Science.gov

Sample records for human fecal pollution

  1. Quantitative PCR for Genetic Markers of Human Fecal Pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...

  2. Quantitative PCR for genetic markers of human fecal pollution

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantification approach. We report the development of quantitative PCR assays for enumeration of two recently described hum...

  3. Fecal Pollution of Water.

    EPA Science Inventory

    Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...

  4. Fecal Pollution of Water

    EPA Science Inventory

    Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...

  5. Distributions of Fecal Markers in Wastewater from Different Climatic Zones for Human Fecal Pollution Tracking in Australian Surface Waters

    PubMed Central

    Sidhu, J. P. S.; Smith, K.; Beale, D. J.; Gyawali, P.; Toze, S.

    2015-01-01

    Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 106 gene copies per ml), followed by those of HF183 (8.0 × 105 gene copies per ml) and Enterococcus spp. (3.6 × 105 gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters. PMID:26682850

  6. Distributions of Fecal Markers in Wastewater from Different Climatic Zones for Human Fecal Pollution Tracking in Australian Surface Waters.

    PubMed

    Ahmed, W; Sidhu, J P S; Smith, K; Beale, D J; Gyawali, P; Toze, S

    2016-02-01

    Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 10(6) gene copies per ml), followed by those of HF183 (8.0 × 10(5) gene copies per ml) and Enterococcus spp. (3.6 × 10(5) gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters. PMID:26682850

  7. DESIGN AND EVALUATION OF BACTEROIDES DNA PROBES FOR THE SPECIFIC DETECTION OF HUMAN FECAL POLLUTION

    EPA Science Inventory

    Because Bacteroides spp. are obligate anaerobes that dominate the human fecal flora, and because some species may live only in the human intestine, these bacteria might be useful to distinguish human from nonhuman sources of fecal pollution. To test this hypothesis, PCR primers s...

  8. Differential Decay of Bacterial and Viral Fecal Indicators in Common Human Pollution Sources

    EPA Science Inventory

    Understanding the decomposition of different human fecal pollution sources is necessary for proper implementation of many water quality management practices, as well as predicting associated public health risks. Here, the decay of select cultivated and molecular indicators of fe...

  9. Differential Decomposition of Bacterial and Viral Fecal Indicators in Common Human Pollution Types

    EPA Science Inventory

    Understanding the decomposition of microorganisms associated with different human fecal pollution types is necessary for proper implementation of many water qualitymanagement practices, as well as predicting associated public health risks. Here, thedecomposition of select cultiva...

  10. Detection and Quantification of Human Fecal Pollution with Real-Time PCR

    EPA Science Inventory

    ABSTRACT Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for enumeration of two recently described ...

  11. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters.

    PubMed

    Koskey, Amber M; Fisher, Jenny C; Eren, A Murat; Ponce-Terashima, Rafael; Reis, Mitermayer G; Blanton, Ronald E; McLellan, Sandra L

    2014-12-01

    Untreated sewage discharges and limited agricultural manure management practices contribute to fecal pollution in rural Brazilian waterways. Most microbial source tracking studies have focused on Bacteroidales, and few have tested host-specific indicators in underdeveloped regions. Sequencing of sewage and human and animal feces with Illumina HiSeq revealed Prevotellaceae as the most abundant family in humans, with Lachnospiraceae and Ruminococcaceae also comprising a large proportion of the microbiome. These same families were also dominant in animals. Bacteroides, the genus containing the most commonly utilized human-specific marker in the United States was present in very low abundance. We used oligotyping to identify Prevotella and Blautia sequences that can distinguish human fecal contamination. Thirty-five of 61 Blautia oligotypes and 13 of 108 Prevotella oligotypes in humans were host-specific or highly abundant (i.e. host-preferred) compared to pig, dog, horse and cow sources. Certain human Prevotella and Blautia oligotypes increased more than an order of magnitude along a polluted river transect in rural Brazil, but traditional fecal indicator levels followed a steady or even decreasing trend. While both Prevotella and Blautia oligotypes distinguished human and animal fecal pollution in Brazil surface waters, Blautia appears to contain more discriminatory and globally applicable markers for tracking sources of fecal pollution. PMID:25360571

  12. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters.

    PubMed

    Koskey, Amber M; Fisher, Jenny C; Eren, A Murat; Ponce-Terashima, Rafael; Reis, Mitermayer G; Blanton, Ronald E; McLellan, Sandra L

    2014-12-01

    Untreated sewage discharges and limited agricultural manure management practices contribute to fecal pollution in rural Brazilian waterways. Most microbial source tracking studies have focused on Bacteroidales, and few have tested host-specific indicators in underdeveloped regions. Sequencing of sewage and human and animal feces with Illumina HiSeq revealed Prevotellaceae as the most abundant family in humans, with Lachnospiraceae and Ruminococcaceae also comprising a large proportion of the microbiome. These same families were also dominant in animals. Bacteroides, the genus containing the most commonly utilized human-specific marker in the United States was present in very low abundance. We used oligotyping to identify Prevotella and Blautia sequences that can distinguish human fecal contamination. Thirty-five of 61 Blautia oligotypes and 13 of 108 Prevotella oligotypes in humans were host-specific or highly abundant (i.e. host-preferred) compared to pig, dog, horse and cow sources. Certain human Prevotella and Blautia oligotypes increased more than an order of magnitude along a polluted river transect in rural Brazil, but traditional fecal indicator levels followed a steady or even decreasing trend. While both Prevotella and Blautia oligotypes distinguished human and animal fecal pollution in Brazil surface waters, Blautia appears to contain more discriminatory and globally applicable markers for tracking sources of fecal pollution.

  13. The presence and near-shore transport of human fecal pollution in Lake Michigan beaches

    USGS Publications Warehouse

    Molloy, S.L.; Liu, L.B.; Phanikumar, M.S.; Jenkins, T.M.; Wong, M.V.; Rose, J.B.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.

    2005-01-01

    The Great Lakes are a source of water for municipal, agricultural and industrial use, and support significant recreation, commercial and sport fishing industries. Every year millions of people visit the 500 plus recreational beaches in the Great Lakes. An increasing public health risk has been suggested with increased evidence of fecal contamination at the shoreline. To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risk associated with swimming at these beaches, the near-shore waters of Mt Baldy Beach, Lake Michigan and Trail Creek, a tributary discharging into the lake were examined for fecal pollution indicators. A model of surf zone hydrodynamics coupled with a transport model with first-order inactivation of pollutant was used to understand the relative importance of different processes operating in the surf zone (e.g. physical versus biological processes). The Enterococcus human fecal pollution marker, which targets a putative virulence factor, the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) from the tributaries draining into Lake Michigan and in 6/30 samples (20%) from Lake Michigan beaches. Preliminary analysis suggests that the majority of fecal indicator bactateria variation and water quality changes at the beaches can be explained by inputs from the influential stream and hydrometeorological conditions. Using modeling methods to predict impaired water quality may help reduce potential health threats to recreational visitors.

  14. Detection of Human-Derived Fecal Pollution in Environmental Waters by Use of a PCR-Based Human Polyomavirus Assay▿

    PubMed Central

    McQuaig, Shannon M.; Scott, Troy M.; Harwood, Valerie J.; Farrah, Samuel R.; Lukasik, Jerzy O.

    2006-01-01

    Regulatory agencies mandate the use of fecal coliforms, Escherichia coli or Enterococcus spp., as microbial indicators of recreational water quality. These indicators of fecal pollution do not identify the specific sources of pollution and at times underestimate health risks associated with recreational water use. This study proposes the use of human polyomaviruses (HPyVs), which are widespread among human populations, as indicators of human fecal pollution. A method was developed to concentrate and extract HPyV DNA from environmental water samples and then to amplify it by nested PCR. HPyVs were detected in as little as 1 μl of sewage and were not amplified from dairy cow or pig wastes. Environmental water samples were screened for the presence of HPyVs and two additional markers of human fecal pollution: the Enterococcus faecium esp gene and the 16S rRNA gene of human-associated Bacteroides. The presence of human-specific indicators of fecal pollution was compared to fecal coliform and Enterococcus concentrations. HPyVs were detected in 19 of 20 (95%) samples containing the E. faecium esp gene and Bacteroides human markers. Weak or no correlation was observed between the presence/absence of human-associated indicators and counts of indicator bacteria. The sensitivity, specificity, and correlation with other human-associated markers suggest that the HPyV assay could be a useful predictor of human fecal pollution in environmental waters and an important component of the microbial-source-tracking “toolbox.” PMID:16997988

  15. Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community.

    PubMed

    Lipp, E K; Farrah, S A; Rose, J B

    2001-04-01

    The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between < 5 and > 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.

  16. QMRAcatch: Human-Associated Fecal Pollution and Infection Risk Modeling for a River/Floodplain Environment.

    PubMed

    Derx, Julia; Schijven, Jack; Sommer, Regina; Zoufal-Hruza, Christa M; van Driezum, Inge H; Reischer, Georg; Ixenmaier, Simone; Kirschner, Alexander; Frick, Christina; de Roda Husman, Ana Maria; Farnleitner, Andreas H; Blaschke, Alfred Paul

    2016-07-01

    Protection of drinking water resources requires addressing all relevant fecal pollution sources in the considered catchment. A freely available simulation tool, QMRAcatch, was recently developed to simulate concentrations of fecal indicators, a genetic microbial source tracking (MST) marker, and intestinal pathogens in water resources and to conduct a quantitative microbial risk assessment (QMRA). At the same time, QMRAcatch was successfully applied to a region of the Danube River in Austria, focusing on municipal wastewater emissions. Herein, we describe extension of its application to a Danube River floodplain, keeping the focus on fecal sources of human origin. QMRAcatch was calibrated to match measured human-associated MST marker concentrations for a dry year and a wet year. Appropriate performance characteristics of the human-associated MST assay were proven by simulating correct and false-positive marker concentrations, as determined in human and animal feces. With the calibrated tool, simulated and measured enterovirus concentrations in the rivers were compared. Finally, the calibrated tool allowed demonstrating that 4.5 log enterovirus and 6.6 log norovirus reductions must be achieved to convert current surface water to safe drinking water that complies with a health-based target of 10 infections person yr. Simulations of the low- and high-pollution scenarios showed that the required viral reductions ranged from 0 to 8 log. This study has implications for water managers with interests in assessing robust catchment protection measures and water treatment criteria by considering the fate of fecal pollution from its sources to the point of abstraction. PMID:27380068

  17. QMRAcatch: Human-Associated Fecal Pollution and Infection Risk Modeling for a River/Floodplain Environment.

    PubMed

    Derx, Julia; Schijven, Jack; Sommer, Regina; Zoufal-Hruza, Christa M; van Driezum, Inge H; Reischer, Georg; Ixenmaier, Simone; Kirschner, Alexander; Frick, Christina; de Roda Husman, Ana Maria; Farnleitner, Andreas H; Blaschke, Alfred Paul

    2016-07-01

    Protection of drinking water resources requires addressing all relevant fecal pollution sources in the considered catchment. A freely available simulation tool, QMRAcatch, was recently developed to simulate concentrations of fecal indicators, a genetic microbial source tracking (MST) marker, and intestinal pathogens in water resources and to conduct a quantitative microbial risk assessment (QMRA). At the same time, QMRAcatch was successfully applied to a region of the Danube River in Austria, focusing on municipal wastewater emissions. Herein, we describe extension of its application to a Danube River floodplain, keeping the focus on fecal sources of human origin. QMRAcatch was calibrated to match measured human-associated MST marker concentrations for a dry year and a wet year. Appropriate performance characteristics of the human-associated MST assay were proven by simulating correct and false-positive marker concentrations, as determined in human and animal feces. With the calibrated tool, simulated and measured enterovirus concentrations in the rivers were compared. Finally, the calibrated tool allowed demonstrating that 4.5 log enterovirus and 6.6 log norovirus reductions must be achieved to convert current surface water to safe drinking water that complies with a health-based target of 10 infections person yr. Simulations of the low- and high-pollution scenarios showed that the required viral reductions ranged from 0 to 8 log. This study has implications for water managers with interests in assessing robust catchment protection measures and water treatment criteria by considering the fate of fecal pollution from its sources to the point of abstraction.

  18. Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources

    EPA Science Inventory

    Exposure to human fecal waste can be a public health risk dueto the presence of human pathogens. Human fecal pollutioncan be introduced into water resources from damagedsewer lines, faulty septic systems, combined sewer overflows,illicit dumping activities, and even recreational ...

  19. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples

    EPA Science Inventory

    Real-time quantitative PCR assays that target the human-associated HF183 bacterial cluster are considered to be some of the top performing methods for the characterization of human fecal pollution in ambient surface waters. In response, the United States Environmental Protectio...

  20. Identification of Bacterial DNA Markers for the Detection of Human Fecal Pollution in Water▿ †

    PubMed Central

    Shanks, Orin C.; Domingo, Jorge W. Santo; Lu, Jingrang; Kelty, Catherine A.; Graham, James E.

    2007-01-01

    We used genome fragment enrichment and bioinformatics to identify several microbial DNA sequences with high potential for use as markers in PCR assays for detection of human fecal contamination in water. Following competitive solution-phase hybridization of total DNA from human and pig fecal samples, 351 plasmid clones were sequenced and were determined to define 289 different genomic DNA regions. These putative human-specific fecal bacterial DNA sequences were then analyzed by dot blot hybridization, which confirmed that 98% were present in the source human fecal microbial community and absent from the original pig fecal DNA extract. Comparative sequence analyses of these sequences suggested that a large number (43.5%) were predicted to encode bacterial secreted or surface-associated proteins. Deoxyoligonucleotide primers capable of annealing to a subset of 26 of the candidate sequences predicted to encode factors involved in interactions with host cells were then used in the PCR and did not amplify markers in DNA from any additional pig fecal specimens. These 26 PCR assays exhibited a range of specificity in tests with 11 other animal sources, with more than half amplifying markers only in specimens from dogs or cats. Four assays were more specific, detecting markers only in specimens from humans, including those from 18 different human populations examined. We then demonstrated the potential utility of these assays by using them to detect human fecal contamination in several impacted watersheds. PMID:17209067

  1. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  2. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution - Poster

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...

  3. Combining Land Use Information and Small Stream Sampling with PCR-Based Methods for Better Characterization of Diffuse Sources of Human Fecal Pollution

    EPA Science Inventory

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...

  4. Fluoroquinolones and qnr genes in sediment, water, soil, and human fecal flora in an environment polluted by manufacturing discharges.

    PubMed

    Rutgersson, Carolin; Fick, Jerker; Marathe, Nachiket; Kristiansson, Erik; Janzon, Anders; Angelin, Martin; Johansson, Anders; Shouche, Yogesh; Flach, Carl-Fredrik; Larsson, D G Joakim

    2014-07-15

    There is increasing concern that environmental antibiotic pollution promotes transfer of resistance genes to the human microbiota. Here, fluoroquinolone-polluted river sediment, well water, irrigated farmland, and human fecal flora of local villagers within a pharmaceutical industrial region in India were analyzed for quinolone resistance (qnr) genes by quantitative PCR. Similar samples from Indian villages farther away from industrial areas, as well as fecal samples from Swedish study participants and river sediment from Sweden, were included for comparison. Fluoroquinolones were detected by MS/MS in well water and soil from all villages located within three km from industrially polluted waterways. Quinolone resistance genes were detected in 42% of well water, 7% of soil samples and in 100% and 18% of Indian and Swedish river sediments, respectively. High antibiotic concentrations in Indian sediment coincided with high abundances of qnr, whereas lower fluoroquinolone levels in well water and soil did not. We could not find support for an enrichment of qnr in fecal samples from people living in the fluoroquinolone-contaminated villages. However, as qnr was detected in 91% of all Indian fecal samples (24% of the Swedish) it suggests that the spread of qnr between people is currently a dominating transmission route.

  5. IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN FECAL POLLUTION IN WATER

    EPA Science Inventory

    We used genome fragment enrichment and bioinformatics to identify several microbial DNA sequences with high potential for use as markers in PCR assays for detection of human fecal contamination in water. Following competitive solution-phase hybridization of total DNA from human a...

  6. Comparison of Four Polymerase Chain Reaction Methods for the Rapid Detection of Human Fecal Pollution in Marine and Inland Waters

    PubMed Central

    Bachoon, Dave S.; Miller, Cortney M.; Green, Christen P.; Otero, Ernesto

    2010-01-01

    We compared the effectiveness of three PCR protocols for the detection of Bifidobacterium adolescentis and one PCR protocol for detecting Bacteroidales as indicators of human fecal pollution in environmental samples. Quantitative PCR indicated that a higher concentration of B. adolescentis DNA was recovered from sewage samples on the 0.2 μm filters compared to the 0.45 μm filters, and there was no evidence of qPCR inhibitors in the DNA extracts. With the Matsuki method (1999), B. adolescentis was detected only in undiluted sewage samples. The King method (2007) performed well and detected B. adolescentis in all of the sewage dilutions (from undiluted to 10−4). In contrast, the Bonjoch approach (2004) was effective at detecting B. adolescentis at lower dilutions (10−3) of sewage samples and it gave false positive results with some (3/8) pig fecal samples. Human-specific Bacteroidales (HuBacs) were detected in the lower diluents of sewage samples but was positive in pig (6/8) and cattle fecal samples. PCR detection of B. adolescentis in marine samples from Puerto Rico and freshwater samples from Georgia indicated that the PCR method of King et al. (2007) and the modified Layton method for HuBac were in agreement in detecting human fecal pollution in most sites. PMID:20811614

  7. Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples

    PubMed Central

    Green, Hyatt C.; Haugland, Richard A.; Varma, Manju; Millen, Hana T.; Borchardt, Mark A.; Field, Katharine G.; Walters, William A.; Knight, R.; Sivaganesan, Mano; Kelty, Catherine A.

    2014-01-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters. PMID:24610857

  8. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples.

    PubMed

    Green, Hyatt C; Haugland, Richard A; Varma, Manju; Millen, Hana T; Borchardt, Mark A; Field, Katharine G; Walters, William A; Knight, R; Sivaganesan, Mano; Kelty, Catherine A; Shanks, Orin C

    2014-05-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters.

  9. Evaluation of five microbial and four mitochondrial DNA markers for tracking human and pig fecal pollution in freshwater

    PubMed Central

    He, Xiwei; Liu, Peng; Zheng, Guolu; Chen, Huimei; Shi, Wei; Cui, Yibin; Ren, Hongqiang; Zhang, Xu-Xiang

    2016-01-01

    This study systematically evaluated five microbial and four mitochondrial DNA (mtDNA) markers, including sensitivities and specificities under PCR method, and fecal concentrations and decay rates in water under qPCR method. The microbial DNA markers were the three human-associated (BacH, HF183 and B.adolescentis) and two pig-associated (Pig-2-Bac and L.amylovorus), while the mtDNA ones were two human- (H-ND6 and H-ND5) and two pig-associated (P-CytB and P-ND5). All the mtDNA markers showed higher sensitivity (100%) than the microbial ones (84.0–88.8%) except Pig-2-Bac (100%). Specificities of the human mtDNA markers (99.1 and 98.1%) were higher than those of the human-associated microbial ones (57.0–88.8%). But this pattern was not observed in the pig-associated markers where Pig-2-Bac had 100% specificity. The reliability of H-ND6 and H-ND5 was further evidenced to identify locations of the most polluted within the Taihu Lake watershed of China. In general, the microbial DNA markers demonstrated a higher fecal concentration than the mtDNA ones; increasing temperature and sunlight exposure accelerated significantly the decay of all the DNA markers. Results of this study suggest that DNA markers H-ND6, H-ND5, and Pig-2-Bac may be among the best for fecal source tracking in water. PMID:27734941

  10. Evaluation of five microbial and four mitochondrial DNA markers for tracking human and pig fecal pollution in freshwater

    NASA Astrophysics Data System (ADS)

    He, Xiwei; Liu, Peng; Zheng, Guolu; Chen, Huimei; Shi, Wei; Cui, Yibin; Ren, Hongqiang; Zhang, Xu-Xiang

    2016-10-01

    This study systematically evaluated five microbial and four mitochondrial DNA (mtDNA) markers, including sensitivities and specificities under PCR method, and fecal concentrations and decay rates in water under qPCR method. The microbial DNA markers were the three human-associated (BacH, HF183 and B.adolescentis) and two pig-associated (Pig-2-Bac and L.amylovorus), while the mtDNA ones were two human- (H-ND6 and H-ND5) and two pig-associated (P-CytB and P-ND5). All the mtDNA markers showed higher sensitivity (100%) than the microbial ones (84.0–88.8%) except Pig-2-Bac (100%). Specificities of the human mtDNA markers (99.1 and 98.1%) were higher than those of the human-associated microbial ones (57.0–88.8%). But this pattern was not observed in the pig-associated markers where Pig-2-Bac had 100% specificity. The reliability of H-ND6 and H-ND5 was further evidenced to identify locations of the most polluted within the Taihu Lake watershed of China. In general, the microbial DNA markers demonstrated a higher fecal concentration than the mtDNA ones; increasing temperature and sunlight exposure accelerated significantly the decay of all the DNA markers. Results of this study suggest that DNA markers H-ND6, H-ND5, and Pig-2-Bac may be among the best for fecal source tracking in water.

  11. Discovering new indicators of fecal pollution

    PubMed Central

    McLellan, Sandra L.; Eren, A. Murat

    2014-01-01

    Fecal pollution indicators are essential to identify and remediate contamination sources and protect public health. Historically, easily cultured facultative anaerobes such as fecal coliforms, Escherichia coli, or enterococci have been used, but these indicators generally provide no information as to their source. More recently, molecular methods have targeted fecal anaerobes, which are much more abundant in humans and other mammals and some strains appear to be associated with certain host sources. Next-generation sequencing and microbiome studies have created an unprecedented inventory of microbial communities associated with fecal sources, allowing reexamination of which taxonomic groups are best suited as informative indicators. The use of new computational methods, such as oligotyping coupled with well-established machine learning approaches, is providing new insights into patterns of host association. In this review we examine the basis for host-specificity and the rationale for using 16S rRNA gene targets for alternative indicators and highlight two taxonomic groups, Bacteroidales and Lachnospiraceae, which are rich in host-specific bacterial organisms. Finally, we discuss considerations for using alternative indicators for water quality assessments with a particular focus on detecting human sewage sources of contamination. PMID:25199597

  12. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    USGS Publications Warehouse

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  13. Distribution of Human-Specific Bacteroidales and Fecal Indicator Bacteria in an Urban Watershed Impacted by Sewage Pollution, Determined Using RNA- and DNA-Based Quantitative PCR Assays

    PubMed Central

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael

    2014-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as “naked DNA” in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources. PMID:25326295

  14. Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA- and DNA-based quantitative PCR assays.

    PubMed

    Kapoor, Vikram; Pitkänen, Tarja; Ryu, Hodon; Elk, Michael; Wendell, David; Santo Domingo, Jorge W

    2015-01-01

    The identification of fecal pollution sources is commonly carried out using DNA-based methods. However, there is evidence that DNA can be associated with dead cells or present as "naked DNA" in the environment. Furthermore, it has been shown that rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) assays can be more sensitive than rRNA gene-based qPCR assays since metabolically active cells usually contain higher numbers of ribosomes than quiescent cells. To this end, we compared the detection frequency of host-specific markers and fecal bacteria using RNA-based RT-qPCR and DNA-based qPCR methods for water samples collected in sites impacted by combined sewer overflows. As a group, fecal bacteria were more frequently detected in most sites using RNA-based methods. Specifically, 8, 87, and 85% of the samples positive for general enterococci, Enterococcus faecalis, and Enterococcus faecium markers, respectively, were detected using RT-qPCR, but not with the qPCR assay counterpart. On average, two human-specific Bacteroidales markers were not detected when using DNA in 12% of the samples, while they were positive for all samples when using RNA (cDNA) as the template. Moreover, signal intensity was up to three orders of magnitude higher in RT-qPCR assays than in qPCR assays. The human-specific Bacteroidales markers exhibited moderate correlation with conventional fecal indicators using RT-qPCR results, suggesting the persistence of nonhuman sources of fecal pollution or the presence of false-positive signals. In general, the results from this study suggest that RNA-based assays can increase the detection sensitivity of fecal bacteria in urban watersheds impacted with human fecal sources.

  15. Polymorphism of the glucosyltransferase gene (ycjM) in Escherichia coli and its use for tracking human fecal pollution in water.

    PubMed

    Deng, Daiyong; Zhang, Ning; Xu, Dong; Reed, Mary; Liu, Fengjing; Zheng, Guolu

    2015-12-15

    This study examined polymorphism of the glucosyltransferase gene (ycjM) in fecal Escherichia coli isolates and evaluated the use of the sequence polymorphism for measuring human fecal pollution in water. Significant nucleotide variations were observed through comparative analysis of the ycjM sequences of 70 E. coli strains isolated from the feces of humans, domestic livestock, and wild animals. Three distinct types of ycjM sequences were found: universal-ycjM, human/chicken-ycjM, and human-ycjM. Using the human-ycjM sequences, both a polymerase chain reaction (PCR), Hycj-PCR and a quantitative PCR, Hycj-qPCR, were developed. As shown by the Hycj-PCR amplification, the human-ycjM marker appeared to be highly associated with the E. coli strains isolated from human feces, based on the analysis of 370 E. coli strains isolated from humans and seven other animal species. Similarly, the human-ycjM marker was highly linked with human feces, as demonstrated by the Hycj-PCR assay, when using 337 fecal DNA samples from 16 host animal sources, including both domestic and wild animals. Overall, the specificity and sensitivity of the human-ycjM marker for differentiating between the feces of humans and those of nonhuman groups were 99.7% and 100%, respectively; the prevalence of the marker appeared to be greater than 50% in the human-feces-associated E. coli population. In addition, our study showed that the quantification of human E. coli by the Hycj-qPCR was linearly correlated with the anthropogenic activity within a watershed. Our study suggests that this novel human-ycjM marker and the resulting PCR-based methods developed should be useful for measuring human-associated E. coli and human fecal pollution in water.

  16. Quantification of human-associated fecal indicators reveal sewage from urban watersheds as a source of pollution to Lake Michigan.

    PubMed

    Templar, Hayley A; Dila, Deborah K; Bootsma, Melinda J; Corsi, Steven R; McLellan, Sandra L

    2016-09-01

    Sewage contamination of urban waterways from sewer overflows and failing infrastructure is a major environmental and public health concern. Fecal coliforms (FC) are commonly employed as fecal indicator bacteria, but do not distinguish between human and non-human sources of fecal contamination. Human Bacteroides and human Lachnospiraceae, two genetic markers for human-associated indicator bacteria, were used to identify sewage signals in two urban rivers and the estuary that drains to Lake Michigan. Grab samples were collected from the rivers throughout 2012 and 2013 and hourly samples were collected in the estuary across the hydrograph during summer 2013. Human Bacteroides and human Lachnospiraceae were highly correlated with each other in river samples (Pearson's r = 0.86), with average concentrations at most sites elevated during wet weather. These human indicators were found during baseflow, indicating that sewage contamination is chronic in these waterways. FC are used for determining total maximum daily loads (TMDLs) in management plans; however, FC concentrations alone failed to prioritize river reaches with potential health risks. While 84% of samples with >1000 CFU/100 ml FC had sewage contamination, 52% of samples with moderate (200-1000 CFU/100 ml) and 46% of samples with low (<200 CFU/100 ml) FC levels also had evidence of human sewage. Load calculations in the in the Milwaukee estuary revealed storm-driven sewage contamination varied greatly among events and was highest during an event with a short duration of intense rain. This work demonstrates urban areas have unrecognized sewage inputs that may not be adequately prioritized for remediation by the TMDL process. Further analysis using these approaches could determine relationships between land use, storm characteristics, and other factors that drive sewage contamination in urban waterways. PMID:27236594

  17. Quantification of human-associated fecal indicators reveal sewage from urban watersheds as a source of pollution to Lake Michigan.

    PubMed

    Templar, Hayley A; Dila, Deborah K; Bootsma, Melinda J; Corsi, Steven R; McLellan, Sandra L

    2016-09-01

    Sewage contamination of urban waterways from sewer overflows and failing infrastructure is a major environmental and public health concern. Fecal coliforms (FC) are commonly employed as fecal indicator bacteria, but do not distinguish between human and non-human sources of fecal contamination. Human Bacteroides and human Lachnospiraceae, two genetic markers for human-associated indicator bacteria, were used to identify sewage signals in two urban rivers and the estuary that drains to Lake Michigan. Grab samples were collected from the rivers throughout 2012 and 2013 and hourly samples were collected in the estuary across the hydrograph during summer 2013. Human Bacteroides and human Lachnospiraceae were highly correlated with each other in river samples (Pearson's r = 0.86), with average concentrations at most sites elevated during wet weather. These human indicators were found during baseflow, indicating that sewage contamination is chronic in these waterways. FC are used for determining total maximum daily loads (TMDLs) in management plans; however, FC concentrations alone failed to prioritize river reaches with potential health risks. While 84% of samples with >1000 CFU/100 ml FC had sewage contamination, 52% of samples with moderate (200-1000 CFU/100 ml) and 46% of samples with low (<200 CFU/100 ml) FC levels also had evidence of human sewage. Load calculations in the in the Milwaukee estuary revealed storm-driven sewage contamination varied greatly among events and was highest during an event with a short duration of intense rain. This work demonstrates urban areas have unrecognized sewage inputs that may not be adequately prioritized for remediation by the TMDL process. Further analysis using these approaches could determine relationships between land use, storm characteristics, and other factors that drive sewage contamination in urban waterways.

  18. Quantification of human-associated fecal indicators reveal sewage from urban watersheds as a source of pollution to Lake Michigan

    USGS Publications Warehouse

    Templar, Hayley A.; Dila, Deborah K.; Bootsma, Melinda J.; Corsi, Steven; McLellan, Sandra L.

    2016-01-01

    Sewage contamination of urban waterways from sewer overflows and failing infrastructure is a major environmental and public health concern. Fecal coliforms (FC) are commonly employed as fecal indicator bacteria, but do not distinguish between human and non-human sources of fecal contamination. Human Bacteroides and humanLachnospiraceae, two genetic markers for human-associated indicator bacteria, were used to identify sewage signals in two urban rivers and the estuary that drains to Lake Michigan. Grab samples were collected from the rivers throughout 2012 and 2013 and hourly samples were collected in the estuary across the hydrograph during summer 2013. Human Bacteroides and human Lachnospiraceae were highly correlated with each other in river samples (Pearson’s r = 0.86), with average concentrations at most sites elevated during wet weather. These human indicators were found during baseflow, indicating that sewage contamination is chronic in these waterways. FC are used for determining total maximum daily loads (TMDLs) in management plans; however, FC concentrations alone failed to prioritize river reaches with potential health risks. While 84% of samples with >1000 CFU/100 ml FC had sewage contamination, 52% of samples with moderate (200–1000 CFU/100 ml) and 46% of samples with low (<200 CFU/100 ml) FC levels also had evidence of human sewage. Load calculations in the in the Milwaukee estuary revealed storm-driven sewage contamination varied greatly among events and was highest during an event with a short duration of intense rain. This work demonstrates urban areas have unrecognized sewage inputs that may not be adequately prioritized for remediation by the TMDL process. Further analysis using these approaches could determine relationships between land use, storm characteristics, and other factors that drive sewage contamination in urban waterways.

  19. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. PMID:26298247

  20. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater.

  1. Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal streptococci.

    PubMed

    Hagedorn, C; Robinson, S L; Filtz, J R; Grubbs, S M; Angier, T A; Reneau, R B

    1999-12-01

    Nonpoint sources of pollution that contribute fecal bacteria to surface waters have proven difficult to identify. Knowledge of pollution sources could aid in restoration of the water quality, reduce the amounts of nutrients leaving watersheds, and reduce the danger of infectious disease resulting from exposure to contaminated waters. Patterns of antibiotic resistance in fecal streptococci were analyzed by discriminant and cluster analysis and used to identify sources of fecal pollution in a rural Virginia watershed. A database consisting of patterns from 7,058 fecal streptococcus isolates was first established from known human, livestock, and wildlife sources in Montgomery County, Va. Correct fecal streptococcus source identification averaged 87% for the entire database and ranged from 84% for deer isolates to 93% for human isolates. To field test the method and the database, a watershed improvement project (Page Brook) in Clarke County, Va., was initiated in 1996. Comparison of 892 known-source isolates from that watershed against the database resulted in an average correct classification rate of 88%. Combining all animal isolates increased correct classification rates to > or = 95% for separations between animal and human sources. Stream samples from three collection sites were highly contaminated, and fecal streptococci from these sites were classified as being predominantly from cattle (>78% of isolates), with small proportions from waterfowl, deer, and unidentified sources ( approximately 7% each). Based on these results, cattle access to the stream was restricted by installation of fencing and in-pasture watering stations. Fecal coliforms were reduced at the three sites by an average of 94%, from prefencing average populations of 15,900 per 100 ml to postfencing average populations of 960 per 100 ml. After fencing, <45% of fecal streptococcus isolates were classified as being from cattle. These results demonstrate that antibiotic resistance profiles in fecal

  2. Exposure to human source fecal indicators and self-reported illness among bathers

    EPA Science Inventory

    Introduction: Indicator microorganisms are used to predict the presence of fecal pollution in water and assess associated health risks, usually gastrointestinal illness and diarrhea. Few studies have characterized the health risks associated with human fecal sources using microbi...

  3. IDENTIFICATION OF SOURCES OF FECAL POLLUTION IN ENVIRONMENTAL WATERS

    EPA Science Inventory

    A number of Microbial Source Tracking (MST) methods are currently used to determine the origin of fecal pollution impacting environmental waters. MST is based on the assumption that given the appropriate method and indicator organism, the source of fecal microbial pollution can ...

  4. FECAL POLLUTION, PUBLIC HEALTH AND MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Microbial source tracking (MST) seeks to provide information about sources of fecal water contamination. Without knowledge of sources, it is difficult to accurately model risk assessments, choose effective remediation strategies, or bring chronically polluted waters into complian...

  5. Combining Watershed Variables with PCR-based Methods for Better Characterization and Management of Fecal Pollution in Small Streams

    EPA Science Inventory

    Ability to distinguish between human and animal fecal pollution is important for risk assessment and watershed management, particularly in bodies of water used as sources of drinking water or for recreation. PCR-based methods were used to determine the source of fecal pollution ...

  6. Development of Cross-Assembly Phage PCR-Based Methods for Human Fecal Source Identification

    EPA Science Inventory

    Technologies that can characterize human fecal pollution in environmental waters offer many advantages over traditional general indicator approaches. However, many human-associated methods cross-react with non-human animal sources and lack suitable sensitivity for fecal source id...

  7. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution.

    PubMed

    McQuaig, Shannon; Griffith, John; Harwood, Valerie J

    2012-09-01

    Water quality was assessed at two marine beaches in California by measuring the concentrations of culturable fecal indicator bacteria (FIB) and by library-independent microbial source tracking (MST) methods targeting markers of human-associated microbes (human polyomavirus [HPyV] PCR and quantitative PCR, Methanobrevibacter smithii PCR, and Bacteroides sp. strain HF183 PCR) and a human pathogen (adenovirus by nested PCR). FIB levels periodically exceeded regulatory thresholds at Doheny and Avalon Beaches for enterococci (28.5% and 31.7% of samples, respectively) and fecal coliforms (20% and 5.8%, respectively). Adenoviruses were detected at four of five sites at Doheny Beach and were correlated with detection of HPyVs and human Bacteroides HF183; however, adenoviruses were not detected at Avalon Beach. The most frequently detected human source marker at both beaches was Bacteroides HF183, which was detected in 27% of samples. Correlations between FIBs and human markers were much more frequent at Doheny Beach than at Avalon Beach; e.g., adenovirus was correlated with HPyVs and HF183. Human sewage markers and adenoviruses were routinely detected in samples meeting FIB regulatory standards. The toolbox approach of FIB measurement coupled with analysis of several MST markers targeting human pathogens used here demonstrated that human sewage is at least partly responsible for the degradation of water quality, particularly at Doheny Beach, and resulted in a more definitive assessment of recreational water quality and human health risk than reliance on FIB concentrations alone could have provided.

  9. Identification of hotspots and trends of fecal surface water pollution in developing countries

    NASA Astrophysics Data System (ADS)

    Reder, Klara; Flörke, Martina; Alcamo, Joseph

    2015-04-01

    Water is the essential resource ensuring human life on earth, which can only prosper when water is available and accessible. But of importance is not only the quantity of accessible water but also its quality, which in case of pollution may pose a risk to human health. The pollutants which pose a risk to human health are manifold, covering several groups such as pathogens, nutrients, human pharmaceuticals, heavy metals, and others. With regards to human health, pathogen contamination is of major interest as 4% of all death and 5.7% of disability or ill health in the world can be attributed to poor water supply, sanitation and personal and domestic hygiene. In developing countries, 2.6 billion people lacked access to improved sanitation in 2011. The lack of sanitation poses a risk to surface water pollution which is a threat to human health. A typical indicator for pathogen pollution is fecal coliform bacteria. The objective our study is to assess fecal pollution in the developing regions Africa, Asia and Latin America using the large-scale water quality model WorldQual. Model runs were carried-out to calculate in-stream concentrations and the respective loadings reaching rivers for the time period 1990 to 2010. We identified hotspots of fecal coliform loadings and in-stream concentrations which were further analyzed and ranked in terms of fecal surface water pollution. Main findings are that loadings mainly originate from the domestic sector, thus loadings are high in highly populated areas. In general, domestic loadings can be attributed to the two subsectors domestic sewered and domestic non sewered. The spatial distribution of both sectors varies across catchments. Hotspot pattern of in-stream concentrations are similar to the loadings pattern although they are different in seasonality. As the dilution varies with climate its dilution capacity is high during seasons with high precipitation, which in turn decreases the in-stream concentrations. The fecal

  10. COLIPHAGES AS POTENTIAL VIRAL INDICATORS OF FECAL POLLUTION

    EPA Science Inventory

    Friedman, Stephanie D. In press. Coliphages as Potential Viral Indicators of Fecal Pollution (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and Southeastern United States, 6-9 October ...

  11. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  12. Tracing fecal pollution sources in karst groundwater by Bacteroidales genetic biomarkers, bacterial indicators, and environmental variables.

    PubMed

    Zhang, Ya; Kelly, Walton R; Panno, Samuel V; Liu, Wen-Tso

    2014-08-15

    Fecal contamination in Midwestern karst regions was evaluated by simultaneously measuring traditional bacterial indicators (coliforms and Escherichia coli), Bacteroidales-based biomarkers, and environmental variables. Water samples from springs and wells were collected from karst regions in Illinois (IL), Wisconsin (WI), Kentucky (KY), and Missouri (MO). Quantitative PCR (Q-PCR) with seven primer sets targeting different members of Bacteroidales was used to determine the origin of fecal contamination (i.e., from human waste, livestock waste, or both). Most samples were contaminated by both human and animal waste, with a few samples showing pollution solely by one or the other. Spring water tended to have higher levels of contamination than well water, and higher concentrations of fecal biomarkers were detected in urban springs compared to rural spring systems. However, there were discrepancies on contamination profile determined by Bacteroidales-based biomarkers and by traditional bacterial indicators. Among all the environmental parameters examined, E. coli, sulfate, total dissolved solids (TDS), and silicon were significantly correlated (p<0.05) with the level of Bacteroidales-based fecal indicators. A rapid screening method using total nitrogen (TN) and chloride (Cl(-)) concentrations to determine fecal contamination was shown to be effective and correlated well with Bacteroidales-based MST. The results suggest that human and livestock feces co-contaminated a large portion of karst groundwater systems in Midwestern regions, and the inclusion of traditional bacterial indicators, environmental variables, and Bacteroidales-based MST is an effective approach for identifying fecal contamination in karst regions.

  13. Correlative Assessment of Fecal Indicators Using Human Mitochondrial DNA as a Direct Marker

    EPA Science Inventory

    Identifying the source of surface water fecal contamination is paramount to mitigating pollution and risk to human health. Fecal bacteria such as E. coli have been staple indicator organisms for over a century, however there remains uncertainty with E. coli-based metrics since t...

  14. Pepper Mild Mottle Virus as an Indicator of Fecal Pollution

    PubMed Central

    Rosario, Karyna; Symonds, Erin M.; Sinigalliano, Christopher; Stewart, Jill; Breitbart, Mya

    2009-01-01

    Accurate indicators of fecal pollution are needed in order to minimize public health risks associated with wastewater contamination in recreational waters. However, the bacterial indicators currently used for monitoring water quality do not correlate with the presence of pathogens. Here we demonstrate that the plant pathogen Pepper mild mottle virus (PMMoV) is widespread and abundant in wastewater from the United States, suggesting the utility of this virus as an indicator of human fecal pollution. Quantitative PCR was used to determine the abundance of PMMoV in raw sewage, treated wastewater, seawater exposed to wastewater, and fecal samples and/or intestinal homogenates from a wide variety of animals. PMMoV was present in all wastewater samples at concentrations greater than 1 million copies per milliliter of raw sewage. Despite the ubiquity of PMMoV in human feces, this virus was not detected in the majority of animal fecal samples tested, with the exception of chicken and seagull samples. PMMoV was detected in four out of six seawater samples collected near point sources of secondary treated wastewater off southeastern Florida, where it co-occurred with several other pathogens and indicators of fecal pollution. Since PMMoV was not found in nonpolluted seawater samples and could be detected in surface seawater for approximately 1 week after its initial introduction, the presence of PMMoV in the marine environment reflects a recent contamination event. Together, these data demonstrate that PMMoV is a promising new indicator of fecal pollution in coastal environments. PMID:19767474

  15. Comparison of Sewage and Animal Fecal Microbiomes by using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    EPA Science Inventory

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but human and other animal gut microbiota contain an array of other taxonomic groups that might serve as indicators for sources of fecal pollution. High thr...

  16. Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups

    PubMed Central

    Fisher, Jenny C.; Eren, A. Murat; Green, Hyatt C.; Shanks, Orin C.; Morrison, Hilary G.; Vineis, Joseph H.; Sogin, Mitchell L.

    2015-01-01

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts. PMID:26231648

  17. Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups.

    PubMed

    Fisher, Jenny C; Eren, A Murat; Green, Hyatt C; Shanks, Orin C; Morrison, Hilary G; Vineis, Joseph H; Sogin, Mitchell L; McLellan, Sandra L

    2015-10-01

    Most DNA-based microbial source tracking (MST) approaches target host-associated organisms within the order Bacteroidales, but the gut microbiota of humans and other animals contain organisms from an array of other taxonomic groups that might provide indicators of fecal pollution sources. To discern between human and nonhuman fecal sources, we compared the V6 regions of the 16S rRNA genes detected in fecal samples from six animal hosts to those found in sewage (as a proxy for humans). We focused on 10 abundant genera and used oligotyping, which can detect subtle differences between rRNA gene sequences from ecologically distinct organisms. Our analysis showed clear patterns of differential oligotype distributions between sewage and animal samples. Over 100 oligotypes of human origin occurred preferentially in sewage samples, and 99 human oligotypes were sewage specific. Sequences represented by the sewage-specific oligotypes can be used individually for development of PCR-based assays or together with the oligotypes preferentially associated with sewage to implement a signature-based approach. Analysis of sewage from Spain and Brazil showed that the sewage-specific oligotypes identified in U.S. sewage have the potential to be used as global alternative indicators of human fecal pollution. Environmental samples with evidence of prior human fecal contamination had consistent ratios of sewage signature oligotypes that corresponded to the trends observed for sewage. Our methodology represents a promising approach to identifying new bacterial taxa for MST applications and further highlights the potential of the family Lachnospiraceae to provide human-specific markers. In addition to source tracking applications, the patterns of the fine-scale population structure within fecal taxa suggest a fundamental relationship between bacteria and their hosts.

  18. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    EPA Science Inventory

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  19. Chemical tracers as indicator of human fecal coliforms at storm water outfalls.

    PubMed

    Sankararamakrishnan, Nalini; Guo, Qizhong

    2005-10-01

    Indicators to distinguish between fecal coliforms of human and animal origin were investigated in water from storm sewer outfalls to a coastal lake during wet and dry weather. The ratio of fecal coliform relative to fecal streptococci count was used as the microbiological indicator. Concentrations of human-activities originated caffeine, anionic surfactant, fluoride, and fluorescence whitening agent (FWA) were used as chemical indicators. The ratio of fecal coliform to fecal streptococci ranged from 0.2 to 3.0, during wet weather making it difficult to interpret the origin of fecal pollution. However, concentrations of caffeine, anionic surfactant, fluoride, and FWA in storm water outflow during wet weather were much higher than those in the lake water during dry weather, indicating the presence of human waste at storm water outfall. Strong correlation between fecal coliform counts and chemical parameter values further indicated the human contribution to the fecal coliform count. In addition, a strong correlation among the chemical parameters suggested that only one of them is needed as chemical tracer to detect the presence of human input. PMID:15932771

  20. Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes.

    PubMed

    Lalancette, Cindy; Papineau, Isabelle; Payment, Pierre; Dorner, Sarah; Servais, Pierre; Barbeau, Benoit; Di Giovanni, George D; Prévost, Michèle

    2014-05-15

    Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with

  1. Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes.

    PubMed

    Lalancette, Cindy; Papineau, Isabelle; Payment, Pierre; Dorner, Sarah; Servais, Pierre; Barbeau, Benoit; Di Giovanni, George D; Prévost, Michèle

    2014-05-15

    Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with

  2. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING BACTEROIDETES 16S RDNA-BASED ASSAYS

    EPA Science Inventory

    Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate between ruminant and human fecal pollution. These assays are rapid and relatively inexpensive but have been used in a limited number of studies. In this study, we evaluated the efficacy o...

  3. DETECTION AND QUANTIFICATION OF COW FECAL POLLUTION WITH REAL-TIME PCR

    EPA Science Inventory

    Assessment of health risk and fecal bacteria loads associated with cow fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for enumeration of two recently described cow-specific g...

  4. Fecal pathogen pollution: sources and patterns in water and sediment samples from the upper Cook Inlet, Alaska ecosystem.

    PubMed

    Norman, Stephanie A; Hobbs, Roderick C; Wuertz, Stefan; Melli, Ann; Beckett, Laurel A; Chouicha, Nadira; Kundu, Arti; Miller, Woutrina A

    2013-05-01

    Fecal pathogens are transported from a variety of sources in multi-use ecosystems such as upper Cook Inlet (CI), Alaska, which includes the state's urban center and is highly utilized by humans and animals. This study used a novel water quality testing approach to evaluate the presence and host sources of potential fecal pathogens in surface waters and sediments from aquatic ecosystems in upper CI. Matched water and sediment samples, along with effluent from a municipal wastewater treatment facility, were screened for Salmonella spp., Vibrio spp., Cryptosporidium spp., Giardia spp., and noroviruses. Additionally, Bacteroidales spp. for microbial source tracking, and the fecal indicator bacteria Enterococcus spp. as well as fecal coliforms were evaluated. Overall, Giardia and Vibrio were the most frequently detected potential pathogens, followed by Cryptosporidium and norovirus, while Salmonella was not detected. Sample month, matrix type, and recent precipitation were found to be significant environmental factors for protozoa or host-associated Bacteroidales marker detection, whereas location and water temperature were not. The relative contribution of host-associated markers to total fecal marker concentration was estimated using a Monte Carlo method, with the greatest relative contribution to the Bacteroidales marker concentration coming from human sources, while the remainder of the universal fecal host source signal was uncharacterized by available host-associated assays, consistent with wildlife fecal sources. These findings show how fecal indicator and pathogen monitoring, along with identifying contributing host sources, can provide evidence of coastal pathogen pollution and guidance as to whether to target human and/or animal sources for management. PMID:23552731

  5. INFLUENCE OF DIET ON THE PERFORMANCE OF BOVINE FECAL POLLUTION DETECTION METHODS AND MICROBIAL POPULATION STRUCTURE

    EPA Science Inventory

    ABSTRACT Background and Aims. Waterborne diseases originating from bovine fecal material are a significant public health issue. Ensuring water quality requires the use of methods that can consistently identify pollution across a broad range of management practices. One practi...

  6. Application of enteric viruses for fecal pollution source tracking in environmental waters

    EPA Science Inventory

    Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infect...

  7. ASSESSMENT OF FECAL POLLUTION SOURCES IN PLUM CREEK WATERSHED USING PCR AND PHYLOGENETIC ANALYSES OF BACTEROIDETES 16S RDNA

    EPA Science Inventory

    Traditional methods for assessing fecal pollution in environmental systems, such as monitoring for fecal coliforms are not capable of discriminating between different sources fecal pollution. Recently, 16S rDNA Bacteroidetes-targeted PCR assays were developed to discriminate betw...

  8. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays.

    PubMed

    Bonkosky, M; Hernández-Delgado, E A; Sandoz, B; Robledo, I E; Norat-Ramírez, J; Mattei, H

    2009-01-01

    Human fecal contamination of coral reefs is a major cause of concern. Conventional methods used to monitor microbial water quality cannot be used to discriminate between different fecal pollution sources. Fecal coliforms, enterococci, and human-specific Bacteroides (HF183, HF134), general Bacteroides-Prevotella (GB32), and Clostridium coccoides group (CP) 16S rDNA PCR assays were used to test for the presence of non-point source fecal contamination across the southwestern Puerto Rico shelf. Inshore waters were highly turbid, consistently receiving fecal pollution from variable sources, and showing the highest frequency of positive molecular marker signals. Signals were also detected at offshore waters in compliance with existing microbiological quality regulations. Phylogenetic analysis showed that most isolates were of human fecal origin. The geographic extent of non-point source fecal pollution was large and impacted extensive coral reef systems. This could have deleterious long-term impacts on public health, local fisheries and in tourism potential if not adequately addressed.

  9. Methods of targeting animal sources of fecal pollution in water

    EPA Science Inventory

    In this chapter, proposed chemical and biological MST indicators for the determination of animal fecal sources are discussed. The biological indicators are grouped based on the phylogenetic description of the proposed target (eukarya, bacteria, and virus). A comprehensive descrip...

  10. EVALUATION OF HOST SPECIFIC PCR-BASED METHODS FOR THE IDENTIFICATION OF FECAL POLLUTION

    EPA Science Inventory

    Microbial Source Tracking (MST) is an approach to determine the origin of fecal pollution impacting a body of water. MST is based on the assumption that, given the appropriate method and indicator, the source of microbial pollution can be identified. One of the key elements of...

  11. Detection of human-derived fecal contamination in Puerto Rico using carbamazepine, HF183 Bacteroides, and fecal indicator bacteria.

    PubMed

    Wade, Christina; Otero, Ernesto; Poon-Kwong, Brennan; Rozier, Ralph; Bachoon, Dave

    2015-12-30

    The level of fecal pollution in 17 sites in Puerto Rico was determined by Escherichia coli (E.coli) enumeration using an enzyme substrate medium and Quanti-Tray®/2000. Human fecal pollution was identified using an enzyme-linked immunosorbent assay for the detection of carbamazepine (CBZ) and quantitative polymerase chain reaction (qPCR) detection of the human Bacteroides marker, HF183. Carbamazepine was detected in 16 out of 17 sites, including Condado Lagoon, a popular recreational area. Elevated E.coli levels (>410 CFU 100 mL(-1)) were detected in 13 sites. Average CBZ concentrations ranged from 0.005 μg L(-1) to 0.482 μg L(-1) and 7 sites were positive for HF183. Higher CBZ concentrations were associated with the detection of HF183 (Mann-Whitney test; U=42.0; df=7; 1-tailed P value=0.013). This was the second study to determine surface water concentrations of CBZ in the Caribbean and the first in Puerto Rico.

  12. Human-Induced Trophic Cascades along the Fecal Detritus Pathway

    PubMed Central

    Nichols, Elizabeth; Uriarte, María; Peres, Carlos A.; Louzada, Julio; Braga, Rodrigo Fagundes; Schiffler, Gustavo; Endo, Whaldener; Spector, Sacha H.

    2013-01-01

    Human presence and activity in tropical forest is thought to exert top-down regulation over the various ‘green-world’ pathways of plant-based foodwebs. However, these effects have never been explored for the ‘brown-world’ pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function. PMID:24146780

  13. Human-induced trophic cascades along the fecal detritus pathway.

    PubMed

    Nichols, Elizabeth; Uriarte, María; Peres, Carlos A; Louzada, Julio; Braga, Rodrigo Fagundes; Schiffler, Gustavo; Endo, Whaldener; Spector, Sacha H

    2013-01-01

    Human presence and activity in tropical forest is thought to exert top-down regulation over the various 'green-world' pathways of plant-based foodwebs. However, these effects have never been explored for the 'brown-world' pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function. PMID:24146780

  14. Human-induced trophic cascades along the fecal detritus pathway.

    PubMed

    Nichols, Elizabeth; Uriarte, María; Peres, Carlos A; Louzada, Julio; Braga, Rodrigo Fagundes; Schiffler, Gustavo; Endo, Whaldener; Spector, Sacha H

    2013-01-01

    Human presence and activity in tropical forest is thought to exert top-down regulation over the various 'green-world' pathways of plant-based foodwebs. However, these effects have never been explored for the 'brown-world' pathways of fecal-detritus webs. The strong effects of humans on tropical game mammals are likely to indirectly influence fecal detritivores (including Scarabaeine dung beetles), with subsequent indirect impacts on detrivore-mediated and plant-facilitating detrital processes. Across a 380-km gradient of human influence in the western Brazilian Amazon, we conducted the first landscape-level assessment of human-induced cascade effects on the fecal detritus pathway, by coupling data on human impact, game mammal and detritivore community structure, and rate measurements of a key detritus process (i.e. dung beetle-mediated secondary seed dispersal). We found evidence that human impact indirectly influences both the diversity and biomass of fecal detritivores, but not detritivore-mediated processes. Cascade strength varied across detritivore groups defined by species' traits. We found smaller-bodied dung beetles were at higher risk of local decline in areas of human presence, and that body size was a better predictor of cascade structure than fecal resource manipulation strategy. Cascade strength was also stronger in upland, unflooded forests, than in seasonally flooded forests. Our results suggest that the impact of human activity in tropical forest on fecal-detritus food web structure is mediated by both species' traits and habitat type. Further research will be required to determine the conditions under which these cascade effects influence fecal-detritus web function.

  15. Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water

    PubMed Central

    Staley, C.; Sadowsky, M. J.; Gyawali, P.; Sidhu, J. P. S.; Palmer, A.; Beale, D. J.; Toze, S.

    2015-01-01

    In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on

  16. Bacteriotherapy using fecal flora: toying with human motions.

    PubMed

    Borody, Thomas J; Warren, Eloise F; Leis, Sharyn M; Surace, Rosa; Ashman, Ori; Siarakas, Steven

    2004-07-01

    The intestinal flora may play a key role in the pathogenesis of certain gastrointestinal (GI) diseases. Components of bowel flora such as Lactobacillus acidophilus and Bifidobacterium bifidus have long been used empirically as therapeutic agents for GI disorders. More complex combinations of probiotics for therapeutic bacteriotherapy have also recently become available, however the most elaborate mix of human-derived probiotic bacteria is, by definition, the entire fecal flora. Fecal bacteriotherapy uses the complete normal human flora as a therapeutic probiotic mixture of living organisms. This type of bacteriotherapy has a longstanding history in animal health and has been used sporadically against chronic infections of the bowel, especially as a treatment of last resort for patients with severe Clostridium difficile syndromes including recurrent diarrhea, colitis, and pseudomembranous colitis. Encouraging results have also been observed following infusions of human fecal flora in patients with inflammatory bowel disease, irritable bowel syndrome, and chronic constipation. The therapeutic use of fecal bacteriotherapy is reviewed here and possible mechanisms of action and potential applications explored. Published reports on fecal bacteriotherapy are few in number, and detail the results of small uncontrolled open studies and case reports. Nevertheless, given the promising clinical responses, formal research into fecal bacteriotherapy is now warranted. PMID:15220681

  17. Factors affecting the presence of human-associated and fecal indicator real-time quantitative PCR genetic markers in urban-impacted recreational beaches

    EPA Science Inventory

    Urban runoff can carry a variety of pollutants into recreational beaches, often including bacterial pathogens and indicators of fecal contamination. To develop complete recreational criteria and risk assessments, it is necessary to understand conditions under which human contamin...

  18. Caffeine as an indicator of human fecal contamination in the Sinos River: a preliminary study.

    PubMed

    Linden, R; Antunes, M V; Heinzelmann, L S; Fleck, J D; Staggemeier, R; Fabres, R B; Vecchia, A D; Nascimento, C A; Spilki, F R

    2015-05-01

    The preservation of hydric resources is directly related to fecal contamination monitoring, in order to allow the development of strategies for the management of polluting sources. In the present study, twenty-five water samples from six water public supply collection sites were used for the evaluation of the presence of caffeine, total and fecal coliforms. Caffeine was detected in all samples, with concentrations ranging from 0.15 ng mL-1 to 16.72 ng mL-1. Total coliforms were detected in all samples, with concentrations in the range of 52 NMP/100 mL to higher than 24196 NMP/100 mL, whether the concentration range for fecal coliforms was in the range of below 1 NMP/100 mL to 7800 NMP/100 mL. No significant correlation was found between total coliforms and caffeine concentrations (rs = 0.35, p = 0.09). However, a moderate correlation between fecal coliforms and caffeine concentrations was found (rs = 0.412, p <0.05), probably indicating a human source for these bacteria. Caffeine determination in water may be a useful strategy to evaluate water contamination by human fecal waste. PMID:26270218

  19. Identification of strains isolated as total and fecal coliforms and comparison of both groups as indicators of fecal pollution in tropical climates.

    PubMed

    Lavoie, M C

    1983-06-01

    This study was undertaken to better characterize the groups of total coliforms (TC) and fecal coliforms (FC) and to evaluate both groups as indicators of fecal contamination of drinking well water in a tropical climate (The Ivory Coast, West Africa). Isolated colonies obtained as TC or FC on membrane filters were identified using the API-20E system. From the well water samples, 58 golden-green colonies with a metallic sheen isolated on Endo medium (TC) were identified as Escherichia coli (55%), Enterobacter (26%), Klebsiella (14%), Proteus (3%), and Citrobacter (2%). Among 132 colonies isolated on Endo medium as non-TC (not showing the characteristic golden metallic sheen), 10% were identified as E. coli. The 196 blue colonies isolated on M-FC medium at 44.5 degrees C (FC) were identified as E. coli (66%), Klebsiella (12%), Enterobacter (10%), Citrobacter (5%), Salmonella (3%), Serratia (3%), Proteus (2%), and Yersinia (0.5%). Among 24 nonblue colonies on M-FC medium, none were identified as E. coli. Of the colonies isolated from human feces, E. coli represents 92% of the TC and 89% of the FC. Although these results are limited, they tend to confirm the greater specificity of the fecal coliform technique over that of total coliform for the detection of fecal contamination of untreated well water. From the results presented here and the observations of other workers, it is suggested that the use of FC instead of TC should be considered as the method of choice for determining drinking water pollution of untreated groundwater supplies.

  20. Tracking the primary sources of fecal pollution in a tropical watershed in a one-year study.

    PubMed

    Toledo-Hernandez, Carlos; Ryu, Hodon; Gonzalez-Nieves, Joel; Huertas, Evelyn; Toranzos, Gary A; Santo Domingo, Jorge W

    2013-03-01

    A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and human-, cattle-, swine-, and chicken-specific fecal sources. Feces from 12 different animals (n = 340) and wastewater treatment samples (n = 16) were analyzed to determine the specificity and distribution of host-specific assays. The human-specific assay (HF183) was found to be highly specific, as it did not cross-react with nontarget samples. The cattle marker (CF128) cross-reacted to some extent with swine, chicken, and turkeys and was present in 64% of the cattle samples tested. The swine assays showed poor host specificity, while the three chicken assays showed poor host distribution. Differences in the detection of host-specific markers were noted per site. While human and cattle assays showed moderate average detection rates throughout the watershed, areas impacted by wastewater treatment plants and cattle exhibited the highest prevalence of these markers. When conditional probability for positive signals was determined for each of the markers, the results indicated higher confidence levels for the human assay and lower levels for all the other assays. Overall, the results from this study suggest that additional assays are needed, particularly to track cattle, chicken, and swine fecal pollution sources in the RGA watershed. The results also suggest that the geographic stability of genetic markers needs to be determined prior to conducting applied source tracking studies in tropical settings.

  1. Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study

    PubMed Central

    Toledo-Hernandez, Carlos; Ryu, Hodon; Gonzalez-Nieves, Joel; Huertas, Evelyn; Toranzos, Gary A.

    2013-01-01

    A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n = 534) from 10 different sites along the Rio Grande de Arecibo (RGA) watershed were collected mostly on a weekly basis (54 sampling events) during 13 months. DNA extracts from water samples were used in PCR assays to determine the occurrence of fecal bacteria (Bacteroidales, Clostridium coccoides, and enterococci) and human-, cattle-, swine-, and chicken-specific fecal sources. Feces from 12 different animals (n = 340) and wastewater treatment samples (n = 16) were analyzed to determine the specificity and distribution of host-specific assays. The human-specific assay (HF183) was found to be highly specific, as it did not cross-react with nontarget samples. The cattle marker (CF128) cross-reacted to some extent with swine, chicken, and turkeys and was present in 64% of the cattle samples tested. The swine assays showed poor host specificity, while the three chicken assays showed poor host distribution. Differences in the detection of host-specific markers were noted per site. While human and cattle assays showed moderate average detection rates throughout the watershed, areas impacted by wastewater treatment plants and cattle exhibited the highest prevalence of these markers. When conditional probability for positive signals was determined for each of the markers, the results indicated higher confidence levels for the human assay and lower levels for all the other assays. Overall, the results from this study suggest that additional assays are needed, particularly to track cattle, chicken, and swine fecal pollution sources in the RGA watershed. The results also suggest that the geographic stability of genetic markers needs to be determined prior to conducting applied source tracking studies in tropical settings. PMID:23291547

  2. Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution

    EPA Science Inventory

    Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...

  3. Single Laboratory Comparison of Host-Specific PCR Assays for the Detection of Bovine Fecal Pollution

    EPA Science Inventory

    There are numerous PCR-based methods available to detect bovine fecal pollution in ambient waters. Each method targets a different gene and microorganism leading to differences in method performance, making it difficult to determine which approach is most suitable for field appl...

  4. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  5. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  6. [Microbial source tracking of water fecal pollution: a review].

    PubMed

    Feng, Guan-da; Deng, Ming-rong; Zhu, Hong-hui; Guo, Jun; Zhang, Xi; Zhu, Chang-xiong; Liang, Hao-liang

    2010-12-01

    Livestock feces and domestic sewage are the one of the main factors inducing water pollution, while the identification of the pollution source is particularly important in pollution control and management. Because of this, microbial source tracking (MST) has recently been paid more and more attention by the related researchers around the world. In this paper, the research progress of two types of MST methods, their advantages and disadvantages, and existing problems in application were reviewed and discussed. It was considered that in the library- and culture-dependent MST methods, PCR genotyping based on repetitive sequences was most practicable, while in the library- and culture-independent MST methods, PCR-DGGE based on the gene of specificity in Escherichia coli had a very glaring sight. Future researches should be more focused on the library- and culture-independent MST, and the combination of library- and culture-dependent MST with library- and culture-independent MST could make the tracking results more credible.

  7. HUMAN FECAL SOURCE IDENTIFICATION: REAL-TIME QUANTITATIVE PCR METHOD STANDARDIZATION - abstract

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  8. Human Fecal Source Identification: Real-Time Quantitative PCR Method Standardization

    EPA Science Inventory

    Method standardization or the formal development of a protocol that establishes uniform performance benchmarks and practices is necessary for widespread adoption of a fecal source identification approach. Standardization of a human-associated fecal identification method has been...

  9. [Structure of livestock and variation of fecal nitrogen pollution load in China].

    PubMed

    Zhang, Xu-Mei; Dong, Yuan-Hua; Wang, Hui; Shen, Dan

    2007-06-01

    Based on the livestock statistical data of 31 provinces of 1997 - 2004, this paper analyzed the structure of livestock and the variation of fecal nitrogen pollution load in China. The results showed that the relationship between structure of livestock and the economic situation of different provinces was obviously significant. The nitrogen pollution load of livestock was increasing gradually from the northwest to the southeast, and could be divided into relative higher and lower parts, in line with the boundary of 400 mm rainfall of China. Meanwhile, in Beijing and Shanghai, with population concentrated and economy developed, the livestock had developed at a higher speed. However, in the last few years, the developing speed had been decreased slowly; the pollution load had begun to decrease, while the pollution load of livestock in the provinces around Beijing and Shanghai has been increased gradually. Additionally, it is found that only eight provinces are not facing the risk of livestock pollution theoretically.

  10. Occurrence of bacteriophages infecting Bacteroides host strains (ARABA 84 and GB-124) in fecal samples of human and animal origin.

    PubMed

    Diston, David; Wicki, Melanie

    2015-09-01

    Bacteriophage-based microbial source-tracking studies are an economical and simple way of identifying fecal sources in polluted water systems. Recently isolated Bacteroides spp. strains ARABA 84, and GB-124 have been shown to detect bacteriophages exclusively in aquatic systems impacted by human fecal material. To date, limited examination of the occurrence or concentration of phages capable of infecting Bacteroides fragilis strain GB-124 or B. thetaiotaomicron strain ARABA 84 in human and animal feces has been carried out. This study reports the prevalence rates and concentrations of phages infecting ARABA 84 and GB-124 host strains in human and a range of animal feces. Discrete human fecal samples (n=55) and pooled animal samples (n=46, representing the feces of over 230 animals) were examined for phages infecting the host strains ARABA 84, GB-124, and E. coli strain WG5. Both human Bacteroides host strains were highly specific (95% and 100% for ARABA 84 and GB-124, respectively), challenging results from previous studies. This study supports the use of Bacteroides strains GB-124 and ARABA 84 in fecal source tracking studies for the detection of human fecal contamination.

  11. Lachnospiraceae and Bacteroidales Alternative Fecal Indicators Reveal Chronic Human Sewage Contamination in an Urban Harbor▿†

    PubMed Central

    Newton, Ryan J.; VandeWalle, Jessica L.; Borchardt, Mark A.; Gorelick, Marc H.; McLellan, Sandra L.

    2011-01-01

    The complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within the Lachnospiraceae family, which was closely related to the genus Blautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for human Bacteroidales (based on the HF183 genetic marker), total Bacteroidales spp., and enterococci and the conventional Escherichia coli and enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and human Bacteroidales increased specificity to

  12. A Proposal for Source Tracking of Fecal Pollution in Recreational Waters by Pulsed-Field Gel Electrophoresis

    PubMed Central

    Furukawa, Takashi; Suzuki, Yoshihiro

    2013-01-01

    This study aimed to identify specific river sources of fecal contamination by applying pulsed-field gel electrophoresis (PFGE) to environmental water samples from a recreational beach in Japan. The genotypes of all Enterococcus faecium and Enterococcus faecalis strains used as indicators of fecal pollution on the recreational beach and rivers were analyzed by PFGE, and the PFGE profiles of the strains were classified at a 0.9 similarity level using dendrogram analysis. PFGE types of E. faecium isolated from Sakai River or urban drainage were classified in the same cluster. Therefore, the probable sources of fecal pollution on the recreational beach were Sakai River and urban drainage. The approaches for microbial source tracking employed in this study used PFGE with Enterococcus species as an indicator can be a potential tool to specify the source(s) of fecal pollution and contribute to improved public health in coastal environments. PMID:24256972

  13. Solid-phase microextraction and the human fecal VOC metabolome.

    PubMed

    Dixon, Emma; Clubb, Cynthia; Pittman, Sara; Ammann, Larry; Rasheed, Zeehasham; Kazmi, Nazia; Keshavarzian, Ali; Gillevet, Pat; Rangwala, Huzefa; Couch, Robin D

    2011-01-01

    The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein. PMID:21494609

  14. Solid-Phase Microextraction and the Human Fecal VOC Metabolome

    PubMed Central

    Dixon, Emma; Clubb, Cynthia; Pittman, Sara; Ammann, Larry; Rasheed, Zeehasham; Kazmi, Nazia; Keshavarzian, Ali; Gillevet, Pat; Rangwala, Huzefa; Couch, Robin D.

    2011-01-01

    The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein. PMID:21494609

  15. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators.

    PubMed

    Wu, Shubiao; Carvalho, Pedro N; Müller, Jochen A; Manoj, Valsa Remony; Dong, Renjie

    2016-01-15

    Removal of human pathogens from wastewater is a critical factor with linkage to human health. Constructed Wetlands (CWs) are environmental friendly ecosystems that are applicable not only for chemical pollution control, but also for the reduction of pathogens from wastewater. Yet the knowledge on the fate and removal of such indicator bacteria in CWs is still not sufficient due to the complexity of removal mechanisms and influencing factors. This review serves to provide a better understanding of this state-of-the-art technology, which is necessary for further investigations and design development. The fecal indicator bacteria in CWs mainly come from three sources, namely, influent wastewaters, regrowth within the CWs, and animal activities. The properties of microbial contamination vary depending on the different sources. The removal of pathogens is a complex process that is influenced by operational parameters such as hydraulic regime and retention time, vegetation, seasonal fluctuation, and water composition. The most frequent and well-validated removal mechanisms include natural die-off due to starvation or predation, sedimentation and filtration, and adsorption. The concentration of the main fecal indicator bacteria in the effluent was found to be exponentially related to the loading rate. Generally, horizontal subsurface flow CWs have better reduction capacity than free water surface flow CWs, and hybrid wetland systems were found to be the most efficient due to a longer retention time. Further improvement of fecal indicator bacteria removal in CWs is needed, however, levels in CW effluents are still higher than most of the regulation standards for reuse.

  16. Characterization of fecal concentrations in human and other animal sources by physical, culture-based, and quantitative real-time PCR methods.

    PubMed

    Ervin, Jared S; Russell, Todd L; Layton, Blythe A; Yamahara, Kevan M; Wang, Dan; Sassoubre, Lauren M; Cao, Yiping; Kelty, Catherine A; Sivaganesan, Mano; Boehm, Alexandria B; Holden, Patricia A; Weisberg, Stephen B; Shanks, Orin C

    2013-11-15

    The characteristics of fecal sources, and the ways in which they are measured, can profoundly influence the interpretation of which sources are contaminating a body of water. Although feces from various hosts are known to differ in mass and composition, it is not well understood how those differences compare across fecal sources and how differences depend on characterization methods. This study investigated how nine different fecal characterization methods provide different measures of fecal concentration in water, and how results varied across twelve different fecal pollution sources. Sources investigated included chicken, cow, deer, dog, goose, gull, horse, human, pig, pigeon, septage and sewage. A composite fecal slurry was prepared for each source by mixing feces from 6 to 22 individual samples with artificial freshwater. Fecal concentrations were estimated by physical (wet fecal mass added and total DNA mass extracted), culture-based (Escherichia coli and enterococci by membrane filtration and defined substrate), and quantitative real-time PCR (Bacteroidales, E. coli, and enterococci) characterization methods. The characteristics of each composite fecal slurry and the relationships between physical, culture-based and qPCR-based characteristics varied within and among different fecal sources. An in silico exercise was performed to assess how different characterization methods can impact identification of the dominant fecal pollution source in a mixed source sample. A comparison of simulated 10:90 mixtures based on enterococci by defined substrate predicted a source reversal in 27% of all possible combinations, while mixtures based on E. coli membrane filtration resulted in a reversal 29% of the time. This potential for disagreement in minor or dominant source identification based on different methods of measurement represents an important challenge for water quality managers and researchers.

  17. Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution.

    PubMed

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas; Santo Domingo, Jorge

    2012-06-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.

  18. Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution.

    PubMed

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas; Santo Domingo, Jorge

    2012-06-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  19. Development and Evaluation of a Quantitative PCR Assay Targeting Sandhill Crane (Grus canadensis) Fecal Pollution

    PubMed Central

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas

    2012-01-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  20. A PILOT STUDY TO COMPARE MICROBIAL AND CHEMICAL INDICATORS OF HUMAN FECAL CONTAMINATION IN WATER

    EPA Science Inventory

    Limitations exist in applying traditional microbial methods for the detection of human fecal contamination of water. A pilot study was undertaken to compare the microbial and chemical indicators of human fecal contamination of water. Sixty-four water samples were collected in O...

  1. Evaluation of host-specific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed.

    PubMed

    Fremaux, B; Gritzfeld, J; Boa, T; Yost, C K

    2009-11-01

    Our ability to identify and eliminate fecal contamination of water, now and in the future, is essential to reduce incidences of waterborne disease. Bacterial source tracking is a recently developed approach for identifying sources of fecal pollution. PCR primers designed by Bernhard and Field [Bernhard, A.E., Field, K.G., 2000a. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ. Microbiol. 66(10), 4571-4574] and Dick et al. [Dick, L.K., Bernhard, A.E., Brodeur, T.J., Santo Domingo, J.W., Simpson, J.M., Walters, S.P., Field, K.G., 2005. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl. Environ. Microbiol. 71(6), 3184-3191] for the detection of human (HF183), pig (PF163) and ruminant (CF128) specific Bacteroidales 16s rRNA genetic markers were tested for their suitability in detecting fecal pollution in Saskatchewan, Canada. The sensitivity and specificity of these primers were assessed by testing eight raw human sewage samples and 265 feces from 12 different species in Saskatchewan. The specificity of each primer set was > or =94%. The accuracy of HF183 and PF163 to distinguish between the different species was 100%, whereas CF128 cross-reacted with 22% of the pig feces. Occurrence of the host-specific Bacteroidales markers and the conventional indicator Escherichia coli in relation to several enteropathogens was investigated in 70 water samples collected from different sites along the Qu'Appelle River (Saskatchewan, Canada). Human and ruminant fecal markers were identified in 41 and 14% of the water samples, respectively, whereas the pig marker was never detected in the river water. The largest concentrations in E. coli counts were concomitant to the simultaneous detection of HF183 and CF128. Thermotolerant Campylobacter spp., Salmonella spp. and Shiga toxin genes (stx1 and stx2)-positive E

  2. Incidence of the enterococcal surface protein (esp) gene in human and animal fecal sources

    USGS Publications Warehouse

    Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Byappanahalli, M.N.

    2007-01-01

    The occurrence of the enterococcal surface protein (esp) gene in the opportunistic pathogens Enterococcus faecalis and E. faecium is well-documented in clinical research. Recently, the esp gene has been proposed as a marker of human pollution in environmental waters; however, information on its relative incidence in various human and animal fecal sources is limited. We have determined the occurrence of the esp gene in enterococci from human (n = 64) and animal (n = 233) fecal samples by polymerase chain reaction using two primer sets: one presumably specific for E. faecium (espfm) and the other for both E. faecalis and E. faecium (espfs/fm). We believe that this research is the first to explore the use of espfs/fm for the detection of human waste in natural environmental settings. The incidence in human sources was 93.1% espfm and 100% espfs/fm in raw sewage influent; 30% for both espfm and espfs/fm in septic waste; and 0% espfm and 80% espfs/fm in active pit toilets. The overall occurrence of the gene in animal feces was 7.7% (espfs/fm) and 4.7% (espfm); animal types with positive results included dogs (9/43, all espfm), gulls (10/34, espfs/fm; 2/34, espfm), mice (3/22, all espfs/fm), and songbirds (5/55, all espfs/fm). The esp gene was not detected in cat (0/34), deer (0/4), goose (0/18), or raccoon (0/23) feces. The inconsistent occurrence, especially in septic and pit toilet sewage, suggests a low statistical power of discrimination between animal and human sources, which means a large number of replicates should be collected. Both espfm and espfs/fm were common in raw sewage, but neither one efficiently differentiated between animal and other human sources.

  3. Tracking the Primary Sources of Fecal Pollution in a Tropical Watershed in a One-Year Study

    EPA Science Inventory

    A study was conducted to determine the primary sources of fecal pollution in a subtropical watershed using host-specific assays developed in temperate regions. Water samples (n=534) from 10 different sites along the Rio Grande de Arecibo watershed were collected every two-three w...

  4. Combining Watershed Variables with PCR-based Methods for Better Characterization and Management of Fecal Pollution in Small Streams

    EPA Science Inventory

    Culture- and PCR-based measurements of fecal pollution were determined and compared to hydrologic and land use indicators. Stream water samples (n = 235) were collected monthly over a two year period from ten streams draining headwatersheds with different land use intensities ra...

  5. Combining watershed attributes with culture- and PCR-based methods for improved characterization and management of fecal pollution

    EPA Science Inventory

    Culture- and PCR-based methods for characterization of fecal pollution were evaluated in relation to physiographic, biotic, and chemical indicators of stream condition. Stream water samples (n = 235) were collected monthly over a two year period from ten channels draining subwat...

  6. Quantitative real-time PCR assays for sensitive detection of Canada goose-specific fecal pollution in water sources.

    PubMed

    Fremaux, B; Boa, T; Yost, C K

    2010-07-01

    Canada geese (Branta canadensis) are prevalent in North America and may contribute to fecal pollution of water systems where they congregate. This work provides two novel real-time PCR assays (CGOF1-Bac and CGOF2-Bac) allowing for the specific and sensitive detection of Bacteroides 16S rRNA gene markers present within Canada goose feces.

  7. Lachnospiraceae- and Bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an urban harbor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complexity of fecal microbial communities and overlap among human and other animal sources has made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies has provided increased power to resolve microbial community compos...

  8. Differential decay of Enterococci and Escherichia coli originating from two fecal pollution sources

    EPA Science Inventory

    Using in situ subtropical aquatic mesocosms, fecal source (cattle manure versus sewage) was shown to be the most important contributor to differential loss in viability of fecal indicator bacteria (FIB), specifically enterococci in freshwater and Escherichia coli in marine habita...

  9. DYNAMICS OF AQUATIC FECAL CONTAMINATION, FECAL SOURCE IDENTIFICATION, AND CORRELATION OF BACTEROIDALES HOST-SPECIFIC MARKERS DETECTION WITH FECAL PATHOGENS

    EPA Science Inventory

    Fecal pollution impairs the health and productivity of coastal waters and causes human disease. PCR of host-specific 16S rDNA sequences from anaerobic Bacteroidales bacteria offers a promising method of tracking fecal contamination and identifying its source(s). Before Bacteroida...

  10. SPECIFICITY AND SENSITIVITY OF FECAL BACTEROIDETES HUMAN-SPECIFIC PRIMERS WITH FECAL AND WASTEWATER SAMPLES FROM THE U.S. MIDWEST AND NORTHEAST REGIONS

    EPA Science Inventory

    Numerous watersheds throughout the United States are impaired due to fecal contamination. Fecal Bacteroidetes is a group of anaerobic bacteria present in high concentrations in animal feces that has shown promise as a microbial source tracking indicator of human and othe...

  11. Fecapentaene excretion and fecal mutagenicity in relation to nutrient intake and fecal parameters in humans on omnivorous and vegetarian diets.

    PubMed

    de Kok, T M; van Faassen, A; Bausch-Goldbohm, R A; ten Hoor, F; Kleinjans, J C

    1992-02-14

    Fecapentaenes are strong fecal mutagenic compounds presumably occurring in the majority of Western human individuals, and are possibly essential initiators of colon carcinogenesis. Dietary factors have been shown to influence colorectal cancer risk and to modulate both fecal mutagenicity and fecapentaene concentrations. Therefore, in this study, excretion of fecapentaenes is determined in humans consuming either vegetarian or omnivorous diets. The results show that the most predominant fecapentaene forms are excreted in higher concentrations by vegetarians. Consumption of cereal fiber, calcium and carotene as well as fecal concentrations of iso-lithocholic acid were found to correlate positively with excreted concentrations of one or more fecapentaene analogues. On average, 22% of excreted fecapentaene concentrations was found to be related to nutrient intake in stepwise regression models. Dietary calcium intake was found to be the most significant factor positively correlating with excreted fecapentaene concentrations. Intake of mono-unsaturated fatty acids or fiber from vegetables and fruit could be shown to correlate with fecapentaene excretion to a lesser degree. Despite high fecapentaene concentrations in fecal dichloromethane extracts, only 1 out of 20 samples revealed significant mutagenic activity in Salmonella typhimurium TA 100. Further, aqueous extracts of feces from omnivores appeared to be equally mutagenic as feces from vegetarians and contained non-detectable concentrations of fecapentaenes. It is concluded that dietary factors do affect excreted fecapentaene levels, but only to a relatively minor extent. Since vegetarians at low risk for colorectal cancer excrete higher concentrations of fecapentaenes, it could be hypothesized that relatively increased fecapentaene excretion in combination with antimutagenic compounds in feces represents colon cancer prevention.

  12. Fecal Sterol and Runoff Analysis for Nonpoint Source Tracking.

    PubMed

    Fahrenfeld, N L; Del Monaco, N; Coates, J T; Elzerman, A W

    2016-01-01

    Fecal pollution source identification is needed to quantify risk, target installation of source controls, and assess performance of best management practices in impaired surface waters. Sterol analysis is a chemical method for fecal source tracking that allows for differentiation between several fecal pollution sources. The objectives of this study were to use these chemical tracers for quantifying human fecal inputs in a mixed-land-use watershed without point sources of pollution and to determine the relationship between land use and sterol ratios. Fecal sterol analysis was performed on bed and suspended sediment from impaired streams. Human fecal signatures were found at sites with sewer overflow and septic inputs. Different sterol ratios used to indicate human fecal pollution varied in their sensitivity. Next, geospatial data was used to determine the runoff volumes associated with each land-use category in the watersheds. Fecal sterol ratios were compared between sampling locations and correlations were tested between ratio values and percentage of runoff for a given land-use category. Correlation was not observed between percentage of runoff from developed land and any of the five tested human-indicating sterol ratios in streambed sediments, confirming that human fecal inputs were not evenly distributed across the urban landscape. Several practical considerations for adopting this chemical method for microbial source tracking in small watersheds are discussed. Results indicate that sterol analysis is useful for identifying the location of human fecal nonpoint-source inputs. PMID:26828187

  13. Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes.

    PubMed

    Abeles, Shira R; Ly, Melissa; Santiago-Rodriguez, Tasha M; Pride, David T

    2015-01-01

    Viruses are integral members of the human microbiome. Many of the viruses comprising the human virome have been identified as bacteriophage, and little is known about how they respond to perturbations within the human ecosystem. The intimate association of phage with their cellular hosts suggests their communities may change in response to shifts in bacterial community membership. Alterations to human bacterial biota can result in human disease including a reduction in the host's resilience to pathogens. Here we report the ecology of oral and fecal viral communities and their responses to long-term antibiotic therapy in a cohort of human subjects. We found significant differences between the viral communities of each body site with a more heterogeneous fecal virus community compared with viruses in saliva. We measured the relative diversity of viruses, and found that the oral viromes were significantly more diverse than fecal viromes. There were characteristic changes in the membership of oral and fecal bacterial communities in response to antibiotics, but changes in fecal viral communities were less distinguishing. In the oral cavity, an abundance of papillomaviruses found in subjects on antibiotics suggests an association between antibiotics and papillomavirus production. Despite the abundance of papillomaviruses identified, in neither the oral nor the fecal viromes did antibiotic therapy have any significant impact upon overall viral diversity. There was, however, an apparent expansion of the reservoir of genes putatively involved in resistance to numerous classes of antibiotics in fecal viromes that was not paralleled in oral viromes. The emergence of antibiotic resistance in fecal viromes in response to long-term antibiotic therapy in humans suggests that viruses play an important role in the resilience of human microbial communities to antibiotic disturbances. PMID:26309137

  14. Locating sources of surf zone pollution: a mass budget analysis of fecal indicator bacteria at Huntington Beach, California.

    PubMed

    Kim, Joon Ha; Grant, Stanley B; McGee, Charles D; Sanders, Brett F; Largier, John L

    2004-05-01

    The surf zone is the unique environment where ocean meets land and a place of critical ecological, economic, and recreational importance. In the United States, this natural resource is increasingly off-limits to the public due to elevated concentrations of fecal indicator bacteria and other contaminants, the sources of which are often unknown. In this paper, we describe an approach for calculating mass budgets of pollutants in the surf zone from shoreline monitoring data. The analysis reveals that fecal indicator bacteria pollution in the surf zone at several contiguous beaches in Orange County, California, originates from well-defined locations along the shore, including the tidal outlets of the Santa Ana River and Talbert Marsh. Fecal pollution flows into the ocean from the Santa Ana River and Talbert Marsh outlets during ebb tides and from there is transported parallel to the shoreline by wave-driven surf zone currents and/or offshore tidal currents, frequently contaminating >5 km of the surf zone. The methodology developed here for locating and quantifying sources of surf zone pollution should be applicable to a wide array of contaminants and coastal settings. PMID:15180059

  15. Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution.

    PubMed

    Santo Domingo, Jorge W; Bambic, Dustin G; Edge, Thomas A; Wuertz, Stefan

    2007-08-01

    Advances in microbial source tracking (MST) have largely been driven by the need to comply with water quality standards based on traditional indicator bacteria. Recently, a number of culture-independent, and library-independent methods based on polymerase chain reaction (PCR) have been gaining popularity among source trackers. However, only a limited number of these methods have been successfully used in field applications, primarily due to the fact that many of them are still being developed. In this critical outlook, we examine different viewpoints associated with the practical use of MST to identify critical research gaps, propose a priority-based timeline to address them, and outline emerging technologies that will likely impact the future of source tracking. We propose that it is necessary to consider each of these aspects in order to advance towards a unifying framework in source identification, so that fecal pollution monitoring can be reliably used for comprehensive environmental microbial monitoring, to develop risk assessment models, and to implement and validate adequate management practices.

  16. Utility of Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents.

    PubMed

    Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S

    2016-01-01

    Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters. PMID:26562798

  17. Utility of Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents.

    PubMed

    Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S

    2016-01-01

    Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters.

  18. Human parvovirus 4 in nasal and fecal specimens from children, Ghana.

    PubMed

    Drexler, Jan Felix; Reber, Ulrike; Muth, Doreen; Herzog, Petra; Annan, Augustina; Ebach, Fabian; Sarpong, Nimarko; Acquah, Samuel; Adlkofer, Julia; Adu-Sarkodie, Yaw; Panning, Marcus; Tannich, Egbert; May, Jürgen; Drosten, Christian; Eis-Hübinger, Anna Maria

    2012-10-01

    Nonparenteral transmission might contribute to human parvovirus 4 (PARV4) infections in sub-Saharan Africa. PARV4 DNA was detected in 8 (0.83%) of 961 nasal samples and 5 (0.53%) of 943 fecal samples from 1,904 children in Ghana. Virus concentrations ≤ 6-7 log(10) copies/mL suggest respiratory or fecal-oral modes of PARV4 transmission.

  19. Microbial Source Tracking Markers for Detection of Fecal Contamination in Environmental Waters: Relationships Between Pathogens and Human Health Outcomes

    EPA Science Inventory

    Microbial source tracking (MST) describes a suite of methods and an investigative strategy designed to identify the dominant sources of fecal pollution in environmental waters. The methods rely on the close association of certain fecal microorganisms with a particular host speci...

  20. Differential decay of enterococci and Escherichia coli originating from two fecal pollution sources.

    PubMed

    Korajkic, Asja; McMinn, Brian R; Harwood, Valerie J; Shanks, Orin C; Fout, G Shay; Ashbolt, Nicholas J

    2013-04-01

    Using in situ subtropical aquatic mesocosms, fecal source (cattle manure versus sewage) was shown to be the most important contributor to differential loss in viability of fecal indicator bacteria (FIB), specifically enterococci in freshwater and Escherichia coli in marine habitats. In this study, sunlight exposure and indigenous aquatic microbiota were also important contributors, whose effects on FIB also differed between water types.

  1. Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization.

    PubMed

    Gao, Xianfu; Pujos-Guillot, Estelle; Martin, Jean-François; Galan, Pilar; Juste, Catherine; Jia, Wei; Sebedio, Jean-Louis

    2009-10-15

    Fecal water is a complex mixture of various metabolites with a wide range of physicochemical properties and boiling points. The analytical method developed here provides a qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis, with high sensitivity and efficiency, coupled with derivatization of ethyl chloroformate in aqueous medium. The water/ethanol/pyridine ratio was optimized to 12:6:1, and a two-step derivatization with an initial pH regulation of 0.1M sodium bicarbonate was developed. The deionized water exhibited better extraction efficiency for fecal water compounds than did acidified and alkalized water. Furthermore, more amino acids were extracted from frozen fecal samples than from fresh samples based on multivariate statistical analysis and univariate statistical validation on GC/MS data. Method validation by 34 reference standards and fecal water samples showed a correlation coefficient higher than 0.99 for each of the standards, and the limit of detection (LOD) was from 10 to 500pg on-column for most of the standards. The analytical equipment exhibited excellent repeatability, with the relative standard deviation (RSD) lower than 4% for standards and lower than 7% for fecal water. The derivatization method also demonstrated good repeatability, with the RSD lower than 6.4% for standards (except 3,4-dihydroxyphenylacetic acid) and lower than 10% for fecal water (except dicarboxylic acids). The qualitative means by searching the electron impact (EI) mass spectral database, chemical ionization (CI) mass spectra validation, and reference standards comparison totally identified and structurally confirmed 73 compounds, and the fecal water compounds of healthy humans were also quantified. This protocol shows a promising application in metabolome analysis based on human fecal water samples. PMID:19573517

  2. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources.

    PubMed

    Raith, Meredith R; Kelty, Catherine A; Griffith, John F; Schriewer, Alexander; Wuertz, Stefan; Mieszkin, Sophie; Gourmelon, Michele; Reischer, Georg H; Farnleitner, Andreas H; Ervin, Jared S; Holden, Patricia A; Ebentier, Darcy L; Jay, Jennifer A; Wang, Dan; Boehm, Alexandria B; Aw, Tiong Gim; Rose, Joan B; Balleste, E; Meijer, W G; Sivaganesan, Mano; Shanks, Orin C

    2013-11-15

    The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2, and CowM3) reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only). Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross-reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associated CowM2 qPCR method combined with either the BacR or Rum2Bac ruminant-associated methods are most suitable for implementation.

  3. Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes.

    PubMed

    Goldin, B R; Swenson, L; Dwyer, J; Sexton, M; Gorbach, S L

    1980-02-01

    The effect of diet and Lactobacillus acidophilus supplements on fecal microflora enzyme activity was studied in humans. The bacterial enzymes that were investigated are known to catalyze reactions that may result in formation of proximal carcinogens. Compared to vegetarians, omnivores eating a "Western-type" diet had higher levels of beta-glucuronidase, nitroreductase, azoreductase, and steroid 7-alpha-dehydroxylase in their fecal microflora. Removal of red meat or addition of fiber in the form of bran or wheat germ to the diet of omnivores for 30 days had no effect on beta-glucuronidase, nitroreductase, or azoreductase activity. However, removal of red meat or addition of fiber reduced fecal steroid 7-alpha-dehydroxylase activity. The addition of viable Lactobacillus acidophilus supplements to the diet of omnivores significantly decreased fecal bacterial beta-glucuronidase and nitroreductase activities. Thirty days after Lactobacillus supplements were curtailed, fecal enzyme levels returned to normal base-line activities. These findings suggested that the metabolic activity of the fecal microflora was influenced by diet and could be altered by Lactobacillus supplements and to a lesser extent by dietary fiber.

  4. Isolation of Bacteroides from fish and human fecal samples for identification of unique molecular markers.

    PubMed

    Kabiri, Leila; Alum, Absar; Rock, Channah; McLain, Jean E; Abbaszadegan, Morteza

    2013-12-01

    Bacteroides molecular markers have been used to identify human fecal contamination in natural waters, but recent work in our laboratory confirmed cross-amplification of several human-specific Bacteroides spp. assays with fecal DNA from fish. For identification of unique molecular markers, Bacteroides from human (n = 4) and fish (n = 7) fecal samples were cultured and their identities were further confirmed using Rapid ID 32A API strips. The 16S rDNA from multiple isolates from each sample was PCR amplified, cloned, and sequenced to identify unique markers for development of more stringent human-specific assays. In human feces, Bacteroides vulgatus was the dominant species (75% of isolates), whereas in tilapia feces, Bacteroides eggerthii was dominant (66%). Bacteroides from grass carp, channel catfish, and blue catfish may include Bacteroides uniformis, Bacteroides ovatus, or Bacteroides stercoris. Phylogenic analyses of the 16S rRNA gene sequences showed distinct Bacteroides groupings from each fish species, while human sequences clustered with known B. vulgatus. None of the fish isolates showed significant similarity to Bacteroides sequences currently deposited in NCBI (National Center for Biotechnology Information). This study expands the current sequence database of cultured fish Bacteroides. Such data are essential for identification of unique molecular markers in human Bacteroides that can be utilized in differentiating fish and human fecal contamination in water samples.

  5. Alcohol Induced Alterations to the Human Fecal VOC Metabolome

    PubMed Central

    Couch, Robin D.; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  6. Alcohol induced alterations to the human fecal VOC metabolome.

    PubMed

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  7. Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora.

    PubMed

    Suau, A; Rochet, V; Sghir, A; Gramet, G; Brewaeys, S; Sutren, M; Rigottier-Gois, L; Doré, J

    2001-04-01

    The human gut microflora plays a key role in nutrition and health. It has been extensively studied by conventional culture techniques. However these methods are difficult, time consuming and their results not always consistent. Furthermore microscopic counts indicate that only 20 to 40% of the total flora can be cultivated. Among the predominant species of the human gut, Fusobacterium prausnitzii was reported either as one of the most frequent and numerous species or was seldom retrieved. We designed and validated a specific rRNA-targeted oligonucleotide probe, called S-*-Fprau-0645-a-A-23, to accurately detect and quantify F. prausnitzii and relatives within the human fecal microflora. The target group accounted for 5.3 +/- 3% of total bacterial 16S rRNA using dot blot hybridization (10 human fecal samples) and 16.5 +/- 7% of cells stained with Dapi using in situ hybridization (10 other human fecal samples). A specific morphology seemed to be typical and dominant: two cells forming an asymmetrical double droplet. This work showed that F. prausnitzii and phylogenetically related species represent a dominant group within the human fecal flora.

  8. Sunlight Inactivation of Fecal Bacteriophages and Bacteria in Sewage-Polluted Seawater

    PubMed Central

    Sinton, Lester W.; Finlay, Rochelle K.; Lynch, Philippa A.

    1999-01-01

    Sunlight inactivation rates of somatic coliphages, F-specific RNA bacteriophages (F-RNA phages), and fecal coliforms were compared in seven summer and three winter survival experiments. Experiments were conducted outdoors, using 300-liter 2% (vol/vol) sewage-seawater mixtures held in open-top chambers. Dark inactivation rates (kDs), measured from exponential survival curves in enclosed (control) chambers, were higher in summer (temperature range: 14 to 20°C) than in winter (temperature range: 8 to 10°C). Winter kDs were highest for fecal coliforms and lowest for F-RNA phages but were the same or similar for all three indicators in summer. Sunlight inactivation rates (kS), as a function of cumulative global solar radiation (insolation), were all higher than the kDs with a consistent kS ranking (from greatest to least) as follows: fecal coliforms, F-RNA phages, and somatic coliphages. Phage inactivation was exponential, but bacterial curves typically exhibited a shoulder. Phages from raw sewage exhibited kSs similar to those from waste stabilization pond effluent, but raw sewage fecal coliforms were inactivated faster than pond effluent fecal coliforms. In an experiment which included F-DNA phages and Bacteroides fragilis phages, the kS ranking (from greatest to least) was as follows: fecal coliforms, F-RNA phages, B. fragilis phages, F-DNA phages, and somatic coliphages. In a 2-day experiment which included enterococci, the initial concentration ranking (from greatest to least: fecal coliforms, enterococci, F-RNA phages, and somatic coliphages) was reversed during sunlight exposure, with only the phages remaining detectable by the end of day 2. Inactivation rates under different optical filters decreased with the increase in spectral cutoff wavelength (50% light transmission) and indicated that F-RNA phages and fecal coliforms are more susceptible than somatic coliphages to longer solar wavelengths, which predominate in seawater. The consistently superior survival

  9. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. PMID:22939220

  10. Rural origin, age, and endoparasite fecal prevalence in dogs surrendered to the Regina Humane Society, 2013

    PubMed Central

    Schurer, Janna M.; Hamblin, Brie; Davenport, Laura; Wagner, Brent; Jenkins, Emily J.

    2014-01-01

    We report the results of fecal parasite surveillance in dogs surrendered to the Regina Humane Society, Saskatchewan, Canada, between May and November 2013. Overall, 23% of 231 dogs were infected with at least 1 intestinal parasite. Endoparasite infection was positively associated with rural origin (P = 0.002) and age (< 12 months; P < 0.001). PMID:25477549

  11. PERSISTENCE OF PHARMACEUTICALS AND OTHER WASTEWATER RELATED COMPOUNDS: UTILITY AS INDICATORS OF HUMAN FECAL CONTAMINATION

    EPA Science Inventory

    The quality of drinking and recreational water is currently ascertained using indicator bacteria. The tests to analyze for these bacteria require a considerable length of time to complete, and do not discriminate between human and animal fecal material sources. To shorten the t...

  12. The Effects of Water Matrix on Decay of Human Fecal Molecular Markers and Campylobacter spp.

    EPA Science Inventory

    Although molecular source tracking for human fecal contamination is used on a wide range of sample types, little is known about comparative decay of proposed molecular markers under different conditions, or correlation with pathogen decay. Our purpose was to measure correlations ...

  13. Pollutants in human follicular fluid

    SciTech Connect

    Trapp, M.; Baukloh, V.; Bohnet, H.G.; Heeschen, W.

    1984-07-01

    The present study was initiated to clarify whether environmental pollutants can reach the human follicular fluid, an important biologic component for reproduction, in concentrations which could be harmful to the gamete. Fifteen patients with tubal malformations were treated in an in vitro fertilization program whereby 18 follicle aspirates were obtained for investigation. The substances which were measured in this study were alpha-, beta-, and gamma-hexachlorocyclohexane (HCH), dichlorodiphenyltrichlorethane (DDT), polychlorinated biphenyls (PCB), hexachlorobenzene (HCB), dieldrin, and heptachlorepoxide (HepE). None of the patients became pregnant during the treatment cycle.

  14. Germinated barley foodstuff increases fecal volume and butyrate production in humans.

    PubMed

    Kanauchi, O; Mitsuyama, K; Saiki, T; Fushikia, T; Iwanaga, T

    1998-06-01

    Germinated barley foodstuff (GBF), derived from the aleurone layer, scutellum and germ of germinated barley, contains a large quantity of fermentable dietary fibers, especially hemicellulose. Ten grams of GBF were given to 10 healthy volunteers 3 times a day (30 g/day/person) for 28 consecutive days. Fecal weight, water contents and short chain fatty acid content were measured before GBF administration and from days 25 to 28 after initiation of GBF administration. GBF intake significantly increased fecal butyrate content as well as fecal weight and water content. No significant change in body weight resulted from consumption of GBF for 28 days. No major laboratory abnormalities were found in hematologic and urinary analysis. These findings indicate that GBF promotes defecation, produces bacterial short chain fatty acids, especially butyrate, without adverse effects, and is a safe foodstuff for humans.

  15. Levels of fecal corticosterone in sandhill cranes during a human-led migration

    USGS Publications Warehouse

    Hartup, B.K.; Olsen, G.H.; Czekala, N.M.; Paul-Murphy, J.; Langenberg, J.A.

    2004-01-01

    Fourteen captive-reared greater sandhill cranes (Grus canadensis tabida) were conditioned to follow ultralight aircraft to promote migration between Wisconsin and Florida (U SA) after release. Fecal samples were collected throughout the training period in Wisconsin and during a 1,977-km human-led migration to Florida to determine fecal corticosterone (FC) concentrations by radioimmunoassay. The mean (?SE) FC concentration during the training period was 1O9.5?7.5 ng/g and was representative of baseline levels recorded previously from sandhill cranes. Fecal corticosterone concentrations increased in early migration compared to concentrations 1 mo prior to departure (P<0.01) but were not different from baseline concentrations at the end of the 6-wk migration period. The variability of FC concentrations in individual samples was greater throughout the migration than the training period. Increases in FC during migration were modest and generally consistent with normal corticosterone elevations observed in migrating birds.

  16. Development and Evaluation of a Quantitative PCR Assay Targeting Sandhill Crane (Grus canadensis) Fecal Pollution

    EPA Science Inventory

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gen...

  17. SPACE/TIME ANALYSIS OF FECAL POLLUTION AND RAINFALL IN AN EASTERN NORTH CAROLINA ESTUARY

    PubMed Central

    Coulliette, Angela D.; Money, Eric S.; Serre, Marc L.; Noble, Rachel T.

    2009-01-01

    The Newport River Estuary (NPRE) is a high priority shellfish harvesting area in eastern North Carolina (NC) that is impaired due to fecal contamination, specifically exceeding recommended levels for fecal coliforms. A hydrologic-driven mean trend model was developed, as a function of antecedent rainfall, in the NPRE to predict levels of E. coli (EC, measured as a proxy for fecal coliforms). This mean trend model was integrated in a Bayesian Maximum Entropy (BME) framework to produce informative Space/Time (S/T) maps depicting fecal contamination across the NPRE during winter and summer months. These maps showed that during dry winter months, corresponding to the oyster harvesting season in NC (October 1st to March 30th), predicted EC concentrations were below the shellfish harvesting standard (14 MPN per 100 ml). However, after substantial rainfall 3.81 cm (1.5 inches), the NPRE did not appear to meet this requirement. Warmer months resulted in the predicted EC concentrations exceeding the threshold for the NPRE. Predicted ENT concentrations were generally below the recreational water quality threshold (104 MPN per 100 ml), except for warmer months after substantial rainfall. Once established, this combined approach produces near real-time visual information on which to base water quality management decisions. PMID:19544880

  18. Identifying fecal pollution sources using 3M(™) Petrifilm (™) count plates and antibiotic resistance analysis in the Horse Creek Watershed in Aiken County, SC (USA).

    PubMed

    Harmon, S Michele; West, Ryan T; Yates, James R

    2014-12-01

    Sources of fecal coliform pollution in a small South Carolina (USA) watershed were identified using inexpensive methods and commonly available equipment. Samples from the upper reaches of the watershed were analyzed with 3M(™) Petrifilm(™) count plates. We were able to narrow down the study's focus to one particular tributary, Sand River, that was the major contributor of the coliform pollution (both fecal and total) to a downstream reservoir that is heavily used for recreation purposes. Concentrations of total coliforms ranged from 2,400 to 120,333 cfu/100 mL, with sharp increases in coliform counts observed in samples taken after rain events. Positive correlations between turbidity and fecal coliform counts suggested a relationship between fecal pollution and stormwater runoff. Antibiotic resistance analysis (ARA) compared antibiotic resistance profiles of fecal coliform isolates from the stream to those of a watershed-specific fecal source library (equine, waterfowl, canines, and untreated sewage). Known fecal source isolates and unknown isolates from the stream were exposed to six antibiotics at three concentrations each. Discriminant analysis grouped known isolates with an overall average rate of correct classification (ARCC) of 84.3 %. A total of 401 isolates from the first stream location were classified as equine (45.9 %), sewage (39.4 %), waterfowl (6.2 %), and feline (8.5 %). A similar pattern was observed at the second sampling location, with 42.6 % equine, 45.2 % sewage, 2.8 % waterfowl, 0.6 % canine, and 8.8 % feline. While there were slight weather-dependent differences, the vast majority of the coliform pollution in this stream appeared to be from two sources, equine and sewage. This information will contribute to better land use decisions and further justify implementation of low-impact development practices within this urban watershed.

  19. Human fecal water inhibits COX-2 in colonic HT-29 cells: role of phenolic compounds.

    PubMed

    Karlsson, Pernilla C; Huss, Ulrika; Jenner, Andrew; Halliwell, Barry; Bohlin, Lars; Rafter, Joseph J

    2005-10-01

    The inducible enzyme cyclooxygenase-2 (COX-2) plays a major role in the regulation of inflammation and possibly in the development of colon cancer. The aim of the present study was to screen for COX-2 inhibitors in samples of fecal water (the aqueous phase of feces) and investigate whether phenolic compounds are responsible for any observed effects on COX-2. Volunteers (n = 20) were recruited and asked to supply a 24-h stool sample. Fecal water samples were prepared and analyzed by GC-MS for their content of phenolic compounds. These samples were also evaluated for their effects on COX-2 protein levels (Western blot) and prostaglandin (PG)E2 production in tumor necrosis-alpha-stimulated HT-29 cells and pure enzymatic activity in a COX-2-catalyzed prostaglandin biosynthesis in vitro assay. The major phenolic compounds identified were phenylpropionic acid, phenylacetic acid, cinnamic acid, and benzoic acid derivatives. Of 13 fecal water samples analyzed, 12 significantly decreased PGE2 production (range 5.4-39.7% inhibition, P-value < 0.05) compared with control cells and 13 of 14 samples analyzed decreased COX-2 protein levels in HT-29 cells (19-63% inhibition). Of the 20 fecal water samples, 2 also weakly inhibited enzymatic activity of purified COX-2 (22-24% inhibition). Three compounds identified in fecal water, 3-phenylpropionic acid, 3-hydroxyphenylacetic acid, and 3-(4-hydroxyphenyl)-propionic acid, decreased the protein level at 250 micromol/L (15-62% inhibition). This study shows for the first time that human fecal water contains components that can affect both the COX-2 protein level and enzymatic activity. PMID:16177193

  20. Linking Near Real-Time Water Quality Measurements to Fecal Coliforms and Trace Organic Pollutants in Urban Streams

    NASA Astrophysics Data System (ADS)

    Henjum, M.; Wennen, C.; Hondzo, M.; Hozalski, R. M.; Novak, P. J.; Arnold, W. A.

    2009-05-01

    Anthropogenic pollutants, including pesticides, herbicides, pharmaceuticals, and estrogens are detected in urban water bodies. Effective examination of dilute organic and microbial pollutant loading rates within surface waters is currently prohibitively expensive and labor intensive. Effort is being placed on the development of improved monitoring methodologies to more accurately assess surface water quality and evaluate the effectiveness of water quality management practices. Throughout the summer and fall of 2008 a "real-time" wireless network equipped with high frequency fundamental water quality parameter sensors measured turbidity, conductivity, pH, depth, temperature, dissolved oxygen and nitrate above and below stormwater inputs at two urban stream locations. At each location one liter grab samples were concurrently collected by ISCO automatic samplers at two hour intervals for 24 hour durations during three dry periods and five rain events. Grab samples were analyzed for fecal coliforms, atrazine (agricultural herbicide), prometon (residential herbicide) and caffeine (wastewater indicator). Surrogate relationships between easy-to-measure water quality parameters and difficult-to-measure pollutants were developed, subsequently facilitating monitoring of these pollutants without the development of new, and likely costly, technologies. Additionally, comparisons were made between traditional grab sampling techniques and the "real-time" monitoring to assess the accuracy of Total Maximum Daily Load (TMDL) calculations.

  1. Implications of fecal bacteria input from latrine-polluted ponds for wells in sandy aquifers.

    PubMed

    Knappett, Peter S K; McKay, Larry D; Layton, Alice; Williams, Daniel E; Alam, Md J; Huq, Md R; Mey, Jacob; Feighery, John E; Culligan, Patricia J; Mailloux, Brian J; Zhuang, Jie; Escamilla, Veronica; Emch, Michael; Perfect, Edmund; Sayler, Gary S; Ahmed, Kazi M; van Geen, Alexander

    2012-02-01

    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5 to 1.3 log(10)/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence the how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater.

  2. Abundance of Enterococcus species, Enterococcus faecalis and Enterococcus faecium, essential indicators of fecal pollution, in river water.

    PubMed

    Suzuki, Yoshihiro; Kanda, Naoki; Furukawa, Takashi

    2012-01-01

    Enterococci such as Enterococcus faecalis and E. faecium are considered as the most suitable indicators of fecal pollution in an aquatic environment, and new methods for Enterococcus determination have been developed, namely, membrane filtration (MF) using membrane-Enterococcus indoxyl-β-D-glucoside agar (mEI) and defined substrate technology (DST) using Enterolert®. This study used PCR analysis to identify E. faecalis and E. faecium among Enterococcus strains in river water isolated using both mEI plates and Enterolert® trays. There was a significantly high correlation between MF and DST in terms of enterococcal counts for river water samples. The combined percentages of E. faecalis and E. faecium with respect to the total number of all strains obtained using mEI plates and Enterolert® trays were approximately 30 % and >30 %, respectively. Other than E. faecalis and E. faecium, a large number of Enterococcus species were unspecified in the actual urban river samples. A comparison of the predominance of E. faecalis and E. faecium found that the abundance of a species depended on the sampling river and date. E. faecium is a non-predominant species in intestinal and fecal Enterococci, and it was one of the main Enterococcus species detected in surface water.

  3. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    USGS Publications Warehouse

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  4. Differentiation of fecal Escherichia coli from human, livestock, and poultry sources by rep-PCR DNA fingerprinting on the shellfish culture area of East China Sea.

    PubMed

    Ma, Hong-Jia; Fu, Ling-Lin; Li, Jian-Rong

    2011-05-01

    The rep-PCR DNA fingerprinting performed with REP, BOX A1R, and (GTG)(5) primers was investigated as a way to differentiate between human, livestock, and poultry sources of fecal pollution on the area of Xiangshan Bay, East China Sea. Of the three methods, the BOX-PCR DNA fingerprints analyzed by jack-knife algorithm were revealed high rate of correct classification (RCC) with 91.30, 80.39, 89.39, 86.14, 93.24, 87.72, and 89.28% of human, cattle, swine, chicken, duck, sheep, and goose E. coli isolates classified into the correct host source, respectively. The average rate of correct classification (ARCC) of REP-, BOX-, and (GTG)(5)-PCR patterns was 79.88, 88.21, and 86.39%, respectively. Although the highest amount of bands in (GTG)(5)-PCR fingerprints could be observed, the discriminatory efficacy of BOX-PCR was superior to both REP- and (GTG)(5)-PCR. Moreover, the similarity of 459 isolates originated from shellfish and growing water was compared with fecal-obtained strains. The results showed that 92.4 and 96.2% E. coli strains isolated from midstream and downstream shellfish samples, respectively, had a ≥ 80% similarity with corresponding strains isolated from fecal samples. It was indicated that E. coli in feces could spread from human sewage or domestic farms to the surrounding shellfish culture water, and potentially affect the quality of shellfish. This work suggests that rep-PCR fingerprinting can be a promising genotypic tool applied in the shellfish growing water management on East China Sea for source identification of fecal pollution.

  5. EVALUATION OF WASTEWATER CHEMICALS AS INDICATORS OF HUMAN FECAL CONTAMINATION

    EPA Science Inventory

    The quality of drinking and recreational water is currently ascertained using indicator bacteria. The traditional tests that analyze for these bacteria require approximately 24 hours to complete, and do not discriminate between human and animal sources. One solution is to use hum...

  6. Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study

    USGS Publications Warehouse

    Layton, Blythe A.; Cao, Yiping; Ebentier, Darcy L.; Hanley, Kaitlyn; Ballesté, Elisenda; Brandão, João; Byappanahalli, Muruleedhara N.; Converse, Reagan; Farnleitner, Andreas H.; Gentry-Shields, Jennifer; Gourmelon, Michèle; Lee, Chang Soo; Lee, Jiyoung; Lozach, Solen; Madi, Tania; Meijer, Wim G.; Noble, Rachel; Peed, Lindsay; Reischer, Georg H.; Rodrigues, Raquel; Rose, Joan B.; Schriewer, Alexander; Sinigalliano, Chris; Srinivasan, Sangeetha; Stewart, Jill; ,; Laurie, C.; Wang, Dan; Whitman, Richard; Wuertz, Stefan; Jay, Jenny; Holden, Patricia A.; Boehm, Alexandria B.; Shanks, Orin; Griffith, John F.

    2013-01-01

    A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman®, HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman® was found to be the most effective marker of human fecal contamination in this California-based study.

  7. In Vitro Effects of Dietary Inulin on Human Fecal Microbiota and Butyrate Production.

    PubMed

    Jung, Tae-Hwan; Jeon, Woo-Min; Han, Kyoung-Sik

    2015-09-01

    Administration of dietary fibers has various health benefits, mainly by increasing numbers of beneficial bacteria and enhancing production of short-chain fatty acids in the colon. There has been growing interest in the addition of dietary fiber to human diet, due to its prebiotic effects. This study aimed to evaluate the prebiotic activity of inulin using an in vitro batch fermentation system with human fecal microbiota. Fermentation of inulin resulted in a significantly greater ratio of Lactobacillus or Bifidobacteria to Enterobacteria strains as an index of healthy human intestine and elevated butyrate concentration, which are related to improvement of gut health.

  8. Pepper mild mottle virus as an indicator and a tracer of fecal pollution in water environments: comparative evaluation with wastewater-tracer pharmaceuticals in Hanoi, Vietnam.

    PubMed

    Kuroda, Keisuke; Nakada, Norihide; Hanamoto, Seiya; Inaba, Manami; Katayama, Hiroyuki; Do, An Thuan; Nga, Tran Thi Viet; Oguma, Kumiko; Hayashi, Takeshi; Takizawa, Satoshi

    2015-02-15

    We analyzed pepper mild mottle virus (PMMoV) in 36 samples taken from surface water, wastewater, groundwater, tap water and bottled water in Hanoi, Vietnam. We then compared the occurrence and fates of PMMoV with pharmaceuticals and personal care products (PPCPs), which are known wastewater tracers. PMMoV was detected in 94% of the surface water samples (ponds, water from irrigated farmlands and rivers) and in all the wastewater samples. The PMMoV concentration ranged from 5.5×10(6)-7.2×10(6)copies/L in wastewater treatment plant (WWTP) influents, 6.5×10(5)-8.5×10(5)copies/L in WWTP effluents and 1.0×10(4)-1.8×10(6)copies/L in surface water. Among the sixty PPCPs analyzed, caffeine and carbamazepine had high detection rates in surface water (100% and 88%, respectively). In surface water, the concentration ratio of PMMoV to caffeine remained unchanged than that in WWTP influents, suggesting that the persistence of PMMoV in surface water was comparable to that of caffeine. The persistence and the large concentration ratio of PMMoV in WWTP influents to the method detection limit would account for its ubiquitous detection in surface water. In comparison, human enteric viruses (HEV) were less frequently detected (18-59%) than PMMoV in surface water, probably because of their faster decay. Together with the reported high human feces-specificity, our results suggested that PMMoV is useful as a sensitive fecal indicator for evaluating the potential occurrence of pathogenic viruses in surface water. Moreover, PMMoV can be useful as a moderately conservative fecal tracer for specifically tracking fecal pollution of surface water. PMMoV was detected in 38% of the groundwater samples at low concentrations (up to 19copies/L). PMMoV was not detected in the tap water and bottled water samples. In groundwater, tap water and bottled water samples, the occurrence of PPCPs and HEV disagreed with that of PMMoV, suggesting that PMMoV is not suitable as an indicator or a tracer in

  9. Pepper mild mottle virus as an indicator and a tracer of fecal pollution in water environments: comparative evaluation with wastewater-tracer pharmaceuticals in Hanoi, Vietnam.

    PubMed

    Kuroda, Keisuke; Nakada, Norihide; Hanamoto, Seiya; Inaba, Manami; Katayama, Hiroyuki; Do, An Thuan; Nga, Tran Thi Viet; Oguma, Kumiko; Hayashi, Takeshi; Takizawa, Satoshi

    2015-02-15

    We analyzed pepper mild mottle virus (PMMoV) in 36 samples taken from surface water, wastewater, groundwater, tap water and bottled water in Hanoi, Vietnam. We then compared the occurrence and fates of PMMoV with pharmaceuticals and personal care products (PPCPs), which are known wastewater tracers. PMMoV was detected in 94% of the surface water samples (ponds, water from irrigated farmlands and rivers) and in all the wastewater samples. The PMMoV concentration ranged from 5.5×10(6)-7.2×10(6)copies/L in wastewater treatment plant (WWTP) influents, 6.5×10(5)-8.5×10(5)copies/L in WWTP effluents and 1.0×10(4)-1.8×10(6)copies/L in surface water. Among the sixty PPCPs analyzed, caffeine and carbamazepine had high detection rates in surface water (100% and 88%, respectively). In surface water, the concentration ratio of PMMoV to caffeine remained unchanged than that in WWTP influents, suggesting that the persistence of PMMoV in surface water was comparable to that of caffeine. The persistence and the large concentration ratio of PMMoV in WWTP influents to the method detection limit would account for its ubiquitous detection in surface water. In comparison, human enteric viruses (HEV) were less frequently detected (18-59%) than PMMoV in surface water, probably because of their faster decay. Together with the reported high human feces-specificity, our results suggested that PMMoV is useful as a sensitive fecal indicator for evaluating the potential occurrence of pathogenic viruses in surface water. Moreover, PMMoV can be useful as a moderately conservative fecal tracer for specifically tracking fecal pollution of surface water. PMMoV was detected in 38% of the groundwater samples at low concentrations (up to 19copies/L). PMMoV was not detected in the tap water and bottled water samples. In groundwater, tap water and bottled water samples, the occurrence of PPCPs and HEV disagreed with that of PMMoV, suggesting that PMMoV is not suitable as an indicator or a tracer in

  10. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota.

    PubMed

    Kong, Qing; Dong, Shiyuan; Gao, Jian; Jiang, Chaoyu

    2016-10-01

    In vitro fermentation of the sulfated polysaccharides from seaweeds Enteromorpha prolifera and Laminaria japonica and their prebiotic effects on human fecal microbiota were investigated in this study. The sulfated polysaccharides were fermented in vitro for 48h by human fecal cultures. When 0.8g MWCOL (polysaccharides MWCO<30kD) from L. japonica was fermented, the pH in fecal cultures decreased from 6.5 to 5.1 and the levels of short chain fatty acids, such as acetic, butyric and lactic acids all significantly increased. After 48h fermentation, 0.8g MWCOL showed good effect on modulating the gut microflora balance, because the beneficial strains (Lactobacillus and Bifidobacterium) were both significantly higher than those in control group (p<0.05). As far as we know, this is the first report that consumption of sulfated polysaccharides from E. prolifera and L. japonica is beneficial to the ecosystem of the intestinal tract by increasing the populations of probiotics and short chain fatty acids. Furthermore, our reports indicated that molecular weight of sulfated polysaccharide from marine algae is related to its prebiotic effects. PMID:27316763

  11. Air Pollution and Human Health

    ERIC Educational Resources Information Center

    Lave, Lester B.; Seskin, Eugene P.

    1970-01-01

    Reviews studies statistically relating air pollution to mortality and morbidity rates for respiratory, and cardiovascular diseases, cancer and infant mortality. Some data recalculated. Estimates 50 percent air pollution reduction will save 4.5 percent (2080 million dollars per year) of all economic loss (hospitalization, income loss) associated…

  12. Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods.

    PubMed

    Casanovas-Massana, Arnau; Gómez-Doñate, Marta; Sánchez, David; Belanche-Muñoz, Lluís A; Muniesa, Maite; Blanch, Anicet R

    2015-03-15

    In this study we use a machine learning software (Ichnaea) to generate predictive models for water samples with different concentrations of fecal contamination (point source, moderate and low). We applied several MST methods (host-specific Bacteroides phages, mitochondrial DNA genetic markers, Bifidobacterium adolescentis and Bifidobacterium dentium markers, and bifidobacterial host-specific qPCR), and general indicators (Escherichia coli, enterococci and somatic coliphages) to evaluate the source of contamination in the samples. The results provided data to the Ichnaea software, that evaluated the performance of each method in the different scenarios and determined the source of the contamination. Almost all MST methods in this study determined correctly the origin of fecal contamination at point source and in moderate concentration samples. When the dilution of the fecal pollution increased (below 3 log10 CFU E. coli/100 ml) some of these indicators (bifidobacterial host-specific qPCR, some mitochondrial markers or B. dentium marker) were not suitable because their concentrations decreased below the detection limit. Using the data from source point samples, the software Ichnaea produced models for waters with low levels of fecal pollution. These models included some MST methods, on the basis of their best performance, that were used to determine the source of pollution in this area. Regardless the methods selected, that could vary depending on the scenario, inductive machine learning methods are a promising tool in MST studies and may represent a leap forward in solving MST cases.

  13. Impact of Different Fecal Processing Methods on Assessments of Bacterial Diversity in the Human Intestine

    PubMed Central

    Hsieh, Yu-Hsin; Peterson, Courtney M.; Raggio, Anne; Keenan, Michael J.; Martin, Roy J.; Ravussin, Eric; Marco, Maria L.

    2016-01-01

    The intestinal microbiota are integral to understanding the relationships between nutrition and health. Therefore, fecal sampling and processing protocols for metagenomic surveys should be sufficiently robust, accurate, and reliable to identify the microorganisms present. We investigated the use of different fecal preparation methods on the bacterial community structures identified in human stools. Complete stools were collected from six healthy individuals and processed according to the following methods: (i) randomly sampled fresh stool, (ii) fresh stool homogenized in a blender for 2 min, (iii) randomly sampled frozen stool, and (iv) frozen stool homogenized in a blender for 2 min, or (v) homogenized in a pneumatic mixer for either 10, 20, or 30 min. High-throughput DNA sequencing of the 16S rRNA V4 regions of bacterial community DNA extracted from the stools showed that the fecal microbiota remained distinct between individuals, independent of processing method. Moreover, the different stool preparation approaches did not alter intra-individual bacterial diversity. Distinctions were found at the level of individual taxa, however. Stools that were frozen and then homogenized tended to have higher proportions of Faecalibacterium, Streptococcus, and Bifidobacterium and decreased quantities of Oscillospira, Bacteroides, and Parabacteroides compared to stools that were collected in small quantities and not mixed prior to DNA extraction. These findings indicate that certain taxa are at particular risk for under or over sampling due to protocol differences. Importantly, homogenization by any method significantly reduced the intra-individual variation in bacteria detected per stool. Our results confirm the robustness of fecal homogenization for microbial analyses and underscore the value of collecting and mixing large stool sample quantities in human nutrition intervention studies. PMID:27812352

  14. USE OF COMPETITIVE GENOMIC HYBRIDIZATION TO ENRICH FOR GENOME-SPECIFIC DIFFERENCES BETWEEN TWO CLOSELY RELATED HUMAN FECAL INDICATOR BACTERIA

    EPA Science Inventory

    Enterococci are frequently used as indicators of fecal pollution in surface waters. To accelerate the identification of Enterococcus faecalis-specific DNA sequences, we employed a comparative genomic strategy utilizing a positive selection process to compare E. faec...

  15. Quantification of human norovirus GII, human adenovirus, and fecal indicator organisms in wastewater used for irrigation in Accra, Ghana.

    PubMed

    Silverman, Andrea I; Akrong, Mark O; Amoah, Philip; Drechsel, Pay; Nelson, Kara L

    2013-09-01

    Quantitative microbial risk assessment (QMRA) is frequently used to estimate health risks associated with wastewater irrigation and requires pathogen concentration estimates as inputs. However, human pathogens, such as viruses, are rarely quantified in water samples, and simple relationships between fecal indicator bacteria and pathogen concentrations are used instead. To provide data that can be used to refine QMRA models of wastewater-fed agriculture in Accra, stream, drain, and waste stabilization pond waters used for irrigation were sampled and analyzed for concentrations of fecal indicator microorganisms (human-specific Bacteroidales, Escherichia coli, enterococci, thermotolerant coliform, and somatic and F+ coliphages) and two human viruses (adenovirus and norovirus genogroup II). E. coli concentrations in all samples exceeded limits suggested by the World Health Organization, and human-specific Bacteroidales was found in all but one sample, suggesting human fecal contamination. Human viruses were detected in 16 out of 20 samples, were quantified in 12, and contained 2-3 orders of magnitude more norovirus than predicted by norovirus to E. coli concentration ratios assumed in recent publications employing indicator-based QMRA. As wastewater irrigation can be beneficial for farmers and municipalities, these results should not discourage water reuse in agriculture, but provide motivation and targets for wastewater treatment before use on farms.

  16. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches.

    PubMed

    Lee, Cheonghoon; Marion, Jason W; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-09-11

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid.

  17. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches

    PubMed Central

    Lee, Cheonghoon; Marion, Jason W.; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-01-01

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid. PMID:26378564

  18. Associations among Human-Associated Fecal Contamination, Microcystis aeruginosa, and Microcystin at Lake Erie Beaches.

    PubMed

    Lee, Cheonghoon; Marion, Jason W; Cheung, Melissa; Lee, Chang Soo; Lee, Jiyoung

    2015-09-01

    Lake Erie beaches exhibit impaired water quality due to fecal contamination and cyanobacterial blooms, though few studies address potential relationships between these two public health hazards. Using quantitative polymerase chain reaction (qPCR), Microcystis aeruginosa was monitored in conjunction with a human-associated fecal marker (Bacteroides fragilis group; g-Bfra), microcystin, and water quality parameters at two beaches to evaluate their potential associations. During the summer of 2010, water samples were collected 32 times from both Euclid and Villa Angela beaches. The phycocyanin intergenic spacer (PC-IGS) and the microcystin-producing (mcyA) gene in M. aeruginosa were quantified with qPCR. PC-IGS and mcyA were detected in 50.0% and 39.1% of samples, respectively, and showed increased occurrences after mid-August. Correlation and regression analyses showed that water temperature was negatively correlated with M. aeruginosa markers and microcystin. The densities of mcyA and the g-Bfra were predicted by nitrate, implicating fecal contamination as contributing to the growth of M. aeruginosa by nitrate loading. Microcystin was correlated with mcyA (r = 0.413, p < 0.01), suggesting toxin-producing M. aeruginosa populations may significantly contribute to microcystin production. Additionally, microcystin was correlated with total phosphorus (r = 0.628, p < 0.001), which was higher at Euclid (p < 0.05), possibly contributing to higher microcystin concentrations at Euclid. PMID:26378564

  19. Age, dietary fiber, breath methane, and fecal short chain fatty acids are interrelated in Archaea-positive humans.

    PubMed

    Fernandes, Judlyn; Wang, Angela; Su, Wen; Rozenbloom, Sari Rahat; Taibi, Amel; Comelli, Elena M; Wolever, Thomas M S

    2013-08-01

    Recent attention has focused on the significance of colonic Archaea in human health and energy metabolism. The main objectives of this study were to determine the associations among the number of fecal Archaea, body mass index (BMI), fecal short chain fatty acid (SCFA) concentrations, and dietary intakes of healthy humans. We collected demographic information, 3-d diet records, and breath and fecal samples from 95 healthy participants who were divided into 2 groups: detectable Archaea (>10(6) copies/g; Arch+ve) and undetectable Archaea. Dietary intakes, BMI, and fecal SCFAs were similar in both groups. The mean number of Archaea 16S rRNA gene copies detected in Arch+ve participants' feces was 8.9 ± 0.2 log/g wet weight. In Arch+ve participants, there were positive correlations between breath methane and age (r = 0.52; P = 0.001), total dietary fiber (TDF) intake (r = 0.57; P = 0.0003), and log number of fecal Archaea 16S rRNA gene copies (r = 0.35; P = 0.03). In the Arch+ve group, negative correlations were observed between TDF/1000 kcal and fecal total SCFA (r = -0.46; P ≤ 0.01) and between breath methane and fecal total SCFA (r = -0.42; P = 0.01). Principal component analysis identified a distinct Archaea factor with positive loadings of age, breath methane, TDF, TDF/1000 kcal, and number of log Archaea 16S rRNA gene copies. The results suggest that colonic Archaea is not associated with obesity in healthy humans. The presence of Archaea in humans may influence colonic fermentation by altering SCFA metabolism and fecal SCFA profile.

  20. The seasonality of fecal coliform bacteria pollution and its influence on closures of shellfish harvesting areas in Mississippi Sound.

    PubMed

    Chigbu, Paulinus; Gordon, Scott; Tchounwou, Paul B

    2005-08-01

    Runoff from agricultural lands and farm animal feedlots is one of the major sources of fecal coliforms in surface waters, and fecal coliform (FC) bacteria concentrations tend to vary with season because of seasonal variations in climatic factors. However, El Niño--Southern Oscillation (ENSO) events may affect the extent and patterns of seasonality in FC levels in coastal waters. Water quality monitoring data for shellfish management collected during El Niño (1990, 1992, 1997), and La Niña (1999, 2000) years were analyzed to evaluate the extent to which these events influenced Pearl River stage, and bacterial levels, water temperature, and salinity in the western part of Mississippi Sound. Models to predict FC levels in relation to various environmental factors were also developed. In 1990, 1992 and 1997, FC geometric mean counts peaked in late winter (January/February) reaching 120 MPN (February 1990), 165 MPN (January 1992), and 86 MPN (January 1997), and then decreased considerably during spring and summer (1.2 - 19 MPN). Thereafter, FC abundance increased slightly in fall and early winter (1.9 - 24 MPN). Fecal coliform abundance during the 2000 La Niña year was much lower (1.0 -10.3 MPN) than in 1992 (1.2 - 165 MPN), and showed no seasonal pattern from January to August, perhaps due to the relative scarcity of rainfall in 2000. In 1995 (ENSO neutral year), peak geometric mean FC count (46 MPN) was lower than during El Niño years and occurred in early spring (March). The seasonal and between year variations in FC levels determined the number of days during which the conditionally approved shellfish growing area was opened for harvesting shellfish. For example, from January to April 1997, the area was not opened for shellfish harvesting, whereas in 2000, the number of days during which the area was opened ranged from 6 - 27 (January to April) to 24 - 26 (October to December). ENSO events thus influenced the extent and timing of the peak levels of fecal

  1. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol.

    PubMed

    Gratz, Silvia W; Duncan, Gary; Richardson, Anthony J

    2013-03-01

    Deoxynivalenol (DON) is a potent mycotoxin produced by Fusarium molds and affects intestinal nutrient absorption and barrier function in experimental and farm animals. Free DON and the plant metabolite DON-3-β-d-glucoside (D3G) are frequently found in wheat and maize. D3G is stable in the upper human gut, but some human intestinal bacteria release DON from D3G in vitro. Furthermore, some bacteria derived from animal digestive systems degrade DON to a less toxic metabolite, deepoxy-deoxynivalenol (DOM-1). The metabolism of D3G and DON by the human microbiota has not been fully assessed. We therefore conducted in vitro batch culture experiments assessing the activity of the human fecal microbiota to release DON from D3G. We also studied detoxification of DON to DOM-1 by the microbiota and its potential effect on urinary DON excretion in humans. Fecal slurry from five volunteers was spiked with DON or D3G and incubated anaerobically (from 1 h to 7 days), and mycotoxins were extracted into acetonitrile. Mycotoxins were detected in fecal extracts and urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The fecal microbiota released DON from D3G very efficiently, with hydrolysis peaking after 4 to 6 h. The fecal microbiota from one volunteer transformed DON to DOM-1. Urine from the same volunteer also contained DOM-1 (4.7% of DON), whereas DOM-1 was not detectable in urine from other volunteers. Our results confirm that the fecal microbiota releases DON from its glycosylated form, hence increasing the toxic burden in exposed individuals. Furthermore, this is first evidence that the human fecal microbiota of one volunteer detoxifies DON, resulting in the appearance of DOM-1 in urine.

  2. Fecal Microbiota Composition of Breast-fed Infants is Correlated with Human Milk Oligosaccharides Consumed

    PubMed Central

    Wang, Mei; Li, Min; Wu, Shuai; Lebrilla, Carlito B.; Chapkin, Robert S.; Ivanov, Ivan; Donovan, Sharon M.

    2015-01-01

    Objectives This study tested the hypothesis that the fecal bacterial genera of breast-fed (BF) and formula-fed (FF) infants differ and that human milk oligosaccharides (HMO) modulate the microbiota of BF infants. Methods Fecal samples were obtained from BF (n = 16) or FF (n = 6) infants at 3-month postpartum. Human milk were collected on the same day when feces were collected. The microbiota was assessed by pyrosequencing of bacterial 16S rRNA genes. HMO were measured by HPLC-Chip time-of-flight mass spectrometry. Results The overall microbiota of BF differed from that of FF (P = 0.005). Compared to FF, BF had higher relative abundances of Bacteroides, lower proportions of Clostridium XVIII, Lachnospiracea incertae sedis, Streptococcus, Enterococcus and Veillonella (P < 0.05). Bifidobacterium predominated in both BF and FF infants, with no difference in abundance between the two groups. The most abundant HMO were lacto-N-tetraose + lacto-N-neotetraose (LNT + LNnT, 22.6%), followed by 2′-fucosyllactose (2′FL, 14.5%) and lacto-N-fucopentaose I (LNFP I, 9.5%). Partial least squares regression of HMO and microbiota showed several infant fecal bacterial genera could be predicted by their mothers’ HMO profiles and the important HMO for the prediction of bacterial genera were identified by variable importance in the projection scores. Conclusions These results strengthen the established relationship between HMO and the infant microbiota, identify statistical means whereby infant bacterial genera can be predicted by milk HMO. Future studies are needed to validate these findings and determine if supplementation of formula with defined HMO could selectively modify the gut microbiota. PMID:25651488

  3. Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers.

    PubMed

    Pandey, Prashant K; Siddharth, Jay; Verma, Pankaj; Bavdekar, Ashish; Patole, Milind S; Shouche, Yogesh S

    2012-06-01

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any microeukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.

  4. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence

    USGS Publications Warehouse

    Stoeckel, D.M.; Stelzer, E.A.; Stogner, R.W.; Mau, D.P.

    2011-01-01

    Protocols for microbial source tracking of fecal contamination generally are able to identify when a source of contamination is present, but thus far have been unable to evaluate what portion of fecal-indicator bacteria (FIB) came from various sources. A mathematical approach to estimate relative amounts of FIB, such as Escherichia coli, from various sources based on the concentration and distribution of microbial source tracking markers in feces was developed. The approach was tested using dilute fecal suspensions, then applied as part of an analytical suite to a contaminated headwater stream in the Rocky Mountains (Upper Fountain Creek, Colorado). In one single-source fecal suspension, a source that was not present could not be excluded because of incomplete marker specificity; however, human and ruminant sources were detected whenever they were present. In the mixed-feces suspension (pet and human), the minority contributor (human) was detected at a concentration low enough to preclude human contamination as the dominant source of E. coli to the sample. Without the semi-quantitative approach described, simple detects of human-associated marker in stream samples would have provided inaccurate evidence that human contamination was a major source of E. coli to the stream. In samples from Upper Fountain Creek the pattern of E. coli, general and host-associated microbial source tracking markers, nutrients, and wastewater-associated chemical detections-augmented with local observations and land-use patterns-indicated that, contrary to expectations, birds rather than humans or ruminants were the predominant source of fecal contamination to Upper Fountain Creek. This new approach to E. coli allocation, validated by a controlled study and tested by application in a relatively simple setting, represents a widely applicable step forward in the field of microbial source tracking of fecal contamination. ?? 2011 Elsevier Ltd.

  5. Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contaminants

    EPA Science Inventory

    BACKGROUND: Indicator bacteria are a good predictor of illness at marine beaches that have point sources of pollution with human fecal content. Few studies have addressed the utility of indicator bacteria where nonpoint sources are the dominant fecal input. Extrapolating current ...

  6. Stimulation of fecal bacteria in ambient waters by experimental inputs of organic and inorganic phosphorus.

    PubMed

    Chudoba, Elizabeth A; Mallin, Michael A; Cahoon, Lawrence B; Skrabal, Stephen A

    2013-06-15

    Fecal microbial pollution of recreational and shellfishing waters is a major human health and economic issue. Microbial pollution sourced from stormwater runoff is especially widespread, and strongly associated with urbanization. However, non-point source nutrient pollution is also problematic, and may come from sources different from fecal-derived pollution (i.e. fertilization of farm fields, lawns and gardens, and ornamental urban areas). Fecal bacteria require nutrients; thus the impact of such nutrient loading on survival and abundance of fecal coliform bacteria in ambient waters was experimentally investigated in a constructed wetland in coastal North Carolina, USA. A series of nutrient-addition bioassays testing impacts of inorganic and organic nitrogen and phosphorus demonstrated that additions of neither organic nor inorganic nitrogen stimulated fecal coliform bacteria. However, phosphorus additions provided significant stimulation of fecal coliform growth at times; on other occasions such additions did not. Dilution bioassays combined with nutrient additions were subsequently devised to assess potential impacts of microzooplankton grazing on the target fecal bacteria populations. Results demonstrated grazing to be a significant bacterial reduction factor in 63% of tests, potentially obscuring nutrient effects. Thus, combining dilution experiments with nutrient addition bioassays yielded simultaneous information on microzooplankton grazing rates on fecal bacteria, fecal bacterial growth rates, and nutrient limitation. Overall, when tested against a non-amended control, additions of either organic or inorganic phosphorus significantly stimulated fecal coliform bacterial growth on 50% of occasions tested, with organic phosphorus generally providing greater stimulation. The finding of significant phosphorus stimulation of fecal bacteria indicates that extraneous nutrient loading can, at times, augment the impacts of fecal microbial pollution of shellfishing

  7. Factors Influencing Fecal Contamination in Pond of Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.

    2010-12-01

    Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.

  8. Validation of Bacteroidales quantitative PCR assays targeting human and animal fecal contamination in the public and domestic domains in India.

    PubMed

    Odagiri, Mitsunori; Schriewer, Alexander; Hanley, Kaitlyn; Wuertz, Stefan; Misra, Pravas R; Panigrahi, Pinaki; Jenkins, Marion W

    2015-01-01

    We compared host-associated Bacteroidales qPCR assays developed in the continental United States and Europe for the purpose of measuring the effect of improved sanitation on human fecal exposure in rural Indian communities where both human and animal fecal loading are high. Ten candidate Bacteroidales qPCR assays were tested against fecal samples (human, sewage, cow, buffalo, goat, sheep, dog and chicken) from a test set of 30 individual human, 5 sewage, and 60 pooled animal samples collected in coastal Odisha, India. The two universal/general Bacteroidales assays tested (BacUni, GenBac3) performed equally well, achieving 100% sensitivity on the test set. Across the five human-associated assays tested (HF183 Taqman, BacHum, HumM2, BacH, HF183 SYBR), we found low sensitivity (17 to 49%) except for HF183 SYBR (89%), and moderate to high cross-reactivity with dog (20 to 80%) and chicken fecal samples (60 to 100%). BacHum had the highest accuracy (67%), amplified all sewage samples within the range of quantification (ROQ), and did not cross-react with any fecal samples from cows, the most populous livestock animal in India. Of the ruminant- and cattle-associated assays tested (BacCow, CowM2), BacCow was more sensitive in detecting the full range of common Indian livestock animal fecal sources, while CowM2 only detected cow sources with 50% sensitivity. Neither assay cross-reacted with human sources. BacCan, the dog-associated assay tested, showed no cross-reactivity with human sources, and high sensitivity (90%) for dog fecal samples. Overall, our results indicate BacUni, BacHum, HumM2, BacCan and BacCow would be the most suitable MST assays to distinguish and quantify relative amounts of human-associated and livestock/domestic animal-associated contributions to fecal contamination in Odisha, India.

  9. Effect of environmental pollutants on human semen

    SciTech Connect

    Kaur, S.

    1988-01-01

    With the increased release of numerous chemical substances into the biosphere, careful assessment of health effects of polluted environment must be made for maintaining and enhancing the quality of human life on this earth. Significant number of malformed children are born each year. Sixty-five to 70% of all birth defects have an unknown etiology. More than one-third of early human conception and up to 15% of recognized pregnancies are terminated by spontaneous abortion. The extent of the effect of environmental pollution on human reproductive performance is for the most part unknown. Of the approximately five million chemicals in existence, humans could be expose to a sufficient quantity of an estimated 53,000 for toxicity to be of potential problem. Methods that do not require autopsy or surgery such as semen analysis would be attractive for assessing the effect of environmental toxicology on quality of human life. Therefore, the present study was conducted to observe the effects of heavily polluted environment of industrial area of Ludhiana and relatively clean, pollution free environment of Chandigarh on the human semen quality. It was believed that the function of the male reproductive system may often be the most sensitive to toxic effects.

  10. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates.

    PubMed

    Micenková, Lenka; Bosák, Juraj; Štaudová, Barbora; Kohoutová, Darina; Čejková, Darina; Woznicová, Vladana; Vrba, Martin; Ševčíková, Alena; Bureš, Jan; Šmajs, David

    2016-06-01

    Escherichia coli strains are classified into four main phylogenetic groups (A, B1, B2, and D) and strains of these phylogroups differ in a number of characteristics. This study tested whether human fecal E. coli isolates belonging to different phylogroups differ in prevalence of bacteriocinogenic isolates and prevalence of individual bacteriocinogenic determinants. A set of 1283 fecal E. coli isolates from patients with different diseases was tested for the presence of DNA regions allowing classification into E. coli phylogroups and for the ability to produce bacteriocins (23 colicins and 7 microcins). Of the isolates tested, the most common was phylogroup B2 (38.3%) followed by phylogroups A (28.3%), D (26.3%) and B1 (7.2%). Altogether, 695 bacteriocin producers were identified representing 54.2% of all tested isolates. The highest prevalence of bacteriocin producers was found in group B2 (60.3%) and the lowest in group B1 (44.6%). Determinants encoding colicins E1, Ia, and microcin mV were most common in phylogroup A, determinants encoding microcins mM and mH47 were most common in phylogroup B2, and determinant encoding mB17 was most common in phylogroup D. The highest prevalence of bacteriocinogeny was found in phylogroup B2, suggesting that bacteriocinogeny and especially the synthesis of microcins was associated with virulent and resident E. coli strains.

  11. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites.

    PubMed

    Jaganath, Indu B; Mullen, William; Lean, Michael E J; Edwards, Christine A; Crozier, Alan

    2009-10-15

    The role of colonic microflora in the breakdown of quercetin-3-O-rutinoside (rutin) was investigated. An in vitro fermentation model was used and (i) 28 micromol of rutin and (ii) 55 micromol of quercetin plus 18 x 10(6) dpm of [4-(14)C]quercetin (60 nmol) were incubated with fresh fecal samples from three human volunteers, in the presence and absence of glucose. The accumulation of quercetin during in vitro fermentation demonstrated that deglycosylation is the initial step in the breakdown of rutin. The subsequent degradation of quercetin was dependent upon the interindividual composition of the bacterial microflora and was directed predominantly toward the production of either hydroxyphenylacetic acid derivatives or hydroxybenzoic acids. Possible catabolic pathways for these conversions are proposed. The presence of glucose as a carbon source stimulated the growth and production of bacterial microflora responsible for both the deglycosylation of rutin and the catabolism of quercetin. 3,4-Dihydroxyphenylacetic acid accumulated in large amounts in the fecal samples and was found to possess significant reducing power and free radical scavenging activity. This catabolite may play a key role in the overall antioxidant capacity of the colonic lumen after the ingestion of quercetin-rich foods.

  12. Application of a Human Fecal Marker Assay to Diverse Coastal Environments in California and Hawaii

    NASA Astrophysics Data System (ADS)

    Layton, B.; Boehm, A.

    2007-05-01

    Bacterial pollution at beaches is a growing problem of increasing national concern. Currently, the EPA uses Enterococcus as one measure of water quality for recreational contact. Recent work has suggested that rather than indicating anthropogenic pollution, enterococci may be indigenous to the environment. A human-specific gene marker for Enterococcus faecium (known as esp) was recently proposed as a molecular test for bacterial contamination of human origin. The present study applied the esp gene assay to a variety of coastal environments in California and Hawaii, including groundwater, sand, freshwater creeks, estuaries, and the surf zone. Results indicate that enterococci of human origin are present in many of these environments, suggesting that at least a portion of the bacterial pollution at these sites is a result of anthropogenic inputs rather than autochthonous microbial populations.

  13. SOLID PHASE EXTRACTION AND HIGH PERFORMANCE LIQUID CHROMATOGRAPHY WITH PHOTODIODE ARRAY DETECTION OF CHEMICAL INDICATORS OF HUMAN FECAL CONTAMINATION IN WATER

    EPA Science Inventory

    Faster and more sensitive analysis of water that is contaminated by human fecal matter is very important for health. The current microbiological methods to assess water quality do not meet this need. Alternate non-microbial human fecal indicators have been proposed by various r...

  14. Temporal genetic variability and host sources of Escherichia coli associated with fecal pollution from domesticated animals in the shellfish culture environment of Xiangshan Bay, East China Sea.

    PubMed

    Fu, Ling-Lin; Shuai, Jiang-Bing; Wang, Yanbo; Ma, Hong-Jia; Li, Jian-Rong

    2011-10-01

    This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG)(5) primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG)(5)-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish.

  15. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources

    EPA Science Inventory

    The state of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusio...

  16. Arcobacter in Lake Erie beach waters: an emerging gastrointestinal pathogen linked with human-associated fecal contamination.

    PubMed

    Lee, Cheonghoon; Agidi, Senyo; Marion, Jason W; Lee, Jiyoung

    2012-08-01

    The genus Arcobacter has been associated with human illness and fecal contamination by humans and animals. To better characterize the health risk posed by this emerging waterborne pathogen, we investigated the occurrence of Arcobacter spp. in Lake Erie beach waters. During the summer of 2010, water samples were collected 35 times from the Euclid, Villa Angela, and Headlands (East and West) beaches, located along Ohio's Lake Erie coast. After sample concentration, Arcobacter was quantified by real-time PCR targeting the Arcobacter 23S rRNA gene. Other fecal genetic markers (Bacteroides 16S rRNA gene [HuBac], Escherichia coli uidA gene, Enterococcus 23S rRNA gene, and tetracycline resistance genes) were also assessed. Arcobacter was detected frequently at all beaches, and both the occurrence and densities of Arcobacter spp. were higher at the Euclid and Villa Angela beaches (with higher levels of fecal contamination) than at the East and West Headlands beaches. The Arcobacter density in Lake Erie beach water was significantly correlated with the human-specific fecal marker HuBac according to Spearman's correlation analysis (r = 0.592; P < 0.001). Phylogenetic analysis demonstrated that most of the identified Arcobacter sequences were closely related to Arcobacter cryaerophilus, which is known to cause gastrointestinal diseases in humans. Since human-pathogenic Arcobacter spp. are linked to human-associated fecal sources, it is important to identify and manage the human-associated contamination sources for the prevention of Arcobacter-associated public health risks at Lake Erie beaches.

  17. Arcobacter in Lake Erie Beach Waters: an Emerging Gastrointestinal Pathogen Linked with Human-Associated Fecal Contamination

    PubMed Central

    Lee, Cheonghoon; Agidi, Senyo; Marion, Jason W.

    2012-01-01

    The genus Arcobacter has been associated with human illness and fecal contamination by humans and animals. To better characterize the health risk posed by this emerging waterborne pathogen, we investigated the occurrence of Arcobacter spp. in Lake Erie beach waters. During the summer of 2010, water samples were collected 35 times from the Euclid, Villa Angela, and Headlands (East and West) beaches, located along Ohio's Lake Erie coast. After sample concentration, Arcobacter was quantified by real-time PCR targeting the Arcobacter 23S rRNA gene. Other fecal genetic markers (Bacteroides 16S rRNA gene [HuBac], Escherichia coli uidA gene, Enterococcus 23S rRNA gene, and tetracycline resistance genes) were also assessed. Arcobacter was detected frequently at all beaches, and both the occurrence and densities of Arcobacter spp. were higher at the Euclid and Villa Angela beaches (with higher levels of fecal contamination) than at the East and West Headlands beaches. The Arcobacter density in Lake Erie beach water was significantly correlated with the human-specific fecal marker HuBac according to Spearman's correlation analysis (r = 0.592; P < 0.001). Phylogenetic analysis demonstrated that most of the identified Arcobacter sequences were closely related to Arcobacter cryaerophilus, which is known to cause gastrointestinal diseases in humans. Since human-pathogenic Arcobacter spp. are linked to human-associated fecal sources, it is important to identify and manage the human-associated contamination sources for the prevention of Arcobacter-associated public health risks at Lake Erie beaches. PMID:22660704

  18. Fecal Source Identification with Real-Time Quantitative PCR

    EPA Science Inventory

    Waterborne diseases that originate from fecal pollution remain a significant public health issue. Current fecal indicator technologies recommended by the U.S. Environmental Protection Agency for water quality testing do not discriminate between different animal sources of fecal ...

  19. In vitro fermentation of the polysaccharides from Cyclocarya paliurus leaves by human fecal inoculums.

    PubMed

    Min, Fang-Fang; Hu, Jie-Lun; Nie, Shao-Ping; Xie, Jian-Hua; Xie, Ming-Yong

    2014-11-01

    In vitro fermentation of polysaccharide from Cyclocarya paliurus leaves by human fecal inoculums was investigated by determining the changes in contents of neutral and reducing sugar and pH value, consumption of monosaccharide and production of short-chain fatty acids (SCFAs). During fermentation, the content of neutral sugar and reducing sugar decreased as fermentation time increased except that the content of reducing sugar increased within the fermentation time 0.5h. The pH value significantly dropped from 7.2 to 6.04. Remarkably, the greatest yields and the fastest consumption of galacturonic acid were found and the yield of glucose and arabinose were relatively high. The dominant SCFAs, which were acetic acid, propionic acid and n-butyric acid, significantly increased. These results showed that polysaccharide was partly fermented, glycosidic bonds with galacturonic acid being more susceptible to be attacked by gut bacteria and galacturonic acid might be deemed as the main producer of acetic acid.

  20. Improved technique for measuring fecal energy loss in normal and malabsorbing humans.

    PubMed

    Zarling, E J; Ruchim, M A; Makino, D

    1986-01-01

    Fecal energy concentration is measured by bomb calorimetry on freeze-dried stool samples. Some of the energy-containing fecal compounds are volatile in the pH ranges of normal stool and hence may be lost during sample preparation. We found that significant amounts of volatile fatty acids and lactic acid are lost during lyophilization. Fecal alkalization caused an increase of 9.8% of measurable energy in stools from normal individuals and 25% in stools from patients with untreated exocrine pancreatic insufficiency. We conclude that previous reports of fecal energy concentration that did not use an alkalization procedure are probably underestimations. We recommend fecal alkalization before lyophilization in future measurements of fecal energy excretion. PMID:3941294

  1. Improved technique for measuring fecal energy loss in normal and malabsorbing humans.

    PubMed

    Zarling, E J; Ruchim, M A; Makino, D

    1986-01-01

    Fecal energy concentration is measured by bomb calorimetry on freeze-dried stool samples. Some of the energy-containing fecal compounds are volatile in the pH ranges of normal stool and hence may be lost during sample preparation. We found that significant amounts of volatile fatty acids and lactic acid are lost during lyophilization. Fecal alkalization caused an increase of 9.8% of measurable energy in stools from normal individuals and 25% in stools from patients with untreated exocrine pancreatic insufficiency. We conclude that previous reports of fecal energy concentration that did not use an alkalization procedure are probably underestimations. We recommend fecal alkalization before lyophilization in future measurements of fecal energy excretion.

  2. TRANSPORT OF CHEMICAL AND MICROBIAL CONTAMINANTS FROM KNOWN WSTEWATER DISCHARGES: POTENTIAL CHEMICAL INDICATORS OF HUMAN FECAL CONTAMINATION

    EPA Science Inventory

    The quality of drinking and recreational water is currently ascertained using indicator bacteria, such as Escherichia coli and fecal enterococci. However, the tests to analyze for these bacteria require 24 to 48 hours to complete, and do not discriminate between human and animal...

  3. Detection of Giardia lamblia Antigens in Human Fecal Specimens by a Solid-Phase Qualitative Immunochromatographic Assay▿

    PubMed Central

    Garcia, Lynne S.; Garcia, John Paul

    2006-01-01

    The SIMPLE-READ Giardia rapid assay (Medical Chemical Corporation) is a solid-phase qualitative immunochromatographic assay that detects Giardia lamblia in aqueous extracts of human fecal specimens. Testing 106 Giardia-positive and 104 Giardia-negative stool specimens yielded a sensitivity of 97.2% and a specificity of 100% for the SIMPLE-READ Giardia rapid assay. PMID:17065273

  4. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    EPA Science Inventory

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  5. Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study

    EPA Science Inventory

    A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing. Here, we evaluated ten of these methods (BacH, BacHum-UCD, B. thetaiotaomic...

  6. Human and Animal Fecal Contamination of Community Water Sources, Stored Drinking Water and Hands in Rural India Measured with Validated Microbial Source Tracking Assays.

    PubMed

    Schriewer, Alexander; Odagiri, Mitsunori; Wuertz, Stefan; Misra, Pravas R; Panigrahi, Pinaki; Clasen, Thomas; Jenkins, Marion W

    2015-09-01

    We examined pathways of exposure to fecal contamination of human and animal origin in 24 villages in Odisha, India. In a cross-sectional study during the monsoon season, fecal exposure via community water sources (N = 123) and in the home (N = 137) was assessed using human- and nonhuman-associated Bacteroidales microbial source tracking (MST) markers and fecal coliforms (FCs). Detection rates and marker concentrations were examined to pinpoint pathways of human fecal exposure in the public and domestic domains of disease transmission in study communities. Human fecal markers were detected much more frequently in the domestic domain (45% of households) than in public domain sources (8% of ponds; 4% of groundwater drinking sources). Animal fecal markers were widely detected in both domains (74% of ponds, 96% of households, 10% of groundwater drinking sources), indicating ubiquitous risks of exposure to animal feces and zoonotic pathogens. This study confirms an often suggested contamination link from hands to stored water in the home in developing countries separately for mothers' and children's hands and both human and animal fecal contamination. In contrast to MST markers, FCs provided a poor metric to assess risks of exposure to fecal contamination of human origin in this rural setting.

  7. Human and Animal Fecal Contamination of Community Water Sources, Stored Drinking Water and Hands in Rural India Measured with Validated Microbial Source Tracking Assays

    PubMed Central

    Schriewer, Alexander; Odagiri, Mitsunori; Wuertz, Stefan; Misra, Pravas R.; Panigrahi, Pinaki; Clasen, Thomas; Jenkins, Marion W.

    2015-01-01

    We examined pathways of exposure to fecal contamination of human and animal origin in 24 villages in Odisha, India. In a cross-sectional study during the monsoon season, fecal exposure via community water sources (N = 123) and in the home (N = 137) was assessed using human- and nonhuman-associated Bacteroidales microbial source tracking (MST) markers and fecal coliforms (FCs). Detection rates and marker concentrations were examined to pinpoint pathways of human fecal exposure in the public and domestic domains of disease transmission in study communities. Human fecal markers were detected much more frequently in the domestic domain (45% of households) than in public domain sources (8% of ponds; 4% of groundwater drinking sources). Animal fecal markers were widely detected in both domains (74% of ponds, 96% of households, 10% of groundwater drinking sources), indicating ubiquitous risks of exposure to animal feces and zoonotic pathogens. This study confirms an often suggested contamination link from hands to stored water in the home in developing countries separately for mothers' and children's hands and both human and animal fecal contamination. In contrast to MST markers, FCs provided a poor metric to assess risks of exposure to fecal contamination of human origin in this rural setting. PMID:26149868

  8. Environmental occurrence of the enterococcal surface protein (esp) gene is an unreliable indicator of human fecal contamination

    USGS Publications Warehouse

    Byappanahalli, M.N.; Przybyla-Kelly, K.; Shively, D.A.; Whitman, R.L.

    2008-01-01

    The enterococcal surface protein (esp) gene found in Enterococcus faecalis and E. faecium has recently been explored as a marker of sewage pollution in recreational waters but its occurrence and distribution in environmental enterococci has not been well-documented. If the esp gene is found in environmental samples, there are potential implications for microbial source tracking applications. In the current study, a total of 452 samples (lake water, 100; stream water, 129; nearshore sand, 96; and backshore sand, 71; Cladophora sp. (Chlorophyta), 41; and periphyton (mostly Bacillariophyceae), 15) collected from the coastal watersheds of southern Lake Michigan were selectively cultured for enterococci and then analyzed for the esp gene by PCR, targeting E. faecalis/ E. faecium (espfs/fm) and E. faecium (espfm). Overall relative frequencies for espfs/fm and espfm were 27.4 and 5.1%. Respective percent frequency for the espfs/fm and espfm was 36 and 14% in lake water; 38.8 and 2.3% in stream water; 24 and 6.3% in nearshore sand; 0% in backshore sand; 24.4 and 0% in Cladophora sp.; and 33.3 and 0% in periphyton. The overall occurrence of both espfs/fm and espfm was significantly related (χ2 = 49, P espfs/fm increased in lake and stream water and nearshore sand. Further, E. coli and enterococci cell densities were significant predictors for espfs/fm occurrence in post-rain lake water, but espfm was not. F+ coliphage densities were not significant predictors for espfm or espfs/fm gene incidence. In summary, the differential occurrence of the esp gene in the environment suggests that it is not limited to human fecal sources and thus may weaken its use as a reliable tool in discriminating contaminant sources (i.e., human vs nonhuman).

  9. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer.

    PubMed

    Hintze, Korry J; Cox, James E; Rompato, Giovanni; Benninghoff, Abby D; Ward, Robert E; Broadbent, Jeff; Lefevre, Michael

    2014-01-01

    Traditionally, mouse humanization studies have used human fecal transfer to germ-free animals. This practice requires gnotobiotic facilities and is restricted to gnotobiotic mouse lines, which limits humanized mouse research. We have developed a generalizable method to humanize non germ-free mice using antibiotic treatment and human fecal transfer. The method involves depleting resident intestinal microbiota with broad-spectrum antibiotics, introducing human microbiota from frozen fecal samples by weekly gavage, and maintaining mice in HEPA-filtered microisolator cages. Pyrosequencing cecal microbiota 16S rRNA genes showed that recipient mice adopt a humanized microbiota profile analogous to their human donors, and distinct from mice treated with only antibiotics (no fecal transfer) or untreated control mice. In the humanized mice, 75% of the sequence mass was observed in their respective human donor and conversely, 68% of the donor sequence mass was recovered in the recipient mice. Principal component analyses of GC- and HPLC-separated cecal metabolites were performed to determine effects of transplanted microbiota on the metabolome. Cecal metabolite profiles of mice treated with only antibiotics (no fecal transfer) and control mice were dissimilar from each other and from humanized mice. Metabolite profiles for mice humanized from different donor samples clustered near each other, yet were sufficiently distinct that separate clusters were apparent for each donor. Also, cecal concentrations of 57 metabolites were significantly different between humanization treatments. These data demonstrate that our protocol can be used to humanize non germ-free mice and is sufficiently robust to generate metabolomic differences between mice humanized from different human donors. PMID:24637796

  10. Effects of Crude Oil, Dispersant, and Oil-Dispersant Mixtures on Human Fecal Microbiota in an In Vitro Culture System

    PubMed Central

    Kim, Jong Nam; Kim, Bong-Soo; Kim, Seong-Jae; Cerniglia, Carl E.

    2012-01-01

    ABSTRACT The Deepwater Horizon oil spill of 2010 raised concerns that dispersant and dispersed oil, as well as crude oil itself, could contaminate shellfish and seafood habitats with hazardous residues that had potential implications for human health and the ecosystem. However, little is known about the effects of crude oil and dispersant on the human fecal microbiota. The aim of this research was to evaluate the potential effects of Deepwater Horizon crude oil, Corexit 9500 dispersant, and their combination on human fecal microbial communities, using an in vitro culture test system. Fecal specimens from healthy adult volunteers were made into suspensions, which were then treated with oil, dispersant, or oil-dispersant mixtures under anaerobic conditions in an in vitro culture test system. Perturbations of the microbial community, compared to untreated control cultures, were assessed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and pyrosequencing methods. DGGE and pyrosequencing analysis showed that oil-dispersant mixtures reduced the diversity of fecal microbiota from all individuals. Real-time PCR results indicated that the copy numbers of 16S rRNA genes in cultures treated with dispersed oil or oil alone were significantly lower than those in control incubations. The abundance of the Bacteroidetes decreased in crude oil-treated and dispersed-oil-treated cultures, while the Proteobacteria increased in cultures treated with dispersed oil. In conclusion, the human fecal microbiota was affected differently by oil and dispersed oil, and the influence of dispersed oil was significantly greater than that of either oil or dispersant alone compared to control cultures. PMID:23093387

  11. Characterizing climate change impacts on human exposures to air pollutants

    EPA Science Inventory

    Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...

  12. Human health effects of air pollution.

    PubMed

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO(2)), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O(3)), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed.

  13. Effect of Sunlight on the Divergence of Community Structure of Fecal Bacteria in Cowpats Collected from Three Different Farms

    EPA Science Inventory

    Fecal pollution of environmental waters is a major concern for the general public because exposure to fecal-associated pathogens can have severe impacts on human health. In the last few years, numerous metagenomic studies applied next generation sequencing to understand the shift...

  14. Variability in the characterization of total coliforms, fecal coliforms, and escherichia coli in recreational water supplies of North Mississippi, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fecal coliform, Escherichia coli, is a historical organism for the detection of fecal pollution in water supplies. The presence of E. coli indicates a potential contamination of the water supply by other more hazardous human pathogens. In order to accurately determine the presence and degree o...

  15. Geographic information systems and multivariate analysis to evaluate fecal bacterial pollution in coastal waters of Andaman, India.

    PubMed

    Dheenan, Palaiyaa Sukumaran; Jha, Dilip Kumar; Das, Apurba Kumar; Vinithkumar, Nambali Valsalan; Devi, Marimuthu Prashanthi; Kirubagaran, Ramalingam

    2016-07-01

    Urbanization of coastal areas in recent years has driven us to consider a new approach for visually delineating sites that are contaminated with fecal bacteria (FB) in the coastal waters of the Andaman Islands in India. Geo-spatial analysis demarcated harbor, settlement, and freshwater/discharge influenced zones as hot spots for FB, while the open sea was demarcated as a cold spot. The land use types, such as developed and agriculture, with more anthropogenic activities increasing the FB counts while open sea showed the least FB. Box whisker plot indicated an increasing FB trend in the coastal waters during monsoon. Furthermore, principal component analysis revealed 67.35%, 78.62% and 70.43% of total variance at Port Blair, Rangat and Aerial bays, respectively. Strong factor loading was observed for depth (0.95), transparency (0.93), dissolved oxygen (0.93) and fecal streptococci (0.85). Distance proximity analysis revealed that fecal contaminations diluted significantly (P < 0.05) at the distance of 2.1 km toward the deeper or open sea water. This study demonstrates the effectiveness of an integrated approach in identifying the sources of fecal contamination and thus helping in better monitoring and management of coastal waters.

  16. Geographic information systems and multivariate analysis to evaluate fecal bacterial pollution in coastal waters of Andaman, India.

    PubMed

    Dheenan, Palaiyaa Sukumaran; Jha, Dilip Kumar; Das, Apurba Kumar; Vinithkumar, Nambali Valsalan; Devi, Marimuthu Prashanthi; Kirubagaran, Ramalingam

    2016-07-01

    Urbanization of coastal areas in recent years has driven us to consider a new approach for visually delineating sites that are contaminated with fecal bacteria (FB) in the coastal waters of the Andaman Islands in India. Geo-spatial analysis demarcated harbor, settlement, and freshwater/discharge influenced zones as hot spots for FB, while the open sea was demarcated as a cold spot. The land use types, such as developed and agriculture, with more anthropogenic activities increasing the FB counts while open sea showed the least FB. Box whisker plot indicated an increasing FB trend in the coastal waters during monsoon. Furthermore, principal component analysis revealed 67.35%, 78.62% and 70.43% of total variance at Port Blair, Rangat and Aerial bays, respectively. Strong factor loading was observed for depth (0.95), transparency (0.93), dissolved oxygen (0.93) and fecal streptococci (0.85). Distance proximity analysis revealed that fecal contaminations diluted significantly (P < 0.05) at the distance of 2.1 km toward the deeper or open sea water. This study demonstrates the effectiveness of an integrated approach in identifying the sources of fecal contamination and thus helping in better monitoring and management of coastal waters. PMID:27061474

  17. Human fecal and pathogen exposure pathways in rural Indian villages and the effect of increased latrine coverage.

    PubMed

    Odagiri, Mitsunori; Schriewer, Alexander; Daniels, Miles E; Wuertz, Stefan; Smith, Woutrina A; Clasen, Thomas; Schmidt, Wolf-Peter; Jin, Yujie; Torondel, Belen; Misra, Pravas R; Panigrahi, Pinaki; Jenkins, Marion W

    2016-09-01

    Efforts to eradicate open defecation and improve sanitation access are unlikely to achieve health benefits unless interventions reduce microbial exposures. This study assessed human fecal contamination and pathogen exposures in rural India, and the effect of increased sanitation coverage on contamination and exposure rates. In a cross-sectional study of 60 villages of a cluster-randomized controlled sanitation trial in Odisha, India, human and domestic animal fecal contamination was measured in community tubewells and ponds (n = 301) and via exposure pathways in homes (n = 354), using Bacteroidales microbial source tracking fecal markers validated in India. Community water sources were further tested for diarrheal pathogens (rotavirus, adenovirus and Vibrio cholerae by quantitative PCR; pathogenic Escherichia coli by multiplex PCR; Cryptosporidium and Giardia by immunomagnetic separation and direct fluorescent antibody microscopy). Exposure pathways in intervention and control villages were compared and relationships with child diarrhea examined. Human fecal markers were rarely detected in tubewells (2.4%, 95%CI: 0.3-4.5%) and ponds (5.6%, 95%CI: 0.8-10.3%), compared to homes (35.4%, 95%CI: 30.4-40.4%). In tubewells, V. cholerae was the most frequently detected pathogen (19.8%, 95%CI: 14.4-25.2%), followed by Giardia (14.8%, 95%CI: 10.0-19.7%). In ponds, Giardia was most often detected (74.5%, 95%CI: 65.7-83.3%), followed by pathogenic E. coli (48.1%, 95%CI: 34.8-61.5%) and rotavirus (44.4%, 95%CI: 34.2-54.7%). At village-level, prevalence of fecal pathogen detection in community drinking water sources was associated with elevated prevalence of child diarrhea within 6 weeks of testing (RR 2.13, 95%CI: 1.25-3.63) while within homes, higher levels of human and animal fecal marker detection were associated with increased risks of subsequent child diarrhea (P = 0.044 and 0.013, respectively). There was no evidence that the intervention, which increased

  18. Human fecal and pathogen exposure pathways in rural Indian villages and the effect of increased latrine coverage.

    PubMed

    Odagiri, Mitsunori; Schriewer, Alexander; Daniels, Miles E; Wuertz, Stefan; Smith, Woutrina A; Clasen, Thomas; Schmidt, Wolf-Peter; Jin, Yujie; Torondel, Belen; Misra, Pravas R; Panigrahi, Pinaki; Jenkins, Marion W

    2016-09-01

    Efforts to eradicate open defecation and improve sanitation access are unlikely to achieve health benefits unless interventions reduce microbial exposures. This study assessed human fecal contamination and pathogen exposures in rural India, and the effect of increased sanitation coverage on contamination and exposure rates. In a cross-sectional study of 60 villages of a cluster-randomized controlled sanitation trial in Odisha, India, human and domestic animal fecal contamination was measured in community tubewells and ponds (n = 301) and via exposure pathways in homes (n = 354), using Bacteroidales microbial source tracking fecal markers validated in India. Community water sources were further tested for diarrheal pathogens (rotavirus, adenovirus and Vibrio cholerae by quantitative PCR; pathogenic Escherichia coli by multiplex PCR; Cryptosporidium and Giardia by immunomagnetic separation and direct fluorescent antibody microscopy). Exposure pathways in intervention and control villages were compared and relationships with child diarrhea examined. Human fecal markers were rarely detected in tubewells (2.4%, 95%CI: 0.3-4.5%) and ponds (5.6%, 95%CI: 0.8-10.3%), compared to homes (35.4%, 95%CI: 30.4-40.4%). In tubewells, V. cholerae was the most frequently detected pathogen (19.8%, 95%CI: 14.4-25.2%), followed by Giardia (14.8%, 95%CI: 10.0-19.7%). In ponds, Giardia was most often detected (74.5%, 95%CI: 65.7-83.3%), followed by pathogenic E. coli (48.1%, 95%CI: 34.8-61.5%) and rotavirus (44.4%, 95%CI: 34.2-54.7%). At village-level, prevalence of fecal pathogen detection in community drinking water sources was associated with elevated prevalence of child diarrhea within 6 weeks of testing (RR 2.13, 95%CI: 1.25-3.63) while within homes, higher levels of human and animal fecal marker detection were associated with increased risks of subsequent child diarrhea (P = 0.044 and 0.013, respectively). There was no evidence that the intervention, which increased

  19. Factors affecting the presence of human-associated and fecal indicator real-time quantitative PCR genetic markers in urban-impacted recreational beaches.

    PubMed

    Molina, Marirosa; Hunter, Shayla; Cyterski, Mike; Peed, Lindsay A; Kelty, Catherine A; Sivaganesan, Mano; Mooney, Thomas; Prieto, Lourdes; Shanks, Orin C

    2014-11-01

    Urban runoff can carry a variety of pollutants into recreational beaches, often including bacterial pathogens and indicators of fecal contamination. To develop complete recreational criteria and risk assessments, it is necessary to understand conditions under which human contamination could be present at beaches solely impacted by urban runoff. Accurately estimating risk requires understanding sources, concentrations, and transport mechanisms of microbial contaminants in these environments. By applying microbial source tracking methods and empirical modeling, we assessed the presence and level of human contamination at urban runoff impacted recreational beaches. We also identified environmental parameters and pollution sources that can influence the concentration and transport of culturable and molecular fecal indicator bacteria (FIB) in systems impacted solely by urban runoff. Water samples and physico-chemical parameters were collected from shoreline locations from three South Carolina (SC) beaches (five locations per beach) and two Florida (FL) beaches (three locations per beach). Each SC beach was directly impacted by swashes or tidal creeks receiving stormwater runoff from the urbanized area and therefore were designated as swash drain associated (SDA) beaches, while FL beaches were designated as non-swash drain associated (NSDA). Sampling in swash drains (SD; three sites per SD) directly impacting each SC beach was also conducted. Results indicate that although culturable (enterococci) and real-time quantitative polymerase chain reaction (qPCR) (EC23S857, Entero1, and GenBac3) FIB concentrations were, on average, higher at SD locations, SDA beaches did not have consistently higher molecular FIB signals compared to NSDA beaches. Both human-associated markers (HF183 and HumM2) were concomitantly found only at SDA beaches. Bacteroidales species-specific qPCR markers (BsteriF1 and BuniF2) identified differences in the Bacteroidales community, depending on beach

  20. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future.

  1. Effects of Cereal, Fruit and Vegetable Fibers on Human Fecal Weight and Transit Time: A Comprehensive Review of Intervention Trials

    PubMed Central

    de Vries, Jan; Birkett, Anne; Hulshof, Toine; Verbeke, Kristin; Gibes, Kernon

    2016-01-01

    Cereal fibers are known to increase fecal weight and speed transit time, but far less data are available on the effects of fruits and vegetable fibers on regularity. This study provides a comprehensive review of the impact of these three fiber sources on regularity in healthy humans. We identified English-language intervention studies on dietary fibers and regularity and performed weighted linear regression analyses for fecal weight and transit time. Cereal and vegetable fiber groups had comparable effects on fecal weight; both contributed to it more than fruit fibers. Less fermentable fibers increased fecal weight to a greater degree than more fermentable fibers. Dietary fiber did not change transit time in those with an initial time of <48 h. In those with an initial transit time ≥48 h, transit time was reduced by approximately 30 min per gram of cereal, fruit or vegetable fibers, regardless of fermentability. Cereal fibers have been studied more than any other kind in relation to regularity. This is the first comprehensive review comparing the effects of the three major food sources of fiber on bowel function and regularity since 1993. PMID:26950143

  2. Effects of Cereal, Fruit and Vegetable Fibers on Human Fecal Weight and Transit Time: A Comprehensive Review of Intervention Trials.

    PubMed

    de Vries, Jan; Birkett, Anne; Hulshof, Toine; Verbeke, Kristin; Gibes, Kernon

    2016-03-01

    Cereal fibers are known to increase fecal weight and speed transit time, but far less data are available on the effects of fruits and vegetable fibers on regularity. This study provides a comprehensive review of the impact of these three fiber sources on regularity in healthy humans. We identified English-language intervention studies on dietary fibers and regularity and performed weighted linear regression analyses for fecal weight and transit time. Cereal and vegetable fiber groups had comparable effects on fecal weight; both contributed to it more than fruit fibers. Less fermentable fibers increased fecal weight to a greater degree than more fermentable fibers. Dietary fiber did not change transit time in those with an initial time of <48 h. In those with an initial transit time ≥48 h, transit time was reduced by approximately 30 min per gram of cereal, fruit or vegetable fibers, regardless of fermentability. Cereal fibers have been studied more than any other kind in relation to regularity. This is the first comprehensive review comparing the effects of the three major food sources of fiber on bowel function and regularity since 1993. PMID:26950143

  3. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    PubMed

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. PMID:25478734

  4. Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples.

    PubMed

    Wang, R F; Kim, S-J; Robertson, L H; Cerniglia, C E

    2002-10-01

    A membrane-array method was developed for the detection of human intestinal bacteria in fecal samples without using the expensive microarray-arrayer and laser-scanner. The 16S rDNA sequences of 20 predominant human intestinal bacterial species were used to design oligonucleotide probes. Three 40-mer oligonucleotides specific for each bacterial species (total 60 probes) were synthesized and applied to nitrocellulose membranes. Digoxigenin (DIG)-labeled 16S rDNAs were amplified by polymerase chain reaction (PCR) from human fecal samples or pure cultured bacteria using two universal primers, and were hybridized to the membrane-array. Hybridization signals were read by NBT/BCIP color development. The 20 intestinal bacterial species tested were Bacteroides thetaiotaomicron, B. vulgatus, B. fragilis, B. distasonis, Clostridium clostridiiforme, C. leptum, Fusobacterium prausnitzii, Peptostreptococcus productus, Ruminococcus obeum, R. bromii, R. callidus, R. albus, Bifidobacterium longum, B. adolescentis, B. infantis, Eubacterium biforme, E. aerofaciens, Lactobacillus acidophilus,Escherichia coli, and Enterococcus faecium. The two universal primers were able to amplify full size 16S rDNA from all of the 20 bacterial species tested. The hybridization results indicated that the membrane-array method is a reliable technique for the detection of predominant human intestinal bacteria in the fecal samples. The result was also confirmed by using specific PCR methods for these bacteria.

  5. Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples.

    PubMed

    Wang, Rong-Fu; Beggs, Marjorie L; Robertson, Latriana H; Cerniglia, Carl E

    2002-08-01

    An oligonucleotide-microarray method was developed for the detection of intestinal bacteria in fecal samples collected from human subjects. The 16S rDNA sequences of 20 predominant human intestinal bacterial species were used to design oligonucleotide probes. Three 40-mer oligonucleotides specific for each bacterial species (total 60 probes) were synthesized and applied to glass slides. Cyanine5 (CY5)-labeled 16S rDNAs were amplified by polymerase chain reaction (PCR) from human fecal samples or bacterial DNA using two universal primers and were hybridized to the oligo-microarray. The 20 intestinal bacterial species tested were Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides fragilis, Bacteroides distasonis, Clostridium clostridiiforme, Clostridium leptum, Fusobacterium prausnitzii, Peptostreptococcus productus, Ruminococcus obeum, Ruminococcus bromii, Ruminococcus callidus, Ruminococcus albus, Bifidobacterium longum, Bifidobacterium adolescentis, Bifidobacterium infantis, Eubacterium biforme, Eubacterium aerofaciens, Lactobacillus acidophilus, Escherichia coli, and Enterococcus faecium. The two universal primers were able to amplify full size 16S rDNA from all of the 20 bacterial species tested. The hybridization results indicated that the oligo-microarray method developed in this study is a reliable method for the detection of predominant human intestinal bacteria in the fecal samples.

  6. Molecular Detection and Identification of Zoonotic Microsporidia Spore in Fecal Samples of Some Animals with Close-Contact to Human

    PubMed Central

    ASKARI, Zeinab; MIRJALALI, Hamed; MOHEBALI, Mehdi; ZAREI, Zabih; SHOJAEI, Saeideh; REZAEIAN, Tahereh; REZAEIAN, Mostafa

    2015-01-01

    Background: Microsporidia species are obligatory intracellular agents that can infect all major animal groups including mammals, birds, fishes and insects. Whereas worldwide human infection reports are increasing, the cognition of sources of infection particularly zoonotic transmission could be helpful. We aimed to detect zoonotic microsporidia spore in fecal samples from some animals with close – contact to human. Methods: Overall, 142 fecal samples were collected from animals with closed-contact to human, during 2012-2013. Trichrome – blue staining were performed and DNA was then extracted from samples, identified positive, microscopically. Nested PCR was also carried out with primers targeting SSU rRNA gene and PCR products were sequenced. Results: From 142 stool samples, microsporidia spores have been observed microscopically in 15 (10.56%) samples. En. cuniculi was found in the faces of 3 (15%) small white mice and 1 (10%) laboratory rabbits(totally 2.81%). Moreover, E. bieneusi was detected in 3 (10%) samples of sheep, 2 (5.12%) cattle, 1 (10%) rabbit, 3 (11.53%) cats and 2 (11.76%) ownership dogs (totally 7.74%). Phylogenetic analysis showed interesting data. This is the first study in Iran, which identified E. bieneusi and En. Cuniculi in fecal samples of laboratory animals with close – contact to human as well as domesticated animal and analyzed them in phylogenetic tree. Conclusion: E. bieneusi is the most prevalent microsporidia species in animals. Our results can also alert us about potentially zoonotic transmission of microsporidiosis. PMID:26622293

  7. ENHANCED CONCENTRATION AND ISOLATION OF CYCLOSPORA CAYETANENSIS OOCYSTS FROM HUMAN FECAL SAMPLES

    EPA Science Inventory

    Cyclospora cayetanensis is the causative agent of cyclosporiasis, an emerging infections disease. A new method for the purification of Cycloposra cayetanensis oocysts from fecal matter has been developed, using a modified detachment solution and a Renocal-sucrose gradient sedimen...

  8. In Vitro Fermentation of Xylooligosaccharides Produced from Miscanthus × giganteus by Human Fecal Microbiota.

    PubMed

    Chen, Ming-Hsu; Swanson, Kelly S; Fahey, George C; Dien, Bruce S; Beloshapka, Alison N; Bauer, Laura L; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2016-01-13

    Purified xylooligosaccharides from Miscanthus × giganteus (M×G XOS) were used in an in vitro fermentation experiment inoculated with human fecal microbiota. A commercial XOS product and pectin were used as controls. Decreases in pH by 2.3, 2.4, and 2.0 units and production of short-chain fatty acids (SCFA; acetic acid, 7764.2, 6664.1, and 6387.9 μmol/g; propionic acid, 1006.7, 1089.5, and 661.5 μmol/g; and butyric acid, 955.5, 1252.9, and 917.7 μmol/g) were observed in M×G XOS, commercial XOS, and pectin medium after 12 h of fermentation, respectively. Titers of Bifidobacterium spp., Lactobacillus spp., and Escherichia coli increased when fed all three substrates as monitored by qPCR. There was no significant trend for Clostridium perfringens. During fermentation, M×G XOS was statistically equivalent in performance to the commercial XOS sample as measured by culture acidification and growth of health-promoting bacteria and resulted in the highest SCFA production among the three substrates. PMID:26648520

  9. Effects of crude oil, dispersant, and oil-dispersant mixtures on human fecal microbiota in an in vitro culture system.

    PubMed

    Kim, Jong Nam; Kim, Bong-Soo; Kim, Seong-Jae; Cerniglia, Carl E

    2012-01-01

    The Deepwater Horizon oil spill of 2010 raised concerns that dispersant and dispersed oil, as well as crude oil itself, could contaminate shellfish and seafood habitats with hazardous residues that had potential implications for human health and the ecosystem. However, little is known about the effects of crude oil and dispersant on the human fecal microbiota. The aim of this research was to evaluate the potential effects of Deepwater Horizon crude oil, Corexit 9500 dispersant, and their combination on human fecal microbial communities, using an in vitro culture test system. Fecal specimens from healthy adult volunteers were made into suspensions, which were then treated with oil, dispersant, or oil-dispersant mixtures under anaerobic conditions in an in vitro culture test system. Perturbations of the microbial community, compared to untreated control cultures, were assessed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and pyrosequencing methods. DGGE and pyrosequencing analysis showed that oil-dispersant mixtures reduced the diversity of fecal microbiota from all individuals. Real-time PCR results indicated that the copy numbers of 16S rRNA genes in cultures treated with dispersed oil or oil alone were significantly lower than those in control incubations. The abundance of the Bacteroidetes decreased in crude oil-treated and dispersed-oil-treated cultures, while the Proteobacteria increased in cultures treated with dispersed oil. In conclusion, the human fecal microbiota was affected differently by oil and dispersed oil, and the influence of dispersed oil was significantly greater than that of either oil or dispersant alone compared to control cultures. IMPORTANCE There have been concerns whether human health is adversely affected by exposure to spilled crude oil, which contains regulated carcinogens, such as polycyclic aromatic hydrocarbons. In this study, we determined the effect of BP Deepwater Horizon crude oil and oil dispersant on the

  10. Civil aviation, air pollution and human health

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Masiol, Mauro; Vardoulakis, Sotiris

    2015-04-01

    Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.

  11. Pollution's Price--The Cost in Human Health

    ERIC Educational Resources Information Center

    Newill, Vaun A.

    1973-01-01

    Discusses the detrimental effects of air pollution, and especially sulfur dioxide, on human health. Any relaxation of existing national air pollution standards because of the energy crisis could be costly in terms of the nation's health. (JR)

  12. Controlled human exposures to ambient pollutant particles in susceptible populations

    EPA Science Inventory

    Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in suscep...

  13. Magnetite pollution nanoparticles in the human brain.

    PubMed

    Maher, Barbara A; Ahmed, Imad A M; Karloukovski, Vassil; MacLaren, Donald A; Foulds, Penelope G; Allsop, David; Mann, David M A; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-09-27

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health. PMID:27601646

  14. Magnetite pollution nanoparticles in the human brain.

    PubMed

    Maher, Barbara A; Ahmed, Imad A M; Karloukovski, Vassil; MacLaren, Donald A; Foulds, Penelope G; Allsop, David; Mann, David M A; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-09-27

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.

  15. Inspection of fecal contamination on strawberries using fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chuang, Yung-Kun; Yang, Chun-Chieh; Kim, Moon S.; Delwiche, Stephen R.; Lo, Y. Martin; Chen, Suming; Chan, Diane E.

    2013-05-01

    Fecal contamination of produce is a food safety issue associated with pathogens such as Escherichia coli that can easily pollute agricultural products via animal and human fecal matters. Outbreaks of foodborne illnesses associated with consuming raw fruits and vegetables have occurred more frequently in recent years in the United States. Among fruits, strawberry is one high-potential vector of fecal contamination and foodborne illnesses since the fruit is often consumed raw and with minimal processing. In the present study, line-scan LED-induced fluorescence imaging techniques were applied for inspection of fecal material on strawberries, and the spectral characteristics and specific wavebands of strawberries were determined by detection algorithms. The results would improve the safety and quality of produce consumed by the public.

  16. Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo pygmaeus morio following Human Visitation

    PubMed Central

    Muehlenbein, Michael P.; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann

    2012-01-01

    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary

  17. Ape conservation physiology: fecal glucocorticoid responses in wild Pongo pygmaeus morio following human visitation.

    PubMed

    Muehlenbein, Michael P; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann

    2012-01-01

    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results

  18. Ape conservation physiology: fecal glucocorticoid responses in wild Pongo pygmaeus morio following human visitation.

    PubMed

    Muehlenbein, Michael P; Ancrenaz, Marc; Sakong, Rosman; Ambu, Laurentius; Prall, Sean; Fuller, Grace; Raghanti, Mary Ann

    2012-01-01

    Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results

  19. Biotic interactions and sunlight affect persistence of fecal indicator bacteria and microbial source tracking genetic markers in the Upper Mississippi River

    EPA Science Inventory

    Sanitary quality of recreational waters is assessed by enumerating fecal indicator bacteria (FIB) (Escherichia coli and enterococci); organisms present in the gastrointestinal tract of humans and many other animals, hence providing no information about the pollution source. Micro...

  20. Droplet digital PCR for simultaneous quantification of general and human-associated fecal indicators for water quality assessment.

    PubMed

    Cao, Yiping; Raith, Meredith R; Griffith, John F

    2015-03-01

    Despite wide application to beach water monitoring and microbial source identification, results produced by quantitative PCR (qPCR) methods are subject to bias introduced by reliance on quantitative standards. Digital PCR technology provides direct, standards-free quantification and may potentially alleviate or greatly reduce other qPCR limitations such as difficulty in multiplexing and susceptibility to PCR inhibition. This study examined the efficacy of employing a duplex droplet digital PCR (ddPCR) assay that simultaneously quantifies Enterococcus spp. and the human fecal-associated HF183 marker for water quality assessment. Duplex ddPCR performance was evaluated side-by-side with qPCR and simplex ddPCR using reference material and 131 fecal and water samples. Results for fecal and water samples were highly correlated between ddPCR and simplex qPCR (coefficients > 0.93, p < 0.001). Duplexing Enterococcus and HF183 in qPCR led to competition and resulted in non-detection or underestimation of the target with low concentration relative to the other, while results produced by simplex and duplex ddPCR were consistent and often indistinguishable from one another. ddPCR showed greater tolerance for inhibition, with no discernable effect on quantification at inhibitor concentrations one to two orders of magnitude higher than that tolerated by qPCR. Overall, ddPCR also exhibited improved precision, higher run-to-run repeatability, similar diagnostic sensitivity and specificity on the HF183 marker, but a lower upper limit of quantification than qPCR. Digital PCR has the potential to become a reliable and economical alternative to qPCR for recreational water monitoring and fecal source identification. Findings from this study may also be of interest to other aspects of water research such as detection of pathogens and antibiotic resistance genes.

  1. Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome

    PubMed Central

    De Angelis, Maria; Montemurno, Eustacchio; Vannini, Lucia; Cosola, Carmela; Cavallo, Noemi; Gozzi, Giorgia; Maranzano, Valentina; Di Cagno, Raffaella; Gesualdo, Loreto

    2015-01-01

    In this study, we compared the fecal microbiota and metabolomes of 26 healthy subjects before (HS) and after (HSB) 2 months of diet intervention based on the administration of durum wheat flour and whole-grain barley pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the 16S rRNA gene and community-level catabolic profiles. Pyrosequencing data showed that levels of Clostridiaceae (Clostridium orbiscindens and Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased, while levels of other Firmicutes and Fusobacteria decreased, from the HSB samples to the HS fecal samples. Community-level catabolic profiles were lower in HSB samples. Compared to the results for HS samples, cultivable lactobacilli increased in HSB fecal samples, while the numbers of Enterobacteriaceae, total coliforms, and Bacteroides, Porphyromonas, Prevotella, Pseudomonas, Alcaligenes, and Aeromonas bacteria decreased. Metabolome analyses were performed using an amino acid analyzer and gas chromatography-mass spectrometry solid-phase microextraction. A marked increase in short-chain fatty acids (SCFA), such as 2-methyl-propanoic, acetic, butyric, and propionic acids, was found in HSB samples with respect to the HS fecal samples. Durum wheat flour and whole-grain barley pasta containing 3% barley β-glucans appeared to be effective in modulating the composition and metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA in the HSB samples. PMID:26386056

  2. Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of Sandhill Cranes (Grus canadensis) at the Central Platte River

    EPA Science Inventory

    The annual Sandhill crane (Grus canadensis) migration through Nebraska is thought to be a major source of fecal pollution to the Platte River, but of unknown human health risk. To better understand potential risks, the presence of Campylobacter species and fecal bacteria were exa...

  3. Outdoor air pollution and human infertility: a systematic review.

    PubMed

    Checa Vizcaíno, Miguel A; González-Comadran, Mireia; Jacquemin, Benedicte

    2016-09-15

    Air pollution is a current research priority because of its adverse effects on human health, including on fertility. However, the mechanisms through which air pollution impairs fertility remain unclear. In this article, we perform a systematic review to evaluate currently available evidence on the impact of air pollution on fertility in humans. Several studies have assessed the impact of air pollutants on the general population, and have found reduced fertility rates and increased risk of miscarriage. In subfertile patients, women exposed to higher concentrations of air pollutants while undergoing IVF showed lower live birth rates and higher rates of miscarriage. After exposure to similar levels of air pollutants, comparable results have been found regardless of the mode of conception (IVF versus spontaneous conception), suggesting that infertile women are not more susceptible to the effects of pollutants than the general population. In addition, previous studies have not observed impaired embryo quality after exposure to air pollution, although evidence for this question is sparse.

  4. Characterization of Escherichia coli Isolates from an Urban Lake Receiving Water from a Wastewater Treatment Plant in Mexico City: Fecal Pollution and Antibiotic Resistance.

    PubMed

    Rosas, Irma; Salinas, Eva; Martínez, Leticia; Cruz-Córdova, Ariadnna; González-Pedrajo, Bertha; Espinosa, Norma; Amábile-Cuevas, Carlos F

    2015-10-01

    The presence of enteric bacteria in water bodies is a cause of public health concerns, either by directly causing water- and food-borne diseases, or acting as reservoirs for antibiotic resistance determinants. Water is used for crop irrigation; and sediments and aquatic plants are used as fertilizing supplements and soil conditioners. In this work, the bacterial load of several micro-environments of the urban lake of Xochimilco, in Mexico City, was characterized. We found a differential distribution of enteric bacteria between the water column, sediment, and the rhizoplane of aquatic plants, with human fecal bacteria concentrating in the sediment, pointing to the need to assess such bacterial load for each micro-environment, for regulatory agricultural purposes, instead of only the one of the water, as is currently done. Resistance to tetracycline, ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole was common among Escherichia coli isolates, but was also differentially distributed, being again higher in sediment isolates. A distinct distribution of chloramphenicol minimum inhibitory concentrations (MIC) among these isolates suggests the presence of a local selective pressure favoring lower MICs than those of isolates from treated water. Fecal bacteria of human origin, living in water bodies along with their antibiotic resistance genes, could be much more common than typically considered, and pose a higher health risk, if assessments are only made on the water column of such bodies.

  5. Water pollution and human health in China.

    PubMed Central

    Wu, C; Maurer, C; Wang, Y; Xue, S; Davis, D L

    1999-01-01

    China's extraordinary economic growth, industrialization, and urbanization, coupled with inadequate investment in basic water supply and treatment infrastructure, have resulted in widespread water pollution. In China today approximately 700 million people--over half the population--consume drinking water contaminated with levels of animal and human excreta that exceed maximum permissible levels by as much as 86% in rural areas and 28% in urban areas. By the year 2000, the volume of wastewater produced could double from 1990 levels to almost 78 billion tons. These are alarming trends with potentially serious consequences for human health. This paper reviews and analyzes recent Chinese reports on public health and water resources to shed light on what recent trends imply for China's environmental risk transition. This paper has two major conclusions. First, the critical deficits in basic water supply and sewage treatment infrastructure have increased the risk of exposure to infectious and parasitic disease and to a growing volume of industrial chemicals, heavy metals, and algal toxins. Second, the lack of coordination between environmental and public health objectives, a complex and fragmented system to manage water resources, and the general treatment of water as a common property resource mean that the water quality and quantity problems observed as well as the health threats identified are likely to become more acute. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10090702

  6. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    PubMed

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.

  7. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    PubMed

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters. PMID:26769702

  8. Impact of Population and Latrines on Fecal Contamination of Ponds in Rural Bangladesh

    PubMed Central

    Knappett, Peter S. K.; Escamilla, Veronica; Layton, Alice; McKay, Larry D.; Emch, Michael; Williams, Daniel E.; Huq, Md. R.; Alam, Md. J.; Farhana, Labony; Mailloux, Brian J.; Ferguson, Andy; Sayler, Gary S.; Ahmed, Kazi M.; van Geen, Alexander

    2011-01-01

    A majority of households in Bangladesh rely on pond water for hygiene. Exposure to pond water fecal contamination could therefore still contribute to diarrheal disease despite the installation of numerous tubewells for drinking. The objectives of this study are to determine the predominant sources (human or livestock) of fecal pollution in ponds and examine the association between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were analyzed for E. coli using culture-based methods and E. coli, Bacteroidales and adenovirus using quantitative PCR. Population and sanitation spatial data were collected and measured against pond fecal contamination. Humans were the dominant source of fecal contamination in 79% of the ponds according to Bacteroidales measurements. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria (up to 106 Most Probable Number (MPN) of culturable E. coli per 100 mL). Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.05) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines (visible effluent or open pits) within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). Water in the vast majority of the surveyed ponds contained unsafe levels of fecal contamination attributable primarily to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is derived from human waste, continued use of pond water could help explain the persistence of diarrheal disease in rural South Asia. PMID:21632095

  9. Fecal shedding of thermophilic Campylobacter in a dairy herd producing raw milk for direct human consumption.

    PubMed

    Merialdi, Giuseppe; Giacometti, Federica; Bardasi, Lia; Stancampiano, Laura; Taddei, Roberta; Serratore, Patrizia; Serraino, Andrea

    2015-03-01

    Factors affecting the fecal shedding of thermophilic Campylobacter in Italian dairy farms were investigated in a 12-month longitudinal study performed on a dairy farm authorized to sell raw milk in Italy. Fifty animals were randomly selected from 140 adult and young animals, and fecal samples were collected six times at 2-month intervals. At each sampling time, three trough water samples and two trough feed samples also were collected for both adult and young animals. Samples were analyzed with real-time PCR assay and culture examination. Overall, 33 samples (9.7%) were positive for thermophilic Campylobacter by real-time PCR: 26 (9.2%) of 280 fecal samples, 6 (16.6%) of 36 water samples, and 1 (4.2%) of 24 feed samples. Campylobacter jejuni was isolated from 6 of 280 samples; no other Campylobacter species was isolated. A higher (but not significantly) number of positive fecal samples were found in younger animals (11.33 versus 6.92% of adult animals), and a significantly higher number of positive water samples were collected from the water troughs of young animals. A distinct temporal trend was observed during the study period for both cows and calves, with two prevalence peaks between November and December and between May and July. Several factors such as calving, housing practices, herd size, management practices forcing together a higher number of animals, and variations in feed or water sources (previously reported as a cause of temporal variation in different farming conditions) were excluded as the cause of the two seasonal peaks in this study. The factors affecting the seasonality of Campylobacter shedding in the dairy herds remain unclear and warrant further investigation. The results of the present study indicate that special attention should be paid to farm hygiene management on farms authorized to produce and sell raw milk, with increased surveillance by the authorities at certain times of the year.

  10. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress.

    PubMed Central

    Holdeman, L V; Good, I J; Moore, W E

    1976-01-01

    Data are presented on the distribution of 101 bacterial species and subspecies among 1,442 isolates from 25 fecal specimens from three men on: (i) their normal diet and normal living conditions, (ii) normal living conditions but eating the controlled metabolic diet designed for use in the Skylab simulation and missions, and (iii) the Skylab diet in simulated Skylab (isolation) conditions. These bacteria represent the most numerous kinds in the fecal flora. Analyses of the kinds of bacteria from each astronaut during the 5-month period showed more variation in the composition of the flora among the individual astronauts than among the eight or nine samples from each person. This observation indicates that the variations in fecal flora reported previously, but based on the study of only one specimen from each person, more certainly reflect real differences (and not daily variation) in the types of bacteria maintained by individual people. The proportions of the predominant fecal species in the astronauts were similar to those reported earlier from a Japanese-Hawaiian population and were generally insensitive to changes from the normal North American diet to the Skylab diet; only two of the most common species were affected by changes in diet. However, one of the predominant species (Bacteroides fragilis subsp. thetaiotaomicron) appeared to be affected during confinement of the men in the Skylab test chamber. Evidence is presented suggesting that an anger stress situation may have been responsible for the increase of this species simultaneously in all of the subjects studied. Phenotypic characteristics of some of the less common isolates are given. The statistical analyses used in interpretation of the results are discussed. PMID:938032

  11. Colonic metabolism of wheat starch in healthy humans. Effects on fecal outputs and clinical symptoms.

    PubMed

    Flourie, B; Florent, C; Jouany, J P; Thivend, P; Etanchaud, F; Rambaud, J C

    1986-01-01

    To study the intracolonic digestion of starch, 5 healthy volunteers were maintained on a constant diet for 7 days. On the fourth day, the cecum was intubated and a suspension of raw wheat starch (50 g, in 500 ml of 154 mM NaCl and containing 10 g of polyethylene glycol 4000) was infused into the distal ileum at 2 ml/min. Hydrogen excretion in breath was measured, cecal contents were sampled, and symptoms were recorded. For the 2-3 days before and after starch infusions, fecal weight, pH, and percentage of dry matter were monitored; fecal outputs of starch, volatile fatty acids, lactic acid, ethanol, polyethylene glycol, alpha-amylase, nitrogen, and ammonia were also measured. A lactulose (10 g) hydrogen breath test was performed 5-7 days after the starch infusions. After the infusion of starch, concentrations of lactic and volatile fatty acids increased and pH decreased markedly in cecal contents. None of the fecal values changed significantly after starch, however, indicating that carbohydrate catabolism was nearly complete and that the colon absorbed the catabolic products efficiently. Abdominal symptoms, especially bloating, were noted by all subjects, and 2 subjects complained of cramping pain. No subject experienced diarrhea. The amounts of starch metabolized in the colon (47.3 +/- 2.9 g), as calculated from the excretion of H2 in breath compared to the hydrogen breath test after lactulose, were close to the actual load (50 g). PMID:2998917

  12. Basin-Wide Analysis of the Dynamics of Fecal Contamination and Fecal Source Identification in Tillamook Bay, Oregon

    PubMed Central

    Shanks, Orin C.; Nietch, Christopher; Simonich, Michael; Younger, Melissa; Reynolds, Don; Field, Katharine G.

    2006-01-01

    The objectives of this study were to elucidate spatial and temporal dynamics in source-specific Bacteroidales 16S rRNA genetic marker data across a watershed; to compare these dynamics to fecal indicator counts, general measurements of water quality, and climatic forces; and to identify geographic areas of intense exposure to specific sources of contamination. Samples were collected during a 2-year period in the Tillamook basin in Oregon at 30 sites along five river tributaries and in Tillamook Bay. We performed Bacteroidales PCR assays with general, ruminant-source-specific, and human-source-specific primers to identify fecal sources. We determined the Escherichia coli most probable number, temperature, turbidity, and 5-day precipitation. Climate and water quality data collectively supported a rainfall runoff pattern for microbial source input that mirrored the annual precipitation cycle. Fecal sources were statistically linked more closely to ruminants than to humans; there was a 40% greater probability of detecting a ruminant source marker than a human source marker across the basin. On a sample site basis, the addition of fecal source tracking data provided new information linking elevated fecal indicator bacterial loads to specific point and nonpoint sources of fecal pollution in the basin. Inconsistencies in E. coli and host-specific marker trends suggested that the factors that control the quantity of fecal indicators in the water column are different than the factors that influence the presence of Bacteroidales markers at specific times of the year. This may be important if fecal indicator counts are used as a criterion for source loading potential in receiving waters. PMID:16885307

  13. Fecal culture

    MedlinePlus

    Stool culture; Culture - stool ... stool tests are done in addition to the culture, such as: Gram stain of stool Fecal smear ... Giannella RA. Infectious enteritis and proctocolitis and bacterial food poisoning. In: Feldman M, Friedman LS, Brandt LJ, ...

  14. Human exposure to urban air pollution.

    PubMed Central

    Boström, C E; Almén, J; Steen, B; Westerholm, R

    1994-01-01

    This study deals with some methods of making human exposure estimates, aimed at describing the human exposure for selected air pollutants in Sweden that are suspected carcinogens. Nitrogen oxides (NOx) have been chosen as an indicator substance for estimating the concentration of the urban plume. Earlier investigations have shown that the traffic in Swedish cities contributes around 85% to the measured NOx concentrations, and that most of the mutagenicity in urban air originates from traffic. The first section of this paper describes measurements in Stockholm of some unregulated light hydrocarbons, such as ethene, ethyne, propane, propene, butane, and isobutane. In addition, measurements of some volatile aromatic hydrocarbons are presented. Simultaneous measurements of carbon monoxide (CO) were made. The ratios between CO and the individual specific compounds were determined by linear regression analysis. By analysis of relationships between CO and NOx, NOx concentrations can be used as a tracer to describe the exposure for these specific compounds. NOx are considered to be a better tracer than CO, because NOx or NO2 values exist for many places over a long time, while CO is measured mostly in streets with high concentrations. At low concentrations, instruments that measure normal CO levels give no detectable signals. Through use of atmospheric dispersion models and models that describe how people live and work in urban areas it has been possible to describe the average exposure to NOx in cities of different sizes. The exposure to NOx for people living in the countryside has also been estimated. In this way, it has been possible to calculate the average exposure dose for NOx for the Swedish population. This figure is 23 micrograms/m3. By use of the relationships between NOx and specific compounds the average dose has been calculated for the following compounds: polyaromatic compounds (PAH); ethene, propene, and butadiene; benzene, toluene, and xylene; formaldehyde

  15. Viral pollution in the environment and in shellfish: human adenovirus detection by PCR as an index of human viruses.

    PubMed

    Pina, S; Puig, M; Lucena, F; Jofre, J; Girones, R

    1998-09-01

    A study of the presence of human viruses (adenoviruses, enteroviruses, and hepatitis A viruses [HAVs]) in environmental and shellfish samples was carried out by applying DNA and cDNA amplification techniques by PCR. The detection of human adenoviruses by PCR was also examined as a potential molecular test to monitor viral pollution. The samples studied were urban and slaughterhouse sewage, river water, seawater, and shellfish. Enteroviruses were quantified by PFU in Buffalo green monkey kidney cells and fecal coliforms and phages of Bacteroides fragilis HSP40 were also evaluated in some of the samples. The amplification of viral DNA and cDNA has shown a high prevalence of human viruses that would not be detected by the use of classical techniques, such as the quantification of PFU in cell lines. The results of the analysis of slaughterhouse sewage samples together with the test of farm animal feces indicate that the adenoviruses and the HAVs detected in the environment are mostly of human origin. A significative correlation between the detection of human viruses by PCR and the values of bacteriophages of B. fragilis HSP40 in urban raw sewage was observed. Human adenoviruses were the viruses most frequently detected throughout the year, and all the samples that were positive for enteroviruses or HAVs were also positive for human adenoviruses. The results suggest that the detection of adenoviruses by PCR could be used as an index of the presence of human viruses in the environment where a molecular index is acceptable.

  16. Distribution of Genes Encoding the Trypsin-Dependent Lantibiotic Ruminococcin A among Bacteria Isolated from Human Fecal Microbiota

    PubMed Central

    Marcille, F.; Gomez, A.; Joubert, P.; Ladiré, M.; Veau, G.; Clara, A.; Gavini, F.; Willems, A.; Fons, M.

    2002-01-01

    Fourteen bacterial strains capable of producing a trypsin-dependent antimicrobial substance active against Clostridium perfringens were isolated from human fecal samples of various origins (from healthy adults and children, as well as from adults with chronic pouchitis). Identification of these strains showed that they belonged to Ruminococcus gnavus, Clostridium nexile, and Ruminococcus hansenii species or to new operational taxonomic units, all from the Clostridium coccoides phylogenetic group. In hybridization experiments with a probe specific for the structural gene encoding the trypsin-dependent lantibiotic ruminococcin A (RumA) produced by R. gnavus, seven strains gave a positive response. All of them harbored three highly conserved copies of rumA-like genes. The deduced peptide sequence was identical to or showed one amino acid difference from the hypothetical precursor of RumA. Our results indicate that the rumA-like genes have been disseminated among R. gnavus and phylogenetically related strains that can make up a significant part of the human fecal microbiota. PMID:12089024

  17. Isolation and maintenance of Balantidium coli (Malmsteim, 1857) cultured from fecal samples of pigs and non-human primates.

    PubMed

    Barbosa, Alynne da Silva; Bastos, Otilio Machado Pereira; Uchôa, Claudia M Antunes; Pissinatti, Alcides; Ferreira Filho, Paulo Ricardo; Dib, Lais Verdan; Azevedo, Eduarda Peixoto; de Siqueira, Mayara Perlingeiro; Cardozo, Matheus Lessa; Amendoeira, Maria Regina Reis

    2015-06-15

    Balantidium coli is a protozoa that can determine dysentery in humans, pigs and non-human primates having zoonotic potential. The lack of standardization in isolation and maintenance hinders the development of research on its biology and epidemiology. This study is aimed to standardize the isolation and maintenance of this parasite from animal feces, in culture medium, Pavlova modified. From 2012 to 2014, 1905 fecal samples were collected from captive animals of Rio de Janeiro. Were selected for isolation samples with a minimum of 10 trophozoites and/or 30 cysts of B. coli, totaling 88 pigs, 26 Cynomolgus and 90 rhesus macaques. In the presence of cysts, the sample was homogenized in saline solution, 500 μL was removed and inoculated into culture medium. The material that contained trophozoites the inoculum was made from 240 μL of fecal solution. All inoculate tubes with the subcultures were kept at 36°C, and sterile rice starch was always added to the medium. The parasites isolate from pigs, 34%, and from Cynomolgus 38.4% were maintained in vitro for a period of more than 24 months. These procedures proved to be adequate for isolation and maintenance of B. coli from different animals, they were found to be inexpensive and easy to perform. PMID:25920329

  18. The approach to sample acquisition and its impact on the derived human fecal microbiome and VOC metabolome.

    PubMed

    Couch, Robin D; Navarro, Karl; Sikaroodi, Masoumeh; Gillevet, Pat; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2013-01-01

    Recent studies have illustrated the importance of the microbiota in maintaining a healthy state, as well as promoting disease states. The intestinal microbiota exerts its effects primarily through its metabolites, and metabolomics investigations have begun to evaluate the diagnostic and health implications of volatile organic compounds (VOCs) isolated from human feces, enabled by specialized sampling methods such as headspace solid-phase microextraction (hSPME). The approach to stool sample collection is an important consideration that could potentially introduce bias and affect the outcome of a fecal metagenomic and metabolomic investigation. To address this concern, a comparison of endoscopically collected (in vivo) and home collected (ex vivo) fecal samples was performed, revealing slight variability in the derived microbiomes. In contrast, the VOC metabolomes differ widely between the home collected and endoscopy collected samples. Additionally, as the VOC extraction profile is hyperbolic, with short extraction durations more vulnerable to variation than extractions continued to equilibrium, a second goal of our investigation was to ascertain if hSPME-based fecal metabolomics studies might be biased by the extraction duration employed. As anticipated, prolonged extraction (18 hours) results in the identification of considerably more metabolites than short (20 minute) extractions. A comparison of the metabolomes reveals several analytes deemed unique to a cohort with the 20 minute extraction, but found common to both cohorts when the VOC extraction was performed for 18 hours. Moreover, numerous analytes perceived to have significant fold change with a 20 minute extraction were found insignificant in fold change with the prolonged extraction, underscoring the potential for bias associated with a 20 minute hSPME. PMID:24260553

  19. The Approach to Sample Acquisition and Its Impact on the Derived Human Fecal Microbiome and VOC Metabolome

    PubMed Central

    Couch, Robin D.; Navarro, Karl; Sikaroodi, Masoumeh; Gillevet, Pat; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2013-01-01

    Recent studies have illustrated the importance of the microbiota in maintaining a healthy state, as well as promoting disease states. The intestinal microbiota exerts its effects primarily through its metabolites, and metabolomics investigations have begun to evaluate the diagnostic and health implications of volatile organic compounds (VOCs) isolated from human feces, enabled by specialized sampling methods such as headspace solid-phase microextraction (hSPME). The approach to stool sample collection is an important consideration that could potentially introduce bias and affect the outcome of a fecal metagenomic and metabolomic investigation. To address this concern, a comparison of endoscopically collected (in vivo) and home collected (ex vivo) fecal samples was performed, revealing slight variability in the derived microbiomes. In contrast, the VOC metabolomes differ widely between the home collected and endoscopy collected samples. Additionally, as the VOC extraction profile is hyperbolic, with short extraction durations more vulnerable to variation than extractions continued to equilibrium, a second goal of our investigation was to ascertain if hSPME-based fecal metabolomics studies might be biased by the extraction duration employed. As anticipated, prolonged extraction (18 hours) results in the identification of considerably more metabolites than short (20 minute) extractions. A comparison of the metabolomes reveals several analytes deemed unique to a cohort with the 20 minute extraction, but found common to both cohorts when the VOC extraction was performed for 18 hours. Moreover, numerous analytes perceived to have significant fold change with a 20 minute extraction were found insignificant in fold change with the prolonged extraction, underscoring the potential for bias associated with a 20 minute hSPME. PMID:24260553

  20. Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, Western Tanzania.

    PubMed

    Szekely, Brian A; Singh, Jatinder; Marsh, Terence L; Hagedorn, Charles; Werre, Stephen R; Kaur, Taranjit

    2010-06-01

    Although the intestinal flora of chimpanzees has not been studied, insight into this dynamic environment can be obtained through studies on their feces. We analyzed fecal samples from human-habituated, wild chimpanzees at Mahale Mountains National Park, Tanzania, and compared microbial community profiles to determine if members of the same social group were similar. Between July and December 2007, we collected fresh fecal samples from 12 individuals: four juveniles, four adolescents, and four adults, including three parent-offspring pairs. Each sample was analyzed using Terminal-Restriction Fragment Length Polymorphism of amplified 16S rRNA genes. Twelve different profiles were generated, having between 1 and 15 Terminal-Restriction Fragments (T-RFs). Overall, a total of 23 different T-RFs were produced. Putative assignments of T-RFs corresponded to the phyla Firmicutes (Clostridia, Bacilli, and Lactobacilli), Bacteroidetes, Tenericutes (Mollicutes Class), Actinobacteria, and Proteobacteria, as well as to uncultured or unidentified organisms. Firmicutes and Bacteroidetes phyla and Mollicutes Class were the most commonly assigned in 11, 8, and 8 of the samples, respectively, with this being the first report of Mollicutes in wild chimpanzees. Principal Components Analysis (PCA) revealed clustering of nine samples, and 80.5% of the diversity was accounted for by three samples. Morisita indices of community similarity ranged between 0.00 and 0.89, with dissimiliarity (<0.5) between most samples when compared two at a time. Our findings suggest that, although phylotypes are common among individuals, profiles among members of the same social group are host-specific. We conclude that factors other than social group, such as kinship and age, may influence fecal bacterial profiles of wild chimpanzees, and recommend that additional studies be conducted.

  1. The fecal bacteria

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    The Fecal Bacteria offers a balanced, integrated discussion of fecal bacteria and their presence and ecology in the intestinal tract of mammals, in the environment, and in the food supply. This volume covers their use in examining and assessing water quality in order to offer protection from illnesses related to swimming in or ingesting contaminated water, in addition to discussing their use in engineering considerations of water quality, modeling, monitoring, and regulations. Fecal bacteria are additionally used as indicators of contamination of ready-to-eat foods and fresh produce. The intestinal environment, the microbial community structure of the gut microbiota, and the physiology and genomics of this broad group of microorganisms are explored in the book. With contributions from an internationally recognized group of experts, the book integrates medicine, public health, environmental, and microbiological topics in order to provide a unique, holistic understanding of fecal bacteria. Moreover, it shows how the latest basic science and applied research findings are helping to solve problems and develop effective management strategies. For example, readers will discover how the latest tools and molecular approaches have led to our current understanding of fecal bacteria and enabled us to improve human health and water quality. The Fecal Bacteria is recommended for microbiologists, clinicians, animal scientists, engineers, environmental scientists, food safety experts, water quality managers, and students. It will help them better understand fecal bacteria and use their knowledge to protect human and environmental health. They can also apply many of the techniques and molecular tools discussed in this book to the study of a broad range of microorganisms in a variety of habitats.

  2. Development and testing of real-time PCR assays for determining fecal loading and source identification (cattle, human, etc.) in surface water and groundwater

    NASA Astrophysics Data System (ADS)

    McKay, L. D.; Layton, A.; Gentry, R.

    2004-12-01

    A multi-disciplinary group of researchers at the University of Tennessee is developing and testing a series of microbial assay methods based on real-time PCR to detect fecal bacterial concentrations and host sources in water samples. Real-time PCR is an enumeration technique based on the unique and conserved nucleic acid sequences present in all organisms. The first research task was development of an assay (AllBac) to detect total amount of Bacteroides, which represents up to 30 percent of fecal mass. Subsequent assays were developed to detect Bacteroides from cattle (BoBac) and humans (HuBac) using 16sRNA genes based on DNA sequences in the national GenBank, as well as sequences from local fecal samples. The assays potentially have significant advantages over conventional bacterial source tracking methods because: 1. unlike traditional enumeration methods, they do not require bacterial cultivation; 2. there are no known non-fecal sources of Bacteroides; 3. the assays are quantitative with results for total concentration and for each species expressed in mg/l; and 4. they show little regional variation within host species, meaning that they do not require development of extensive local gene libraries. The AllBac and BoBac assays have been used in a study of fecal contamination in a small rural watershed (Stock Creek) near Knoxville, TN, and have proven useful in identification of areas where cattle represent a significant fecal input and in development of BMPs. It is expected that these types of assays (and future assays for birds, hogs, etc.) could have broad applications in monitoring fecal impacts from Animal Feeding Operations, as well as from wildlife and human sources.

  3. UNDERSTANDING THE EFFECTS OF AIR POLLUTION ON HUMAN HEALTH

    EPA Science Inventory

    Modern air pollution regulation is first and foremost motivated by concerns about the effects of air pollutants on human health and secondarily by concerns about its effects on ecosystems, cultural artifacts, and quality of life values such as visibility. This order of priority ...

  4. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods.

    PubMed

    Shanks, Orin C; Kelty, Catherine A; Oshiro, Robin; Haugland, Richard A; Madi, Tania; Brooks, Lauren; Field, Katharine G; Sivaganesan, Mano

    2016-05-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria

  5. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    PubMed Central

    Kelty, Catherine A.; Oshiro, Robin; Haugland, Richard A.; Madi, Tania; Brooks, Lauren; Field, Katharine G.; Sivaganesan, Mano

    2016-01-01

    There is growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data quality across laboratories. Data quality is typically determined through a series of specifications that ensure good experimental practice and the absence of bias in the results due to DNA isolation and amplification interferences. However, there is currently a lack of consensus on how best to evaluate and interpret human fecal source identification qPCR experiments. This is, in part, due to the lack of standardized protocols and information on interlaboratory variability under conditions for data acceptance. The aim of this study is to provide users and reviewers with a complete series of conditions for data acceptance derived from a multiple laboratory data set using standardized procedures. To establish these benchmarks, data from HF183/BacR287 and HumM2 human-associated qPCR methods were generated across 14 laboratories. Each laboratory followed a standardized protocol utilizing the same lot of reference DNA materials, DNA isolation kits, amplification reagents, and test samples to generate comparable data. After removal of outliers, a nested analysis of variance (ANOVA) was used to establish proficiency metrics that include lab-to-lab, replicate testing within a lab, and random error for amplification inhibition and sample processing controls. Other data acceptance measurements included extraneous DNA contamination assessments (no-template and extraction blank controls) and calibration model performance (correlation coefficient, amplification efficiency, and lower limit of quantification). To demonstrate the implementation of the proposed standardized protocols and data acceptance criteria, comparable data from two additional laboratories were reviewed. The data acceptance criteria

  6. Human exposure to endotoxins and fecal indicators originating from water features.

    PubMed

    de Man, H; Heederik, D D J; Leenen, E J T M; de Roda Husman, A M; Spithoven, J J G; van Knapen, F

    2014-03-15

    Exposure to contaminated aerosols and water originating from water features may pose public health risks. Endotoxins in air and water and fecal bacteria in water of water features were measured as markers for exposure to microbial cell debris and enteric pathogens, respectively. Information was collected about wind direction, wind force, distance to the water feature, the height of the water feature and the tangibility of water spray. The mean concentration of endotoxins in air nearby and in water of 31 water features was 10 endotoxin units (EU)/m(3) (Geometric Mean (GM), range 0-85.5 EU/m(3) air) and 773 EU/mL (GM, range 9-18,170 EU/mL water), respectively. Such mean concentrations may be associated with respiratory health effects. The water quality of 26 of 88 water features was poor when compared to requirements for recreational water in the Bathing Water Directive 2006/7/EC. Concentrations greater than 1000 colony forming units (cfu) Escherichia coli per 100 mL and greater than 400 cfu intestinal enterococci per 100 mL increase the probability of acquiring gastrointestinal health complaints. Regression analyses showed that the endotoxin concentration in air was significantly influenced by the concentration of endotoxin in water, the distance to the water feature and the tangibility of water spray. Exposure to air and water near water features was shown to lead to exposure to endotoxins and fecal bacteria. The potential health risks resulting from such exposure to water features may be estimated by a quantitative microbial risk assessment (QMRA), however, such QMRA would require quantitative data on pathogen concentrations, exposure volumes and dose-response relationships. The present study provides estimates for aerosolisation ratios that can be used as input for QMRA to quantify exposure and to determine infection risks from exposure to water features. PMID:24231029

  7. Human exposure to endotoxins and fecal indicators originating from water features.

    PubMed

    de Man, H; Heederik, D D J; Leenen, E J T M; de Roda Husman, A M; Spithoven, J J G; van Knapen, F

    2014-03-15

    Exposure to contaminated aerosols and water originating from water features may pose public health risks. Endotoxins in air and water and fecal bacteria in water of water features were measured as markers for exposure to microbial cell debris and enteric pathogens, respectively. Information was collected about wind direction, wind force, distance to the water feature, the height of the water feature and the tangibility of water spray. The mean concentration of endotoxins in air nearby and in water of 31 water features was 10 endotoxin units (EU)/m(3) (Geometric Mean (GM), range 0-85.5 EU/m(3) air) and 773 EU/mL (GM, range 9-18,170 EU/mL water), respectively. Such mean concentrations may be associated with respiratory health effects. The water quality of 26 of 88 water features was poor when compared to requirements for recreational water in the Bathing Water Directive 2006/7/EC. Concentrations greater than 1000 colony forming units (cfu) Escherichia coli per 100 mL and greater than 400 cfu intestinal enterococci per 100 mL increase the probability of acquiring gastrointestinal health complaints. Regression analyses showed that the endotoxin concentration in air was significantly influenced by the concentration of endotoxin in water, the distance to the water feature and the tangibility of water spray. Exposure to air and water near water features was shown to lead to exposure to endotoxins and fecal bacteria. The potential health risks resulting from such exposure to water features may be estimated by a quantitative microbial risk assessment (QMRA), however, such QMRA would require quantitative data on pathogen concentrations, exposure volumes and dose-response relationships. The present study provides estimates for aerosolisation ratios that can be used as input for QMRA to quantify exposure and to determine infection risks from exposure to water features.

  8. Differences in biofilm formation and virulence factors between clinical and fecal enterococcal isolates of human and animal origin.

    PubMed

    Tsikrikonis, Giorgos; Maniatis, Antonios N; Labrou, Maria; Ntokou, Eleni; Michail, Giorgos; Daponte, Alexandros; Stathopoulos, Constantinos; Tsakris, Athanassios; Pournaras, Spyros

    2012-06-01

    The present study investigated the possible correlation between carriage of the virulence genes esp and fsrb, production of hemolysin and gelatinase and biofilm formation in human vs. animal enterococcal isolates. A collection of 219 enterococcal isolates recovered from clinical and fecal surveillance samples of hospitalized patients and 132 isolates from animal feces were studied. Isolates were tested for hemolysin and gelatinase phenotypically and for quantitative biofilm production by a microtitre method. Genes esp and fsrb were detected by PCR. Human Enterococcus faecium and Enterococcus faecalis isolates from both surveillance and clinical samples produced biofilm significantly more often than animal isolates (P < 0.0001 for both species). The quantity of biofilm did not differ significantly between human and animal isolates, while was significantly higher in esp-positive compared with esp-negative human E. faecium isolates (P < 0.0001). The frequency of esp gene carriage was significantly higher in human compared with animal E. faecium and E. faecalis isolates (P < 0.0001). The gene fsrb was detected significantly more often in animal than human E. faecium isolates (P 0.004). Hemolysin production was significantly more common in human clinical compared with animal E. faecalis isolates (P < 0.0001). Similar proportions of animal and human E. faecalis produced gelatinase, which was significantly correlated with the presence of fsrb gene (P < 0.0001) in both human clinical and animal E. faecalis isolates. The hemolysin trait did not exhibit any correlation with the presence of esp and fsrb genes, but appeared to be linked with enhanced quantity of biofilm production in both human clinical and animal E. faecalis isolates. Production of gelatinase was associated with the proportion and the degree of biofilm production mainly in animal E. faecalis isolates.

  9. Human-associated fecal qPCR measurements and predicted risk of gastrointestinal illness in recreational waters contaminated with raw sewage

    EPA Science Inventory

    We used quantitative microbial risk assessment (QMRA) to estimate the risk of gastrointestinal (GI) illness associated with swimming in recreational waters containing different concentrations of human-associated fecal qPCR markers from raw sewage– HF183 and HumM2. The volume/volu...

  10. Human-Associated Fecal Quantitative Polymerase Chain ReactionMeasurements and Simulated Risk of Gastrointestinal Illness in Recreational Waters Contaminated with Raw Sewage

    EPA Science Inventory

    We used quantitative microbial risk assessment (QMRA) to estimate the risk of gastrointestinal (GI) illness associated with swimming in recreational waters containing different concentrations of human-associated fecal qPCR markers from raw sewage– HF183 and HumM2. The volume/volu...

  11. Identification of Bacterial DNA Markers for the Detection of Human and Cattle Fecal Pollution - SLIDES

    EPA Science Inventory

    Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...

  12. IDENTIFICATION OF BACTERIAL DNA MARKERS FOR THE DETECTION OF HUMAN AND CATTLE FECAL POLLUTION

    EPA Science Inventory

    Technological advances in DNA sequencing and computational biology allow scientists to compare entire microbial genomes. However, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for most laborato...

  13. In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle.

    PubMed

    Sunvold, G D; Hussein, H S; Fahey, G C; Merchen, N R; Reinhart, G A

    1995-12-01

    We evaluated the influence of gastrointestinal tract microflora from several species on fiber fermentation characteristics in vitro. Selected fibrous substrates (cellulose, beet pulp, citrus pulp, and citrus pectin) were incubated for 6, 12, 24, and 48 h with ruminal fluid from cattle or feces from dogs, cats, pigs, horses, or humans. When data were pooled across all substrates and fermentation times, OM disappearance (29.4%) and acetate, propionate, butyrate, and total short-chain fatty acid (SCFA) production (1.09, .41, .12, and 1.61 mmol/g of OM, respectively) were lowest (P < .05), and lactate production (.23 mmol/g of OM) was greatest (P < .05) for horse fecal microflora compared with samples from the other species. The greatest (P < .05) acetate production resulted when substrates were fermented by cat fecal microflora (2.38 mmol/g of OM). The greatest (P < .05) propionate productions resulted from pig fecal and cattle ruminal microflora (.88 and .83 mmol/g of OM, respectively), and the greatest (P < .05) butyrate productions resulted from human and pig fecal microflora (.39 and .40 mmol/g of OM, respectively). Total SCFA production was greatest (P < .05) for cat fecal microflora (3.38 mmol/g of OM). When data were pooled across the species, substrate OM disappearance and SCFA production ranked from least to greatest in the following order: cellulose < beet pulp < citrus pulp < citrus pectin. The fermentability of different fibrous substrates by fecal or ruminal microflora from various species seems to be dependent not only on the fermentative activity of the microbial population but on other factors as well, perhaps lag time and rate of digesta passage.

  14. Conclusions and future use of fecal indicator bacteria for monitoring water quality and protecting human health

    USGS Publications Warehouse

    Sadowsky, Michael J.; Whitman, Richard L.

    2011-01-01

    A summary of the focus and the recurring theme of the book is presented in this chapter. It includes the use of faecal bacteria as an indicator of faecal pollution and water quality, ubiquity of faecal bacteria, and sources and movement of faecal bacteria in the environment.

  15. Detection of human and animal sources of pollution by microbial and chemical methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-indicator approach comprising Enterococcus, bacterial source tracking (BST), and sterol analysis was tested for pollution source identification. Fecal contamination was detected in 100% of surface water sites tested. Enterococcus faecium was the dominant species in aged litter samples from p...

  16. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    USGS Publications Warehouse

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  17. Fecal Microbiomes of Non-Human Primates in Western Uganda Reveal Species-Specific Communities Largely Resistant to Habitat Perturbation

    PubMed Central

    McCORD, ALEIA I.; CHAPMAN, COLIN A.; WENY, GEOFFREY; TUMUKUNDE, ALEX; HYEROBA, DAVID; KLOTZ, KELLY; KOBLINGS, AVERY S.; MBORA, DAVID N.M.; CREGGER, MELISSA; WHITE, BRYAN A.; LEIGH, STEVEN R.; GOLDBERG, TONY L.

    2014-01-01

    Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate “microbiomes” remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this

  18. Fecal microbiomes of non-human primates in Western Uganda reveal species-specific communities largely resistant to habitat perturbation.

    PubMed

    McCord, Aleia I; Chapman, Colin A; Weny, Geoffrey; Tumukunde, Alex; Hyeroba, David; Klotz, Kelly; Koblings, Avery S; Mbora, David N M; Cregger, Melissa; White, Bryan A; Leigh, Steven R; Goldberg, Tony L

    2014-04-01

    Primate gastrointestinal microbial communities are becoming increasingly appreciated for their relevance to comparative medicine and conservation, but the factors that structure primate "microbiomes" remain controversial. This study examined a community of primates in Kibale National Park, Uganda, to assess the relative importance of host species and location in structuring gastrointestinal microbiomes. Fecal samples were collected from primates in intact forest and from primates in highly disturbed forest fragments. People and livestock living nearby were also included, as was a geographically distant population of related red colobus in Kenya. A culture-free microbial community fingerprinting technique was used to analyze fecal microbiomes from 124 individual red colobus (Procolobus rufomitratus), 100 individual black-and-white colobus (Colobus guereza), 111 individual red-tailed guenons (Cercopithecus ascanius), 578 human volunteers, and 364 domestic animals, including cattle (Bos indicus and B. indicus × B. taurus crosses), goats (Caprus hircus), sheep (Ovis aries), and pigs (Sus scrofa). Microbiomes sorted strongly by host species, and forest fragmentation did not alter this pattern. Microbiomes of Kenyan red colobus sorted distinctly from microbiomes of Ugandan red colobus, but microbiomes from these two red colobus populations clustered more closely with each other than with any other species. Microbiomes from red colobus and black-and-white colobus were more differentiated than would be predicted by the phylogenetic relatedness of these two species, perhaps reflecting heretofore underappreciated differences in digestive physiology between the species. Within Kibale, social group membership influenced intra-specific variation among microbiomes. However, intra-specific variation was higher among primates in forest fragments than among primates in intact forest, perhaps reflecting the physical separation of fragments. These results suggest that, in this

  19. Fecal contamination of agricultural soils before and after hurricane-associated flooding in North Carolina.

    PubMed

    Casteel, Michael J; Sobsey, Mark D; Mueller, J Paul

    2006-01-01

    Hurricane Floyd and other storms in 1999 caused widespread and extensive flooding of eastern North Carolina and environmental contamination with fecal wastes from municipal wastewater and livestock operations. Because wastewater contains high levels of pathogenic micro-organisms, principal health risks to humans from flooding are consumption of crops grown in fecally contaminated soil and ingestion of contaminated water. Flood waters polluted with microbial and other contaminants also may be detrimental to the health of livestock and plant crops. In the present study, agricultural soils impacted by flood waters were analyzed for bacterial and viral indicators of fecal contamination. Total coliforms, fecal coliforms, Escherichia coli, spores of Clostridium perfringens, and both male specific (F+) and somatic coliphages were recovered from soil and assayed in liquid culture media. A number of samples were positive for the presence of fecal coliforms, E. coli, and coliphages, indicating the presence of human or animal feces. Most samples were positive for total coliforms, and almost all samples contained high levels of Cl. perfringens spores. The levels of Cl. perfringens spores were significantly (P < 0.001) higher in flooded soil (post-Hurricane Floyd) compared to pre-flood soil. Persistent fecal contamination of soil, as demonstrated by the high levels of Cl. perfringens spores, suggests the need for additional or alternative measures to protect crop-growing areas, including prospective microbiological monitoring and improved protection of watersheds from incidents capable of releasing fecal material. PMID:16423723

  20. Human Activity and Pollution in Antarctica

    NASA Astrophysics Data System (ADS)

    Graf, H.-F.; Shirsat, S. V.; Podzun, R.

    2009-04-01

    A regional climate chemistry model is used to determine the level of pollution of the Antarctic continent due to anthropogenic and natural emission of sulphur species. Based on an emission inventory for the year 2004/2005 including emissions from energy use and ground traffic at and between Antarctic research stations, flight activity, tourist and scientific ship operations, and emissions from the Mt. Erebus volcano, atmospheric concentration and deposition rates of sulphur species and black carbon were simulated at 0.5 degree resolution for the whole Antarctic continent. The biggest anthropogenic source of pollution is ship operations. These concentrate near the Antarctic Peninsula and close to the big scientific stations at Queen Maud Land and in the Ross sea area. The prevailing winds guarantee that most of the anthropogenic emissions from sources near the coast will be blown to lower latitudes and do not affect the continent. While atmospheric concentrations over vast areas remain extremely low, in some places locally concentrations and deposition rates are reached that may be detectable by in-situ measurements and give rise to concern. Especially at the Peninsula atmospheric concentrations and surface deposition of sulphur and soot are dominated by ship emissions. The largest part of shipping activity in this region is from tourist ships, a strongly increasing business. The by far biggest source of sulphur species in Antarctica is the Mt. Erebus volcano. It is also the only source that remains equally strong in polar winter. However, due to its high altitude and the long life time of SO2, especially in winter resulting in long range transport and dilution, Erebus emissions contribute relatively little to deposition of sulphur in the most anthropogenic polluted areas while they dominate the sulphur deposition in central Antarctica.

  1. Monitoring human exposure to urban air pollutants

    PubMed Central

    Barale, R.; Barrai, I.; Sbrana, I.; Migliore, L.; Marrazzini, A.; Scarcelli, V.; Bacci, E.; Di Sibio, A.; Tessa, A.; Cocchi, L.; Lubrano, V.; Vassalle, C.; He, J.

    1993-01-01

    A multidisciplinary study on a general population exposed to vehicle exhaust was undertaken in Pisa in 1991. Environmental factors such as air pollution and those associated with lifestyle were studied. Meanwhile, biological and medical indicators of health condition were investigated. Chromosomal aberrations, sister chromatid exchanges (SCEs), and micronuclei in lymphocytes were included for the assessment of the genotoxic risk. Because of the large number (3800) of subjects being investigated, standardization of protocols was compulsory. The results on data reproducibility are reported. To assess the reliability of the protocol on a large scale, the population of Porto Tolle, a village located in northeast Italy, was studied and compared to a subset of the Pisa population. Preliminary results showed that probable differences between the two populations and invididuals were present in terms of SCE frequencies. The study was potentially able to detect the effects of several factors such as age, smoking, genetics, and environment. The in vitro treatment of lymphocytes with diepoxybutane confirmed the presence of more responsive individuals and permitted us to investigate the genetic predisposition to genetic damage. The possible influence of environmental factors was studied by correlation analyses with external exposure to air pollutants as well as with several lifestyle factors. PMID:8143653

  2. Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination

    USGS Publications Warehouse

    Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D.

    2005-01-01

    The quality of drinking and recreational water is currently (2005) determined using indicator bacteria. However, the culture tests used to analyze for these bacteria require a long time to complete and do not discriminate between human and animal fecal material sources. One complementary approach is to use chemicals found in human wastewater, which would have the advantages of (1) potentially shorter analysis times than the bacterial culture tests and (2) being selected for human-source specificity. At 10 locations, water samples were collected upstream and at two successive points downstream from a wastewaster treatment plant (WWTP); a treated effluent sample was also collected at each WWTP. This sampling plan was used to determine the persistence of a chemically diverse suite of emerging contaminants in streams. Samples were also collected at two reference locations assumed to have minimal human impacts. Of the 110 chemical analytes investigated in this project, 78 were detected at least once. The number of compounds in a given sample ranged from 3 at a reference location to 50 in a WWTP effluent sample. The total analyte load at each location varied from 0.018 μg/L at the reference location to 97.7 μg/L in a separate WWTP effluent sample. Although most of the compound concentrations were in the range of 0.01−1.0 μg/L, in some samples, individual concentrations were in the range of 5−38 μg/L. The concentrations of the majority of the chemicals present in the samples generally followed the expected trend:  they were either nonexistent or at trace levels in the upstream samples, had their maximum concentrations in the WWTP effluent samples, and then declined in the two downstream samples. This research suggests that selected chemicals are useful as tracers of human wastewater discharge.

  3. Indoor climate, air pollution, and human comfort.

    PubMed

    Mølhave, L

    1991-01-01

    The term sick building syndrome (SBS) is frequently used to describe a set of symptoms often reported by occupants of certain buildings. The symptoms are supposed to be direct or indirect consequences of an inadequate indoor climate. Typically, a majority of the occupants in these buildings complain, and the most frequent complaint is irritation of eyes, nose, and throat. Many different factors are known to be potential agents for the symptoms and no definitive causality has been identified yet. In consequence authors of publications on indoor air quality have been using the SBS term in different ways. A review of literature indicates that in supposed "sick buildings" only the prevalence of irritation of mucosal membranes and headaches seems to differ significantly from the prevalence in buildings considered to have a normal indoor climate. Volatile organic compounds (VOC) are known to have a potency to cause symptoms like those included in SBS. A dose-response relation for sensory reactions and mucosal irritation caused by volatile organic air pollutants is discussed, and a tentative guideline at 3 mg/m3 (about 0.9 PPM toluene equivalent) for the total volatile organic compounds (TVOC) is suggested for the nonindustrial indoor climates.

  4. Characterization of Clostridium difficile isolates from human fecal samples and retail meat from Pennsylvania.

    PubMed

    Varshney, Jyotika B; Very, Katherine J; Williams, Jen L; Hegarty, John P; Stewart, David B; Lumadue, Jeanne; Venkitanarayanan, Kumar; Jayarao, Bhushan M

    2014-10-01

    A study was conducted to determine the prevalence of Clostridium difficile and characterize C. difficile isolates from human stool and retail grocery meat samples. Human stool samples (n=317) were obtained from a clinical laboratory and meat samples (n=303) were collected from 8 retail grocery stores from October 2011 through September 2012 from Centre County of Pennsylvania and were examined for C. difficile. C. difficile was isolated from 16.7% of stool samples (n=317) and 6.9%, 11.5%, 14.5%, and 7.8% of beef (n=72), pork (n=78), turkey (n=76), and chicken (n=77) samples, respectively. Six different toxin gene profiles were detected in all human and meat isolates of C. difficile based on the presence or absence of toxin genes tcdA, tcdB, and cdtA and cdtB. Interestingly, 75.6% of the human C. difficile isolates lacked any deletion in the tcdC gene (139-bp), whereas a 39-bp deletion was observed in 61.3% of the C. difficile strains isolated from meat samples. C. difficile from meat samples were more susceptible to clindamycin, moxifloxacin, vancomycin, and metronidazole than C. difficile isolates from human samples. Twenty-five different ribotypes were identified in human and meat C. difficile isolates. In conclusion, significant genotypic and phenotypic differences were observed between human and meat isolates of C. difficile; however, a few C. difficile isolates from meat-in particular ribotypes 078, PA01, PA05, PA16, and PA22 with unique profiles (toxin gene, tcdC gene size and antimicrobial resistance profiles)-were similar to human C. difficile isolates.

  5. Dihydrodaidzein-producing Clostridium-like intestinal bacterium, strain TM-40, affects in vitro metabolism of daidzein by fecal microbiota of human male equol producer and non-producers

    PubMed Central

    TAMURA, Motoi; HORI, Sachiko; NAKAGAWA, Hiroyuki

    2011-01-01

    Much attention has been focused on the biological effects of equol, a metabolite of daidzein produced by intestinal microbiota. However, little is known about the role of isoflavone metabolizing bacteria in the intestinal microbiota. Recently, we isolated a dihydrodaidzein (DHD)-producing Clostridium-like bacterium, strain TM-40, from human feces. We investigated the effects of strain TM-40 on in vitro daidzein metabolism by human fecal microbiota from a male equol producer and two male equol non-producers. In the fecal suspension from the male equol non-producer and DHD producer, DHD was detected in the in vitro fecal incubation of daidzein after addition of TM-40. The DHD concentration increased as the concentration of strain TM-40 increased. In the fecal suspension from the equol producer, the fecal equol production was increased by the addition of strain TM-40. The occupation ratios of Bifidobacterium and Lactobacillales were higher in the equol non-producers than in the equol producer. Adding isoflavone-metabolizing bacteria to the fecal microbiota should facilitate the estimation of the metabolism of isoflavonoids by fecal microbiota. Studies on the interactions among equol-producing microbiota and DHD-producing bacteria might lead to clarification of some of the mechanisms regulating the production of equol by fecal microbiota. PMID:25045313

  6. Protecting drinking water: Rapid detection of human fecal contamination, injured and non-culturable pathogenic microbes in water systems

    SciTech Connect

    White, D.C.; Nivens, D.E.; Arrage, A.A.; Appelgate, B.M.; Reardon, S.R.; Sayler, G.S.

    1996-05-01

    The rapid, potentially-automatable extraction of filter retentates has allowed quantitative detection of the unique biomarker for human fecal contamination, coprostanol, and the signature lipid biomarkers for total cellular biomass, viable cellular biomass, lipopolysaccharide (endotoxin). This method may be integrated with DNA based gene probe analysis for specific strains and enzyme activities. Not only does the analysis provide for detection of injured and non-culturable microbes but it also provides biomarkers characteristic of microbes exposed to biocides and disinfectants that can be utilized to monitor effectiveness of water mitigation/treatment. The analysis schemes involve filtration of the water or direct extraction of biofilms in sidestream chambers, supercritical fluid and/or liquid extraction, derivatization, and analysis of ``signature`` patterns by gas chromatography/mass spectrometry. Signature lipid biomarkers of interest are diglycerides, steroids including coprostanol and its isomers, poly-{beta}- hydroxyalcanoates (PHA), phospholipid ester-linked fatty acids (PLFA), and the lipopolysaccharide lipid A hydroxy fatty acids. PLFA found in polar lipid fractions estimate total viable cellular biomass, whereas the total cellular biomass can be calculated from diglyceride/phospholipid ester-linked fatty acids ratios. Furthermore, direct evidence of mitigation/treatment effectiveness can be ascertained by detection of diglycerides, respiratory quinones, PHA, and PLFA markers indicative of metabolic stress and toxicity such as trans monoenoic PLFA as well as oxirane and dicarboxylic fatty acids derived from the PLFA.

  7. Assessment of human exposure to gaseous pollutants

    SciTech Connect

    Baskin, L.B.; Falco, J.W. )

    1989-09-01

    A mathematical model to aid in assessment of human environmental exposure to volatile organic substances is presented. The model simulates the convective and diffusive transport of gas from the ambient environment into the human body by way of the respiratory and circulatory systems. Data required include easily obtained physical and chemical properties of substances as well as several estimated or measured physiological parameters. Transient and steady-state tissue concentrations resulting from an input atmospheric partial pressure are predicted. From these concentrations, an effective dose may be calculated, allowing for the determination of an exposure-response relationship based upon independently obtained dose-response data. The model's results compare favorably to experimental data on oxygen and halothane. Steady-state conditions are reached very rapidly. These results suggest that uptake of these substances is limited by both ventilation and perfusion. Rates are demonstrated to be essentially linear within the current neighborhoods. Conditions in which the primary processes of ventilation, diffusion, perfusion, and elimination limit uptake of gases are considered. Expressions describing the conditions necessary for a single process to limit gas uptake are derived. Accompanying equations for estimating tissue concentrations under these limiting conditions are presented.

  8. Influence of Seasonal Environmental Variables on the Distribution of Presumptive Fecal Coliforms around an Antarctic Research Station

    PubMed Central

    Hughes, Kevin A.

    2003-01-01

    Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal. PMID:12902283

  9. Influence of seasonal environmental variables on the distribution of presumptive fecal Coliforms around an Antarctic research station.

    PubMed

    Hughes, Kevin A

    2003-08-01

    Factors affecting fecal microorganism survival and distribution in the Antarctic marine environment include solar radiation, water salinity, temperature, sea ice conditions, and fecal input by humans and local wildlife populations. This study assessed the influence of these factors on the distribution of presumptive fecal coliforms around Rothera Point, Adelaide Island, Antarctic Peninsula during the austral summer and winter of February 1999 to September 1999. Each factor had a different degree of influence depending on the time of year. In summer (February), although the station population was high, presumptive fecal coliform concentrations were low, probably due to the biologically damaging effects of solar radiation. However, summer algal blooms reduced penetration of solar radiation into the water column. By early winter (April), fecal coliform concentrations were high, due to increased fecal input by migrant wildlife, while solar radiation doses were low. By late winter (September), fecal coliform concentrations were high near the station sewage outfall, as sea ice formation limited solar radiation penetration into the sea and prevented wind-driven water circulation near the outfall. During this study, environmental factors masked the effect of station population numbers on sewage plume size. If sewage production increases throughout the Antarctic, environmental factors may become less significant and effective sewage waste management will become increasingly important. These findings highlight the need for year-round monitoring of fecal coliform distribution in Antarctic waters near research stations to produce realistic evaluations of sewage pollution persistence and dispersal. PMID:12902283

  10. Patterns of Antimicrobial Resistance Observed in Escherichia coli Isolates Obtained from Domestic- and Wild-Animal Fecal Samples, Human Septage, and Surface Water

    PubMed Central

    Sayah, Raida S.; Kaneene, John B.; Johnson, Yvette; Miller, RoseAnn

    2005-01-01

    A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria. PMID:15746342

  11. Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by real time PCR

    EPA Science Inventory

    Molecular methods for rapidly quantifying defined Bacteroidales species from the human gastrointestinal tract may have important clinical and environmental applications, ranging from diagnosis of infections to fecal source tracking in surface waters. In this study, sequences from...

  12. GUTSS: An Alignment-Free Sequence Comparison Method for Use in Human Intestinal Microbiome and Fecal Microbiota Transplantation Analysis

    PubMed Central

    Heltshe, Sonya L.; Hayden, Hillary S.; Radey, Matthew C.; Weiss, Eli J.; Damman, Christopher J.; Zisman, Timothy L.; Suskind, David L.; Miller, Samuel I.

    2016-01-01

    Background Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS) metagenomic sequence are lacking. Results We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray–Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS) software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT) studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT. Conclusion Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical

  13. Identifying and analyzing bacteriophages in human fecal samples: what could we discover?

    PubMed

    Muniesa, Maite; Jofre, Juan

    2014-01-01

    The human gut is a complex ecosystem, densely populated with microbes including enormous amounts of phages. Metagenomic studies indicate a great diversity of bacteriophages, and because of the variety of gut bacterial species, the human or animal gut is probably a perfect ecological niche for phages that can infect and propagate in their bacterial communities. In addition, some phages have the capacity to mobilize genes, as demonstrated by the enormous fraction of phage particles in feces that contain bacterial DNA. All these facts indicate that, through predation and horizontal gene transfer, bacteriophages play a key role in shaping the size, structure and function of intestinal microbiomes, although our understanding of their effects on gut bacterial populations is only just beginning.

  14. A new protoparvovirus in human fecal samples and cutaneous T cell lymphomas (mycosis fungoides).

    PubMed

    Phan, Tung G; Dreno, Brigitte; da Costa, Antonio Charlys; Li, Linlin; Orlandi, Patricia; Deng, Xutao; Kapusinszky, Beatrix; Siqueira, Juliana; Knol, Anne-Chantal; Halary, Franck; Dantal, Jacques; Alexander, Kathleen A; Pesavento, Patricia A; Delwart, Eric

    2016-09-01

    We genetically characterized seven nearly complete genomes in the protoparvovirus genus from the feces of children with diarrhea. The viruses, provisionally named cutaviruses (CutaV), varied by 1-6% nucleotides and shared ~76% and ~82% amino acid identity with the NS1 and VP1 of human bufaviruses, their closest relatives. Using PCR, cutavirus DNA was found in 1.6% (4/245) and 1% (1/100) of diarrhea samples from Brazil and Botswana respectively. In silico analysis of pre-existing metagenomics datasets then revealed closely related parvovirus genomes in skin biopsies from patients with epidermotropic cutaneous T-cell lymphoma (CTCL or mycosis fungoides). PCR of skin biopsies yielded cutavirus DNA in 4/17 CTCL, 0/10 skin carcinoma, and 0/21 normal or noncancerous skin biopsies. In situ hybridization of CTCL skin biopsies detected viral genome within rare individual cells in regions of neoplastic infiltrations. The influence of cutavirus infection on human enteric functions and possible oncolytic role in CTCL progression remain to be determined. PMID:27393975

  15. The Effects of Organic Pollutants in Soil on Human Health

    NASA Astrophysics Data System (ADS)

    Burgess, Lynn

    2013-04-01

    The soil has always been depository of the organic chemicals produced naturally or anthropogenically. Soil contamination is a serious human and environmental problem. A large body of evidence has shown the risks of adverse health effects with the exposure to contaminated soil due to the large quantities of organic chemicals used in agriculture and urban areas that have a legacy of environmental pollution linked to industrial activities, coal burning, motor vehicle emissions, waste incineration and waste dumping. In agricultural areas, because of the effort to provide adequate quantities of agricultural products, farmers have been using an increasing amount of organic chemicals, but the resulting pollution has enormous potential for environmental damage. The types of organic pollutants commonly found in soils are polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzofurans, polycyclic aromatic hydrocarbons, organophosphorus and carbamate insecticides, herbicides and organic fuels, especially gasoline and diesel. Another source of soil pollution is the complex mixture of organic chemicals, metals and microorganisms in the effluent from septic systems, animal wastes and other sources of biowaste. The soils of the world are a vast mixture of chemicals and although conditions are such that an individual is rarely exposed to a single compound, the great majority of people are exposed to a vast chemical mixture of organics, their metabolites, and other compounds at low concentrations Human exposure to organic pollutants in the soil is an area of toxicology that is very difficult to study due to the low concentration of the pollutants. The toxicological studies of single organic pollutants found in soils are limited and research on the metabolites and of chemical mixtures is very limited. The majority of toxicological studies are conducted at relatively high doses and for short periods of exposure. This makes the application of this data to exposure

  16. Interaction of fecal coliforms with soil aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land-applied manures may contain various contaminants that cause water pollution and concomitant health problems. Some of these pollutants are bacteria, and fecal coliforms (FC) have been widely used as an indicator of bacterial contamination. Experiments on bacteria attachment to soil are tradition...

  17. Performance Assessment of Human-Specific Microbial Source Tracking Assays End-Point PCR Assays

    EPA Science Inventory

    Waterborne diseases are a significant public health issue, and many originate from contact with water contaminated with human fecal material. Ensuring public water quality requires the use of methods that can rapidly and accurately identify human fecal pollution. We report the ...

  18. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers - is it feasible?

    EPA Science Inventory

    Fecal pollution is measured in surface waters using culture-based measurements of enterococci and Escherichia coli bacteria. Source apportionment of these two fecal indicator bacteria is an urgent need for prioritizing remediation efforts and quantifying health risks associated...

  19. Evaluation of Two PCR-Based Swine-Specific Fecal Source Tracking Assays (Poster)

    EPA Science Inventory

    Several PCR-based methods have been proposed to identify swine fecal pollution in environmental waters. However, the specificity and distribution of these targets have not been adequately assessed. Consequently, the utility of these assays in identifying swine fecal contamination...

  20. Diversity and Population Structure of Bovine Fecal-Derived Microorganisms from Different Animal Feeding Operations

    EPA Science Inventory

    The fecal microbiome of cattle plays a critical role not only in animal health and productivity, but in odor emissions, agricultural land nutrient loading, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, our understanding of the specif...

  1. Viral Multiplex Quantitative PCR Assays for Tracking Sources of Fecal Contamination▿

    PubMed Central

    Wolf, Sandro; Hewitt, Joanne; Greening, Gail E.

    2010-01-01

    Human and animal fecal pollution of the environment presents a risk to human health because of the presence of pathogenic viruses and bacteria. To distinguish between human and animal sources of pollution, we designed specific real-time reverse transcription (RT)-PCR assays for human and animal enteric viruses, including norovirus genogroups I, II, and III; porcine adenovirus types 3 and 5; ovine adenovirus; atadenovirus; and human adenovirus species C and F, which are excreted by infected humans, pigs, cattle, sheep, deer, and goats, and for the detection of F+ RNA bacteriophage genogroups I to IV, which are associated with human and animal wastes. The sensitivity of this viral toolbox (VTB) was tested against 10-fold dilution series of DNA plasmids that carry the target sequences of the respective viruses and was shown to detect at least 10 plasmid copies for each assay. A panel of human and animal enteric and respiratory viruses showed these assays to be highly sensitive and specific to their respective targets. The VTB was used to detect viruses in fecal and environmental samples, including raw sewage and biosolids from municipal sewage treatment plants, abattoir sewage, and fecally contaminated shellfish and river water, which were likely to contain animal or human viruses. PMID:20061455

  2. Assessing human exposure to airborne pollutants: Advances and opportunities

    SciTech Connect

    Lioy, P.J. )

    1991-08-01

    A committee which was convened by the National Research Council, recently completed an analysis of new methods and technologies for assessing exposure to air pollutants. The committee identified three major ways of determining human exposure to airborne pollutants. Monitoring the air around an individual with a portable personal air sampler is, of course, the most comprehensive and most accurate. It is also the costliest and most time consuming. The second method is more indirect and involves techniques such as measuring the amount of a contaminant with a stationary monitor and extrapolating exposure by means of personal activity records or mathematical models. Exposure to carbon monoxide inside a car, for example, might be roughly calculated from the amount of time spent in the car and the quantity of carbon monoxide in the car under typical operating conditions. The third method involves biological markers as a measure of the integrated dose within the body and of past contact with pollutants. For example, a marker for airborne lead exposure can be elevated lead levels in the blood. However, this must be weighed against contributions from other media. A final and major point made in the report is the need to have accurate and realistic assessments to ensure optimal reduction of human exposure. To accomplish this, exposure assessment research should be supported by government programs. Although not stated, such research should also be supported by other sectors, including the regulated community.

  3. Transport of persistent organic pollutants across the human placenta.

    PubMed

    Vizcaino, Esther; Grimalt, Joan O; Fernández-Somoano, Ana; Tardon, Adonina

    2014-04-01

    Prenatal life is the most sensitive stage of human development to environmental pollutants. Early exposure to persistent organic pollutants (POPs) may increase the risk of adverse health effects during childhood. The mechanisms of transference of POPs during pregnancy are still not well understood. The present study is aimed to investigate the transfer of POPs between mother and fetus. The concentrations of 14 organochlorine pesticides, 7 polychlorinated biphenyls (PCBs) and 14 polybromodiphenyl ether (PBDEs) congeners have been measured in 308 maternal serum samples, their respective umbilical cords and 50 placental tissues from a mother-infant cohort representative of Spanish general population. In general, the adjusted lipid-basis concentrations were higher in maternal serum than in cord serum and placenta. The concentrations of most pollutants between maternal serum and cord serum and between maternal serum and placenta were significantly correlated. These distributions were consistent with a predominant maternal source that transfers the pollutants into the placenta and the fetus. However, this distribution did not correspond to passive diffusion of these compounds between these tissues according to lipid content. The compounds more readily metabolized were higher in newborns, which suggest that differences in metabolic capabilities may be responsible of the observed variations in POP distributions between mother and newborns. Prenatal exposure to 4,4'-DDT and some PBDEs such as BDE 99 and BDE 209 is much higher than it could be anticipated from the composition of maternal serum. POP exposure assessment studies of newborns may overlook the effects of some of these pollutants if they only consider maternal determinations.

  4. Persistent organic pollutants in human breast milk from Asian countries.

    PubMed

    Tanabe, Shinsuke; Kunisue, Tatsuya

    2007-03-01

    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk. PMID:16949712

  5. How Does Air Pollution Threaten Basic Human Rights? The Case Study of Bulgaria

    ERIC Educational Resources Information Center

    Ahmedova, Aylin Hasanova

    2016-01-01

    The main purpose of this article is to analyze the relationship between air pollution and human rights. It investigates whether air pollution threatens basic human rights such as the right to health, life, and the environment. Air pollution represents a major threat both to health and to the environment. Despite the adoption of numerous…

  6. 78 FR 12763 - Fecal Microbiota for Transplantation; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... HUMAN SERVICES Food and Drug Administration Fecal Microbiota for Transplantation; Public Workshop AGENCY... ``Fecal Microbiota for Transplantation.'' The purpose of the public workshop is to exchange information... fecal microbiota for transplantation (FMT). ] Date and Time: The public workshop will be held on May...

  7. Fecal Fat: The Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Fecal Fat Share this page: Was this page helpful? Also known as: Qualitative or Quantitative Stool Fat; Stool Lipids; 72 Hour Fecal Fat; Fat Stain ...

  8. Fecal microbiota transplantation: in perspective

    PubMed Central

    Gupta, Shaan; Allen-Vercoe, Emma; Petrof, Elaine O.

    2016-01-01

    There has been increasing interest in understanding the role of the human gut microbiome to elucidate the therapeutic potential of its manipulation. Fecal microbiota transplantation (FMT) is the administration of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient’s gut microbial composition and confer a health benefit. FMT has been used to successfully treat recurrent Clostridium difficile infection. There are preliminary indications to suggest that it may also carry therapeutic potential for other conditions such as inflammatory bowel disease, obesity, metabolic syndrome, and functional gastrointestinal disorders. PMID:26929784

  9. Changes in the composition of the human fecal microbiome following bacteriotherapy for recurrent Clostridium difficile-associated diarrhea

    SciTech Connect

    Khoruts, A.; Dicksved, J.; Jansson, J.K.; Sadowsky, M.J.

    2009-08-15

    CDAD is the major known cause of antibiotic-induced diarrhea and colitis, and the disease is thought to result from persistent disruption of commensal gut microbiota. Bacteriotherapy by way of fecal transplantation can be used to treat recurrent CDAD and is thought to re-establish the normal colonic microflora. However, limitations of conventional microbiologic techniques have until recently precluded testing of this idea. In this study we used T-RFLP and 16S rRNA gene sequencing approaches to characterize the bacterial composition of the colonic microflora in a patient suffering from recurrent CDAD, before and after treatment by fecal transplantation from a healthy donor. While the patient's residual colonic microbiota, prior to therapy, was deficient in members of the bacterial divisions-Firmicutes and Bacteriodetes, transplantation had a dramatic impact on the composition of the patient's gut microbiota. By 14 days post transplantation, the fecal bacterial composition of the recipient was highly similar to the donor and was dominated by Bacteroides spp. strains and an uncharacterized butyrate producing bacterium. The change in bacterial composition was accompanied by resolution of the patient's symptoms. The striking similarity of the recipient's and donor's intestinal microbiota following bacteriotherapy suggests that the donor's bacteria quickly occupied their requisite niches, resulting in restoration of both the structure and function of the microbial communities present.

  10. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea.

    PubMed

    Khoruts, Alexander; Dicksved, Johan; Jansson, Janet K; Sadowsky, Michael J

    2010-01-01

    Clostridium difficile-associated disease (CDAD) is the major known cause of antibiotic-induced diarrhea and colitis, and the disease is thought to result from persistent disruption of commensal gut microbiota. Bacteriotherapy by way of fecal transplantation can be used to treat recurrent CDAD, which is thought to reestablish the normal colonic microflora. However, limitations of conventional microbiologic techniques have, until recently, precluded testing of this idea. In this study, we used terminal-restriction fragment length polymorphism and 16S rRNA gene sequencing approaches to characterize the bacterial composition of the colonic microflora in a patient suffering from recurrent CDAD before and after treatment by fecal transplantation from a healthy donor. Although the patient's residual colonic microbiota, prior to therapy was deficient in members of the bacterial divisions-Firmicutes and Bacteriodetes, transplantation had a dramatic impact on the composition of the patient's gut microbiota. By 14 days posttransplantation, the fecal bacterial composition of the recipient was highly similar to that of the donor and was dominated by Bacteroides spp. strains and an uncharacterized butyrate producing bacterium. The change in bacterial composition was accompanied by resolution of the patient's symptoms. The striking similarity of the recipient's and donor's intestinal microbiota following after bacteriotherapy suggests that the donor's bacteria quickly occupied their requisite niches resulting in restoration of both the structure and function of the microbial communities present. PMID:20048681

  11. ADDRESSING HUMAN EXPOSURES TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS MODELS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...

  12. Effects of environmental pollutants on cellular iron homeostasis and ultimate links to human disease

    EPA Science Inventory

    Chronic disease has increased in the last several decades, and environmental pollutants have been implicated. The magnitude and variety of diseases indicate the malfunctioning of some basic mechanism underlying human health. Environmental pollutants demonstrate a capability to co...

  13. Molecular Epidemiological Analysis of Cryptosporidium spp. in the United Kingdom: Results of Genotyping Cryptosporidium spp. in 1,705 Fecal Samples from Humans and 105 Fecal Samples from Livestock Animals

    PubMed Central

    McLauchlin, J.; Amar, C.; Pedraza-Díaz, S.; Nichols, G. L.

    2000-01-01

    Cryptosporidium present in 1,705 fecal samples from humans and 105 from livestock animals were analyzed by PCR-restriction fragment length polymorphism of the Cryptosporidium oocyst wall protein. Overall, genotype 1 (human exclusive type) was detected in 37.8% of the samples from humans, genotype 2 (broad host range) was detected in 61.5%, a third genotype designated genotype 3 (Cryptosporidium meleagridis) was detected in 0.3%, and both genotypes 1 and 2 were recovered from 0.4%. All samples from livestock yielded genotype 2. Among 469 patients infected during eight drinking water-related outbreaks, five outbreaks were predominantly due to genotype 1, and three were due to genotype 2. Fifty-four samples were collected from patients involved with five swimming pool-associated outbreaks: two outbreaks were due to genotype 1, one was due to genotype 2, and the remaining two involved both genotypes 1 and 2. Among 26 family outbreaks and 1 children's nursery outbreak (2 to 3 members per group), the same genotype was recovered from the different members of each outbreak: 13 were due to genotype 1, and 14 were due to genotype 2. In eighteen patients reporting contact with animals and/or farms, genotype 1 was recovered from one patient and genotype 2 was recovered from the remaining 17. Among the sporadic cases, there were distinct geographical and temporal variations in the distribution of the genotypes. The spring peak in cases was due to genotype 2. Genotype 1 was significantly more common in patients infected during the late-summer–autumn peak and in those with a history of foreign travel. PMID:11060056

  14. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  15. Pollution

    ERIC Educational Resources Information Center

    Terry, Luther L.

    1970-01-01

    Our mechanized environment has produced a variety of man-made pollutants. Prevention of pollution and resulting health hazards is a primary challenge. The Federal Government undertakes a large responsibility in the field of environmental control. (CK)

  16. Identification and determination of the viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in human fecal and water supply samples by fluorescent in situ hybridization (FISH) and monoclonal antibodies.

    PubMed

    Lemos, Vanessa; Graczyk, Thaddeus K; Alves, Margarida; Lobo, Maria Luísa; Sousa, Maria C; Antunes, Francisco; Matos, Olga

    2005-12-01

    In the present study, fluorescent in situ hybridization (FISH) and monoclonal antibodies (MAbs) were evaluated for species-specific detection and viability determination of Giardia lamblia, Cryptosporidium parvum, and Cryptosporidium hominis in human fecal and water supply samples. A total of 50 fecal human samples positive for G. lamblia cysts, 38 positive for C. parvum, and 23 positive for C. hominis were studied. Also, 18 water supply samples positive for Giardia spp. and Cryptosporidium spp. by the United States Environmental Protection Agency (USEPA) Method 1623 were studied by FISH and fluorescein isothiocyanate (FITC)-conjugated MAbs. Eighteen percent of the fecal samples parasitologically positive for G. lamblia presented viable and nonviable cysts, and 5% of those positive for Cryptosporidium spp. presented viable and nonviable oocysts. Of the 18 water supply samples analyzed, 6 (33%) presented Giardia spp. viable and nonviable cysts and 2 (11%) presented viable and nonviable Cryptosporidium spp. oocysts. G. lamblia identification was confirmed by polymerase chain reaction (PCR) and sequencing of the beta-giardin gene in the fecal and water samples found positive by FISH and FITC-conjugated MAbs. C. parvum and Cryptosporidium muris were identified, by PCR and sequencing of the small subunit of ribosomal RNA gene, in seven and one water samples, respectively. Our results confirm that this technique enables simultaneous visualization, species-specific identification, and viability determination of the organisms present in human fecal and water supply samples.

  17. Evaluation of intestinal protozoan morphology in human fecal specimens preserved in EcoFix: comparison of Wheatley's trichrome stain and EcoStain.

    PubMed

    Garcia, L S; Shimizu, R Y

    1998-07-01

    As a result of disposal problems related to the use of mercury compounds, many laboratories have switched from mercuric chloride-based Schaudinn's and polyvinyl alcohol (PVA) stool preservatives to other, non-mercury-based preservatives. A comparison of organism recoveries and morphologies of the intestinal protozoa was undertaken with PVA containing the EcoFix zinc-based Schaudinn's preservative (Meridian Diagnostics, Inc.); both Wheatley's modification of Gomori's trichrome stain (WT) and EcoStain (ES) were used to stain 51 human fecal specimens. Morphology, clarity of nuclear and cytoplasmic detail, overall color differences, and the ease or difficulty in detecting intestinal protozoa in fecal debris were assessed for the two permanent stained smears. Overall, organism morphology of the intestinal protozoa stained with WT and that of protozoa stained with ES were not equal in nuclear and cytoplasmic detail or range of color. However, the same organisms were identified in stained fecal smears with either WT or ES, with the exception of situations in which organism numbers were characterized as rare. Included were 67 protozoan challenges (number of organisms): Entamoeba histolytica-Entamoeba dispar (5), Entamoeba coli (9), Entamoeba hartmanni (6), Endolimax nana (12), Iodamoeba bütschlii (8), Blastocystis hominis (19), Giardia lamblia (6), Dientamoeba fragilis (2), yeast (2), and leukocytes (2). Five specimens were negative for parasites but contained fecal debris that was compared for morphologic detail and color range. The ES produces a more gray-green monotone with very little pink or red tone; contrast among the various colors is less than that seen with WT. Stain intensity for all organisms was acceptable, and there were no problems with stain deposition. The quality of the protozoan morphology with ES was often comparable to that with WT (36 of 67 [53.7%]) and, in some cases, better (24 of 67 [35.8%]). Organisms on the WT-stained smear exhibited better

  18. Evaluation of Intestinal Protozoan Morphology in Human Fecal Specimens Preserved in EcoFix: Comparison of Wheatley’s Trichrome Stain and EcoStain

    PubMed Central

    Garcia, Lynne S.; Shimizu, Robyn Y.

    1998-01-01

    As a result of disposal problems related to the use of mercury compounds, many laboratories have switched from mercuric chloride-based Schaudinn’s and polyvinyl alcohol (PVA) stool preservatives to other, non-mercury-based preservatives. A comparison of organism recoveries and morphologies of the intestinal protozoa was undertaken with PVA containing the EcoFix zinc-based Schaudinn’s preservative (Meridian Diagnostics, Inc.); both Wheatley’s modification of Gomori’s trichrome stain (WT) and EcoStain (ES) were used to stain 51 human fecal specimens. Morphology, clarity of nuclear and cytoplasmic detail, overall color differences, and the ease or difficulty in detecting intestinal protozoa in fecal debris were assessed for the two permanent stained smears. Overall, organism morphology of the intestinal protozoa stained with WT and that of protozoa stained with ES were not equal in nuclear and cytoplasmic detail or range of color. However, the same organisms were identified in stained fecal smears with either WT or ES, with the exception of situations in which organism numbers were characterized as rare. Included were 67 protozoan challenges (number of organisms): Entamoeba histolytica-Entamoeba dispar (5), Entamoeba coli (9), Entamoeba hartmanni (6), Endolimax nana (12), Iodamoeba bütschlii (8), Blastocystis hominis (19), Giardia lamblia (6), Dientamoeba fragilis (2), yeast (2), and leukocytes (2). Five specimens were negative for parasites but contained fecal debris that was compared for morphologic detail and color range. The ES produces a more gray-green monotone with very little pink or red tone; contrast among the various colors is less than that seen with WT. Stain intensity for all organisms was acceptable, and there were no problems with stain deposition. The quality of the protozoan morphology with ES was often comparable to that with WT (36 of 67 [53.7%]) and, in some cases, better (24 of 67 [35.8%]). Organisms on the WT-stained smear exhibited

  19. Evaluation of intestinal protozoan morphology in human fecal specimens preserved in EcoFix: comparison of Wheatley's trichrome stain and EcoStain.

    PubMed

    Garcia, L S; Shimizu, R Y

    1998-07-01

    As a result of disposal problems related to the use of mercury compounds, many laboratories have switched from mercuric chloride-based Schaudinn's and polyvinyl alcohol (PVA) stool preservatives to other, non-mercury-based preservatives. A comparison of organism recoveries and morphologies of the intestinal protozoa was undertaken with PVA containing the EcoFix zinc-based Schaudinn's preservative (Meridian Diagnostics, Inc.); both Wheatley's modification of Gomori's trichrome stain (WT) and EcoStain (ES) were used to stain 51 human fecal specimens. Morphology, clarity of nuclear and cytoplasmic detail, overall color differences, and the ease or difficulty in detecting intestinal protozoa in fecal debris were assessed for the two permanent stained smears. Overall, organism morphology of the intestinal protozoa stained with WT and that of protozoa stained with ES were not equal in nuclear and cytoplasmic detail or range of color. However, the same organisms were identified in stained fecal smears with either WT or ES, with the exception of situations in which organism numbers were characterized as rare. Included were 67 protozoan challenges (number of organisms): Entamoeba histolytica-Entamoeba dispar (5), Entamoeba coli (9), Entamoeba hartmanni (6), Endolimax nana (12), Iodamoeba bütschlii (8), Blastocystis hominis (19), Giardia lamblia (6), Dientamoeba fragilis (2), yeast (2), and leukocytes (2). Five specimens were negative for parasites but contained fecal debris that was compared for morphologic detail and color range. The ES produces a more gray-green monotone with very little pink or red tone; contrast among the various colors is less than that seen with WT. Stain intensity for all organisms was acceptable, and there were no problems with stain deposition. The quality of the protozoan morphology with ES was often comparable to that with WT (36 of 67 [53.7%]) and, in some cases, better (24 of 67 [35.8%]). Organisms on the WT-stained smear exhibited better

  20. Cigarette pollution effects on humans. November 1986-October 1988 (Citations from Pollution abstracts). Report for November 1986-October 1988

    SciTech Connect

    Not Available

    1988-11-01

    This bibliography contains citations concerning health consequences to human beings of primary and secondary exposure to cigarette smoke and its various gaseous and particulate components by themselves, and in conjunction with other pollutants encountered in the natural environment and in special types of environments. Technical and economic aspects of cigarette pollution are considered. (This updated bibliography contains 127 citations, 39 of which are new entries to the previous edition.)

  1. FINGERPRINTING OF FECAL ENTEROCOCCI BY MATRIX ASSISTED LASER DESORPTION IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    The fecal enterococci group has been suggested as an indicator of fecal contamination in freshwater and marine water systems and as a potential target for bacterial source tracking of fecal pollution. While many studies have described the diversity of enterococci in environmenta...

  2. COMPARATIVE DIVERSITY OF FECAL BACTERIA IN AGRICULTURALLY SIGNIFICANT ANIMALS TO IDENTIFY ALTERNATIVE TARGETS FOR MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Animals of agricultural significance contribute a large percentage of fecal pollution to waterways via runoff contamination. The premise of microbial source tracking is to utilize fecal bacteria to identify target populations which are directly correlated to specific animal feces...

  3. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed.

    PubMed

    Stea, Emma C; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Yost, Christopher K

    2015-09-01

    Surface waters are commonly used as source water for drinking water and irrigation. Knowledge of sources of fecal pollution in source watersheds benefits the design of effective source water protection plans. This study analyzed the relationships between enteric pathogens ( O157:H7, spp., and spp. [, and ]), water quality (turbidity, temperature, and ), and human and ruminant-cow and mitochondrial DNA (mtDNA)-based fecal source tracking (FST) markers in two source watersheds. Water samples ( = 329) were collected at 10 sites (five in each watershed) over 18 mo. The human marker (HF183) occurred in 9 to 10% of the water samples at nine sampling sites; while a forested site in the urban watershed tested negative. Ruminant-cow markers (BacR and CowM2) only appeared in the rural watershed (6%). The mtDNA markers (HcytB and AcytB) showed the same pattern but were less sensitive due to lower fecal concentrations. Higher prevalences ( < 0.05) of spp. (41 vs. 16% for the rural and urban watershed, respectively) and O157:H7 (12 vs. 3%) were observed in the rural watershed, while spp. levels were comparable (23-28%). Densities of ≥100 colony-forming units (CFU) 100 mL increased the odds ( < 0.05) of detecting the enteric bacterial pathogens. The water turbidity levels (nephelometric turbidity units [NTU] ≥ 1.0) similarly predicted ( < 0.05) pathogen presence. Storm events increased ( < 0.01) pathogen and fecal marker concentrations in the waterways. The employment of multiple FST methods suggested failing onsite wastewater systems contribute to human fecal pollution in both watersheds.

  4. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed.

    PubMed

    Stea, Emma C; Truelstrup Hansen, Lisbeth; Jamieson, Rob C; Yost, Christopher K

    2015-09-01

    Surface waters are commonly used as source water for drinking water and irrigation. Knowledge of sources of fecal pollution in source watersheds benefits the design of effective source water protection plans. This study analyzed the relationships between enteric pathogens ( O157:H7, spp., and spp. [, and ]), water quality (turbidity, temperature, and ), and human and ruminant-cow and mitochondrial DNA (mtDNA)-based fecal source tracking (FST) markers in two source watersheds. Water samples ( = 329) were collected at 10 sites (five in each watershed) over 18 mo. The human marker (HF183) occurred in 9 to 10% of the water samples at nine sampling sites; while a forested site in the urban watershed tested negative. Ruminant-cow markers (BacR and CowM2) only appeared in the rural watershed (6%). The mtDNA markers (HcytB and AcytB) showed the same pattern but were less sensitive due to lower fecal concentrations. Higher prevalences ( < 0.05) of spp. (41 vs. 16% for the rural and urban watershed, respectively) and O157:H7 (12 vs. 3%) were observed in the rural watershed, while spp. levels were comparable (23-28%). Densities of ≥100 colony-forming units (CFU) 100 mL increased the odds ( < 0.05) of detecting the enteric bacterial pathogens. The water turbidity levels (nephelometric turbidity units [NTU] ≥ 1.0) similarly predicted ( < 0.05) pathogen presence. Storm events increased ( < 0.01) pathogen and fecal marker concentrations in the waterways. The employment of multiple FST methods suggested failing onsite wastewater systems contribute to human fecal pollution in both watersheds. PMID:26436273

  5. In Vitro Fermentation of Linear and α-1,2-Branched Dextrans by the Human Fecal Microbiota▿

    PubMed Central

    Sarbini, Shahrul R.; Kolida, Sofia; Naeye, Thierry; Einerhand, Alexandra; Brison, Yoann; Remaud-Simeon, Magali; Monsan, Pierre; Gibson, Glenn R.; Rastall, Robert A.

    2011-01-01

    The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length. PMID:21666027

  6. Human nasal mucosal changes after exposure to urban pollution.

    PubMed Central

    Calderon-Garcidueñas, L; Rodriguez-Alcaraz, A; Garcia, R; Sanchez, G; Barragan, G; Camacho, R; Ramirez, L

    1994-01-01

    Millions of people worldwide are living in areas where ozone (O3) concentrations exceed health standards (an hourly average of 235 micrograms/m3/0.12 ppm, not to be exceeded more than once per year). Ozone induces acute nasal inflammatory responses and significant epithelial lesions in experimental animals and humans. To determine the nasal effects of a 15-day exposure to an urban polluted atmosphere with O3 as the main pollutant, we studied a population of healthy, young males newly arrived to southwest metropolitan Mexico City (SWMMC). The study included 49 non-smoking residents in an unpolluted port, Veracruz City; 14 subjects stayed in the port and served as controls, while 35 subjects traveled to SWMMC and had serial nasal lavages at different times after arriving in SWMMC. Subjects had exposures to ambient O3 an average of 10.2 hr/day, with a total cumulative O3 exposure of 10.644 ppm.hr. Nasal inflammatory responses, polymorphonuclear leukocyte PMN-CD11b surface expression, rhinoscopic changes, and respiratory symptoms were evaluated. Exposed subjects had massive nasal epithelial shedding and significant responses in PMN nasal influx (p < 0.00001) and in PMN-CD11b expression (p < 0.05). Cumulative O3 exposure correlated with respiratory symptoms, PMNs (rs = 0.2374, p < 0.01), and CD11b (rs = 0.3094, p < 0.01); 94% of exposed subjects experienced respiratory symptoms, and 97% left the city with an abnormal nasal mucosa by rhinoscopy. Nasal epithelial changes persisted 2 weeks after the exposed subjects returned to their nonpolluted environment. Exposure to an urban polluted atmosphere induces significant and persistent nasal epithelial alterations in healthy subjects.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 2. E Figure 2. F Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 5. A Figure 5. B PMID:7713020

  7. Biological Monitoring of Air Pollutants and Its Influence on Human Beings.

    PubMed

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases.

  8. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  9. [Update on fecal incontinence].

    PubMed

    Buhmann, Helena; Nocito, Antonio

    2014-10-29

    Fecal incontinence is defined as an accidental loss of stool or the inability to control defecation. There are three subtypes of fecal incontinence: passive incontinence, urge incontinence and soiling. About 8% of the adult population suffer from fecal incontinence, but only 1/3 consults a doctor. Beside the individual handicap, fecal incontinence has a huge socio-economic impact. Causes of fecal incontinence are changes in the quantity or quality of the stool and structural or functional disorders. Diagnostics encompass the medical history, clinical examination including the digital rectal examination, imaging (particularly endoanal ultrasound) as well as functional diagnostics (anal manometry and defecography). Nowadays, the most promising conservative treatment option consists of loperamide and biofeedback therapy. The most successful invasive method is the sacral neuromodulation.

  10. Ezakiella peruensis gen. nov., sp. nov. isolated from human fecal sample from a coastal traditional community in Peru.

    PubMed

    Patel, Nisha B; Tito, Raul Y; Obregón-Tito, Alexandra J; O'Neal, Lindsey; Trujillo-Villaroel, Omar; Marin-Reyes, Luis; Troncoso-Corzo, Luzmila; Guija-Poma, Emilio; Hamada, Moriyuki; Uchino, Yoshihito; Lewis, Cecil M; Lawson, Paul A

    2015-04-01

    A novel Gram-stain positive, non-motile, non-sporeforming coccus-shaped, obligately anaerobic bacterium was isolated from a fecal sample of an individual residing in a traditional Peruvian community. The organism was characterized using biochemical, chemotaxonomic and phylogenetic methods. Comparative 16S rRNA gene sequence analyses and phenotypic characteristics demonstrated that the organism was biochemically and phenotypically related, but distinct, from a group of organisms referred to as the Gram-stain positive anaerobic cocci (GPAC). The major cellular fatty acids of the novel isolate were determined to be C16:0 (18.3%), C18:1ω9c (39.8%), C18:2ω6,9c/C18:0 ANTE (13.2%). Fermentation end products from PYG are acetate and formate. Cell-wall peptidoglycan was found to be A4α (L-Lys-L-Ala-L-Glu) and the G + C content was determined to be 38.4 mol%. Based on the phenotypic, chemotaxonomic, and phylogenetic results, Ezakiella peruensis gen. nov., sp. nov., is now proposed. The type strain is M6.X2(T) (DSM 27367(T) = NBRC 109957 (T) = CCUG 64571(T)). PMID:25481562

  11. Retrospective Species Identification of Microsporidian Spores in Diarrheic Fecal Samples from Human Immunodeficiency Virus/AIDS Patients by Multiplexed Fluorescence In Situ Hybridization▿

    PubMed Central

    Graczyk, Thaddeus K.; Johansson, Michael A.; Tamang, Leena; Visvesvara, Govinda S.; Moura, Laci S.; DaSilva, Alexandre J.; Girouard, Autumn S.; Matos, Olga

    2007-01-01

    In order to assess the applicability of multiplexed fluorescence in situ hybridization (FISH) assay for the clinical setting, we conducted retrospective analysis of 110 formalin-stored diarrheic stool samples from human immunodeficiency virus (HIV)/AIDS patients with intestinal microsporidiosis collected between 1992 and 2003. The multiplexed FISH assay identified microsporidian spores in 94 of 110 (85.5%) samples: 49 (52.1%) were positive for Enterocytozoon bieneusi, 43 (45.8%) were positive for Encephalitozoon intestinalis, 2 (2.1%) were positive for Encephalitozoon hellem, and 9 samples (9.6%) contained both E. bieneusi and E. intestinalis spores. Quantitative spore counts per ml of stool yielded concentration values from 3.5 × 103 to 4.4 × 105 for E. bieneusi (mean, 8.8 × 104/ml), 2.3 × 102 to 7.8 × 104 (mean, 1.5 × 104/ml) for E. intestinalis, and 1.8 × 102 to 3.6 × 102 for E. hellem (mean, 2.7 × 102/ml). Identification of microsporidian spores by multiplex FISH assay was more sensitive than both Chromotrope-2R and CalcoFluor White M2R stains; 85.5% versus 72.7 and 70.9%, respectively. The study demonstrated that microsporidian coinfection in HIV/AIDS patients with intestinal microsporidiosis is not uncommon and that formalin-stored fecal samples older than 10 years may not be suitable for retrospective analysis by techniques targeting rRNA. Multiplexed FISH assay is a reliable, quantitative fluorescence microscopy method for the simultaneous identification of E. bieneusi, E. intestinalis, and E. hellem, as well as Encephalitozoon cuniculi, spores in fecal samples and is a useful tool for assessing spore shedding intensity in intestinal microsporidiosis. The method can be used for epidemiological investigations and applied in clinical settings. PMID:17287331

  12. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function

    PubMed Central

    Linhares, Diana; Garcia, Patrícia Ventura; Viveiros, Fátima; Ferreira, Teresa; Rodrigues, Armindo dos Santos

    2015-01-01

    The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area) and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area). Odds ratio (OR) and 95% confidence intervals (CIs) were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD) in the hydrothermal area was 4.4 (95% CI 1.78–10.69) and 3.2 (95% CI 1.82–5.58), respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe) was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases. PMID:26301247

  13. Air Pollution by Hydrothermal Volcanism and Human Pulmonary Function.

    PubMed

    Linhares, Diana; Ventura Garcia, Patrícia; Viveiros, Fátima; Ferreira, Teresa; dos Santos Rodrigues, Armindo

    2015-01-01

    The aim of this study was to assess whether chronic exposure to volcanogenic air pollution by hydrothermal soil diffuse degassing is associated with respiratory defects in humans. This study was carried in the archipelago of the Azores, an area with active volcanism located in the Atlantic Ocean where Eurasian, African, and American lithospheric plates meet. A cross-sectional study was performed on a study group of 146 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area) and a reference group of 359 individuals inhabiting an area without these secondary manifestations of volcanism (nonhydrothermal area). Odds ratio (OR) and 95% confidence intervals (CIs) were adjusted for age, gender, fatigue, asthma, and smoking. The OR for restrictive defects and for exacerbation of obstructive defects (COPD) in the hydrothermal area was 4.4 (95% CI 1.78-10.69) and 3.2 (95% CI 1.82-5.58), respectively. Increased prevalence of restrictions and all COPD severity ranks (mild, moderate, and severe) was observed in the population from the hydrothermal area. These findings may assist health officials in advising and keeping up with these populations to prevent and minimize the risk of respiratory diseases.

  14. Fecal transplant policy and legislation

    PubMed Central

    Vyas, Dinesh; Aekka, Apoorva; Vyas, Arpita

    2015-01-01

    Fecal microbiota transplantation (FMT) has garnered significant attention in recent years in the face of a reemerging Clostridium difficile (C. difficile) epidemic. Positive results from the first randomized control trial evaluating FMT have encouraged the medical community to explore the process further and expand its application beyond C. difficile infections and even the gastrointestinal domain. However promising and numerous the prospects of FMT appear, the method remains limited in scope today due to several important barriers, most notably a poorly defined federal regulatory policy. The Food and Drug Administration has found it difficult to standardize and regulate the administration of inherently variable, metabolically active, and ubiquitously available fecal material. The current cumbersome policy, which classifies human feces as a drug, has prevented physicians from providing FMT and deserving patients from accessing FMT in a timely fashion, and subsequent modifications seem only to be temporary. The argument for reclassifying fecal material as human tissue is well supported. Essentially, this would allow for a regulatory framework that is sufficiently flexible to expand access to care and facilitate research, but also appropriately restrictive and centralized to ensure patient safety. Such an approach can facilitate the advancement of FMT to a more refined, controlled, and aesthetic process, perhaps in the form of a customized and well-characterized stool substitute therapy. PMID:25574076

  15. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.

    PubMed

    Servais, Pierre; Garcia-Armisen, Tamara; George, Isabelle; Billen, Gilles

    2007-04-01

    The Seine river watershed (France) is a deeply anthropogenically impacted area, due to the high population density, intense industrial activities and intensive agriculture. The water quality and ecological functioning of the different rivers of the Seine drainage network have been extensively studied during the last fifteen years within the framework of a large French multidisciplinary scientific program (PIREN Seine program). This paper presents a synthesis of the main data gained in the scope of this program concerning the microbiological water contamination of the rivers of the Seine drainage network. The more common indicator of fecal contamination (fecal coliforms) was mainly used; some complementary works used E. coli and intestinal enterococci as alternative fecal indicators. Point sources (outfall of wastewater treatment plants) and non point sources (surface runoff and soil leaching) of fecal pollution to the rivers of the watershed were quantified. Results showed that, at the scale of a large urbanised watershed as the Seine basin, the input of fecal micro-organisms by non-point sources is much lower than the inputs by point sources. However, the local impact of diffuse non-human sources (especially surface runoff of pastured fields) can be of major importance on the microbiological quality of small headwater rivers. Fecal contamination of the main rivers of the Seine watershed (Seine, Marne, Oise rivers) was studied showing high level of microbiological pollution when compared to European guidelines for bathing waters. The strong negative impact of treated wastewater effluents outfall on the microbiological quality of receiving rivers was observed in different areas of the watershed. Once released in rivers, culturable fecal bacteria disappeared relatively rapidly due to mortality (protozoan grazing, lysis) or loss of culturability induced by stress conditions (sunlight effect, nutrient concentration, temperature). Mortality rates of E. coli were studied

  16. Novel Approaches for Estimating Human Exposure to Air Pollutants

    EPA Science Inventory

    Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying on solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal varia...

  17. MODELING INHALATION AND MULTIMEDIA MULTIPATHWAY HUMAN EXPOSURES TO ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Estimation of exposures of children and adults to air toxics or multimedia pollutants require careful consideration of sources and concentrations of pollutants that may be present in different media, as well as various routes and pathways of exposures associated with age-specif...

  18. Effects of air pollution on human exercise performance

    SciTech Connect

    Frykman, P.N.

    1988-02-01

    The pollutants commonly experienced in cities of the United States are: carbon monoxide, ozone, peroxyacetyl nitrate, aerosols, sulfur dioxide, and nitrogen dioxide. Only carbon monoxide has been show to reduce exercise performance. The investigations which evaluated the impact of other pollutants on performance, may not have been sensitive enough to detect the small performance decrements caused. Suggested ways to avoid performance decrements are included.

  19. Human health risks in megacities due to air pollution

    NASA Astrophysics Data System (ADS)

    Gurjar, B. R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A. S.; Lelieveld, J.

    2010-11-01

    This study evaluates the health risks in megacities in terms of mortality and morbidity due to air pollution. A new spreadsheet model, Risk of Mortality/Morbidity due to Air Pollution (Ri-MAP), is used to estimate the excess numbers of deaths and illnesses. By adopting the World Health Organization (WHO) guideline concentrations for the air pollutants SO 2, NO 2 and total suspended particles (TSP), concentration-response relationships and a population attributable-risk proportion concept are employed. Results suggest that some megacities like Los Angeles, New York, Osaka Kobe, Sao Paulo and Tokyo have very low excess cases in total mortality from these pollutants. In contrast, the approximate numbers of cases is highest in Karachi (15,000/yr) characterized by a very high concentration of total TSP (˜670 μg m -3). Dhaka (7000/yr), Beijing (5500/yr), Karachi (5200/yr), Cairo (5000/yr) and Delhi (3500/yr) rank highest with cardiovascular mortality. The morbidity (hospital admissions) due to Chronic Obstructive Pulmonary Disease (COPD) follows the tendency of cardiovascular mortality. Dhaka and Karachi lead the rankings, having about 2100/yr excess cases, while Osaka-Kobe (˜20/yr) and Sao Paulo (˜50/yr) are at the low end of all megacities considered. Since air pollution is increasing in many megacities, and our database of measured pollutants is limited to the period up to 2000 and does not include all relevant components (e.g. O 3), these numbers should be interpreted as lower limits. South Asian megacities most urgently need improvement of air quality to prevent excess mortality and morbidity due to exceptionally high levels of air pollution. The risk estimates obtained from Ri-MAP present a realistic baseline evaluation for the consequences of ambient air pollution in comparison to simple air quality indices, and can be expanded and improved in parallel with the development of air pollution monitoring networks.

  20. Air pollution dispersion models for human exposure predictions in London.

    PubMed

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C

    2013-01-01

    The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground.

  1. Giardia duodenalis in Damascus, Syria: Identification of Giardia genotypes in a sample of human fecal isolates using polymerase chain reaction and restriction fragment length polymorphism analyzing method.

    PubMed

    Skhal, Dania; Aboualchamat, Ghalia; Al Nahhas, Samar

    2016-02-01

    Giardia duodenalis is a common gastrointestinal parasite that infects humans and many other mammals. It is most prevalent in many developing and industrialized countries. G. duodenalis is considered to be a complex species. While no morphological distinction among different assemblages exist, it can be genetically differentiated into eight major assemblages: A to H. The aim of this study was to determine the genetic heterogeneity of G. duodenalis in human isolates (a study conducted for the first time in Syria). 40 fecal samples were collected from three different hospitals during the hot summer season of 2014. Extraction of genomic DNA from all Giardia positive samples (based on a microscopic examination) was performed using QIAamp DNA Stool Mini Kit. β-giardin gene was used to differentiate between different Giardia assemblages. The 514 bp fragment was amplified using the Polymerase Chain Reaction method, followed by digestion in HaeIII restriction enzyme. Our result showed that genotype A was more frequent than genotype B, 27/40 (67.5%); 4/40 (10%) respectively. A mixed genotype of A+B was only detected in 9 isolates (22.5%). This is the first molecular study performed on G. duodenalis isolates in Syria in order to discriminate among the different genotypes. Further expanded studies using more genes are needed to detect and identify the Giardia parasite at the level of assemblage and sub-assemblage.

  2. Application of a qPCR assay with melting curve analysis for detection and differentiation of protozoan oocysts in human fecal samples from Dominican Republic.

    PubMed

    Lalonde, Laura F; Reyes, Julissa; Gajadhar, Alvin A

    2013-11-01

    A quantitative polymerase chain reaction assay with melt curve analysis (qPCR-MCA) was applied for the detection of protozoan oocysts in 501 human fecal samples collected in Dominican Republic. Samples were subjected to qPCR using universal coccidia primers targeting 18S rDNA to detect oocysts followed by MCA to identify oocyst species based on amplicon melting temperature. Putative positive samples were also tested by conventional PCR and microscopy. Cystoisospora belli (×3), Cryptosporidium parvum (×3), Cryptosporidium hominis (×5), Cryptosporidium meleagridis (×1), Cryptosporidium canis (×1), and Cyclospora cayetanensis (×9) were detected by qPCR-MCA and confirmed by sequencing. This assay consistently detected 10 copies of the cloned target fragment and can be considered more efficient and sensitive than microscopy flotation methods for detecting multiple species of oocysts in human feces. The qPCR-MCA is a reliable protozoan oocyst screening assay for use on clinical and environmental samples in public health, food safety and veterinary programs.

  3. Feruloylated and nonferuloylated arabino-oligosaccharides from sugar beet pectin selectively stimulate the growth of Bifidobacterium spp. in human fecal in vitro fermentations.

    PubMed

    Holck, Jesper; Lorentzen, Andrea; Vigsnæs, Louise K; Licht, Tine R; Mikkelsen, Jørn D; Meyer, Anne S

    2011-06-22

    The side chains of the rhamnogalacturonan I fraction in sugar beet pectin are particularly rich in arabinan moieties, which may be substituted with feruloyl groups. In this work the arabinan-rich fraction resulting from sugar beet pulp based pectin production was separated by Amberlite XAD hydrophobic interaction and membrane separation into four fractions based on feruloyl substitution and arabino-oligosaccharide chain length: short-chain (DP 2-10) and long-chain (DP 7-14) feruloylated and nonferuloylated arabino-oligosaccharides, respectively. HPAEC, SEC, and MALDI-TOF/TOF analyses of the fractions confirmed the presence of singly and doubly substituted feruloylated arabino-oligosaccharides in the feruloyl-substituted fractions. In vitro microbial fermentation by human fecal samples (n = 6 healthy human volunteers) showed a selective stimulation of bifidobacteria by both the feruloylated and the nonferuloylated long-chain arabino-oligosaccharides to the same extent as the prebiotic fructo-oligosaccharides control. None of the fractions stimulated the growth of the potential pathogen Clostridium difficile in monocultures. This work provides a first report on the separation of potentially bioactive feruloylated arabino-oligosaccharides from sugar beet pulp and an initial indication of the potentially larger bifidogenic effect of relatively long-chain arabino-oligosaccharides as opposed to short-chain arabino-oligosaccharides.

  4. Chapter A7. Section 7.2. Fecal Indicator Viruses

    USGS Publications Warehouse

    Bushon, Rebecca N.

    2003-01-01

    More than 100 types of human pathogenic viruses may be present in fecal-contaminated waters. Coliphages are used as indicators of virus-related fecal contamination and of the microbiological quality of waters. This report provides information on the equipment, sampling protocols, and laboratory methods that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator viruses.

  5. Fecal Incontinence in Children

    MedlinePlus

    Donate Find a Doctor Join eNewsletter Sidebar × MOBILE MENU About Us What is Incontinence? Prevalence Causes of Incontinence Fecal Incontinence in Children Reporter's Guide to Bowel Incontinence Signs & Symptoms Symptoms of ...

  6. Constipation and Fecal Soiling

    MedlinePlus

    ... Increase fluids in the diet, especially water and water rich foods (which usually are fiber-rich). (continued on next page) Fecal Soiling continued 5. Increase physical activity. Exercise helps the colon move. 6. It is ...

  7. Commercial Assay for Detection of Giardia lamblia and Cryptosporidium parvum Antigens in Human Fecal Specimens by Rapid Solid-Phase Qualitative Immunochromatography

    PubMed Central

    Garcia, Lynne S.; Shimizu, Robyn Y.; Novak, Susan; Carroll, Marilyn; Chan, Frank

    2003-01-01

    The ImmunoCard STAT! Cryptosporidium/Giardia rapid assay (Meridian Bioscience, Inc.) is a solid-phase qualitative immunochromatographic assay that detects and distinguishes between Giardia lamblia and Cryptosporidium parvum in aqueous extracts of human fecal specimens (fresh, frozen, unfixed, or fixed in 5 or 10% formalin or sodium acetate-acetic acid-formalin). By using specific antibodies, antigens specific for these organisms are isolated and immobilized on a substrate. After the addition of appropriate reagents, a positive test is detected visually by the presence of a gray-black color bar (regardless of the intensity) next to the organism name printed on the test device. A control is included in the device. Steps include tube preparation (buffer, patient specimen, conjugates A and B), testing (addition of sample onto the test device), and visual reading (total time, 12 min). Test performance was evaluated with known positive and negative stool specimens (170 specimens positive for Giardia and 231 specimens negative for Giardia) (85 specimens positive for Cryptosporidium and 316 specimens negative for Cryptosporidium); they were tested with trichrome, iron-hematoxylin, or modified acid-fast stains or the Meridian Bioscience, Inc., Giardia/Cryptosporidium Merifluor combination reagent; specimens with discrepant results were retested by using the Merifluor combination reagent. On the basis of the results of the reference methods, the sensitivities, specificities, and positive and negative predictive values were as follows: for G. lamblia, 93.5, 100, 100, and 95.5%, respectively; for C. parvum, 98.8, 100, 100, and 99.7%, respectively. False-negative results for G. lamblia were obtained with specimens with low parasite numbers (n = 7) or specimens containing trophozoites only (n = 3); one specimen with a false-negative result contained numerous cysts. The one specimen false negative for C. parvum was confirmed to be positive by immunofluorescence. No cross

  8. Quantification of Uncultured Ruminococcus obeum-Like Bacteria in Human Fecal Samples by Fluorescent In Situ Hybridization and Flow Cytometry Using 16S rRNA-Targeted Probes

    PubMed Central

    Zoetendal, Erwin G.; Ben-Amor, Kaouther; Harmsen, Hermie J. M.; Schut, Frits; Akkermans, Antoon D. L.; de Vos, Willem M.

    2002-01-01

    A 16S rRNA-targeted probe was designed and validated in order to quantify the number of uncultured Ruminococcus obeum-like bacteria by fluorescent in situ hybridization (FISH). These bacteria have frequently been found in 16S ribosomal DNA clone libraries prepared from bacterial communities in the human intestine. Thirty-two reference strains from the human intestine, including a phylogenetically related strain and strains of some other Ruminococcus species, were used as negative controls and did not hybridize with the new probe. Microscopic and flow cytometric analyses revealed that a group of morphologically similar bacteria in feces did hybridize with this probe. Moreover, it was found that all hybridizing cells also hybridized with a probe specific for the Clostridium coccoides-Eubacterium rectale group, a group that includes the uncultured R. obeum-like bacteria. Quantification of the uncultured R. obeum-like bacteria and the C. coccoides-E. rectale group by flow cytometry and microscopy revealed that these groups comprised approximately 2.5 and 16% of the total community in fecal samples, respectively. The uncultured R. obeum-like bacteria comprise about 16% of the C. coccoides-E. rectale group. These results indicate that the uncultured R. obeum-like bacteria are numerically important in human feces. Statistical analysis revealed no significant difference between the microscopic and flow cytometric counts and the different feces sampling times, while a significant host-specific effect on the counts was observed. Our data demonstrate that the combination of FISH and flow cytometry is a useful approach for studying the ecology of uncultured bacteria in the human gastrointestinal tract. PMID:12200269

  9. Clustering of water bodies in unpolluted and polluted environments based on Escherichia coli phylogroup abundance using a simple interaction database.

    PubMed

    de Castro Stoppe, Nancy; Silva, Juliana Saragiotto; Torres, Tatiana Teixeira; Carlos, Camila; Hachich, Elayse Maria; Sato, Maria Inês Zanoli; Saraiva, Antonio Mauro; Ottoboni, Laura Maria Mariscal

    2014-10-01

    Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.

  10. Clustering of water bodies in unpolluted and polluted environments based on Escherichia coli phylogroup abundance using a simple interaction database

    PubMed Central

    de Castro Stoppe, Nancy; Silva, Juliana Saragiotto; Torres, Tatiana Teixeira; Carlos, Camila; Hachich, Elayse Maria; Sato, Maria Inês Zanoli; Saraiva, Antonio Mauro; Ottoboni, Laura Maria Mariscal

    2014-01-01

    Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites. PMID:25505844

  11. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATION RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Contamination of watersheds by fecal bacteria is a frequent cause for surface waters to be placed on the national impaired waters list. However, since the presence of fecal bacteria does not always indicate human fecal input, it is necessary to distinguish between fecal sources. ...

  12. Microbial source tracking in a coastal California watershed reveals canines as controllable sources of fecal contamination.

    PubMed

    Ervin, Jared S; Van De Werfhorst, Laurie C; Murray, Jill L S; Holden, Patricia A

    2014-08-19

    Elevated levels of fecal indicator bacteria (FIB), including Escherichia coli and enterococci, trigger coastal beach advisories and signal public health risks. Solving FIB pollution in suburban coastal watersheds is challenging, as there are many potential sources. The Arroyo Burro watershed in Santa Barbara, CA is an example, with its popular, but chronically FIB-contaminated beach. To address, a microbial source tracking study was performed. Surface waters were sampled over 2 years, FIB were quantified, and DNA was analyzed for host-associated fecal markers. Surf zone FIB were only elevated when the coastal lagoon was discharging. Among the fecal sources into the lagoon, including upstream human sources and coastal birds, canines were the most important. Canine sources included input via upstream creek water, which decreased after creek-side residences were educated about proper pet waste disposal, and direct inputs to the lagoon and surf zone, where dog waste could have been tidally exchanged with the lagoon. Based on this study, canine waste can be an influential, yet controllable, fecal source to suburban coastal beaches.

  13. Identification of fecal contamination sources in water using host-associated markers.

    PubMed

    Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith

    2013-03-01

    In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.

  14. Computer modeling of fecal coliform contamination of an urban estuarine system.

    PubMed

    Scarlatos, P D

    2001-01-01

    This study is focused on the investigation of the sources, distribution and fate of fecal coliform populations in the North Fork of the New River that flows through the City of Fort Lauderdale, Florida, USA. The dynamics of this brackish river are driven by weak tides, regulated freshwater discharges, overland runoff, storm water drainage from sewers, and groundwater exchange. Extensive field studies failed to document any alleged source(s) of contamination, including birds, domesticated and undomesticated mammals, humans, septic tank leakage, urban runoff, non-point discharges from agricultural lands, waste disposal from live-aboard vessels and/or in situ re-growth of fecal coliform. In order to facilitate field sampling, and support the data analyses efforts, computer simulations were applied to assess the likelihood of the various possible pollution scenarios. The physically based computer model used is the WASP (Water Quality Analysis Simulation Program Modeling System) of the US Environmental Protection Agency. In addition, the Neural Network MATLAB Toolbox was utilized for data analysis. WASP was able to accurately simulate the water hydrodynamics and coliform concentrations within the North Fork, while the neural network assisted in identifying correlations between fecal coliform and the various parameters involved. The numerical results supported the conclusion that fecal coliform were introduced by the animal populations along the riverbanks and by storm water washout of the adjacent drainage basins and the banks. The problem is exaggerated due to the low flashing capacity of the river.

  15. Computer modeling of fecal coliform contamination of an urban estuarine system.

    PubMed

    Scarlatos, P D

    2001-01-01

    This study is focused on the investigation of the sources, distribution and fate of fecal coliform populations in the North Fork of the New River that flows through the City of Fort Lauderdale, Florida, USA. The dynamics of this brackish river are driven by weak tides, regulated freshwater discharges, overland runoff, storm water drainage from sewers, and groundwater exchange. Extensive field studies failed to document any alleged source(s) of contamination, including birds, domesticated and undomesticated mammals, humans, septic tank leakage, urban runoff, non-point discharges from agricultural lands, waste disposal from live-aboard vessels and/or in situ re-growth of fecal coliform. In order to facilitate field sampling, and support the data analyses efforts, computer simulations were applied to assess the likelihood of the various possible pollution scenarios. The physically based computer model used is the WASP (Water Quality Analysis Simulation Program Modeling System) of the US Environmental Protection Agency. In addition, the Neural Network MATLAB Toolbox was utilized for data analysis. WASP was able to accurately simulate the water hydrodynamics and coliform concentrations within the North Fork, while the neural network assisted in identifying correlations between fecal coliform and the various parameters involved. The numerical results supported the conclusion that fecal coliform were introduced by the animal populations along the riverbanks and by storm water washout of the adjacent drainage basins and the banks. The problem is exaggerated due to the low flashing capacity of the river. PMID:11724500

  16. COOPERATIVE RESEARCH AND DEVELOPMENT FOR APPLICATION OF CFD TO ESTIMATING HUMAN EXPOSURES TO ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Under a Cooperative Research and Development Agreement (CRADA), Fluent, Inc. and the US EPA National Exposure Research Laboratory (NERL) propose to improve the ability of environmental scientists to use computer modeling for environmental exposure to air pollutants in human exp...

  17. Influence of manure age and sunlight on the community structure of cattle fecal bacteria as revealed by Illumina sequencing

    NASA Astrophysics Data System (ADS)

    Wong, K.; Shaw, T. I.; Oladeinde, A.; Molina, M.

    2013-12-01

    Fecal pollution of environmental waters is a major concern for the general public because exposure to fecal-associated pathogens can have severe impacts on human health. Stream and river impairment due to fecal pollution is largely the result of agricultural activities in the United States. In the last few years, numerous metagenomic studies utilized next generation sequencing to develop microbial community profiles by massively sequencing the 16sRNA hypervariable region. This technology supports the application of water quality assessment such as pathogen detection and fecal source tracking. The bacteria communities of samples in these studies were determined when they were freshly collected; therefore, little is known about how feces age or how environmental stress influences the microbial ecology of fecal materials. In this study we monitored bacteria community changes in cattle feces for 57 days after excretion (day 0, 2, 4 8, 15, 22, 29, 43, 57) by sequencing the 16s variable region 4, using Illumnia MiSeq. Twelve cattle feces were studied; half of the samples were directly exposed to sunlight (unshaded) and half were shaded. Results indicate that the relative abundance (RA) profile in both shaded and unshaded samples rapidly changed from day 0 to 15, but stabilized from day 22 to 57. Firmcutes were the most abundant phylum (~40%) at day 0, but were reduced to <10% by day 57. The RA of Proteobacteria was only 1% at day 0, but increased to ~50% by day 57in both shaded and unshaded samples. By the end of the study, shaded and unshaded samples had a similar RA of Firmcutes and Proteobacteria but the RA of Bacteroidetes and Actinobacteria was, respectively, about 7% lower and 10% higher for unshaded samples. UV intensity, moisture, and temperature were significantly different between shaded and unshaded plots, indicating that these environmental stresses could influence the structure of fecal bacteria community in the natural environment. According to the

  18. Changes of Fermentation Pathways of Fecal Microbial Communities Associated with a Drug Treatment That Increases Dietary Starch in the Human Colon

    PubMed Central

    Wolin, Meyer J.; Miller, Terry L.; Yerry, Susan; Zhang, Yongchao; Bank, Shelton; Weaver, Gary A.

    1999-01-01

    Acarbose inhibits starch digestion in the human small intestine. This increases the amount of starch available for microbial fermentation to acetate, propionate, and butyrate in the colon. Relatively large amounts of butyrate are produced from starch by colonic microbes. Colonic epithelial cells use butyrate as an energy source, and butyrate causes the differentiation of colon cancer cells. In this study we investigated whether colonic fermentation pathways changed during treatment with acarbose. We examined fermentations by fecal suspensions obtained from subjects who participated in an acarbose-placebo crossover trial. After incubation with [1-13C]glucose and 12CO2 or with unlabeled glucose and 13CO2, the distribution of 13C in product C atoms was determined by nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Regardless of the treatment, acetate, propionate, and butyrate were produced from pyruvate formed by the Embden-Meyerhof-Parnas pathway. Considerable amounts of acetate were also formed by the reduction of CO2. Butyrate formation from glucose increased and propionate formation decreased with acarbose treatment. Concomitantly, the amounts of CO2 reduced to acetate were 30% of the total acetate in untreated subjects and 17% of the total acetate in the treated subjects. The acetate, propionate, and butyrate concentrations were 57, 20, and 23% of the total final concentrations, respectively, for the untreated subjects and 57, 13, and 30% of the total final concentrations, respectively, for the treated subjects. PMID:10388668

  19. Detection of Giardia lamblia, Entamoeba histolytica/Entamoeba dispar, and Cryptosporidium parvum Antigens in Human Fecal Specimens Using the Triage Parasite Panel Enzyme Immunoassay

    PubMed Central

    Garcia, Lynne S.; Shimizu, Robyn Y.; Bernard, Caroline N.

    2000-01-01

    The Triage parasite panel (BIOSITE Diagnostics, San Diego, Calif.) is a new qualitative enzyme immunoassay (EIA) panel for the detection of Giardia lamblia, Entamoeba histolytica/E. dispar, and Cryptosporidium parvum in fresh or fresh, frozen, unfixed human fecal specimens. By using specific antibodies, antigens specific for these organisms are captured and immobilized on a membrane. Panel performance was evaluated with known positive and negative stool specimens (a total of 444 specimens) that were tested by the standard ova and parasite (O&P) examination as the “gold standard,” including staining with both trichrome and modified acid-fast stains. Specimens with discrepant results between the reference and Triage methods were retested by a different method, either EIA or immunofluorescence. A number of samples with discrepant results with the Triage device were confirmed to be true positives. After resolution of discrepant results, the number of positive specimens and the sensitivity and specificity results were as follows: for G. lamblia, 170, 95.9%, and 97.4%, respectively; for E. histolytica/E. dispar, 99, 96.0%, and 99.1%, respectively; and for C. parvum, 60, 98.3%, and 99.7%, respectively. There was no cross-reactivity with other parasites found in stool specimens, including eight different protozoa (128 challenges) and three different helminths (83 challenges). The ability to perform the complete O&P examination should remain an option for those patients with negative parasite panel results but who are still symptomatic. PMID:10970380

  20. Genotypic and phenotypic traits that distinguish neonatal meningitis-associated Escherichia coli from fecal E. coli isolates of healthy human hosts.

    PubMed

    Logue, Catherine M; Doetkott, Curt; Mangiamele, Paul; Wannemuehler, Yvonne M; Johnson, Timothy J; Tivendale, Kelly A; Li, Ganwu; Sherwood, Julie S; Nolan, Lisa K

    2012-08-01

    Neonatal meningitis Escherichia coli (NMEC) is one of the top causes of neonatal meningitis worldwide. Here, 85 NMEC and 204 fecal E. coli isolates from healthy humans (HFEC) were compared for possession of traits related to virulence, antimicrobial resistance, and plasmid content. This comparison was done to identify traits that typify NMEC and distinguish it from commensal strains to refine the definition of the NMEC subpathotype, identify traits that might contribute to NMEC pathogenesis, and facilitate choices of NMEC strains for future study. A large number of E. coli strains from both groups were untypeable, with the most common serogroups occurring among NMEC being O18, followed by O83, O7, O12, and O1. NMEC strains were more likely than HFEC strains to be assigned to the B2 phylogenetic group. Few NMEC or HFEC strains were resistant to antimicrobials. Genes that best discriminated between NMEC and HFEC strains and that were present in more than 50% of NMEC isolates were mainly from extraintestinal pathogenic E. coli genomic and plasmid pathogenicity islands. Several of these defining traits had not previously been associated with NMEC pathogenesis, are of unknown function, and are plasmid located. Several genes that had been previously associated with NMEC virulence did not dominate among the NMEC isolates. These data suggest that there is much about NMEC virulence that is unknown and that there are pitfalls to studying single NMEC isolates to represent the entire subpathotype.

  1. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element against Clostridium difficile Toxin B and Sensitive Detection in Human Fecal Matter

    PubMed Central

    Maher, Eamonn; Williams, Ryan M.; Sooter, Letha J.

    2015-01-01

    Toxin B is one of the major virulence factors of Clostridium difficile, a bacterium that is responsible for a significant number of diarrhea cases in acute care settings. Due to the prevalence of C. difficile induced diarrhea, rapid and correct diagnosis is crucial in the disease management. In this study, we have employed a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE) specific for toxin B. At the end of the 12-round selection, one MRE with high affinity (Kd = 47.3 nM) for toxin B was identified. The selected MRE demonstrated low cross binding activities on negative targets: bovine serum albumin, Staphylococcus aureus alpha toxin, Pseudomonas aeruginosa exotoxin A, and cholera toxin of Vibrio cholera. A modified sandwich ELISA assay was developed utilizing the selected ssDNA MRE as the antigen capturing element and achieved a sensitive detection of 50 nM of toxin B in human fecal preparations. PMID:25734010

  2. Human cancer from environmental pollutants: the epidemiological evidence.

    PubMed

    Boffetta, Paolo

    2006-09-28

    An increased risk of mesothelioma has been reported among individuals experiencing residential exposure to asbestos, while results for lung cancer are less consistent. Several studies have reported an increased risk of lung cancer risk from outdoor air pollution: on the basis of the results of the largest study, the proportion of lung cancers attributable to urban air pollution in Europe can be as high as 10.7%. A causal association has been established between second-hand tobacco smoking and lung cancer, which may be responsible for 1.6% of lung cancers. Radon is another carcinogen present in indoor air, which may be responsible for 4.5% of lung cancers. An increased risk of bladder might be due to water chlorination by-products. The available evidence on cancer risk following exposure to other environmental pollutants, including, pesticides, dioxins and electro-magnetic fields, is inconclusive.

  3. Evaluation of fecal indicator and pathogenic bacteria originating from swine manure applied to agricultural lands using culture-based and quantitative real-time PCR methods.

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  4. Evaluation of Fecal Indicator and Pathogenic Bacteria Originating from Swine Manure Applied to Agricultural Lands Using Culture-Based and Quantitative Real-Time PCR Methods

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  5. The morphology of fecal and regurgitation artifacts deposited by the blow fly Lucilia cuprina fed a diet of human blood.

    PubMed

    Durdle, Annalisa; van Oorschot, Roland A H; Mitchell, R John

    2013-07-01

    Fly feces and regurgitation deposits may be mistaken for bloodstain patterns at a crime scene, potentially compromising event reconstruction and/or misdirecting police resources. In some instances, these artifacts contain sufficient human biological material to generate a full DNA profile, sometimes 2 years after deposition. Clearly, it is important that investigators can make the distinction between artifacts and bloodstains. This study examined 6645 artifacts deposited on a smooth, nonporous surface after Lucilia cuprina were fed human blood. Artifacts were also compared with bloodstains on a variety of other surfaces. Both similarities and differences were found between artifacts and bloodstains, highlighting the need for an identification system to assist personnel with little training in bloodstain pattern analysis. The morphology of the artifacts has been described so that these deposits may be more clearly distinguished from bloodstains, targeted by crime scene personnel as potential sources of human DNA, and/or identified as potential evidence contaminants. Flowcharts have been devised to facilitate the analysis.

  6. Global Inter-Laboratory Fecal Source Identification Methods Comparison Study

    EPA Science Inventory

    Source tracking is key to identifying sources of fecal contamination for remediation as well as risk assessment. Previous intra- and inter-lab studies have investigated the performance of human and cow-associated source tracking markers, as well as library-dependent fecal source ...

  7. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications.

    PubMed

    Mirowsky, Jaime; Gordon, Terry

    2015-01-01

    Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs. PMID:25605444

  8. Noninvasive effects measurements for air pollution human studies: methods, analysis, and implications.

    PubMed

    Mirowsky, Jaime; Gordon, Terry

    2015-01-01

    Human exposure studies, compared with cell and animal models, are heavily relied upon to study the associations between health effects in humans and air pollutant inhalation. Human studies vary in exposure methodology, with some work conducted in controlled settings, whereas other studies are conducted in ambient environments. Human studies can also vary in the health metrics explored, as there exists a myriad of health effect end points commonly measured. In this review, we compiled mini reviews of the most commonly used noninvasive health effect end points that are suitable for panel studies of air pollution, broken into cardiovascular end points, respiratory end points, and biomarkers of effect from biological specimens. Pertinent information regarding each health end point and the suggested methods for mobile collection in the field are assessed. In addition, the clinical implications for each health end point are summarized, along with the factors identified that can modify each measurement. Finally, the important research findings regarding each health end point and air pollutant exposures were reviewed. It appeared that most of the adverse health effects end points explored were found to positively correlate with pollutant levels, although differences in study design, pollutants measured, and study population were found to influence the magnitude of these effects. Thus, this review is intended to act as a guide for researchers interested in conducting human exposure studies of air pollutants while in the field, although there can be a wider application for using these end points in many epidemiological study designs.

  9. The morphology of fecal and regurgitation artifacts deposited by the blow fly Lucilia cuprina fed a diet of human blood.

    PubMed

    Durdle, Annalisa; van Oorschot, Roland A H; Mitchell, R John

    2013-07-01

    Fly feces and regurgitation deposits may be mistaken for bloodstain patterns at a crime scene, potentially compromising event reconstruction and/or misdirecting police resources. In some instances, these artifacts contain sufficient human biological material to generate a full DNA profile, sometimes 2 years after deposition. Clearly, it is important that investigators can make the distinction between artifacts and bloodstains. This study examined 6645 artifacts deposited on a smooth, nonporous surface after Lucilia cuprina were fed human blood. Artifacts were also compared with bloodstains on a variety of other surfaces. Both similarities and differences were found between artifacts and bloodstains, highlighting the need for an identification system to assist personnel with little training in bloodstain pattern analysis. The morphology of the artifacts has been described so that these deposits may be more clearly distinguished from bloodstains, targeted by crime scene personnel as potential sources of human DNA, and/or identified as potential evidence contaminants. Flowcharts have been devised to facilitate the analysis. PMID:23551179

  10. Metabolomic analysis of human fecal microbiota: a comparison of feces-derived communities and defined mixed communities.

    PubMed

    Yen, Sandi; McDonald, Julie A K; Schroeter, Kathleen; Oliphant, Kaitlyn; Sokolenko, Stanislav; Blondeel, Eric J M; Allen-Vercoe, Emma; Aucoin, Marc G

    2015-03-01

    The extensive impact of the human gut microbiota on its human host calls for a need to understand the types of communication that occur among the bacteria and their host. A metabolomics approach can provide a snapshot of the microbe-microbe interactions occurring as well as variations in the microbes from different hosts. In this study, metabolite profiles from an anaerobic continuous stirred-tank reactors (CSTR) system supporting the growth of several consortia of bacteria representative of the human gut were established and compared. Cell-free supernatant samples were analyzed by 1D (1)H nuclear magnetic resonance (NMR) spectroscopy, producing spectra representative of the metabolic activity of a particular community at a given time. Using targeted profiling, specific metabolites were identified and quantified on the basis of NMR analyses. Metabolite profiles discriminated each bacterial community examined, demonstrating that there are significant differences in the microbiota metabolome between each cultured community. We also found unique compounds that were identifying features of individual bacterial consortia. These findings are important because they demonstrate that metabolite profiles of gut microbial ecosystems can be constructed by targeted profiling of NMR spectra. Moreover, examination of these profiles sheds light on the type of microbes present in the gut and their metabolic interactions.

  11. Fecal Occult Blood Test and Fecal Immunochemical Test

    MedlinePlus

    ... Visit Global Sites Search Help? Fecal Occult Blood Test and Fecal Immunochemical Test Share this page: Was this page helpful? Also ... Test Common Questions Ask Us Related Pages The Test How is it used? When is it ordered? ...

  12. [Fecal microbiota transplantation].

    PubMed

    Šturdík, Igor; Hlavatý, Tibor; Payer, Juraj

    2016-02-01

    Fecal microbiota transplantation (FMT) is a therapeutic method, in which the fecal microflora from healthy donors is transmitted to the patient to restore the healthy microbial composition of the gut. In the recent years, there is a growing interest in the therapeutic potential of FMT in various diseases. The standard FMT protocols do not exist. Procedures of FMT vary in several aspects such as donor selection, preparation of fecal material, preparation of the recipient and administration way. FMT appears to be the most successful in the treatment of recurrent Clostridium difficile infection (CDI), randomized controlled studies reported 90 % success rate. There is a limited evidence for FMT as a treatment of ulcerative colitis. FMT has been also studied as treatment of diseases with impaired gut microbiota, such as cardiovascular, autoimmune and metabolic diseases. Many unanswered questions with regard to FMT remain and further research is needed. PMID:27172442

  13. Gene-targeted metagenomic analysis of glucan-branching enzyme gene profiles among human and animal fecal microbiota

    PubMed Central

    Lee, Sunghee; Cantarel, Brandi; Henrissat, Bernard; Gevers, Dirk; Birren, Bruce W; Huttenhower, Curtis; Ko, GwangPyo

    2014-01-01

    Glycoside hydrolases (GHs), the enzymes that breakdown complex carbohydrates, are a highly diversified class of key enzymes associated with the gut microbiota and its metabolic functions. To learn more about the diversity of GHs and their potential role in a variety of gut microbiomes, we used a combination of 16S, metagenomic and targeted amplicon sequencing data to study one of these enzyme families in detail. Specifically, we employed a functional gene-targeted metagenomic approach to the 1-4-α-glucan-branching enzyme (gBE) gene in the gut microbiomes of four host species (human, chicken, cow and pig). The characteristics of operational taxonomic units (OTUs) and operational glucan-branching units (OGBUs) were distinctive in each of hosts. Human and pig were most similar in OTUs profiles while maintaining distinct OGBU profiles. Interestingly, the phylogenetic profiles identified from 16S and gBE gene sequences differed, suggesting the presence of different gBE genes in the same OTU across different vertebrate hosts. Our data suggest that gene-targeted metagenomic analysis is useful for an in-depth understanding of the diversity of a particular gene of interest. Specific carbohydrate metabolic genes appear to be carried by distinct OTUs in different individual hosts and among different vertebrate species' microbiomes, the characteristics of which differ according to host genetic background and/or diet. PMID:24108330

  14. Tracking the Sources of Fecal Contaminations: an Interdisciplinary Toolbox

    NASA Astrophysics Data System (ADS)

    Jeanneau, L.; Jarde, E.; Derrien, M.; Gruau, G.; Solecki, O.; Pourcher, A.; Marti, R.; Wéry, N.; Caprais, M.; Gourmelon, M.; Mieszkin, S.; Jadas-Hécart, A.; Communal, P.

    2011-12-01

    Fecal contaminations of inland and coastal waters induce risks to human health and economic losses. In order to improve water management, it is necessary to identify the sources of contamination, which implies the development of specific markers. In order to be considered as a valuable host-specific marker, one must (1) be source specific, (2) occur in high concentration in polluting matrices, (3) exhibit extra-intestinal persistence similar to fecal indicator bacteria (FIB) and (4) not grow out of the host. However, up to day no single marker has fulfilled all those criteria. Thus, it has been suggested to use a combination of markers in order to generate more reliable data. This has lead to the development of a Microbial Source Tracking (MST) toolbox including FIB and microbial and chemical specific markers in order to differentiate between human, bovine and porcine fecal contaminations. Those specific markers are, (1) genotypes of F-specific RNA bacteriophages, (2) bacterial markers belonging to the Bacteroidales (human-specific HF183, ruminant-specific Rum-2-Bac and pig-specific Pig-2-Bac markers), to the Bifidobacterium (Bifidobacterium adolescentis) and pig-specific Lactobacillus amylovorus, (3) fecal stanols and (4) caffeine. The development of this MST toolbox was composed of four steps, from the molecular scale to the watershed scale. At the molecular scale, the specificity and the concentration of those markers were studied in cattle and pig manures and in waste water treatment plant (WWTP) effluents and influents. At the microcosm scale, the transfer of bovine and porcine specific markers was investigated by rainfall simulations on agricultural plots amended with cattle or pig manure. Moreover, the relative persistence of FIB and human, porcine and bovine specific markers was investigated in freshwater and seawater microcosms inoculated with a WWTP influent, pig manure and cow manure. Finally, the aforementioned MST toolbox has been validated at the

  15. Simple Fecal Flotation Is a Superior Alternative to Guadruple Kato Katz Smear Examination for the Detection of Hookworm Eggs in Human Stool

    PubMed Central

    Khieu, Virak; Muth, Sinuon; Dalsgaard, Anders; Marti, Hanspeter; Traub, Rebecca J.; Odermatt, Peter

    2014-01-01

    Background Microscopy-based identification of eggs in stool offers simple, reliable and economical options for assessing the prevalence and intensity of hookworm infections, and for monitoring the success of helminth control programs. This study was conducted to evaluate and compare the diagnostic parameters of the Kato-Katz (KK) and simple sodium nitrate flotation technique (SNF) in terms of detection and quantification of hookworm eggs, with PCR as an additional reference test in stool, collected as part of a baseline cross-sectional study in Cambodia. Methods/Principle Findings Fecal samples collected from 205 people in Dong village, Rovieng district, Preah Vihear province, Cambodia were subjected to KK, SNF and PCR for the detection (and in case of microscopy-based methods, quantification) of hookworm eggs in stool. The prevalence of hookworm detected using a combination of three techniques (gold standard) was 61.0%. PCR displayed a highest sensitivity for hookworm detection (92.0%) followed by SNF (44.0%) and quadruple KK smears (36.0%) compared to the gold standard. The overall eggs per gram feces from SNF tended to be higher than for quadruple KK and the SNF proved superior for detecting low egg burdens. Conclusion/Significance As a reference, PCR demonstrated the higher sensitivity compared to SNF and the quadruple KK method for detection of hookworm in human stool. For microscopic-based quantification, a single SNF proved superior to the quadruple KK for the detection of hookworm eggs in stool, in particular for low egg burdens. In addition, the SNF is cost-effective and easily accessible in resource poor countries. PMID:25521997

  16. Air pollution and human health: a review and reanalysis.

    PubMed Central

    Thibodeau, L A; Reed, R B; Bishop, Y M; Kammerman, L A

    1980-01-01

    Since 1970, Lave and Seskin have published a series of articles dealing with the question, "Does air pollution shorten lives?" Their recent book reports revised and extended analyses of their previous studies emphasizing policy implications. We have undertaken a review of Lave and Seskin's book to evaluate the methodology used and hence gain some insight into the strength of the conclusions reached. This review concentrates on methodology and its application to establishing and quantifying the association between air quality and health. Beyond simply reviewing the analyses reported in Lave and Seskin's book, we have duplicated and expanded two of the reported analyses. Our detailed reanalysis is presented both to verify reported results, and to illustrate the difficulties encountered in such an analysis. Our overall conclusion is that Lave and Seskin have done a thorouth job of reporting and interpreting the various analyses that they performed. Lave and Seskin have made a pioneering effort in showing an association between mortality rates and air pollution. We do not disagree with the conclusion of the existence of an association but have some reservations about their methods of estimating its magnitude. We were particularly concerned that Lave and Seskin did not fully investigate how well their models fit these data. Our reanalysis results in estimated effects which differ considerably from the values reported by Lave and Seskin. Thus, we conclude that the regression coefficients are quite unstable and so must be used with care. Assessing the relative costs and benefits of reducing air pollution without extensive sensitivity analysis could, therefore, be misleading. PMID:7389683

  17. [Quantified study on human health impact caused by coal-burning air pollution in China].

    PubMed

    Jin, Yinlong; He, Gongli; Liu, Fan; Hong, Yanfen

    2002-10-01

    To develop the mathematics model of exposure to coal-burning pollution; To confirm the exposure level of coal-burning pollutants by source analysis of atmospheric particulates; To establish the quantilification technology and methods of human health impact. Combinating the methods of epidemiology, environmental chemistry and contaminated aerography. We obtained the data of human historical expose to PM10, PM2.5, and Bap etc. that can't be obtained from the general inspect and the contribution rate of coal-burning as well as the status of coal-burning air pollutants. Confirming the degree of human health impact due to coal-burning pollutants, which included: The occurrence risk of respiratory symptoms and COPD of adults in heavily polluted area was 1.7 and 1.5 times of that of relatively clean area respectively; FVC and FEF50 of pupils decreased 194 ml and 172 ml respectively with the increasing of every unit of the Ln(PM10). FVC and FEF50 of pupils decreased 69 ml and 119 ml respectively with the increase of every unit of the Ln(SO2). Both the indices of non-specific and humoral immunity of pupils in heavily and medium polluted areas were worse than those in relatively clean area.

  18. Determining hot spots of fecal contamination in a tropical watershed by combining land-use information and meteorological data with source-specific assays.

    PubMed

    Jent, Justin R; Ryu, Hodon; Toledo-Hernández, Carlos; Santo Domingo, Jorge W; Yeghiazarian, Lilit

    2013-06-01

    The objective of this study was to combine knowledge of environmental, topographical, meteorological, and anthropologic factors in the Río Grande de Arecibo (RGA) watershed in Puerto Rico with information provided by microbial source tracking (MST) to map hot spots (i.e., likely sources) of fecal contamination. Water samples were tested for the presence of human and bovine fecal contamination in addition to fecal indicator bacteria and correlated against several land uses and the density of septic tanks, sewers, and latrines. Specifically, human sources were positively correlated with developed (r = 0.68), barren land uses (r = 0.84), density of septic tanks (r = 0.78), slope (r = 0.63), and the proximity to wastewater treatment plants (WWTPs) (r = 0.82). Agricultural land, the number of upstream National Pollution Discharge Elimination System (NPDES) facilities, and density of latrines were positively associated with the bovine marker (r = 0.71; r = 0.74; and r = 0.68, respectively). Using this information, we provided a hot spot map, which shows areas that should be closely monitored for fecal contamination in the RGA watershed. The results indicated that additional bovine assays are needed in tropical regions. We concluded that meteorological, topographical, anthropogenic, and land cover data are needed to evaluate and verify the performance of MST assays and, therefore, to identify important sources of fecal contamination in environmental waters.

  19. Determining hot spots of fecal contamination in a tropical watershed by combining land-use information and meteorological data with source-specific assays.

    PubMed

    Jent, Justin R; Ryu, Hodon; Toledo-Hernández, Carlos; Santo Domingo, Jorge W; Yeghiazarian, Lilit

    2013-06-01

    The objective of this study was to combine knowledge of environmental, topographical, meteorological, and anthropologic factors in the Río Grande de Arecibo (RGA) watershed in Puerto Rico with information provided by microbial source tracking (MST) to map hot spots (i.e., likely sources) of fecal contamination. Water samples were tested for the presence of human and bovine fecal contamination in addition to fecal indicator bacteria and correlated against several land uses and the density of septic tanks, sewers, and latrines. Specifically, human sources were positively correlated with developed (r = 0.68), barren land uses (r = 0.84), density of septic tanks (r = 0.78), slope (r = 0.63), and the proximity to wastewater treatment plants (WWTPs) (r = 0.82). Agricultural land, the number of upstream National Pollution Discharge Elimination System (NPDES) facilities, and density of latrines were positively associated with the bovine marker (r = 0.71; r = 0.74; and r = 0.68, respectively). Using this information, we provided a hot spot map, which shows areas that should be closely monitored for fecal contamination in the RGA watershed. The results indicated that additional bovine assays are needed in tropical regions. We concluded that meteorological, topographical, anthropogenic, and land cover data are needed to evaluate and verify the performance of MST assays and, therefore, to identify important sources of fecal contamination in environmental waters. PMID:23590856

  20. Tracking nonpoint source nitrogen pollution in human-impacted watersheds.

    PubMed

    Kaushal, Sujay S; Groffman, Peter M; Band, Lawrence E; Elliott, Emily M; Shields, Catherine A; Kendall, Carol

    2011-10-01

    Nonpoint source nitrogen (N) pollution is a leading contributor to U.S. water quality impairments. We combined watershed N mass balances and stable isotopes to investigate fate and transport of nonpoint N in forest, agricultural, and urbanized watersheds at the Baltimore Long-Term Ecological Research site. Annual N retention was 55%, 68%, and 82% for agricultural, suburban, and forest watersheds, respectively. Analysis of δ(15)N-NO(3)(-), and δ(18)O-NO(3)(-) indicated wastewater was an important nitrate source in urbanized streams during baseflow. Negative correlations between δ(15)N-NO(3)(-) and δ(18)O-NO(3)(-) in urban watersheds indicated mixing between atmospheric deposition and wastewater, and N source contributions changed with storm magnitude (atmospheric sources contributed ∼50% at peak storm N loads). Positive correlations between δ(15)N-NO(3)(-) and δ(18)O-NO(3)(-) in watersheds suggested denitrification was removing septic system and agriculturally derived N, but N from belowground leaking sewers was less susceptible to denitrification. N transformations were also observed in a storm drain (no natural drainage network) potentially due to organic carbon inputs. Overall, nonpoint sources such as atmospheric deposition, wastewater, and fertilizer showed different susceptibility to watershed N export. There were large changes in nitrate sources as a function of runoff, and anticipating source changes in response to climate and storms will be critical for managing nonpoint N pollution.

  1. Tracking nonpoint source nitrogen pollution in human-impacted watersheds

    USGS Publications Warehouse

    Kaushal, Sujay S.; Groffman, Peter M; Band, Lawrence; Elliott, Emily M.; Shields, Catherine A.; Kendall, Carol

    2011-01-01

    Nonpoint source nitrogen (N) pollution is a leading contributor to U.S. water quality impairments. We combined watershed N mass balances and stable isotopes to investigate fate and transport of nonpoint N in forest, agricultural, and urbanized watersheds at the Baltimore Long-Term Ecological Research site. Annual N retention was 55%, 68%, and 82% for agricultural, suburban, and forest watersheds, respectively. Analysis of δ15N-NO3–, and δ18O-NO3– indicated wastewater was an important nitrate source in urbanized streams during baseflow. Negative correlations between δ15N-NO3– and δ18O-NO3– in urban watersheds indicated mixing between atmospheric deposition and wastewater, and N source contributions changed with storm magnitude (atmospheric sources contributed ∼50% at peak storm N loads). Positive correlations between δ15N-NO3– and δ18O-NO3– in watersheds suggested denitrification was removing septic system and agriculturally derived N, but N from belowground leaking sewers was less susceptible to denitrification. N transformations were also observed in a storm drain (no natural drainage network) potentially due to organic carbon inputs. Overall, nonpoint sources such as atmospheric deposition, wastewater, and fertilizer showed different susceptibility to watershed N export. There were large changes in nitrate sources as a function of runoff, and anticipating source changes in response to climate and storms will be critical for managing nonpoint N pollution.

  2. Fecal Transplants: What Is Being Transferred?

    PubMed

    Bojanova, Diana P; Bordenstein, Seth R

    2016-07-01

    Fecal transplants are increasingly utilized for treatment of recurrent infections (i.e., Clostridium difficile) in the human gut and as a general research tool for gain-of-function experiments (i.e., gavage of fecal pellets) in animal models. Changes observed in the recipient's biology are routinely attributed to bacterial cells in the donor feces (~1011 per gram of human wet stool). Here, we examine the literature and summarize findings on the composition of fecal matter in order to raise cautiously the profile of its multipart nature. In addition to viable bacteria, which may make up a small fraction of total fecal matter, other components in unprocessed human feces include colonocytes (~107 per gram of wet stool), archaea (~108 per gram of wet stool), viruses (~108 per gram of wet stool), fungi (~106 per gram of wet stool), protists, and metabolites. Thus, while speculative at this point and contingent on the transplant procedure and study system, nonbacterial matter could contribute to changes in the recipient's biology. There is a cautious need for continued reductionism to separate out the effects and interactions of each component.

  3. Fecal Transplants: What Is Being Transferred?

    PubMed Central

    Bojanova, Diana P.

    2016-01-01

    Fecal transplants are increasingly utilized for treatment of recurrent infections (i.e., Clostridium difficile) in the human gut and as a general research tool for gain-of-function experiments (i.e., gavage of fecal pellets) in animal models. Changes observed in the recipient's biology are routinely attributed to bacterial cells in the donor feces (~1011 per gram of human wet stool). Here, we examine the literature and summarize findings on the composition of fecal matter in order to raise cautiously the profile of its multipart nature. In addition to viable bacteria, which may make up a small fraction of total fecal matter, other components in unprocessed human feces include colonocytes (~107 per gram of wet stool), archaea (~108 per gram of wet stool), viruses (~108 per gram of wet stool), fungi (~106 per gram of wet stool), protists, and metabolites. Thus, while speculative at this point and contingent on the transplant procedure and study system, nonbacterial matter could contribute to changes in the recipient's biology. There is a cautious need for continued reductionism to separate out the effects and interactions of each component. PMID:27404502

  4. Characterization of fecal concentrations in human and other animal sources by physical, culture-based, and quantitative real-time PCR methods

    EPA Science Inventory

    The characteristics of fecal sources, and the ways in which they are measured, can profoundly influence the interpretation of which sources are contaminating water. Although feces from various hosts are known to differ, it is not well understood how those differences compare acro...

  5. Community structure of cattle fecal bacteria from different animal feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fecal microbiome of cattle plays a critical role not only in animal health and productivity, but also in methane emissions, food safety, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, most published molecular surveys fail to provide adequate detail ab...

  6. Community structures of fecal bacteria in cattle from different animal feeding operations

    EPA Science Inventory

    The fecal microbiome of cattle plays a critical role not only in animal health and productivity, but also in methane emissions, food safety, pathogen shedding, and the performance of fecal pollution detection methods. Unfortunately, most published molecular surveys fail to provid...

  7. Evaluation of Two PCR-based Swine-specific Fecal Source Tracking Assays (Abstract)

    EPA Science Inventory

    Several PCR-based methods have been proposed to identify swine fecal pollution in environmental waters. However, the utility of these assays in identifying swine fecal contamination on a broad geographic scale is largely unknown. In this study, we evaluated the specificity, distr...

  8. Effects of Environmental Pollutants on Cellular Iron Homeostasis and Ultimate Links to Human Disease

    PubMed Central

    Schreinemachers, Dina M.; Ghio, Andrew J.

    2016-01-01

    Chronic disease has increased in the past several decades, and environmental pollutants have been implicated. The magnitude and variety of diseases may indicate the malfunctioning of some basic mechanisms underlying human health. Environmental pollutants demonstrate a capability to complex iron through electronegative functional groups containing oxygen, nitrogen, or sulfur. Cellular exposure to the chemical or its metabolite may cause a loss of requisite functional iron from intracellular sites. The cell is compelled to acquire further iron critical to its survival by activation of iron-responsive proteins and increasing iron import. Iron homeostasis in the exposed cells is altered due to a new equilibrium being established between iron-requiring cells and the inappropriate chelator (the pollutant or its catabolite). Following exposure to environmental pollutants, the perturbation of functional iron homeostasis may be the mechanism leading to adverse biological effects. Understanding the mechanism may lead to intervention methods for this major public health concern. PMID:26966372

  9. Effects of Environmental Pollutants on Cellular Iron Homeostasis and Ultimate Links to Human Disease.

    PubMed

    Schreinemachers, Dina M; Ghio, Andrew J

    2016-01-01

    Chronic disease has increased in the past several decades, and environmental pollutants have been implicated. The magnitude and variety of diseases may indicate the malfunctioning of some basic mechanisms underlying human health. Environmental pollutants demonstrate a capability to complex iron through electronegative functional groups containing oxygen, nitrogen, or sulfur. Cellular exposure to the chemical or its metabolite may cause a loss of requisite functional iron from intracellular sites. The cell is compelled to acquire further iron critical to its survival by activation of iron-responsive proteins and increasing iron import. Iron homeostasis in the exposed cells is altered due to a new equilibrium being established between iron-requiring cells and the inappropriate chelator (the pollutant or its catabolite). Following exposure to environmental pollutants, the perturbation of functional iron homeostasis may be the mechanism leading to adverse biological effects. Understanding the mechanism may lead to intervention methods for this major public health concern.

  10. Simultaneous detection and differentiation of Entamoeba histolytica, E. dispar, E. moshkovskii, Giardia lamblia and Cryptosporidium spp. in human fecal samples using multiplex PCR and qPCR-MCA.

    PubMed

    Zebardast, Nozhat; Yeganeh, Farshid; Gharavi, Mohammad Javad; Abadi, Alireza; Seyyed Tabaei, Seyyed Javad; Haghighi, Ali

    2016-10-01

    Entamoeba histolytica, Giardia lamblia and Cryptosporidium spp. are common causes of diarrheal and intestinal diseases all over the world. Microscopic methods are useful in the diagnosis of intestinal parasites (IPs), but their sensitivity was assessed approximately 60 percent. Recently, molecular techniques have been used increasingly for the identification and characterization of the parasites. Among those, in this study we have used multiplex PCR and Real-time PCR with melting curve analysis (qPCR-MCA) for simultaneous detection and differentiation of E. histolytica, E. dispar, E. moshkovskii, G. lamblia and Cryptosporidium spp. in human fecal samples. Twenty DNA samples from 12 E. histolytica and 8 E. dispar samples and twenty stool samples confirmed positive for G. lamblia and Cryptosporidium spp. were analyzed. After DNA extraction from the samples, multiplex PCR was done for detection and differentiation of above mentioned parasites. QPCR-MCA was also performed for the detection and differentiation of 11 isolates of above mentioned parasite in a cycle with a time and temperature. Multiplex PCR was able to simultaneous detect and differentiate of above mentioned parasite in a single reaction. QPCR-MCA was able to differentiate genus and species those five protozoa using melting temperature simultaneously at the same time and temperature programs. In total, qPCR-MCA diagnosed 7/11 isolation of E. histolytica, 6/8 isolation of E. dispar, 1/1 E. moshkovskii Laredo, 10/11 G. Lamblia and 6/11 Cryptosporidium spp. Application of multiplex PCR for detection of more than one species in a test in developing countries, at least in reference laboratories has accurate diagnosis and plays a critical role in differentiation of protozoan species. Multiplex PCR assay with a template and multi template had different results and it seems that using a set of primers with one template has higher diagnostic capability in compare with multi template. The results of this study

  11. Simultaneous detection and differentiation of Entamoeba histolytica, E. dispar, E. moshkovskii, Giardia lamblia and Cryptosporidium spp. in human fecal samples using multiplex PCR and qPCR-MCA.

    PubMed

    Zebardast, Nozhat; Yeganeh, Farshid; Gharavi, Mohammad Javad; Abadi, Alireza; Seyyed Tabaei, Seyyed Javad; Haghighi, Ali

    2016-10-01

    Entamoeba histolytica, Giardia lamblia and Cryptosporidium spp. are common causes of diarrheal and intestinal diseases all over the world. Microscopic methods are useful in the diagnosis of intestinal parasites (IPs), but their sensitivity was assessed approximately 60 percent. Recently, molecular techniques have been used increasingly for the identification and characterization of the parasites. Among those, in this study we have used multiplex PCR and Real-time PCR with melting curve analysis (qPCR-MCA) for simultaneous detection and differentiation of E. histolytica, E. dispar, E. moshkovskii, G. lamblia and Cryptosporidium spp. in human fecal samples. Twenty DNA samples from 12 E. histolytica and 8 E. dispar samples and twenty stool samples confirmed positive for G. lamblia and Cryptosporidium spp. were analyzed. After DNA extraction from the samples, multiplex PCR was done for detection and differentiation of above mentioned parasites. QPCR-MCA was also performed for the detection and differentiation of 11 isolates of above mentioned parasite in a cycle with a time and temperature. Multiplex PCR was able to simultaneous detect and differentiate of above mentioned parasite in a single reaction. QPCR-MCA was able to differentiate genus and species those five protozoa using melting temperature simultaneously at the same time and temperature programs. In total, qPCR-MCA diagnosed 7/11 isolation of E. histolytica, 6/8 isolation of E. dispar, 1/1 E. moshkovskii Laredo, 10/11 G. Lamblia and 6/11 Cryptosporidium spp. Application of multiplex PCR for detection of more than one species in a test in developing countries, at least in reference laboratories has accurate diagnosis and plays a critical role in differentiation of protozoan species. Multiplex PCR assay with a template and multi template had different results and it seems that using a set of primers with one template has higher diagnostic capability in compare with multi template. The results of this study

  12. Survival and persistence of fecal host-specific Bacteroidales cells and their DNA assessed by PMA-qPCR

    NASA Astrophysics Data System (ADS)

    Bae, S.; Bombardelli, F.; Wuertz, S.

    2008-12-01

    Understanding and managing microbial pollutions in water is one of the foremost challenges of establishing effective managements and remediation strategies to impaired water bodies polluted by uncharacterized fecal sources. Quantitative microbial source tracking (MST) approaches using fecal Bacteroidales and quantitative PCR (qPCR) assays to measure gene copies of host-specific 16S rRNA genetic markers are promising because they can allow for identifying and quantifying fecal loadings from a particular animal host and understanding the fate and transport of host-specific Bacteroidales over a range of conditions in water bodies. Similar to the case of traditional fecal indicator bacteria, a relatively long persistence of target DNA may hamper applied MST studies, if genetic markers cannot be linked to recent fecal pollution in water. We report a successful approach to removing the qPCR signal derived from free DNA and dead host-specific Bacteroidales cells by selectively binding the DNA and consequently inhibiting PCR amplification using light- activated propidium monoazide (PMA). Optimal PMA-qPCR conditions were determined as 100 µM of PMA concentration and a 10-min light exposure time at different solids concentrations in order to mimic a range of water samples. Under these conditions, PMA-qPCR resulted in the selective exclusion of DNA from heat- treated cells of non-culturable Bacteroidales in human feces and wastewater influent and effluent samples. Also, the persistence of feces-derived host-specific Bacteroidales DNA and their cells (determined by universal, human-, cow- and dog-specific Bacteroidales qPCR assays) in seawater was investigated in microcosms at environmental conditions. The average T99 (two log reduction) value for host-specific viable Bacteroidales cells was 28 h, whereas that for total host-specific Bacteroidales DNA was 177 h. Natural sunlight did not have a strong influence on the fate of fecal Bacteroidales cells and their DNA, presumably

  13. Determination of cadmium, copper, zinc, and lead human renal calculi in both cadmium polluted and non-polluted areas

    SciTech Connect

    Yamamoto, I.; Itoh, M.; Tsukada, S.

    1987-08-01

    A number of investigators have reported about heavy metal contents in food, blood, urine, and animal tissues, including bone, hair, feather, and tooth. However, few data concerning calculi are reported as yet. Heavy metal contents in the calculi might reflect the level of metals absorbed from respiratory tract, skin and intestine. When absorbed metals from respiration are distributed in blood, a part of cadmium is accumulated in liver and kidney, and of lead is in bone, annular vessel and kidney. The remainder is excreted in the urine through the urinary tracts. From intestine, they are distributed by the blood to the liver, and excreted in the urine in the same manner of respiration. It is well known that renal calculi are produced in the urinary tract. The present study is focused on the contents of cadmium, copper, zinc and lead in human renal calculi, samples collected from Hokuriku which is one of the most cadmium polluted areas and from Chugoku which is recognized as a non-polluted one in Japan.

  14. Comparative evaluation of xenobiotics in human and dietary milk: persistent organic pollutants and mycotoxins.

    PubMed

    Tsakiris, I N; Kokkinakis, E; Dumanov, J M; Tzatzarakis, M N; Flouris, A D; Vlachou, M; Tsatsakis, A M

    2013-11-03

    Publications produced over the past 20 years regarding the concentration of xenobiotics in human and dietary milk were evaluated, focusing primarily on persistent organic pollutants (e.g. polychlorinated biphenyls, flame retardants), pesticides (e.g organochlorine) and mycotoxins. In general, countries of low industrialization rate present low levels of dietary milk contamination with dioxins compared to those with high rate of industrialization. According to published data, the most common persistent organic pollutants detected in breast and dietary milk are dichlorodiphenyltrichloroethane compounds, hexachlorocyclohexane, and hexachlorobenzene. Even though the potential risks of persistent organic pollutants in human milk have been acknowledged, the beneficial effect of breastfeeding as the optimal food source for newborn babies should not be disregarded. Especially when sharing information with the general public, it should be made clear that the presence of dioxins and persistent organic pollutants in human milk is not an indication for avoiding breastfeeding. The implications of xenobiotics in human and dietary milk is a matter of growing importance and warrants future work given its important health effects.

  15. MITOCHONDRIAL OXIDANT PRODUCTION BY POLLUTANT DUST AND NO-MEDIATED APOPTOSIS IN HUMAN ALVEOLAR MACHROPHAGE

    EPA Science Inventory

    Residual oil fly ash (ROFA) is a pollutant dust that stimulates production of reactive oxygen species (ROS) from mitochondria and apoptosis in alveolar macrophages (AM), but the relationship between these two processes is unclear. In this study, human AM were incubated with RO...

  16. Current State of the Evidence: Air Pollution Impacts on Human Health

    EPA Science Inventory

    Epidemiologic studies have demonstrated a consistent association between ambient levels of air pollution and adverse human health effects, including mortality and morbidity. Many of these studies have relied on the US Air Quality System (AQS) for exposure assessment. The AQS is a...

  17. [Presence of residues and pollutants in human milk].

    PubMed

    Prado Flores, Guadalupe; Carabias Martínz, Rita; Rodríguez Gonzalo, Encarna; Herrero Hernández, Eliseo

    2002-01-01

    The contamination of human milk by xenobiotics is a common problem worldwide which is affected by the geographical, climate-related, cultural and socioeconomic variations in each individual location. Public health policies have dealt with this situation by means of ongoing monitoring and restrictive legislation in order to reduce the damaging effects on the populations and the environment, objectivatable data however being recorded particularly in the developing countries. Overall and individual aspects of waste and contaminating oganochlorines, organophosphorates, antibiotics, polychlorate biphenyls, dioxins and furans, their content values, toxic effects studies and the maximum limits permitted under international legislation are highlighted.

  18. Effect of environmental pollutants on human reproduction, including birth defects

    SciTech Connect

    Kurzel, R.B.; Cetrulo, C.L.

    1981-06-01

    Because chemicals from a wide range of environmental sources have been implicated in birth defects and reproductive failures, the effects on human reproduction of chemicals in air, in the terrestrial ecosystem, and in food were studied. Chemicals considered included nicotine, cadmium, polycyclic aromatic compounds, red dye number2, DES, PCB's, TCDD, mercury, molybdenum, nickel, selenium, strontium, and zinc. The most serious source of chemical exposure to pregnant women is cigarette smoke which exposes unborn babies to high levels of carbon monoxide, cadmium, nicotine, and benzo-a-pyrene. Fetal exposure to all teratogenic compounds must be minimized.

  19. An uncooked vegan diet shifts the profile of human fecal microflora: computerized analysis of direct stool sample gas-liquid chromatography profiles of bacterial cellular fatty acids.

    PubMed Central

    Peltonen, R; Ling, W H; Hänninen, O; Eerola, E

    1992-01-01

    The effect of an uncooked extreme vegan diet on fecal microflora was studied by direct stool sample gas-liquid chromatography (GLC) of bacterial cellular fatty acids and by quantitative bacterial culture by using classical microbiological techniques of isolation, identification, and enumeration of different bacterial species. Eighteen volunteers were divided randomly into two groups. The test group received an uncooked vegan diet for 1 month and a conventional diet of mixed Western type for the other month of the study. The control group consumed a conventional diet throughout the study period. Stool samples were collected. Bacterial cellular fatty acids were extracted directly from the stool samples and measured by GLC. Computerized analysis of the resulting fatty acid profiles was performed. Such a profile represents all bacterial cellular fatty acids in a sample and thus reflects its microflora and can be used to detect changes, differences, or similarities of bacterial flora between individual samples or sample groups. GLC profiles changed significantly in the test group after the induction and discontinuation of the vegan diet but not in the control group at any time, whereas quantitative bacterial culture did not detect any significant change in fecal bacteriology in either of the groups. The results suggest that an uncooked extreme vegan diet alters the fecal bacterial flora significantly when it is measured by direct stool sample GLC of bacterial fatty acids. PMID:1482187

  20. Assessment of human health impact from exposure to multiple air pollutants in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Wang, Wen; Ciren, Pubu; Zhu, Yan

    2016-10-01

    Assessment of human health impact caused by air pollution is crucial for evaluating environmental hazards. In this paper, concentrations of six air pollutants (PM10, PM2.5, NO2, SO2, O3, and CO) were first derived from satellite observations, and then the overall human health risks in China caused by multiple air pollutants were assessed using an aggregated health risks index. Unlike traditional approach for human health risks assessment, which relied on the in-situ air pollution measurements, the spatial distribution of aggregated human health risks in China were obtained using satellite observations in this research. It was indicated that the remote sensing data have advantages over in-situ data in accessing human health impact caused by air pollution.

  1. Limiting the impact of light pollution on human health, environment and stellar visibility.

    PubMed

    Falchi, Fabio; Cinzano, Pierantonio; Elvidge, Christopher D; Keith, David M; Haim, Abraham

    2011-10-01

    Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this "residual light pollution", cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment

  2. [Fecal fermentation in meteorism].

    PubMed

    León-Barúa, R; Zapata-Solari, C

    1977-12-01

    An old test to investigate fecal fermentation was modified with the purpose of changing it from qualitative to quantitative. The modified test consists in placing in stove, at 37 degrees C for 24 hours, 5 grams of feces, suspended in water. The fermentable alimentary residues, present in the feces, suffer the action of bacteria, also there present, yielding gas that is collected and measured. Using the test, fecal fermentation was determined in 3 groups of individuals: a) 40 patients with meteorism that had persisted or improved only slightly or fairly with treatment; b) 28 apparently healthy subjects; and c) 6 patients with meteorism that had disappeared or become minimal with treatment. In the group of 28 apparently healthy subject, the obtained results varied from 0.1 to 1.1 ml gas/24 h., with a mean +/- s.d. of 0.55 +/- 0.29 ml. gas/24 h. When a distribution curve was made with the results obtained in the group of 40 patients with meteorism, these results separated into 2 subgroups: one subgroup with 28 patients, in whom results varied from 1.0 to 13.3 ml. gas/24 h., with a mean of 4.8 gas/24 h. (only) in 1 of these 28 patients a normal result of 1.0 ml. gas/24 h. was obtained, while in the remaining 27 patients results of 1.5 or more ml. gas/24 h. were obtained); and the other subgroup with 12 patients, in whom results varied from 0.0 to 0.9 ml. gas/24 h., with a mean of 0.29 ml. gas/24 h. Finally, in the group of 6 patients with successfully treated meteorism, results were from 0.1 to 0.9 ml. gas/24 h., with a mean of 0.4 ml. gas/24 h. The above mentioned results strongly suggest the existence of a relationship between meteorism and exagerated fecal fermentation. The nature of this relationship has not yet been completely clarified. However, the test used to determine fecal fermentation already promises to be very helpful for a better understanding and management of meteorism.

  3. The effect of future outdoor air pollution on human health and the contribution of climate change

    NASA Astrophysics Data System (ADS)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  4. Environmental Pollution

    ERIC Educational Resources Information Center

    Breitbeil, Fred W., III

    1973-01-01

    Presents a thorough overview of the many factors contributing to air and water pollution, outlines the chemical reactions involved in producing toxic end-products, and describes some of the consequences of pollutants on human health and ecosystems. (JR)

  5. Theoretical and Numerical Modeling of Transport of Land Use-Specific Fecal Source Identifiers

    NASA Astrophysics Data System (ADS)

    Bombardelli, F. A.; Sirikanchana, K. J.; Bae, S.; Wuertz, S.

    2008-12-01

    Microbial contamination in coastal and estuarine waters is of particular concern to public health officials. In this work, we advocate that well-formulated and developed mathematical and numerical transport models can be combined with modern molecular techniques in order to predict continuous concentrations of microbial indicators under diverse scenarios of interest, and that they can help in source identification of fecal pollution. As a proof of concept, we present initially the theory, numerical implementation and validation of one- and two-dimensional numerical models aimed at computing the distribution of fecal source identifiers in water bodies (based on Bacteroidales marker DNA sequences) coming from different land uses such as wildlife, livestock, humans, dogs or cats. These models have been developed to allow for source identification of fecal contamination in large bodies of water. We test the model predictions using diverse velocity fields and boundary conditions. Then, we present some preliminary results of an application of a three-dimensional water quality model to address the source of fecal contamination in the San Pablo Bay (SPB), United States, which constitutes an important sub-embayment of the San Francisco Bay. The transport equations for Bacteroidales include the processes of advection, diffusion, and decay of Bacteroidales. We discuss the validation of the developed models through comparisons of numerical results with field campaigns developed in the SPB. We determine the extent and importance of the contamination in the bay for two decay rates obtained from field observations, corresponding to total host-specific Bacteroidales DNA and host-specific viable Bacteroidales cells, respectively. Finally, we infer transport conditions in the SPB based on the numerical results, characterizing the fate of outflows coming from the Napa, Petaluma and Sonoma rivers.

  6. A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants.

    PubMed

    Bardet, Gaëlle; Achard, Sophie; Loret, Thomas; Desauziers, Valérie; Momas, Isabelle; Seta, Nathalie

    2014-08-17

    Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol.

  7. Development of a PCR assay and pyrosequencing for identification of important human fish-borne trematodes and its potential use for detection in fecal specimens

    PubMed Central

    2014-01-01

    Background Small liver and minute intestinal flukes are highly prevalent in Southeast Asia. Definitive diagnosis of parasite infection is usually achieved parasitologically by finding the fluke eggs in feces. However, their eggs are difficult to differentiate morphologically in fecal samples, even for experienced technicians. The present study developed a PCR assay coupled with DNA pyrosequencing for identification of the fish-borne trematodes (FBT), Opisthorchis viverrini, Clonorchis sinensis, Haplorchis taichui, H. pumilio and Stellantchasmus falcatus, and to evaluate potential detection in fecal specimens, and identification and differentiation of cercarial and metacercarial stages. Methods Primers targeting the partial 28S large subunit ribosomal RNA gene were designed and about 46–47 nucleotides were selected as the target region for species identification by a PCR assay coupled with a pyrosequencing technique. Results The nucleotide variations at 24 positions, which is sufficient for the identification of the five species of FBT were selected. The method could identify O. viverrini and C. sinensis eggs in feces, cercarial and metacercarial stages of O. viverrini, and metacercarial stage of H. pumilio and H. taichui. The detection limit was as little as a single O. viverrini or C. sinensis egg artificially inoculated in 100 mg of non-infected fecal sample (equivalent to 10 eggs per gram), indicating highly sensitivity. The method was found to be superior to the traditional microscopy method and was more rapid than Sanger DNA sequencing. Conclusions DNA pyrosequencing-based identification is a valuable tool for differentiating O. viverrini and other Opisthorchis-like eggs, and can be applied to epidemiological studies and for molecular taxonomic investigation of FBT in endemic areas. PMID:24589167

  8. Current and future trends in fecal source tracking and deployment in the Lake Taihu Region of China

    NASA Astrophysics Data System (ADS)

    Hagedorn, Charles; Liang, Xinqiang

    The emerging discipline of microbial and/or chemical source tracking (collectively termed fecal source tracking (FST)) is being used to identify origins of fecal contamination in polluted waters in many countries around the world. FST has developed rapidly because standard methods of measuring contamination in water by enumerating fecal indicator bacteria (FIB) such as fecal coliforms and enterococci do not identify the sources of the contamination. FST is an active area of research and development in both the academic and private sectors and includes: Developing and testing new microbial and chemical FST methods. Determining the geographic application and animal host ranges of existing and emerging FST techniques. Conducting experimental comparisons of FST techniques. Combining direct monitoring of human pathogens associated with waterborne outbreaks and zoonotic pathogens responsible for infections among people, wildlife, or domesticated animals with the use of FST techniques. Applying FST to watershed analysis and coastal environments. Designing appropriate statistical and probability analysis of FST data and developing models for mass loadings of host-specific fecal contamination. This paper includes a critical review of FST with emphasis on the extent to which methods have been tested (especially in comparison with other methods and/or with blind samples), which methods are applicable to different situations, their shortcomings, and their usefulness in predicting public health risk or pathogen occurrence. In addition, the paper addresses the broader question of whether FST and fecal indicator monitoring is the best approach to regulate water quality and protect human health. Many FST methods have only been tested against sewage or fecal samples or isolates in laboratory studies (proof of concept testing) and/or applied in field studies where the “real” answer is not known, so their comparative performance and accuracy cannot be assessed. For FST to be

  9. Fecal corticoid monitoring in whooping cranes (Grus americana) undergoing reintroduction

    USGS Publications Warehouse

    Hartup, B.K.; Olsen, G.H.; Czekala, N.M.

    2005-01-01

    We used radioimmunoassay to determine fecal corticoid concentrations and assess potential stress in 10 endangered whooping cranes (Grus americana) undergoing reintroduction to the wild. Fecal samples were collected shortly after hatching at a captive facility in Maryland, during field training in Wisconsin, and throughout a human-led migration to Florida. After a 14-day decline following hatching, fecal corticoid concentrations stabilized at baseline levels for the duration of the captive period, despite exposure to potentially stressful stimuli. Shipment of the cranes to the field training site was correlated with an eight- to 34-fold increase in fecal corticoid concentrations, which returned to baseline levels within 1 week. Increases were positively correlated with age but not body weight at the time of shipping. Fecal corticoid concentrations during the training period increased slightly and exhibited greater variation than levels observed at the captive facility, but were well within expected norms based on previous studies. Fecal corticoid concentrations increased twofold following premigration physical examinations and placement of radiotransmitters, and persisted for up to 4 days before they returned to baseline levels. Though fecal corticoid concentrations and variation during the migration period were similar to training levels, there was an overall decline in fecal corticoid concentrations during the artificial migration. Acute stressors, such as capture, restraint, and severe storms, were associated with stress responses by the cranes that varied in accordance with lasting physical or psychological stimuli. The overall reintroduction process of costume-rearing, ultralight aircraft habituation, training, and artificial migration was not associated with elevations in fecal corticoid concentrations suggestive of chronic stress. ?? 2005 Wiley-Liss, Inc.

  10. Fecal corticoid monitoring in whooping cranes (Grus americana) undergoing reintroduction

    USGS Publications Warehouse

    Hartup, Barry K.; Olsen, Glenn H.; Czekala, Nancy M.

    2005-01-01

    We used radioimmunoassay to determine fecal corticoid concentrations and assess potential stress in 10 endangered whooping cranes (Grus americana) undergoing reintroduction to the wild. Fecal samples were collected shortly after hatching at a captive facility in Maryland, during field training in Wisconsin, and throughout a human-led migration to Florida. After a 14-day decline following hatching, fecal corticoid concentrations stabilized at baseline levels for the duration of the captive period, despite exposure to potentially stressful stimuli. Shipment of the cranes to the field training site was correlated with an eight- to 34-fold increase in fecal corticoid concentrations, which returned to baseline levels within 1 week. Increases were positively correlated with age but not body weight at the time of shipping. Fecal corticoid concentrations during the training period increased slightly and exhibited greater variation than levels observed at the captive facility, but were well within expected norms based on previous studies. Fecal corticoid concentrations increased twofold following premigration physical examinations and placement of radiotransmitters, and persisted for up to 4 days before they returned to baseline levels. Though fecal corticoid concentrations and variation during the migration period were similar to training levels, there was an overall decline in fecal corticoid concentrations during the artificial migration. Acute stressors, such as capture, restraint, and severe storms, were associated with stress responses by the cranes that varied in accordance with lasting physical or psychological stimuli. The overall reintroduction process of costume-rearing, ultralight aircraft habituation, training, and artificial migration was not associated with elevations in fecal corticoid concentrations suggestive of chronic stress.

  11. Trends in Human Fecal Carriage of Extended-Spectrum β-Lactamases in the Community: Toward the Globalization of CTX-M

    PubMed Central

    Burdet, Charles; Chachaty, Elisabeth; Andremont, Antoine

    2013-01-01

    SUMMARY In the last 10 years, extended-spectrum β-lactamase-producing enterobacteria (ESBL-E) have become one of the main challenges for antibiotic treatment of enterobacterial infections, largely because of the current CTX-M enzyme pandemic. However, most studies have focused on hospitalized patients, though today it appears that the community is strongly affected as well. We therefore decided to devote our investigation to trends in ESBL-E fecal carriage rates and comprehensively reviewed data from studies conducted on healthy populations in various parts of the world. We show that (i) community ESBL-E fecal carriage, which was unknown before the turn of the millennium, has since increased significantly everywhere, with developing countries being the most affected; (ii) intercontinental travel may have emphasized and globalized the issue; and (iii) CTX-M enzymes, especially CTX-M-15, are the dominant type of ESBL. Altogether, these results suggest that CTX-M carriage is evolving toward a global pandemic but is still insufficiently described. Only a better knowledge of its dynamics and biology will lead to further development of appropriate control measures. PMID:24092853

  12. No difference in fecal levels of bacteria or short chain fatty acids in humans, when consuming fruit juice beverages containing fruit fiber, fruit polyphenols, and their combination.

    PubMed

    Wallace, Alison J; Eady, Sarah L; Hunter, Denise C; Skinner, Margot A; Huffman, Lee; Ansell, Juliet; Blatchford, Paul; Wohlers, Mark; Herath, Thanuja D; Hedderley, Duncan; Rosendale, Douglas; Stoklosinski, Halina; McGhie, Tony; Sun-Waterhouse, Dongxiao; Redman, Claire

    2015-01-01

    This study examined the effect of a Boysenberry beverage (750 mg polyphenols), an apple fiber beverage (7.5 g dietary fiber), and a Boysenberry plus apple fiber beverage (750 mg polyphenols plus 7.5 g dietary fiber) on gut health. Twenty-five individuals completed the study. The study was a placebo-controlled crossover study, where every individual consumed 1 of the 4 treatments in turn. Each treatment phase was 4-week long and was followed by a 2-week washout period. The trial beverages were 350 g taken in 2 doses every day (ie, 175 mL taken twice daily). The hypothesis for the study was that the combination of polyphenols and fiber would have a greater benefit on gut health than the placebo product or the fiber or polyphenols on their own. There were no differences in fecal levels of total bacteria, Bacteroides-Prevotella-Porphyromonas group, Bifidobacteriumspecies, Clostridium perfringens, or Lactobacillus species among any of the treatment groups. Fecal short chain fatty acid concentrations did not vary among treatment groups, although prostaglandin E2 concentrations were higher after consumption of the Boysenberry juice beverage. No significant differences were found in quantitative measures of gut health between the Boysenberry juice beverage, the apple fiber beverage, the Boysenberry juice plus apple fiber beverage, and the placebo beverage.

  13. Evaluation of fecal contamination by human and ruminant sources in upper Fountain Creek, Colorado, 2007-2008, by using multiple lines of evidence:

    USGS Publications Warehouse

    Stoeckel, Donald

    2011-01-01

    Fountain Creek is a high-gradient stream on the Front Range of the Rocky Mountains in Colorado. The headwaters of Fountain Creek drain Pikes Peak, a major destination for tourism. Fountain Creek is a drinking-water source for the City of Colorado Springs, Colorado, and is used for irrigation, recreation, and other purposes between Colorado Springs and the confluence with the Arkansas River at Pueblo, Colorado. In 2008, Fountain Creek was placed on the Colorado 303(d) list of impaired streams because of fecal contamination. Colorado uses a 30-day geometric mean standard of 126 Escherichia coli per 100 milliliters as its management goal for recreational waters. The objective of this study was to identify major sources of Escherichia coli in upper Fountain Creek during exceedances of the State recreational water standard. To meet this objective, a new approach was developed and tested that uses genetic marker analysis for microbial source tracking, along with other information, to evaluate potential contributions of fecal contamination from various sources.

  14. Trends in human fecal carriage of extended-spectrum β-lactamases in the community: toward the globalization of CTX-M.

    PubMed

    Woerther, Paul-Louis; Burdet, Charles; Chachaty, Elisabeth; Andremont, Antoine

    2013-10-01

    In the last 10 years, extended-spectrum β-lactamase-producing enterobacteria (ESBL-E) have become one of the main challenges for antibiotic treatment of enterobacterial infections, largely because of the current CTX-M enzyme pandemic. However, most studies have focused on hospitalized patients, though today it appears that the community is strongly affected as well. We therefore decided to devote our investigation to trends in ESBL-E fecal carriage rates and comprehensively reviewed data from studies conducted on healthy populations in various parts of the world. We show that (i) community ESBL-E fecal carriage, which was unknown before the turn of the millennium, has since increased significantly everywhere, with developing countries being the most affected; (ii) intercontinental travel may have emphasized and globalized the issue; and (iii) CTX-M enzymes, especially CTX-M-15, are the dominant type of ESBL. Altogether, these results suggest that CTX-M carriage is evolving toward a global pandemic but is still insufficiently described. Only a better knowledge of its dynamics and biology will lead to further development of appropriate control measures.

  15. Identification of Genotype 3 Hepatitis E Virus (HEV) in Serum and Fecal Samples from Pigs in Thailand and Mexico, Where Genotype 1 and 2 HEV Strains Are Prevalent in the Respective Human Populations

    PubMed Central

    Cooper, K.; Huang, F. F.; Batista, L.; Rayo, C. D.; Bezanilla, J. C.; Toth, T. E.; Meng, X. J.

    2005-01-01

    Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important public health concern in many developing countries. Increasing evidence indicates that hepatitis E is a zoonotic disease. There exist four major genotypes of HEV, and HEV isolates identified in samples from pigs belong to either genotype 3 or 4. Genotype 1 and 2 HEVs are found exclusively in humans. To determine whether genotype 1 and 2 HEVs also exist in pigs, a universal reverse transcription-PCR assay that is capable of detecting all four HEV genotypes was used to test for the presence of HEV RNA in serum and/or fecal samples from pigs in Thailand, where genotype 1 human HEV is prevalent, and from pigs in Mexico, where genotype 2 human HEV was epidemic. In Thailand, swine HEV RNA was detected in sera from 10/26 pigs of 2 to 4 months of age but not in sera from 50 pigs of other ages. In Mexico, swine HEV RNA was detected in 8/125 sera and 28/92 fecal samples from 2- to 4-month-old pigs. Antibodies to swine HEV were also detected in about 81% of the Mexican pigs. A total of 44 swine HEV isolates were sequenced for the open reading frame 2 gene region. Sequence analyses revealed that all swine HEV isolates identified in samples from pigs in Thailand and Mexico belong to genotype 3. Phylogenetic analyses revealed that minor branches associated with geographic origin exist among the swine HEV isolates. The results indicated that genotype 1 or 2 swine HEV does not exist in pigs from countries where the respective human HEV genotype 1 or 2 is prevalent. It is likely that only genotype 3 and 4 HEV strains have zoonotic potential. PMID:15814985

  16. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other

  17. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution

    SciTech Connect

    Calderon-Garciduenas, L.; Osnaya-Brizuela, N.; Ramirez-Martinez, L.

    1996-02-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p>0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 {+-}8.34% in the first week to 67.29 {+-}2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be evaluated in ozone-exposed individuals. 43 refs., 5 figs., 4 tabs.

  18. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    PubMed

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  19. Surgical Management for Fecal Incontinence

    PubMed Central

    Anandam, Joselin L.

    2014-01-01

    Fecal incontinence is a socially debilitating condition that can lead to social isolation, loss of self-esteem and self-confidence, and depression in an otherwise healthy person. After the appropriate clinical evaluation and diagnostic testing, medical management is initially instituted to treat fecal incontinence. Once medical management fails, there are a few surgical procedures that can be considered. This article is devoted to the various surgical options for fecal incontinence including the history, technical details, and studies demonstrating the complication and success rate. PMID:25320569

  20. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  1. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    EPA Science Inventory

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  2. EVALUATION OF THE USE OF DIFFERENT ANTIBIOTICS IN THE DIRECT VIABLE COUNT METHOD TO DETECT FECAL ENTEROCOCCI

    EPA Science Inventory

    The detection of fecal pollution is performed via culturing methods in spite of the fact that culturable counts can severely underestimate the densities of fecal microorganisms. One approach that has been used to enumerate bacteria is the direct viable count method (DVC). The ob...

  3. Fecal Microbial Therapy – Promises and Pitfalls

    PubMed Central

    Merenstein, Daniel; El-Nachef, Najwa; Lynch, Susan V.

    2015-01-01

    A rapidly-expanding range of diverse human diseases are now associated with perturbations to the gastrointestinal microbiome. Fecal microbial transfer (FMT) has been used with high rates of efficacy to treat gastrointestinal microbiome perturbation associated with recurrent Clostridium difficile infection, and is now being considered for other indications. Here we discuss the gut microbiome, review published and on-going studies using FMT as a treatment modality for human disease, consider the regulatory aspects of FMT and outline some factors that should be considered in cases where this therapeutic strategy is being contemplated. PMID:24796803

  4. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  5. Quantifying the human health benefits of curbing air pollution in Shanghai.

    PubMed

    Li, Jia; Guttikunda, Sarath K; Carmichael, Gregory R; Streets, David G; Chang, Young-Soo; Fung, Virginia

    2004-01-01

    Urban development in the mega-cities of Asia has caused detrimental effects on the human health of its inhabitants through air pollution. However, averting these health damages by investing in clean energy and industrial technologies and measures can be expensive. Many cities do not have the capital to make such investments or may prefer to invest that capital elsewhere. In this article, we examine the city of Shanghai, China, and perform an illustrative cost/benefit analysis of air pollution control. Between 1995 and 2020 we expect that Shanghai will continue to grow rapidly. Increased demands for energy will cause increased use of fossil fuels and increased emissions of air pollutants. In this work, we examine emissions of particles smaller than 10 microm in diameter (PM10), which have been associated with inhalation health effects. We hypothesize the establishment of a new technology strategy for coal-fired power generation after 2010 and a new industrial coal-use policy. The health benefits of pollution reduction are compared with the investment costs for the new strategies. The study shows that the benefit-to-cost ratio is in the range of 1-5 for the power-sector initiative and 2-15 for the industrial-sector initiative. Thus, there appear to be considerable net benefits for these strategies, which could be very large depending on the valuation of health effects in China today and in the future. This study therefore provides economic grounds for supporting investments in air pollution control in developing cities like Shanghai.

  6. Teplice program--the impact of air pollution on human health.

    PubMed Central

    Srám, R J; Benes, I; Binková, B; Dejmek, J; Horstman, D; Kotĕsovec, F; Otto, D; Perreault, S D; Rubes, J; Selevan, S G; Skalík, I; Stevens, R K; Lewtas, J

    1996-01-01

    The aim of the Teplice Program is to investigate and assess the impact of air pollution on the health of the population in the district of Teplice, Czech Republic. Characterization of the air pollutants demonstrated unusually high concentrations during winter inversions of fine particles dominated by acidic sulfates, genotoxic organic compounds, and toxic trace elements. The major source of airborne fine particles is the burning of coal for heating and power. Human exposure and biomarker studies demonstrated large seasonal variations in air pollution within the Teplice District and higher seasonal average pollution levels than the comparative district, Prachatice. Personal exposures to fine particles and organic carcinogens [e.g., polycyclic aromatic hydrocarbons (PAH)] were correlated with excretion of PAH metabolites in urine, several trace metals in blood, and DNA adducts in white blood cells. Respiratory and neurobehavioral studies of school children were conducted using questionnaires and clinical measures. A significantly higher prevalence of adverse respiratory symptoms and decreased lung function were found in the Teplice district than in Prachatice. The neurobehavioral studies indicated significantly higher teacher referrals for clinical assessment in Teplice, but the majority of objective performance measures did not differ. Reproductive studies were conducted in both males and females. A study of the effects of exposure on pregnancy and birth found an excess prevalence of low birth weight and premature births in Teplice; these adverse effects were more common in infants conceived in the winter and whose mothers were smokers. Based on questionnaires and medical examination, the reproductive development of young men was not different between districts and seasons, however, measures of semen quality suggest that exposure to high levels of air pollution are associated with transient decrements in semen quality. PMID:8879999

  7. Aquatic environments polluted with antibiotics and heavy metals: a human health hazard.

    PubMed

    Martins, Vinicius Vicente; Zanetti, Maria Olívia Barboza; Pitondo-Silva, André; Stehling, Eliana Guedes

    2014-05-01

    Aquatic environments often receive wastewater containing pollutants such as antibiotics and heavy metals from hospital sewage, as well as contaminants from soil. The presence of these pollutants can increase the rate of exchange of resistant genes between environmental and pathogenic bacteria, which can make the treatment of various types of bacterial infections in humans and animals difficult, in addition to causing environmental problems such as ecological risk. In this study, two tetracycline-resistant Pseudomonas aeruginosa (EW32 and EW33), isolated from aquatic environments close to industries and a hospital in southeastern Brazil, were investigated regarding the possible association between tetracycline and heavy metal resistance. The isolate EW32 presented a conjugative plasmid with coresistance to tetracycline and copper, reinforcing the concern that antibiotic resistance by acquisition of plasmids can be induced by the selective pressure of heavy metals in the environment. PMID:24448880

  8. Human teratogenic and mutagenic markers in monitoring about point sources of pollution

    SciTech Connect

    Hook, E.B.

    1981-06-01

    For most pollutants a full range of short-term adverse reproductive outcomes should be considered as possible markers in monitoring populations. These include sex ratio, birthweight, intrauterine growth retardations, neonatal motality, birth defects manifest at birth or very shortly thereafter, embryonic and fetal deaths (EFD), germinal chromosome abnormalities in EFD and in livebirths, specific locus mutations detectable at birth, and indicators of somatic mutation including chromosome breakage and sister chromatid exchange. It is suggested (in the absence of a defined expected effect) that the highest priority be given to study of rates of EFD and of somatic chromosome rearrangement. Where possible, data on reproductive and mutagenic outcomes in the potential target population should be sought systematically before a putative pollution source comes into operation. Reference data on human mutagenic and teratogenic outcomes are presented.

  9. Evaluation of Bacteroides fragilis GB-124 bacteriophages as novel human-associated faecal indicators in the United States

    EPA Science Inventory

    Phages infecting human-associated Bacteroides fragilis (GB-124 phages) have been employed in the European Union (EU) to identify human fecal pollution, but their utility for U.S. was unclear. Primary sewage effluent samples were collected seasonally from seven wastewater treatme...

  10. Persistent organic pollutants (POPs) in human milk: a biomonitoring study in rural areas of Flanders (Belgium).

    PubMed

    Croes, K; Colles, A; Koppen, G; Govarts, E; Bruckers, L; Van de Mieroop, E; Nelen, V; Covaci, A; Dirtu, A C; Thomsen, C; Haug, L S; Becher, G; Mampaey, M; Schoeters, G; Van Larebeke, N; Baeyens, W

    2012-11-01

    To collect information on the concentrations of persistent organic pollutants (POPs) in the rural areas in Flanders (Belgium), 84 breastfeeding mothers were recruited in rural communities in East and West Flanders and Flemish Brabant in 2009-2010. Polychlorinated biphenyl (PCB) congeners, organochlorine pesticides, brominated flame retardants, perfluorinated compounds, polychlorinated dibenzodioxines and dibenzofurans, and dioxin-like PCBs were measured in individual milk samples and in a pooled milk sample, while some additional pollutants were only measured in the pooled sample. For most pollutants, the concentrations in this study were lower or comparable to the concentrations measured in the pooled Belgian sample of the WHO human milk study of 2006, except for the pesticides dichlorodiphenyltrichloroethane DDT (+25% for ΣDDT and metabolites) and trans-nonachlor (+94%), and for the brominated flame retardant hexachlorocyclododecane HBCD (+153%). Perfluorinated compounds were for the first time determined in human milk samples from Belgium and the concentrations were comparable to those from other European countries. Also, interesting associations were found between the concentrations of POPs measured in human milk and personal characteristics as well as dietary habits of the study population. PFOS en PFOA concentrations were significantly higher in milk of primiparous participants compared to mothers who gave birth to their second child. Lower brominated PBDE congeners increased with increasing BMI of the mothers (p=0.01 for BDE 47, p=0.02 for BDE 99 and p=0.02 for BDE 100). Participants consuming milk or dairy products daily had significant higher concentrations of ΣDDTs (p=0.03) and oxychlordane (p=0.047) in their human milk samples.

  11. Specific probiotics or 'fecal transplantation'.

    PubMed

    Kruis, Wolfgang

    2012-01-01

    The intestinal ecosystem consists mainly of the enteric flora and to a large extent determines intestinal but also extraintestinal health and disease. General alterations and specific molecular changes of intestinal bacteria cause local as well as systemic immune reactions. Nonantibiotic treatment of the enteric flora has a long tradition and spans a range of different interventions from nutrition to specific probiotics and complete fecal transplantation. When comparing therapy to specific probiotics and fecal transplantation, several aspects need to be considered, like biological consequences, safety and therapeutic evidence. The introduction of probiotics into therapy occurred more than hundred years ago. In contrast, experiences with fecal transplantation are more recent and more limited. Safety issues have not been definitively clarified. Because of the different biological activities of probiotics and fecal transplantation, it can be hypothesized that they may play different roles in the treatment of various diseases. More research is needed before the details, safety and therapeutic effects of bacteriotherapy for IBD become sufficiently clear.

  12. FECAL COLIFORM INCREASE AFTER CENTRIFUGATION

    EPA Science Inventory

    The Water Environment Research Foundation (WERF) recently published a report titled Examination of Reactivation and Regrowth of Fecal Coliforms in Anaerobically Digested Sludges. Seven full-scale publicly owned treatment facilities were sampled several times to determine if bacte...

  13. Modification by antioxidant supplementation of changes in human lung function associated with air pollutant exposure: A systematic review

    PubMed Central

    2011-01-01

    Background Outdoor air pollution, given its demonstrated negative effects on the respiratory system, is a growing public health concern worldwide, particularly in urban cities. Human exposure to pollutants such as ozone, nitrogen oxides, combustion-related particulate matter and oxides of sulfur is responsible for significant cardiopulmonary morbidity and mortality in both adults and children. Several antioxidants have shown an ability to partially attenuate the negative physiological and functional impacts of air pollutants. This study systematically presents current data on the potential benefits of antioxidant supplementation on lung function outcomes associated with air pollutant exposures in intact humans. Methods Electronic databases (MEDLINE, EMBASE, BIOSIS Previews, Web of Sciences, Environmental Sciences & Pollution Management and TOXNET) were systematically searched for all studies published up to April 2009. Search terms relating to the concepts of respiratory tract diseases, respiratory function tests, air pollution, and antioxidants were used. Data was systematically abstracted from original articles that satisfied selection criteria for inclusion. For inclusion, the studies needed to have evaluated human subjects, given supplemental antioxidants, under conditions of known levels of air pollutants with measured lung function before and after antioxidant administration and/or air pollution exposure. Selected studies were summarized and conclusions presented. Results Eight studies investigated the role of antioxidant supplementation on measured lung function outcomes after subject exposure to air pollutants under controlled conditions; 5 of these studies concluded that pollutant-induced airway hyper-responsiveness and diminution in lung function measurements were attenuated by antioxidant supplementation. The remaining five studies took place under ambient (uncontrolled) exposures and unanimously concluded that antioxidant supplementations attenuate the

  14. FECAL BACTERIA SOURCE TRACKING AND BACTEROIDES SPP. HOST SPECIES SPECIFICITY ANALYSIS

    EPA Science Inventory

    Point and non-point pollution sources of fecal pollution on a watershed adversely impact the quality of drinking source waters and recreational waters. States are required to develop total maximum daily loads (TMDLs) and devise best management practices (BMPs) to reduce the po...

  15. Fecal coliform-related bacterial and coliphage populations in five lakes of southeastern Spain.

    PubMed

    Calvo, C; Gómez, M A; González-López, J

    1998-11-01

    Aerobic heterotrophic bacteria, fecal and total coliforms, fecal streptococci and coliphages were isolated from five protected lakes in the Antequera area of Spain over the time from January to March (1994-96). The water samples contained large number of heterotrophic bacteria (mean counts 0.2 to 5.0 x 10(7) cfu per 100 ml). Most of the lakes contained fecal streptococci and a relationship between streptococci and salinity of the water samples was established. Coliphages were isolated from lakes containing fecal coliform and these bacteria were taxonomically identified as E. coli. Coliform bacilli do not seem to be an adequate indicator of fecal pollution for these ephemeral small lakes. PMID:9880932

  16. Evaluation of gallium maltolate on fecal Salmonella shedding in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella is a major cause of foodborne illness in humans and causes over a third of all cases of gastroenteritis in the United States. Human foodborne outbreaks due to Salmonella have been traced to milk, beef, pork, and poultry. Fecal contamination of the carcass and hide is thought to be a maj...

  17. Persistence and Growth of Fecal Bacteroidales Assessed by Bromodeoxyuridine Immunocapture

    PubMed Central

    Walters, Sarah P.; Field, Katharine G.

    2006-01-01

    Extraintestinal growth of fecal bacteria can impair accurate assessment of watershed health. Anaerobic fecal bacteria belonging to the order Bacteroidales are attractive candidates for fecal source tracking because they have host-specific distributions and do not grow well in the presence of high oxygen concentrations. Growth of general and human-specific fecal Bacteroidales marker organisms in environmental samples (sewage) and persistence of the corresponding genetic markers were investigated using bromodeoxyuridine (BrdU) DNA labeling and immunocapture, followed by PCR detection. Background amplification of unlabeled controls occasionally occurred when a high number of PCR cycles was used. By using fluorescent detection of PCR products obtained after 15 cycles, which was determined to be quantitative, we enriched for BrdU-labeled DNA and did not detect unlabeled DNA. By using pure cultures of Bacteroides vulgatus, the ability of Bacteroidales bacteria to take up and incorporate BrdU into nascent DNA was confirmed. Fecal Bacteroidales organisms took up and incorporated BrdU into DNA during growth. In sewage incubated aerobically at the in situ temperature, Bacteroidales genetic marker sequences persisted for at least 24 h and Bacteroidales fecal bacteria grew for up to 24 h as well. Detection by PCR using a low, quantitative cycle number decreased the sensitivity of the assay such that we were unable to detect fecal Bacteroidales human-specific marker sequences in unlabeled or BrdU-labeled fractions, even when fluorescent detection was used. Using 30 PCR cycles with unlabeled fractions, human-specific Bacteroidales sequences were detected, and they persisted for up to 24 h in sewage. These data support the utility of BrdU labeling and immunocapture followed by length heterogeneity PCR or fluorescent detection using low numbers of PCR cycles. However, this method may not be sensitive enough to identify cells that are present at low densities in aquatic

  18. A MECHANISTIC MODEL OF RUNOFF-ASSOCIATED FECAL COLIFORM FATE AND TRANSPORT THROUGH A COASTAL LAGOON. (R828676C003)

    EPA Science Inventory

    Fecal coliform (FC) contamination in coastal waters is an ongoing public health problem worldwide. Coastal wetlands and lagoons are typically expected to protect coastal waters by attenuating watershed pollutants including FC bacteria. However, new evidence suggests that coast...

  19. Selected Persistent Organic Pollutants in Human Placental Tissue from the United States

    PubMed Central

    Jones, Rachael M.; Li, An; Stodgell, Christopher J.; Walker, Cheryl; Szabo, Sara; Leuthner, Steve; Durkin, Maureen S.; Moye, Jack; Miller, Richard K.

    2014-01-01

    Emerging and legacy environmental pollutants such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (DDE) are found in human placenta, indicating prenatal exposure, but data from the United States are sparse. We sought to determine concentrations of these compounds in human placentae as part of a formative research project conducted by the National Children’s Study Placenta Consortium. A total of 169 tissue specimens were collected at different time points post delivery from 42 human placentae at three U.S. locations, and analyzed by gas chromatography coupled with mass spectrometry following extraction using matrix solid phase dispersion. PBDEs, PCBs, and DDE were detected in all specimens. The concentrations of 10 PBDEs (∑10PBDEs), 32 PCBs (∑32PCBs) and p,p’-DDE were 43–1,723, 76–856 and 10–1,968 pg/g wet weight, respectively, in specimens collected shortly after delivery. Significant geographic differences in PBDEs were observed, with higher concentrations in placentae collected in Davis, CA than in those from Rochester, NY or Milwaukee, WI. We combined these with other published data and noted first-order declining trends for placental PCB and DDE concentrations over the past decades, with half-lives of about 5 and 8 years, respectively. The effect of time to tissue collection from refrigerated placentae on measured concentrations of these three classes of persistent organic pollutants was additionally examined, with no significant effect observed up to 120 hours. The results of this work indicate that widespread prenatal exposure to persistent organic pollutants in the United States continues. PMID:24485817

  20. The head dome: A simplified method for human exposures to inhaled air pollutants

    SciTech Connect

    Bowes, S.M. III; Frank, R.; Swift, D.L. )

    1990-05-01

    Acute controlled exposures of human subjects to air pollutants are customarily carried out with whole-body chambers, masks, or mouthpieces. The use of these methods may be limited by cost or technical considerations. To permit a study involving a highly unstable pollutant, artificial acid fog, administered to subjects during natural breathing, a head-only exposure chamber, called a head dome, was developed. It consists of a transparent cylinder with a neck seal which fits over the subject's head and rests lightly on his shoulders. The head dome does not constrain the upper airways or impede exercise on a bicycle ergometer. Ventilation can be monitored accurately and unobtrusively with a pneumotachograph at the exhaust port of the dome. A thermocouple may be used to monitor the onset and persistence of oronasal breathing. For short-term exposures to unstable or reactive pollutants lasting up to several hours, the head dome is an effective alternative to a whole-body chamber and probably superior to a face mask or mouthpiece.

  1. [Femoral bone morphogenesis in human fetuses in the area of environmental fluoride pollution].

    PubMed

    Shalina, T I; Vasil'eva, L S

    2010-01-01

    The aim of this study was to determine the peculiarities of femoral bone osteogenesis in human fetuses in the areas with different levels of environmental pollution with fluoride compounds (the city of Irkutsk and the town of Shelekhov). The histological structure of femoral bones was studied in 70 fetuses aged 15-16, 19-20, 22-25 and 27-29 gestational weeks. Morphometric methods were used to evaluate the number of blood vessels per total area of epiphysis, the length of endochondral trabeculae, the thickness of hypertrophic and columnar cartilage zones, diaphysis wall and its trabeculae thickness, the thickness of endochondral trabeculae merging with the diaphysis wall, and of the bone growing on the epiphysis. It was found that in the city of Irkutzk, relatively remote from the pollution source, the processes of osteogenesis and osteoresorption are balanced and are characterized by the prevalence of osteoblastic activity over osteoclastic activity, ensuring the active bone growth. During weeks 15-22, the bones are actively growing in length, while during weeks 22-29 they grow mainly in width. In the town of Shelekhov, located closely to the pollution source, the growth of bones in both length and width, is delayed. The bone growth was active till week 16, however, during weeks 18-29, osteoresorption prevailed over the osteosynthesis, the bone thickness decreased, while the activity of their growth in length remained reduced. PMID:20593589

  2. Longitudinal Poisson regression to evaluate the epidemiology of Cryptosporidium, Giardia, and fecal indicator bacteria in coastal California wetlands.

    PubMed

    Hogan, Jennifer N; Daniels, Miles E; Watson, Fred G; Conrad, Patricia A; Oates, Stori C; Miller, Melissa A; Hardin, Dane; Byrne, Barbara A; Dominik, Clare; Melli, Ann; Jessup, David A; Miller, Woutrina A

    2012-05-01

    Fecal pathogen contamination of watersheds worldwide is increasingly recognized, and natural wetlands may have an important role in mitigating fecal pathogen pollution flowing downstream. Given that waterborne protozoa, such as Cryptosporidium and Giardia, are transported within surface waters, this study evaluated associations between fecal protozoa and various wetland-specific and environmental risk factors. This study focused on three distinct coastal California wetlands: (i) a tidally influenced slough bordered by urban and agricultural areas, (ii) a seasonal wetland adjacent to a dairy, and (iii) a constructed wetland that receives agricultural runoff. Wetland type, seasonality, rainfall, and various water quality parameters were evaluated using longitudinal Poisson regression to model effects on concentrations of protozoa and indicator bacteria (Escherichia coli and total coliform). Among wetland types, the dairy wetland exhibited the highest protozoal and bacterial concentrations, and despite significant reductions in microbe concentrations, the wetland could still be seen to influence water quality in the downstream tidal wetland. Additionally, recent rainfall events were associated with higher protozoal and bacterial counts in wetland water samples across all wetland types. Notably, detection of E. coli concentrations greater than a 400 most probable number (MPN) per 100 ml was associated with higher Cryptosporidium oocyst and Giardia cyst concentrations. These findings show that natural wetlands draining agricultural and livestock operation runoff into human-utilized waterways should be considered potential sources of pathogens and that wetlands can be instrumental in reducing pathogen loads to downstream waters.

  3. Longitudinal Poisson Regression To Evaluate the Epidemiology of Cryptosporidium, Giardia, and Fecal Indicator Bacteria in Coastal California Wetlands

    PubMed Central

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Conrad, Patricia A.; Oates, Stori C.; Miller, Melissa A.; Hardin, Dane; Byrne, Barbara A.; Dominik, Clare; Melli, Ann; Jessup, David A.

    2012-01-01

    Fecal pathogen contamination of watersheds worldwide is increasingly recognized, and natural wetlands may have an important role in mitigating fecal pathogen pollution flowing downstream. Given that waterborne protozoa, such as Cryptosporidium and Giardia, are transported within surface waters, this study evaluated associations between fecal protozoa and various wetland-specific and environmental risk factors. This study focused on three distinct coastal California wetlands: (i) a tidally influenced slough bordered by urban and agricultural areas, (ii) a seasonal wetland adjacent to a dairy, and (iii) a constructed wetland that receives agricultural runoff. Wetland type, seasonality, rainfall, and various water quality parameters were evaluated using longitudinal Poisson regression to model effects on concentrations of protozoa and indicator bacteria (Escherichia coli and total coliform). Among wetland types, the dairy wetland exhibited the highest protozoal and bacterial concentrations, and despite significant reductions in microbe concentrations, the wetland could still be seen to influence water quality in the downstream tidal wetland. Additionally, recent rainfall events were associated with higher protozoal and bacterial counts in wetland water samples across all wetland types. Notably, detection of E. coli concentrations greater than a 400 most probable number (MPN) per 100 ml was associated with higher Cryptosporidium oocyst and Giardia cyst concentrations. These findings show that natural wetlands draining agricultural and livestock operation runoff into human-utilized waterways should be considered potential sources of pathogens and that wetlands can be instrumental in reducing pathogen loads to downstream waters. PMID:22427504

  4. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance

    PubMed Central

    Halfwerk, Wouter; Slabbekoorn, Hans

    2015-01-01

    Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception. PMID:25904319

  5. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance.

    PubMed

    Halfwerk, Wouter; Slabbekoorn, Hans

    2015-04-01

    Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception.

  6. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  7. Comparison of Nested Polymerase Chain Reaction and Real-Time Polymerase Chain Reaction with Parasitological Methods for Detection of Strongyloides stercoralis in Human Fecal Samples.

    PubMed

    Sharifdini, Meysam; Mirhendi, Hossein; Ashrafi, Keyhan; Hosseini, Mostafa; Mohebali, Mehdi; Khodadadi, Hossein; Kia, Eshrat Beigom

    2015-12-01

    This study was performed to evaluate nested polymerase chain reaction (PCR) and real-time PCR methods for detection of Strongyloides stercoralis in fecal samples compared with parasitological methods. A total of 466 stool samples were examined by conventional parasitological methods (formalin ether concentration [FEC] and agar plate culture [APC]). DNA was extracted using an in-house method, and mitochondrial cytochrome c oxidase subunit 1 and 18S ribosomal genes were amplified by nested PCR and real-time PCR, respectively. Among 466 samples, 12.7% and 18.2% were found infected with S. stercoralis by FEC and APC, respectively. DNA of S. stercoralis was detected in 18.9% and 25.1% of samples by real-time PCR and nested PCR, respectively. Considering parasitological methods as the diagnostic gold standard, the sensitivity and specificity of nested PCR were 100% and 91.6%, respectively, and that of real-time PCR were 84.7% and 95.8%, respectively. However, considering sequence analyzes of the selected nested PCR products, the specificity of nested PCR is increased. In general, molecular methods were superior to parasitological methods. They were more sensitive and more reliable in detection of S. stercoralis in comparison with parasitological methods. Between the two molecular methods, the sensitivity of nested PCR was higher than real-time PCR.

  8. Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: implications for colonic fermentation of dietary fiber in humans.

    PubMed

    Mortensen, P B; Holtug, K; Rasmussen, H S

    1988-03-01

    An in vitro fecal incubation system was used to demonstrate how lactose, lactulose and monosaccharides (mainly constituents of dietary fiber) influence short-chain fatty acid production in colon. Short-chain fatty acids were formed from all mono- and disaccharides tested (except L-glucose): D-glucose, D-galactose, D-fructose, D-mannose, L-rhamnose, D-sorbitol, D-arabinose, D-xylose, D-ribose, D-galacturonate, D-glucuronate, lactose and lactulose. All saccharides increased acetate formation; propionate production was increased from rhamnose, arabinose, xylose, ribose, galacturonic and glucuronic acid, whereas the synthesis of butyrate was elevated in assays incubated with sorbitol, galacturonic and glucuronic acid, and to a lesser degree ribose. Isobutyrate, valerate, isovalerate and hexanoate were produced in increased amounts in assays incubated with albumin, but in fact decreased in many incubations with saccharides. It is speculated that saccharide fermentation always results in formation of acetate, and that the relative production of acetate, propionate and butyrate is related to the monosaccharide composition of dietary fiber available for colonic bacteria. However, the production of isobutyrate, valerate, isovalerate and hexanoate is probably not due to saccharide fermentation, but is rather of polypeptide origin.

  9. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed. PMID:26320879

  10. Estimates of Nitrogen, Phosphorus, Biochemical Oxygen Demand, and Fecal Coliforms Entering the Environment Due to Inadequate Sanitation Treatment Technologies in 108 Low and Middle Income Countries.

    PubMed

    Fuhrmeister, Erica R; Schwab, Kellogg J; Julian, Timothy R

    2015-10-01

    Understanding the excretion and treatment of human waste (feces and urine) in low and middle income countries (LMICs) is necessary to design appropriate waste management strategies. However, excretion and treatment are often difficult to quantify due to decentralization of excreta management. We address this gap by developing a mechanistic, stochastic model to characterize phosphorus, nitrogen, biochemical oxygen demand (BOD), and fecal coliform pollution from human excreta for 108 LMICs. The model estimates excretion and treatment given three scenarios: (1) use of existing sanitation systems, (2) use of World Health Organization-defined "improved sanitation", and (3) use of best available technologies. Our model estimates that more than 10(9) kg/yr each of phosphorus, nitrogen and BOD are produced. Of this, 22(19-27)%, 11(7-15)%, 17(10-23)%, and 35 (23-47)% (mean and 95% range) BOD, nitrogen, phosphorus, and fecal coliforms, respectively, are removed by existing sanitation systems. Our model estimates that upgrading to "improved sanitation" increases mean removal slightly to between 17 and 53%. Under the best available technology scenario, only approximately 60-80% of pollutants are treated. To reduce impact of nutrient and microbial pollution on human and environmental health, improvements in both access to adequate sanitation and sanitation treatment efficiency are needed.

  11. Clearing the air: a review of the effects of particulate matter air pollution on human health.

    PubMed

    Anderson, Jonathan O; Thundiyil, Josef G; Stolbach, Andrew

    2012-06-01

    The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose

  12. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  13. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

    PubMed

    Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  14. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    PubMed Central

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  15. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

    PubMed

    Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-08

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  16. Quantitative Microbial Risk Assessment of Freshwater Impacted by Animal Fecal Material (proceedings)

    EPA Science Inventory

    We evaluated the potential for human illness from a hypothetical recreational exposure to freshwater that was impacted by land-applied, agricultural animal fecal material. The scenario included 1) fresh cattle manure, pig slurry, or chicken litter (fecal material) land-applied, a...

  17. Development and Testing of Novel Canine Fecal Source-Identification Assays

    EPA Science Inventory

    The extent to which dogs contribute to aquatic fecal contamination is unknown despite the potential for zoonotic transfer of harmful human pathogens. Recent method comparison studies have shown that available Bacteroidales 16S rRNA-based methods for the detection of canine fecal ...

  18. Biodetection of potential genotoxic pollutants entering the human food chain through ashes used in livestock diets.

    PubMed

    Sanchez-Vicente, Laura; Herraez, Elisa; Briz, Oscar; Nogales, Rogelio; Molina-Alcaide, Eduarda; Marin, Jose J G

    2016-08-15

    Ash derived from energy generation is used as a source of minerals in livestock feeds. The microbial biosensor recApr-Luc2 was built to detect genotoxic hazard in recycled ash. Escherichia coli SOS gene (recA, lexA, dinI and umuC) expression in response to cisplatin-induced DNA damage led to the selection of the recA promoter. The biosensor required functional RecA expression to respond to genotoxic heavy metals (Cr>Cd≈Pb), and polluted ash induced a strong recApr-Luc2 response. In human liver and intestinal cells, heavy metals induced acute toxicity (Cr>Cd>Pb) at concentrations sufficient to activate recApr-Luc2. Cytostatic effects, including genotoxicity, were cell- and metal-dependent, apart from Cr. In agreement with the recApr-Luc2 bioassay, Cr had the strongest effect in all cells. In conclusion, recApr-Luc2 could be useful for evaluating the genotoxic risk of pollutants present in ash that might be concentrated in animal products and, thus, entering the human food chain. PMID:27006217

  19. Biodetection of potential genotoxic pollutants entering the human food chain through ashes used in livestock diets.

    PubMed

    Sanchez-Vicente, Laura; Herraez, Elisa; Briz, Oscar; Nogales, Rogelio; Molina-Alcaide, Eduarda; Marin, Jose J G

    2016-08-15

    Ash derived from energy generation is used as a source of minerals in livestock feeds. The microbial biosensor recApr-Luc2 was built to detect genotoxic hazard in recycled ash. Escherichia coli SOS gene (recA, lexA, dinI and umuC) expression in response to cisplatin-induced DNA damage led to the selection of the recA promoter. The biosensor required functional RecA expression to respond to genotoxic heavy metals (Cr>Cd≈Pb), and polluted ash induced a strong recApr-Luc2 response. In human liver and intestinal cells, heavy metals induced acute toxicity (Cr>Cd>Pb) at concentrations sufficient to activate recApr-Luc2. Cytostatic effects, including genotoxicity, were cell- and metal-dependent, apart from Cr. In agreement with the recApr-Luc2 bioassay, Cr had the strongest effect in all cells. In conclusion, recApr-Luc2 could be useful for evaluating the genotoxic risk of pollutants present in ash that might be concentrated in animal products and, thus, entering the human food chain.

  20. Current Management of Fecal Incontinence

    PubMed Central

    Wang, Jennifer Y; Abbas, Maher A

    2013-01-01

    Objective: To review the management of fecal incontinence, which affects more than 1 in 10 people and can have a substantial negative impact on quality of life. Methods: The medical literature between 1980 and April 2012 was reviewed for the evaluation and management of fecal incontinence. Results: A comprehensive history and physical examination are required to help understand the severity and type of symptoms and the cause of incontinence. Treatment options range from medical therapy and minimally invasive interventions to more invasive procedures with varying degrees of morbidity. The treatment approach must be tailored to each patient. Many patients can have substantial improvement in symptoms with dietary management and biofeedback therapy. For younger patients with large sphincter defects, sphincter repair can be helpful. For patients in whom biofeedback has failed, other options include injectable medications, radiofrequency ablation, or sacral nerve stimulation. Patients with postdefecation fecal incontinence and a rectocele can benefit from rectocele repair. An artificial bowel sphincter is reserved for patients with more severe fecal incontinence. Conclusion: The treatment algorithm for fecal incontinence will continue to evolve as additional data become available on newer technologies. PMID:24355892

  1. Human intake fraction of toxic pollutants: a model comparison between caltox and uses-lca

    SciTech Connect

    Huijbregts, Mark A.J.; Geelen, Loes M.J.; Hertwich, Edgar G.; McKone, Thomas E.; van de Meent, Dik

    2004-01-06

    In Life Cycle Assessment and Comparative Risk Assessment potential human exposure to toxic pollutants can be expressed as the human intake fraction (iF), representing the fraction of the quantity emitted that enters the human population. To assess model uncertainty in the human intake fraction, ingestion and inhalation iFs of 367 substances emitted to air and freshwater were calculated with two commonly applied multi-media fate and exposure models, CalTOX and USES-LCA. Comparison of the model outcomes reveal that uncertainty in the ingestion iFs was up to a factor of 70. The uncertainty in the inhalation iFs was up to a factor of 865,000. The comparison showed that relatively few model differences account for the uncertainties found. An optimal model structure in the calculation of human intake fractions can be achieved by including (1) rain and no-rain scenarios, (2) a continental sea water compartment, (3) drinking water purification, (4) pH-correction of chemical properties, and (5) aerosol-associated deposition on plants. Finally, vertical stratification of the soil compartment combined with a chemical-dependent soil depth may be considered in future intake fraction calculations.

  2. Fighting ambient air pollution and its impact on health: from human rights to the right to a clean environment.

    PubMed

    Guillerm, N; Cesari, G

    2015-08-01

    Clean air is one of the basic requirements of human health and well-being. However, almost nine out of 10 individuals living in urban areas are affected by air pollution. Populations living in Africa, South-East Asia, and in low- and middle-income countries across all regions are the most exposed. Exposure to outdoor air pollution ranks as the ninth leading risk factor for mortality, killing 3.2 million people each year, especially young children, the elderly, persons with lung or cardiovascular disease, those who work or exercise outdoors and low-income populations. In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution as carcinogenic to humans, calling air pollution 'a major environmental health problem'. Human rights and environmental norms are powerful tools to combat air pollution and its impact on health. The dependence of human rights on environmental quality has been recognised in international texts and by human rights treaty bodies. The growing awareness of the environment has already yielded considerable legislative and regulatory output. However, the implementation of standards remains a pervasive problem. In the fight against violations of norms, citizens have a crucial role to play. We discuss the relevance of a yet to be proclaimed standalone right to a healthy environment.

  3. Evaluation of molecular- and culture-dependent MST markers to detect fecal contamination and indicate viral presence in good quality groundwater.

    PubMed

    Diston, D; Sinreich, M; Zimmermann, S; Baumgartner, A; Felleisen, R

    2015-06-16

    Microbial contamination of groundwater represents a significant health risk to resource users. Culture-dependent Bacteroides phage and molecular-dependent Bacteroidales 16S rRNA assays are employed in microbial source tracking (MST) studies globally, however little is known regarding how these important groups relate to each other in the environment and which is more suitable to indicate the presence of waterborne fecal pollution and human enteric viruses. This study addresses this knowledge gap by examining 64 groundwater samples from sites with varying hydrogeological properties using a MST toolbox containing two bacteriophage groups (phage infecting GB-124 and ARABA-84), and two Bacteroidales 16S rRNA markers (Hf183 and BacR); those were compared to fecal indicator bacteria, somatic coliphage, Bacteroidales 16S rRNA marker AllBac, four human enteric viruses (norovirus GI and II, enterovirus and group A rotavirus) and supplementary hydrogeological/chemical data. Bacteroidales 16S rRNA indicators offered a more sensitive assessment of both human-specific and general fecal contamination than phage indicators, but may overestimate the risk from enteric viral pathogens. Comparison with hydrogeological and land use site characteristics as well as auxiliary microbiological and chemical data proved the plausibility of the MST findings. Sites representing karst aquifers were of significantly worse microbial quality than those with unconsolidated or fissured aquifers, highlighting the vulnerability of these hydrogeological settings.

  4. Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study

    PubMed Central

    Hou, Lifang; Barupal, Jitendra; Zhang, Wei; Zheng, Yinan; Liu, Lei; Zhang, Xiao; Dou, Chang; McCracken, John P.; Díaz, Anaité; Motta, Valeria; Sanchez-Guerra, Marco; Wolf, Katherine Rose; Bertazzi, Pier Alberto; Schwartz, Joel D.; Wang, Sheng; Baccarelli, Andrea A.

    2015-01-01

    Background MicroRNAs (miRNAs) are post-transcriptional gene suppressors and potential mediators of environmental effects. In addition to human miRNAs, viral miRNAs expressed from latent viral sequences are detectable in human cells. Objective In a highly exposed population in Beijing, China, we evaluated the associations of particulate air pollution exposure on blood miRNA profiles. Methods The Beijing Truck Driver Air Pollution Study (BTDAS) included 60 truck drivers and 60 office workers. We investigated associations of short-term air pollution exposure, using measures of personal PM2.5 (particulate matter ≤ 2.5 μm) and elemental carbon (EC), and ambient PM10 (≤ 10 μm), with blood NanoString nCounter miRNA profiles at two exams separated by 1–2 weeks. Results No miRNA was significantly associated with personal PM2.5 at a false discovery rate (FDR) of 20%. Short-term ambient PM10 was associated with the expression of 12 miRNAs in office workers only (FDR < 20%). Short-term EC was associated with differential expression of 46 human and 7 viral miRNAs, the latter including 3 and 4 viral miRNAs in office workers and truck drivers, respectively. EC-associated miRNAs differed between office workers and truck drivers with significant effect modification by occupational group. Functional interaction network analysis suggested enriched cellular proliferation/differentiation pathways in truck drivers and proinflammation pathways in office workers. Conclusions Short-term EC exposure was associated with the expression of human and viral miRNAs that may influence immune responses and other biological pathways. Associations between EC exposure and viral miRNA expression suggest that latent viral miRNAs are potential mediators of air pollution–associated health effects. PM2.5/PM10 exposures showed no consistent relationships with miRNA expression. Citation Hou L, Barupal J, Zhang W, Zheng Y, Liu L, Zhang X, Dou C, McCracken JP, Díaz A, Motta V, Sanchez-Guerra M, Wolf

  5. CDC Study Finds Fecal Contamination in Pools

    MedlinePlus

    ... Communication (404) 639-3286 CDC study finds fecal contamination in pools A study of public pools done ... The E. coli is a marker for fecal contamination. Finding a high percentage of E. coli-positive ...

  6. Home Use Tests: Fecal Occult Blood

    MedlinePlus

    ... Procedures In Vitro Diagnostics Home Use Tests Fecal Occult Blood Share Tweet Linkedin Pin it More sharing ... test kit to measure the presence of hidden (occult) blood in your stool (feces). What is fecal ...

  7. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    NASA Astrophysics Data System (ADS)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  8. Pollution source analyses using 1-dimensional time series

    NASA Astrophysics Data System (ADS)

    Schaeffer, David J.; Corley, Charles; Chien, Harris

    1983-09-01

    Lake Holiday, a human-made recreational lake in northern Illinois, was threatened with closure due to high bacterial levels. A factorially designed experiment with multivatiate responses was developed to study and identify the main sources of pollution. Data on total coliform, fecal coliform, fecal streptococci, dissolved oxygen, pH, ammonia-N, total phosphorus, nitrate/nitrite-N were analyzed using regression models describing dam spillway loads as a function of source loads and time. The results suggest that the relationships among source, time, and load are complex, even though only two sources account for most of the lake's loading Stevens Brook, which receives the discharge from the Somonauk Sewage Treatment Plant, and Somonauk Creek, which is the major drainage, contribute high loads of bacteria and nutrients to the lake. The influent loads contributed to the lake are discharged at the dam over about 4 weeks

  9. [Tracing the Fecal Contamination Sources Based on Bacteroides 16S rRNA PCR- DGGE in Karst Groundwater: Taking Laolongdong Underground River System, Nanshan, Chongqing as an Example].

    PubMed

    Zhang, Hong; Jiang, Yong-jun; Zhang, Yuan-zhu; Duan, Yi-fan; Lü, Xian-fu; He, Qiu-fang

    2016-05-15

    Microbial contamination in karst groundwater continually increases and tracing the source researches has become a hot topic for international researchers. In this study, Laolongdong underground river at Nanshan, Chongqing was chosen as an example to adopt filter membrane methods to monitor the fecal microbial contaminations including the total bacterial concentration (TB), the total E. coli concentration (TE), the total fecal coliform (FC) and the total fecal Streptocoocci (FS). Bacteriodes was used as an indicator and PCR-DGGE analysis was used to trace fecal contamination sources in karst groundwater. The results suggested that groundwater in this area was seriously polluted by microbes from feces. The concentrations of microbial parameters exceeded limited levels greatly and the total bacterial amounts ranged 10-2.9 x 10⁷ CFU · mL⁻¹, the concentrations of E. coli were between 4.3-4.0 x 10⁵ CFU · mL⁻¹, the max concentration of FC was 1.1 x 10⁶ CFU · (100 mL)⁻¹ and the max concentration of FS was 1.1 x 10⁵ CFU · (100 mL)⁻¹. The FC/FS ratios were mostly over 2 which suggested that the main fecal source in groundwater was human feces. In addition, PCR-DGGE contrastive analysis of Bacteroides communities showed that the similarities between groundwater samples and human feces were in range of 7. 1% -69. 1% , and the similarity of the groundwater sample from Laolongdong underground river outlet was 69.1% . Bacteroides community similarities between groundwater samples and swine feces were in range of 1.1%-53.4%, and the similarity of Laolongdong underground river outlet was merely 1.5%. The similarity data implied that groundwater contamination resulted mainly from human feces, swine feces contamination composed part of animals' fecal contamination, and other animals' feces participated too. Furthermore, sequencing results of PCR-DGGE products revealed that most Bacteroides in groundwater originated from human intestinal tract and human feces.

  10. [Tracing the Fecal Contamination Sources Based on Bacteroides 16S rRNA PCR- DGGE in Karst Groundwater: Taking Laolongdong Underground River System, Nanshan, Chongqing as an Example].

    PubMed

    Zhang, Hong; Jiang, Yong-jun; Zhang, Yuan-zhu; Duan, Yi-fan; Lü, Xian-fu; He, Qiu-fang

    2016-05-15

    Microbial contamination in karst groundwater continually increases and tracing the source researches has become a hot topic for international researchers. In this study, Laolongdong underground river at Nanshan, Chongqing was chosen as an example to adopt filter membrane methods to monitor the fecal microbial contaminations including the total bacterial concentration (TB), the total E. coli concentration (TE), the total fecal coliform (FC) and the total fecal Streptocoocci (FS). Bacteriodes was used as an indicator and PCR-DGGE analysis was used to trace fecal contamination sources in karst groundwater. The results suggested that groundwater in this area was seriously polluted by microbes from feces. The concentrations of microbial parameters exceeded limited levels greatly and the total bacterial amounts ranged 10-2.9 x 10⁷ CFU · mL⁻¹, the concentrations of E. coli were between 4.3-4.0 x 10⁵ CFU · mL⁻¹, the max concentration of FC was 1.1 x 10⁶ CFU · (100 mL)⁻¹ and the max concentration of FS was 1.1 x 10⁵ CFU · (100 mL)⁻¹. The FC/FS ratios were mostly over 2 which suggested that the main fecal source in groundwater was human feces. In addition, PCR-DGGE contrastive analysis of Bacteroides communities showed that the similarities between groundwater samples and human feces were in range of 7. 1% -69. 1% , and the similarity of the groundwater sample from Laolongdong underground river outlet was 69.1% . Bacteroides community similarities between groundwater samples and swine feces were in range of 1.1%-53.4%, and the similarity of Laolongdong underground river outlet was merely 1.5%. The similarity data implied that groundwater contamination resulted mainly from human feces, swine feces contamination composed part of animals' fecal contamination, and other animals' feces participated too. Furthermore, sequencing results of PCR-DGGE products revealed that most Bacteroides in groundwater originated from human intestinal tract and human feces

  11. More Human, More Humane: A New Approach for Testing Airborne Pollutants

    PubMed Central

    Potera, Carol

    2007-01-01

    People not only inhale airborne contaminants but also absorb them through the skin. Both routes can set off localized toxic reactions or damage internal organs such as the liver, kidney, and brain. Conventional tests of the toxicity of gases and vapors, in which laboratory animals are exposed to lethal or sub-lethal doses of chemicals, have been criticized as expensive, unethical, inhumane, and time-consuming. Now researchers at the University of New South Wales (UNSW) in Sydney, Australia, have developed an animal-free alternative that uses human cells to test the effects of exposure to airborne toxicants. PMID:17431472

  12. More human, more humane: a new approach for testing airborne pollutants.

    PubMed

    Potera, Carol

    2007-03-01

    People not only inhale airborne contaminants but also absorb them through the skin. Both routes can set off localized toxic reactions or damage internal organs such as the liver, kidney, and brain. Conventional tests of the toxicity of gases and vapors, in which laboratory animals are exposed to lethal or sub-lethal doses of chemicals, have been criticized as expensive, unethical, inhumane, and time-consuming. Now researchers at the University of New South Wales (UNSW) in Sydney, Australia, have developed an animal-free alternative that uses human cells to test the effects of exposure to airborne toxicants. PMID:17431472

  13. Comparisons between myeloperoxidase, lactoferrin, calprotectin and lipocalin-2, as fecal biomarkers of intestinal inflammation in malnourished children

    PubMed Central

    Prata, Mara de Moura Gondim; Havt, A; Bolick, DT; Pinkerton, R; Lima, AAM; Guerrant, RL

    2016-01-01

    Fecal biomarkers have emerged as important tools to assess intestinal inflammation and enteropathy. The aim of this study was to investigate the correlations between the fecal markers, myeloperoxidase (MPO), lactoferrin (FL), calprotectin (FC) and lipocalin-2 (Lcn-2), and to compare differences by breastfeeding status as well as normalization by fecal protein or by fecal weight. Simultaneous, quantitative MPO, FL, FC and Lcn-2, levels were determined in frozen fecal specimens collected from 78 children (mean age 15.2 ± 5.3 months) in a case-control study of childhood malnutrition in Brazil. The biomarker concentrations were measured by enzymelinked immunosorbent assay. The correlations among all biomarkers were significant (P<0.01). There were stronger correlations of fecal MPO with fecal lactoferrin and calprotectin, with lower, but still highly significant correlations of all 3 inflammatory biomarkers with Lcn-2 likely because the latter may also reflect enterocyte damage as well as neutrophil presence. Furthermore, the biomarker results with protein normalized compared to simple fecal weight normalized values showed only a slightly better correlation suggesting that the added cost and time for protein normalization added little to carefully measured fecal weights as denominators. In conclusion, fecal MPO correlates tightly with fecal lactoferrin and calprotectin irrespective of breastfeeding status and provides a common, available biomarker for comparison of human and animal model studies.

  14. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies.

    PubMed

    Pham, D-M; Boussouira, B; Moyal, D; Nguyen, Q L

    2015-08-01

    A review of the oxidization of squalene, a specific human compound produced by the sebaceous gland, is proposed. Such chemical transformation induces important consequences at various levels. Squalene by-products, mostly under peroxidized forms, lead to comedogenesis, contribute to the development of inflammatory acne and possibly modify the skin relief (wrinkling). Experimental conditions of oxidation and/or photo-oxidation mechanisms are exposed, suggesting that they could possibly be bio-markers of atmospheric pollution upon skin. Ozone, long UVA rays, cigarette smoke… are shown powerful oxidizing agents of squalene. Some in vitro, ex vivo and in vivo testings are proposed as examples, aiming at studying ingredients or products capable of boosting or counteracting such chemical changes that, globally, bring adverse effects to various cutaneous compartments.

  15. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies.

    PubMed

    Pham, D-M; Boussouira, B; Moyal, D; Nguyen, Q L

    2015-08-01

    A review of the oxidization of squalene, a specific human compound produced by the sebaceous gland, is proposed. Such chemical transformation induces important consequences at various levels. Squalene by-products, mostly under peroxidized forms, lead to comedogenesis, contribute to the development of inflammatory acne and possibly modify the skin relief (wrinkling). Experimental conditions of oxidation and/or photo-oxidation mechanisms are exposed, suggesting that they could possibly be bio-markers of atmospheric pollution upon skin. Ozone, long UVA rays, cigarette smoke… are shown powerful oxidizing agents of squalene. Some in vitro, ex vivo and in vivo testings are proposed as examples, aiming at studying ingredients or products capable of boosting or counteracting such chemical changes that, globally, bring adverse effects to various cutaneous compartments. PMID:25656265

  16. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  17. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-09-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm} aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5(O3) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and -0.02 ± 0.01 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3, respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality

  18. Assessment of the status of urban air pollution and its impact on human health in the city of Kolkata.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, R K

    2005-09-01

    Air pollution has significant effects on exacerbation of asthma, allergy and other respiratory diseases. Like many other magacities in the world the ambient air quality of Kolkata is also being deteriorated day by day. Automobile exhausts and certain industrial pollutants produce O(3) by photochemical reactions. The particulate matter, particularly less than 10 microm in size, can pass through the natural protective mechanism of human respiratory system and plays an important role in genesis and augmentation of allergic disorders. Sources of air pollution in the area and the unique problem arising out of the emission from the vehicles, industries, etc. have been described. Ambient air quality was monitored along with micrometeorological data and the results are discussed. The status of air pollution in the area has been evaluated and a questionnaire survey was conducted to estimate the allergic symptoms and exposure to assess the respiratory disorders. The data are analysed to evaluate the critical situation arising out of the emission of air pollutants and the impact on human health due to respirable diseases (RDs) to middle class sub-population (activity-wise) in the area are assessed. A strategic air quality management plan has been proposed. For the mitigation of air pollution problems in the city, the different measures to be adopted to maintain the balance between sustainable development and environmental management have been discussed.

  19. Assessment of the status of urban air pollution and its impact on human health in the city of Kolkata.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, R K

    2005-09-01

    Air pollution has significant effects on exacerbation of asthma, allergy and other respiratory diseases. Like many other magacities in the world the ambient air quality of Kolkata is also being deteriorated day by day. Automobile exhausts and certain industrial pollutants produce O(3) by photochemical reactions. The particulate matter, particularly less than 10 microm in size, can pass through the natural protective mechanism of human respiratory system and plays an important role in genesis and augmentation of allergic disorders. Sources of air pollution in the area and the unique problem arising out of the emission from the vehicles, industries, etc. have been described. Ambient air quality was monitored along with micrometeorological data and the results are discussed. The status of air pollution in the area has been evaluated and a questionnaire survey was conducted to estimate the allergic symptoms and exposure to assess the respiratory disorders. The data are analysed to evaluate the critical situation arising out of the emission of air pollutants and the impact on human health due to respirable diseases (RDs) to middle class sub-population (activity-wise) in the area are assessed. A strategic air quality management plan has been proposed. For the mitigation of air pollution problems in the city, the different measures to be adopted to maintain the balance between sustainable development and environmental management have been discussed. PMID:16160784

  20. Uptake and metabolism of diclofenac in Typha latifolia--how plants cope with human pharmaceutical pollution.

    PubMed

    Bartha, Bernadett; Huber, Christian; Schröder, Peter

    2014-10-01

    The fate of pharmaceuticals in our environment is a very important issue for environmental and health research. Although these substances have been detected in environmental compartments in low concentration until now, they will pose considerable environmental risk to ecosystems, animals and human due to their biological activity. Alternative plant based removal technologies that make use of some potential wetland species like Phragmites or Typha within traditional wastewater treatment plants have to be established to cope with this "new generation" of pollutants. We investigated uptake and translocation of diclofenac (1mgl(-1)) in the macrophyte Typha latifolia L. during one week exposure in greenhouse experiments. Detoxification products and involved key enzymatic processes were identified. We also examined the oxidative stress induced by the treatment and the defense capacity of the plants. Rapid uptake and effective metabolism were observed, where glycoside and glutathione conjugates represent dominant metabolites. Up to seven-fold induction of glycosyltransferase activity was observed in roots, but not in shoots. Glutathione S-transferase activity was also induced, but to a lower extent. The activity changes of defense enzymes points to oxidative stress in the plants. Our results show that human pharmaceuticals can be metabolized by plants similar to xenobiotics, but that similarities to human metabolism are limited.

  1. Combining environment and health information systems for the assessment of atmospheric pollution on human health.

    PubMed

    Skouloudis, Andreas N; Kassomenos, Pavlos

    2014-08-01

    The use of emerging technologies for environmental monitoring with satellite and in-situ sensors have become essential instruments for assessing the impact of environmental pollution on human health, especially in areas that require high spatial and temporal resolution. This was until recently a rather difficult problem. Regrettably, with classical approaches the spatial resolution is frequently inadequate in reporting environmental causes and health effects in the same time scale. This work examines with new tools different levels of air-quality with sensor monitoring with the aim to associate those with severe health effects. The process established here facilitates the precise representation of human exposure with the population attributed in a fine spatial grid and taking into account environmental stressors of human exposure. These stressors can be monitored with innovative sensor units with a temporal resolution that accurately describes chronic and acute environmental burdens. The current understanding of the situation in densely populated areas can be properly analyzed, before commitments are made for reductions in total emissions as well as for assessing the effects of reduced trans-boundary fluxes. In addition, the data processed here with in-situ sensors can assist in establishing more effective regulatory policies for the protection of vulnerable population groups and the satellite monitoring instruments permit abatement strategies that are close to real-time over large geographical areas.

  2. Household Air Pollution Causes Dose-Dependent Inflammation and Altered Phagocytosis in Human Macrophages

    PubMed Central

    Fullerton, Duncan G.; Scriven, James; Aljurayyan, Abdullah N.; Mzinza, David; Barrett, Steve; Wright, Adam K. A.; Wootton, Daniel G.; Glennie, Sarah J.; Baple, Katy; Knott, Amy; Mortimer, Kevin; Russell, David G.; Heyderman, Robert S.; Gordon, Stephen B.

    2015-01-01

    Three billion people are exposed to household air pollution from biomass fuel use. Exposure is associated with higher incidence of pneumonia, and possibly tuberculosis. Understanding mechanisms underlying these defects would improve preventive strategies. We used human alveolar macrophages obtained from healthy Malawian adults exposed naturally to household air pollution and compared them with human monocyte-derived macrophages exposed in vitro to respirable-sized particulates. Cellular inflammatory response was assessed by IL-6 and IL-8 production in response to particulate challenge; phagosomal function was tested by uptake and oxidation of fluorescence-labeled beads; ingestion and killing of Streptococcus pneumoniae and Mycobacterium tuberculosis were measured by microscopy and quantitative culture. Particulate ingestion was quantified by digital image analysis. We were able to reproduce the carbon loading of naturally exposed alveolar macrophages by in vitro exposure of monocyte-derived macrophages. Fine carbon black induced IL-8 release from monocyte-derived and alveolar macrophages (P < 0.05) with similar magnitude responses (log10 increases of 0.93 [SEM = 0.2] versus 0.74 [SEM = 0.19], respectively). Phagocytosis of pneumococci and mycobacteria was impaired with higher particulate loading. High particulate loading corresponded with a lower oxidative burst capacity (P = 0.0015). There was no overall effect on killing of M. tuberculosis. Alveolar macrophage function is altered by particulate loading. Our macrophage model is comparable morphologically to the in vivo uptake of particulates. Wood smoke–exposed cells demonstrate reduced phagocytosis, but unaffected mycobacterial killing, suggesting defects related to chronic wood smoke inhalation limited to specific innate immune functions. PMID:25254931

  3. Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages.

    PubMed

    Rylance, Jamie; Fullerton, Duncan G; Scriven, James; Aljurayyan, Abdullah N; Mzinza, David; Barrett, Steve; Wright, Adam K A; Wootton, Daniel G; Glennie, Sarah J; Baple, Katy; Knott, Amy; Mortimer, Kevin; Russell, David G; Heyderman, Robert S; Gordon, Stephen B

    2015-05-01

    Three billion people are exposed to household air pollution from biomass fuel use. Exposure is associated with higher incidence of pneumonia, and possibly tuberculosis. Understanding mechanisms underlying these defects would improve preventive strategies. We used human alveolar macrophages obtained from healthy Malawian adults exposed naturally to household air pollution and compared them with human monocyte-derived macrophages exposed in vitro to respirable-sized particulates. Cellular inflammatory response was assessed by IL-6 and IL-8 production in response to particulate challenge; phagosomal function was tested by uptake and oxidation of fluorescence-labeled beads; ingestion and killing of Streptococcus pneumoniae and Mycobacterium tuberculosis were measured by microscopy and quantitative culture. Particulate ingestion was quantified by digital image analysis. We were able to reproduce the carbon loading of naturally exposed alveolar macrophages by in vitro exposure of monocyte-derived macrophages. Fine carbon black induced IL-8 release from monocyte-derived and alveolar macrophages (P < 0.05) with similar magnitude responses (log10 increases of 0.93 [SEM = 0.2] versus 0.74 [SEM = 0.19], respectively). Phagocytosis of pneumococci and mycobacteria was impaired with higher particulate loading. High particulate loading corresponded with a lower oxidative burst capacity (P = 0.0015). There was no overall effect on killing of M. tuberculosis. Alveolar macrophage function is altered by particulate loading. Our macrophage model is comparable morphologically to the in vivo uptake of particulates. Wood smoke-exposed cells demonstrate reduced phagocytosis, but unaffected mycobacterial killing, suggesting defects related to chronic wood smoke inhalation limited to specific innate immune functions.

  4. Human mother`s milk as a marker for human exposure to environmental pollutants

    SciTech Connect

    Saleh, M.A.; Kamel, A.; Ragab, A.A.

    1995-12-01

    Levels of the heavy metal Lead and persistent chlorinated hydrocarbon pesticides in human breast milk of 360 Egyptian women representing 20 different provinces throughout Egypt were determined. Lead was determined using a graphite furnace Atomic Absorption spectrometer and chlorinated pesticides were analyzed by GC/ECD and confirmed by GC/MS. Lead level was considerably higher in highly populated cities i.e. Cairo and Alexandria which is attributed to heavy automobiles traffic and the use of leaded gasoline as the only type of gasoline available in Egypt. Other populations with lower traffics showed much lower level of lead. The same was true for the level of chlorinated hydrocarbon pesticides in which higher levels were found in agricultural rural areas and big cities but was much lower in remote desert locations when pesticides are rarely used. Lindane, Endosulfan and DDT metabolites were among the most commonly found insecticides.

  5. The Ecological Dynamics of Fecal Contamination and Salmonella Typhi and Salmonella Paratyphi A in Municipal Kathmandu Drinking Water.

    PubMed

    Karkey, Abhilasha; Jombart, Thibaut; Walker, Alan W; Thompson, Corinne N; Torres, Andres; Dongol, Sabina; Tran Vu Thieu, Nga; Pham Thanh, Duy; Tran Thi Ngoc, Dung; Voong Vinh, Phat; Singer, Andrew C; Parkhill, Julian; Thwaites, Guy; Basnyat, Buddha; Ferguson, Neil; Baker, Stephen

    2016-01-01

    One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typh