    PubMed Central

    Huang, Haishan; Zhu, Junlan; Li, Yang; Zhang, Liping; Gu, Jiayan; Xie, Qipeng; Jin, Honglei; Che, Xun; Li, Jingxia; Huang, Chao; Chen, Lung-Chi; Lyu, Jianxin; Gao, Jimin; Huang, Chuanshu

    2016-01-01

    ABSTRACT Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure. PMID:27467530

  18. Cellular and Molecular Effect of MEHP Involving LXRα in Human Fetal Testis and Ovary

    PubMed Central

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N’Tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Background Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Methodology/Principal Findings Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10−4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. Conclusions/Significance We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells. PMID:23118965

  19. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    PubMed

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N'tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  20. Considerations for human exposure standards for fast-rise-time high-peak-power electromagnetic pulses.

    PubMed

    Merritt, J H; Kiel, J L; Hurt, W D

    1995-06-01

    Development of new emitter systems capable of producing high-peak-power electromagnetic pulses with very fast rise times and narrow pulse widths is continuing. Such directed energy weapons systems will be used in the future to defeat electronically vulnerable targets. Human exposures to these pulses can be expected during testing and operations. Development of these technologies for radar and communications purposes has the potential for wider environmental exposure, as well. Current IEEE C95.1-1991 human exposure guidelines do not specifically address these types of pulses, though limits are stated for pulsed emissions. The process for developing standards includes an evaluation of the relevant bioeffects data base. A recommendation has been made that human exposure to ultrashort electromagnetic pulses that engender electromagnetic transients, called precursor waves, should be avoided. Studies that purport to show the potential for tissue damage induced by such pulses were described. The studies cited in support of the recommendation were not relevant to the issues of tissue damage by propagated pulses. A number of investigations are cited in this review that directly address the biological effects of electromagnetic pulses. These studies have not shown evidence of tissue damage as a result of exposure to high-peak-power pulsed microwaves. It is our opinion that the current guidelines are sufficiently protective for human exposure to these pulses.

  1. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure.

    PubMed

    Calderon-Gierszal, Esther L; Prins, Gail S

    2015-01-01

    Studies using rodent and adult human prostate stem-progenitor cell models suggest that developmental exposure to the endocrine disruptor Bisphenol-A (BPA) can predispose to prostate carcinogenesis with aging. Unknown at present is whether the embryonic human prostate is equally susceptible to BPA during its natural developmental window. To address this unmet need, we herein report the construction of a pioneer in vitro human prostate developmental model to study the effects of BPA. The directed differentiation of human embryonic stem cells (hESC) into prostatic organoids in a spatial system was accomplished with precise temporal control of growth factors and steroids. Activin-induced definitive endoderm was driven to prostate specification by combined exposure to WNT10B and FGF10. Matrigel culture for 20-30 days in medium containing R-Spondin-1, Noggin, EGF, retinoic acid and testosterone was sufficient for mature prostate organoid development. Immunofluorescence and gene expression analysis confirmed that organoids exhibited cytodifferentiation and functional properties of the human prostate. Exposure to 1 nM or 10 nM BPA throughout differentiation culture disturbed early morphogenesis in a dose-dependent manner with 1 nM BPA increasing and 10 nM BPA reducing the number of branched structures formed. While differentiation of branched structures to mature organoids seemed largely unaffected by BPA exposure, the stem-like cell population increased, appearing as focal stem cell nests that have not properly entered lineage commitment rather than the rare isolated stem cells found in normally differentiated structures. These findings provide the first direct evidence that low-dose BPA exposure targets hESC and perturbs morphogenesis as the embryonic cells differentiate towards human prostate organoids, suggesting that the developing human prostate may be susceptible to disruption by in utero BPA exposures.

  2. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  3. Health consequences of exposure to brominated flame retardants: a systematic review.

    PubMed

    Kim, Young Ran; Harden, Fiona A; Toms, Leisa-Maree L; Norman, Rosana E

    2014-07-01

    Brominated flame retardants (BFRs), are chemicals widely used in consumer products including electronics, vehicles, plastics and textiles to reduce flammability. Experimental animal studies have confirmed that these compounds may interfere with thyroid hormone homeostasis and neurodevelopment but to date health effects in humans have not been systematically examined. To conduct a systematic review of studies on the health impacts of exposure to BFRs in humans, with a particular focus on children. A systematic review was conducted using the MEDLINE and EMBASE electronic databases up to 1 February 2012. Published cohort, cross-sectional, and case-control studies exploring the relationship between BFR exposure and various health outcomes were included. In total, 36 epidemiological studies meeting the pre-determined inclusion criteria were included. Plausible outcomes associated with BFR exposure include diabetes, neurobehavioral and developmental disorders, cancer, reproductive health effects and alteration in thyroid function. Evidence for a causal relationship between exposure to BFRs and health outcomes was evaluated within the Bradford Hill framework. Although there is suggestive evidence that exposure to BFRs is harmful to health, further epidemiological investigations particularly among children, and long-term monitoring and surveillance of chemical impacts on humans are required to confirm these relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Illustrative assessment of human health issues arising from the potential release of chemotoxic substances from a generic geological disposal facility for radioactive waste.

    PubMed

    Wilson, James C; Thorne, Michael C; Towler, George; Norris, Simon

    2011-12-01

    Many countries have a programme for developing an underground geological disposal facility for radioactive waste. A case study is provided herein on the illustrative assessment of human health issues arising from the potential release of chemotoxic and radioactive substances from a generic geological disposal facility (GDF) for radioactive waste. The illustrative assessment uses a source-pathway-receptor methodology and considers a number of human exposure pathways. Estimated exposures are compared with authoritative toxicological assessment criteria. The possibility of additive and synergistic effects resulting from exposures to mixtures of chemical contaminants or a combination of radiotoxic and chemotoxic substances is considered. The case study provides an illustration of how to assess human health issues arising from chemotoxic species released from a GDF for radioactive waste and highlights potential difficulties associated with a lack of data being available with which to assess synergistic effects. It also highlights how such difficulties can be addressed.

  5. Electronic cigarettes: human health effects.

    PubMed

    Callahan-Lyon, Priscilla

    2014-05-01

    With the rapid increase in use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigarettes), users and non-users are exposed to the aerosol and product constituents. This is a review of published data on the human health effects of exposure to e-cigarettes and their components. Literature searches were conducted through September 2013 using multiple electronic databases. Forty-four articles are included in this analysis. E-cigarette aerosols may contain propylene glycol, glycerol, flavourings, other chemicals and, usually, nicotine. Aerosolised propylene glycol and glycerol produce mouth and throat irritation and dry cough. No data on the effects of flavouring inhalation were identified. Data on short-term health effects are limited and there are no adequate data on long-term effects. Aerosol exposure may be associated with respiratory function impairment, and serum cotinine levels are similar to those in traditional cigarette smokers. The high nicotine concentrations of some products increase exposure risks for non-users, particularly children. The dangers of secondhand and thirdhand aerosol exposure have not been thoroughly evaluated. Scientific evidence regarding the human health effects of e-cigarettes is limited. While e-cigarette aerosol may contain fewer toxicants than cigarette smoke, studies evaluating whether e-cigarettes are less harmful than cigarettes are inconclusive. Some evidence suggests that e-cigarette use may facilitate smoking cessation, but definitive data are lacking. No e-cigarette has been approved by FDA as a cessation aid. Environmental concerns and issues regarding non-user exposure exist. The health impact of e-cigarettes, for users and the public, cannot be determined with currently available data.

  6. Electronic cigarettes: human health effects

    PubMed Central

    Callahan-Lyon, Priscilla

    2014-01-01

    Objective With the rapid increase in use of electronic nicotine delivery systems (ENDS), such as electronic cigarettes (e-cigarettes), users and non-users are exposed to the aerosol and product constituents. This is a review of published data on the human health effects of exposure to e-cigarettes and their components. Methods Literature searches were conducted through September 2013 using multiple electronic databases. Results Forty-four articles are included in this analysis. E-cigarette aerosols may contain propylene glycol, glycerol, flavourings, other chemicals and, usually, nicotine. Aerosolised propylene glycol and glycerol produce mouth and throat irritation and dry cough. No data on the effects of flavouring inhalation were identified. Data on short-term health effects are limited and there are no adequate data on long-term effects. Aerosol exposure may be associated with respiratory function impairment, and serum cotinine levels are similar to those in traditional cigarette smokers. The high nicotine concentrations of some products increase exposure risks for non-users, particularly children. The dangers of secondhand and thirdhand aerosol exposure have not been thoroughly evaluated. Conclusions Scientific evidence regarding the human health effects of e-cigarettes is limited. While e-cigarette aerosol may contain fewer toxicants than cigarette smoke, studies evaluating whether e-cigarettes are less harmful than cigarettes are inconclusive. Some evidence suggests that e-cigarette use may facilitate smoking cessation, but definitive data are lacking. No e-cigarette has been approved by FDA as a cessation aid. Environmental concerns and issues regarding non-user exposure exist. The health impact of e-cigarettes, for users and the public, cannot be determined with currently available data. PMID:24732161

  7. Advanced medical countermeasures for radiological accidents and nuclear disasters: prevention, prophylaxis, treatment and pre- and post-exposure management.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Countermeasures against nuclear terrorism to prevent or limit the number of irradiated human population or radiation intoxications include early identification of the nuclear terrorism event and all persons which exposed by radiation, decontamination program and procedures, radiation control, and medical countermeasures which include medical diagnosis,differential diagnosis of Acute Radiation Syndromes by Immune Enzyme Assay , pre-exposure vaccination with Human Antiradiation Vaccine, post-exposure specific treatment - de-intoxication with Radiation Antidote IgG (blocking Antiradiation Antibodies). Our Advanced Medical Technology elaborated as a part of effective countermeasure include Plan of Action.Countermeasures against nuclear terrorism to prevent or limit the number of high level of lethality and severe forms of radiation illness or intoxications include A.early identification of the nuclear terrorism event and persons exposed,b. appropriate decontamination, c. radiation control, and d.medical countermeasures and medical management of ARS. Medical countermeasures, which include medical interventions such as active immuneprophylaxis with Human Antiradiation Vaccine , passive immune-prophylaxis with Antiradiation Antitoxins immune-globulins IgG , and chemoprophylaxis - post-exposure antioxidants prophylaxis and antibioticprophylaxis. Medical countermeasures with Antiradiation Vaccine should be initiated before an exposure (if individuals are identified as being at high risk for exposure)but after a confirmed exposure event Antiradiation Vaccine not effective and Antiradiation Antidot IgG must be applyed for treatment of Acute Radiation Syndromes.

  8. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  9. [Human reproduction and environmental risk factors].

    PubMed

    Petrelli, G; Mantovani, A; Menditto, A

    1999-01-01

    Environmental pollution is a great cause of concern, in particular, growing attention is being paid to the potential of many chemicals to affect the reproductive system in humans. The key role of prevention and control of reproductive hazards is recognized world-wide. Many chemicals have been shown to impair fertility and/or prenatal and perinatal development in experimental studies. However, a sufficient evidence of an effect on human reproduction is available for some compounds only. The use of biological markers may improve the assessment of exposure to chemicals, contribute to identify mechanisms of action and put into evidence early, reversible, biological effects. Valid biological markers are also needed in epidemiological studies: without reliable data on the level of current and past exposures it is difficult to establish a causal relationship between a pollutant and the occurrence of adverse health effects. A multidisciplinary approach to risk assessment is required. Priorities for interdisciplinary research on environmental chemicals and reproduction include the identification of susceptible population subgroups and risk assessment of exposure to multiple chemicals.

  10. NTP-CERHR monograph on the potential human reproductive and developmental effects of amphetamines.

    PubMed

    2005-07-01

    The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for amphetamines to cause adverse effects on reproduction and development in humans. Amphetamines evaluated were D- and D,L-amphetamine and methamphetamine. Amphetamine is approved by the U.S. Food and Drug Administration for the treatment of attention deficit hyperactivity disorder (ADHD) in persons over 3 years of age and narcolepsy; methamphetamine is approved for the treatment of ADHD in persons 6 years of age and older and for short-term treatment of obesity. Amphetamines were selected for evaluation because of 1) widespread usage in children, 2) availability of developmental studies in children and experimental animals, and 3) public concern about the effect of this stimulant on child development. The results of this evaluation on amphetamines are published in an NTP-CERHR monograph which includes: 1) the NTP Brief, 2) the Expert Panel Report on the Reproductive and Developmental Toxicity of Methylphenidate, and 3) public comments received on the Expert Panel Report. As stated in the NTP Brief, the NTP reached the following conclusions regarding the possible effects of exposure to methylphenidate on human development and reproduction. First, there is some concern for developmental effects, specifically for potential neurobehavioral alterations, from prenatal amphetamine exposure in humans both in therapeutic and non-therapeutic settings. After prenatal exposure to therapeutic doses of amphetamine, rat pups demonstrated neurobehavioral alterations. Data from human and animal studies were judged insufficient for an evaluation of the effect of amphetamine exposure on growth and other related developmental effects. Second, there is concern for methamphetamine-induced adverse developmental effects, specifically on growth and neurobehavioral development, in therapeutic and non-therapeutic settings. This conclusion is based on evidence from studies in experimental animals that prenatal and postnatal exposures to methamphetamine produce neurobehavioral alterations, small litter size, and low birth weight. Results from studies in humans suggest that methamphetamine may cause low birth weight and shortened gestation, but study confounders such as possible multiple drug usage prevent a definite conclusion. NTP-CERHR monographs are transmitted to federal and state agencies, interested parties, and the public and are available in electronic PDF format on the CERHR web site (http://cerhr.niehs.nih.gov) and in printed text or CD-ROM from the CERHR (National Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-32, Research Triangle Park, NC; fax: 919-316-4511).

  11. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs.

    PubMed Central

    Brouwer, A; Longnecker, M P; Birnbaum, L S; Cogliano, J; Kostyniak, P; Moore, J; Schantz, S; Winneke, G

    1999-01-01

    This article addresses issues related to the characterization of endocrine-related health effects resulting from low-level exposures to polychlorinated biphenyls (PCBs). It is not intended to be a comprehensive review of the literature but reflects workshop discussions. "The Characterizing the Effects of Endocrine Disruptors on Human Health at Environmental Exposure Levels," workshop provided a forum to discuss the methods and data needed to improve risk assessments of endocrine disruptors. This article contains an overview of endocrine-related (estrogen and thyroid system) interactions and other low-dose effects of PCBs. The data set on endocrine effects includes results obtained from mechanistic methods/ and models (receptor based, metabolism based, and transport protein based), as well as from (italic)in vivo(/italic) models, including studies with experimental animals and wildlife species. Other low-dose effects induced by PCBs, such as neurodevelopmental and reproductive effects and endocrine-sensitive tumors, have been evaluated with respect to a possible causative linkage with PCB-induced alterations in endocrine systems. In addition, studies of low-dose exposure and effects in human populations are presented and critically evaluated. A list of conclusions and recommendations is included. PMID:10421775

  12. Brominated flame retardants as possible endocrine disrupters.

    PubMed

    Darnerud, P O

    2008-04-01

    Brominated flame retardants (BFR) are endocrine disrupters in experimental systems, both in vitro and in vivo. Although BFR effects on thyroid hormones are well confirmed, studies of effects on oestrogen/androgen systems are fewer but today growing in numbers. The effects of BFR on other hormone systems are still unknown. Hormonal effect levels in animals start from ca 1 mg/kg b.w., but there are exceptions: effects on spermatogenesis, suggesting hormonal causes, have been observed at a low dose (60 microg/kg b.w.) of a polybrominated diphenyl ether (PBDE) congener, BDE-99. It could be concluded that hormonal effects are of importance in risk assessment, and in some cases where effects are seen at low levels safety margins may be insufficient. One additional uncertainty is the lack of reliable human data that could be used to support animal BFR observations. In spite of the recent regulation of PBDE production, levels of both PBDE and of other BFR groups are still present in environmental samples. Thus, we have to deal with the possible effects of human BFR exposure for times to come. In order to reduce BFR exposure, the routes of exposure should be carefully examined and ways to reduce levels in major exposure routes considered.

  13. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Di-n-Butyl Phthalate (DBP).

    PubMed

    2003-04-01

    TThe National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for di-n-butyl phthalate (DBP) to cause adverse effects on reproduction and development in humans. DBP is one of 7 phthalate chemicals evaluated by the NTP CERHR Phthalates Expert Panel. These phthalates were selected for evaluation because of high production volume, extent of human exposures, use in children's products, and/or published evidence of reproductive or developmental toxicity. Unlike many phthalates, DBP is not currently used as a plasticizer in polyvinyl chloride plastics. DBP is a component of latex adhesives and is used in cosmetics and other personal care products, as a plasticizer in cellulose plastics, and as a solvent for dyes. The results of this evaluation on DBP are published in a NTP-CERHR monograph which includes: 1) the NTP Brief, 2) the Expert Panel Report on the Reproductive and Developmental Toxicity of Di-n-Butyl Phthalate, and 3) public comments received on the Expert Panel Report. As stated in the NTP Brief, the NTP reached the following conclusions regarding the possible effects of exposure to DBP on human development and reproduction. First, although DBP could possibly affect human reproduction and development if exposures are sufficiently high, the NTP concludes that there is negligible concern for reproductive toxicity in exposed adults. Second, the NTP concludes that there is minimal concern for developmental effects when pregnant women are exposed to DBP levels estimated by the panel (2-10 mug/kg body weight/day). There is no direct evidence that exposure of people to DBP adversely affects reproduction or development, but studies reviewed by the expert panel show that oral exposure to high doses of DBP (>/=100 mg/kg body weight/day) may adversely affect the prenatal and early postnatal development in rodents. Finally, based on exposure estimates in women of reproductive age, the NTP concludes that there is some concern for DBP causing adverse effects to human development, particularly development of the male reproductive system. NTP-CERHR monographs are transmitted to federal and state agencies, interested parties, and the public and are available electronically in PDF format on the CERHR web site (http://cerhr.niehs.nih.gov) and in printed text or CD-ROM from the CERHR (National Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-32, Research Triangle Park, NC; fax: 919-316-4511).

  14. NEUROBEHAVIORAL EFFECTS OF CHRONIC DIETARY AND REPEATED HIGH-LEVEL SPIKE EXPOSURE TO CHLORPYRIFOS IN RATS.

    EPA Science Inventory

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult rats were maintained on a chlorpyrifos-containing diet to p...

  15. ENVIRONMENTAL EXPOSURES TO CHLOROPHENOXY HERBICIDES AND ASSOCIATION WITH ADVERSE HUMAN HEALTH EFFECTS: EXAMPLE OF THE NEED FOR BETTER METHODS

    EPA Science Inventory

    Previous studies have made the following observations: newly emerging global patterns of disease have been observed, and environmental exposures have been implicated. Ecologic studies are fundamental for the identification of public health problems. Some level of exposure in a...

  16. Progress in High Throughput Exposure Assessment for Prioritizing Human Exposure to Environmental Chemicals (SRA)

    EPA Science Inventory

    For thousands of chemicals in commerce, there is little or no information about exposure or health and ecological effects. The US Environmental Protection Agency (USEPA) has ongoing research programs to develop and evaluate models that use the often minimal chemical information a...

  17. Environmental noise and human prenatal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, L.M.

    1981-09-01

    To determine whether chronic exposure to relatively loud noise has demonstrable biological effects in humans, a study was conducted on the effect of mother's exposure to airport noise while pregnant, and of social and biological characteristics of the family upon birthweight and gestation length. The sample of births was drawn from a community located adjacent to an international airport in the U.S., where noise levels had been measured previously. Mother's noise exposure was based upon noise levels near her residence in the community while she was pregnant. Data from 115 births were used, these being from mothers whose noise exposuremore » history was most complete throughout the pregnancy. Using multivariate analysis to correct for family characteristics, the partial correlation coefficient for noise exposure and gestation length was negative, large, and significant in girls (r . -0.49, p less than 0.001). In boys the partial correlation coefficient was also negative but was smaller and did not quite reach statistical significance. Partial correlations with birthweight were smaller in both boys and girls and not significant. These results agree best with previous studies that suggest that noise may reduce prenatal growth. The size of the observed effects may be related to a conservative research design biased towards underestimation, as well as to the real effects of noise upon human prenatal growth.« less

  18. Systematic review of community health impacts of mountaintop removal mining.

    PubMed

    Boyles, Abee L; Blain, Robyn B; Rochester, Johanna R; Avanasi, Raghavendhran; Goldhaber, Susan B; McComb, Sofie; Holmgren, Stephanie D; Masten, Scott A; Thayer, Kristina A

    2017-10-01

    The objective of this evaluation is to understand the human health impacts of mountaintop removal (MTR) mining, the major method of coal mining in and around Central Appalachia. MTR mining impacts the air, water, and soil and raises concerns about potential adverse health effects in neighboring communities; exposures associated with MTR mining include particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), metals, hydrogen sulfide, and other recognized harmful substances. A systematic review was conducted of published studies of MTR mining and community health, occupational studies of MTR mining, and any available animal and in vitro experimental studies investigating the effects of exposures to MTR-mining-related chemical mixtures. Six databases (Embase, PsycINFO, PubMed, Scopus, Toxline, and Web of Science) were searched with customized terms, and no restrictions on publication year or language, through October 27, 2016. The eligibility criteria included all human population studies and animal models of human health, direct and indirect measures of MTR-mining exposure, any health-related effect or change in physiological response, and any study design type. Risk of bias was assessed for observational and experimental studies using an approach developed by the National Toxicology Program (NTP) Office of Health Assessment and Translation (OHAT). To provide context for these health effects, a summary of the exposure literature is included that focuses on describing findings for outdoor air, indoor air, and drinking water. From a literature search capturing 3088 studies, 33 human studies (29 community, four occupational), four experimental studies (two in rat, one in vitro and in mice, one in C. elegans), and 58 MTR mining exposure studies were identified. A number of health findings were reported in observational human studies, including cardiopulmonary effects, mortality, and birth defects. However, concerns for risk of bias were identified, especially with respect to exposure characterization, accounting for confounding variables (such as socioeconomic status), and methods used to assess health outcomes. Typically, exposure was assessed by proximity of residence or hospital to coal mining or production level at the county level. In addition, assessing the consistency of findings was challenging because separate publications likely included overlapping case and comparison groups. For example, 11 studies of mortality were conducted with most reporting higher rates associated with coal mining, but many of these relied on the same national datasets and were unable to consider individual-level contributors to mortality such as poor socioeconomic status or smoking. Two studies of adult rats reported impaired microvascular and cardiac mitochondrial function after intratracheal exposure to PM from MTR-mining sites. Exposures associated with MTR mining included reports of PM levels that sometimes exceeded Environmental Protection Agency (EPA) standards; higher levels of dust, trace metals, hydrogen sulfide gas; and a report of increased public drinking water violations. This systematic review could not reach conclusions on community health effects of MTR mining because of the strong potential for bias in the current body of human literature. Improved characterization of exposures by future community health studies and further study of the effects of MTR mining chemical mixtures in experimental models will be critical to determining health risks of MTR mining to communities. Without such work, uncertainty will remain regarding the impact of these practices on the health of the people who breathe the air and drink the water affected by MTR mining. Published by Elsevier Ltd.

  19. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms

    PubMed Central

    Burke, Richard D.; Todd, Spencer W.; Lumsden, Eric; Mullins, Roger J.; Mamczarz, Jacek; Fawcett, William P.; Gullapalli, Rao P.; Randall, William R.; Pereira, Edna F. R.; Albuquerque, Edson X.

    2017-01-01

    Organophosphorus (OP) insecticides are pest-control agents heavily used worldwide. Unfortunately, they are also well known for the toxic effects that they can trigger in humans. Clinical manifestations of an acute exposure of humans to OP insecticides include a well-defined cholinergic crisis that develops as a result of the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes the neurotransmitter acetylcholine (ACh). Prolonged exposures to levels of OP insecticides that are insufficient to trigger signs of acute intoxication, which are hereafter referred to as subacute exposures, have also been associated with neurological deficits. In particular, epidemiological studies have reported statistically significant correlations between prenatal subacute exposures to OP insecticides, including chlorpyrifos, and neurological deficits that range from cognitive impairments to tremors in childhood. The primary objectives of this article are: (i) to address the short- and long-term neurological issues that have been associated with acute and subacute exposures of humans to OP insecticides, especially early in life (ii) to discuss the translational relevance of animal models of developmental exposure to OP insecticides, and (iii) to review mechanisms that are likely to contribute to the developmental neurotoxicity of OP insecticides. Most of the discussion will be focused on chlorpyrifos, the top-selling OP insecticide in the United States and throughout the world. These points are critical for the identification and development of safe and effective interventions to counter and/or prevent the neurotoxic effects of these chemicals in the developing brain. PMID:28791702

  20. Supplement to the Second Addendum (1986) to Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982): Assessment of New Findings on Sulfur Dioxide and Acute Exposure Health Effects in Asthmatic Individuals (1994)

    EPA Science Inventory

    The present Supplement to the Second Addendum (1986) to the document Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982) focuses on evaluation of newly available controlled human exposure studies of acute (a\\1h) sulfur dioxide (SO2) exposure effects on pulmonary ...

  1. The Effect of Toxic Cyanobacteria on Human and Animal Health

    EPA Science Inventory

    The study of environmental health typically focuses on human populations. However, companion animals, livestock and wildlife also experience adverse health effects from environmental pollutants. Animals may experience direct exposure to pollutants unlike people in most ambient ex...

  2. Effects of methanol vapor on human neurobehavioral measures. Research report, Jul 88-Oct 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, M.R.; Bergman, F.J.; Cohen, H.D.

    1991-01-01

    Methanol may become an important alternative fuel for vehicles in the near future. The objective of the preliminary study was to determine if inhalation exposure to methanol, near the maximum concentration allowed for an eight-hour average exposure in the workplace (200 ppm), would have adverse effects on human neurobehavioral functions. Twelve healthy young men were exposed twice to filtered air and twice to 192 ppm methanol vapors for 75 minutes on different days under double-blind conditions. Twenty-two neurobehavioral and neurophysiological tests were administered before, during, and after exposure to measure visual, behavioral, reasoning, and hearing functions. Exposure to methanol producedmore » significant increases in blood and urine methanol concentration at the end of the exposure period. As expected, no changes in plasma formate were observed. Methanol exposure had no effect on the subjects' performance on most of the tests. However, some methanol-exposed subjects reported more fatigue and lack of concentration. Performance was also slightly impaired on the Sternberg memory task. There were also changes in the latency of the P200 component of the visual- and auditory-event related potential. These effects were small and did not exceed the range of results measured in filtered air-exposed subjects.« less

  3. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    PubMed

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Effects of m-xylene on human equilibrium measured with a quantitative method.

    PubMed

    Savolainen, K; Linnavuo, M

    1979-04-01

    Swaying during normal upright posture in 17 young males and the effects of m-xylene exposure on the body sway of six of the 17 has been studied by a quantitative Romberg test, conducted with an equipment consisting of a strain gauge transducer platform and of an electronic unit. The exposures were conducted in a dynamic exposure chamber. The sway of the 17 subjects was larger when their eyes were closed than when they were open (P less than 0.001) indicating the importance of vision in the control of body balance. Exposure to a time-weighted average (TWA) concentration of 100 p.p.m. (4.1 mumol/l) of xylene with 200 p.p.m. (8.2 mumol/l) peaks had no observable effect on the body balance of the six subjects. Exposure to a TWA concentration of 200 p.p.m. of xylene with 400 p.p.m. (16.4 mumol/l) peaks--the corresponding mean concentration of xylene in venous blood being 29.1 +/- 3.2 mumol/l--clearly impaired the body balance of the six subjects. The impairment was most pronounced with the eyes closed (P = 0.016). The results suggest that human equilibrium is rather sensitive to effects of exposure to xylene.

  5. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  6. Adverse effects of perinatal nicotine exposure on reproductive outcomes.

    PubMed

    Wong, Michael K; Barra, Nicole G; Alfaidy, Nadia; Hardy, Daniel B; Holloway, Alison C

    2015-12-01

    Nicotine exposure during pregnancy through cigarette smoking, nicotine replacement therapies or e-cigarette use continues to be a widespread public health problem, impacting both fetal and postnatal health. Yet, at this time, there remains limited data regarding the safety and efficacy in using these nicotine products during pregnancy. Notably, reports assessing the effect of nicotine exposure on postnatal health outcomes in humans, including reproductive health, are severely lacking. Our current understanding regarding the consequences of nicotine exposure during pregnancy is limited to a few animal studies, which do not comprehensively address the underlying cellular mechanisms involved. This paper aims to critically review the current knowledge from human and animal studies regarding the direct and indirect effects (e.g. obesity) of maternal nicotine exposure, regardless of its source, on reproductive outcomes in pregnancy and postnatal life. Furthermore, this review highlights several key cellular mechanisms involved in these adverse reproductive deficits including oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. By understanding the interplay of the cellular mechanisms involved, further strategies could be developed to prevent the reproductive abnormalities resulting from exposure to nicotine in utero and influence informed clinical guidelines for pregnant women. © 2015 Society for Reproduction and Fertility.

  7. Amplitude modulation detection by human listeners in reverberant sound fields: Effects of prior listening exposure.

    PubMed

    Zahorik, Pavel; Anderson, Paul W

    2013-01-01

    Previous work [Zahorik et al., POMA, 15, 050002 (2012)] has reported that for both broadband and narrowband noise carrier signals in a simulated reverberant sound field, human sensitivity to amplitude modulation (AM) is higher than would be predicted based on the acoustical modulation transfer function (MTF) of the listening environment. These results may be suggestive of mechanisms that functionally enhance modulation in reverberant listening, although many details of this enhancement effect are unknown. Given recent findings that demonstrate improvements in speech understanding with prior exposure to reverberant listening environments, it is of interest to determine whether listening exposure to a reverberant room might also influence AM detection in the room, and perhaps contribute to the AM enhancement effect. Here, AM detection thresholds were estimated (using an adaptive 2-alternative forced-choice procedure) in each of two listening conditions: one in which consistent listening exposure to a particular room was provided, and a second that intentionally disrupted listening exposure by varying the room from trial-to-trial. Results suggest that consistent prior listening exposure contributes to enhanced AM sensitivity in rooms. [Work supported by the NIH/NIDCD.].

  8. Gestational bisphenol A exposure and testis development.

    PubMed

    Williams, Cecilia; Bondesson, Maria; Krementsov, Dimitry N; Teuscher, Cory

    Virtually all humans are exposed to bisphenol A (BPA). Since BPA can act as a ligand for estrogen receptors, potential hazardous effects of BPA should be evaluated in the context of endogenous estrogenic hormones. Because estrogen is metabolized in the placenta, developing fetuses are normally exposed to very low endogenous estrogen levels. BPA, on the other hand, passes through the placenta and might have distinct adverse consequences during the sensitive stages of fetal development. Testicular gametogenesis and steroidogenesis begin early during fetal development. These processes are sensitive to estrogens and play a role in determining the number of germ stem cells, sperm count, and male hormone levels in adulthood. Although studies have shown a correlation between BPA exposure and perturbed reproduction, a clear consensus has yet to be established as to whether current human gestational BPA exposure results in direct adverse effects on male genital development and reproduction. However, studies in animals and in vitro have provided direct evidence for the ability of BPA exposure to influence male reproductive development. This review discusses the current knowledge of potential effects of BPA exposure on male reproductive health and whether gestational exposure adversely affects testis development.

  9. Phthalates and other additives in plastics: human exposure and associated health outcomes

    PubMed Central

    Meeker, John D.; Sathyanarayana, Sheela; Swan, Shanna H.

    2009-01-01

    Concern exists over whether additives in plastics to which most people are exposed, such as phthalates, bisphenol A or polybrominated diphenyl ethers, may cause harm to human health by altering endocrine function or through other biological mechanisms. Human data are limited compared with the large body of experimental evidence documenting reproductive or developmental toxicity in relation to these compounds. Here, we discuss the current state of human evidence, as well as future research trends and needs. Because exposure assessment is often a major weakness in epidemiological studies, and in utero exposures to reproductive or developmental toxicants are important, we also provide original data on maternal exposure to phthalates during and after pregnancy (n = 242). Phthalate metabolite concentrations in urine showed weak correlations between pre- and post-natal samples, though the strength of the relationship increased when duration between the two samples decreased. Phthalate metabolite levels also tended to be higher in post-natal samples. In conclusion, there is a great need for more human studies of adverse health effects associated with plastic additives. Recent advances in the measurement of exposure biomarkers hold much promise in improving the epidemiological data, but their utility must be understood to facilitate appropriate study design. PMID:19528058

  10. Dietary Supplementation with Olive Oil or Fish Oil and Vascular Effects of Concentrated Ambient Particulate Matter Exposure in Human Volunteers

    EPA Science Inventory

    Background: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for cardiovascular disease. Olive oil (OO) and fish oil (FO) supplements have beneficial effects on endothelial function. Objective: In this study we evaluated the efficacy of...

  11. COHORT STUDIES OF HEALTH EFFECTS AMONG PEOPLE EXPOSED TO ESTUARINE WATERS: NORTH CAROLINA, VIRGINIA, AND MARYLAND. (R827084)

    EPA Science Inventory

    A variety of human symptoms have been associated with exposure to the dinoflagellate
    Pfiesteria and have been grouped together into a syndrome termed "possible estuary-associated
    syndrome," Prospective cohort studies of health effects associated with exposure to estuarine w...

  12. Safety of High Speed Guided Ground Transportation Systems - The Biological Effects of Maglev Magnetic Field Exposures

    DOT National Transportation Integrated Search

    1993-08-01

    This report describes selected biological effects on transformed human cell lines and on rats from exposure to simulated : maglev magnetic fields (MFs). Rats (n = 6 per group) were exposed at various times throughout the 24-h day to MFs : simulating ...

  13. Acute ozone (O3) -induced impairment of glucose regulation: Age-related and temporal changes

    EPA Science Inventory

    O3 is associated with adverse cardiopulmonary health effects in humans and is thought to produce metabolic effects, such as insulin resistance. Recently, we showed that episodic O3 exposure increased insulin levels in aged rats. We hypothesized that O3 exposure could impair gluc...

  14. Acute and Subchronic Toxicity of Inhaled Toluene in Male Long-Evans Rats: Oxidative Stress Markers in Brain

    EPA Science Inventory

    The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute an...

  15. 75 FR 27784 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees from Westinghouse Electric Corp...

  16. 77 FR 15759 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  17. 75 FR 67364 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from the Blockson Chemical...

  18. 77 FR 60438 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  19. 76 FR 7852 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from Texas City Chemicals...

  20. 77 FR 60437 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  1. 77 FR 69845 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  2. 78 FR 70949 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  3. 78 FR 21955 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  4. 78 FR 21954 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  5. 75 FR 27784 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees from Lawrence Livermore...

  6. 76 FR 59701 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from the Sandia National...

  7. 75 FR 27784 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees at the Lawrence Berkeley...

  8. 77 FR 15759 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... Services (HHS). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision...

  9. 76 FR 7852 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from BWX Technologies, Inc...

  10. Exposure to Mobile Phone Radiation Opens New Horizons in Alzheimer’s Disease Treatment

    PubMed Central

    Mortazavi, SAR; Shojaei-Fard, MB; Haghani, M; Shokrpour, N; Mortazavi, SMJ

    2013-01-01

    Alzheimer’s disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer’s disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer’s disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease. PMID:25505755

  11. Exposure to mobile phone radiation opens new horizons in Alzheimer's disease treatment.

    PubMed

    Mortazavi, Sar; Shojaei-Fard, Mb; Haghani, M; Shokrpour, N; Mortazavi, Smj

    2013-09-01

    Alzheimer's disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer's disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer's disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease.

  12. Modelling ecological and human exposure to POPs in Venice lagoon - Part II: Quantitative uncertainty and sensitivity analysis in coupled exposure models.

    PubMed

    Radomyski, Artur; Giubilato, Elisa; Ciffroy, Philippe; Critto, Andrea; Brochot, Céline; Marcomini, Antonio

    2016-11-01

    The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of large exposure models where a significant number of parameters and complex exposure scenarios might be involved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The 'Phytoplankton', 'Aquatic Invertebrate', 'Fish', 'Human intake' and PBPK models available in MERLIN-Expo library were integrated to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency), physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water, food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects.

    PubMed

    Sajid, Muhammad; Ilyas, Muhammad; Basheer, Chanbasha; Tariq, Madiha; Daud, Muhammad; Baig, Nadeem; Shehzad, Farrukh

    2015-03-01

    Nanotechnology has revolutionized the world through introduction of a unique class of materials and consumer products in many arenas. It has led to production of innovative materials and devices. Despite of their unique advantages and applications in domestic and industrial sectors, use of materials with dimensions in nanometers has raised the issue of safety for workers, consumers, and human environment. Because of their small size and other unique characteristics, nanoparticles have ability to harm human and wildlife by interacting through various mechanisms. We have reviewed the characteristics of nanoparticles which form the basis of their toxicity. This paper also reviews possible routes of exposure of nanoparticles to human body. Dermal contact, inhalation, and ingestion have been discussed in detail. As very limited data is available for long-term human exposures, there is a pressing need to develop the methods which can determine short and long-term effects of nanoparticles on human and environment. We also discuss in brief the strategies which can help to control human exposures to toxic nanoparticles. We have outlined the current status of toxicological studies dealing with nanoparticles, accomplishments, weaknesses, and future challenges.

  14. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    NASA Astrophysics Data System (ADS)

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; D'Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.

  15. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    PubMed Central

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  16. IRIS Toxicological Review of Ammonia Noncancer Inhalation ...

    EPA Pesticide Factsheets

    EPA has finalized the Integrated Risk Information System (IRIS) Assessment of Ammonia (Noncancer Inhalation). This assessment addresses the potential noncancer human health effects from long-term inhalation exposure to ammonia. Now final, this assessment will update the current toxicological information on ammonia posted in 1991. EPA’s program and regional offices may use this assessment to inform decisions to protect human health. EPA completed the Integrated Risk Information System (IRIS) health assessment for ammonia. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.

  17. Pesticides, chemical and industrial exposures in relation to systemic lupus erythematosus

    PubMed Central

    Parks, Christine G.; De Roos, Anneclaire J.

    2013-01-01

    Growing evidence suggests exposure to chemicals and industrial pollutants may increase risk of SLE. Here we review research on SLE associations with occupational and industrial exposures, primarily drawing on studies in human populations and summarizing epidemiologic research published in the past decade. The association of occupational silica exposure with SLE is well established, but key questions remain, including the required dose and susceptibility factors, and SLE risk due to other silicate exposures. Research on SLE and other exposures is less well developed, though several potential associations merit further consideration due to the consistency of preliminary human findings, experimental animal research, and biologic plausibility. These include pesticides and solvents, for which experimental findings also support investigation of specific agents, including organochlorines and trichloroethylene. Experimental findings and biologic plausibility suggest research on SLE and occupational exposure to hydrocarbons (i.e., mineral oils) is warranted, especially given the widespread exposures in the population. Experimental and limited human findings support further investigation of SLE related to mercury exposure, especially in dental occupations. Research on environmental risk factors in risk-enriched cohorts (family based) is recommended, as is further investigation of exposures in relation to intermediate markers of effect (e.g., antinuclear antibodies), clinical features (e.g., nephritis) and outcomes. PMID:24763537

  18. Derivation of an occupational exposure level for manganese in welding fumes.

    PubMed

    Bailey, Lisa A; Kerper, Laura E; Goodman, Julie E

    2018-01-01

    Exposure to high levels of manganese (Mn) in occupational settings is known to lead to adverse neurological effects. Since Mn is an essential nutrient, there are mechanisms that maintain its homeostatic control in the body, and there is some level of Mn in air that does not perturb Mn homeostasis. However, the Mn exposure concentrations at which no adverse effects are expected in occupational settings vary considerably across regulatory agencies. We set out to derive a Mn Occupational Exposure Level (OEL) for welders based on a review of studies that evaluated Mn exposure concentrations from welding fumes and: (1) neurological effects in welders; (2) levels of Mn in the brains of welders (via pallidal index [PI] estimated from magnetic resonance imaging [MRI]); (3) other biomarkers of Mn exposure in welders (i.e., blood and urine); and (4) Mn brain concentrations, PI, and corresponding neurological effects in non-human primates. Our analysis suggests uncertainty in quantifying dose-response associations for Mn from many of the occupational welding studies. The few welding studies that adequately estimate exposure suggest a possible OEL of 100-140μg/m 3 for respirable Mn. This range is consistent with other epidemiology studies, studies of biomarkers of Mn exposure in welders, and with studies in non-human primates, though future studies could provide a stronger basis for deriving a Mn occupational guideline for welders. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Measurement of the exposure of workers to pesticides*

    PubMed Central

    Durham, William F.; Wolfe, Homer R.

    1962-01-01

    There is not a single pesticide for which the interrelationships between occupational exposure by different routes, the fate of the compound in the human body, and its clinical effects are all adequately known. Results of the direct measurement of exposure to pesticides may be used in evaluating the relative hazard of different routes of exposure, different operational procedures, and different protective devices. Results of the indirect measurement of exposure may be of use for the same purpose; in addition, these indirect measures may be used in relating exposures under observed conditions to clinical effects. This paper describes and evaluates detailed procedures for the use of air samples, pads, and washes in the direct measurement of the dermal and respiratory exposure of workers to pesticides. Good methods are not available for measuring oral exposure. Any measure of the absorption, storage, physiological effect, or excretion of a compound constitutes an indirect indication of exposure to it. ImagesFIG. 2 PMID:13888659

  20. Evaluation of the adequacy of published studies of low-dose effects of bisphenol A on the rodent prostate for use in human risk assessment.

    PubMed

    Milman, Harry A; Bosland, Maarten C; Walden, Paul D; Heinze, John E

    2002-06-01

    Studies conducted in our laboratories and by others found no consistent correlation between prostate size, prostate pathology, or the development of prostate cancer under a variety of experimental conditions. Furthermore, an evaluation of eight published studies that were conducted in mice and rats following in utero exposure by oral treatment of dams with low levels of bisphenol A (BPA) and that focused on the prostate identified several discrepancies that affect their adequacy for use in human risk assessment. For example, there was inadequate reporting of the purity of BPA and the animal supplier used, and housing of offspring was not the same among the studies. In addition, there were differences between studies with mice and rats in exposure regimen, route of exposure, and numbers of dams or pups used per BPA dose group. Poor inter- and intraspecies correlation (i.e., mouse to rat or between mouse or rat strains) further complicates the ability to use results from these studies to predict potential prostate effects in humans. Thus, we conclude that a finding of increased prostate weight in rodent studies with perinatal exposure in the absence of associated pathologic and/or functional changes is meaningless and not indicative of a potential adverse effect in humans. Copyright 2002 Elsevier Science (USA)

  1. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Exposure, metabolism, and health effects of arsenic in residents from arsenic-contaminated groundwater areas of Vietnam and Cambodia: a review.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Kubota, Reiji; Inoue, Suguru; Fujihara, Junko; Minh, Tu Binh; Ha, Nguyen Ngoc; Tu, Nguyen Phuc Cam; Trang, Pham Thi Kim; Chamnan, Chhoun; Takeshita, Haruo; Iwata, Hisato; Tuyen, Bui Cach; Viet, Pham Hung; Tana, Touch Seang; Tanabe, Shinsuke

    2010-01-01

    In this review, we summarize the current knowledge on exposure, metabolism, and health effects of arsenic (As) in residents from As-contaminated groundwater areas of Vietnam and Cambodia based on our findings from 2000 and other studies. The health effects of As in humans include severe gastrointestinal disorders, hepatic and renal failure, cardiovascular disturbances, skin pigmentation, hyperkeratosis, and cancers in the lung, bladder, liver, kidney, and skin. Arsenic contamination in groundwater is widely present at Vietnam and Cambodia and the highest As levels are frequently found in groundwater from Cambodia. Sand filter system can reduce As concentration in raw groundwater. The results of hair and urine analyses indicate that residents from these As-contaminated areas are exposed to As. In general, sex, age, body mass index, and As exposure level are significantly associated with As metabolism. Genetic polymorphisms in arsenic (+III) methyltransferase and glutathione-S-transferase isoforms may be influenced As metabolism and accumulation in a Vietnamese population. It is suggested oxidative DNA damage is caused by exposure to As in groundwater from residents in Cambodia. An epidemiologic study on an association of As exposure with human health effects is required in these areas.

  3. Impact assessment of ionizing radiation on human and non-human biota from the vicinity of a near-surface radioactive waste repository.

    PubMed

    Nedveckaite, T; Gudelis, A; Vives i Batlle, J

    2013-05-01

    This work describes the radiological assessment of the near-surface Maisiagala radioactive waste repository (Lithuania) over the period 2005-2012, with focus on water pathways and special emphasis on tritium. The study includes an assessment of the effect of post-closure upgrading, the durability of which is greater than 30 years. Both human and terrestrial non-human biota are considered, with local low-intensity forestry and small farms being the area of concern. The radiological exposure was evaluated using the RESRAD-OFFSITE, RESRAD-BIOTA and ERICA codes in combination with long-term data from a dedicated environmental monitoring programme. All measurements were performed at the Lithuanian Institute of Physics as part of this project. It is determined that, after repository upgrading, radiological exposure to humans are significantly lower than the human dose constraint of 0.2 mSv/year valid in the Republic of Lithuania. Likewise, for non-human biota, dose rates are below the ERICA/PROTECT screening levels. The potential annual effective inhalation dose that could be incurred by the highest-exposed human individual (which is due to tritiated water vapour airborne release over the most exposed area) does not exceed 0.1 μSv. Tritium-labelled drinking water appears to be the main pathway for human impact, representing about 83 % of the exposure. Annual committed effective dose (CED) values for members of the public consuming birch sap as medical practice are calculated to be several orders of magnitude below the CEDs for the same location associated with drinking of well water. The data presented here indicate that upper soil-layer samples may not provide a good indication of potential exposure to terrestrial deep-rooted trees, as demonstrated by an investigation of stratified (3)H in soil moisture, expressed on a wet soil mass basis, in an area with subsurface contamination.

  4. Blood-borne biomarkers and bioindicators for linking exposure to health effects in environmental health science.

    PubMed

    Wallace, M Ariel Geer; Kormos, Tzipporah M; Pleil, Joachim D

    2016-01-01

    Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this "G × E" (gene-environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual's environmental exposures and metabolic responses throughout the person's lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.

  5. Risk assessment of manganese: A comparison of oral and inhalation derivations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, K.A.; Velazquez, S.F.

    1991-03-11

    An oral and inhalation human exposure-response risk assessment was calculated for manganese (Mn) using USEPA methodologies for both oral reference dose (RfD) and inhalation reference concentration (RfC) determination. When ingested, Mn is among the least toxic of the essential trace elements. The RfD for Mn is based on ingestion data from normal human diets, balance studies and neurotoxicity resulting from drinking contaminated well water. From these data, a NOAEL of 0.14 mg/kb/day was estimated. Since the NOAEL was thought to account for human sensitivity and Mn is an essential element required for normal human growth, an uncertainty factor (UF) ofmore » 1 was used resulting in a RfD of 1E-1 mg/kg/day. Although neurotoxic effects are rarely observed from oral exposures, they are more commonly associated with exposure to Mn by inhalation. Toxicity from inhaled Mn results in an increased prevalence of respiratory symptoms, reproductive dysfunction and psychomotor disturbances that can ultimately be expressed in a frank effect of manganism characterized by Parkinson disease-like symptoms. Using data from occupational exposure to in organic Mn, a dose duration adjusted LOAEL of 0.34 mg/m{sup 3} is identified. Application of an UF of 300 results in an RfC of 4E-4 mg/m{sup 3}. The RfD and RfC analyses demonstrate a dichotomous data set of toxicological effects dependent upon the route of exposure to Mn. Furthermore, these analyses demonstrate the unique issues of characterizing toxicological risk assessment for essential trace elements.« less

  6. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment.

    PubMed

    Balbus, John M; Boxall, Alistair B A; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren

    2013-01-01

    Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Copyright © 2012 SETAC.

  7. Differential Response of Human Nasal and Bronchial Epithelial Cells upon Exposure to Size-fractionated Dairy Dust

    PubMed Central

    Hawley, Brie; Schaeffer, Joshua; Poole, Jill A.; Dooley, Gregory P.; Reynolds, Stephen; Volckens, John

    2015-01-01

    Exposure to organic dusts is associated with increased respiratory morbidity and mortality in agricultural workers. Organic dusts in dairy farm environments are complex, polydisperse mixtures of toxic and immunogenic compounds. Previous toxicological studies focused primarily on exposures to the respirable size fraction, however, organic dusts in dairy farm environments are known to contain larger particles. Given the size distribution of dusts from dairy farm environments, the nasal and bronchial epithelia represent targets of agricultural dust exposures. In this study, well-differentiated normal human bronchial epithelial cells and human nasal epithelial cells were exposed to two different size fractions (PM10 and PM>10) of dairy parlor dust using a novel aerosol-to-cell exposure system. Levels of pro-inflammatory transcripts (IL-8, IL-6, and TNF-α) were measured two hr after exposure. Lactate dehydrogenase (LDH) release was also measured as an indicator of cytotoxicity. Cell exposure to dust was measured in each size fraction as a function of mass, endotoxin, and muramic acid levels. To our knowledge, this is the first study to evaluate the effects of distinct size fractions of agricultural dust on human airway epithelial cells. Our results suggest that both PM10 and PM>10 size fractions elicit a pro-inflammatory response in airway epithelial cells and that the entire inhalable size fraction needs to be considered when assessing potential risks from exposure to agricultural dusts. Further, data suggest that human bronchial cells respond differently to these dusts than human nasal cells and, therefore, the two cell types need to be considered separately in airway cell models of agricultural dust toxicity. PMID:25965193

  8. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens.

    PubMed

    Rosenquist, Hanne; Nielsen, Niels L; Sommer, Helle M; Nørrung, Birgit; Christensen, Bjarke B

    2003-05-25

    A quantitative risk assessment comprising the elements hazard identification, hazard characterization, exposure assessment, and risk characterization has been prepared to assess the effect of different mitigation strategies on the number of human cases in Denmark associated with thermophilic Campylobacter spp. in chickens. To estimate the human exposure to Campylobacter from a chicken meal and the number of human cases associated with this exposure, a mathematical risk model was developed. The model details the spread and transfer of Campylobacter in chickens from slaughter to consumption and the relationship between ingested dose and the probability of developing campylobacteriosis. Human exposure was estimated in two successive mathematical modules. Module 1 addresses changes in prevalence and numbers of Campylobacter on chicken carcasses throughout the processing steps of a slaughterhouse. Module 2 covers the transfer of Campylobacter during food handling in private kitchens. The age and sex of consumers were included in this module to introduce variable hygiene levels during food preparation and variable sizes and compositions of meals. Finally, the outcome of the exposure assessment modules was integrated with a Beta-Poisson dose-response model to provide a risk estimate. Simulations designed to predict the effect of different mitigation strategies showed that the incidence of campylobacteriosis associated with consumption of chicken meals could be reduced 30 times by introducing a 2 log reduction of the number of Campylobacter on the chicken carcasses. To obtain a similar reduction of the incidence, the flock prevalence should be reduced approximately 30 times or the kitchen hygiene improved approximately 30 times. Cross-contamination from positive to negative flocks during slaughter had almost no effect on the human Campylobacter incidence, which indicates that implementation of logistic slaughter will only have a minor influence on the risk. Finally, the simulations showed that people in the age of 18-29 years had the highest risk of developing campylobacteriosis.

  9. INHALATION EXPOSURE-RESPONSE METHODOLOGY

    EPA Science Inventory

    The Inhalation Exposure-Response Analysis Methodology Document is expected to provide guidance on the development of the basic toxicological foundations for deriving reference values for human health effects, focusing on the hazard identification and dose-response aspects of the ...

  10. An Investigation on the Effect of Extremely Low Frequency Pulsed Electromagnetic Fields on Human Electrocardiograms (ECGs).

    PubMed

    Fang, Qiang; Mahmoud, Seedahmed S; Yan, Jiayong; Li, Hui

    2016-11-23

    For this investigation, we studied the effects of extremely low frequency pulse electromagnetic fields (ELF-PEMF) on the human cardiac signal. Electrocardiograms (ECGs) of 22 healthy volunteers before and after a short duration of ELF-PEMF exposure were recorded. The experiment was conducted under single-blind conditions. The root mean square (RMS) value of the recorded data was considered as comparison criteria. We also measured and analysed four important ECG time intervals before and after ELF-PEMF exposure. Results revealed that the RMS value of the ECG recordings from 18 participants (81.8% of the total participants) increased with a mean value of 3.72%. The increase in ECG voltage levels was then verified by a second experimental protocol with a control exposure. In addition to this, we used hyperbolic T-distributions (HTD) in the analysis of ECG signals to verify the change in the RR interval. It was found that there were small shifts in the frequency-domain signal before and after EMF exposure. This shift has an influence on all frequency components of the ECG signals, as all spectrums were shifted. It is shown from this investigation that a short time exposure to ELF-PEMF can affect the properties of ECG signals. Further study is needed to consolidate this finding and discover more on the biological effects of ELF-PEMF on human physiological processes.

  11. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    NASA Astrophysics Data System (ADS)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the exposure may provide different recommendations compared to an assessment based on only the outdoor air concentration.

  12. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  13. High-resolution simulations of the thermophysiological effects of human exposure to 100 MHz RF energy

    NASA Astrophysics Data System (ADS)

    Nelson, David A.; Curran, Allen R.; Nyberg, Hans A.; Marttila, Eric A.; Mason, Patrick A.; Ziriax, John M.

    2013-03-01

    Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm-2) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (Tamb = 31 °C, PD = 8 mW cm-2). Skin temperature increases attributable to RF exposure were modest, with the exception of a ‘hot spot’ in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature.

  14. High-resolution simulations of the thermophysiological effects of human exposure to 100 MHz RF energy.

    PubMed

    Nelson, David A; Curran, Allen R; Nyberg, Hans A; Marttila, Eric A; Mason, Patrick A; Ziriax, John M

    2013-03-21

    Human exposure to radio frequency (RF) electromagnetic energy is known to result in tissue heating and can raise temperatures substantially in some situations. Standards for safe exposure to RF do not reflect bio-heat transfer considerations however. Thermoregulatory function (vasodilation, sweating) may mitigate RF heating effects in some environments and exposure scenarios. Conversely, a combination of an extreme environment (high temperature, high humidity), high activity levels and thermally insulating garments may exacerbate RF exposure and pose a risk of unsafe temperature elevation, even for power densities which might be acceptable in a normothermic environment. A high-resolution thermophysiological model, incorporating a heterogeneous tissue model of a seated adult has been developed and used to replicate a series of whole-body exposures at a frequency (100 MHz) which approximates that of human whole-body resonance. Exposures were simulated at three power densities (4, 6 and 8 mW cm(-2)) plus a sham exposure and at three different ambient temperatures (24, 28 and 31 °C). The maximum hypothalamic temperature increase over the course of a 45 min exposure was 0.28 °C and occurred in the most extreme conditions (T(AMB) = 31 °C, PD = 8 mW cm(-2)). Skin temperature increases attributable to RF exposure were modest, with the exception of a 'hot spot' in the vicinity of the ankle where skin temperatures exceeded 39 °C. Temperature increases in internal organs and tissues were small, except for connective tissue and bone in the lower leg and foot. Temperature elevation also was noted in the spinal cord, consistent with a hot spot previously identified in the literature.

  15. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators

    PubMed Central

    Damalas, Christos A.; Eleftherohorinos, Ilias G.

    2011-01-01

    Pesticides are widely used in agricultural production to prevent or control pests, diseases, weeds, and other plant pathogens in an effort to reduce or eliminate yield losses and maintain high product quality. Although pesticides are developed through very strict regulation processes to function with reasonable certainty and minimal impact on human health and the environment, serious concerns have been raised about health risks resulting from occupational exposure and from residues in food and drinking water. Occupational exposure to pesticides often occurs in the case of agricultural workers in open fields and greenhouses, workers in the pesticide industry, and exterminators of house pests. Exposure of the general population to pesticides occurs primarily through eating food and drinking water contaminated with pesticide residues, whereas substantial exposure can also occur in or around the home. Regarding the adverse effects on the environment (water, soil and air contamination from leaching, runoff, and spray drift, as well as the detrimental effects on wildlife, fish, plants, and other non-target organisms), many of these effects depend on the toxicity of the pesticide, the measures taken during its application, the dosage applied, the adsorption on soil colloids, the weather conditions prevailing after application, and how long the pesticide persists in the environment. Therefore, the risk assessment of the impact of pesticides either on human health or on the environment is not an easy and particularly accurate process because of differences in the periods and levels of exposure, the types of pesticides used (regarding toxicity and persistence), and the environmental characteristics of the areas where pesticides are usually applied. Also, the number of the criteria used and the method of their implementation to assess the adverse effects of pesticides on human health could affect risk assessment and would possibly affect the characterization of the already approved pesticides and the approval of the new compounds in the near future. Thus, new tools or techniques with greater reliability than those already existing are needed to predict the potential hazards of pesticides and thus contribute to reduction of the adverse effects on human health and the environment. On the other hand, the implementation of alternative cropping systems that are less dependent on pesticides, the development of new pesticides with novel modes of action and improved safety profiles, and the improvement of the already used pesticide formulations towards safer formulations (e.g., microcapsule suspensions) could reduce the adverse effects of farming and particularly the toxic effects of pesticides. In addition, the use of appropriate and well-maintained spraying equipment along with taking all precautions that are required in all stages of pesticide handling could minimize human exposure to pesticides and their potential adverse effects on the environment. PMID:21655127

  16. The effects of brushing on human enamel surface roughness after NaF gel and theobromine gel exposure

    NASA Astrophysics Data System (ADS)

    Mahardhika, A.; Noerdin, A.; Eriwati, Y. K.

    2017-08-01

    This study aimed to determine the effects of brushing on human enamel surface roughness after different exposure times of 200 mg/L theobromine gel (8, 16, and 32 minutes) and 2% NaF gel (16 minutes). Twenty-four human upper premolars were used and divided into four groups. Group 1 was exposed to 2% NaF gel for 16 minutes. In contrast, groups 2, 3, and 4 were exposed to 200 mg/L theobromine gel for 8 minutes, 16 minutes, and 32 minutes, and each group was then brushed for 9 minutes and 20 seconds. After the treatment, samples were tested using a surface roughness tester (Mitutoyo SJ 301, Japan). The Wilcoxon test showed significant changes (p < 0.05) in roughness values after exposure to the theobromine gel or NaF gel and after brushing for 9 minutes and 20 seconds. It can be concluded that exposure to 200 mg/L theobromine gel or 2% NaF gel can soften the enamel surface and then increase roughness after brushing.

  17. Clinical Evidence for Any Effect of Anesthesia on the Developing Brain.

    PubMed

    Davidson, Andrew J; Sun, Lena S

    2018-04-01

    A recent U.S. Food and Drug Administration warning advised that prolonged or repeated exposure to general anesthetics may affect neurodevelopment in children. This warning is based on a wealth of preclinical animal studies and relatively few human studies. The human studies include a variety of different populations with several different outcome measures. Interpreting the results requires consideration of the outcome used, the power of the study, the length of exposure and the efforts to reduce the confounding effects of comorbidity and surgery. Most, but not all, of the large population-based studies find evidence for associations between surgery in early childhood and slightly worse subsequent academic achievement or increased risk for later diagnosis of a behavioral disability. In several studies, the amount of added risk is very small; however, there is some evidence for a greater association with multiple exposures. These results may be consistent with the preclinical data, but the possibility of confounding means the positive associations can only be regarded as weak evidence for causation. Finally, there is strong evidence that brief exposure is not associated with any long term risk in humans.

  18. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other indoors (leisure activities like shopping areas, gym, theatre/cinema and restaurants). The results show how this developed modelling system can be useful to anticipate air pollution episodes and to estimate their effects on human health on a long-term basis. The two metropolitan areas of Porto and Lisbon are identified as the most critical ones in terms of air pollution effects on human health over Portugal in a long-term as well as in a short-term perspective. The coexistence of high concentration values and high population density is the key factor for these stressed areas. Regarding the 50% emission reduction scenario, the model results are significantly different for both pollutants: there is a small overall reduction in the individual exposure values of PM 10 (<10 μg m -3 h), but for O 3, in contrast, there is an extended area where exposure values increase with emission reduction. This detailed knowledge is a prerequisite for the development of effective policies to reduce the foreseen adverse impact of air pollution on human health and to act on time.

  19. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies.

    PubMed

    Aschberger, Karin; Micheletti, Christian; Sokull-Klüttgen, Birgit; Christensen, Frans M

    2011-08-01

    Production volumes and the use of engineered nanomaterials in many innovative products are continuously increasing, however little is known about their potential risk for the environment and human health. We have reviewed publicly available hazard and exposure data for both, the environment and human health and attempted to carry out a basic risk assessment appraisal for four types of nanomaterials: fullerenes, carbon nanotubes, metals, and metal oxides (ENRHES project 2009(1)). This paper presents a summary of the results of the basic environmental and human health risk assessments of these case studies, highlighting the cross cutting issues and conclusions about fate and behaviour, exposure, hazard and methodological considerations. The risk assessment methodology being the basis for our case studies was that of a regulatory risk assessment under REACH (ECHA, 2008(2)), with modifications to adapt to the limited available data. If possible, environmental no-effect concentrations and human no-effect levels were established from relevant studies by applying assessment factors in line with the REACH guidance and compared to available exposure data to discuss possible risks. When the data did not allow a quantitative assessment, the risk was assessed qualitatively, e.g. for the environment by evaluating the information in the literature to describe the potential to enter the environment and to reach the potential ecological targets. Results indicate that the main risk for the environment is expected from metals and metal oxides, especially for algae and Daphnia, due to exposure to both, particles and ions. The main risks for human health may arise from chronic occupational inhalation exposure, especially during the activities of high particle release and uncontrolled exposure. The information on consumer and environmental exposure of humans is too scarce to attempt a quantitative risk characterisation. It is recognised that the currently available database for both, hazard and exposure is limited and there are high uncertainties in any conclusion on a possible risk. The results should therefore not be used for any regulatory decision making. Likewise, it is recognised that the REACH guidance was developed without considering the specific behaviour and the mode of action of nanomaterials and further work in the generation of data but also in the development of methodologies is required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effects of Pulsed and CW (Continuous Wave) 2450 MHz Radiation on Transformation and Chromosomes of Human Lymphocytes in vitro

    DTIC Science & Technology

    1989-12-15

    conditions of these experiments. In order to provide reliable quantitative data on exposure, a system with automated dosimetry was developed, and tested...exposure system and dosimetry, and (2) studies on lymphocyte cultures, and (3) conclusions. EXPOSURE SYSTEM AND DOSIMETRY Description of the Exposure... System The experiments planned in this project necessitated the design and assembly of an exposure system that would meet several engineering

  1. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin

    NASA Astrophysics Data System (ADS)

    Redon, Christophe E.; Dickey, Jennifer S.; Bonner, William M.; Sedelnikova, Olga A.

    2009-04-01

    Ionizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The cell responds to a nascent DSB through the phosphorylation of thousands of H2AX molecules flanking the damaged site. This highly amplified response can be visualized as a γ-H2AX focus in the chromatin that can be detected in situ with the appropriate antibody. Here we assess the usability of γ-H2AX focus formation as a possible biodosimeter for human exposure to IR using peripheral blood lymphocytes irradiated ex vivo and three-dimensional artificial models of human skin biopsies. In both systems, the tissues were exposed to 0.2-5 Gy, doses of IR that might be realistically encountered in various scenarios such as cancer radiotherapies or accidental exposure to radiation. Since the γ-H2AX response is maximal 30 min after exposure and declines over a period of hours as the cells repair the damage, we examined the time limitations of the useful detectability of γ-H2AX foci. We report that a linear response proportional to the initial radiation dose was obtained 48 and 24 h after exposure in blood samples and skin cells respectively. Thus, detection of γ-H2AX formation to monitor DNA damage in minimally invasive blood and skin tests could be useful tools to determine radiation dose exposure and analyze its effects on humans.

  2. Exposure to an environmentally relevant mixture of brominated flame retardants affects fetal development in Sprague-Dawley rats.

    PubMed

    Berger, Robert G; Lefèvre, Pavine L C; Ernest, Sheila R; Wade, Michael G; Ma, Yi-Qian; Rawn, Dorothea F K; Gaertner, Dean W; Robaire, Bernard; Hales, Barbara F

    2014-06-05

    Brominated flame retardants are incorporated into a wide variety of consumer products and are known to enter into the surrounding environment, leading to human exposure. There is accumulating evidence that these compounds have adverse effects on reproduction and development in humans and animal models. Animal studies have generally characterized the outcome of exposure to a single technical mixture or congener. Here, we determined the impact of exposure of rats prior to mating and during gestation to a mixture representative of congener levels found in North American household dust. Adult female Sprague-Dawley rats were fed a diet containing 0, 0.75, 250 or 750mg/kg of a mixture of flame retardants (polybrominated diphenyl ethers, hexabromocyclododecane) from two weeks prior to mating to gestation day 20. This formulation delivered nominal doses of 0, 0.06, 20 and 60mg/kg body weight/day. The lowest dose approximates high human exposures based on house dust levels and the dust ingestion rates of toddlers. Litter size and resorption sites were counted and fetal development evaluated. No effects on maternal health, litter size, fetal viability, weights, crown rump lengths or sex ratios were detected. The proportion of litters with fetuses with anomalies of the digits (soft tissue syndactyly or malposition of the distal phalanges) was increased significantly in the low (0.06mg/kg/day) dose group. Skeletal analysis revealed a decreased ossification of the sixth sternebra at all exposure levels. Thus, exposure to an environmentally relevant mixture of brominated flame retardants results in developmental abnormalities in the absence of apparent maternal toxicity. The relevance of these findings for predicting human risk is yet to be determined. Copyright © 2014. Published by Elsevier Ireland Ltd.

  3. Ethanol inhibits human bone cell proliferation and function in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friday, K.E.; Howard, G.A.

    1991-06-01

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantlymore » reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol.« less

  4. A QUANTITATIVE COMPARISON OF THE EFFECTS OF ACUTE INHALED TOLUENE IN HUMAN RATS

    EPA Science Inventory

    The effects of acute exposure to toluene have been explored more thoroughly than other hydrocarbon solvents. These effects have been experimentally studied in humans and other species, e.g., rats, as well as in a number of in vitro preparations. The existence ofdosimetric and eff...

  5. Systematic review of the association between oil and natural gas extraction processes and human reproduction.

    PubMed

    Balise, Victoria D; Meng, Chun-Xia; Cornelius-Green, Jennifer N; Kassotis, Christopher D; Kennedy, Rana; Nagel, Susan C

    2016-09-15

    This systematic review identified 45 original published research articles related to oil and gas extraction activities and human reproductive endpoints. Reproductive outcomes were categorized as [1] birth outcomes associated with maternal exposure, [2] semen quality, fertility, and birth outcomes associated with adult paternal exposure, [3] reproductive cancers, and [4] disruption of human sex steroid hormone receptors. The results indicate there is moderate evidence for an increased risk of preterm birth, miscarriage, birth defects, decreased semen quality, and prostate cancer. The quality of the evidence is low and/or inadequate for stillbirth, sex ratio, and birth outcomes associated with paternal exposure, and testicular cancer, female reproductive tract cancers, and breast cancer, and the evidence is inconsistent for an increased risk of low birth weight; therefore, no conclusions can be drawn for these health effects. There is ample evidence for disruption of the estrogen, androgen, and progesterone receptors by oil and gas chemicals, which provides a mechanistic rationale for how exposure to oil and gas activities may increase the health risks we have outlined. The results from this systematic review suggest there is a negative impact on human reproduction from exposure to oil and gas activities. Many of the 45 studies reviewed identified potential human health effects. Most of these studies focused on conventional oil and gas activities. Few studies have been conducted to evaluate the impact of unconventional oil and gas operations on human health. The impact of unconventional oil and gas activities may be greater than that of conventional activity, given that unconventional activities employ many of the same approaches and use dozens of known endocrine-disrupting chemicals in hydraulic fracturing. Copyright © 2016. Published by Elsevier Inc.

  6. Effects of corexit oil dispersants and the WAF of dispersed oil on DNA damage and repair in cultured human bronchial airway cells, BEAS-2B

    PubMed Central

    Major, Danielle; Derbes, Rebecca S.; Wang, He; Roy-Engel, Astrid M.

    2016-01-01

    Large quantities of dispersants were used as a method to disperse the roughly 210 million gallons of spilled crude oil that consumed the Gulf of Mexico. Little is known if the oil-dispersant and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to Corexit dispersants EC9500 and EC9527, Water Accommodated Fraction (WAF) -crude, WAF-9500 + Oil, and WAF-9527 + Oil. Cellular cytotoxicity to WAF-dispersed oil samples was observed at concentrations greater than 1000 ppm with over 70% of observed cellular death. At low concentration exposures (100 and 300 ppm) DNA damage was evidenced by the detection of single strand breaks (SSBs) and double strand breaks (DSBs) as measured by alkaline and neutral comet assay analyses. Immunoblot analyses of the phosphorylated histone H2A.X (ɣ-H2A.X) and tumor suppressor p53 protein confirmed activation of the DNA damage response due to the exposure-induced DNA breaks. Although, many xenobiotics interfere with DNA repair pathways, in vitro evaluation of the nucleotide excision repair (NER) and DSB repair pathways appear to be unaffected by the oil-dispersant mixtures tested. Overall, this study supports that oil-dispersant mixtures induce genotoxic effects in culture. PMID:27563691

  7. 2006 Homeland Security Symposium and Exposition. Held in Arlington, VA on 29-31 March 2006

    DTIC Science & Technology

    2006-03-31

    Consequences , Vulnerabilities, and Threats) Prioritize Implement Protective Programs Measure Effectiveness 9March 2006 Major NIPP Theme: Sector Partnership... effect of exposure • Full understanding of the levels of exposure that mark the onset of miosis • Refined human operational exposure standard for GB...Untitled Document 2006 Homeland Security Symposium and Exposition.html[7/7/2016 11:38:26 AM] 2006 Homeland Security Symposium and Exposition

  8. CARDIOPATHIC EFFECT OF 1,2,3-TRICHLOROPROPANE AFTER SUBACUTE AND SUBCHRONIC EXPOSURE IN RATS

    EPA Science Inventory

    1,2,3-Trichloropropane (1,2,3-TCP) is an industrial water contaminant with potential for human exposure by the oral route. The systemic toxicology of 1,2,3-TCP was evaluated after subacute or subchronic exposure in male and female Sprague Dawley rate. Animals were treated with 0....

  9. THE TIME-COURSE AND SENSITIVITY OF MUCONIC ACID AS A BIOMARKER FOR HUMAN ENVIRONMENTAL EXPOSURE TO BENZENE

    EPA Science Inventory

    Preliminary results are presented that show the effect of an increased benzene exposure on the urinary elimination of trans,trans-muconic acid (MA) for an adult male. These results were generated from a controlled exposure experiment where by an individual was exposed to benzene ...

  10. Exposure to Mexicali PM induces NFkb-Dependent IL-8 Transcriptional Activity in Human Airway Epithelial Cells

    EPA Science Inventory

    Studies have reported associations between exposure to ambient air particulate matter (PM) and increased rates of cardio-pulmonary morbidity and mortality. The aim of this study was to determine the effect of exposure to PM of varying size fractions collected in urban (U) and se...

  11. NEUROBEHAVIORAL EFFECTS OF CHRONIC DIETARY AND REPEATED HIGH-LEVEL SPIKE EXPOSURE TO CHLORPYRIFOS IN RATS.

    EPA Science Inventory

    This study aimed to model long-term subtoxic human exposure to an organophosphorus pesticide, chlorpyrifos, and to examine the influence of that exposure on the response to intermittent high-dose acute challenges. Adult Long-Evans male rats were maintained at 350g body weight by...

  12. SUBCHRONIC TOXICITY OF INHALED TOLUENE IN RATS: IMMUNOLOGY, CARDIAC GENE EXPRESSION AND MARKERS OF OXIDATIVE STRESS.

    EPA Science Inventory

    The health effects of long-term exposure to volatile organic compounds (VOCs) are poorly understood, due primarily to insufficient human exposure data and inconsistent animal models. To develop a rodent model of long-term exposure to VOCs, a sub-chronic inhalation study with mult...

  13. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  14. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts.

    PubMed

    Ewa, Błaszczyk; Danuta, Mielżyńska-Švach

    2017-08-01

    Investigations on the impact of chemicals on the environment and human health have led to the development of an exposome concept. The exposome refers to the totality of exposures received by a person during life, including exposures to life-style factors, from the prenatal period to death. The exposure to genotoxic chemicals and their reactive metabolites can induce chemical modifications of DNA, such as, for example, DNA adducts, which have been extensively studied and which play a key role in chemically induced carcinogenesis. Development of different methods for the identification of DNA adducts has led to adopting DNA adductomic approaches. The ability to simultaneously detect multiple PAH-derived DNA adducts may allow for the improved assessment of exposure, and offer a mechanistic insight into the carcinogenic process following exposure to PAH mixtures. The major advantage of measuring chemical-specific DNA adducts is the assessment of a biologically effective dose. This review provides information about the occurrence of the polycyclic aromatic hydrocarbons (PAHs) and their influence on human exposure and biological effects, including PAH-derived DNA adduct formation and repair processes. Selected methods used for determination of DNA adducts have been presented.

  15. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability.

    PubMed

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Lan Guo, Nancy; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2010-01-01

    Perfluorooctane sulfonate (PFOS) is a member of the perfluoroalkyl acids (PFAA) containing an eight-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are among the strongest in organic chemistry, and PFOS is widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and is persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated that the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level.

  16. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review).

    PubMed

    Gangemi, Silvia; Gofita, Eliza; Costa, Chiara; Teodoro, Michele; Briguglio, Giusi; Nikitovic, Dragana; Tzanakakis, George; Tsatsakis, Aristides M; Wilks, Martin F; Spandidos, Demetrios A; Fenga, Concettina

    2016-10-01

    Pesticides can exert numerous effects on human health as a consequence of both environmental and occupational exposures. The available knowledge base suggests that exposure to pesticides may result in detrimental reproductive changes, neurological dysfunction and several chronic disorders, which are defined by slow evolution and long-term duration. Moreover, an ever increasing amount of data have identified an association between exposure to pesticides and the harmful effects on the immune system. The real impact of alterations in humoral cytokine levels on human health, in particular in the case of chronic diseases, is still unclear. To date, studies have suggested that although exposure to pesticides can affect the immune system functionally, the development of immune disorders depends on the dose and duration of exposure to pesticides. However, many of the respective studies exhibit limitations, such as a lack of information on exposure levels, differences in the pesticide administration procedures, difficulty in characterizing a prognostic significance to the weak modifications often observed and the interpretation of obtained results. The main challenge is not just to understand the role of individual pesticides and their combinations, but also to determine the manner and the duration of exposure, as the toxic effects on the immune system cannot be separated from these considerations. There is a clear need for more well‑designed and standardized epidemiological and experimental studies to recognize the exact association between exposure levels and toxic effects and to identify useful biomarkers of exposure. This review focuses on and critically discusses the immunotoxicity of pesticides and the impact of cytokine levels on health, focusing on the development of several chronic diseases.

  17. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review)

    PubMed Central

    Gangemi, Silvia; Gofita, Eliza; Costa, Chiara; Teodoro, Michele; Briguglio, Giusi; Nikitovic, Dragana; Tzanakakis, George; Tsatsakis, Aristides M.; Wilks, Martin F.; Spandidos, Demetrios A.; Fenga, Concettina

    2016-01-01

    Pesticides can exert numerous effects on human health as a consequence of both environmental and occupational exposures. The available knowledge base suggests that exposure to pesticides may result in detrimental reproductive changes, neurological dysfunction and several chronic disorders, which are defined by slow evolution and long-term duration. Moreover, an ever increasing amount of data have identified an association between exposure to pesticides and the harmful effects on the immune system. The real impact of alterations in humoral cytokine levels on human health, in particular in the case of chronic diseases, is still unclear. To date, studies have suggested that although exposure to pesticides can affect the immune system functionally, the development of immune disorders depends on the dose and duration of exposure to pesticides. However, many of the respective studies exhibit limitations, such as a lack of information on exposure levels, differences in the pesticide administration procedures, difficulty in characterizing a prognostic significance to the weak modifications often observed and the interpretation of obtained results. The main challenge is not just to understand the role of individual pesticides and their combinations, but also to determine the manner and the duration of exposure, as the toxic effects on the immune system cannot be separated from these considerations. There is a clear need for more well-designed and standardized epidemiological and experimental studies to recognize the exact association between exposure levels and toxic effects and to identify useful biomarkers of exposure. This review focuses on and critically discusses the immunotoxicity of pesticides and the impact of cytokine levels on health, focusing on the development of several chronic diseases. PMID:27600395

  18. Risk of brain tumors from wireless phone use.

    PubMed

    Dubey, Rash Bihari; Hanmandlu, Madasu; Gupta, Suresh Kumar

    2010-01-01

    The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. Wireless communication has dramatically influenced our lifestyle; its impact on human health has not been completely assessed. Widespread concern continues in the community about the deleterious effects of radiofrequency radiations on human tissues and the subsequent potential threat of carcinogenesis. Exposure to low-frequency electromagnetic field has been linked to a variety of adverse health outcomes. This article surveys the results of early cell phone studies, where exposure duration was too short to expect tumor genesis, and 2 sets of more recent studies with longer exposure duration: the Interphone studies and the Swedish studies led by Hardell.

  19. Effects of Mycotoxins on Mucosal Microbial Infection and Related Pathogenesis

    PubMed Central

    Park, Seong-Hwan; Kim, Dongwook; Kim, Juil; Moon, Yuseok

    2015-01-01

    Mycotoxins are fungal secondary metabolites detected in many agricultural commodities and water-damaged indoor environments. Susceptibility to mucosal infectious diseases is closely associated with immune dysfunction caused by mycotoxin exposure in humans and other animals. Many mycotoxins suppress immune function by decreasing the proliferation of activated lymphocytes, impairing phagocytic function of macrophages, and suppressing cytokine production, but some induce hypersensitive responses in different dose regimes. The present review describes various mycotoxin responses to infectious pathogens that trigger mucosa-associated diseases in the gastrointestinal and respiratory tracts of humans and other animals. In particular, it focuses on the effects of mycotoxin exposure on invasion, pathogen clearance, the production of cytokines and immunoglobulins, and the prognostic implications of interactions between infectious pathogens and mycotoxin exposure. PMID:26529017

  20. [Endocrine disruptors, reproduction and hormone-dependent cancers].

    PubMed

    Fenichel, Patrick; Brucker-Davis, Françoise; Chevalier, Nicolas

    2016-01-01

    Endocrine disruptors are natural or synthetic chemical compounds which are present in the environment and which are able to interfere with hormonal regulation pathways and to induce human health deleterious effects. While their precise implication in human health and diseases is still matter of debates, it becomes likely that they have to be considered as risk factors in numerous chronic diseases: developmental and reproductive defects and hormone dependent cancers (present review), metabolic diseases (obesity and type 2 diabetes), neurodevelopmental or neurodegenerative diseases. Low doses exposure during critical windows of exposure such as foetal, perinatal and peri-pubertal periods, or chronic exposure with bioaccumulation in the adipose tissue, and possible synergic effects of several compounds ("cocktail effect") may participate to the genetic/environment interface suspected to participate to the pathophysiology of many diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. AN ASSESSMENT OF THE EFFECTS OF GESTATIONAL AND LACTATIONAL EXPOSURE TO ETHINYL ESTRADIOL (EE) AND BISPHENOL A (BPA) ON REPRODUCTIVE MORPHOLOGY AND BEHAVIOR IN FEMALE AND MALE LONG EVANS HOODED RAT

    EPA Science Inventory

    Anthropogenic estrogens are pervasive in the environment. Although the effects of these 'xenoestrogens' are controversial in humans, some fish species are adversely affected in contaminated ecosystems. The current project focuses on the effects of developmental exposure to two ...

  2. 75 FR 27785 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees from Area IV of the Santa...

  3. 76 FR 7852 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from Simonds Saw and Steel...

  4. 75 FR 27784 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees from the Nevada Test Site as an...

  5. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner

    PubMed Central

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-01-01

    Background The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Methods Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Results Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Conclusions Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. PMID:27558745

  6. Exposure to Ozone Modulates Human Airway Protease/Antiprotease Balance Contributing to Increased Influenza A Infection

    PubMed Central

    Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID:22496898

  7. Linking Meteorology, Air Quality Models and Observations to Characterize Human Exposures in Support of the Environmental Health Studies

    EPA Science Inventory

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air polluta...

  8. Low level ozone exposure induces airways inflammation and modifies cell surface phenotypes in healthy humans

    EPA Science Inventory

    Background: The effects of low level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known, however much less is known about the inflammatory and immuno-modulatory effects oflow level ozone in the airways. Techniques such as induced sputum and flo...

  9. One Health and the Environment: Toxic Cyanobacteria, a Case Study

    EPA Science Inventory

    The study of environmental health typically focuses on human populations. However, companion animals, livestock and wildlife also experience adverse health effects from environmental pollutants. Animals may experience direct exposure to pollutants in ambient exposure situations. ...

  10. Geographic variation in risk factors for SFG rickettsial and leptospiral exposure in Colombia.

    PubMed

    Padmanabha, Harish; Hidalgo, Marylin; Valbuena, Gustavo; Castaneda, Elizabeth; Galeano, Armando; Puerta, Henry; Cantillo, Cesar; Mantilla, Gilma

    2009-10-01

    In order to characterize the patterns of human exposure to spotted fever group (SFG) rickettsial and leptospiral infection, IgG surveys were conducted on 642 residents of ten different areas of the rural district of Necoclí, Colombia. Areas were selected based on forest cover and human settlement pattern, and individual risk factors were elucidated through multivariate logistic models, controlling for variance clustering within communities. Overall, prevalence of high antibody titers indicating previous exposure to SFG rickettsia and leptospira was 29.2% and 35.6%, respectively, and both were most prevalent in the same peri-urban neighborhood. Forest cover .10% demonstrated the strongest independent association with leptospiral exposure, followed by homes with outdoor storage sheds. Isolated rural housing was the only variable independently associated with SFG rickettsia exposure. Community-level variables significantly modified the effects of individual risk factors. For both pathogens the eldest quartile was less exposed in periurban areas although there was no age effect overall for either. Females living in population settlements were more exposed to SFG rickettsiae but there was no sex association in isolated rural houses. Similarly, in sites with forest cover .10%, individuals working at home had higher leptospira seroprevalence, but place of work was not a risk factor in areas of forest cover ,10%. These data suggest that the patterns of maintenance and/or exposure to leptospira and rickettsia vary across different human created landscapes and settlement patterns. While contrasting risk factors may reflect the unique transmission cycles of each pathogen, the observed patterns of geographic variation suggest that both diseases may respond similarly larger scale human-ecological dynamics.

  11. Low doses of arsenic, via perturbing p53, promotes tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapathy, Suthakar, E-mail: s.ganapathy@neu.edu

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest thatmore » low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure.« less

  12. Development of a Sampler for Total Aerosol Deposition in the Human Respiratory Tract

    PubMed Central

    Koehler, Kirsten A.; Clark, Phillip; Volckens, John

    2009-01-01

    Studies that seek to associate reduced human health with exposure to occupational and environmental aerosols are often hampered by limitations in the exposure assessment process. One limitation involves the measured exposure metric itself. Current methods for personal exposure assessment are designed to estimate the aspiration of aerosol into the human body. Since a large proportion of inhaled aerosol is subsequently exhaled, a portion of the aspirated aerosol will not contribute to the dose. This leads to variable exposure misclassification (for heterogenous exposures) and increased uncertainty in health effect associations. Alternatively, a metric for respiratory deposition would provide a more physiologically relevant estimate of risk. To address this challenge, we have developed a method to estimate the deposition of aerosol in the human respiratory tract using a sampler engineered from polyurethane foam. Using a semi-empirical model based on inertial, gravitational, and diffusional particle deposition, a foam was engineered to mimic aerosol total deposition in the human respiratory tract. The sampler is comprised of commercially available foam with fiber diameter = 49.5 μm (equivalent to industry standard 100 PPI foam) of 8 cm thickness operating at a face velocity of 1.3 m s−1. Additionally, the foam sampler yields a relatively low-pressure drop, independent of aerosol loading, providing uniform particle collection efficiency over time. PMID:19638392

  13. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.

    PubMed

    Mushak, Paul

    2003-02-15

    This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.

  14. Neuromotor effects of acute ethanol inhalation exposure in humans: a preliminary study.

    PubMed

    Nadeau, Véronique; Lamoureux, Daniel; Beuter, Anne; Charbonneau, Michel; Tardif, Robert

    2003-07-01

    Ethanol (ETOH) is added to unleaded gasoline to decrease environmental levels of carbon monoxide from automobiles emissions. Therefore, addition of ETOH in reformulated fuel will most likely increase and the involuntarily human exposure to this chemical will also increase. This preliminary study was undertaken to evaluate the possible neuromotor effects resulting from acute ETOH exposure by inhalation in humans. Five healthy non-smoking adult males, with no history of alcohol abuse, were exposed by inhalation, in a dynamic, controlled-environment exposure chamber, to various concentrations of ETOH (0, 250, 500 and 1,000 ppm in air) for six hours. Reaction time, body sway, hand tremor and rapid alternating movements were measured before and after each exposure session by using the CATSYS 7.0 system and a diadochokinesimeter. The concentrations of ETOH in blood and in alveolar air were also measured. ETOH was not detected in blood nor in alveolar air when volunteers were exposed to 250 and 500 ppm, but at the end of exposure to 1,000 ppm, blood and alveolar air concentrations were 0.443 mg/100ml and 253.1 ppm, respectively. The neuromotor tests did not show conclusively significant differences between the exposed and non-exposed conditions. In conclusion, this study suggests that acute exposure to ethanol at 1,000 ppm or lower or to concentrations that could be encountered upon refueling is not likely to cause any significant neuromotor alterations in healthy males.

  15. The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: Counseling the pregnant and nonpregnant patient about these risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent, R.L.

    The term radiation evokes emotional responses both from lay persons and from professionals. Many spokespersons are unfamiliar with radiation biology or the quantitative nature of the risks. Frequently, microwave, ultrasound, and ionizing radiation risks are confused. Although it is impossible to prove no risk for any environmental hazard, it appears that exposure to microwave radiation below the maximal permissible levels present no measurable risk to the embryo. Ultrasound exposure from diagnostic ultrasonographic-imaging equipment also is quite innocuous. It is true that continued surveillance and research into potential risks of these low-level exposures should continue; however, at present ultrasound not onlymore » improves obstetric care, but also reduces the necessity of diagnostic x-ray procedures. In the field of ionizing radiation, we have a better comprehension of the biologic effects and the quantitative maximum risks than for any other environmental hazard. Although the animal and human data support the conclusion that no increases in the incidence of gross congenital malformations, IUGR, or abortion will occur with exposures less than 5 rad, that does not mean that there are definitely no risks to the embryo exposed to lower doses of radiation, Whether there exists a linear or exponential dose-response relationship or a threshold exposure for genetic, carcinogenic, cell-depleting, and life-shortening effects has not been determined. It is obvious that the risks of 1-rad (.10Gy) or 5-rad (.05Gy) acute exposure are far below the spontaneous risks of the developing embryo because 15% of human embryos abort, 2.7% to 3.0% of human embryos have major malformations, 4% have intrauterine growth retardation, and 8% to 10% have early- or late-stage onset genetic disease. 92 references.« less

  16. Effects of Ionizing Radiation on Human Adipose Derived Mesenchymal Stem Cells and their Differentiation towards the Osteoblastic Lineage

    NASA Astrophysics Data System (ADS)

    Konda, Bikash; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther; Lau, Patrick

    Radiation exposure and musculoskeletal disuse are among the major challenges during space missions. Astronauts face the problem to lose bone calcium due to uncoupling of bone formation and resorption. Bone forming osteoblasts can be derived from the undifferentiated mesenchymal stem cell compartment (MSC). In this study, the ability of human adipose tissue derived stem cells (ATSC) to differentiate into the osteoblastic lineage was examined after radiation exposure in presence of medium supplementation with osteogenic additives (ß-glycerophosphate, ascorbic acid and dexamethasone). The SAOS-2 cell line (human osteosarcoma cell line) was used as control for osteoblastic differentiation. Changes in cellular morphology, cell cycle progression, as well as cellular radiation sensitivity were characterized after ionizing radiation exposure with X-rays and heavy ions (Ti). Rapidly proliferating SAOS-2 cells are less radiation-sensitive than slowly proliferating ATSC cells after X-ray (CFA: dose effect curves show D0 values of 1 Gy and 0.75 Gy for SAOS-2 and ATSC, respectively) exposure. Heavy ion (Ti) exposure resulted in a greater extent of cells accumulating in the G2/M phase of the cell cycle in a dose-dependent manner when compared to X-ray exposure. Differentiation of cells towards the osteoblastic lineage was quantified by hydroxyapatite (HA) deposition using Lonza OsteoImageTM mineralization assay. The deposition of HA after X- and Ti-irradiation for highly proliferating SAOS-2 cells showed a dose-dependent time delay while slowly proliferating ATSC showed no effect from radiation exposure. More detailed investigation is required to reveal the radiation dependent mechanism of bone loss in astronauts.

  17. Derivation of safe health-based exposure limits for potential consumer exposure to styrene migrating into food from food containers.

    PubMed

    Gelbke, Heinz-Peter; Banton, Marcy; Faes, Eric; Leibold, Edgar; Pemberton, Mark; Duhayon, Sophie

    2014-02-01

    Residual styrene present in polystyrene food packaging may migrate into food at low levels. To assure safe use, safe exposure levels are derived for consumers potentially exposed via food using No/Low Adverse Effect Levels from animal and human studies and assessment factors proposed by European organisations (EFSA, ECHA, ECETOC). Ototoxicity and developmental toxicity in rats and human ototoxicity and effects on colour discrimination have been identified as the most relevant toxicological properties for styrene health assessments. Safe exposure levels derived from animal studies with assessment factors of EFSA and ECHA were expectedly much lower than those using the ECETOC approach. Comparable safe exposure levels were obtained from human data with all sets of assessment factors while ototoxicity in rats led to major differences. The safe exposure levels finally selected based on criteria of science and health protection converged to the range of 90-120 mg/person/d. Assuming a consumption of 1 kg food/d for an adult, this translates to 90 mg styrene migration into 1 kg food as safe for consumers. This assessment supports a health based Specific Migration Limit of 90 ppm, a value somewhat higher than the current overall migration limit of 60 ppm in the European Union. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Epidemiological Trends Strongly Suggest Exposures as Etiologic Agents in the Pathogenesis of Sporadic Alzheimer's Disease, Diabetes Mellitus, and Non-Alcoholic Steatohepatitis

    PubMed Central

    de la Monte, Suzanne M.; Neusner, Alexander; Chu, Jennifer; Lawton, Margot

    2015-01-01

    Nitrosamines mediate their mutagenic effects by causing DNA damage, oxidative stress, lipid peroxidation, and pro-inflammatory cytokine activation, which lead to increased cellular degeneration and death. However, the very same pathophysiological processes comprise the “unbuilding” blocks of aging and insulin-resistance diseases including, neurodegeneration, diabetes mellitus (DM), and non-alcoholic steatohepatitis (NASH). Previous studies demonstrated that experimental exposure to streptozotocin, a nitrosamine-related compound, causes NASH, and diabetes mellitus Types 1, 2 and 3 (Alzheimer (AD)-type neurodegeneration). Herein, we review evidence that the upwardly spiraling trends in mortality rates due to DM, AD, and Parkinson's disease typify exposure rather than genetic-based disease models, and parallel the progressive increases in human exposure to nitrates, nitrites, and nitrosamines via processed/preserved foods. We propose that such chronic exposures have critical roles in the pathogenesis of our insulin resistance disease pandemic. Potential solutions include: 1) eliminating the use of nitrites in food; 2) reducing nitrate levels in fertilizer and water used to irrigate crops; and 3) employing safe and effective measures to detoxify food and water prior to human consumption. Future research efforts should focus on refining our ability to detect and monitor human exposures to nitrosamines and assess early evidence of nitrosamine-mediated tissue injury and insulin resistance. PMID:19363256

  19. Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy.

    PubMed

    Guest, Hannah; Munro, Kevin J; Prendergast, Garreth; Howe, Simon; Plack, Christopher J

    2017-02-01

    In rodents, exposure to high-level noise can destroy synapses between inner hair cells and auditory nerve fibers, without causing hair cell loss or permanent threshold elevation. Such "cochlear synaptopathy" is associated with amplitude reductions in wave I of the auditory brainstem response (ABR) at moderate-to-high sound levels. Similar ABR results have been reported in humans with tinnitus and normal audiometric thresholds, leading to the suggestion that tinnitus in these cases might be a consequence of synaptopathy. However, the ABR is an indirect measure of synaptopathy and it is unclear whether the results in humans reflect the same mechanisms demonstrated in rodents. Measures of noise exposure were not obtained in the human studies, and high frequency audiometric loss may have impacted ABR amplitudes. To clarify the role of cochlear synaptopathy in tinnitus with a normal audiogram, we recorded ABRs, envelope following responses (EFRs), and noise exposure histories in young adults with tinnitus and matched controls. Tinnitus was associated with significantly greater lifetime noise exposure, despite close matching for age, sex, and audiometric thresholds up to 14 kHz. However, tinnitus was not associated with reduced ABR wave I amplitude, nor with significant effects on EFR measures of synaptopathy. These electrophysiological measures were also uncorrelated with lifetime noise exposure, providing no evidence of noise-induced synaptopathy in this cohort, despite a wide range of exposures. In young adults with normal audiograms, tinnitus may be related not to cochlear synaptopathy but to other effects of noise exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    USGS Publications Warehouse

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  1. Human Health and Toxic Cyanobacteria – What do we know? ...

    EPA Pesticide Factsheets

    Human Health and Toxic Cyanobacteria – What do we know?Elizabeth D. HilbornWarm, eutrophic surface water systems support the development of toxic cyanobacteria blooms in North Carolina and worldwide. These conditions are increasing with expanding human populations and climate change. We present the evidence for adverse human health effects associated with exposure to cyanobacteria and their toxins in drinking water, recreational water and via medical procedures. We will discuss the range of effects reported to be associated with exposure, and the current state of the epidemiology of toxic cyanobacteria. This is a description of a proposed presentation and does not necessarily reflect EPA policy. Abstract will be presented at the Water and Health conference during a session on water quality challenges in North Carolina. This summary of existing published scientific reports on the associations between adverse human health effects and toxic cyanobacteria will be of interest to the public health and water researchers in the audience. This work fits topically in the Task: SSWR 4.01B

  2. Perinatal Exposure to Perfluorooctane Sulfonate Affects Glucose Metabolism in Adult Offspring

    PubMed Central

    Wan, Hin T.; Zhao, Yin G.; Leung, Pik Y.; Wong, Chris K. C.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS) is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0) were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21). To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders. PMID:24498028

  3. Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen.

    PubMed

    Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R

    2010-01-01

    Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter

  4. Electric and magnetic fields and tumor progression. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keng, P.C.; Grota, L.J.; Michaelson, S.

    This laboratory study has rigorously investigated two previously reported biological effects of 60-Hz electric and magnetic fields. The first effect involves nighttime suppression of melatonin synthesis in the pineal glands of rats exposed to high electric fields. The second concerns the increase in colony forming ability of human colon cancer cells exposed to 1.4-G magnetic fields. Neither effect was detected in the present study. A series of published laboratory studies on rats reported that 60-Hz electric fields at various field levels up to 130 kV/m suppress the nighttime synthesis of melatonin, a hormone produced by the pineal gland. Since melatoninmore » is known to modulate the immune system and may inhibit cancer cell activity, changes in physiological levels of melatonin may have significant health consequences. In the repeat experiments, field exposure did not alter nighttime levels of melatonin or enzyme activities in the pineal gland. A small but statistically significant reduction of about 20% in serum melatonin was seen in exposed animals. Pineal melatonin was also unaffected by the presence of red light as a cofactor with field exposure or by time-shifting the daily field exposure period. Another study reported that 60-Hz magnetic fields can affect the colony forming ability of human cancer cells after exposure in a culture medium. In the repeat experiments, field exposure did not alter the colony forming ability of human Colo 205 cells in two different cell concentrations at plating or in two different incubation conditions. Field exposure also did not affect cell cycling in any of the four cell lines tested.« less

  5. Human exposure to nitro musks and the evaluation of their potential toxicity: an overview

    PubMed Central

    2014-01-01

    Synthetic nitro musks are fragrant chemicals found in household and personal care products. The use of these products leads to direct exposures via dermal absorption, as well as inhalation of contaminated dust and volatilized fragrances. Evidence also suggests that humans are exposed to low doses of these chemicals through oral absorption of contaminated liquids and foods. As these compounds are lipophilic, they and their metabolites, have been found not only in blood, but also breast milk and adipose tissue. After personal use, these environmentally persistent pollutants then pass through sewage treatment plants through their effluent into the environment. Little is known about the biological effects in humans after such a prolonged low dose exposure to these chemicals. While epidemiologic studies evaluating the effects of nitro musk exposures are lacking, there is limited evidence that suggest blood levels of nitro musks are inversely related to luteal hormone levels. This is supported by animal models and laboratory studies that have shown that nitro musks are weakly estrogenic. Nitro musks exposure has been associated with an increased risk of tumor formation in mice. The evidence suggests that while nitro musks by themselves are not genotoxic, they may increase the genotoxicity of other chemicals. However, animal models for nitro musk exposure have proven to be problematic since certain outcomes are species specific. This may explain why evidence for developmental effects in animals is conflicting and inconclusive. Given that animal models and cell-line experiments are suggestive of adverse outcomes, further epidemiologic studies are warranted. PMID:24618224

  6. Changes in mammary histology and transcriptome profiles by low-dose exposure to environmental phenols at critical windows of development.

    PubMed

    Gopalakrishnan, Kalpana; Teitelbaum, Susan L; Lambertini, Luca; Wetmur, James; Manservisi, Fabiana; Falcioni, Laura; Panzacchi, Simona; Belpoggi, Fiorella; Chen, Jia

    2017-01-01

    Exposure to environmental chemicals has been linked to altered mammary development and cancer risk at high doses using animal models. Effects at low doses comparable to human exposure remain poorly understood, especially during critical developmental windows. We investigated the effects of two environmental phenols commonly used in personal care products - methyl paraben (MPB) and triclosan (TCS) - on the histology and transcriptome of normal mammary glands at low doses mimicking human exposure during critical windows of development. Sprague-Dawley rats were exposed during perinatal, prepubertal and pubertal windows, as well as from birth to lactation. Low-dose exposure to MPB and TCS induced measurable changes in both mammary histology (by Masson's Trichrome Stain) and transcriptome (by microarrays) in a window-specific fashion. Puberty represented a window of heightened sensitivity to MPB, with increased glandular tissue and changes of expression in 295 genes with significant enrichment in functions such as DNA replication and cell cycle regulation. Long-term exposure to TCS from birth to lactation was associated with increased adipose and reduced glandular and secretory tissue, with expression alterations in 993 genes enriched in pathways such as cholesterol synthesis and adipogenesis. Finally, enrichment analyses revealed that genes modified by MPB and TCS were over-represented in human breast cancer gene signatures, suggesting possible links with breast carcinogenesis. These findings highlight the issues of critical windows of susceptibility that may confer heightened sensitivity to environmental insults and implicate the potential health effects of these ubiquitous environmental chemicals in breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Changes in Mammary Histology and Transcriptome Profiles by Low-Dose Exposure to Environmental Phenols at Critical Windows of Development1

    PubMed Central

    Gopalakrishnan, Kalpana; Teitelbaum, Susan L.; Lambertini, Luca; Wetmur, James; Manservisi, Fabiana; Falcioni, Laura; Panzacchi, Simona; Belpoggi, Fiorella; Chen, Jia

    2016-01-01

    Exposure to environmental chemicals has been linked to altered mammary development and cancer risk at high doses using animal models. Effects at low doses comparable to human exposure remain poorly understood, especially during critical developmental windows. We investigated the effects of two environmental phenols commonly used in personal care products – methyl paraben (MPB) and triclosan (TCS) – on the histology and transcriptome of normal mammary glands at low doses mimicking human exposure during critical windows of development. Sprague-Dawley rats were exposed during perinatal, prepubertal and pubertal windows, as well as from birth to lactation. Low-dose exposure to MPB and TCS induced measurable changes in both mammary histology (by Masson’s Trichrome Stain) and transcriptome (by microarrays) in a window-specific fashion. Puberty represented a window of heightened sensitivity to MPB, with increased glandular tissue and changes of expression in 295 genes with significant enrichment in functions such as DNA replication and cell cycle regulation. Long-term exposure to TCS from birth to lactation was associated with increased adipose and reduced glandular and secretory tissue, with expression alterations in 993 genes enriched in pathways such as cholesterol synthesis and adipogenesis. Finally, enrichment analyses revealed that genes modified by MPB and TCS were over-represented in human breast cancer gene signatures, suggesting possible links with breast carcinogenesis. These findings highlight the issues of critical windows of susceptibility that may confer heightened sensitivity to environmental insults and implicate the potential health effects of these ubiquitous environmental chemicals in breast cancer. PMID:27810681

  8. Health assessment for Shenandoah Stables NPL (National Priorities List) Site, Lincoln County, Missouri, Region 7. CERCLIS No. MOD980685838. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-10-24

    The Shenandoah Stables National Priorities List site is approximately 35 miles northwest of St. Louis, Missouri. Horse shows, breeding, and training were conducted at the Shenandoah Stables during the 1970s. The indoor horse arena was sprayed with waste oil on May 26, 1971. The waste oil was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). Illness in animals and humans occurred with three days of the spraying. Although there is no evidence of significant current human exposure to 2,3,7,8-TCDD from the site, the site is of public health concern because of the risk to human health caused by probable human exposure to hazardous substancemore » at concentrations that may result in adverse human health effects. Human exposure to 2,3,7,8-TCDD has probably occurred via the ingestion, inhalation, and direct dermal contact with the contaminated soil.« less

  9. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    PubMed

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Chromosomal mutagenesis in human somatic cells: 30-year cytogenetic monitoring after Chornobyl accident.

    PubMed

    Pilinska, M A; Shemetun, G M; Shemetun, O V; Dybsky, S S; Dybska, O B; Talan, O O; Pedan, L R; Kurinnyi, D А

    2016-12-01

    In the lecture we have generalized and analyzed the data of cytogenetic laboratory of National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine on 30-year selective cytogenetic monitoring among the priority contingents of different ages exposed to radiation after Chornobyl accident in Ukraine. It is highlighted that not only targeted but also untargeted radiation-induced cytogenetic effects should be explored, especially in delayed terms following radiation exposure. The new methodical approaches for studying "bystander effect", individual radiosensitivity, and various forms of radiation-induced chromosomal instability (delayed, hidden, transmissible) have been proposed. These approaches proved to be advantageous for analyzing cytogenetic patterns of induction and persistence of chromosomal instability in human somatic cells because of "bystander effect" and "bystander type effect". The phenomenon of positive "reverse" bystander effect has been found. The possibility of modifying the inherited individual human susceptibility to mutagenic exposure by ionizing radiation has been estimated. Finally, the association between hypersensitivity to radiation exposure and realization of oncopathology in exposed individuals has been revealed. The increased intensity of human somatic chromosomal mutagenesis was confirmed not only in the nearest but in the delayed terms following Chornobyl accident as a result of radiation-induced both targeted and untargeted cytogenetic effects. Such effects can be considered as risk factors for malignant transformation of cells, hereditary diseases, birth defects, and multifactorial somatic pathology. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  11. Microwave and Man—The Direct and Indirect Hazards, and the Precautions

    PubMed Central

    Merckel, Charles

    1972-01-01

    Microwave-radar is a form of electromagnetic energy with potential hazards to human health and safety. Its lethal and non-lethal harmful effects have been demonstrated in experimental animals. Lethal effects upon humans from exposure to microwave have not been proved. Alleged non-lethal effects have been limited primarily to cataractogenesis. Increasing use of microwave commercially in communications and domestically, as in micro-ovens, increases the hazard of exposure to microwave. Increasing use of devices which are at risk from microwave, such as implanted cardiac pacemakers and metal surgical appliances and electronic monitoring devices in operating rooms and clinics, present increasing environmental hazards. PMID:5039801

  12. Examination of plasma PON1 paraoxonase activity and genotype in Gulf War veterans

    DTIC Science & Technology

    2017-10-01

    cholinergic” effects (e.g., personal pesticide use, exposure to OP nerve agents) in subgroups of veterans with different PON1192 genotype. (2...associations between GWI and GW-related exposures with the potential for “cholinergic” effects (e.g., personal pesticide use, exposure to OP nerve agents) in...learning and careers in science, technology, and the humanities . What do you plan to do during the next reporting period to accomplish the goals

  13. MEETING REPORT - APPLYING BIOMARKER RESEARCH

    EPA Science Inventory

    Public health and environmental professionals have generally focused on monitoring the ambient environment to assess exposures to the public. To understand exposures and effects and predict onset or course of disease, it is also important to look inside the (human) organism.
    ...

  14. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final)

    EPA Science Inventory

    The SOx ISA reviews information on atmospheric science, exposure, dosimetry, mode of action, and health effects related to sulfur oxides and sulfur dioxide (SO2), including evidence from controlled human exposure, epidemiologic, and toxicological studies.

  15. EXPOSURE-DOSE-EFFECT LINKAGES FOR CHEMICALLY REACTIVE AIR TOXIC COMPOUNDS

    EPA Science Inventory

    This project represents a multidisciplinary collaboration to develop and test methods for more precisely predicting human exposure-dose-response relationships of respiratory tract irritants. These irritants have the unique property of reacting chemically with proteins and lipids ...

  16. Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus.

    PubMed

    Martins, Alexandra; Guilhermino, Lúcia

    2018-08-01

    The environmental contamination by microplastics is a global challenge to ecosystem and human health, and the knowledge on the long-term effects of such particles is limited. Thus, the effects of microplastics and post-exposure recovery were investigated over 4 generations (F 0 , F 1 , F 2 , F 3 ) using Daphnia magna as model. Effect criteria were parental mortality, growth, several reproductive parameters, and population growth rate. Microplastics exposure (0.1mg/l of pristine polymer microspheres 1-5μm diameter) caused parental mortality (10-100%), and significantly (p≤0.05) decreased growth, reproduction, and population growth rate leading to the extinction of the microplastics-exposed model population in the F 1 generation. Females descending from those exposed to microplastics in F 0 and exposed to clean medium presented some recovery but up to the F 3 generation they still had significantly (p≤0.05) reduced growth, reproduction, and population growth rate. Overall, these results indicate that D. magna recovery from chronic exposure to microplastics may take several generations, and that the continuous exposure over generations to microplastics may cause population extinction. These findings have implications to aquatic ecosystem functioning and services, and raise concern on the long-term animal and human exposure to microplastics through diverse routes. Copyright © 2018. Published by Elsevier B.V.

  17. Mobile phones and sleep - A review

    NASA Astrophysics Data System (ADS)

    Supe, Sanjay S.

    2010-01-01

    The increasing use of mobile phones has raised concerns regarding the potential health effects of exposure to the radiofrequency electromagnetic fields. An increasing amount research related to mobile phone use has focussed on the possible effects of mobile phone exposure on human brain activity and function. In particular, the use of sleep research has become a more widely used technique for assessing the possible effects of mobile phones on human health and wellbeing especially in the investigation of potential changes in sleep architecture resulting from mobile phone use. Acute exposure to a mobile phone prior to sleep significantly enhances electroencephalogram spectral power in the sleep spindle frequency range. This mobile phone-induced enhancement in spectral power is largely transitory and does not linger throughout the night. Furthermore, a reduction in rapid eye movement sleep latency following mobile phone exposure was also found, although interestingly, neither this change in rapid eye movement sleep latency or the enhancement in spectral power following mobile phone exposure, led to changes in the overall quality of sleep. In conclusion, a short exposure to the radiofrequency electromagnetic fields emitted by a mobile phone handset immediately prior to sleep is sufficient to induce changes in brain activity in the initial part of sleep. The consequences or functional significance of this effect are currently unknown and it would be premature to draw conclusions about possible health consequences.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narod, S.A.; Douglas, G.R.; Nestmann, E.R.

    The importance of inherited mutations as a cause of human disease has been established clearly through examples of well-defined genetic anomalies, such as Down syndrome and retinoblastoma. Furthermore, it is suspected that environmental contaminants induce mutations resulting in increased risk for such defects in subsequent generations of persons exposed. The present lack of direct evidence for induced inherited genetic disorders in human beings hampers the development of risk estimation techniques for extrapolation from animal models. The most extensive prospective epidemiologic studies of inherited genetic effects have involved survivors of atomic bomb detonations and patients treated with cancer chemotherapy. In neithermore » case has a significant elevation in inherited genetic effects or cancer been detected in the offspring of exposed individuals. Epidemiologic studies of subjects receiving chronic exposure may be confounded by the effect of maternal exposure during pregnancy. Consideration of only paternal exposure can minimize the confounding influence of teratogenicity, enhancing the resolving power of studies for inherited effects. Using this approach, retrospective (case-control) studies of childhood cancer patients have provided limited but suggestive evidence for inheritance of induced effects. Endpoints, such as congenital malformations and spontaneous abortion following paternal exposure, can also be considered as indicators of heritable mutagenic effects. For example, there is limited evidence suggesting that paternal exposure to anaesthetic gases may cause miscarriage and congenital abnormalities as a result of induced male germ cell mutations. 104 references.« less

  19. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes.

    PubMed

    Danese, Elisa; Lippi, Giuseppe; Buonocore, Ruggero; Benati, Marco; Bovo, Chiara; Bonaguri, Chiara; Salvagno, Gian Luca; Brocco, Giorgio; Roggenbuck, Dirk; Montagnana, Martina

    2017-07-01

    The use of mobile phones has been associated with an increased risk of developing certain type of cancer, especially in long term users. Therefore, this study was aimed to investigate the potential genotoxic effect of mobile phone radiofrequency exposure on human peripheral blood mononuclear cells in vitro. The study population consisted in 14 healthy volunteers. After collection of two whole blood samples, the former was placed in a plastic rack, 1 cm from the chassis of a commercial mobile phone (900 MHz carrier frequency), which was activated by a 30-min call. The second blood sample was instead maintained far from mobile phones or other RF sources. The influence of mobile phone RF on DNA integrity was assessed by analyzing γ-H2AX foci in lymphocytes using immunofluorescence staining kit on AKLIDES. No measure of γ-H2AX foci was significantly influenced by mobile phone RF exposure, nor mobile phone exposure was associated with significant risk of genetic damages in vitro (odds ratio comprised between 0.27 and 1.00). The results of this experimental study demonstrate that exposure of human lymphocytes to a conventional 900 MHz RF emitted by a commercial mobile phone for 30 min does not significantly impact DNA integrity.

  20. Diesel engine exhaust and lung cancer: an unproven association.

    PubMed Central

    Muscat, J E; Wynder, E L

    1995-01-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant associations. It can be concluded that short-term exposure to diesel engine exhaust (< 20 years) does not have a causative role in human lung cancer. There is statistical but not causal evidence that long-term exposure to diesel exhaust (> 20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. Images p812-a PMID:7498093

Top